IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 1
Rev. 00B
12/5/2012
128MX8, 64MX16 1Gb DDR3 SDRAM ADVANCED INFORMATION
DECEMBER 2012
FEATURES
Standard Volta ge: VDD and VDDQ = 1.5V ± 0.075V
Low Voltage (L): VDD and VDDQ = 1.35V + 0.1V, -0.067V
High speed data transfer rates wi th system
frequency up to 933 MHz
8 internal banks for concurrent operation
8n-bit pre-fetch architecture
Programmable CAS Latency
Programmable Additive Latency: 0, CL-1,CL-2
Programmable CAS WRITE latency (C WL) based
on tCK
Programmable Burst Length: 4 and 8
Programmable Burst Sequence: Sequential or
Interleave
BL switch on the fly
Auto Self Refresh(ASR)
Self Refresh Temperature(SRT)
Refresh Interval:
7.8 us (8192 cycles/64 ms) Tc= -40°C to 85°C
3.9 us (8192 cycles/32 ms) Tc= 85°C to 105°C
Partial Array Self Refresh
Asynchronous RESET pin
TDQS (Termination Data Strobe) supported (x8
only)
OCD (Off-Chip Driver Impedance Adjustment)
Dynamic ODT (On-Die Termination)
Driver strength : RZQ/7, RZQ/6 (RZQ = 240 )
Write Leveling
Operating temperature:
Commercial (TC = 0°C to +95°C)
Industrial (TC = -40°C to +95°C)
Automotive, A1 (TC = -40°C to +95°C)
Automotive, A2 (TC = -40°C to +105°C)
OPTIONS
Configuration:
128Mx8
64Mx16
Package:
96-ball FBGA (9mm x 13mm) for x16
78-ball FBGA (8mm x 10.5mm) for x8
ADDRESS TABLE
Parameter 128Mx8 64Mx16
Row Addressing A0-A13 A0-A12
Column Addressing
A0-A9
A0-A9
Bank Addressing BA0-2 BA0-2
Page size 1KB 2KB
Auto Prec h ar ge Ad dres s ing
A10/AP
A10/AP
BL switch on the fly A12/BC# A12/BC#
SPEED BIN
Speed Option 187F 15G 15H 125J 107L Units
JEDEC Speed Grade
DDR3-
1066F
DDR3-
1333G
DDR3-
1333H
DDR3-
1600J
DDR3-
1866L
CL-nRCD-nRP
7-7-7
8-8-8
9-9-9
10-10-10
12-12-12
tCK
tRCD,tRP(min)
13.125
12.0
13.5
12.5
12.84
ns
Note: Faster speed options are backward compatibl e to slower speed opti ons.
Copyright © 2011 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time
without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised
to obtain the latest version of this device specification before relying on any published information and before placing orders for products.
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product
can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use
in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:
a.) the risk of injury or damage has been minimized;
b.) the user assume all such risks; and
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 2
Rev. 00B
12/5/2012
1. DDR3 P ACKAGE BALLOUT
1.1 DDR3 SDRAM package ballout 78-ball FBGA – x8
1 2 3 4 5 6 7 8 9
A
VSS VDD NC NU/TDQS# VSS VDD
B
VSS VSSQ DQ0 DM/TDQS VSSQ VDDQ
C
VDDQ DQ2 DQS DQ1 DQ3 VSSQ
D
VSSQ DQ6 DQS# VDD VSS VSSQ
E
VREFDQ VDDQ DQ4 DQ7 DQ5 VDDQ
F
NC
1
VSS RAS# CK VSS NC
G
ODT VDD CAS# CK# VDD CKE
H
NC CS# WE# A10/AP ZQ NC
J VSS BA0 BA2 NC(A15) VREFCA VSS
K
VDD A3 A0 A12/BC# BA1 VDD
L
VSS A5 A2 A1 A4 VSS
M
VDD A7 A9 A11 A6 VDD
N
VSS RESET# A13 NC(A14) A8 VSS
Note:
NC balls have no internal connection. NC(A14) and NC(A15) are one of NC pins and reserved for higher densi ties .
1.2 DDR3 SDRAM package ballout 96-ball FBGAx16
1 2 3 4 5 6 7 8 9
A
VDDQ DQU5 DQU7 DQU4 VDDQ VSS
B
VSSQ VDD VSS DQSU# DQU6 VSSQ
C
VDDQ DQU3 DQU1 DQSU DQU2 VDDQ
D
VSSQ VDDQ DMU DQU0 VSSQ VDD
E
VSS VSSQ DQL0 DML VSSQ VDDQ
F
VDDQ DQL2 DQSL DQL1 DQL3 VSSQ
G
VSSQ DQL6 DQSL# VDD VSS VSSQ
H VREFDQ VDDQ DQL4 DQL7 DQL5 VDDQ
J
NC VSS RAS# CK VSS NC
K
ODT VDD CAS# CK# VDD CKE
L
NC CS# WE# A10/AP ZQ NC
M
VSS BA0 BA2 NC(A15) VREFCA VSS
N
VDD A3 A0 A12/BC# BA1 VDD
P
VSS A5 A2 A1 A4 VSS
R
VDD A7 A9 A11 A6 VDD
T
VSS RESET# NC(A13) NC(A14) A8 VSS
Note:
NC balls have no internal c onnect ion. NC(A13), NC(A14) and NC(A15) are one of NC pins and reserved for higher densities.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 3
Rev. 00B
12/5/2012
1.3 Pinout Description - JEDEC Standard
Symbol
Type
Function
CK, CK#
Input
Clock: CK and CK# are differential clock inputs. All address and control input signals are sampled
on the crossing of the positive edge of CK and negative edge of CK#.
CKE
Input
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device
input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-
Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is
asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have become stable during the
power on and initialization sequence, they must be maintained during all operations (including
Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers,
excluding CK, CK#, ODT and CKE, are disabled during power-down. Input buffers, excluding
CKE, are disabled during Self-Refresh.
CS#
Input
Chip Select: All commands are masked when CS# is registered HIGH. CS# provides for external
Rank selection on systems with multiple Ranks. CS# is considered part of the command code.
ODT Input On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3
SDRAM. When enabled, ODT is only applied to each DQ, DQSU, DQSU#, DQSL, DQSL#, DMU,
and DML signal. The ODT pin will be ignored if MR1 and MR2 are programmed to disable RTT.
RAS#. CAS#.
WE#
Input
Command Inputs: RAS#, CAS# and WE# (along with CS#) define the command being entered.
DM, (DMU),
(DML)
Input
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is
sampled HIGH coincident with that input data during a Write access. DM is sampled on both
edges of DQS. For x8 device, the function of DM or TDQS/TDQS# is enabled by Mode Register
A11 setting in MR1.
BA0 - BA2
Input
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write, or Precharge
command is being applied. Bank address also determines which mode register is to be accessed
during a MRS cycle.
A0 - A13
Input
Address Inputs: Provide the row address for Active commands and the column address for Read/
Write commands to select one location out of the memory array in the respective bank. (A10/AP
and A12/BC# have additional functions; see below). The address inputs also provide the op-code
during Mode Register Set commands.
A10 / AP Input Auto-precharge: A10 is sampled during Read/Write commands to determine whether
Autoprechar ge shou ld be performed to the accessed bank after the Read/Write operation. (HIGH:
Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge command to
determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If
only one bank is to be precharged, the bank is selected by bank addresses.
A12 / BC#
Input
Burst Chop: A12 / BC# is sampled during Read and Write commands to determine if burst chop
(on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth
table for details.
RESET#
Input
Active Low Asynchronous Reset: Reset is active when RESET# is LOW, and inactive when
RESET# is HIGH. RESET# must be HIGH during normal operation. RESET# is a CMOS rail- to-
rail signal with DC high and low at 80% and 20% of VDD, i.e., 1.20V for DC high and 0.30V for
DC low.
DQ(DQL, DQU)
Input / Output
Data Input/ Output: Bi-directional data bus.
DQS,
DQS#, DQSU,
DQSU#, DQSL,
DQSL#
Input / Output
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered
in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to
the data on DQU0-DQU7. The data strobes DQS, DQSL, and DQSU are paired with differential
signals DQS#, DQSL#, and DQSU#, respectively, to provide differential pair signaling to the
system during reads and writes. DDR3 SDRAM supports differential data strobe only and does
not support single-ended.
TDQS, TD QS #
Output
Termination Data Strobe: TDQS/TDQS# is applicable for x8 DRAMs only. When enabled via
Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function
on TDQS/TDQS# that is applied to DQS/DQS#. When disabled via mode register A11 = 0 in
MR1, DM/TDQS will provide the data mask function and TDQS# is not used. x16 DRAMs must
disable the TDQS function via mode register A11 = 0 in MR1.
NC
No Connect: No internal electrical connection is present.
VDDQ
Supply
DQ Power Supply: 1.5 V +/- 0.075 V for standard voltage or 1.35V +0.1V, -0.067V for low voltage
VSSQ Supply DQ Ground
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 4
Rev. 00B
12/5/2012
VDD
Supply
Power Supply: 1.5 V +/- 0.075 V for standard voltage or 1.35V +0.1V, -0.067V for low voltage
VSS
Supply
Ground
VREFDQ
Supply
Reference voltage for DQ
VREFCA
Supply
Reference voltage for CA
ZQ
Supply
Reference Pin for ZQ calibration Input only pins (BA0-BA2, A0-A13, RAS#, CAS#, WE#, CS#,
CKE, ODT, and RESET#) do not supply termination.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 5
Rev. 00B
12/5/2012
2. FUNCTION DESCRIPTION
2.1 Simplified State Diagram
Abbreviation
Function
Abbreviation
Function
Abbreviation
Function
ACT Active Read RD, RDS4, RDS8 PDE Enter Power-down
PRE Precharge Read A RDA, RDAS4, RDAS8 PDX Exit Power-down
PREA Precharge All Write WR, WRS4, WRS8 SRE Self-Refr e sh entry
MRS Mode Register Set Write A WRA, WRAS4, WRAS8 SRX Self-Refresh ex it
REF Refresh RESET Start RESET Procedure MPR Multi-Purpose Register
ZQCL
ZQ Calibrati on Long
ZQCS
ZQ Calibration Short
Power
On
Power
applied
RESET
From
Any state
Reset
Procedure Initialization
ZQCL
ZQ
Calibration
ZQCL
ZQCS
Idle
MRS,MPR,
Write
Leveling
Self
Refresh
SRE
SRX
REF
Refreshing
Precharge
Power
Down
PDX
PDE
ACT
Activating
Bank
Active
Active
Power
Down
PDE
PDX
Reading Writing
Writing
Reading
Precharging Automatic
Sequence
Command
Sequence
Write
Write
Write A
Write
Write A
Write A
PRE,PREA
Read
Read A
Read
Read A
PRE,PREA
PRE,PREA
Read A
Read
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 6
Rev. 00B
12/5/2012
2.2 RESET and Initialization Procedure
2.2.1 Power-up Initialization Sequence
The following sequence is required for POWER UP and Initialization.
1. Apply power (RESET# is recommended to be maintained below 0.2 x VDD; all other inputs may be undefined).
RESET# needs to be maintained for minimum 200 us with stable power. CKE is pulled Low” anytime before
RESET# being de-asserted (min. time 10 ns). The power voltage ramp time between 300mV to VDD(min) must be
no greater than 200 ms; and during the ramp, VDD > VDDQ and (VDD - VDDQ) < 0.3 volts .
VDD and VDDQ are driven from a single power converter output, AND
The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD
on one side and must be larger than or equal to VSSQ and VSS on the other side. In addition, VTT is limited to
0.95 V max once power ramp is finished, AND
Vref tracks VDDQ/2.
OR
Apply VDD without any slope reversal before or at the same time as VDDQ.
Apply VDDQ without any slope reversal before or at the same time as VTT & Vref.
The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD
on one side and must be larger than or equal to VSSQ and VSS on the other side.
2. After RESET# is de-asserted, wait for another 500 us until CKE becomes active. During this time, the DRAM will
start internal state initialization; this will be done independently of external clocks.
3. Clocks (CK, CK#) need to be started and stabilized for at least 10 ns or 5 tCK (which is larger) before CKE goes
active. Since CKE is a synchronous signal, the corresponding set up time to clock (tIS) must be met. Also, a NOP or
Deselect command must be registered (with tIS set up time to clock) before CKE goes active. Once the CKE is
registered “High” after Reset, CKE needs to be continuously registered “High” until the initialization sequence is
finished, including expiration of tDLLK and tZQinit.
4. The DDR3 SDRAM keeps its on-die termination in high-impedance state as long as RESET# is asserted. Further,
the SDRAM keeps its on-die termination in high impedance state after RESET# deassertion until CKE is registered
HIGH. The ODT input signal may be in undefined state until tIS before CKE is registered HIGH. When CKE is
registered HIGH, the ODT input signal may be statically held at either LOW or HIGH. If RTT_NOM is to be enabled
in MR1, the ODT input signal must be statically held LOW. In all cases, the ODT input signal remains static until the
power up initialization sequence is finished, including the expiration of tDLLK and tZQinit.
5. After CKE is being registered high, wait minimum of Reset CKE Exit time, tXPR, before issuing the first MRS
command to load mode register. (tXPR=max (tXS ; 5 x tCK)
6. Issue MRS Command to load MR2 with all application settings. (To issue MRS command for MR2, provide “Low” to
BA0 and BA2, “High” to BA1.)
7. Issue MRS Command to load MR3 with all application settings. (To issue MRS command for MR3, provide “Low” to
BA2, “High” to BA0 and BA1.)
8. Issue MRS Command to load MR1 with all application settings and DLL enabled. (To issue "DLL Enable" command,
provide "Low" to A0, "High" to BA0 and "Low" to BA1 BA2).
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 7
Rev. 00B
12/5/2012
9. Issue MRS Command to load MR0 with all application settings and “DLL reset”. (To issue DLL reset command,
provide "High" to A8 and "Low" to BA0-2).
10. Issue ZQCL command to starting ZQ calibration.
11. Wait for both tDLLK and tZQinit completed.
12. The DDR3 SDRAM is now ready for normal operation.
Figure2.1.1 Reset and Initialization Sequence at Power-on Ramping
2.2.2 Reset Initialization with Stable Power
The following sequence is required for RESET at no power interruption initialization.
1. Asserted RESET below 0.2 * VDD anytime when reset is needed (all other inputs may be undefined). RESET needs
to be maintained for minimum 100 ns. CKE is pulled “LOW” before RESET being de-asserted (min. time 10 ns).
2. Fol low Power-up Initialization Sequence steps 2 to 11.
3. The Reset sequence is now completed; DDR3 SDRAM is ready for normal operation.
Ta
CK,CK#
VDD,VDDQ
RESET#
CKE
CMMAND
BA
ODT
RTT
Tb
T=20S
Tmin=10nS
T=500µS
tCKSRX
tIS
tIS
tIS
( (
) )
( (
) ) ( (
) ) ( (
) ) ( (
) ) ( (
) ) ( (
) ) ( (
) ) ( (
) ) ( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
Tc
Td
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
tXPR
tMRD
tMRD
tMRD
tMOD
tZQinit
tDLLK
tIS
Valid
Valid
Valid
Valid
MRD MRD MRD MRD ZQCL 1)
MR2 MR3 MR1 MR0
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
Te
Tf
Tg
Th
Ti
Tj
Tk
Note1. From time point Td” until “Tk” NOP or DES commands must be
applied between MRS and ZQCL commands.
Time
Break
DON’T
CARE
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW
1)
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 8
Rev. 00B
12/5/2012
Figure2.1.2 Reset Procedure at Pow er Stable Condition
2.3 Register Definition
2.3.1 Programming the Mode Registers
For application flexibility, various functions, features, and modes are programmable in four Mode Registers, provided by
the DDR3 SDRAM, as user defined variables and they must be programmed via a Mode Register Set (MRS) command.
As the default values of the Mode Registers (MR#) are not defined, contents of Mode Registers must be fully initialized
and/or re-initialized, i.e. written, after power up and/or reset for proper operation. Also the contents of the Mode Registers
can be altered by re-executing the MRS command during normal operation. When programming the mode registers, even
if the user chooses to modify only a sub-set of the MRS fields, all address fields within the accessed mode register must
be redefined when the MRS command is issued. MRS command and DLL Reset do not affect array contents, which
means these commands can be executed any time after power-up without affecting the array contents The mode register
set command cycle time, tMRD is required to complete the write operation to the mode register and is the minimum time
required between two MRS commands shown as below.
Ta
CK,CK#
VDD,VDDQ
RESET#
CKE
CMMAND
BA
ODT
RTT
Tb
T=100nS
Tmin=10nS
T=500µS
tCKSRX
tIS
tIS
tIS
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
Tc Td
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
tXPR
tMRD
tMRD
tMRD
tMOD
tZQinit
tDLLK
tIS
Valid
Valid
Valid
Valid
MRD
MRD
MRD
MRD
ZQCL
1)
MR2 MR3 MR1 MR0
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
( (
) )
Te Tf Tg Th Ti Tj Tk
Note1. From time point Td” until “Tk” NOP or DES commands must be
applied between MRS and ZQCL commands.
Time
Break
DON’T
CARE
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW
1)
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 9
Rev. 00B
12/5/2012
Figure2.3.1a tMRD Timing
The MRS command to Non-MRS command delay, tMOD, is require for the DRAM to update the features except DLL
reset, and is the minimum time required from an MRS command to a non-MRS command excluding NOP and DES shown
as the following figure.
Figure 2.3.1b tMOD Timing
The mode register contents can be changed using the same command and timing requirements during normal operation
as long as the DRAM is in idle state, i.e., all banks are in the precharged state with tRP satisfied, all data bursts are
completed and CKE is high prior to writing into the mode register. If the RTT_NOM Feature is enabled in the Mode
Register prior and/or after an MRS Command, the ODT Signal must continuously be registered LOW ensuring RTT is in
an off State prior to the MRS command. The ODT Signal maybe registered high after tMOD has expired. If the RTT_NOM
Feature is disabled in the Mode Register prior and after an MRS command, the ODT Signal can be registered either LOW
or HIGH before, during and after the MRS command. The mode registers are divided into various fields depending on the
functionality and/or modes.
CK
Command
Address
CKE
Settings
ODT
ODT
RTT_Nom ENABLED prior and/or after MRS command
RTT_Nom D IS ABLED prior and after MRS command
ODTLoff + 1
Old Settings
( (
) )
Time
Break
DON’T
CARE
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
MRS
Valid
Valid
NOP/
DEC
Valid
Valid
Valid
Valid
MRS
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
NOP/
DEC
NOP/
DEC
NOP/
DEC
tMRD
tMRD
New Settings
CK#
CK
Command
Address
CKE
Settings
ODT
ODT
RTT_Nom ENABLED prior and/or after MRS command
RTT_Nom D IS ABLED prior and after MRS command
ODTLoff + 1
Old Settings
( (
) )
Time
Break
DON’T
CARE
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
MRS
Valid
Valid
NOP/
DEC
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
NOP/
DEC
NOP/
DEC
NOP/
DEC
tMOD
New Settings
NOP/
DEC
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 10
Rev. 00B
12/5/2012
2.3.2 Mode Register MR0
The mode register MR0 stores the data for controlling various operating modes of DDR3 SDRAM. It controls burst length,
read burst type, CAS latency, test mode, DLL reset, WR and DLL control for precharge Power-Dow n, which include
vendor specific options to make DDR3 SDRAM useful for various applications. The mode register is written by asserting
low on CS#, RAS#, CAS#, WE#, BA0, BA1, and BA2, while controlling the states of address pins according to the
following figure.
1. A13 must be programmed to 0 during MRS.
2. WR (write recovery for autoprecharge)m i n in clock cycles is calculated by dividi ng tWR(in ns) by tCK (in ns) and roundi ng up to the next integer:
WRmin[cycles] = Roundup(tWR[ns] / tCK[ns]). The WR value in the m ode register must be programmed to be equal or larger than WRm in. T he
programmed WR value is used with tRP to determine t DAL.
3. The table only shows the encodi ngs for a given Cas Latency. For actual supported Cas Latency, please refer to speedbin tables for each
frequency
4. The table only shows the encodi ngs for Writ e Recovery. For actual W rite recovery timing, pl eas e refer to AC timing table.
Figure 2.3.2 MR0 Definition
2.3.2.1 Burst Length, Type and Order
Accesses within a given burst may be programmed to sequential or interleaved order. The burst type is selected via bit A3
as shown in Figure 2.3.2. The ordering of accesses within a burst is determined by the burst length, burst type, and the
starting column address as shown in Table below. The burst length is defined by bits A0-A1. Burst length options include
BA2
BA1
BA0
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
Address Field
0
0
0
0*
1
PPD
WR
DLL
TM
CAS Latency
RBT
CL
BL
Mode Register 0
A8
DLL Reset
A7
mode
A3
Read Burst Type
A1
A0
BL
0
No
0
Nomal
0
Nibble Sequential
0
0
8 (Fixed)
1
Yes
1
Test
1
Interleave
0
1
BC4 or 8 (on the fly)
1
0
BC4 (Fixed)
A12
DLL Control for
Write recov ery for aut oprecharge
1
1
Reserved
Precharge PD
A11
A10
A9
WR(cycles)
0
Slow exit (DLL of f)
0
0
0
16
*2
A6
A5
A4
A2
CAS Latency
1
Fast exit (DLL on)
0
0
1
5
*2
0
0
0
0
Reserved
0
1
0
6
*2
0
0
1
0
5
BA1
BA0
MR Select
0
1
1
7
*2
0
1
0
0
6
0
0
MR0
1
0
0
8
*2
0
1
1
0
7
0
1
MR1
1
0
1
10
*2
1
0
0
0
8
1
0
MR2
1
1
0
12
*2
1
0
1
0
9
1
1
MR3
1
1
1
14
*2
1
1
0
0
10
1
1
1
0
11
0
0
0
1
12
0
0
1
1
13
0
1
0
1
14
0
1
1
1
15
1
0
0
1
16
1
0
1
1
Reserved
1
1
0
1
Reserved
1
1
1
1
Reserved
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 11
Rev. 00B
12/5/2012
fixed BC4, fixed BL8, and ‘on the fly’ which allows BC4 or BL8 to be selected coincident with the registration of a Read or
Write command via A12/BC#.
Burst
Length READ/
WRITE
Starting
Column
ADDRESS
(A2,A1,A0)
burst type = Sequential
(decimal)
A3 = 0
burst type = Interleaved
(decimal)
A3 = 1 Notes
4
Chop
READ
0
0,1,2,3,T,T,T,T
0,1,2,3,T,T,T,T
1, 2, 3
1
1,2,3,0,T,T,T,T
1,0,3,2,T,T,T,T
1, 2, 3
10
2,3,0,1,T,T,T,T
2,3,0,1,T,T,T,T
1, 2, 3
11
3,0,1,2,T,T,T,T
3,2,1,0,T,T,T,T
1, 2, 3
100
4,5,6,7,T,T,T,T
4,5,6,7,T,T,T,T
1, 2, 3
101
5,6,7,4,T,T,T,T
5,4,7,6,T,T,T,T
1, 2, 3
110
6,7,4,5,T,T,T,T
6,7,4,5,T,T,T,T
1, 2, 3
111
7,4,5,6,T,T,T,T
7,6,5,4,T,T,T,T
1, 2, 3
WRITE 0,V,V 0,1,2,3,X,X,X,X 0,1,2,3,X,X,X,X 1, 2, 4, 5
1,V,V
4,5,6,7,X,X,X,X
4,5,6,7,X,X,X,X
1, 2, 4, 5
8 READ
0
0,1,2,3,4,5,6,7
0,1,2,3,4,5,6,7
2
1 1,2,3,0,5,6,7,4 1,0,3,2,5,4,7,6 2
10
2,3,0,1,6,7,4,5
2,3,0,1,6,7,4,5
2
11 3,0,1,2,7,4,5,6 3,2,1,0,7,6,5,4 2
100 4,5,6,7,0,1,2,3 4,5,6,7,0,1,2,3 2
101 5,6,7,4,1,2,3,0 5,4,7,6,1,0,3,2 2
110 6,7,4,5,2,3,0,1 6,7,4,5,2,3,0,1 2
111 7,4,5,6,3,0,1,2 7,6,5,4,3,2,1,0 2
WRITE V,V,V 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7 2, 4
Notes:
1. In case of burst length bei ng fixed to 4 by MR0 setting, the internal write operati on st arts two clock cycles earli er than for the BL8 mode. This means
that the st arting poi nt f or tWR and tWTR will be pulled in by two clocks. In case of burst length being selected on-the-fly via A12/BC#, the internal
write operation st arts at the sam e point in time like a burst of 8 write operation. This means that during on-the-fly control, the starting point for tWR
and tWTR will not be pulled in by two clocks.
2. 0...7 bit num ber is value of CA[2:0] that causes t his bit to be the first read during a burst.
3. T: Output driver for dat a and strobes are in high impedance.
4. V: a valid logic level (0 or 1), but respective buffer input ignores level on i nput pins.
5. X: Don’t Care.
2.3.2.2 CAS Latency
The CAS Latency is defined by MR0 (bits A9-A11) as shown in Figure 2.3.2. CAS Latency is the delay, in clock cycles,
between the internal Read command and the availability of the first bit of output data. DDR3 SDRAM does n ot supp ort
any half-clock latencies. The overall Read Latency (RL) is defined as Additive Latency (AL) + CAS Latency (CL); RL = AL
+ CL. For more information on the supported CL and AL settings based on the operating clock frequency, refer to
“Standard Spe ed Bi ns .
2.3.2.3 Test Mode
The normal operating mode is selected by MR0 (bit A7 = 0) and all other bits set to the desired values shown in Figure
2.3.2. Programming bit A7 to a ‘1’ places the DDR3 SDRAM into a test mode that is only used by the DRAM Manufactur er
and should NOT be used. No operations or functionality is specified if A7 = 1.
2.3.2.4 DLL Reset
The DLL Reset bit is self-clearing, meaning that it returns back to the value of ‘0’ after the DLL reset function has been
issued. Once the DLL is enabled, a subsequent DLL Reset should be applied. Any time that the DLL reset function is
used, tDLLK must be met before any functions that require the DLL can be used (i.e., Read commands or ODT
synchronous operations).
2.3.2.5 Write Recovery
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 12
Rev. 00B
12/5/2012
The programmed WR value MR0 (bits A9, A10, and A11) is used for the auto precharge feature along with tRP to
determine tDAL. WR (write recovery for auto-precharge) min in clock cycles is calculated by divi ding tWR (in ns) by tCK
(in ns) and rounding up to the next integer: WRmin[cycles] = Roundup(tWR[ns]/tCK[ns]). The WR must be programmed to
be equal to or larger than tWR(min).
2.3.2.6 Precharge PD DLL
MR0 (bit A12) is used to select the DLL usage during precharge power-down mode. When MR0 (A12 = 0), or ‘s lo w-exit’,
the DLL is frozen after entering precharge power-down (for potential power savings) and upon exit requires tXPDLL to be
met prior to the next valid command. When MR0 (A12 = 1), or ‘fast-exit’, the DLL is maintained after entering precharge
power-down and upon exiting power-down requires tXP to be met prior to the next valid command.
2.3.3 Mode Register MR1
The Mode Register MR1 stores the data for enabling or disabling the DLL, output driver strength, Rtt_Nom impedance,
additive latency, Write leveling enable, TDQS enable and Qoff. The Mode Register 1 is written by asserting low on CS#,
RAS#, CAS#, WE#, high on BA0 and low on BA1 and BA2, while controlling the states of address pins according to
Figure 2.3.3.
* 1 : A8, A10, and A13 must be programmed to 0 during MRS.
* TDQS must be disabled for x16 option. Figure 2.3.3 MR1 Definition
2.3.3.1 DLL Enable/Disable
BA2
BA1
BA0
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
Address Field
0
0
1
0*
1
Qoff
TDQS
0*
1
Rtt
0*
1
Level
Rtt
D.I.C
AL
Rtt
D.I.C
DLL
Mode Register 1
A11
TDQS enable
A7
Write leveling enable
A9
A6
A2
Rtt_Nom
*3
A0
DLL Enable
0
Disabled
0
Disabled
0
0
0
ODT disabled
0
Enable
1
Enabled
1
Enabled
0
0
1
RZQ/4
1
Disable
0
1
0
RZQ/2
A4
A3
Additive Latency
0
1
1
RZQ/6
0
0
1
0
0
RZQ/12
*4
0
1
CL-1
1
0
1
RZQ/8
*4
1
0
CL-2
1
1
0
Reserved
1
1
Reserved
1
1
1
Reserved
Note: RZQ = 240
A12
Qoff
*2
*3:In Write leveling Mode (MR1[bit7] = 1) with
0
Out pu t buffer enable d
MR1[bit12]=1, all RTT_Nom settings are allowed; in
1
Out pu t buffer dis abled
*2
Write Leveling Mode (MR1[bit7] = 1) with
*2: Output s di s a bled - DQs, DQSs, DQS# s.
MR1[bit12]=0, only RTT_Nom settings of RZQ/2,
RZQ/4 and RZQ/6 are allowed.
BA1
BA0
MR Select
*4:If RTT_Nom is used during Writes, only the
0
0
MR0
values RZQ/2, RZQ/4 and RZQ/6 are allowed.
0
1
MR1
1
0
MR2
A5
A1
Output Driver Impedance Control
1
1
MR3
0
0
RZQ/6
0
1
RZQ/7
1
0
RZQ/TBD
1
1
RZQ/TBD
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 13
Rev. 00B
12/5/2012
The DLL must be enabled for normal operation. DLL enable is required during power up initialization, and upon returning
to normal operation after having the DLL disabled. During normal operation (DLL-on) with MR1 (A0 = 0), the DLL is
automatically disabled when entering Self-Refresh operation and is automatically re-enabled upon exit of Self-Refresh
operation. Any time the DLL is enabled and subsequently reset, tDLLK clock cycles must occur before a Read or
synchronous ODT co mmand can be issued to allow time for the internal clock to be synchron i zed with the e xter nal cloc k.
Failing to wait for synchronization to occur may result in a violation of the tDQSCK, tAON or tAOF parameters. During
tDLLK, CKE must continuously be registered high. DDR3 SDRAM does not require DLL for any Write operation, except
when RTT_WR is enabled and the DLL is required for proper ODT operation. For more detailed information on DLL
Disable operation refer to “DLL-off Mode”.
The direct ODT feature is not supported during DLL-off mode. The on-die termination resistors must be disabled by
continuously registering the ODT pin low and/or by programming the RTT_Nom bits MR1{A9,A6,A2} to {0,0,0} via a mode
register set command during DLL-off mode.
The dynamic ODT feature is not supported at DLL-off mode. User must use MRS command to set Rtt_WR, MR2 {A10,
A9} = {0,0}, to disable Dynamic ODT externally.
2.3.3.2 Output Driver Impedance Control
The output driver impedance of the DDR3 SDRAM device is selected by MR1 (bits A1 and A5) as shown in Figure 2.3.3.
2.3.3.3 ODT Rtt Values
DDR3 SDRAM is capable of providing two different termination values (Rtt_Nom and Rtt_WR). The nominal termination
value Rtt_Nom is programmed in MR1. A separate value (Rtt_WR) may be programmed in MR2 to enable a unique RTT
value when ODT is enabled during writes. The Rtt_WR value can be applied during writes even when Rtt_Nom is
disabled.
2.3.3.4 Additive Latency (AL)
Additive Latency (AL) operation is supported to make command and data bus efficient for sustainable bandwidths in
DDR3 SDRAM. In this operation, the DDR3 SDRAM allows a read or write command (either with or without auto-
precharge) to be issued immediately after the active command. The command is held for the time of the Additive Latency
(AL) before it is issued inside the device. The Read Latency (RL) is controlled by the sum of the AL and CAS Latency (CL)
register settings. Write Latency (WL) is controlled by the sum of the AL and CAS Write Latency (CWL) register settings. A
summary of the AL register options are shown in Table below.
A4
A3
Additive Latency (AL) Settings
0
0
0 (AL Disabled)
0
1
CL - 1
1
0
CL - 2
1
1
Reserved
NOTE: AL has a value of CL - 1 or CL - 2 as per the CL values programmed in the MR0 register.
2.3.3.5 Write leveling
For better signal integrity, DDR3 memory module adopted fly-by topology for the commands, addresses, control signals,
and clocks. The fly-by topology has the benefit of reducing the number of stubs and their length, but it also causes flight
time skew between clock and strobe at every DRAM on the DIMM. This makes it difficult for the Controller to maintain
tDQSS, tDSS, and tDSH specification. Therefore, the DDR3 SDRAM supports a ‘write leveling’ feature to allow the
controller to compensate for skew.
2.3.3.6 Output Disable
The DDR3 SDRAM outputs may be enabled/disabled by MR1 (bit A12) as shown in Figure 2.3.3. When this feature is
enabled (A12 = 1), all output pins (DQs, DQS, DQS#, etc.) are disconnected from the device, thus rem ovin g an y loading
of the output drivers. This feature may be useful when measuring module power, for example. For normal operation, A12
should be set to ‘0’.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 14
Rev. 00B
12/5/2012
2.3.3.7 TDQS, TDQS#
TDQS (Termination Data Strobe) is a feature of X8 DDR3 SDRAM that provides additional termination resistance outputs
that may be useful in some system configurations. The TDQS function is available in X8 DDR3 SDRAM only and must be
disabled via the mode register A11=0 in MR1 for X16 configuration.
2.3.4 Mode Register MR2
The Mode Register MR2 stores the data for controlling refresh related features, Rtt_WR impedance, and CAS write
latency. The Mode Register 2 is written by asserting low on CS#, RAS#, CAS#, WE#, high on BA1 and low on BA0 and
BA2, while controlling the states of address pins according to the below.
* 1 : A5, A8, A11 ~ A13 must be programmed to 0 during MRS.
* 2 : The Rtt_WR value can be applied during writes even when Rtt_Nom is disabled. During write leveling, Dynamic ODT is not available.
Figure 2.3.4 MR2 Definition
2.3.4.1 Partial Array Self-Refresh (PASR)
If PASR (Partial Array Self-Refresh) is enabled, data located in areas of the array beyond the specified address range
shown in Figure 2.3.4 will be lost if Self-Refresh is entered. Data integrity will be maintained if tREFI conditions are met
and no Self-Refresh command is issued.
2.3.4.2 CAS Write Latency (CWL)
The CAS Write Latency is defined by MR2 (bits A3-A5), as show n in Figure 2.3.4. CAS Write Latency is the delay, in clock
cycles, between the internal Write command and the availability of the first bit of input data. DDR3 SDRAM does not
support any half-clock latencies. The overall Write Latency ( WL) is defined as Additive Latency (AL) + CAS Write Latency
BA2
BA1
BA0
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
Address Field
0
1
0
0*
1
Rtt_WR
0*
1
SRT
ASR
CWL
PASR
Mode Register 2
A7
Self-Refresh Tempera ture (SRT) Rang e
A2
A1
A0
Partial Array Self-Refresh (Opti o n al)
0
Normal operating temperature range
0
0
0
Full Arra y
1
Extended operating temperature range
0
0
1
HalfArray (BA[2:0]=000,001,010, &011)
0
1
0
Quarter Arra y (BA[2 :0]=000, & 001)
0
1
1
1/8th Array (BA[2:0] = 000)
A6
Auto Self-R efresh ( ASR)
1
0
0
3/4 Array (BA[2:0] = 010,011,100,101,110, & 111)
0
Man u al SR Reference (SRT)
1
0
1
Hal fArray (BA[2: 0] = 100, 101, 1 10, &111)
1
ASR enable
1
1
0
Quarter Arra y (BA[2 :0]=110, &111)
1
1
1
1/8th Array (B A[2:0]=111)
A10
A9
Rtt_WR
*2
A5
A4
A3
CAS write Latency (CWL)
0
0
Dynamic ODT off (Write does not affect Rtt value)
0
0
0
5 (tCK(avg) 2.5 ns)
0
1
RZQ/4
0
0
1
6 (2.5 ns > tC K(avg) 1.875 ns)
1
0
RZQ/2
0
1
0
7 (1.875 ns > tCK(avg) 1.5 ns)
1
1
Reserved
0
1
1
8 (1.5 ns > tC K(avg) 1.25 ns)
1
0
0
9 (1.25 ns > tCK(avg) 1.07ns)
BA1
BA0
MR Select
1
0
1
10 (1.07 ns > tCK(avg) 0.935 ns)
0
0
MR0
1
1
0
11 (0.935 ns > tCK(avg) 0.83 3 ns )
0
1
MR1
1
1
1
12 (0.833 ns > tCK(avg) 0.75 ns )
1
0
MR2
1
1
MR3
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 15
Rev. 00B
12/5/2012
(CWL); WL = AL + CWL. For more information on the supported CWL and AL settings based on the operating clock
frequency, refer to “Standard Speed Bins”.
2.3.4.3 Auto Self-Ref r esh (AS R) and Self -Refresh Temperature (SRT)
For more details refer to “Extended Temperature Usage”. DDR3 SDRAMs support Self-Refresh operation at all supported
temperatures. Applic ati ons requir ing Se lf -Refresh operation in the Extended Temperature Range must use the ASR
function or program the SRT bit appropriately.
2.3.4.4 Dy namic ODT (Rtt_WR)
DDR3 SDRAM introduces a new feature “Dynamic ODT”. In certain application cases and to further enhance signal
integrity on the data bus, it is desirable that the termination strength of the DDR3 SDRAM can be changed without issuing
an MRS command. MR2 Register locations A9 and A10 configure the Dynamic ODT setings. In Write leveling mode, only
RTT_Nom is available. For details on Dynamic ODT operation, refer to “Dynamic ODT”.
2.3.5 Mode Register MR3
The Mode Register MR3 controls Multi-purpose registers. The Mode Register 3 is written by asserting low on CS#, RA S#,
CAS#, WE#, high on BA1 and BA0, and low on BA2 while controlling the states of address pins according to the below.
* 1 : A3 - A13 must be programmed to 0 during MRS.
* 2 : The predefined pattern will be used for read synchronization.
* 3 : When MPR control is set for normal operation (MR3 A[2] = 0) then MR3 A[ 1:0] will be ignored.
Figure 2.3.5 MR3 Definition
2.3.5.1 Multi-Purpose Register (MPR)
The Multi Purpose Register (MPR) function is used to Read out a predefined system timing calibration bit sequence. To
enable the MPR, a Mode Register Set (MRS) command must be issued to MR3 register with bit A2=1. Prior to issuing the
MRS command, all banks mu st be in the idle state (all banks precharged and tRP met). Once the MPR is enabled, any
subsequent RD or RDA commands will be redirected to the Multi Purpose Register. When the MPR is enabled, only RD
or RDA commands are allowed until a subsequent MRS command is issued with the MPR disabled (MR3 bit A2=0).
Power down mode, Self-Refresh and an y other non-RD/RDA command is not allowed during MPR enable mode. The
RESET function is supported during MPR enable mode.
The Multi Purpose Register (MPR) function is used to Read out a predefined system timing calibration bit sequence. The
basic concept of the MPR is shown in Figure 2.3.5.1.
BA2
BA1
BA0
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
Address Field
0
1
1
0*
1
MPR
MPR Loc
Mode Register 3
MRP Op erat ion
MPR Address
A2
MPR
A1
A0
MPR location
0
Normal operation
*3
0
0
Predefined pattern
*2
1
Dataflow from MPR
0
1
RFU
1
0
RFU
1
1
RFU
BA1
BA0
MR Select
0
0
MR0
0
1
MR1
1
0
MR2
1
1
MR3
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 16
Rev. 00B
12/5/2012
Figure 2.3.5.1 MP R Block Diagram
To enable the MPR, a MODE Register Set (MRS) command must be issued to MR3 Register with bit A2 = 1. Prior to
issuing the MRS command, all banks must be in the idle state (all banks precharged and tRP met). Once the MPR is
enabled, any subsequent RD or RDA commands will be redirected to the Multi Purpose Register.
The resulting operation, when a RD or RDA command is issued, is defined by MR3 bits A[1:0] when the MPR is enabled.
When the MPR is enabled, only RD or RDA commands are allowed until a subsequent MRS command is issued with the
MPR disabled (MR3 bit A2 = 0).
Note that in MPR mode RDA has the same functionality as a READ command which means the auto precharge part of
RDA is ignored. Power-Down mode, Self-Refresh and any other non-RD/RDA command is not allowed during MPR
enable mode. The RESET function is supported during MPR enable mode.
MPR MR3 Register Definition
MR 3 A[2]
MR 3 A[1:0]
Function
MPR
MPR-Loc
0b don’t care (0b or 1b)
Normal operation, no MPR transaction. All subsequent Reads will come from DRAM
array. All subsequent Write will go to DRAM array.
1b See Table 13 Enable MPR mode, subsequent RD/RDA commands defined by MR3 A[1:0].
Memory Core
(all banks
precharged)
Multipurpose
Register pre-defined
data for read
MR3[A2]
DQ, DM, DQS, DQS#
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 17
Rev. 00B
12/5/2012
MPR Register Address Definition
The following Table provides an overview of the available data locations, how they are addres sed b y MR3 A[1:0] dur ing a
MRS to MR3, and how their individual bits are mapped into the burst order bits during a Multi Purpose Register Read.
MPR MR3 Register Definition
MR3
A[2]
MR3
A[1:0]
Function
Burst
Length
Read Addres s
A[2:0]
Burst Order and Data Pattern
1b 00b R ead pred efined pattern
for system Calibration
BL8 000b
Burst order 0,1,2,3,4,5,6,7
Pre-defined Data Pattern [0,1,0,1,0,1,0,1]
BC4 000b
Burst order 0,1,2,3
Pre-defined Data Pattern [0,1,0,1]
BC4 100b
Burst order 4,5,6,7
Pre-defined Data Pattern [0,1,0,1]
1b 01b RFU
BL8
000b
Burst order 0,1,2,3,4,5,6,7
BC4
000b
Burst order 0,1,2,3
BC4
100b
Burst order 4,5,6,7
1b 10b RFU
BL8
000b
Burst order 0,1,2,3,4,5,6,7
BC4
000b
Burst order 0,1,2,3
BC4
100b
Burst order 4,5,6,7
1b 11b RFU
BL8
000b
Burst order 0,1,2,3,4,5,6,7
BC4
000b
Burst order 0,1,2,3
BC4
100b
Burst order 4,5,6,7
NOTE: Burst order bit 0 is assigned to LSB and the burst order bit 7 is assigned to MSB of the selected MPR agent
MPR Functional Description
One bit wide logical interface via all DQ pins during READ operation.
Register Read on x16:
o DQL[0] and DQU[ 0] dri ve information from MPR.
o DQL[7:1] and DQU[7:1] either drive the same information as DQL[0], or they drive 0b.
Addressing during for Multi Purpose Register reads for all MPR agents:
o BA[2:0]: don’t care
o A[1:0]: A[1:0] must be equal to ‘00’b. Data read burst order in nibble is fixed
o A[2]: For BL=8, A[2] must be equal to 0b, burst order is fixed to [0,1,2,3,4,5,6,7], *) For Burst Chop 4
cases, the burst order is switched on nibble base A[2]=0b, Burst order: 0,1,2,3 *) A[2]=1b, Burst order:
4,5,6,7 *)
o A[9:3]: don’t care
o A10/AP: don’t care
o A12/BC: Selects burst chop mode on-the-fly, if enabled within MR0.
o A11, A13: don’t care
Regular interface functionality during register reads:
o Support two Burst Ordering which are switched with A2 and A[1:0]=00b.
o Support of read burst chop (MRS and on-the-fly via A12/BC)
o All other address bits (remaining column address bits including A10, all bank address bits) will be ignored
by the DDR3 SDRAM.
o Regular read latencies and AC timings apply.
o DLL must be locked prior to MPR Reads.
NOTE: *) Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 18
Rev. 00B
12/5/2012
NOTE: Good reference for the example of MPR feature is the J E DEC standard No.93-3D, 4.10.4 Protocol example.
Relevant Timing Parameters
AC timing parameters are important for operating the Multi Purpose Register: tRP, tMRD, tMOD, and tMPRR. For more
details refer to “Electrical Characteristics & AC Timing
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 19
Rev. 00B
12/5/2012
2.4 DDR3 SDRAM Command Descrip tion and Operation
2.4.1 Command Truth Table
[BA=Bank Address, RA=Row Address, CA=Column Address, BC#=Burst Chop, X=Don’t Care, V=Valid]
Function Abbrevia
tion
CKE
CS# RAS
# CAS
# WE
# BA
0-2 A11,
A13 A12/
BC# A10/
AP A0-
A9 Notes
Previous
Cycle
Current
Cycle
Mode Register Set
MRS
H
H
L
L
L
L
BA
OP Code
Refresh
REF
H
H
L
L
L
H
V
V
V
V
V
Self Refresh Entry
SRE
H
L
L
L
L
H
V
V
V
V
V
7,9,12
Self Refresh Exit SRX L H
H
X
X
X
X
X
X
X
X
7,8,9,
12
L
H
H
H
V
V
V
V
V
Single Bank Precharge
PRE
H
H
L
L
H
L
BA
V
V
L
V
Precharge all Banks
PREA
H
H
L
L
H
L
V
V
V
H
V
Bank Activate
ACT
H H L L H H BA
Row Address(RA)
Write (Fixed BL8 or BC4)
WR
H
H
L
H
L
L
BA
RFU
V
L
CA
Write (BC4, on the Fly)
WRS4
H
H
L
H
L
L
BA
RFU
L
L
CA
Write (BL8, on the Fly)
WRS8
H
H
L
H
L
L
BA
RFU
H
L
CA
Write with Auto Precharge (Fixed BL8 or BC4)
WRA
H
H
L
H
L
L
BA
RFU
V
H
CA
Write with Auto Precharge (BC4, on the Fly)
WRAS4
H H L H L L BA RFU L H CA
Write with Auto Precharge (BL8, on the Fly)
WRAS8
H H L H L L BA RFU H H CA
Read (Fixed BL8 or BC4)
RD
H
H
L
H
L
H
BA
RFU
V
L
CA
Read (BC4, on the Fly)
RDS4
H
H
L
H
L
H
BA
RFU
L
L
CA
Read (BL8, on the Fly)
RDS8
H
H
L
H
L
H
BA
RFU
H
L
CA
Read with Auto Precharge (Fixed BL8 or BC4)
RDA
H
H
L
H
L
H
BA
RFU
V
H
CA
Read with Auto Precharge (BC4, on the Fly)
RDAS4
H H L H L H BA RFU L H CA
Read with Auto Precharge (BL8, on the Fly)
RDAS8
H H L H L H BA RFU H H CA
No Operation
NOP
H
H
L
H
H
H
V
V
V
V
V
10
Device Deselected
DES
H
H
H
X
X
X
X
X
X
X
X
11
Power Down Entry PDE H L
L
H
H
H
V
V
V
V
V
6,12
H
X
X
X
X
X
X
X
X
Power Down Exit PDX L H
L
H
H
H
V
V
V
V
V
6,12
H
X
X
X
X
X
X
X
X
ZQ Calibration Long
ZQCL
H
H
L
H
H
L
X
X
X
H
X
ZQ Calibration Short
ZQCS
H H L H H L X X X L X
Notes:
1. All DDR3 SDRAM commands are defined by states of CS#, RAS#, CAS#, WE# and CKE at the rising edge of the clock. The MSB of BA, RA and CA
are device density and configuration dependant.
2. RESET# is Low enable command which will be used only for asynchronous reset so must be maintained HIGH during any function.
3. Bank address es (BA) determi ne which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode Register.
4. “V” means “H or L (but a defined logic level)” and “X” means either “defined or undefined (like floating) logic level”.
5. Burst reads or writes cannot be terminated or interrupted and Fixed/on-the-Fly B L will be defined by MRS.
6. The Power Down Mode does not perform any refresh operation.
7. The state of ODT does not affect the states described in this table. The ODT function is not availabl e during Self Refresh.
8. Self Refresh Exit is asynchronous.
9. VREF(Bot h VrefDQ and Vref CA) must be maintained during Self Refresh operation. VrefDQ supply may be turned OFF and VREFDQ may take any
value between VSS and VDD during Self Refresh operation, provided t hat V ref DQ is valid and stable prior to CKE going back High and that first
Write operation or first Writ e Leveling Act i vity may not occur earl i er than 512 nCK after exit from Self Refresh.
10. The No Operation command should be used in cases when the DDR3 SDRAM is in an idle or wait st ate. T he purpose of the No Operation command
(NOP) is to prevent the DDR3 SDRAM from registering any unwanted commands between operations. A No Operation command will not terminate a
pervious operation t hat is stil l executing, such as a burst read or write cycle.
11. The Deselect command performs the same function as No Operation comm and.
12. Refer to the CKE Truth Table for more detail with CKE transition.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 20
Rev. 00B
12/5/2012
2.4.1. CKE Truth Table
Current State2 CKE
Command (N)3
RAS#, CAS#, WE#,
CS#
Action (N)3 Notes
Previous Cycle1 (N-1) Current Cyc l e1(N)
Power-Down L L X Maintain Power-Down 14,15
L H DESELECT or NOP Power-Down Exit 11,14
Self-Refresh L L X Maintain Self-Refresh 15,16
L H DESELECT or NOP Self-Refresh Exit 8,12,16
Bank(s) Active H L DESELECT or NOP Active Power-Down Entry 11,13,14
Reading H L DESELECT or NOP Power-Down Entry 11,13,14,17
Writing H L DESELECT or NOP Power-Down Entry 11,13,14,17
Precharging H L DESELECT or NOP Power-Down Entry 11,13,14,17
Refreshing H L DESELECT or NOP Precharge Power-Down Entry 11
All Bank Idle H L DESELECT or NOP Precharge Power-Down Entry 11,13,14,18
H L REFRESH Self-Refresh 9.13.18
Notes:
1. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.
2. Current st ate is defined as the state of the DDR3 SDRAM immediately prior to clock edge N.
3. COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N), ODT is not included here.
4. All stat es and sequences not shown are illegal or reserved unless explicitl y desc ri bed elsewhere in this document.
5. The state of ODT does not affect the states described in this table. The ODT function is not availabl e during Self-Refresh.
6. CKE must be registered with the sam e value on tCKEmin consecutive positive clock edges. CKE must remain at the valid input level the entire time it
takes to achieve the tCKEmin clocks of registerat i on. Thus, after any CKE transition, CKE m ay not transition f rom its valid l evel duri ng the time
period of tIS + tCKEmin + tIH.
7. DESELECT and NOP are defined in the Command Truth Table.
8. On Self-Refres h Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXS period. Read or ODT commands
may be issued only after tXSDLL is satisfied.
9. Self-Refre sh mode can only be entered from the All Banks Idle state.
10. Must be a legal command as defined in the Command Truth Table.
11. Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.
12. Valid commands for Self-Refresh Exit are NOP and DESELECT only.
13. Self-Refresh cannot be entered during Read or Write operations.
14. The Power-Down does not perform any refres h operations.
15. “X” means “don’t care“ (i ncludi ng floati ng around V REF) in Self-Refresh and Power-Down. It also applies to Address pins.
16. VREF (Bot h Vref_DQ and Vref_CA) must be maintained during Self-Refresh operation.VrefDQ supply may be turned OFF and VREFDQ may take
any value between VSS and VDD during Self Refresh operation, provided t hat Vref DQ is valid and stable prior to CKE going back High and that first
Write operation or first Writ e Leveling Act i vity may not occur earl i er than 512 nCK after exit from Self Refresh.
17. If all banks are clos ed at the conclusion of the read, write or precharge command, then Precharge Power-Down is ent ered, ot herwise Ac t i ve Power-
Down is entered.
18. ‘Idl e st ate’ is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is high, and all timings f rom previous
operations are satisfi ed (t MRD, tMOD, t RFC, tZQinit, tZQoper, tZQ CS, et c.) as well as a ll Self-Refresh exit and Power-Down Exit parameters are
satisfied (tXS, tXP, tXPDLL, etc).
2.4.2 No Operation (NOP) Command
The No operation (NOP) command is used to instruct the selected DDR3 SDRAM to perform a NOP ( CS# low and
RAS#,CAS#,WE# high). This prevents unwanted commands from being registered during idle or wait states. Operations
alrea d y in progress are not affected.
2.4.3 Deselect(DES) Command
The Deselect function (CS# HIGH) prevents new commands from being executed by the DDR3 SDRAM. The DDR3
SDRAM is effectively deselected. Operations already in progress are not affected.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 21
Rev. 00B
12/5/2012
2.4.4 DLL-off Mode
DDR3 DLL-off mode is entered by setting MR1 bit A0 to “1”; this will disable the DLL for subsequent operations until A0 bit
set back to “0”. The MR1 A0 bit for DLL control can be switched either during initialization or later. The DLL-off Mode
operations listed below are an optional feature for DDR3. The maximum clock frequency for DLL-off Mode is specif ied b y
the parameter tCKDLL_OFF. There is no minimum frequency limit besides the need to satisfy the refresh interval, tREFI.
Due to latency counter and timing restrictions, only one value of CAS Latency (CL) in MR0 and CAS Write Latency (CWL)
in MR2 are supported. The DLL-off mode is only required to support setting of both CL=6 and CWL=6. DLL-off mode will
affect the Read data Clock to Data Strobe relationship (tDQSCK) but not the data Strobe to Data relati onshi p ( tDQ SQ,
tQH). Special attention is needed to line up Read data to controller time domain.
Comparing with DLL-on mode, where tDQSCK starts from the rising clock edge (AL+CL) cycles after the Read command,
the DLL-off mode tDQSCK starts (AL+CL-1) cycles after the read command. Another difference is that tDQSCK may not
be small compared to tCK (it might even be larger than tCK) and the difference between tDQSCKmin and tDQSCKmax is
significantly larger than in DLL-on mode. The timing relations on DLL-off mode READ operation have shown at the
following Timing Diagram (CL=6, BL=8)
Note: The tDQSCK is used here for DQS, DQS, and DQ to have a simplified diagram; the DLL_off shift will affect both timings in the same way and the
skew between all DQ, DQS, and DQS# signals will still be tD QS Q .
Figure 2.4.4 DLL-off mode READ Timing Operation
CK#
CK
Command
Address
DQS,DQS#(DLL_on)
DQ(DLL_on)
DQS,DQS#(DLL_off)
DQ(DLL_off)
DQS,DQS#(DLL_off)
DQ(DLL_off)
tDQSCK(DLL_off)_min
tDQSCK(DLL_off)_max
RL (DLL_off) = AL+(CL-1) = 5
RL (DLL_on) = AL+CL =6 (CL= 6,AL=0)
CL=6
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
READ
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
Dont Care
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 22
Rev. 00B
12/5/2012
2.4.5 DLL on/off switching procedure
DDR3 DLL-off mode is entered by setting MR1 bit A0 to “1”; this will disable the DLL for subsequent operation until A0 bit
set back to “0”.
2.4.5.1 DLL “on” to DLL “off” Procedure
To switch from DLL “on” to DLL “off” requires te frequency to be changed during Self-Refresh outlined in the following
procedure:
1. Starting from Idle state (all banks pre-charged, all timing fulfilled, and DRAMs On-die Termination resistors, RTT,
must be in high impedance state before MRS to MR1 to disable the DLL).
2. Set MR1 Bit A0 to “1” to disable the DLL.
3. Wait tMOD.
4. Enter Self Refresh Mode; wait until (tCKSRE) satisfied.
5. Change frequency, in guidance with “Input Clock Frequency Change” section.
6. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs.
7. Starting with the Self Refresh Exit command, CKE must continuously be registered HIGH until all tMOD timings from
any MRS command are satisfied. In addition, if any ODT features were enabled in the mode registers when Self
Refresh mode was entered, the ODT signal must continuously be registered LOW until all tMOD timings from any
MRS command are satisfied. If both ODT features were disabled in the mode registers when Self Refresh mode was
entered, ODT signal can be registered LOW or HIGH.
8. Wait tXS, and then set Mode Registers with appropriate values (especially an update of CL, CWL, and WR may be
necessary. A ZQCL command may also be issued after tXS).
9. Wait for tMOD, and then DRAM is ready for next command.
2.4.5.2 DLL “off” to DLL “on” Procedure
To switch from DLL “off” to DLL “on” (with required frequency change) during Self-Refresh:
1. Starting from Idle state (All banks pre-charged, all timings fulfilled and DRAMs On-die Termination resistors (RTT)
must be in high impedance state before Self-Refresh mode is entered.)
2. Enter Self Refresh Mode, wait until tCKSRE satisfied.
3. Change freque ncy, in guidance with "Input clock frequency change".
4. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs.
5. Starting with the Self Refresh Exit command, CKE must continuously be registered HIGH until tDLLK timing from
subsequent DLL Reset command is satisfied. In addition, if any ODT features were enabled in the mode registers
when Self Refresh mode was entered, the ODT signal must continuously be registered LOW until tDLLK timings from
subsequent DLL Reset command is satisfied. If both ODT features are disabled in the mode registers when Self
Refresh mode was entered, ODT signal can be registered LOW or HIGH.
6. Wait tXS, then set MR1 bit A0 to “0” to enable the DLL.
7. Wait tMRD, then set MR0 bit A8 to “1” to start DLL Reset.
8. Wait tMRD, then set Mode Registers with appropriate values (especially an update of CL, CWL and WR may be
necessary. After tMOD satisfied from any proceeding MRS command, a ZQCL command may also be issued during
or after tDLLK.)
9. Wait for tMOD, then DRAM is ready for next command (Remember to wait tDLLK after DLL Reset before applying
command requiring a locked DLL!). In addition, wait also for tZQoper in case a ZQCL command was issued.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 23
Rev. 00B
12/5/2012
2.4.6. Input clock freq u ency change
Once the DDR3 SDRAM is initialized, the DDR3 SDRAM requires the clock to be “stable” during almost all states of
normal operation. This means that, once the clock frequency has been set and is t o be in the stable state”, the clock
period is not allowed to deviate except for what is allowed for by the clock jitter and SSC (spread spectrum clocking)
specifications.
The input clock frequency can be changed from one stable clock rate to another stable clock rate under two conditions:
(1) Self-Refresh mode and (2) Precharge Power-down mode. Outside of these two modes, it is illegal to change the clock
frequency.
For the first condition, once the DDR3 SDRAM has been successfully placed in to Self-Refresh mode and tCKSRE has
been satisfied, the state of the clock becomes a don’t care. Once a don’t care, changing the clock frequency is
permissible, provided the new clock frequency is stable prior to tCKSRX. When entering and exiting Self-Refresh mode
for the sole purpose of changing the clock frequency, the Self-Refresh entry and exit specifications must still be met.
The DDR3 SDRAM input clock frequency is allowed to change only within the minimum and maximum operating
frequency specified for the particular speed grade. Any frequency change below the minimum operating frequency would
require the use of DLL_on- mode -> DLL_off -mode transition sequence, refer to “DLL on/off switching procedure”.
The second condition is when the DDR3 SDRAM is in Precharge Power-down mode (either fast exit mode or slow exit
mode). If the RTT_NOM feature was enabled in the mode register prior to entering Precharge power down mode, the
ODT signal must continuously be registered LOW ensuring RTT is in an off state. If the RTT_NOM feature was disabled in
the mode register prior to entering Precharge power down mode, RTT will remain in the off state. The ODT signal can be
registered either LOW or HIGH in this case. A minimum of tCKSRE must occur after CKE goes LOW before the clock
frequency may change. The DDR3 SDRAM input clock frequency is allowed to change only within the minimum and
maximum operating frequency specified for the particular speed grade. During the input clock frequency change, ODT
and CKE must be held at stable LOW levels. Once the input clock frequency is changed, stable new clocks must be
provided to the DRAM tCKSRX before Precharge Power-down may be exited; after Precharge Power-down is exited and
tXP has expired, the DLL must be RESET via MRS. Depending on the new clock frequency, additional MRS commands
may need to be issued to appropriately set the WR, CL, and CWL with CKE continuously registered high. During DLL re-
lock period, ODT must remain LOW and CKE must remain HIGH. After the DLL lock time, the DRAM is ready to op erate
with new clock frequency.
2.4.7 Write leveling
For better signal integrity, the DDR3 memory module adopted fly-by topology for the commands, addresses, control
signals, and clocks. The fly-by topology has benefits from reducing number of stubs and their length, but it also causes
flight time skew between clock and strobe at every DRAM on the DIMM. This makes it difficult for the Controller to
maintain tDQSS, tDSS, and tDSH specification. Therefore, the DDR3 SDRAM supports a ‘write leveling’ feature to allow
the controller to compensate for skew.
The memory controller can use the ‘write leveling’ feature and feedback from the DDR3 SDRAM to adjust the DQS -
DQS# to CK - CK# relationship. The memory controller involved in the leveling must have adjustable delay setting on
DQS - DQS# to align the rising edge of DQS - DQS# with that of the clock at the DRAM pin. The DRAM asynchronously
feeds back CK - CK#, sampled with the rising edge of DQS - DQS#, through the DQ bus. The controller repeatedly delays
DQS - DQS# until a transition from 0 to 1 is detected. The DQS - DQS# delay established though this exercise would
ensure tDQSS specification.
Besides tDQSS, tDSS and tDSH specification also needs to be fulfilled. One way to achieve this is to combine the actual
tDQSS in the application with an appropriate duty cycle and jitter on the DQS - DQS# signals. Depending on the actual
tDQSS in the application, the actual values for tDQSL and tDQSH may have to be better than the absolute limits provided
in the chapter "AC Timing Parameters" in order to satisfy tDSS and tDSH specification. A conceptual timing of this
scheme is shown in Figure 2.4.7.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 24
Rev. 00B
12/5/2012
Figure 2.4.7 Write Leveling Concept
DQS - DQS# driven by the controller during leveling mode must be terminated by the DRAM based on ranks populated.
Similarly, the DQ bus driven by the DRAM must also be terminated at the controller.
One or more data bits should carry the leveling feedback to the controller across the DRAM configurations X8 and X16.
On a X16 device, both byte lanes should be leveled independently.
Therefore, a separate feedback mechanism should be available for each byte lane. The upper data bits should provide
the feedback of the upper diff_DQS(diff_UDQS) to clock relationship whereas the lower data bits would indicate the lower
diff_DQS(diff_LDQS) to clock relationship.
2.4.7.1 DRAM setting for write leveling & DRAM termination function in that mode
DRAM enters into Write leveling mode if A7 in MR1 set ’High’ and after finishing leveling, DRAM exits from write leveling
mode if A7 in MR1 set ’Low’. Note that in write leveling mode, only DQS/DQS# terminations are activated and deactivated
via ODT pin, unlike normal operation.
MR setting involved in the leveli n g p rocedure
Function MR1 Enable Disable
Write leveli ng enabl e
A7
1
0
Output buffer mode (Qoff) A12 0 1
DRAM termination function in the leveling mode
ODT pin @DRAM DQS/DQS# termination DQs termination
De-asserted
Off
Off
Asserted
On
Off
NOTE: In Write Leveling Mode with its output buffer disabl ed (MR1[bit7] = 1 with MR1[bit12] = 1) all RTT_Nom settings are allowed; in Write Leveling
Mode with its output buffer enabled (MR1[bit7] = 1 with MR1[bit12] = 0) only RTT_Nom settings of RZQ/2, RZQ/4 and RZQ/6 are allowed.
CK#
CK
diff_DQS
Source
Destination
CK#
CK
diff_DQS
DQ
diff_DQS
DQ
Pus h D QS to capture
0-1 transition
0 or 1
0
0
0
0 or 1
1
1
1
T0
T1
T2
T3
T4
T5
T6
T7
T0
T1
T2
T3
T4
T5
T6
Tn
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 25
Rev. 00B
12/5/2012
2.4.7.2 Procedure Description
The Memory controller initiates Leveling mode of all DRAMs by setting bit 7 of MR1 to 1. When entering write leveling
mode, the DQ pins are in undefined driving mode. During write leveling mode, only NOP or DESELECT commands are
allowed, as well as an MRS command to exit write leveling mode. Since the controller levels one rank at a time, the output
of other ranks must be disabled by setting MR1 bit A12 to 1.
The Controller may assert ODT after tMOD, at which time the DRAM is ready to accept the ODT signal.
The Controller may drive DQS low and DQS# high after a delay of tWLDQSEN, at which time the DRAM has applied on-
die termination on these signals. After tDQSL and tWLMRD, the controller provides a single DQS, DQS# edge which is
used by the DRAM to sample CK - CK# driven from controller. tWLMRD(max) timing is controller dependent.
DRAM samples CK - CK# status with rising edge of DQS - DQS# and provides feedback on all the DQ bits
asynchronously after tWLO timing. Either one or all data bits ("prime DQ bit(s)") provide the leveling feedback. The
DRAM's remaining DQ bits are driven Low statically after the first sampling procedure. There is a DQ output uncertainty of
tWLOE defined to allow mismatch on DQ bits. The tWLOE period is defined from the transition of the earliest DQ bit to the
corresponding transition of the latest DQ bit. There are no read strobes (DQS/DQS#) needed for these DQs. Controller
samples incoming DQ and decides to increment or decre ment DQS - DQS# delay setting and launches the next
DQS/DQS# pulse after some time, which is controller dependent. Once a 0 to 1 transition is detected, the controller locks
DQS - DQS# delay setting and write leveling is achieved for the device. Figure 2.4.7.2 describes the timing diagram and
parameters for the overall Write Leveling procedure.
Notes:
1. DRAM has the option to drive leveling feedback on a prime DQ or all DQs . If feedback is driven only on one DQ, the remaining DQs must be driven
low, as shown in above Figure, and maintai ned at this state throughout t he leveling procedure.
2. MRS: Load MR1 to enter write leveling mode.
3. NOP: NOP o r Desel ect.
4. diff _DQS is the diff erent i al data strobe (DQS, DQS#). Timing reference points are the zero crossi ngs. DQS is shown with solid line, DQS# is shown
with dotted line.
5. CK, CK# : CK is shown wit h solid dark line, where as CK# is drawn with dot t ed l i ne.
6. DQS, DQS# needs to fulfill minim um pulse width requirem ents tDQSH(m i n) and tDQSL(min) as defined for regular Writes; the max puls e width is
system dependent.
CK#(5)
CK
CMD
MRS
NOP
NOP
tMOD
NOP
NOP
NOP
T1
tWLH
tWLS
T2
tWLH
tWLS
NOP
NOP
NOP
NOP
NOP
NOP
DONT CARE
Undefined
Driving Mode
Time Break
ODT
diff_DQS(4)
One Prime DQ:
Prime DQ
(1)
Late Remain i ng DQs
Early Rem ainin g D Qs
Late Remain i ng DQs
(1)
Early Rem ainin g D Qs
(1)
All DQs are Prime:
(2)
(3)
tWLDQSEN
tDQSL(6)
tDQSH(6)
tDQSL(6)
tDQSH(6)
tWLMRD
tWLMRD
tWLO
tWLO
tWLO
tWLO
tWLOE
tWLO tWLO
tWLO tWLO tWLOE
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 26
Rev. 00B
12/5/2012
Figure 2.4.7.2 Write leveling sequence [DQS - DQS# is capturing CK-CK# low at T1 and CK-CK# high at T2]
2.4.7.3 Write Leveling Mode Exit
The following sequence describes how the Write Leveling Mode should be exited:
1. After the last rising strobe edge, stop driving the strobe signals. Note: From now on, DQ pins are in undefined driving
mode, and will remain undefined, until tMOD after the respective MR command.
2. Drive ODT pin low (tIS must be satisfied) and continue registering low.
3. After the RTT is switched off, disable Write Level Mode via MRS command.
4. After tMOD is satisfied, any valid command may be registered. (MR commands may be issued after tMRD ).
2.4.8 Extended Temperature Usage
a. Auto Self -refresh supported
b. Extended Temperature Range supported
c. Double refresh required for operation in the Extended Temperature Range (applies only for devices supporting the
Extended Temperature Range)
Mode Register Description
Field Bits Description
Auto Self-Refresh (ASR)
when enabled, DDR3 SDRAM automatically provides Self-Refresh power management functions for all
supported operating temperature values. If not enabled, the SRT bit must be programmed to indicate TOPER
ASR
MR2 (A6)
during subsequent Self-Refresh operation
0 = Manual SR Reference (SRT)
1 = ASR enable
Self-Refresh Temperature (SRT) Range
If ASR = 0, the SRT bit must be programmed to indicate TOPER during subsequent Self-Refresh opera tion
SRT MR2 (A7) If ASR = 1, SRT bit must be set to 0b
0 = Normal operating temperature range
1 = Extended operating temperature range
2.4.8 1 Auto Self-Refresh mode - ASR Mode
DDR3 SDRAM provides an Auto Self-Refresh mode (ASR) for application ease. ASR mode is enabled by setting MR2 bit
A6 = 1b and MR2 bit A7 = 0b. The DRAM will manage Self-Refresh entry in either the Normal or Extended (optional)
Temperature Ranges. In this mode, the DRAM will also manage Self-Refresh power consumption when the DRAM
operating temperature changes, lower at low temperatures and higher at high temperatures.
If the ASR option is not supported by the DRAM, MR2 bit A6 must be set to 0b.
If the ASR mode is not enabled (MR2 bit.A6 = 0b), the SRT bit (MR2 A7) must be manually programmed with the
operating temperature range required during Self-Refresh operation.
Support of the ASR option does not automatically imply support of the Extended Temperature Range.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 27
Rev. 00B
12/5/2012
3. ABSOL UTE MAXI MUM RATINGS AND AC & DC OPERATING CONDITIONS
3.1 Absolute Maximum DC Ratings.
Symbol Parameter Rating Units Note
VDD Voltage on VDD pin relative to Vss -0.4 V ~ 1.975 V V 1,3
VDDQ Voltage on VDDQ pin relative to Vss -0.4 V ~ 1.975 V V 1,3
VIN, VOUT Voltage on any pin relative to Vss -0.4 V ~ 1.975 V V 1
TSTG Storage Temperature -55 to +100 °C 1,2
Notes:
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operat i on of the device at these or any other conditions above those indicated in the operat i onal sect i ons of this specification is not
implied. Exposure to absol ut e maximum rating condit i ons for extended periods may affect reli abi lit y .
2. Storage T emperature is the case surfac e temperat ure on the center/top si de of the DRAM. For the measurement conditions.
3. VDD and VDDQ must be within 300 mV of each other at all times; and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less
than 500 mV; VREF may be equal to or less than 300 mV
3.2 Component Operating Temperature Range
Symbol
Parameter
Rating
Units
Notes
Toper for Commercial
Normal Operating Temperature Range
0 to 85
°C
1,2
Extended Temperature Range
85 to 95
°C
1,3
Toper for Industrial and
Automotive
Normal Operating Temperature Range -40 to 0 °C 1
Toper for Automotive
(A2 only)
Normal Operating Temperature Range 95 to 105 °C 1,3
Notes:
1. Operating Temperature TOPER is the case surface te mperature on the center / top side o f the DRAM.
2. The Normal Temperature Range specif i es the temperat ures where all DRAM specificat i ons will be supported. During operation, the DRAM case
temperature m ust be maintained between 0 to 85°C under all operating conditions
3. Some appl ications require operation of the DRAM in the Extended Temperature Range above 85°C case temperature. Ful l specifications are
supported in this range, but the following additional conditions apply:
a ) Refresh commands must be doubled in frequency, therefore reduci ng the Refresh interval t REFI to 3.9 µs.
b) If Self-Refresh operation is required in the Extended Temperat ure Range, then it is mandatory to either use the Manual Self-Refresh mode with
Extended Temperat ure Range capabilit y (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2
A7 = 0b).
3.3 Recommended DC Operatin g Conditions(SSTL_1.5)
Symbol Parameter
Rating
Unit Notes
Min
Typ
Max
VDD
Supply Voltage
1.425
1.5
1.575
V
1,2
VDDQ
Supply Voltage for Output
1.425
1.5
1.575
V
1,2
Notes:
1. Under all conditi ons V DDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 28
Rev. 00B
12/5/2012
4. AC & DC INPUT MEASUREMENT LEVELS
4.1. AC and DC Logi c Input Levels for Sing le-Ended Signals
4.1.1 AC and DC Input Levels for Single-Ended Command and Address Signals
Symbol Parameter
DDR3-800/1066/1333/1600
Unit Note
Min
Max
VIH.DQ(DC100) DC input logic high Vref + 0.100 VDD V 1
VIL.DQ(DC100) DC input logic low VSS Vref - 0.100 V 1
VIH.DQ(AC175) AC input logic hig h Vref + 0.175 Note 2 V 1,2
VIL.DQ(AC175) AC input logic low Note 2 Vref - 0.175 V 1,2
VIH.CA(AC150)
AC input logic high
Vref + 0.150
Note2
V
1,2
VIL.CA(AC150)
AC input logic low
Note2
Vref - 0.150
V
1,2
VREFCA(DC)
Reference Voltage for ADD, CMD inputs
0.49 * VDD
0.51 * VDD
V
3,4
Symbol Parameter
DDR3L-800/1066/1333/1600
Unit Note
Min
Max
VIH.DQ(DC90) DC input logic high Vref + 0.09 VDD V 1
VIL.DQ(DC90) DC input logic low VSS Vref - 0.09 V 1
VIH.DQ(AC160) AC input logic hig h Vref + 0.160 Note 2 V 1,2
VIL.DQ(AC160)
AC input logic low
Note 2
Vref - 0.160 V 1,2
VIH.CA(AC135)
AC input logic high
Vref + 0.135
Note2
V
1,2
VIL.CA(AC135)
AC input logic low
Note2
Vref - 0.135
V
1,2
VREFCA(DC)
Reference Voltage for ADD, CMD inputs
0.49 * VDD
0.51 * VDD
V
3,4
Notes:
1. For input only pins except RESET.Vref=VrefCA(DC)
2. See "Overshoot and Undershoot Specificat i ons"
3. The ac peak noise on Vref may not allow Vref to deviate from Vref(DC) by more than +/ - 0.1% VDD.
4. For reference: DDR3 has approx. VDD/2 +/- 15mV, DDR3L has approx VDD/2 +/- 13.5mV.
5. To allow VREFCA margining, all DRAM Command and Address Input Buffers MUST use external VREF (provided by syst em) as the input for their
VREFCA pins. All VIH/L input level MUST be compared with the external VRE F level at the 1st stage of the Command and Address input buffer
4.1.2 AC and DC Logic Input Le vels for Single-Ended Signals & DQ and DM
Symbol Parameter DDR3-800/1066 DDR3-1333/1600 DDR3-1866 Unit Note
Min.
Max.
Min.
Max.
Min.
Max.
VIH.DQ(DC100) DC input logic high
Vref
+0.100
VDD
Vref
+0.100
VDD
Vref
+0.100
VDD V 1
VIL.DQ(DC100) DC input logic low VSS
Vref -
0.100
VSS
Vref -
0.100
VSS
Vref -
0.100
V 1
VIH.DQ(AC175) AC input logic hig h
Vref
+0.175
Note2 - - - - V 1,2,5
VIL.DQ(AC175) AC input logic low Note2
Vref -
0.175
- - - - V 1,2,5
VIH.DQ(AC150) AC input logic hig h
Vref
+0.150
Note2
Vref
+0.150
Note2 - - V 1,2,5
VIL.DQ(AC150) AC input logic low Note2
Vref -
0.150
Note2
Vref -
0.150
- - V 1,2,5
VREFDQ(DC)
Reference Voltage for
DQ, DM inputs
0.49
*VDD
0.51 *VDD
0.49
*VDD
0.51 *VDD 0.49 *VDD
0.51
*VDD
V 3,4
VREFDQ_t(DC) Reference Voltage for
trained DQ, DM inputs
0.45
*VDD
0.55 *VDD 0.45
*VDD
0.55 *VDD 0.45 *VDD 0.55
*VDD
V 3,4,
6,7
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 29
Rev. 00B
12/5/2012
Symbol Parameter DDR3L-800/1066 DDR3L-1333/1600 Unit Note
Min.
Max.
Min.
Max.
VIH.DQ(DC90)
DC input logic high
Vref +0.09
VDD
Vref +0.09
VDD
V
1
VIL.DQ(DC90)
DC input logic low
VSS
Vref -0.09
VSS
Vref -0.09
V
1
VIH.DQ(AC160)
AC input logic high
Vref +0.175
Note2
-
-
V
1,2,5
VIL.DQ(AC160)
AC input logic low
Note2
Vref -0.160
-
-
V
1,2,5
VIH.DQ(AC135)
AC input logic high
Vref +0.150
Note2
Vref +0.135
Note2
V
1,2,5
VIL.DQ(AC135)
AC input logic low
Note2
Vref -0.135
Note2
Vref -0.135
V
1,2,5
VREFDQ(DC)
Reference Voltage for DQ,
DM inputs
0.49 *VDD 0.51 *VDD 0.49 *VDD 0.51 *VDD V 3,4
VREFDQ_t(DC)
Reference Voltage for
trained DQ, DM inputs 0.45 *VDD 0.55 *VDD 0.45 *VDD 0.55 *VDD V
3,4,
6,7
Notes:
1. For input only pins except RESET#. Vref = VrefDQ(DC)
2. See "Overshoot and Undershoot Specificat i ons"
3. The ac peak noise on Vref may not allow Vref to deviate from Vref(DC) by more than ± 0.1% VDD.
4. For reference: DDR3 has approx. VDD/2 ±15mV , and DDR3L has approx. VDD/2 ± 13.5mV .
5. Single-ended swing requirem ent f or DQS-DQS#, is 350mV (peak to peak). Different i al swing requirem ent for DQS -DQS#, is 700mV (peak to peak)
6. VRefDQ training is perform ed only during system boot. Once the training is complet ed and an optimal VRefDQ_t(DC) voltage l evel is identif i ed, the
optimal VRefDQ_t(DC) volt age l evel will be used during system runtime. During VRefDQ training, VRefDQ is swept f rom 40% of VDD to 60% of V DD to
find the optimal VRefDQ_t (DC) voltage level; and onc e the optim al VRefDQ_t(DC) is set, it must stay within ±1% of its set value as well as not be less
than 45% of VDD or exceed 55% of VDD. VIH.DQ(AC)min/VIL.DQ(AC)max = Optimal VRefDQ_t(DC) ±AC Level, where "AC Level" is the actual AC
voltage level per DDR3 speed bins as specified in JESD79-3 specificati on. After VRefDQ training is com pleted and the optimal V RefDQ _t(DC) i s set, the
Memory Controller provides t he DRAM device a valid write window. Through DQS pl acem ent optimi zation and V RefDQ centeri ng, t he valid write window
is optimized for both input voltage m argi n and tDS+tDH window for the DRAM receiver. The DRAM device supports the use of the above techniques to
optimize the write timi ng and voltage margin, as long as the technique does not create any DIMM failures due to DRAM input voltage and/or timing spec
violations as defined in JESD79-3 specification.
7. To allow VREFDQ margining, all DRAM Data Input Buffers MUST use external VREF (provided by system) as the input for their VREFDQ pins. All
VIH/L input level MUST be compared with the external VREF level at the 1st stage of the Data input buffer.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 30
Rev. 00B
12/5/2012
4.2 Vref Tolerances
The dc-tolerance limits and ac-moist limits for the reference voltages VrefCA and VrefDQ are illustrated in the following
figure. It shows a valid reference voltage Vref(t) as a function of time. (Vref stands for VrefCA and VrefDQ likewise).
Vref(DC) is the linear average of Vref(t) over a very long period of time (e.g.,1 sec). This average has to meet the min/max
requirement in previous page. Furthermore Vref(t) may temporarily deviate from Vref(DC) by no more than ±1% VDD.
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are dependent on
Vref.Vref” shall be understood as Vref(DC). The clarifies that dc-variations of Vref affect the absolute voltage a signal
has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System
timing and voltage budgets need to account for Vref(DC) deviations from the optimum position within the data-eye of the
input signals.
This also clarifies that the DRAM setup/hold specification and de-rating values need to include time and voltage
associated with Vref ac-noise. Timing and voltage effects due to ac-noise on Vref up to the specified limit (±1% of VDD)
are included in DRAM timing and their associated de-ratings.
Figure 4.2 Illustration of Vref(DC) tolerance and Vrefac-noise limits
Voltage
Vref(D
Vref ac-noise
Vref(t)
Vref(DC)
Vref(DC)
VDD
VSS
time
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 31
Rev. 00B
12/5/2012
4.3. AC and DC Logi c Input Levels for Differe n tial Signals
4.3.1 Differential signal definition
Figure 4.3.1 Definition of differential ac-s wing and “time above ac-level
4.3.2 Differential swing requirements for clock (CK - CK#) and strobe (DQS - DQS#)
1. Differe n tial AC and DC Input Levels
Symbol Parameter
DDR3-800, 1066, 1333, & 1600
unit Notes
Min
Max
VIHdiff Differential input logic high +0.200 Note3 V 1
VILdiff Differential input logic low Note3 -0.200 V 1
VIHdiff(ac) Differential input high ac 2 x ( VIH(ac) Vref ) Note3 V 2
VILdiff(ac) Differential input low ac Note3 2 x ( Vref - VIL(ac) ) V 2
Symbol Parameter
DDR3L-800, 1066, 1333, & 1600
unit Notes
Min
Max
VIHdiff Differential input logic high +0.180 Note3 V 1
VILdiff Differential input logic low Note3 -0.180 V 1
VIHdiff(ac) Differential input high ac 2 x ( VIH(ac) Vref ) Note3 V 2
VILdiff(ac) Differential input low ac Note3 2 x ( Vref - VIL(ac) ) V 2
Notes:
1. Used to define a different i al signal slew-rate.
2. For CK - CK# use VIH/VIL(ac) of ADD/CMD and VREFCA; for DQS - DQS#, DQSL, DQSL#, DQSU, DQSU# use VIH/VIL(ac ) of DQs and VREFDQ; if
a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.
3. These values are not defined; however, the single-ended signal s CK, CK#, DQS, DQS#, DQSL, DQSL#, DQSU, DQSU# need to be within the
respective limits (VI H(dc ) max, VIL(dc)mi n) for singl e-ended s i gnals as well as the limitations f or overs hoot and unders hoot.
tDVAC
VIH.DIFF.AC.MIN
VIH.DIFF.MIN
VIH.DIFF.MAX
VIH.DIFF.AC.MAX
Half cycle
tDVAC
time
Differential Input Voltage (i.e. DQSDQS#, CK–CK#)
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 32
Rev. 00B
12/5/2012
4.3.2.2 A llowed time before ringback (tDVAC) for CK - CK# and DQS - DQS#
Slew Rate [V/ns]
tDVAC [ps] @IVIH/Ldiff(ac)I = 350mV
tDVAC [ps] @IVIH/Ldiff(ac)I = 300mV
min
max
min
max
> 4.0
75
-
175
-
4.0
57
-
170
-
3.0
50
-
167
-
2.0
38
-
163
-
1.8
34
-
162
-
1.6
29
-
161
-
1.4
22
-
159
-
1.2
13
-
155
-
1.0
0
-
150
-
< 1.0
0
-
150
-
4.3.3. Single-ended requirements for di ffer ential signals
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK#, DQS#, DQSL#, or DQSU#) has also to
comply with certain requirements for single-ended signals.
CK and CK# have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH(ac) / VIL(ac) )
for ADD/CMD signals) in every half-cycle. DQS, DQSL, DQSU, DQS#, DQSL# have to reach VSEHmin / VSELmax
(approximately the ac-levels (VIH(ac) / VIL(ac) ) for DQ signals) in every half-cycle preceding and following a valid
transition.
4.3.3.1. Single-ended levels for CK, DQS, DQSL, DQSU, CK#, DQS#, DQSL# or DQSU#
Symbol Parameter
DDR3/DDR3L-800, 1066, 1333, & 1600
Unit Notes
Min
Max
VSEH
Single-ended high-level for strobes
(VDDQ/2) + 0.175
note3
V
1, 2
Single-ended high-level for CK, CK
(VDDQ/2) + 0.175
note3
V
1, 2
VSEL
Single-ended low-level for stro bes
note3
(VDDQ/2) - 0.175
V
1, 2
Single-ended Low-level for CK, CK
note3
(VDDQ/2) - 0.175
V
1, 2
Notes:
1. For CK, CK# use VIH/VIL(ac) of ADD/CMD; for strobes (DQS, DQS#, DQSL, DQSL#, DQS U, DQSU#) use VI H/VIL(ac) of DQs.
2. VIH(ac )/VIL(ac) for DQs is based on VREFDQ; VIH(ac)/ VIL(ac) for ADD/ CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a
signal group, then the reduced level applies also here
3. These values are not defined, however the single-ended signals CK, CK#, DQS, DQS#, DQSL, DQSL#, DQSU, DQSU# need to be within the
respective limits (VI H(dc ) max, VIL(dc)mi n) for singl e-ended s i gnals as well as the limitations f or overs hoot and unders hoot.
Figure 4.3.3 Single-ended requirement for differential signals.
VSS or VSSQ
VSELmax
VDD/2 or VDDQ/2
VSEHmin
VSEL
VSEH
CK or DQS
time
VDD or VDDQ
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 33
Rev. 00B
12/5/2012
4.4 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross
point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in the following table. The
differential input cross point voltage Vix is measured from the actual cross point of true and completement signal to the
midlevel between of VDD and VSS.
Figure 4.4. Vix Definition
4.4.1 Cross point voltage for differential input signals (CK, DQS)
Symbol Parameter
DDR3-800, 1066, 1333, & 1600
Unit Note
Min.
Max.
Vix
Differential Input Cross Point Voltage relative to VDD/2 for
CK, CK
-150 150 mV
-175 175 mV 1
Differential Input Cross Point Voltage relative to VDD/2 for
DQS, DQS
-150 150 mV
Note:
1. Extended range for Vi x is only allowed for clock and if single-ended clock i nput signals CK and CK# are monotonic with a single-ended swing VSEL /
VSEH of at least VDD/2 +/-250 mV, and when the differential slew rate of CK - CK# is larger than 3 V/ns.
4.5 Slew Rate Definitions for Single-Ended Input Signals
See “Address / Command Setup, Hold and Derating” for single-ended slew rate definitions for address and command
signals.
See “Data Setup, Hold and Slew Rate Derating” for single-ended slew rate definitions for data signals.
VDD
CK#,DQS#
VDD/2
CK,DQS
VSS
VIX
VIX
VIX
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 34
Rev. 00B
12/5/2012
4.6. Slew Rate Definition for Differential I n p u t Signals
4.6.1 Differential Inpu t Slew Rate Definition
Description
Measured
Defined by
From
To
Differential input slew rate for rising edge (CK-CK# & DQS-
DQS#)
VILdiffmax VIHdiffmin [VIHdiffmin-VILdiffmax] / DeltaTRdiff
Differential input slew rate for falling edge (CK-CK# & DQS-
DQS#)
VIHdiffmin VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff
Note : The differential signal (i.e., CK-CK# & DQS-DQS#) must be linear between these thresholds.
Figure 4.6.1 Input Nominal Slew Rate Definition for DQS, DQS# and CK, CK#
Differential Input Voltage(i.e.
DQS-DQS#, CK-CK#)
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 35
Rev. 00B
12/5/2012
4.9.1 Self-Refresh Temperature Range - SRT
SRT applies to devices supporting Extended Temperature Range only. If ASR = 0b, the Self-Refresh Temperature (SRT)
Range bit must be programmed to guarantee proper self-refresh operation. If SRT = 0b, then the DRAM will set an
appropriate refresh rate for Self-Refresh operation in the Normal Te mperature Range. If SRT = 1b then the DRAM will set
an appropriate, potentially different, refresh rate to allow Self-Refresh operation in either the Normal or Extended
Temperature Ranges. The value of the SRT bit can effect self-refresh power consumption, please refer to the IDD table
for details.
For parts that do not support the Extended Temperature Range, MR2 bit A7 must be set to 0b and the DRAM should not
be operated outside the Normal Temperature Range.
Self-Refresh mode summary
MR2
A[6] MR2
A[7] Self-Refresh operatio n Allowed Operating Temperature Range for
Self-Refresh Mode
0 0 Self-refresh rate appropriate for the Normal Temperature Range Normal (0 - 85 oC)
0 1
Self-refresh rate appropriate for either the Normal or Extended
Temperature Ranges. The DRAM must support Extended
Temperature Range. The value of the SRT bit can effect self -
refresh power consumption, please refer to the IDD table for
details.
Normal and Extended (0 - 95 oC)
1 0 ASR enabled (for devices supporting ASR and Normal
Temperature Range). Self-Refresh power consumption is
temperature dependent Normal (0 - 85 oC)
1 0 ASR enabled (for devices supporting ASR and Extended
Temperature Range). Self-Refresh power consumption is
temperature dependent Normal and Extended (0 - 95 oC)
1 1 Illegal
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 36
Rev. 00B
12/5/2012
5. AC AND DC OUTPUT M EASUREMENT LEVELS
5.1 Single Ended AC and DC Output Levels
Symbol
Parameter
Value
Unit
Notes
VOH(DC)
DC output high measurement level (for IV curve linearity)
0.8xVDDQ
V
VOM(DC)
DC output mid measurement level (for IV curve linearity)
0.5xVDDQ
V
VOL(DC)
DC output low measurement level (fro IV curve linearity)
0.2xVDDQ
V
VOH(AC)
AC output high measurement level (for output SR)
VTT+0.1xVDDQ
V
1
VOL(AC)
AC output low measurement level (for output SR)
VTT-0.1xVDDQ
V
1
NOTE 1. The swing of ± 0.1 × VDDQ is based on approximately 50% of the static single-ended output high or low swing with a driver impedance of 40
and an effective test load of 25 to VTT = VDDQ/2.
5.2 Differential AC and DC Output Levels
Symbol
Parameter
Value
Unit
Notes
VOHdiff(AC)
AC differential output high measurement level (for output SR)
+0.2 x VDDQ
V
1
VOLdiff(AC)
AC differential output low measurement level (for output SR)
-0.2 x VDDQ
V
1
NOTE 1. The swing of ± 0.2 × VDDQ is based on approximately 50% of the static single-ended output high or low swing with a driver impedance of 40
and an effective test load of 25 to VTT = VDDQ/2 at each of the differential outputs.
5.3 Single Ended Output Slew Rate
5.3.1 Single Ended Output Slew Rate Definition
Description
Measured
Defined by
From
To
Single ended output slew rate for rising edge
VOL(AC)
VOH(AC)
[VOH(AC)-VOL(AC)] / DeltaTRse
Single ended output slew rate for falling edge
VOH(AC)
VOL(AC)
[VOH(AC)-VOL(AC)] / DeltaTFse
Figure 5.3.1 Single Ended Output Slew Rate Definition
5.3.2 Output Slew Rate (single-ended)
Parameter Symbol
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Unit
Min.
Max.
Min.
Max.
Max.
Max.
Max.
Max.
Single-ended Output Slew Rate
SRQse
2.5
5
2.5
5
2.5
5
TBD
5
V/ns
Note: SR: Slew Rate. Q: Query Output (like in DQ, which stands for Data-in, Query -Output). se: Single-ended si gnal s. F or Ron = RZQ/7 setting.
Single Ended Output Voltage(i.e. DQ)
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 37
Rev. 00B
12/5/2012
5.4 Differential Output Slew Rate
5.4.1 Differential Output Slew Rate Definition
Description
Measured
Defined by
From
To
Differential output slew rate for rising
VOLdiff(AC)
VOHdiff(AC)
[VOHdiff(AC)-VOLdiff(AC)]/DeltaTRdiff
Differential output slew rate for falling
VOHdiff(AC)
VOLdiff(AC)
[VOHdiff(AC)-VOLdiff(AC)]/DeltaTFdiff
Note: Output slew rate is verified by design and characterizati on, and not 100% tested in product i on.
Figure 5.4.1 Differential Output Slew Rate Definition
5.4.2 Differential Output Slew Rate
Parameter Symbol
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Unit
Min.
Max.
Min.
Max.
Max.
Max.
Max.
Max.
Differential Output Slew Rate
SRQdiff
5
10
5
10
5
10
TBD
10
V/ns
Description: SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), diff: Differential Signals, For Ron = RZQ/7 setting
5.5 Reference Load for AC Timing and Outp u t Slew Rate
The following figure represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters
of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular
system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS
or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their
production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
Figure 5.5 Reference Load for AC Timing and Output Slew Rate
CK,CK#
DUT
DQ,
DQS,
DQS#
VDDQ
25ohm
VTT=VDDQ/2
Timing Re ference Point
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 38
Rev. 00B
12/5/2012
5.6 Overshoot and Un dershoot Specifications
5.6.1 AC Overshoot/Undersh o o t Specification for Address and Control Pins
Item
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Units
Maximum peak amplitude allowed for overshoot area
0.4
0.4
0.4
0.4
V
Maximum peak amplitude allowed for undershoot area
0.4
0.4
0.4
0.4
V
Maximum overshoot area above VDD
0.67
0.5
0.4
0.33
V-ns
undershoot area below VSS
0.67
0.5
0.4
0.33
V-ns
Note : A0-A13, BA0-BA2, CS#, RAS#, CAS#, WE#, CKE, ODT
5.6.2 AC Overshoot/Undersh o o t Specification for Clock, Data, Strobe, and Mask
Item
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Units
Maximum peak amplitude allowed for overshoot area
0.4
0.4
0.4
0.4
V
Maximum peak amplitude allowed for undershoot area
0.4
0.4
0.4
0.4
V
Maximum overshoot area above VDD
0.25
0.19
0.15
0.13
V-ns
undershoot area below VSS
0.25
0.19
0.15
0.13
V-ns
Note : CK, CK#, DQ, DQS, DQS#, DM
5.7 34Ohm Output Driver DC Electrical Characteristics
A Functional representation of the output buffer is shown as below. Output driver impedance RON is defined by the value
ofthe external reference resistor RZQ as follows:
RON34 = RZQ / 7 (nominal 34.4ohms +/-10% with nominal RZQ=240ohms)
The individual pull-up and pull-dow n resistors (RONPu and RONPd) are defined as follows:
RONPu = [VDDQ-Vout] / | Iout | ------------------- under the condition that RONPd is turned off (1)
RONPd = Vou t / | Iout | -------------------------------under the condition that RONPu is turned off (2)
Maximum Amplitude
Overshoot Area
Undershoot Area
Maximum Amplitude
VDD
VSS
Volts(V)
Time(ns)
Maximum Amplitude
VDDQ
VSSQ
Volts(V)
Time(ns)
Maximum Amplitude
Overshoot Area
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 39
Rev. 00B
12/5/2012
Figure 5.7 Output Driver : Definition of Voltages and Currents
5.7.1 Output Driver DC Electrical Characteristics
DDR3 (assuming 1.5V, RZQ = 240ohms; entire operating temperature range; after proper ZQ calibration)
RONNom
Resistor
Vout
Min
Nom
Max
Unit
Notes
34 ohms
RON34Pd VOLdc=0.2xVDDQ 0.6 1 1.1 RZQ/7 1,2,3
VOMdc=0.5xVDDQ 0.9 1 1.1 RZQ/7 1,2,3
VOHdc =0. 8xVDDQ 0.9 1 1.4 RZQ/7 1,2,3
RON34Pu VOLdc=0.2xVDDQ 0.9 1 1.4 RZQ/7 1,2,3
VOMdc=0.5xVDDQ 0.9 1 1.1 RZQ/7 1,2,3
VOHdc=0.8xVDDQ 0.6 1 1.1 RZQ/7 1,2,3
40 ohms
RON40Pd VOLdc=0.2xVDDQ 0.6 1 1.1 RZQ/6 1,2,3
VOMdc=0.5xVDDQ 0.9 1 1.1 RZQ/6 1,2,3
VOHdc =0. 8xVDDQ 0.9 1 1.4 RZQ/6 1,2,3
RON40Pu VOLdc=0.2xVDDQ 0.9 1 1.4 RZQ/6 1,2,3
VOMdc=0.5xVDDQ 0.9 1 1.1 RZQ/6 1,2,3
VOHdc=0.8xVDDQ 0.6 1 1.1 RZQ/6 1,2,3
Mismatch betw een pull-up and pull-down, MMPuPd VOMdc= 0.5xVDDQ -10 +10 % 1,2,4
DDR3L (assuming 1.35V, RZQ = 240ohms; entire operating temperature range; after proper ZQ calibration)
RONNom
Resistor
Vout
Min
Nom
Max
Unit
Notes
34 ohms
RON34Pd
VOLdc=0.2xVDDQ
0.6
1
1.15
RZQ/7
1,2,3
VOMdc=0.5xVDDQ 0.9 1 1.15 RZQ/7 1,2,3
VOHdc =0. 8xVDDQ
0.9
1
1.45
RZQ/7
1,2,3
RON34Pu VOLdc=0.2xVDDQ 0.9 1 1.45 RZQ/7 1,2,3
VOMdc=0.5xVDDQ
0.9
1
1.15
RZQ/7
1,2,3
VOHdc=0.8xVDDQ 0.6 1 1.15 RZQ/7 1,2,3
40 ohms RON40Pd VOLdc=0.2xVDDQ 0.6 1 1.15 RZQ/6 1,2,3
VOMdc=0.5xVDDQ 0.9 1 1.15 RZQ/6 1,2,3
VOHdc =0. 8xVDDQ 0.9 1 1.45 RZQ/6 1,2,3
40 ohms RON40Pu VOLdc=0.2xVDDQ 0.9 1 1.45 RZQ/6 1,2,3
VDDQ
DQ
VSSQ
To other circuitry
RONPu
RONPd
I
Pu
IPd
Output
Driver
Chip in Drive Mode
Iout
Vout
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 40
Rev. 00B
12/5/2012
VOMdc=0.5xVDDQ 0.9 1 1.1 RZQ/6 1,2,3
VOHdc=0.8xVDDQ 0.6 1 1.1 RZQ/6 1,2,3
Mismatch betw een pull-up and pull-down, MMPuPd VOMdc= 0.5xVDDQ -10 +10 % 1,2,4
Notes:
1. The tolerance limits are spec i fied aft er cali brat i on with stable volt age and temperature. F or the behavior of the tolerance limits if t emperature or
voltage changes after calibration, see following section on voltage and temperature sensitivity.
2. The tolerance limits are spec i fied under the condit i on that VDDQ=VDD and that VSSQ=VSS.
3. Pull-down and pull-up output dri ver impedanc es are recommended to be calibrated at 0. 5xVDDQ. Other calibration schemes may be used to
achieve the linearit y spec shown above, e.g. calibration at 0. 2 * VDDQ and 0.8 x VDDQ.
4. Measurem ent def i niti on for mismatch between pull -up and pull-down, MMPuPd:
Measure RONPu and RONPd, both at 0.5 x VDDQ:
MMPuPd = [RONPu - RONPd] / RONNom x 100
5.7.2 Output Driver Temperature and Voltage sensitivity
If temperature and/or voltage after calibration, the tolerance limits widen according to the following table below.
Delta T = T - T(@calibration); Delta V = VDDQ - VDDQ(@c alibr ati on); VDD = VD DQ
5.7.2.1 Output Driver Sensitivity Definition
Items Min. Max. Unit
RONPU@VOHdc 0.6 - dRONdTH*lDelta Tl - dRONdVH*l Delta Vl 1.1 + dRONdTH*lDelta Tl - dRONdVH*lDelta Vl RZQ/7
RON@VOMdc 0.9 - d RONd TM*lDelta Tl - dRONdVM*lDelta Vl 1.1 + dRONdTM*lDelta Tl - dRONd VM*lDelta Vl RZQ/7
RONPD@VOLdc 0.6 - dRONdTL*lDelta Tl - dRONdVL*lDelta Vl 1.1 + dRONdTL*lD elta Tl - dRONdVL*lDelta Vl RZQ/7
Note: dRONdT and dRONdV are not subject to production test but are verified by design and characterization.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 41
Rev. 00B
12/5/2012
5.7.2.2 Output Driver Voltage and Temperature Sensitivity
Speed Bin
DDR3-800/1066/1333
DDR3-1600
Unit
Items
Min.
Max
Min.
Max
dRONdTM
0
1.5
0
1.5
%/°C
dRONdVM
0
0.15
0
0.13
%/mV
dRONdTL
0
1.5
0
1.5
%/°C
dRONdVL
0
0.15
0
0.13
%/mV
dRONdTH
0
1.5
0
1.5
%/°C
dRONdVH
0
0.15
0
0.13
%/mV
Note: dRONdT and dRONdV are not subject to production test but are verified by design and characterization.
5.8 On-Die Termination (OD T) Levels and I-V Characteri stics
5.8.1 On-Die Termination (ODT) Level s and I-V Characteristics
On-Die Termination effective resistance RTT is defined by bits A9, A6, and A2 of the MR1 Register.
ODT is applied to the DQ, DM, DQS/DQS, and TDQS/TDQS (x8 devices only) pins.
A functional representation of the on-die termination is shown in the following figure. The individual pull-up and pull-down
resistors (RTTPu and RTTPd) are defined as follows:
RTTPu = [VDDQ - Vout] / | Iout | ------------------ under the condition that RTTPd is turned off (3)
RTTPd = Vout / | Iout | ------------------------------ under the condition that RTTPu is turned off (4)
Figure 5.8.1 On-Die Termination : Definition of Voltages and Currents
5.8.2 ODT DC Electrical Characteristics
The following table provides an overview of the ODT DC electrical characteristics. The values for RTT60Pd120,
RTT60Pu120, RTT120Pd240, RTT120Pu240, RTT40Pd80, RTT40Pu80, RTT30Pd60, RTT30Pu60, RTT20Pd40,
RTT20Pu40 are not specification requirements, but can be used as design guide lines:
VDDQ
DQ
VSSQ
To other circuitry
RTTPu
RTTPd
IPu
IPd
ODT
Chip in Termination Mode
Iout
Vout
Iout = Ipd -Ipu
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 42
Rev. 00B
12/5/2012
ODT DC Electrical Characteristics
(assuming RZQ = 240ohms +/- 1% entire operating temperature range; after proper ZQ calibration)
MR1 A9, A6, A2 RTT Resistor Vout Min Nom Max Unit Notes
0,1,0 120
RTT120Pd240 VOLdc = 0.2 x VDDQ 0.6 1 1.1 RZQ 1,2,3,4
0.5 x VDDQ 0.9 1 1.1 RZQ 1,2,3,4
VOHdc = 0. 8 x VDDQ 0.9 1 1.4 RZQ 1,2,3,4
RTT120Pu240 VOLdc = 0.2 x VDDQ 0.6 1 1.1 RZQ 1,2,3,4
0.5 x VDDQ 0.9 1 1.1 RZQ 1,2,3,4
VOHdc = 0. 8 x VDDQ 0.9 1 1.4 RZQ 1,2,3,4
RTT120 VIL(ac) to VIH(ac) 0.9 1 1.6 RZQ/2 1,2,5
0,0,1 60
RTT60Pd120 VOLdc = 0.2 x VDDQ 0.6 1 1.1 RZQ/2 1,2,3,4
0.5 x VDDQ 0.9 1 1.1 RZQ/2 1,2,3,4
VOHdc = 0. 8 x VDDQ 0.9 1 1.4 RZQ/2 1,2,3,4
RTT60Pu120 VOLdc = 0.2 x VDDQ 0.6 1 1.1 RZQ/2 1,2,3,4
0.5 x VDDQ
0.9
1
1.1
RZQ/2
1,2,3,4
VOHdc = 0. 8 x VDDQ 0.9 1 1.4 RZQ/2 1,2,3,4
RTT60 VIL(ac) to VIH(ac) 0.9 1 1.6 RZQ/4 1,2,5
0,1,1 40
RTT40Pd80 VOLdc = 0.2 x VDDQ 0.6 1 1.1 RZQ/3 1,2,3,4
0.5 x VDDQ 0.9 1 1.1 RZQ/3 1,2,3,4
VOHdc = 0. 8 x VDDQ 0.9 1 1.4 RZQ/3 1,2,3,4
RTT40Pu80 VOLdc = 0.2 x VDDQ 0.6 1 1.1 RZQ/3 1,2,3,4
0.5 x VDDQ 0.9 1 1.1 RZQ/3 1,2,3,4
VOHdc = 0. 8 x VDDQ 0.9 1 1.4 RZQ/3 1,2,3,4
RTT40 VIL(ac) to VIH(ac) 0.9 1 1.6 RZQ/6 1,2,5
1,0,1 30
RTT30Pd60 VOLdc = 0.2 x VDDQ 0.6 1 1.1 RZQ/4 1,2,3,4
0.5 x VDDQ 0.9 1 1.1 RZQ/4 1,2,3,4
VOHdc = 0. 8 x VDDQ 0.9 1 1.4 RZQ/4 1,2,3,4
RTT30Pu60 VOLdc = 0.2 x VDDQ 0.6 1 1.1 RZQ/4 1,2,3,4
0.5 x VDDQ
0.9
1
1.1
RZQ/4
1,2,3,4
VOHdc = 0. 8 x VDDQ 0.9 1 1.4 RZQ/4 1,2,3,4
RTT30
VIL(ac) to VIH(ac)
0.9
1
1.6
RZQ/8
1,2,5
1,0,0 20
RTT20Pd40 VOLdc = 0.2 x VDDQ 0.6 1 1.1 RZQ/6 1,2,3,4
0.5 x VDDQ 0.9 1 1.1 RZQ/6 1,2,3,4
VOHdc = 0. 8 x VDDQ 0.9 1 1.4 RZQ/6 1,2,3,4
RTT20Pu40 VOLdc = 0.2 x VDDQ 0.6 1 1.1 RZQ/6 1,2,3,4
0.5 x VDDQ 0.9 1 1.1 RZQ/6 1,2,3,4
VOHdc = 0. 8 x VDDQ 0.9 1 1.4 RZQ/6 1,2,3,4
RTT20 VIL(ac) to VIH(ac) 0.9 1 1.6 RZQ/12 1,2,5
Notes:
1. The tolerance limits are spec i fied aft er cali bration with st abl e voltage and temperature. For the behavior of the tolerance limits if temperature or
voltage changes after calibration, see following section on voltage and temperature sensitivity.
2. The tolerance limits are spec i fied under the c onditi on that VDDQ = VDD and that VSSQ = VSS.
3. Pull-down and pull-up ODT resistors are rec ommended to be calibrated at 0.5 x VDDQ. Other cal i bration schemes may be used t o achieve the
linearity s pec shown above.
4. Not a specificat i on requirement , but a design guide line.
5. Measurem ent def i niti on for RTT:
Apply VIH(ac) to pin under test and measure current I(VIH(ac )), then apply VIL(ac ) to pin under test and measure current I(VIL(ac)) respectively.
RTT = [VIH(ac) - VIL(ac)] / [I(VIH(ac)) - I(VIL(ac))]
6. Measurem ent def i niti on for VM and DVM:
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 43
Rev. 00B
12/5/2012
Measure voltage (VM) at test pin (mi dpoi nt) wit h no load:
Delta VM = [2VM / VDDQ -1] x 100
5.8.3 ODT Temperature and Voltag e sensitivity
If temperature and/or voltage after calibration, the tolerance limits widen according to the following table.
Delta T = T - T(@calibration); Delta V = VDDQ - VDDQ(@calibr ati on); VDD = VD DQ
5.8.3.1 ODT Sensitivity Definition
min
max
Unit
RTT
0.9 - dRTTdT*lDelta Tl - dRTTdV*lDelta Vl
1.6 + dRTTdT*lDelta Tl + dRTTdV*lDelta Vl
RZQ/2,4,6,8,12
5.8.3.2 ODT Voltage and Temperature Sensitivity
Min
Max
Unit
dRTTdT
0
1.5
%/°C
dRTTdV
0
0.15
%/mV
Note: These parameters may not be subject to producti on test. They are verified by design and characterization
5.9 ODT Timing D efinitions
5.9.1 Test Load for ODT Timings
Different than for timing measurements, the reference load for ODT timings is defined in the following figure.
Figure 5.9.1 ODT Timing Reference Load
5.9.2 ODT Timing Defin itions
Definitions for tAON, tAONPD, tAOF, tAOFPD, and tADC are provided in the following table and subsequent figures.
Symbol
Begin Point Definition
End Point Definition
tAON Rising edge of CK - CK defined by the end point of ODTLon Extrapolated point at VSSQ
t
AONPD
Rising edge of CK - CK with ODT being first registered high Extrapolated point at VSSQ
tAOF Rising edge of CK - CK defined by the end point of ODTLoff End point: Extrapolated point at VRTT_Nom
t
AOFPD
Rising edge of CK - CK with ODT being first registered low End point: Extrapolated point at V
RTT_Nom
tADC
Rising edge of CK - CK defined by the end point of ODTLcnw,
ODTLcwn4, or ODTLcwn8
End point: Extrapolated point at V
RTT_Wr
and
VRTT_Nom respectively
Reference Settings for ODT Timing Measurements
Measured Parameter
RTT_Nom Setting
RTT_Wr Setting
VSW1[V]
VSW2[V]
tAON
RZQ/4
NA
0.05
0.10
RZQ/12
NA
0.10
0.20
tAONPD
RZQ/4
NA
0.05
0.10
RZQ/12
NA
0.10
0.20
tAOFPD
RZQ/4
NA
0.05
0.10
CK,CK#
DUT
DQ,DM
DQS,
DQS#,
TDQS,
TDQS#
25ohm
VTT=VSSQ
Timing Re ference Point
VDDQ
VSSQ
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 44
Rev. 00B
12/5/2012
RZQ/12
NA
0.10
0.20
tADC
RZQ/12
RZQ/2
0.20
0.30
Figure 5.9.2.1 Definition of tAON
Figure 5.9.2.2 Definiti o n of tAONPD
Begin Point : Rising edge of CK-CK# with
ODT being first register high
End Point : Extrapolated point at VSSQ
CK
CK#
VTT
Vsw2
DQ,DM,DQS,
DQS#,TDQS,
TDQS#
VSSQ
t
AONPD
Vsw1
Tsw1
Tsw2
Begin Point : Rising edge of CK-CK#
defined by the end of ODTLon
End Point : Extrapolated point at VSSQ
CK
CK#
VTT
Vsw2
DQ,DM,DQS,
DQS#,TDQS,
TDQS#
VSSQ
t
AON
Vsw1
Tsw1
Tsw2
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 45
Rev. 00B
12/5/2012
Figure 5.9.2.3 Definition of tAOF
Figure 5.9.2.4 Definiti o n of tAOFPD
Begin Point : Rising edge of CK-CK# with
defined by the end point of ODTLoff
End Point : Extrapolated point at V
RTT_NOM
CK
CK#
VTT
Vsw2
DQ,DM,DQS,
DQS#,TDQS,
TDQS#
VSSQ
t
AOF
Vsw1
Tsw1
Tsw2
VRTT NOM
Begin Point : Rising edge of CK-CK# with
ODT being first registered low
End Point : Extrapolated point at V
RTT_NOM
CK
CK#
VTT
Vsw2
DQ,DM,DQS,
DQS#,TDQS,
TDQS#
VSSQ
tAOFPD
Vsw1
Tsw1
Tsw2
VRTT NOM
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 46
Rev. 00B
12/5/2012
Figure 5.9.2.5 Definiti o n of tADC
Begin Point : Rising edge of CK-CK#
defined by the end point of ODTLcn w
Begin Point : Rising edge of CK-CK# defined by
the end point of ODTLcwn4 or ODTLcwn8
tADC tADC
End Point : Extrapolated point at V
RTT_Wr
End Point : Extrapolated
point at VRTT_NOM
DQ,DM,DQS,
DQS#,TDQS,
TDQS#
CK
CK#
VTT
VSSQ
V
RTT_NOM
Tsw11
Tsw21
Tsw22
Tsw12
Vsw2
Vsw1
VRTT_Wr
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 47
Rev. 00B
12/5/2012
6. INPUT / OUTP UT CAPACITANCE
Symbol Parameter
DDR3/DDR3
L-800
DDR3/DDR3
L -1066
DDR3/DDR3
L -1333
DDR3/DDR
3L -1600
Units Notes
Min Max Min Max Min Max Min
Ma
x
CIO Input/output capacitance (DQ,
DM, DQS,DQS#,TDQS,TDS#)
DDR3 1.5 3 1.5 3 1.5 2.5 1.5 2.3 pF 1,2,3
DDR3L 1.5 2.5 1.5 2.5 1.5 2.3 1.5 2.3
CCK Input capacitan ce, CK and CK# 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 pF 2,3
CDCK Input capacitance delta, CK and CK# 0 0.2 0 0.2 0 0.2 0 0.2 pF 2,3,4
CDDQS Input/output capacitance delta, DQS and
DQS#
0 0.2 0 0.2 0 0.2 0 0.2 pF 2,3,5
CI Input capacit an ce, CTR L,
ADD, command input-only
pins
DDR3 0.75 1.35 0.75 1.35 0.75 1.3 0.75 1.3 pF 2,3,7,8
DDR3L 0.75 1.3 0.7 1.3 0.75 1.3 0.75 1.3
CDI_CTRL
Input capacitance delta, all CTRL input-
only pins
-0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 pF 2,3,7,8
C
DI_ADD_
CMD
Input capacitance delta, all ADD/CMD
input-only pins
-0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 pF
2,3,9,1
0
CDIO Input/output capacitance delta, DQ, DM,
DQS, DQS# TDQS,TDQS# TDQS -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11
CZQ Input/output capacitance of ZQ pin - 3 - 3 - 3 - 3 pF 2,3,12
Notes:
1. Alt hough the DM, TDQS and TDQS# pins have different functions, the loading m atc hes DQ and DQS
2. This paramet er is not subject to producti on test. It is verifi ed by design and charact erizat i on. V DD=VDDQ=1.5V, VBIAS=VDD/2 and on-die
terminat i on off.
3. This paramet er appl i es to monolithic devices only; stacked/ dual-die devices are not covered here
4. Absol ute value of CCK-CCK#
5. Absol ute value of CIO(DQS)-CIO(DQS#)
6. CI applies to ODT, CS#, CKE, A0-A13, BA0-BA2, RAS#,CAS#,WE#.
7. CDI_CTRL applies to ODT, CS# and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CK)+CI(CK#))
9. CDI_ADD_CMD applies to A0-A13, BA0-BA2, RAS#, CAS# and WE#
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CK)+CI(CK#))
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS#))
12. Maximum external load c apacitance on ZQ pi n: 5 pF.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 48
Rev. 00B
12/5/2012
7. IDD SPECI F ICATIONS AND MEASUREMENT CONDITIONS
IDD Specifications (x8), 1.5 Operation Voltage
Symbol Parameter/Condition
DDR3-1066
DDR3-1333
DDR3-1600
DDR3-1866
Unit
Max.
Max.
Max.
Max.
Typ.
IDD0
Operating Current 0
-> One Bank Activate-> Precharge
56
59
65
68
mA
IDD1
Operating Current 1
-> One Bank Activate-> Read->
Precharge
74
79
83
86
mA
IDD2P0
Precharge Power-Down Current
Slow Exit - MR0 bit A12 = 0
9
9
9
9
mA
IDD2P1
Precharge Power-Down Current
Fast Exit - MR0 bit A12 = 1
20
22
25
29
mA
IDD2PQ
Precharge Quiet Standby Current
31
35
39
41
mA
IDD2N
Precharge Standby Current
32
35
39
43
mA
IDD3P
Active Power-Down Current
Always Fast Exit
21
23
26
29
mA
IDD3N
Active Standby Current
35
38
41
46
mA
IDD4R
Operating Current B urst Read
106
122
139
159
mA
IDD4W
Operating Current B urst Write
104
119
134
150
mA
IDD5B
Burst Refresh Current
52
55
59
65
mA
IDD6
Self-Refresh Current Norm al
Temperature Range (0-85°C)
7
7
7
7
mA
IDD6ET
Self-Refresh Current : extended
temperature range
8
8
8
8
mA
IDD6TC
Auto Self-Refresh Current
8
8
8
8
mA
IDD7
All Bank Interleave Read Current
184
220
227
375
mA
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 49
Rev. 00B
12/5/2012
IDD Specifications (x16), 1.5 Operation Voltage
Symbol Parameter/Condition
DDR3-1066
DDR3-1333
DDR3-1600
DDR3-1866
Unit
Max.
Max.
Max.
Max.
Typ.
IDD0
Operating Current 0
-> One Bank Activate-> Precharge
76
80
87
87
mA
IDD1
Operating Current 1
-> One Bank Activate-> Read->
Precharge
106
112
119
120
mA
IDD2P0
Precharge Power-Down Current
Slow E xit - MR0 bit A12 = 0
12
13
14
14
mA
IDD2P1
Precharge Power-Down Current
Fast Exit - MR0 bit A12 = 1
21
23
26
31
mA
IDD2PQ
Precharge Quiet Standby Current
31
34
38
44
mA
IDD2N
Precharge Standby Current
33
35
39
46
mA
IDD3P
Active Power-Down Current
Always Fast Exit
25
27
30
32
mA
IDD3N
Active Standby Current
38
41
45
48
mA
IDD4R
Operating Current B urst Read
165
195
224
23
mA
IDD4W
Operating Current B urst Write
162
189
216
218
mA
IDD5B
Burst Refresh Current
56
59
62
71
mA
IDD6
Self-Refresh Current Normal
Temperature Range (0-85°C)
7
7
7
7
mA
IDD6ET
Self-Refresh Current: extended
temperature range
8
8
8
8
mA
IDD6TC
Auto Self-Refresh Current
8
8
8
8
mA
IDD7
All Bank Interleave Read Current
266
297
332
403
mA
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 50
Rev. 00B
12/5/2012
IDD Specifications (x8), 1.35 Operation Voltage
Symbol Parameter/Condition
DDR3-1066
DDR3-1333
DDR3-1600
Unit
Max.
Max.
Max.
Typ.
IDD0
Operating Current 0
-> One Bank Activate->
Precharge
TBD
TBD
TBD
mA
IDD1
Operating Current 1
-> One Bank Activate-> Read->
Precharge
TBD
TBD
TBD
mA
IDD2P0
Precharge Power-Down Current
Slow Exit - MR0 bit A12 = 0
TBD
TBD
TBD
mA
IDD2P1
Precharge Power-Down Current
Fast Exit - MR0 bit A12 = 1
TBD
TBD
TBD
mA
IDD2PQ
Precharge Quiet Standby
Current
TBD
TBD
TBD
mA
IDD2N
Precharge Standby Current
TBD
TBD
TBD
mA
IDD3P
Active Power-Down Current
Always Fast Exit
TBD
TBD
TBD
mA
IDD3N
Active Standby Current
TBD
TBD
TBD
mA
IDD4R
Operating Current B urst Read
TBD
TBD
TBD
mA
IDD4W
Operating Current B urst Write
TBD
TBD
TBD
mA
IDD5B
Burst Refresh Current
TBD
TBD
TBD
mA
IDD6
Self-Refresh Current Norm al
Temperature Range (0-85°C)
TBD
TBD
TBD
mA
IDD6ET
Self-Refresh Current: extended
temperature range
TBD
TBD
TBD
mA
IDD6TC
Auto Self-Refresh Current
TBD
TBD
TBD
mA
IDD7
All Bank Interleave Read Current
TBD
TBD
TBD
mA
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 51
Rev. 00B
12/5/2012
IDD Specifications (x16), 1.35 Operation Voltage
Symbol Parameter/Condition
DDR3-1066
DDR3-1333
DDR3-1600
Unit
Max.
Max.
Max.
Typ.
IDD0
Operating Current 0
-> One Bank Activate-> Precharge
69
76
81
mA
IDD1
Operating Current 1
-> One Bank Activate-> Read->
Precharge
93
100
106
mA
IDD2P0
Precharge Power-Down Current
Slow Exit - MR0 bit A12 = 0
8
10
12
mA
IDD2P1
Precharge Power-Down Current
Fast Exit - MR0 bit A12 = 1
21
23
26
mA
IDD2PQ
Precharge Quiet Standby Current
31
34
38
mA
IDD2N
Precharge Standby Current
33
35
39
mA
IDD3P
Active Power-Down Current
Always Fast Exit
25
27
30
mA
IDD3N
Active Standby Current
38
40
45
mA
IDD4R
Operating Current B urst Read
133
158
182
mA
IDD4W
Operating Current B urst Write
129
154
176
mA
IDD5B
Burst Refre s h Current
51
56
60
mA
IDD6
Self-Refresh Current Norm al
Temperature Range (0-85°C)
7
7
7
mA
IDD6ET
Self-Refresh Current: extended
temperature range
8
8
8
mA
IDD6TC
Auto Self-Refresh Current
8
8
8
mA
IDD7
All Bank Interleave Read Current
230
267
298
mA
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 52
Rev. 00B
12/5/2012
8. ELEC TRICAL CHARACTE RISTICS AND AC TIMING FOR DDR3-800 TO DDR3 -1600
8.1 Clock Speci fi cat ion
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result
in malfunction of the DDR3 SDRAM device.
8.1.1 Definition for tCK(avg)
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is
calculated from rising edge to rising edge.
Where N=200
8.1.2 Definition for tCK(abs)
tCK(abs) is defind as the absolute clock period, as measured from one rising edge to the next consecutive rising edge.
tCK(abs) is not subject to production test.
8.1.3 Definition for tCH(avg) and tCL(avg)
tCH(avg) is defined as the average high pulse wid th, as calculated acr oss any consec uti ve 200 high puls es:
Where N=200
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:
Where N=200
8.1.4 Definition for note for tJIT(per), tJIT(per, Ick)
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg).
tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}
tJIT(per) defines the single period jitter when the DLL is already locked.
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.
tJIT(per) and tJIT(per,lck) are not subject to production test.
8.1.5 Definition for tJIT(cc), tJIT(cc , Ick)
tCK(avg) = ( tCKj ) / N
tCH(avg) = ( tCHj ) / (N x tCK(avg)
tCL(avg) = ( tCLj ) / (N x tCK(avg)
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 53
Rev. 00B
12/5/2012
tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of
{tCKi+1-tCKi}
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.
tJIT(cc) and tJIT(cc,lck) are not subject to production test.
8.1.6 Definition for tERR(nper)
tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to
production test.
8.2 Refresh Parameters
Refresh parameters(1)
Parameter Symbol Units
All Bank Refresh to active/refresh cmd time tRFC 110 ns
Average periodic refresh interval tREFI -40°C < TCASE < 85°C 7.8 µs
85°C < TCASE < 105°C
3.9
µs
Notes:
1. The permiss i ble Tcase operating temperature is s pecified by temperature grade. The maximum Tcase is 95 C unless A2 grade, for which the
maximum is 105 C.
8.3 Spee d Bins and CL, tRCD, tRP, tRC and tRAS for corr esponding Bin
DDR3-1066MT/s
Speed Bin
DDR3/DDR3L-1066
Unit
CL-nRCD-nRP
7-7-7 (-187F)
Parameter
Symbol
Min
Max
Internal read com man d to first dat a
tAA
13.125
20.000
ns
ACT to internal read or write delay time
tRCD
13.125
-
ns
PRE command period
tRP
13.125
-
ns
ACT to ACT or REF command period
tRC
50.625
-
ns
ACT to PRE command period
tRAS
37.500
9*tREFI
ns
CL=5
CWL =5
tCK(AVG)
3.000
3.300
ns
CWL=6
tCK(AVG)
Reserved
ns
CL=6
CWL =5
tCK(AVG)
2.500
3.300
ns
CWL=6
tCK(AVG)
Reserved
ns
CL=7
CWL =5
tCK(AVG)
Reserved
ns
CWL=6
tCK(AVG)
1.875
<2.5
ns
CL=8
CWL =5
tCK(AVG)
Reserved
ns
CWL=6
tCK(AVG)
1.875
<2.5
ns
Supported CL Settings
5,6,7,8
nCK
Supported CWL Settings
5,6
nCK
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 54
Rev. 00B
12/5/2012
DDR3-1333MT/s Speed Bin DDR3/DDR3L-1333 Unit
CL-nRCD-nRP
9-9-9 (-15H)
Parameter
Symbol
Min
Max
Internal read com man d to first dat a tAA 13.125 20 ns
ACT to internal read or write delay tRCD 13.125 - ns
PRE command period tRP 13.125 - ns
ACT to ACT or REF period tRC 49.125 - ns
ACT to PRE command period tRAS 36.0 9*tREFI ns
CL=5
CWL =5
tCK(AVG)
3.0
3.3
ns
CWL=6 tCK(AVG) Reserved ns
CWL=7 tCK(AVG) Reserved ns
CL=6 CWL =5 tCK(AVG) 2.5 3.3 ns
CWL=6 tCK(AVG) Reserved ns
CWL=7 tCK(AVG) Reserved ns
CL=7
CWL =5
tCK(AVG)
Reserved
ns
CWL=6
tCK(AVG)
1.875
<2.5
ns
CWL=7 tCK(AVG) Reserved ns
CL=8 CWL =5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) 1.875 <2.5 ns
CWL=7 tCK(AVG) Reserved ns
CL=9 CWL=5 tCK(AVG) Reserved ns
CWL=6
tCK(AVG)
Reserved
ns
CWL=7
tCK(AVG)
1.5
<1.875
ns
CL=10 CWL =5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) Reserved ns
CWL=7 tCK(AVG) 1.5 <1.875 ns
Supported CL Settings 5,6,7,8,9,10 nCK
Supported CWL Settings
5,6,7
nCK
Note : *: Opti onal
DDR3-1333MT/s Speed Bin DDR3/DDR3L-1333 Unit
CL-nRCD-nRP 8-8-8 (-15G)
Parameter Symbol Min Max
Internal read com man d to first dat a tAA 12.0 20 ns
ACT to internal read or write delay tRCD 12.0 - ns
PRE command period
tRP
12.0
-
ns
ACT to ACT or REF period
tRC
48.0
-
ns
ACT to PRE command period tRAS 36.0 9*tREFI ns
CL=5 CWL =5 tCK(AVG) 2.5 3.3 ns
CWL=6 tCK(AVG) Reserved ns
CWL=7 tCK(AVG) Reserved ns
CL=6 CWL =5 tCK(AVG) 2.5 3.3 ns
CWL=6
tCK(AVG)
Reserved
ns
CWL=7 tCK(AVG) Reserved ns
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 55
Rev. 00B
12/5/2012
CL=7 CWL =5 tCK(AVG) Reserved ns
CWL=6
tCK(AVG)
1.875
<2.5
ns
CWL=7
tCK(AVG)
Reserved
ns
CL=8 CWL =5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) 1.875 <2.5 ns
CWL=7 tCK(AVG) 1.5 1.875 ns
CL=9 CWL=5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) Reserved ns
CWL=7
tCK(AVG)
1.5
<1.875
ns
CL=10 CWL =5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) Reserved ns
CWL=7 tCK(AVG) 1.5 <1.875 ns
Supported CL Settings 5,6,7,8,9,10 nCK
Supported CWL Settings 5,6,7 nCK
Note : *: Opti onal
DDR3-1600MT/s
Speed Bin
DDR3/DDR3L-1600
Unit CL-nRCD-nRP 10-10-10 (-125J)
Parameter Symbol Min Max
Internal read com man d to first dat a tAA 12.5 20 ns
ACT to internal read or write delay tRCD 12.5 - ns
PRE command period tRP 12.5 - ns
ACT to ACT or REF period
tRC
47.5
-
ns
ACT to PRE command period
tRAS
35
9*tREFI
ns
CL=5
CWL =5 tCK(AVG) 2.5 3.3 ns
CWL=6 tCK(AVG) Reserved ns
CWL=7 tCK(AVG) Reserved ns
CWL=8 tCK(AVG) Reserved ns
CL=6
CWL =5
tCK(AVG)
2.5
3.3
ns
CWL=6
tCK(AVG)
Reserved
ns
CWL=7
tCK(AVG)
Reserved
ns
CWL=8 tCK(AVG) Reserved ns
CL=7
CWL =5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) 1.875 <2.5 ns
CWL=7 tCK(AVG) Reserved ns
CWL=8
tCK(AVG)
Reserved
ns
CL=8
CWL =5
tCK(AVG)
Reserved
ns
CWL=6 tCK(AVG) 1.875 <2.5 ns
CWL=7 tCK(AVG) Reserved ns
CWL=8 tCK(AVG) Reserved ns
CL=9
CWL =5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) Reserved ns
CWL=7
tCK(AVG)
1.5
<1.875
ns
CWL=8
tCK(AVG)
Reserved
ns
CL=10
CWL =5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) Reserved ns
CWL=7 tCK(AVG) 1.5 <1.875 ns
CWL =8 tCK(AVG) 1.25 <1.5 ns
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 56
Rev. 00B
12/5/2012
CL=11
CWL =5 tCK(AVG) Reserved ns
CWL= 6
tCK(AVG)
Reserved
ns
CWL= 7
tCK(AVG)
Reserved
ns
CWL =8 tCK(AVG) 1.25 <1.5 ns
Supported CL Settings 5,6,7,8,9,10,11 nCK
Supported CWL Settings 5,6,7,8 nCK
Note : *: Opti onal
DDR3-1866MT/s Speed Bin DDR3/DDR3L-1866 Unit
CL-nRCD-nRP 12-12-12 (-107L)
Parameter Symbol Min Max
Internal read com man d to first dat a tAA 12.84 20 ns
ACT to internal read or write delay
tRCD
12.84
-
ns
PRE command period
tRP
12.84
-
ns
ACT to ACT or REF period tRC 46.84 - ns
ACT to PRE command period tRAS 34 9*tREFI ns
CL=5
CWL =5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) Reserved ns
CWL=7 tCK(AVG) Reserved ns
CWL=8
tCK(AVG)
Reserved
ns
CL=6
CWL =5
tCK(AVG)
2.5
3.3
ns
CWL=6 tCK(AVG) Reserved ns
CWL=7 tCK(AVG) Reserved ns
CWL=8 tCK(AVG) Reserved ns
CL=7
CWL =5 tCK(AVG) Reserved ns
CWL=6
tCK(AVG)
Reserved
ns
CWL=7
tCK(AVG)
Reserved
ns
CWL=8
tCK(AVG)
Reserved
ns
CL=8
CWL =5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) 1.875 <2.5 ns
CWL=7 tCK(AVG) Reserved ns
CWL=8 tCK(AVG) Reserved ns
CL=9
CWL =5
tCK(AVG)
Reserved
ns
CWL=6
tCK(AVG)
Reserved
ns
CWL=7 tCK(AVG) Reserved ns
CWL=8 tCK(AVG) Reserved ns
CL=10
CWL =5 tCK(AVG) Reserved ns
CWL=6 tCK(AVG) Reserved ns
CWL=7
tCK(AVG)
1.5
<1.875
ns
CWL =8
tCK(AVG)
Reserved
ns
CL=11
CWL
=5,6,7,8
tCK(AVG) Reserved ns
CL=12,13
CWL=5,6,
7,8
tCK(AVG) Reserved ns
CWL =9 tCK(AVG) 1.07 <1.25 ns
Supported CL Settings
5,6,7,8,9,10,11,12,13
nCK
Supported CWL Settings
5,6,7,8,9
nCK
Note :In these tables in secti on 8.3, grey shading is for readabilit y purposes only.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 57
Rev. 00B
12/5/2012
9 . ELECTRICAL CHARACTERISTICS & AC TIMING
9.1 Timing Parameter by Speed Bin (DDR3-800, DDR3-1066)
Parameter Symbol
DDR3/DDR3L-800
DDR3/DDR3L-1066
Units
Notes
Min.
Max.
Min.
Max.
Clock Timing
Minimum Clock Cycle Time (DLL off mode) tCK(DLL_OFF) 8 - 8 - ns 6
Average Clock Period tCK(avg) Refer to Standard Speed Bins ps
Average high pulse width
tCH(avg)
0.47
0.53
0.47
0.53
tCK(avg)
Average low pulse width
tCL(avg)
0.47
0.53
0.47
0.53
tCK(avg)
Absolute Clock Period tCK(abs)
Min.: tCK(avg)min + tJIT(per)min
ps
Max.: tCK(avg)max + tJIT(per)max
Absolute clock HIGH pulse width tCH(abs) 0.43 - 0.43 - tCK(avg) 25
Absolute clock LOW puls e width
tCL(abs)
0.43
-
0.43
-
tCK(avg)
26
Clock Period Jitter
JIT(per)
-100
100
-90
90
ps
Clock Period Jitter during DLL locking period
JIT(per, lck)
-90
90
-80
80
ps
Cycle to Cycle Period Jitter tJIT(cc) 200 200 180 180 ps
Cycle to Cycle Period Jitter during DLL locking
period
JIT( cc, lck) 180 180 160 160 ps
Duty Cycle Jitter
tJIT(duty)
-
-
-
-
ps
Cumulative error across 2 cycles
tERR(2per)
-147
147
-132
132
ps
Cumulative error across 3 cycles
tERR(3per)
-175
175
-157
157
ps
Cumulative error across 4 cycles
tERR(4per)
-194
194
-175
175
ps
Cumulative error across 5 cycles tERR(5per) -209 209 -188 188 ps
Cumulative error across 6 cy cl e s
tERR(6per)
-222
222
-200
200
ps
Cumulative error across 7 cycles
tERR(7per)
-232
232
-209
209
ps
Cumulative error across 8 cycles
tERR(8per)
-241
241
-217
217
ps
Cumulative error across 9 cycles tERR(9per) -249 249 -224 224 ps
Cumulative error across 10 cycles tERR(10per) -257 257 -231 231 ps
Cumulative error across 11 cycles
tERR(11per)
-263
263
-237
237
ps
Parameter Symbol
DDR3/DDR3L-800
DDR3/DDR3L-1066
Units
Notes
Min.
Max.
Min.
Max.
Cumulative error across 12 cycles tERR(12per) -269 269 -242 242 ps
Cumulative error across n = 13, 14 . . . 49, 50
cycles tERR(nper) tERR(nper)min = (1 + 0.68ln(n)) * tJIT(per)min ps 24
tERR(nper)max = (1 + 0.68ln(n)) *
tJIT(per)max
Data Timing
DQS, DQS# to DQ skew, per group, per
access
tDQSQ - 200 - 150 ps 13
DQ output hold time from DQS, DQS#
tQH
0.38
-
0.38
-
tCK(avg)
13,g
DQ low-impedance time from CK, CK# tLZ(DQ) -800 400 -600 300 ps 13,14,f
DQ high impedance time from CK, CK#
tHZ(DQ)
-
400
-
300
ps
13,14,f
Data setup time to DQS, DQS# referenced to
Vih(ac) / Vil(ac) levels
tDS(base)
AC175
See table for Data Setup and Hold
ps d,17
Data setup time to DQS, DQS# referenced to
Vih(ac) / Vil(ac) levels
tDS(base)
AC150
ps d,17
Data hold time from DQS, DQS# referenced
to Vih(dc) / Vil(dc) levels
tDH(base)
DC100
ps d,17
DQ and DM Input pulse width for each input tDIPW 600 - 490 - ps 28
Data Strobe Timing
DQS,DQS# differential READ Preamble
tRPRE
0.9
Note
19
0.9
Note
13,19,g
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 58
Rev. 00B
12/5/2012
DQS, DQS# differential READ Postamble
tRPST
0.3
Note
11
0.3
Note
11,13,g
DQS, DQS# differential output high time tQSH 0.38 - 0.38 - tCK(avg) 13,g
DQS, DQS# differential output low time tQSL 0.38 - 0.38 - tCK(avg) 13,g
DQS, DQS# differential WRITE Preamble
tWPRE
0.9
-
0.9
-
tCK(avg)
DQS, DQS# differential WR ITE Postamble
tWPST
0.3
-
0.3
-
tCK(avg)
DQS, DQS# rising edge output access time
from rising CK, CK#
tDQSCK -400 400 -300 300 tCK(avg) 13,f
DQS and DQS# low-impedance time
(Referenced from RL - 1)
tLZ(DQS) -800 400 -600 300 tCK(avg) 13,14,f
DQS and DQS# high-impedance time
(Referenced from RL + BL/2)
tHZ(DQS) - 400 - 300 tCK(avg) 13,14,f
DQS, DQS# differential input low pulse width
tDQSL
0.45
0.55
0.45
0.55
tCK(avg)
29,31
DQS, DQS# differential input high pulse width
tDQSH
0.45
0.55
0.45
0.55
tCK(avg)
30,31
DQS, DQS# rising edge to CK, CK# rising
edge
tDQSS -0.25 0.25 -0.25 0.25 tCK(avg) c
DQS, DQS# falling edge setup time to CK,
CK# rising edge
tDSS 0.2 - 0.2 - tCK(avg) c,32
DQS, DQS# falling edge hold time from CK,
CK# rising edge
tDSH 0.2 - 0.2 - tCK(avg) c,32
Command and Address Timing
DLL locking time
tDLLK
512
-
512
-
nCK
Intern al RE A D Command to PRECHARGE
Command delay tRTP
tRTPmin.: max(4nCK, 7.5ns)
e
tRTPmax.: -
Delay from start of internal write transaction to
internal read com mand tWTR tWTRmin.: max (4nC K, 7.5ns) e,18
tWTRmax.:
WRITE recovery time
tWR
15
-
15
-
ns
e,18
Mode Register Set command cycle time
tMRD
4
-
4
-
nCK
Mode Register Set command update delay tMOD tMODmin.: max(12nCK, 15ns)
tMODmax.:
ACT to internal read or write delay time
tRCD
Standard Speed Bins
e
PRE command period
tRP
Standard Speed Bins
e
ACT to ACT or REF command period
tRC
Standard Speed Bins
e
CAS# to CAS# command delay tCCD 4 - 4 - nCK
Parameter Symbol
DDR3/DDR3L-800
DDR3/DDR3L-1066
Units
Notes
Min.
Max.
Min.
Max.
Auto precharge write recovery + precharge
time
tDAL(min) WR + roundup(tRP / tCK(avg)) nCK
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - nCK 22
ACTIVE to PRECHARGE command period tRAS Standard Speed Bins
e
ACTIVE to ACTIVE command period for 1KB
page size
tRRD
max(4nCK,
10ns)
-
max(4nCK,
7.5ns)
-
e
ACTIVE to ACTIVE command period for 2KB
page size tRRD
tRRDmin.: max(4nCK, 10ns)
e
tRRDmax.:
Four activate window for 1KB page size tFAW 40 - 37.5 - ns e
Four activate window for 2KB page size
tFAW
50
-
50
-
ns
e
Command and Addre ss setu p time to CK,
CK# referenced to Vih(ac) / Vil(ac) levels
tIS(base)
See table for ADD/CMD setup and hold
ps b,16
Command and Address hold time from CK,
CK# referenced to Vih(dc) / Vil(dc) levels
tIH(base) ps b,16,27
Command and Addre ss setu p time to CK,
CK# referenced to Vih(ac) / Vil(ac) levels
tIS(base)
AC150
ps b,16
Control and Address Input pulse width for
each input
tIPW 900 - 780 - ps 28
Calibration Timing
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 59
Rev. 00B
12/5/2012
Power-up and RESET calibration time
tZQinit
512
-
512
-
nCK
Normal operatio n Fu ll calibr at i on time tZQoper 256 - 256 - nCK
Normal operation Short calibration time tZQCS 64 - 64 - nCK 23
Reset Timing
Exit Reset from CKE HIGH to a valid
command tXPR
tXPRmin.: max(5nCK, tRFC(min) + 10ns)
tXPRmax.: -
Self Refresh Timings
Exit Self Refresh to commands not requiring a
locked DLL tXS tXSmin.: max(5nCK, tRFC(min) + 10ns)
tXSmax.: -
Exit Self Refresh to commands requiring a
locked DLL tXSDLL
tXSDLLmin.: tDLLK(min)
nCK 2
tXSDLLmax.: -
Minimum CKE low width for Self Refresh entry
to exit timing tCKESR tCKESRmin.: tCKE(min) + 1 nCK
tCKESRmax.: -
Valid Clock Requirement after Self Refresh
Entry (SRE) or Power-Down Entry (PDE) tCKSRE
tCKSREmin.: max(5 nCK, 10 ns)
tCKSREmax.: -
Valid Clock Requirement before Self Refresh
Exit (SRX) or Power-Down Exit (PDX) or
Reset Exit
tCKSRX
tCKSRXmin.: max(5 nCK, 10 ns)
tCKSRXmax.: -
Power Down Timings
Exit Power Down with DLL on to any valid
command; Exit Precharge Power Down with
DLL frozen to commands not requiring a
locked DLL
tXP
tXPmin.: max(3nCK, 7.5ns)
tXPmax.: -
Exit Precharge Power Down with DLL frozen
to commands requiring a locked DLL tXPDLL
tXPD LLmin.: max(10nCK, 24ns)
tXPDLLmax.: -
CKE minimum pulse width tCKE
tCKEmin.: max(3nCK
7.5ns)
tCKEmin.: max(3nCK
5.625ns)
tCKEmax.: - tCKEmax.: -
Command pass disable delay tCPDED tCPDEDmin.: 1 nCK
tCPDEDmax.: -
Power Down Entry to Exit Timing tPD tPDmin.: tCKE(min) 15
tPDmax.: 9*tREFI
Parameter Symbol
DDR3/DDR3L-800
DDR3/DDR3L-1066
Units
Notes
Min.
Max.
Min.
Max.
Timing of ACT command to Power Down
entry tACTPDEN
tACTPDENmin.: 1
nCK 20
tACTPDENmax.: -
Timing of PRE or PREA command to Power
Down entry tPRPDEN tPRPDENmin.: 1 nCK 20
tPRPDENmax.: -
Parameter Symbol
DDR3-800
DDR3-1066
Units
Notes
Min.
Max.
Min.
Max.
Timing of RD/RDA command to Power Down
entry tRDPDEN tRDPDENmin.: RL+4+1 nCK
tRDPDENmax.: -
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF) tWRPDEN
tWRPDENmin.: WL + 4 + (tWR / tCK(avg))
nCK 9
tWRPDENmax.: -
Timing of WRA command to Power Down
entry (BL8OTF, BL8MRS, BC4OTF) tWRAPDEN
tWRAPDENmin.: WL+4+WR+1
nCK 10
tWRAPDENmax.: -
Timing of WR command to Power Down entry
(BC4MRS)
tWRPDEN
tWRPDENmin.: WL + 2 + (tWR / tCK(avg))
nCK 9
tWRPDENmax.: -
Timing of WRA command to Power Down
entry (BC4MRS) tWRAPDEN tWRAPDENmin .: WL + 2 +WR + 1 nCK 10
tWRAPDENmax.: -
Timing of REF command to Power Down
entry tREFPDEN
tREFPDENmin.: 1
nCK 20,21
tREFPDENmax.: -
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 60
Rev. 00B
12/5/2012
Timing of MRS command to Power Down
entry tMRSPDEN
tMRSPDENmin.: tMOD(min)
tMRSPDENmax.: -
ODT Ti m i n g s
ODT high time without write command or with
write command and BC4 ODTH4
ODTH4min.: 4
nCK
ODTH4max.: -
ODT high time with Write command and BL8 ODTH8
ODTH8min.: 6
nCK
ODTH8max.: -
Asynchronous RTT turn-on delay (Power-
Down with DLL frozen)
tAONPD 2 8.5 2 8.5 ns
Asynchronous RTT turn-off delay (Power-
Down with DLL frozen)
tAOFPD 2 8.5 2 8.5 ns
RTT turn-on
tAON
-400
400
-300
300
ps
7,f
RTT_Nom and RTT_WR turn-off time from
ODTLoff reference
tAOF 0.3 0.7 0.3 0.7 tCK(avg) 8,f
RTT dynamic change sk ew tADC 0.3 0.7 0.3 0.7 tCK(avg) f
Write Leveling Timings
First DQS/DQS# rising edge after write
leveling mode is progr am med
tWLMRD 40 - 40 - nCK 3
DQS/DQS# delay after write leveling mode is
programmed
tWLDQSEN 25 - 25 - nCK 3
Write leveli ng setup time from rising CK, CK#
crossing to rising DQS, DQS# crossing
tWLS 325 - 245 - ps
Write leveling hold time from rising DQS,
DQS# crossing to rising CK, CK# crossing
tWLH 325 - 245 - ps
Write leveling output delay tWLO 0 9 0 9 ns
Write leveli ng output error
tWLOE
0
2
0
2
ns
9.2.1 Timing Parameter by Speed Bin (DDR3-13 33, D DR3-1600)
Parameter Symbol
DDR3/DDR3L-1333
DDR3/DDR3L-1600
Units
Notes
Min.
Max.
Min.
Max.
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
tCK(DLL_OFF)
8
-
8
-
ns
6
Average Clock Period
tCK(avg)
Refer to Standard Speed Bins
ps
Average high pulse width
tCH(avg)
0.47
0.53
0.47
0.53
tCK(avg)
Average low pulse width
tCL(avg)
0.47
0.53
0.47
0.53
tCK(avg)
Absolute Clock Period tCK(abs)
Min.: tCK(avg)min + tJIT(per)min
ps
Max.: tCK(avg)max + tJIT(per)max
Absolute clock HIGH pulse width
tCH(abs)
0.43
-
0.43
-
tCK(avg)
25
Absolute clock LOW puls e width
tCL(abs)
0.43
-
0.43
-
tCK(avg)
26
Clock Period Jitter
JIT(per)
-80
80
-70
70
ps
Clock Period Jitter during DLL locking period
JIT(per, lck)
-70
70
-60
60
ps
Cycle to Cycle Period Jitter
tJIT(cc)
160
160
140
140
ps
Cycle to Cycle Period Jitter during DLL
locking period
JIT( cc, lck) 140 140 120 120 ps
Duty Cycle Jitter
tJIT(duty)
-
-
-
-
ps
Cumulative error across 2 cycles
tERR(2per)
-118
118
-103
103
ps
Cumulative error across 3 cycles
tERR(3per)
-140
140
-122
122
ps
Cumulative error across 4 cycles
tERR(4per)
-155
155
-136
136
ps
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 61
Rev. 00B
12/5/2012
Cumulative error across 5 cycles
tERR(5per)
-168
168
-147
147
ps
Cumulative error across 6 cycles
tERR(6per)
-177
177
-155
155
ps
Cumulative error across 7 cycles
tERR(7per)
-186
186
-163
163
ps
Cumulative error across 8 cycles
tERR(8per)
-193
193
-169
169
ps
Cumulative error across 9 cycles
tERR(9per)
-200
200
-175
175
ps
Cumulative error across 10 cycles
tERR(10per)
-205
205
-180
180
ps
Cumulative error across 11 cycles
tERR(11per)
-210
210
-184
184
ps
Cumulative error across 12 cycles
tERR(12per)
-215
215
-188
188
ps
Cumulative error across n = 13, 14 . . . 49, 50
cycles tERR(nper)
tERR(nper)min = (1 + 0.68ln(n)) * tJIT(per)min
ps
tERR(nper)max = (1 + 0.68ln(n)) *
tJIT(per)max
Data Timing
DQS, DQS# to DQ skew, per group, per
access
tDQSQ - 125 - 100 ps 13
DQ output hold time from DQS, DQS#
tQH
0.38
-
0.38
-
tCK(avg)
13,g
DQ low-impedance time from CK, CK#
tLZ(DQ)
-500
250
-450
225
ps
13,14,f
DQ high impedance time from CK, CK#
tHZ(DQ)
-
250
-
225
ps
13,14,f
Data setup time to DQS, DQS# referenced to
Vih(ac) / Vil(ac) levels
tDS(base)
AC175
See table for Data Setup and Hold
ps d,17
Data setup time to DQS, DQS# referenced to
Vih(ac) / Vil(ac) levels
tDS(base)
AC150
ps d,17
Data hold time from DQS, DQS# referenced
to Vih(dc) / Vil(dc) levels
tDH(base)
DC100
ps d,17
DQ and DM Input pulse width for each input
tDIPW
400
-
360
-
ps
28
Data Strobe Timing
DQS,DQS# differential READ Preamble tRPRE 0.9 Note 19 0.9
Note
19
Note 13,19,g
DQS, DQS# differential READ Postamble tRPST 0.3 Note 11 0.3
Note
11
Note 11,13,g
DQS, DQS# differential output high time
tQSH
0.4
-
0.4
-
tCK(avg)
13,g
DQS, DQS# differential output low time
tQSL
0.4
-
0.4
-
tCK(avg)
13,g
DQS, DQS# differential WRITE Preamble
tWPRE
0.9
-
0.9
-
tCK(avg)
DQS, DQS# differential W RITE Postamble
tWPST
0.3
-
0.3
-
tCK(avg)
DQS, DQS# rising edge output access time
from rising CK, CK#
tDQSCK -255 255 -225 225 tCK(avg) 13,f
Parameter Symbol
DDR3/DDR3L-1333
DDR3/DDR3L-1600
Units
Notes
Min.
Max.
Min.
Max.
DQS and DQS# low-impedance time
(Referen ced from RL - 1)
tLZ(DQS) -500 250 -450 225 tCK(avg) 13,14,f
DQS and DQS# high-impedance time
(Referenced from RL + BL/2)
tHZ(DQS) - 250 - 225 tCK(avg) 13,14,f
DQS, DQS# differential input low pulse width
tDQSL
0.45
0.55
0.45
0.55
tCK(avg)
29,31
DQS, DQS# differential input high pulse width
tDQSH
0.45
0.55
0.45
0.55
tCK(avg)
30,31
DQS, DQS# rising edge to CK, CK# rising
edge
tDQSS -0.25 0.25 -0.27 0.27 tCK(avg) c
DQS, DQS# falling edge setup time to CK,
CK# rising edge
tDSS 0.2 - 0.18 - tCK(avg) c,32
DQS, DQS# falling edge hold time from CK,
CK# rising edge
tDSH 0.2 - 0.18 - tCK(avg) c,32
Command and Address Timing
DLL locking time
tDLLK
512
-
512
-
nCK
Intern al RE A D Command to PRECHARGE
Command delay
tRTP
tRTPmin.: max(4nCK, 7.5ns)
tRTPmax.: -
Delay from start of internal write transaction to
internal read com mand tWTR
t WTRmin.: max ( 4nCK, 7.5ns)
tWTRmax.:
WRITE recovery time
tWR
15
-
15
-
ns
e,18
Mode Register Set command cycle time
tMRD
4
-
4
-
nCK
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 62
Rev. 00B
12/5/2012
Mode Register Set command update delay tMOD
tMODmin.: max(12nCK, 15ns)
tMODmax.:
ACT to internal read or write delay time
tRCD
Standard Speed Bins
PRE command period
tRP
Standard Speed Bins
ACT to ACT or REF command period
tRC
Standard Speed Bins
CAS# to CAS# command delay
tCCD
4
-
4
-
nCK
Auto precharge write recovery + precharge
time
tDAL(min) WR + roundup(tRP / tCK(avg)) nCK
Multi-Purpose Register Recovery Time
tMPRR
1
-
1
-
nCK
22
ACTIVE to PRECHARGE command period
tRAS
Standard Speed Bins
ACTIVE to ACTIVE command period for 1KB
page size
tRRD
max(4nCK,
6ns)
-
max(4nCK,
6ns)
-
e
ACTIVE to ACTIVE command period for 2KB
page size tRRD
tRRDmin.: max(4nCK, 7.5ns)
tRRDmax.:
Four activate window for 1KB page size
tFAW
30
-
30
-
ns
e
Four activate window for 2KB page size
tFAW
45
-
40
-
ns
e
Command and Addre ss setu p time to CK,
CK# referenced to Vih(ac) / Vil(ac) levels
tIS(base)
See table for ADD/CMD Setup and Hold
ps b,16
Command and Address hold tim e from CK,
CK# referenced to Vih(dc) / Vil(dc) levels
tIH(base) ps b,16,27
Command and Addre ss setu p time to CK,
CK# referenced to Vih(ac) / Vil(ac) levels
tIS(base)
AC150
ps b,16
Control and Address Input pulse width for
each input
tIPW 620 - 560 - ps 28
Calibration Timing
Power-up and RESET calibration time
tZQinit
512
-
512
-
nCK
Normal operatio n Fu ll calibr at i on time
tZQoper
256
-
256
-
nCK
Normal operation Short calibration time
tZQCS
64
-
64
-
nCK
23
Reset Timing
Exit Reset from CKE HIGH to a valid
command
tXPR
tXPRmin.: max(5nCK, tRFC(min) + 10ns)
tXPRmax.: -
Self Refresh Timings
Exit Self Refresh to commands not requiring a
locked DLL tXS tXSmin.: max(5nCK, tRFC(min) + 10ns)
tXSmax.: -
Parameter Symbol
DDR3/DDR3L-1333
DDR3/DDR3L-1600
Units
Notes
Min.
Max.
Min.
Max.
Exit Self Refresh to commands requiring a
locked DLL
tXSDLL
tXSDLLmin.: tDLLK(min)
nCK
tXSDLLmax.: -
Minimum CKE low width for Self Refresh entry
to exit timing tCKESR
tCKESRmin.: tCKE(min) + 1 nCK
tCKESRmax.: -
Valid Clock Requirement after Self Refresh
Entry (SRE) or Power-Down Entry (PDE)
tCKSRE
tCKSREmin.: max(5 nCK, 10 ns)
tCKSREmax.: -
Valid Clock Requirement before Self Refresh
Exit (SRX) or Power-Down Exit (PDX) or
Reset Exit
tCKSRX
tCKSRXmin.: max(5 nCK, 10 ns)
tCKSRXmax.: -
Power Down Timings
Exit Power Down with DLL on to any valid
command; Exit Precharge Power Down with
DLL frozen to commands not requiring a
locked DLL
tXP
tXPmin.: max(3nCK, 6ns)
tXPmax.: -
Exit Precharge Power Down with DLL frozen
to commands requiring a locked DLL
tXPDLL
tXPD LLmin.: max(10nCK, 24ns)
tXPDLLmax.: -
CKE minimum pulse width tCKE
tCKEmin.: max(3nCK
5.625ns)
tCKEmin.: max(3nCK
5ns)
tCKEmax.: -
tCKEmax.: -
Command pass disable delay
tCPDED
tCPDEDmin.: 1
nCK
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 63
Rev. 00B
12/5/2012
tCPDEDmax.: -
Power Down Entry to Exit Timing tPD
tPDmin.: tCKE(min)
tPDmax.: 9*tREFI
Timing of ACT command to Power Down
entry
tACTPDEN
tACTPDENmin.: 1
nCK
tACTPDENmax.: -
Timing of PRE or PREA command to Power
Down entry tPRPDEN
tPRPDENmin.: 1
nCK
tPRPDENmax.: -
Timing of RD/RDA command to Power Down
entry
tRDPDEN
tRDPDENmin.: RL+4+1
nCK
tRDPDENmax.: -
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF)
tWRPDEN
tWRPDENmi n.: WL + 4 + (tWR / tCK(avg))
nCK
tWRPDENmax.: -
Timing of WRA command to Power Down
entry (BL8OTF, BL8MRS, BC4OTF) tWRAPDEN
tWRAPDENmin.: WL+4+ WR+1
nCK
tWRAPDENmax.: -
Timing of WR command to Power Down entry
(BC4MRS)
tWRPDEN
tWRPDENmin.: WL + 2 + (tWR / tCK(avg))
tWRPDENmax.: -
nCK
Timing of WRA command to Power Down
entry (BC4MRS)
tWRAPDEN
tWRAPDE Nmi n.: WL + 2 +WR + 1
nCK
tWRAPDENmax.: -
Timing of REF command to Power Down
entry tREFPDEN
tREFPDENmin.: 1
nCK
tREFPDENmax.: -
Timing of MRS command to Power Down
entry
tMRSPDEN
tMRSPDENmin.: tMOD(min)
tMRSPDENmax.: -
ODT Ti m i n g s
ODT high time without write command or with
write command and BC4
ODTH4
ODTH4min.: 4
nCK
ODTH4max.: -
ODT high time with Write command and BL8 ODTH8
ODTH8min.: 6
nCK
ODTH8max.: -
Asynchronous RTT turn-on delay (Power-
Down with DLL frozen)
tAONPD 2 8.5 2 8.5 ns
Asynchronous RTT turn-off delay (Power-
Down with DLL frozen)
tAOFPD 2 8.5 2 8.5 ns
RTT turn-on
tAON
-250
250
-225
225
ps
RTT_Nom and RTT_WR turn-off time from
ODTLoff reference
tAOF 0.3 0.7 0.3 0.7 tCK(avg) 7,f
RTT dynamic change sk ew tADC 0.3 0.7 0.3 0.7 tCK(avg) 8,f
Parameter Symbol
DDR3/DDR3L-1333
DDR3/DDR3L-1600
Units
Notes
Min.
Max.
Min.
Max.
Write Leveling Timings
f
First DQS/DQS# rising edge after write
leveling mode is progr am med
tWLMRD 40 - 40 - nCK
DQS/DQS# delay after write leveling mode is
programmed
tWLDQSEN 25 - 25 - nCK 3
Write leveling setup time from rising CK, CK#
crossing to rising DQS, DQS# crossing
tWLS 195 - 165 - ps
Write leveling hold time from rising DQS,
DQS# crossing to rising CK, CK# crossing
tWLH 195 - 165 - ps
Write leveling output delay
tWLO
0
9
0
7.5
ns
Write leveling output error
tWLOE
0
2
0
2
ns
9.2.2 Timing Parameter by Speed Bin (DDR3-1866)
Parameter Symbol
DDR3/DDR3L-1866
DDR3/DDR3L-1866
Units
Notes
Min.
Max.
Min.
Max.
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
tCK(DLL_OFF)
8
-
ns
6
Average Clock Period
tCK(avg)
Refer to Standard Speed Bins
ps
Average high pulse width
tCH(avg)
0.47
0.53
tCK(avg)
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 64
Rev. 00B
12/5/2012
Average low pulse width
tCL(avg)
0.47
0.53
tCK(avg)
Absolute Clock Period tCK(abs)
Min.: tCK(avg)min + tJIT(per)min
ps
Max.: tCK(avg)max + tJIT(per)max
Absolute clock HIGH pulse width
tCH(abs)
0.43
-
-
tCK(avg)
25
Absolute clock LOW puls e width
tCL(abs)
0.43
-
tCK(avg)
26
Clock Period Jitter
JIT(per)
-60
60
ps
Clock Period Jitter during DLL locking period
JIT(per, lck)
-50
50
ps
Cycle to Cycle Period Jitter
tJIT(cc)
120
120
ps
Cycle to Cycle Period Jitter during DLL
locking period
JIT( cc, lck) 100 100
ps
Duty Cycle Jitter
tJIT(duty)
-
-
-
-
ps
Cumulative error across 2 cycles
tERR(2per)
-88
88
ps
Cumulative error across 3 cycles
tERR(3per)
-105
105
ps
Cumulative error across 4 cycles
tERR(4per)
-117
117
ps
Cumulative error across 5 cycles
tERR(5per)
-126
126
ps
Cumulative error across 6 cycles
tERR(6per)
-133
133
ps
Cumulative error across 7 cycles
tERR(7per)
-139
139
ps
Cumulative error across 8 cycles
tERR(8per)
-145
145
ps
Cumulative error across 9 cycles
tERR(9per)
-150
150
ps
Cumulative error across 10 cycles
tERR(10per)
-154
154
ps
Cumulative error across 11 cycles
tERR(11per)
-158
158
ps
Cumulative error across 12 cycles
tERR(12per)
-161
161
ps
Cumulative error across n = 13, 14 . . . 49, 50
cycles tERR(nper)
tERR(nper)min = (1 + 0.68ln(n)) * tJIT(per)min
ps
tERR(nper)max = (1 + 0.68ln(n)) *
tJIT(per)max
Data Timing
DQS, DQS# to DQ skew, per group, per
access
tDQSQ - 85 -
ps 13
DQ output hold time from DQS, DQS#
tQH
0.38
-
-
tCK(avg)
13,g
DQ low-impedance time from CK, CK#
tLZ(DQ)
-390
195
ps
13,14,f
DQ high impedance time from CK, CK#
tHZ(DQ)
-
195
-
ps
13,14,f
Data setup time to DQS, DQS# referenced to
Vih(ac) / Vil(ac) levels
tDS(base)
AC175
See table for Data
Setup and Hold
- - ps d,17
Data setup time to DQS, DQS# referenced to
Vih(ac) / Vil(ac) levels tDS(base)
AC150 - ps d,17
Parameter Symbol
DDR3/DDR3L-1866
DDR3/DDR3L-1866
Units
Notes
Min.
Max.
Min.
Max.
Data hold time from DQS, DQS# referenced
to Vih(dc) / Vil(dc) levels
tDH(base)
DC100
- ps d,17
DQ and DM Input pulse width for each input tDIPW 320 -
- ps 28
Data Strobe Timing
DQS,DQS# differential READ Preamble
tRPRE
0.9
Note 19
Note
13,19,g
DQS, DQS# differential READ Postamble
tRPST
0.3
Note 11
Note
11,13,g
DQS, DQS# differential output high time
tQSH
0.4
-
tCK(avg)
13,g
DQS, DQS# differential output low time
tQSL
0.4
-
tCK(avg)
13,g
DQS, DQS# differential WRITE Preamble
tWPRE
0.9
-
tCK(avg)
DQS, DQS# differential W RITE Postamble
tWPST
0.3
-
tCK(avg)
DQS, DQS# rising edge output access time
from rising CK, CK#
tDQSCK -195 195
tCK(avg) 13,f
DQS and DQS# low-impedance time
(Referen ced from RL - 1)
tLZ(DQS) -390 195
tCK(avg) 13,14,f
DQS and DQS# high-impedance time
(Referenced from RL + BL/2)
tHZ(DQS) - 195
tCK(avg) 13,14,f
DQS, DQS# differential input low pulse width
tDQSL
0.45
0.55
tCK(avg)
29,31
DQS, DQS# differential input high pulse width
tDQSH
0.45
0.55
tCK(avg)
30,31
DQS, DQS# rising edge to CK, CK# rising
tDQSS
-0.27
0.27
tCK(avg)
c
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 65
Rev. 00B
12/5/2012
edge
DQS, DQS# falling edge setup time to CK,
CK# rising edge
tDSS 0.18 -
tCK(avg) c,32
DQS, DQS# falling edge hold time from CK,
CK# rising edge tDSH 0.18 - tCK(avg) c,32
Command and Address Timing
DLL locking time
tDLLK
512
-
nCK
Intern al RE A D Command to PRECHARGE
Command delay
tRTP
tRTPmin.: max(4nCK, 7.5ns)
tRTPmax.: -
Delay from start of internal write transaction to
internal read command
tWTR
t WTRmin.: max ( 4nCK, 7.5ns)
tWTRmax.:
WRITE recovery time
tWR
15
-
ns
e,18
Mode Register Set command cycle time
tMRD
4
-
nCK
Mode Register Set command update delay tMOD
tMODmin.: max(12nCK, 15ns)
tMODmax.:
ACT to internal read or write delay time
tRCD
Standard Speed Bins
PRE command period
tRP
Standard Speed Bins
ACT to ACT or REF command period
tRC
Standard Speed Bins
CAS# to CAS# command delay
tCCD
4
-
nCK
Auto precharge write recovery + precharge
time
tDAL(min) WR + roundup(tRP / tCK(avg)) nCK
Multi-Purpose Register Recovery Time
tMPRR
1
-
nCK
22
ACTIVE to PRECHARGE command period
tRAS
Standard Speed Bins
ACTIVE to ACTIVE command period for 1KB
page size
tRRD
max(4nCK,
6ns)
-
max(4nCK,
6ns)
-
e
ACTIVE to ACTIVE command period for 2KB
page size tRRD tRR Dmin.: max(4nCK, 7.5ns)
tRRDmax.:
Four activate window for 1KB page size
tFAW
27
-
ns
e
Four activate window for 2KB page size
tFAW
35
-
ns
e
Command and Addre ss setu p time to CK,
CK# referenced to Vih(ac) / Vil(ac) levels
tIS(base) See table for
ADD/CMD setup and
hold
ps b,16
Command and Address hold tim e from CK,
CK# referenced to Vih(dc) / Vil(dc) levels
tIH(base)
ps b,16,27
Command and Addre ss setu p time to CK,
CK# referenced to Vih(ac) / Vil(ac) levels
tIS(base)
AC150
ps b,16
Parameter Symbol
DDR3/DDR3L-1866
DDR3/DDR3L-1866
Units
Notes
Min.
Max.
Min.
Max.
Control and Address Input pulse width for each
input
tIPW 535 -
ps 28
Calibration Timi ng
Power-up a nd R E SET cali bration time
tZQinit
512
-
nCK
Normal operation Full calibration ti m e
tZQoper
256
-
nCK
Normal operation Short cali bration time
tZQCS
64
-
nCK
23
Reset T iming
Exit Reset from C K E H IGH to a valid com m and tXPR
tXPRmin.: max(5nCK, tRFC(min) + 10ns)
tXPRmax.: -
Self Refresh Tim ings
Exit Self Refresh to commands not requiring a
locked DLL tXS
tXSmi n.: max(5nCK, tRFC(min) + 10ns)
tXSmax.: -
Exit Self Refresh to commands r equiring a
locked DLL tXSDLL
tXSDLLmin.: tDLLK(min)
nCK
tXSDLLmax.: -
Minim um C KE low width for Self Refresh entry t o
exit timing tCKESR
tCKESRmin.: tCKE(min) + 1 nCK
tCKESRmax.: -
Valid Clock Requirement after Self Refresh Entry
(SRE) or Power-Down Entry (PDE) tCKSRE
tCKSREmin.: max(5 nCK, 10 ns)
tCKSREmax.: -
Valid Clock Requirement before Self Refresh
tCKSRX
tCKSRXmin.: max(5 nC K, 10 ns)
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 66
Rev. 00B
12/5/2012
Exit (SRX) or Power -D ow n Exit (PDX) or R eset
Exit
tCKSRXmax.: -
Power Down Timings
Exit Power Down with DLL on to any valid
command; Exit Precharge Powe r Down with DLL
frozen to commands not requiring a locked DLL tXP
tXPmi n.: max(3nCK, 6ns)
tXPmax.: -
Exit Precharge Power Down with DLL f rozen to
commands requiri ng a locked DLL tXPDLL
tXPDLLmi n.: max(1 0nC K, 24ns)
tXPDLLmax.: -
CKE mini m um pulse widt h tCKE
tCKEmi n.: max(3nCK 5 ns)
tCKEmax.: -
Command pass disable delay tCPDED
tCPDEDmin.: 1
nCK
tCPDEDmax.: -
Power Down Entry to Exit Timing tPD
tPDmin.: tCKE(min)
tPDmax.: 9*tREFI
Timing of ACT command to Power D ow n entry tACTPDEN
tACTPDENmin. : 1
nCK
tACTPDENmax.: -
Timing of PRE or PREA c om m and to Power
Down ent ry tPRPDEN
tPRPDENmin. : 1
nCK
tPRPDENmax.: -
Timing of RD/RDA com m and to Power Down
entry tRDPDEN
tRDPDENmin.: RL+4+1
nCK
tRDPDENmax.: -
Timing of WR command t o P ower Down entry
(BL8OTF, BL8M RS, BC4OTF) tWRPDEN
tW R PD E Nmin.: WL + 4 + (tWR / tCK(avg))
nCK
tWRPDENmax.: -
Timing of WRA command to Power Down ent ry
(BL8OTF, BL8M RS, BC4OTF) tWRAPDEN
tWRAPDENmin.: WL+4+WR+1
nCK
tWRAPDENmax.: -
Timing of WR command t o P ower Down entry
(BC4MRS)
tWRPDEN
tW R PD E Nmin.: WL + 2 + (tWR / tCK(avg))
tWRPDENmax.: -
nCK
Timing of WRA command to Power Down ent ry
(BC4MRS) tWRAPDEN
tWRAPDENmi n. : WL + 2 +W R + 1
nCK
tWRAPDENmax.: -
Timing of REF command t o Power Down entry tREFPDEN
tREFPDENmin. : 1
nCK
tREFPDENmax.: -
Timing of MRS command t o P ower Down entry tMRSPDEN
tMRSPDENmin.: tMOD(min)
tMRSPDENmax.: -
ODT Timings
ODT high t ime without write com m and or with
write command and BC4 ODTH4
ODTH4min.: 4
nCK
ODTH4max.: -
Parameter Symbol
DDR3/DDR3L-1866
DDR3/DDR3L-1866
Units
Notes
Min.
Max.
Min.
Max.
ODT high time with Write command and BL8 ODTH8
ODTH8min.: 6
nCK
ODTH8max.: -
Asynchronous RTT turn-on delay (Power-
Down with DLL frozen)
tAONPD 2 8.5
ns
Asynchronous RTT turn-off delay (Power-
Down with DLL frozen)
tAOFPD 2 8.5
ns
RTT turn-on
tAON
-195
195
ps
RTT_Nom and RTT_WR turn-off time from
ODTLoff reference
tAOF 0.3 0.7
tCK(avg) 7,f
RTT dynamic change sk ew
tADC
0.3
0.7
tCK(avg)
8,f
Write Leveling Timings
f
First DQS/DQS# rising edge after write
leveling mode is progr am med
tWLMRD 40 -
nCK
DQS/DQS# delay after write leveling mode is
programmed
tWLDQSEN 25 -
nCK 3
Write leveling setup time from rising CK, CK#
crossing to rising DQS, DQS# crossing
tWLS 140 -
ps
Write leveling hold time from rising DQS,
DQS# crossing to rising CK, CK# crossing
tWLH 140 -
ps
Write leveling output delay
tWLO
0
7.5
ns
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 67
Rev. 00B
12/5/2012
Write leveling output error
tWLOE
0
2
ns
9.3 Jitter Notes
Specific Note a
Unit “tCK(avg)” represents the actual tCK(avg) of the input clock under operation. Unit “nCK” represents one clock cycle of
the input clock, counting the actual clock edges. ex) tMRD=4 [nCK] means; if one Mode Register Set command is
registered at Tm, another Mode Register Set command may be registered at Tm+4, even if (Tm+4-Tm) is 4 x tCK(avg) +
tERR(4per), min.
Specific Note b
These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc)
transition edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock
jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the
command/address. That is, these parameters should be met whether clock jitter is present or not.
Specific Note c
These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal
(CK, CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc), as
these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or
not.
Specific Note d
These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective
data strobe signal (DQS(L/U), DQS(L/U)) crossing.
Specific Note e
For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{tPARAM[ns] / tCK(avg)[ns]}, which is in
clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP
=RU{tRP/tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-
6, of which tRP = 15ns, the device will support tnRP = RU{tRP/tCK(avg)} = 6, as long as the input clock jitter specifications
are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6-Tm) is less than 15ns due to
input clock jitter.
Specific Note f
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper), act of
the input clock, where 2 <= m <=12. (output derating are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = -172ps and tERR(mper),act,max
= 193ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = -400ps - 193ps = -593ps and
tDQSCK,max(derated) = tDQSCK,max - ERR(mper),act,min = 400ps + 172ps = 572ps. Similarly, tLZ(DQ) for DDR3-800
derates to tLZ(DQ),min(derated) = -800ps - 193ps = -993ps and tLZ(DQ),max(derated) = 400ps + 172ps = 572ps.
(Caution on the min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and
tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note g
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the
input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800
SDRAM has tCK(avg),act=2500ps, tJIT(per),act,min = -72ps and tJIT(per),act,max = 93ps, then tRPRE,min(derated) =
tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500ps - 72ps = 2178ps. Similarly,
tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500ps - 72ps = 878ps.
(Caution on the min/max usage!)
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 68
Rev. 00B
12/5/2012
9.4 Timing Parameter Notes
1. Actual value dependent upon measurement level definitions.
2. Commands requiring a locked DLL are: READ ( and RAP) are synchronous ODT commands.
3. The max values are sy stem dependent.
4. WR as programmed in mode register.
5. Value must be rouned-up to next higher inte ger va lue.
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT-on time tAON See “Timing Parameters”.
8. For definition of RTT-off time tAOF See “Timing Parameters”.
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles are programmed in MR0.
11. The maximum read postamble is bonded by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the
right side.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this
parameter needs to be derated by TBD.
13. Value is only valid for RON34.
14. Single ended signal parameter.
15. tREFI depends on TOPER.
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew
rate. Note for DQ and DM signals, VREF(DC)=VRefDQ(DC). For input only pins except RESET,
VRef(DC)=VRefCA(DC).
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate.
18. Note for DQ and DM signals, VREF(DC)=VRefDQ(DC). For input only pins except RESET, VRef(DC)=VRefCA(DC).
19. Start of internal write transaction is defined as follows:
20. For BL8 (fixed by MRS and on-the-fly): Rising clock edge 4 clock cycles after WL.
21. For BC4 (on-the-fly): Rising clock edge 4 clock cycles after WL.
22. For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL.
19. The maximum preamble is bound by tLZ(DQS)max on the left side and tDQSCK(max) on the right side.
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are
in progress, but power-down IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there
are cases where additional time such as tXPDLL(min) is also required.
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5% (ZQCorrection) of RON and RTT impedance error
within 64 nCK for all speed bins assuming the maximum sensitivities specified in the “Output Driver Voltage and
Temperature Sensitivity” and “ODT Voltage and Temperature Sensitivity” tables. The appropriate interval between
ZQCS commands can be determined from these tables and other application-specific parameters.
23. One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage
(Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. the interval could be defined by the
following formula:
ZQCorrection / [(TSens x Tdriftrate) + (VSens x Vdriftrate)]
, where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and
voltage sensitivities.
For example, if TSens = 1.5%/C, VSens = 0.15%/mV, Tdriftrate = 1 C/sec and Vdriftrate = 15mV/sec, then the interval
between ZQCS commands is calculated as
0.5 / [(1.5x1)+(0.15x15)] = 0.133 128ms
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following
falling edge.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 69
Rev. 00B
12/5/2012
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following
rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an addit ional 100 ps of
derating to accommodate for the lower altemate threshold of 150mV and another 25ps to account for the earlier
reference point [(175mV - 150mV) / 1V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of Vref(dc) and the consecutive
crossing of Vref(dc).
29. tDQSL des c ribes the instan t ane ous dif f er ential input lo w pu lse width on DQ S - DQS#, as measured from one falling
edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS - DQS#, as measured from one rising
edge to the next consecutive falling edge.
31. tDQSH,act + tDQSL,act = 1 tCK,act ; with tXYZ,act being the actual measured value of the respective timing
parameter in the application.
32. tDSH,act + tDSS,act = 1 tCK,act ; with tXYZ,act being the actual measured value of the respective timing parameter
in the application.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 70
Rev. 00B
12/5/2012
9.5 Address / Command Setup, Hold and Derating
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the datasheet tIS(base)
and tIH(base) value to the tIS and tIH derating value respectively. Example: tIS (total setup time) = tIS(base) + tIS
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the
first crossing of VIH(ac)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last
crossing of VREF(dc) and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate
line between shaded ‘VREF(dc) to ac region’, use nominal slew rate for derating value . If the actual signal is later than
the nominal slew rate line anywhere between shaded ‘VREF(dc) to ac region’, the slew rate of a tangent line to the actual
signal from the ac level to VREF (dc) level is used for derating value.
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc)max and the
first crossing of VREF(dc). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last
crossing of Vih(dc)min and the first crossing of VREF(dc). If the actual signal is always later than the nominal slew rate
line between shaded ‘dc to VREF(dc) region’, use nominal slew rate for derating value. If the actual signal is earlier than
the nominal slew rate line anywhere between shaded ‘dc to VREF(dc) region’, the slew rate of a tangent line to the actual
signal from the dc level to VREF (dc) level is used for derating value.
For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC. Although for slow slew
rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the
rising clock transition, a valid input signal is still required to complete the transition and reach VIH/IL(ac). For slew rates in
between the values listed in Table 69, the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization.
9.5.1 ADD/CMD Setup and Hold Base-Values for 1V/ns
Symbol Reference DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units
tIS(base) AC175 VIH/L(ac) 200 125 65 45 ps
tIS(base) AC150 VIH/L(ac) 350 275 190 170 ps
tIH(base) DC100 VIH/L(dc) 275 200 140 120 ps
Symbol Reference DDR3L-800 DDR3L-1066 DDR3L-1333 DDR3L-1600 Units
tIS(base) AC160 VIH/L(ac) 215 140 80 60 ps
tIS(base) AC135 VIH/L(ac) 365 290 205 185 ps
tIH(base) DC90 VIH/L(dc) 285 210 150 130 ps
Notes:
1. (ac/dc ref erenced for 1V/ ns Address/ Command slew rate and 2 V/ns differential CK-CK# slew rate)
2. The tIS(base) AC150 specif ic at i ons are adj ust ed from the tIS(base) AC175 specification by addi ng an additional 125 ps for DDR3-800/1066 or
100ps for DDR3-1333/1600 of derating to accommodate for the lower alternate threshol d of 150 mV and another 25 ps to account for the earlier
reference point [(175 m v - 150 mV) / 1 V/ns].
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 71
Rev. 00B
12/5/2012
9.5.2 Derating values DDR3-800/1066/1333/1600 tIS/tIH - ac/dc based AC175 Threshold
tIS, tIH derating in [ps] AC/DC based
AC175 Threshold -> VIH(ac)=VREF(dc)+175mV, VIL(ac)=VREF(dc)-175mV
CK,CK# Differ ential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/n s 1.2 V/ns 1.0 V/n s
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH
CMADDD/
Slew rate
V/ns
2.0
88
50
88
50
88
50
96
58
104
66
112
74
120
84
128
100
1.5
59
34
59
34
59
34
67
42
75
50
83
58
91
68
99
84
1.0
0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50
0.9
-2 -4 -2 -4 -2 -4 6 4 14 12 22 20 30 30 38 46
0.8 -6 -10 -6 -10 -6 -10 2 -2 10 6 18 14 26 24 34 40
0.7 -11 -16 -11 -16 -11 -16 -3 -8 5 0 13 8 21 18 29 34
0.6
-17
-26
-17
-26
-17
-26
-9
-18
-1
-10
7
-2
15
8
23
24
0.5
-35
-40
-35
-40
-35
-40
-27
-32
-19
-24
-11
-16
-2
-6
5
10
0.4
-62 -60 -62 -60 -62 -60 -54 -52 -46 -44 -38 -36 -30 -26 -22 -10
9.5.3 Derating values DDR3-800/1066/1333/1600 tIS/tIH - ac/dc based Alternate AC150 Threshold
tIS,
tIH derating in [ps] AC/DC based
Alternate AC150 Threshold -> VIH(ac)=VREF(dc)+15 0mV, VIL(ac)=VREF(dc)-150mV
CK,CK# Differential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/n s 1.4 V/ns 1.2 V/ns 1.0 V/ns
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH
CADDMD/
Slew rate
V/ns
2.0
75
50
75
50
75
50
83
58
91
66
99
74
107
84
115
100
1.5 50 34 50 34 50 34 58 42 66 50 74 58 82 68 90 84
1.0 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50
0.9 0 -4 0 -4 0 -4 8 4 16 12 24 20 32 30 40 46
0.8 0 -10 0 -10 0 -10 8 -2 16 6 24 14 32 24 40 40
0.7 0 -16 0 -16 0 -16 8 -8 16 0 24 8 32 18 40 34
0.6
-1
-26
-1
-26
-1
-26
7
-18
15
-10
23
-2
31
8
39
24
0.5
-10
-40
-10
-40
-10
-40
-2
-32
6
-24
14
-16
22
-6
30
10
0.4 -25 -60 -25 -60 -25 -60 -17 -52 -9 -44 -1 -36 7 -26 15 -10
9.5.4 Req u ired time tVAC above VIH(ac) {below VIL(ac)} for val id transition
Slew Rate [V/ns] tVAC @ AC175 [ps] tVAC @ AC150 [ps]
min max min max
> 2.0 75 - 175 -
2.0 57 - 170 -
1.5
50
-
167
-
1.0
38
-
163
-
0.9
34
-
162
-
0.8 29 - 161 -
0.7 22 - 159 -
0.6 13 - 155 -
0.5 0 - 150 -
< 0.5 0 - 150 -
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 72
Rev. 00B
12/5/2012
9.5.5 Address / Command Setup, Hold and Derating
9.6.5.1 Nominal slew rate and tVAC for setup time tIS(left) and hold time t DH(right) ADD/CMD with respect to clock
9.6.5.2 Tangent line for setup time tIS(left) and hold time tIH(right) - ADD/CMD with respect to clock
VREF to AC region
VREF to DC
VREF to AC region
VREF to AC region
CK#
CK
V
DDQ
VIH(ac)MIN
VIH(dc)MIN
VREF(dc)
VIL(dc)MAX
VIL(ac)MAX
Normal
slew rate
Normal
slew rate
tIS
tIH
tVAC
tVAC
tIS
tIH
V
SS
TF
TR
Setup slew Rate @
Falling signal
=
[VREF(dc)-VIL(ac)max]
/ ΔTF
Setup slew Rate @ Rising
signal
=
[VIH(ac)min-VREF(dc)]
/ ΔTR
CK#
CK
V
DDQ
VIH(ac)MIN
VIH(dc)MIN
VREF(dc)
VIL(dc)MAX
VIL(ac)MAX
Normal
slew rate
Normal
slew rate
tIS
tIH
tVAC
tIS
tIH
V
SS
TR
TF
Hold slew Rate @
Rising signal
=
[VREF(dc)-VIL(dc)max]
/ ΔTR
Hold slew Rate @
Falling signal
=
[VIH(dc)min-VREF(dc)]
/ ΔTF
CK#
CK
V
DDQ
VIH(ac)MIN
VIH(dc)MIN
VREF(dc)
VIL(dc)MAX
VIL(ac)MAX
Normal
slew rate
Normal
slew rate
tIS
tIH
tVAC
tVAC
tIS
tIH
VSS
TF
TR
Setup slew Rate @
Rising signal
= tangent lin e
[VIH(ac)min-VREF(dc)]
/ ΔTR
Setup slew Rate @
Falling signal
= tangent lin e
[VREF(dc)-VIL(ac)max]
/ ΔTF
tangent
line
tangent
line
CK#
CK
VDDQ
VIH(ac)MIN
VIH(dc)MIN
VREF(dc)
VIL(dc)MAX
VIL(ac)MAX
Normal
slew rate
Normal
slew rate
tIS
tIH
tIS
tIH
V
SS
TR
Hold slew Rate @
Falling signal
= tangent lin e
[VIH(dc)min-VREF(dc)]
/ ΔTF
Hold slew Rate @
Rising signal
= tangent lin e
[VREF(dc)-VIL(dc)max]
/ ΔTR
tangent
line
tangent
line
TF
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 73
Rev. 00B
12/5/2012
9.6 Data Setup, Hold and Slew Rate Deratin g
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet
tDS(base) and tDH(base) value (see Table 72) to the tDS and tDH (see Table 73) derating value respectively.
Example: tDS (total setup time) = tDS(base) + tDS.
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the
first crossing of V IH(ac) min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last
crossing of VREF(dc) and the first crossing of VIL(ac) max. If the actual signal is always earlier than the nominal slew rate
line between shaded ‘VREF(dc) to ac region’, use nom inal slew rate for derating value. If the actual signal is later than the
nominal slew rate line anywhere between shaded ‘VREF(dc) to ac region’, the slew rate of a tangent line to the actual
signal from the ac level to VREF(dc ) level is used for derating value.
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc) max and
the first crossing of VREF(dc) . Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the
last cr ossing of VIH(dc) min and the first crossing of VREF(dc). If the actual signal is always later than the nominal slew
rate line between shaded ‘dc level to VREF(dc) region’, use nominal slew rate for derating value. If the actual signal is
earlier than the nominal slew rate line anywhere between shaded ‘dc to V REF(dc) region’, the slew rate of a tangent line
to the actual signal from the dc level to VREF(dc) level is used for derating value.
For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC.
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached
VIH/IL(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach
VIH/IL(ac) .
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization.
9.6.1 Data Setup and Hold Bas e -Values
Symbol Reference DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units
tDS(base) AC175 VIH/L(ac) 75 25 - - ps
tDS(base) AC150 VIH/L(ac) 125 75 30 10 ps
tDH(base) DC100 VIH/L(dc) 150 100 65 45 ps
NOTE: (ac/dc referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 74
Rev. 00B
12/5/2012
9.6.2 Derating values DDR3-800/1066 tDS/tDH - (AC175)
AtDS, ADH derating in [ps] AC/DC based1
DQS, DQS# Differential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns
AtDS AtDH AtDS AtDH AtDS AtDH AtDS AtDH AtDS AtDH AtDS AtDH AtDS AtDH AtDS AtDH
DQ
Slew
rate
V/ns
2.0
88
50
88
50
88
50
-
-
-
-
-
-
-
-
-
-
1.5
59
34
59
34
59
34
67
42
-
-
-
-
-
-
-
-
1.0
0
0
0
0
0
0
8
8
16
16
-
-
-
-
-
-
0.9
-
-
-2
-4
-2
-4
6
4
14
12
22
20
-
-
-
-
0.8
-
-
-
-
-6
-10
2
-2
10
6
18
14
26
24
-
-
0.7
-
-
-
-
-
-
-3
-8
5
0
13
8
21
18
29
34
0.6
-
-
-
-
-
-
-
-
-1
-10
7
-2
15
8
23
24
0.5
-
-
-
-
-
-
-
-
-
-
-11
-16
-2
-6
5
10
0.4
-
-
-
-
-
-
-
-
-
-
-
-
-30
-26
-22
-10
NOTE 1. Cell contents shaded in red are defined as ‘not supported’.
9.6.3 Derating values for DDR3-800/1066/1333/1600 tDS/tDH - (AC150)
AtDS, ADH derating in [ps] AC/DC based1
DQS, DQS# Differential Slew Rate
4.0 V/ns
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4 V/ns
1.2 V/ns
1.0 V/ns
AtDS AtDH AtDS AtDH AtDS AtDH AtDS AtDH AtDS AtDH AtDS AtDH AtDS AtDH AtDS AtDH
DQ
Slew
rate
V/ns
2.0
75
50
75
50
75
50
-
-
-
-
-
-
-
-
-
-
1.5
50
34
50
34
50
34
58
42
-
-
-
-
-
-
-
-
1.0
0
0
0
0
0
0
8
8
16
16
-
-
-
-
-
-
0.9
-
-
0
-4
0
-4
8
4
16
12
24
20
-
-
-
-
0.8
-
-
-
-
0
-10
8
-2
16
6
24
14
32
24
-
-
0.7
-
-
-
-
-
-
8
-8
16
0
24
8
32
18
40
34
0.6
-
-
-
-
-
-
-
-
15
-10
23
-2
31
8
39
24
0.5
-
-
-
-
-
-
-
-
-
-
14
-16
22
-6
30
10
0.4
-
-
-
-
-
-
-
-
-
-
-
-
7
-26
15
-10
NOTE 1. Cell contents shaded in red are defined as ‘not supported’.
9.6.4 Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition
Slew Rate [V/ns] DDR3-800/1066 (AC175) DDR3-800/1066/1333/1600 (AC150)
Slew Rate [V/ns] tVAC [ ps] tVAC [ps]
min max min max
> 2.0
75
-
175
-
2.0
57
-
170
-
1.5
50
-
167
-
1.0
38
-
163
-
0.9
34
-
162
-
0.8
29
-
161
-
0.7
22
-
159
-
0.6
13
-
155
-
0.5
0
-
155
-
< 0.5
0
-
150
-
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 75
Rev. 00B
12/5/2012
9.6.5 Data Setup, Hold and Slew Rate Derating
9.6.5.1 Nominal slew rate and tVAC for setup time tDS(left) and hold time t DH(right) - DQ with respect to strobe
9.6.5.2 Tangent line for setup time tDS(left) and hold time tDH(right) - DQ with respect to strobe
VREF to AC region
VREF to DC region
DQS#
DQS
V
DDQ
VIH(ac)MIN
VIH(dc)MIN
VREF(dc)
VIL(dc)MAX
VIL(ac)MAX
Normal
slew rate
Normal
slew rate
tDS
tDH
tVAC
tVAC
tDS
tDH
VREF to AC region
V
SS
TF
TR
Setup slew Rate @
Falling signal
=
[VREF(dc)-VIL(ac)max]
/ ΔTF
Setup slew Rate @ Rising
signal
=
[VIH(ac)min-VREF(dc)]
/ ΔTR
DQS#
DQS
V
DDQ
VIH(ac)MIN
VIH(dc)MIN
VREF(dc)
VIL(dc)MAX
VIL(ac)MAX
Normal
slew rate
Normal
slew rate
tDS
tDH
tVAC
tDS
tDH
VSS
TR
TF
Hold slew Rate @
Rising signal
=
[VREF(dc)-VIL(dc)max]
/ ΔTR
Hold slew Rate @
Falling signal
=
[VIH(dc)min-VREF(dc)]
/ ΔTF
DQS#
DQS
VDDQ
VIH(ac)MIN
VIH(dc)MIN
VREF(dc)
VIL(dc)MAX
VIL(ac)MAX
Normal
slew rate
Normal
slew rate
tDS tDH
tVAC
tVAC
tDS tDH
VREF to AC region
VSS
TF
TR
Setup slew Rate @
Rising signal
= tangent lin e
[VIH(ac)min-VREF(dc)]
/ ΔTR
Setup slew Rate @
Falling signal
= tangent lin e
[VREF(dc)-VIL(ac)max]
/ ΔTF
tangent
line
tangent
line
DQS#
DQS
VDDQ
VIH(ac)MIN
VIH(dc)MIN
VREF(dc)
VIL(dc)MAX
VIL(ac)MAX
Normal
slew rate
Normal
slew rate
tDS tDH
tDS tDH
V
SS
TR
Hold slew Rate @
Falling signal
= tangent lin e
[VIH(dc)min-VREF(dc)]
/ ΔTF
Hold slew Rate @
Rising signal
= tangent lin e
[VREF(dc)-VIL(dc)max]
/ ΔTR
tangent
line
tangent
line
TF
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 76
Rev. 00B
12/5/2012
ORDERING INFORMATION, 64MX16, 1.5V
64Mx16 - Commercial Ra ng e: (0°C TC 95°C)
Data Rate CL-tRCD-tRP Order Part No. Package
1333MT/s 8-8-8 IS43TR16640A -15GBL 96-ball FBGA ,Lead -free
1600MT/s 10-10-10 IS43TR16640A -125JBL 96-ball FBGA,Lead-free
64Mx16 - Industrial Range: (–40°C TC 95°C)
Data Rate CL-tRCD-tRP Order Part No. Package
1333MT/s 8-8-8 IS43TR16640A -15GBLI 96-ball FBGA,Lead-free
1600MT/s 10-10-10 IS43TR16640A -125JBLI 96-ball FBGA,Lead-free
64Mx16Automotive, A1 Range: (–40°C TC 95°C)
Data Rate CL-tRCD-tRP Order Part No. Package
1066MT/s 7-7-7 IS46TR16640A -187FBLA1 96-ball FBGA,Lead-free
1333MT/s 8-8-8 IS46TR16640A -15GBLA1 96-ball FBGA,Lead-free
1333MT/s 9-9-9 IS46TR16640A -15HBLA1 96-ball FBGA,Lead-free
1600MT/s 10-10-10 IS46TR16640A -125JBLA1 96-ball FBGA,Lead-free
64Mx16Automotive, A2 Range: (–40°C TC 105°C)
Data Rate CL-tRCD-tRP Order Part No. Package
1066MT/s 7-7-7 IS46TR16640A -187FBLA2 96-ball FBGA,Lead-free
1333MT/s 8-8-8 IS46TR16640A -15GBLA2 96-ball FBGA,Lead-free
1333MT/s 9-9-9 IS46TR16640A -15HBLA2 96-ball FBGA,Lead-free
1600MT/s 10-10-10 IS46TR16640A -125JBLA2 96-ball FBGA,Lead-free
Note: Contact ISSI for availability of options.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 77
Rev. 00B
12/5/2012
ORDERING INFORMATION, 256MX8, 1.5V
128Mx8 - Commercial Ra ng e: (0°C TC 95°C)
Data Rate CL-tRCD-tRP Order Part No. Package
1333MT/s 8-8-8 IS43TR81280A -15GBL 78-ball FBGA,Lead-free
1600MT/s 10-10-10 IS43TR81280A -125JBL 78-ball FBGA,Lead-free
128Mx8 - Industrial Range: (–40°C TC 95°C)
Data Rate CL-tRCD-tRP Order Part No. Package
1333MT/s 8-8-8 IS43TR81280A -15GBLI 78-ball FBGA,Lead-free
1600MT/s 10-10-10 IS43TR81280A -125JBLI 78-ball FBGA,Lead-free
128Mx8Automot ive, A1 Range: (40°C TC 95°C)
Data Rate CL-tRCD-tRP Order Part No. Package
1333MT/s 8-8-8 IS46TR81280A -15GBLA1 78-ball FBGA,Lead-free
1600MT/s 10-10-10 IS46TR81280A -125JBLA1 78-ball FBGA,Lead-free
128Mx8Automotive, A2 Range: (–40°C TC 105°C)
Data Rate CL-tRCD-tRP Order Part No. Package
1333MT/s 8-8-8 IS46TR81280A -15GBLA2 78-ball FBGA,Lead-free
1600MT/s 10-10-10 IS46TR81280A -125JBLA2 78-ball FBGA,Lead-free
Note: Contact ISSI for availabil ity of opt i ons.
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 78
Rev. 00B
12/5/2012
IS43/46TR16640A, IS43/46TR16640AL
IS43/46TR81280A , IS43/46TR81280AL
Integrated Silicon Solution, Inc. www.issi.com 79
Rev. 00B
12/5/2012