ASIX ELECTRONICS CORPORATION First Released Date : 2006 / 03 / 01
4F, NO.8, HSIN ANN Rd., Science-based Industrial Park, Hsin-Chu City, Taiwan, R.O.C.
TEL: 886-3-579-9500 FAX: 886-3-579-9558 http://www.asix.com.tw
AX88796BLF / AX88796BLI
Low-pin-count Non-PCI 8/16-bit
10/100M Fast Ethernet Controller
Features Document No.: AX88796B_17/ 08/18/07
High-performance non-PCI local bus
Support both 8 bit and 16 bit local CPU interfaces
include MCS-51 series, 80186 series CPU and ISA
bus
SRAM-like host interface, easily interfaced to most
common embedded MCUs
Embed 8Kx16 bits SRAM for packet buffers
Support Slave-DMA to minimize CPU overhead
Support burst-mode read for highest performance
applications
Interrupt pin with programmable Hold-off timer
Single-chip Fast Ethernet controller
Compatible with IEEE802.3, 802.3u standards
Integrate Fast Ethernet MAC/PHY transceiver in
one chip
Support 10Mbps and 100Mbps data rate
Support full and half duplex operations
Support 10/100Mbps N-way Auto-negotiation
operation
Support twisted pair crossover detection and
auto-correction (HP Auto-MDIX)
Support IEEE 802.3x flow control for full-duplex
operation
Support back-pressure flow control for half-duplex
operation
Support VLAN match filter
Support Wake-on-LAN function to reduce power by
following events
Detection of a change in the network link state
Receipt of a Magic Packet
Receipt of a MS wakeup frame
NE2000 register level compatible instruction
Detection performance can be enhanced with only a
minor host driver modification from original
NE2000 driver
Support EEPROM interface to store MAC address
(Optional)
Support up to 2 (out) /1 (in/out) General Purpose pins
Support LED pins for various network activity
indications
Integrate voltage regulator and 25MHz crystal
oscillator
0.18um CMOS process. 3.3V power supply with 5V
tolerance I/O pins
64-pin LQFP , RoHS package
Operate over 0 to +70 °C or -40 to +85 °C temperature
range
US patent approved (NO 6799231)
Product description
The AX88796B is a low-pin-count (64-pi n LQFP) non-PCI Ethernet controller for the Em bedded and Industrial Ethernet
applications. The AX88796B supports 8/16-bit SRAM-like host interface, providing a glue-less connection to most
common embedded MCUs. The AX88796B integrates on-chip Fast Ethernet MAC and PHY, which is IEEE802.3
10Base-T and IEEE802.3u 100Base-TX compatible, and 8Kx16 bits embedded SRAM for packet buffering to
accommodate high bandwidth applications. The AX88796B has a wide array of features including support for Twisted
Pair Crossover Detection and Auto-Correction, Wake-on-LAN power manage ment, and IEEE 802.3x and back-pressure
flow control. The AX88796B supports t wo operating temperature ranges, name ly, commercial grade from 0 to 70 °C and
industrial grade from –40 to 85 °C. The small form factor of 64-pin LQFP package helps reduce the overall PCB space.
The programming of AX88796B is simple and compatible with NE2000, so the users don’t need any modification and
can easily port the software drivers to m any embedded system s very quickly. Com bining these features with ASIX’s free
TCP/IP software stack for 8-bit microcontrollers, AX88796B provides the best Ethernet solution for embedded
networking applications.
System Block Diagram
Always contact ASIX for possible updates before starting a design.
This data sheet contains new products information. ASIX ELECTRONICS reserves the rights to modify product specification without notice. No
liability is assumed as a result of the use of this product. No rights under any patent accom pany the sale of the product.
AX88796B
With
10/100 Mbps
PHY
8bit / 16bit
N
on-PCI bus
51 series
/
186 bus
series
/
ISA bus
General
processor
AX88796B
With
10/100 Mbps
PHY
Interrupt
Address
CSn
RDn / WRn
Data Bus
ASIX ELECTRONICS CORPORATION
2
AX88796BLF / AX88796BLI
CONTENTS
1.0 INTRODUCTION......................................................................................................................................................4
2.0 SIGNAL DESCRIPTION..........................................................................................................................................6
3.0 MEMORY AND CSR MAPPING............................................................................................................................9
4.0 BASIC OPERATION ..............................................................................................................................................12
5.0 REGISTERS OPERATION....................................................................................................................................30
6.0 CPU READ AND WRITE FUNCTIONS ..............................................................................................................59
7.0 ELECTRICAL SPECIFICATION AND TIMINGS ............................................................................................62
8.0 PACKAGE INFORMATION.................................................................................................................................72
9.0 ORDERING INFORMATION...............................................................................................................................73
APPENDIX A1: MCS51-LIKE (8-BIT)......................................................................................................................74
APPENDIX A2: ISA-LIKE (8/16-BIT).......................................................................................................................75
APPENDIX A3: 186-LIKE (16-BIT)...........................................................................................................................76
APPENDIX A4: CO-WORK WITH 32-BIT PROCESSOR.....................................................................................77
APPENDIX A5: BIG-ENDIAN PROCESSOR OF DATA BYTE LANDS.............................................................79
APPENDIX B: DISABLE AX 88796B VOLTAGE REGULATOR..........................................................................80
REVERSION HISTORY...............................................................................................................................................81
ASIX ELECTRONICS CORPORATION
3
AX88796BLF / AX88796BLI
FIGURES
FIG - 1 AX88796B BLOCK DIAGRAM.................................................................................................................................4
FIG - 2 AX88796B PIN OUT DIAGRAM...............................................................................................................................5
FIG - 3 INTERNAL SRAM MAP..........................................................................................................................................11
FIG - 4 RECEIVE BUFFER RING..........................................................................................................................................15
FIG - 5 RECEIVE BUFFER RING AT INITIALIZATION...........................................................................................................16
FIG - 6 TX / RX FLOW CONTROL......................................................................................................................................26
FIG - 7 EEPROM CONNECTIONS.......................................................................................................................................28
FIG - 8 PME AND IRQ SIGNAL GENERATION.....................................................................................................................29
FIG - 9 SMI CONNECTIONS................................................................................................................................................61
TABLES
TAB - 1 LOCAL CPU BUS INTERFACE SIGNALS GROUP ........................................................................................................7
TAB - 2 10/100MBPS TWISTED-PAIR INTERFACES PINS GROUP...........................................................................................7
TAB - 3 BUILT-IN PHY LED INDICATOR PINS GROUP .........................................................................................................7
TAB - 4 EEPROM BUS INTERFACE SIGNALS GROUP............................................................................................................7
TAB - 5 MISCELLANEOUS PINS GROUP .................................................................................................................................8
TAB - 6 EEPROM DATA FORMAT EXAMPLE .......................................................................................................................9
TAB - 7 CSR ADDRESS MAPPING .....................................................................................................................................10
TAB - 8 LOCAL MEMORY MAPPING ..................................................................................................................................10
TAB - 9 INTERNAL SRAM MAP 00H ~ 1FH.....................................................................................................................10
TAB - 10 INTERNAL SRAM MAP 0400H ~ 040FH ...........................................................................................................10
TAB - 11 BYTE LANE MAPPING ........................................................................................................................................27
TAB - 12 POWER MANAGEMENT STATUSES......................................................................................................................28
TAB - 13 PAGE 0 OF MAC CORE REGISTERS MAPPING ....................................................................................................31
TAB - 14 PAGE 1 OF MAC CORE REGISTERS MAPPING ....................................................................................................32
TAB - 15 PAGE 2 OF MAC CORE REGISTERS MAPPING ....................................................................................................33
TAB - 16 PAGE 3 OF MAC CORE REGISTERS MAPPING ....................................................................................................34
TAB - 17 THE EMBEDDED PHY REGISTERS......................................................................................................................53
TAB - 18 SMI MANAGEMENT FRAME FORMAT.................................................................................................................61
TAB - 19 MII MANAGEMENT FRAMES- FIELD DESCRIPTION.............................................................................................61
ASIX ELECTRONICS CORPORATION
4
AX88796BLF / AX88796BLI
1.0 Introduction
1.1 General Description:
The AX88796B provides industrial standard NE2000 registers level compatible instruction set. Vari ous dri vers are
easily acquired, maintained, and used and no much additional effort is required. Software is easily port to various
embedded system s wit h no pain and tears. AX88796B also provides transmit queui ng function t o enhance standard
NE2000 of transmitting performance.
The AX88796B Fast Ethernet Controller is a high performance and highly integrated local CPU bus Ethernet
Controller with embedded 10/100Mbps PHY/Transceiver and 8K*16 bit SRAM. The AX88796B supports both
8/16-bit local CPU interfaces including MCS-51 series, 80186 series, ISA bus and high-performance SRAM-like
interface. The simple host interface provides a glue-less connection to most common microprocessors and
microcontrollers. The AX88796B provides both 10Mbps and 100Mbps Ethernet function based on IEEE802.3 /
IEEE802.3u LAN standard.
1.2 AX88796B Block Diagram:
Fig - 1 AX88796B Block Diagram
(
O
p
tional
)
ASIX ELECTRONICS CORPORATION
5
AX88796BLF / AX88796BLI
1.3 AX88796B Pin Connection Diagram
The AX88796B is housed in the 64-pin plastic light quad flat pack. Fig - 2 shows the AX88796B pinout
diagram.
SA2
SA3
SA4
SA5,FIFO_SEL
VCC3IO
VCCK
SD0
SD1
SD2
SD3
SD4
SD5
SD6
SD7
SD8
SD9
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
SA1 49 32 SD10
SA0 50 31 SD11
AEN,PSEN 51 30 SD12
CSn 52 29 SD13
RDn 53 28 SD14
WRn 54 27 SD15
IOIS16 55 26 GND
TCLK 56 25 VCC3IO
TEST_CK_EN 57 24 VCCK
GND 58 23 IRQ
VCCK 59 22 PME
VCC18A 60 21 EECS
XTALIN 61 20 EECK
XTALOUT 62 19 EEDIO
GND18A 63 18 GND
RSET_BG 64
AX88796B
17 RSTn
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
VCC3A3
GND3A3
TPI+
TPI-
VCC18A
TPO+
TPO-
GND18A
V18F
VCC3R3
GND3R3
TEST2
TEST1
I_LK/ACT
I_SPEED
I_FULL/COL
Fig - 2 AX88796B Pin Out Diagram
ASIX ELECTRONICS CORPORATION
6
AX88796BLF / AX88796BLI
2.0 Signal Description
The following abbreviations are used in AX88796B pinout:
All pin names with the “n” suffix are low-active signals.
The following abbreviations are used in following Tables.
I Input 1.8V
O Output 1.8V
I5 Input 3.3V with 5V tolerant
O5 Output 3.3V with 5V tolerant
T5 Tri-state with 5V tolerant
B5 Bi-directional I/O, 3.3V with 5V tolerant
4m 4mA driving strength
8m 8mA driving strength
S Schmitt trigger
PU Internal Pull Up 75Kohm
PD Internal Pull Down 75kohm
P Power Pin
A Analog
2.1 Local CPU Bus Interface Signals Group
Signal Type Pin No. Description
SA[4:0]
I5 46, 47, 48, 49,
50 System Address: Signals SA[4: 0] are address bus input li nes. Used to
select internal CSR’s.
SA[5] or
FIFO_SEL I5/PD 45 System Address or FIFO Select: When driven high, all accesses to the
AX88796B are to the RX or TX data buffer FIFO (DP).
AX88796B supports two kinds of Data Port for receiving/transmitting
packets from/to AX88796B. One is the PIO Data Port (offset 10h);
the other one is the SRAM-like Data Port (e.g. offset 800h ~ FFFh for
Samsung2440 processor as described in Appendix A4 of AX88796B
datasheet). The SRAM-like Data Port address range depends on
which address line of host processor is bei ng connected to the address
line SA5/FIFO_SEL of AX88796B.
Software on host CPU can issue Single Data Read/Write command to
both PIO Data Port and SRAM-l ike Da ta Port. However, to use Burst
Data Read/Write commands, one has to use SRAM-like Data Port,
which requires SA5/FIFO_SEL (pin 45) of AX88796B connecting to
an upper address line of host CPU. Our reference schematic has
SA5/FIFO_SEL pin connected to upper address line for supporting
Burst Data Read/Write commands.
SD[15:0] B5/8m 27, 28, 29, 30,
31, 32, 33, 34,
35, 36, 37, 38,
39, 40, 41, 42
System Data Bus: Signals SD[15:0] constitute th e bi-directional data
bus.
IRQ O5/T5/8m 23 Programmable Interrupt request. Programmable polarity, source and
buffer types.
Can be configure by EEPROM auto-loader or BTCR (offset 15h)
CSn I5 52 Chip Select: Active lo w.
RDn I5 53 Read: Active low strobe to indicate a read cycle.
WRn
I5 54 Write: Activ e low strobe to indicate a write cycle. This signal also
used to wakeup the AX88796B when it is in reduced power state.
IOIS16n T5/8m 55 16 Bit Port: For ISA bus used. The IOIS16n is asserted when the
address at the range corresponds to an I/O address to which the chip
responds, and the I/O port addressed is capable of 16-bit access.
AEN or PSEN I5 51 Address Enable: When 186, ISA mode, this signal is active low to
access AX88796B.
PSEN: When 51 modes, this signal is active high to access
AX88796B.
ASIX ELECTRONICS CORPORATION
7
AX88796BLF / AX88796BLI
PME O5/T5/8m 22 Wakeup Indicator: When programmed to do so, is asserted when the
AX88696B detects a wake event and is requesti ng the system t o wake
up from the D1 sleep state. The polarity and buffer type of this signal
is programmable by BTCR (offset 15h)
Tab - 1 Local CPU bus interface signals group
2.2 10/100Mbps Twisted-Pair Interface pins group
Signal Type Pin No. Description
TPI+ AB 3 Twisted Pair Receive Input, Positive
TPI- AB 4 Twisted Pair Receive Input, Negative
TPO+ AB 6 Twisted Pair Transmit Output, Positive
TPO- AB 7 Twisted Pair Transmit Output, Negative
RSET_BG AO 64
Off-chip resister. Must be connected 12.1K ohm ± 1% to ground.
Tab - 2 10/100Mbps Twisted-Pair Interfaces pins group
2.3 Built-in PHY LED indicator pins group
Signal Type Pin No. Description
I_FULL/COL
O5/8m 16 Full-Duplex/Collision Status. If this signal is low, it indicates
full-duplex link established, and if it is high, then the link is in
half-duplex mode. When in half-duplex and collision occurrence, the
output will be driven low for 80ms and driven high at m inimum 80ms.
I_SPEED O5/8m 15 Speed Status: If this signal is low, it indicates 100Mbps, and if it is
high, then the speed is 10Mbps.
I_LK/ACT
O5/8m 14 Link Status/Active: If this sig nal is low, it indicates link, and if it is
high, then th e link is fail. When in link status and line activity
occurrence, this signal is pulsed high (LED off) for 80ms whenever
transmit or receive activity is detected. This signal is then driven low
again for a minimum of 80ms, after which time it will repeat the
process if TX or RX activity is detected.
Tab - 3 Built-in PHY LED indicator pins group
2.4 EEPROM Signals Group
Signal Type Pin No. Description
EECS B5/4m/PD 21 EEPROM Chip Select: EEPROM chip select signal.
EEPROM Clock: Signal connected to EEPROM clock pin.
EECS, EECK can load BUS type set ting during power on reset cycle.
EECS EECK BUS TYPE
0 0 ISA BUS / SRAM-Like
0 1 80186
1 0 Reserved
EECK B5/4m/PD 20
1 1 MCS-51 (805X)
EEDIO B5/4m/PU 19 EEPROM Data In/Out: Signal connected to EEPROM data input and
data output pin.
Tab - 4 EEPROM bus interface signals group
ASIX ELECTRONICS CORPORATION
8
AX88796BLF / AX88796BLI
2.5 Miscellaneous pins group
Signal Type Pin No. Description
XTALIN I 61 Crystal/Oscillator Input: A 25Mhz crystal, +/- 50 PPM can be
connected across XTALIN and XTALOUT.
CMOS Local Clock: A 25Mhz clock, +/- 50 PPM, 40%-60% duty
cycle. Note that the pin does not support 3.3V or 5V voltage supply.
XTALOUT O 62 Crystal/Oscillator Output: A 25Mhz crystal, +/- 50 PPM can be
connected across XTALIN and XTALOUT. If a single-ended external
clock (LCLK) is connected to XTALIN, the crystal output pin should
be left floating.
RSTn I5/S 17 Reset:
Reset is active low then place AX88796B into reset mode. During the
rising edge the AX88796B loads the power on setting data.
TCLK I5/PD 56 Test Clock Pins: As a clock input for ASIC testing only
No connection when normal operation
TCLK_EN I5/PD/S 57 Enable TCLK in to ASIC as a main clock for test only.
No connection when normal operation
TEST2 I5/S 12 TEST mode select
Connect to ground when normal operation
TEST1 I5/S 13 TEST mode select
Connect to ground when normal operation
VCC3A3 P 1 Power Supply for Analog Circuit: +3.3V DC.
GND3A3 P 2 Power Supply for Analog Circuit: +0V DC or Ground Power.
VCC18A P 5, 60 Analog power for oscillator, PLL, and Ethernet PHY differential I/O
pins, 1.8V
GND18A P 8, 63 Analog ground for oscillator, PLL, and Ethernet PHY differential I/O
pins.
V18F P 9 On-chip 3.3V to 1.8V Regulator output +1.8V DC.
VCC3R3 P 10 On-chip 3.3V to 1.8V Regulator power supply: +3.3V DC.
GND3R3 P 11 On-chip 3.3V to 1.8V Regulator ground.
GND P 18, 26, 58 Ground.
VCC3IO P 25, 44 Power Supply for IO: +3.3V DC.
VCCK P 24, 43, 59 Power Supply for core logic: +1.8V DC.
Tab - 5 miscellaneous pins group
ASIX ELECTRONICS CORPORATION
9
AX88796BLF / AX88796BLI
3.0 Memory and CSR Mapping
1. EEPROM Memory Mapping
2. CSR Mapping
3. Local Memory Mapping
3.1 EEPROM Memory Mapping
EEPROM interface can access via CSR offset 14h SMI/EEPROM registers when auto load operation completed.
The content of EEPROM data will be auto-loaded to internal memory from 0000h to 001Fh and from 0400h to
040Fh automatically when hardware reset. It is similar to NE2000 PROM store Ethernet address. The real MAC
address must configured by PAR0 ~ PAR5 (CR page1 offset1 ~ offset6). The auto-loader only write to internal
SRAM not write to PAR0 ~ PAR5. An example as below, if the desired Ethernet physical address is
10-32-54-76-98-BA
It is a programmed EEPROM if auto-load value is 5AA5h from EEPROM address 0h. After hardware reset the
EEPROM loader will read first word and check pattern 5AA5h. If the first word value not equal to 5AA5h then the
EEPROM loader proclaimed that no external EEPROM or external EEPROM is a non-programmed EEPROM.
Addr Bits D[15:8] D[7:0] Description
5h [15:0] BAh 98h MAC address 6th, 5th
4h [15:0] 76h 54h MAC address 4th, 3rd
3h [15:0] 32h 10h MAC address 2nd, 1st (multicast bit is 1st of bit_0)
[15:11] No define Always zero
Configure internal PHY in different ways, such as 10BASE_T
half-duplex mode. If EEPROM auto loader not found 5AA5h
pattern in first word then internal PHY will be not been manual
configuratio n. (Default is Auto-negotiation enable with all
capabilities)
[10:8] Function
000 Auto-negotiation enable with all capabilities
001 Auto-negotiation with 100BASE-TX FDX / HDX
ability
010 Auto-negotiation with 10BASE-T FDX / HDX
ability
011 Reserved
100 Manual selection of 100BASE-TX FDX
101 Manual selection of 100BASE-TX HDX
110 Manual selection of 10BASE-T FDX
[10:8] PHY_CONFIG
111 Manual selection of 10BASE-T HDX
[7:6] No define Always zero
[5] IRQ_TYPE_EEP This bit will logic OR with BTCR (15h) bit-5 and will been
clear when host write BTCR. (Offset 15h)
[4] IRQ_POL_EEP This bit will logic OR with BTCR (15h) bit-4 and will been
clear when host write BTCR. (Offset 15h)
[3] No define Always zero
[2] NE2000_PROM When set, AX88796B internal memory map of 1Ch ~ 1Fh will
be configured to 57h. An ASCII code “W”. Otherwise
configured to 42h. An ASCII code “B”.
2h
[1:0] No define Always zero
1h [15:0] 00h 06h Indicates the total of word counts for auto loading
0h [15:0] 5Ah A5h Programmed pattern
Tab - 6 EEPROM data format example
ASIX ELECTRONICS CORPORATION
10
AX88796BLF / AX88796BLI
3.2 CSR Mapping
System I/O Offset Function
0000H ~ 001FH AX88796B Command Status Register
Tab - 7 CSR Address Mapping
3.3 Internal SRAM Memory Mapping
Offset Function
0000H ~ 001FH Load from EEPROM
0020H ~ 03FFH Reserved
0400H ~ 040FH Load from EEPROM
0410H ~ 3FFFH Reserved
4000H ~ 7FFFH NE2000 compatible mode
8K x 16 SRAM Buffer
8000H ~ FFFFH Reserved
Tab - 8 Local Memory Mapping
SRAM Address D[15:8] D[7:0]
1EH 57H / 42H 57H / 42H
1CH 57H / 42H 57H / 42H
1AH ~ 10H 00H 00H
0AH BAH BAH (E’NET ADDRESS 5)
08H 98H 98H (E’NET ADDRESS 4)
06H 76H 76H (E’NET ADDRESS 3)
04H 54H 54H (E’NET ADDRESS 2)
02H 32H 32H (E’NET ADDRESS 1)
00H 10H 10H (E’NET ADDRESS 0)
Tab - 9 Internal SRAM Map 00H ~ 1FH
SRAM Address D[15:8] D[7:0]
40EH 57H 57H
0406H ~ 040DH 00H 00H
0404H BAH (E’NET ADDRESS 5) 98H (E’NET ADDRESS 4)
0402H 76H (E’NET ADDRESS 3) 54H (E’NET ADDRESS 2)
0400H 32H (E’NET ADDRESS 1) 10H (E’NET ADDRESS 0)
Tab - 10 internal SRAM Map 0400H ~ 040FH
ASIX ELECTRONICS CORPORATION
11
AX88796BLF / AX88796BLI
AX88796B internal memory address mapping
Fig - 3 Internal SRAM map
Page 0x40
(4000h)
Page 0x7F
(7F00h)
Page 0x80
(
8000h
)
Page Start (Page 0x4C)
(4C00h)
Page 0x4C
(
4C00h
)
Page Stop (Page 0x80)
(8000h)
Every page equal to 256 Bytes
Address of first BYTE in packet buffer
SRAM is Page 0x40, offset 0
Address of last BYTE in packet buffer
SRAM is Page 0x7F, offset 0xff
Boundary Page Start (Page 0x4C)
Current Page (Page 0x4D)
TX Page Start Address (Page 0x40)
Transmit
b
uffe
r
Receive buffer
0h ~ 1Fh, Auto load MAC address
from external EEPROM
20h ~ 03FFh, Reserved
0400h ~ 040Fh, Auto load MAC
address from external EEPROM
0410h ~ 3FFFh
,
Reserved
(
0000h
)
(
3FFFh
)
ASIX ELECTRONICS CORPORATION
12
AX88796BLF / AX88796BLI
4.0 Basic Operation
4.1 Receiver Filtering
The address filtering logic compares the Destination Address Field (first 6 bytes of the received packet) to the
Physical address registers stored in the Address Register Array. If any one of the six bytes does not match the
pre-programmed physical address, the Protocol Control Logic rejects the packet. This is for unicast address filtering.
All multicast destination addresses are filtered using a hashing algorithm. (See following description.) If the
multicast address indexes a bit that has been set in the filter bit array of the Multicast Address Reg ister Array the
packet is accepted, otherwise the Protocol Control Logic rejects it. Each destination address is also checked for all
1’s, which is the reserved broadcast address.
4.1.1 Unicast Address Match Filter
The physical address registers are used to compare the destination address of incoming packets for rejecting or
accepting packets. Comparisons are performed on a byte wide basis. The bit assignment shown below relates the
sequence in PAR0-PAR5 to the bit sequence of the received packet.
D7 D6 D5 D4 D3 D2 D1 D0
PAR0 DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0
PAR1 DA15 DA14 DA13 DA12 DA11 DA10 DA9 DA8
PAR2 DA23 DA22 DA21 DA20 DA19 DA18 DA17 DA16
PAR3 DA31 DA30 DA29 DA28 DA27 DA26 DA25 DA24
PAR4 DA39 DA38 DA37 DA36 DA35 DA34 DA33 DA32
PAR5 DA47 DA46 DA45 DA44 DA43 DA42 DA41 DA40
Note: The bit sequence of the received packet is DA0, DA1, … DA7, DA8 ….
4.1.2 Multicast Address Match Filter
The Multicast Address Registers p rovide filtering of multicast addresses hashed by the CRC logic. All destination
addresses are fed through the 32 bits CRC generation logic and as the last bit of the destination address enters the
CRC, the 6 most significant bits of the CRC generator are latched. These 6 bits are then decoded by a 1 of 64 decode
to index a unique filter bit (FB0-63) in the Multicast Address Registers. If the filter bit selected is set, the multicast
packet is accepted. The system designer would use a program to determine which filter bits to set in the multicast
registers. All multicast filter bits that correspond to Multicast Address Registers accepted by the node are then set to
one. To accept all multicast packets all of the registers are set to all ones.
D7 D6 D5 D4 D3 D2 D1 D0
MAR0 FB7 FB6 FB5 FB4 FB3 FB2 FB1 FB0
MAR1 FB15 FB14 FB13 FB12 FB11 FB10 FB9 FB8
MAR2 FB23 FB22 FB21 FB20 FB19 FB18 FB17 FB16
MAR3 FB31 FB30 FB29 FB28 FB27 FB26 FB25 FB24
MAR4 FB39 FB38 FB37 FB36 FB35 FB34 FB33 FB32
MAR5 FB47 FB46 FB45 FB44 FB43 FB42 FB41 FB40
MAR6 FB55 FB54 FB53 FB52 FB51 FB50 FB49 FB48
MAR7 FB63 FB62 FB61 FB60 FB59 FB58 FB57 FB56
ASIX ELECTRONICS CORPORATION
13
AX88796BLF / AX88796BLI
If address Y is found to hash to the value 32 (20H), then FB32 (ref. 4.1.2) in MAR2 should be initialized to ``1''. This
will cause the AX88796B to accept any multicast packet with the address Y.
Although the hashing algorithm does not gua rantee perfect filtering of multicast address, it will perfectly filter up to
64 logical addr ess filters if these addresses are chosen to map into unique locations in the multicast filter.
Note: The first bit of received packet sequence is 1’s stands by Multicast Address.
4.1.3 Broadcast Address Match Filter
The Broadcast check logic compares the Destination Address Field (first 6 bytes of the received packet) to all 1’s,
which is the values are “FF FF FF FF FF FF FF” in Hex form at. If any bit of the six byt es does not equal to 1’s, the
Protocol Control Logic rejects the packet.
4.1.4 VLAN Match Filter
AX88796B compares the thirteenth and fourteenth bytes of receive frames. If not match with VLAN_ID1,
VLAN_ID_0 (offset 1dh, 1ch) then reject current frame. The VLAN filter will always accept VLAN_ID is zero of
receive frames due to it is 802.1q (for priority purpose) frames. The maximum length of the good packet is thus
change from 1518 bytes to 1522 bytes.
32-bit CRC Generator
Latch
1 of 64-bit decoder
Filter bit array
X=31 to X=26
Clock
Selected bit
0 = reject, 1= accept
7 By tes
Preamble SFD
1 Byte 6 Bytes 6 Bytes 2 B 46-1500 Bytes 4 Bytes
Destination
Address Source
Address L/T Data Pad FCS
Layer 2
Frame (64-1518 Bytes)
VL A N (64-1522 Bytes)
8100 TCI
2 B2 B
VLAN IDPriority CFI
802.1Q
VLAN tagging
3 bits 12 bits1 bit
ASIX ELECTRONICS CORPORATION
14
AX88796BLF / AX88796BLI
4.1.5 Aggregate Address Filter with Receive Configuration Setup
The final address filter decision depends on the destination address types, identified by the above 4 address match
filters, and the setup of parameters of Receive Configuration Register.
Definitions of address match filter result are as following:
Signal Value Description
Phy =1 Unicast Address Match
=0 Unicast Address not Match
Mul =1 Multicast Address Match
=0 Multicast Address not Match
Bro =1 Broadcast Address Match
=0 Broadcast Address not Match
VID =1 VLAN ID Match
=0 VLAN ID not Match
AGG =1 Aggregate Address Match
=0 Aggregate Address not Match
The meaning of AB, AM and PRO signals, please refer to “Receive Configuration Register” RCR (offset 0Ch)
The meaning of VLANE signal, Please refer to “MAC Configure Register” MCR (offset 1Bh)
Aggregate Addr ess Filter function will be:
AB
Bro
/Mul
/Bro
PRO
Mul
/Bro
AM
Phy
VLANE
VID
AGG
ASIX ELECTRONICS CORPORATION
15
AX88796BLF / AX88796BLI
4.2 Buffer Management Operation
There are four buffer memory access types used in AX88796B.
1. Packet Reception (Write data to memory from MAC)
2. Packet Transmission (Read data from memory to MAC)
3. Filling Packets to Transmit Buffer (Host fill data to memory)
4. Removing Packets from the Receive Buffer Ring (Host read data from memory)
The type 1 and 2 operations act as Local DMA. Type 1 does Local DMA write operation and type 2 does Local
DMA read operation. The type 3 and 4 operati ons act as R em ot e DMA. Ty pe 3 does Re m ote DM A write operation
and type 4 does Remote DMA read operation.
4.2.1 Packet Reception
The Local DMA receives channel uses a Buffer Ring Structure comprised of a series of contiguous fixed length 256
byte (128 word) buffers for storage of received packets. The location of the Receive Buffer Ring is programmed in
two registers, a Page Start and a Page Stop Register. Ethernet packet s consi st of minimum packet si ze (64 by t e s) to
maximum packet size (1522 bytes), the 256 byte buffer length provides a good compromise between short packets
and longer packets to most efficiently use memory. In addition these buffers provide memory resources for storage
of back-to-back packets in loaded networks. Buffer Management Logic in the AX88796B controls the assignment
of buffers for storing packets. The Buffer Management Logic provides three basic functions: linking receive buffers
for long packets, recovery of buffers when a packet is rejected, and recalculation of buffer pages that have been read
by the host.
At initialization, a portion of the 16k byte (or 8k word) address space is reserved for the receiver buffer ring. Two
eight bit registers, t he Page Start Address Regi ster (PSTART) and the Page Stop Address Re gi st er (PSTOP) defi ne
the physical boundaries of where the buffers reside. The AX88796B treats the list of buffers as a logical ring;
whenever the DMA address reaches the Page Stop Address, the DMA is reset to the Page Start Address.
Buffer #1
Buffer #2
Buffer #3
Buffer #n
Physical Memory Map Logic Receive Buffer Ring
Fig - 4 Receive Buffer Ring
4000h
8000h
Page Start
Page Stop
2
3
4
n-2
n-1
n
ASIX ELECTRONICS CORPORATION
16
AX88796BLF / AX88796BLI
Initialization Of The Buffer Ring
Two static registers and two working registers control the operation of the Buffer Ring. These are the Page Start
Register, Page Stop Register (both described previously), the Current Page Register and the Boundary Pointer
Register. The Current Page Register points to the first buffer used to store a packet and is used to restore the DMA
for writing status to the Buffer Ring or for restoring the DMA address in the event of a Runt packet, a CRC, or
Frame Alignment error. The Boundary Register point s t o the fi rst packet i n t he Ri ng not y et read by t he host. If the
local DMA address ever reaches the Boundary, reception is a borted. The Boundary Pointer is also used to initialize
the Remote DMA for removing a packet and is advanced when a packet is removed. A simple analogy to rem ember
the function of these registers is that t he Current Page Register acts as a Write Pointer and the Boundary Poi nter acts
as a Read Pointer.
Buffer #1
Buffer #2
Buffer #3
Buffer #n
Physical Memory Map Logic Receive Buffer Ring
Fig - 5 Receive Buffer Ring At Initialization
Beginning Of Reception
When the first packet begins arriving the AX88796B and begins stori ng the packet at the locat ion poi nted to by the
Current Page Register. An offset of 4 bytes is reserved in this first buffer to allow room for storing receives status
corresponding to this packet.
Linking Receive Buffer Pages
If the length of the packet exhausts the first 256 bytes buffer, the DM A performs a forward link to the next buffer to
store the remainder of the packet. For a m aximal length packet the buffer logic will link six buffers to store the entire
packet. Buffers cannot be skipped when linking; a packet will always be stored in contiguous buffers. Before the
next buffer can be linked, the Buffer Management Logic performs two comparisons. The first comparison tests for
equality between the DMA address of the next buffer and the contents of the Page Stop Register. If the buffer
address equals the Page Stop Register, the buffer management logic will restore the DMA to the first buffer in the
Receive Buffer Ring value programme d in the Page Start Address Register. The second of comparison test between
the DMA address of the next buffer address and the contents of the Boundary Pointer Regi ster. If the two values are
equal the reception is aborted. The Boundary Pointer Register can be used to protect against overwriting any area in
the receive buffer that has not yet been read. When linking buffers, buffer managem ent will never cross this pointer,
effectively avoiding any overwrites. If the buffer address does not match either the Boundary Pointer or Page Stop
Address, the link to the next buffer is performed.
4000h
8000h
Page Start
Page Stop
2
3
4
n-2
n-1
n
Boundary Page
Current Page
ASIX ELECTRONICS CORPORATION
17
AX88796BLF / AX88796BLI
Linking Buffers
Before the DMA can enter the next contiguous 256 bytes buffer, the address is checked for equality to PSTOP and
to the Boundary Pointer. If neither is reached, the DMA is allowed to use the next buffer.
Buffer Ring Overflow
If the Buffer Ring has been filled and the DMA reaches the Boundary Pointer Address, reception of the current
incoming packet will be discard by the AX88796B. Thus, the packets previously received and still contained in the
Ring will not be destro yed.
End Of Packet Operations
At the end of the packet the AX88796B determines whether the received packet is to be accepted or rejected. It
either branch to a routine to store the or to another routine that recovers the buffers used to store the packet.
If current of packet is accepted then AX88796B write two words of buffer header on receive buffer.
Buffer Header Description
NPR, Status D[15:8]: Next Page Pointer
D[7:6]: always zero
D[5]: multicast or broadcast
D[4]: runt packet
D[3]: MII error
D[2]: alignment error
D[1]: CRC error
D[0]: good packet
Length D[15:11]: always zero
D[10:0]: packet length
Successful Reception
If the packet is successfully received as shown, the DMA is restored to the first buffer used to store the packet
(pointed to by the Current Page Register). The DMA then stores the Receive Status, a Pointer to where the next
packet will be stored and the number of received bytes. Note that the rem aining bytes in the last buffer are discarded
and reception of the next packet begins on the next empty 256 byte buffer boundary. The Current Page Register is
then initialized to the next available buffer in the Buffer Ring. (The location of the next buffer had been previously
calculated and temporarily stored in an internal scratchpad register.)
Buffer Recovery For Rejected Packets
If the packet is a runt packet or contains CRC or Frame Alignment errors, it is rejected. The buffer management
logic resets the DMA back to the first buffer page used to store the packet (pointed to by CPR), recovering all
buffers that had been used to store the rejected packet. This operation will not be performed if the AX88796B is
programmed to accept either runt packets or packets with CRC or Frame Alignment errors. The received CRC is
always stored in buffer memory after the last byte of received data for the packet.
ASIX ELECTRONICS CORPORATION
18
AX88796BLF / AX88796BLI
4.2.2 Packet Transmission
The Local DMA Read is also used during transmission of a packet. Three registers control the DMA transfer during
transmission, a Transmit Page Start Address Register (TPSR) and the Transmit Byte Count Registers (TBCR0, 1).
When the AX88796B receives a command to transmit the packet pointed to by these registers, buffer memory data
will be moved into the FIFO as required during transmission. The AX88796B Controller will generate and append
the preamble, synch and CRC fields. AX88796B supports options of transmit queue function to enhance transmit
performance.
Original NE2000 Of Transmit Buffer
Options Of Transmit Buffer As A Ring
Options Back-To-Back Transmission (TX Command Queue)
TPSR
TBCR
1, 0
TX Page Start Address (0x40)
Transmit buffer
Receive buffer
AX88796B remote DMA
write default operation is
continue to write next address
even over transmit buffe
r
area. Host can do whole
memory read / write testing.
And host must handle the
transmit data do not overwri t e
receive buffer area when
p
erforming fill transmit data
to transmit buffer.
TX Page Start Address (0x40)
Transmit buffer
Receive buffer
When active Transmit Buffe
r
Ring Enable (CR page3 o
f
offset 0Dh). AX88796B
remote DMA write operation
will role over from las
t
transmit page to first transmi
t
page. Host no need reassign
RSAR0, RSAR1 again to fill
transmit data for first page.
Rx Page Start Register,
PSTART (CR page0, offset
01h)
Rx Page Start Register,
PSTART (CR page0, offset
01h)
TX Command Queue
Push In Pop Out
When active TX Queue Enable
(offset 1Bh), Host can continue
Writing TXP (bit 2 of C
R
register) to push TPSR and
TBCR1, 0 into AX88796B TX
command queue as long as
Transmit buffer has enough
vacancy and CTEPR (offse
t
1Ch) bit7 is ‘0’(Not full). Afte
r
current packet transmitted
completely, MAC TX will pop
out next TPSR and TBCR1, 0
from TX Command Queue
then transmit this packe
t
following CSM A/C D protocol.
It is recommended to enable
this function to enhance TX
performance.
AX88796B will report Current of Transmit End Page
CTEPR (offset 1Ch) when every packet transmits
completed.
Host can understand AX88796B current of transmitting
buffer point by reading CTEPR.
MAC TX
function block
ASIX ELECTRONICS CORPORATION
19
AX88796BLF / AX88796BLI
Transmit Packet Assembly
The AX88796B requires a contiguous assembled packet with the format shown below. The transmit byte count
includes the Destination Address, Source Address, Length Field and Data. It does n ot include preamble and CRC.
When transmitting data smaller than 64 bytes, AX88796B can auto padding to a minimum length of 64 bytes
Ethernet frame. The packets are placed in the buffer RAM by the system. System programs the AX88796B Core's
Remote DMA to move the data from the system buffer RAM to internal transmit buffer RAM.
The data transfer must be 16-bits (1 word) when in 16-bit m ode, and 8-bits when the AX88796B Controller is set in
8-bit mode. The data width is selected by setting the WTS bit in the Data Configuration Register.
Destination Address 6 Bytes
Source Address 6 Bytes
Length / Type 2 Bytes
Data
(Pad if < 46 Bytes) 46 Bytes
Min.
General Transmit Packet Format
Transmission
Prior to transmission, the TPSR (Transmit Page Start Register) and TBCR0, TBCR1 (Transmit Byte Count
Registers) must be initialized. To initiate transmission of the packet the TXP bit in the Command Register is set. The
Transmit Status Regi ster (TSR) is cleared and the AX88796B begins t o pre-fetch transmi t data from mem ory. If the
Inter-packet Gap (IPG) has timed out the AX88796B will begin transmission.
Conditions Required To Begin Transmission
In order to transmit a packet, the following three conditions must be met:
1. The Inter-packet Gap Timer has timed out
2. At least one byte has entered the FIFO.
3. If a collision had been detected then before transmission the packet back-off time must have timed out.
Collision Recovery
During transmission, the Buffer Management logic monitors the transmit circuitry to determine if a collision has
occurred. If a collision is detected, the Buffer Management logic will reset the FIFO and restore the Transmit DMA
pointers for retransmission of the packet. The COL bit will be set in the TSR an d the NCR (Number of Collision s
Register) will be incremented. If 15 retransmissions each result in a collision the transmission will be aborted and
the ABT bit in the TSR will be set.
ASIX ELECTRONICS CORPORATION
20
AX88796BLF / AX88796BLI
Transmit Packet Assembly Format
The following diagrams describe the format for how packets must be assembled prior to transmission for different
byte ordering schemes. The various formats are selected in the Data Configuration Register.
D15 D8 D7 D0
D[15:8] D[7:0]
Destination Address 1 Destination Address 0
Destination Address 3 Destination Address 2
Destination Address 5 Destination Address 4
Source Address 1 Source Address 0
Source Address 3 Source Address 2
Source Address 5 Source Address 4
Type / Length 1 Type / Length 0
Data 1 Data 0
… …
WTS = 1 in Data Configuration Register.
This format is used with ISA or 80186 Mode.
D7 D0
Destination Address 0 (DA0)
Destination Address 1 (DA1)
Destination Address 2 (DA2)
Destination Address 3 (DA3)
Destination Address 4 (DA4)
Destination Address 5 (DA5)
Source Address 0 (SA0)
Source Address 1 (SA1)
Source Address 2 (SA2)
Source Address 3 (SA3)
Source Address 4 (SA4)
Source Address 5 (SA5)
Type / Length 0
Type / Length 1
Data 0
Data 1
WTS = 0 in Data Configuration Register.
This format is used with ISA or MCS-51 Mode.
Note: All examples above will result in a transmission of a packet in order of DA0 (Destination Address 0), DA1,
DA2, DA3 and so on in byte. Bits within each byte will be transmitted least significant bit first.
ASIX ELECTRONICS CORPORATION
21
AX88796BLF / AX88796BLI
4.2.3 Filling Packet to Transmit Buffer (Host fill data to memory)
The Remote DMA channel is used to both assembles packets for transm ission, and to remove received packets from
the Receive Buffer Ring. It may also be used as a general-purpose slave DMA channel for moving blocks of data or
commands between host memory and local buffer memory. There are two modes of operation, Remote Write and
Remote Read Packet.
Two register pairs are used to control the Remote DMA, a Remote Start Address (RSAR0, RSAR1) and a Remote
Byte Count (RBCR0, RBCR1) register pair. The Start Address Register pair points to the beginning of the block to
be moved while the Byte Count Register pair is used to indicate the number of bytes to be transferred. Full
handshake logic is provided to move data between local buffer memory (Embedded Memory) and a bi-directional
data port.
Remote Write
A Remote Write transfer is used to move a block of data from the host into local buffer m emory. The Rem ote DMA
will read data from the I/O port and sequentially write it to local buffer memory beginning at the Remote Start
Address. The DMA Address will be incremented and the Byte Counter will be decremented after each transfer. The
DMA is terminated when the Remote Byte Count Register reaches a count of zero.
4.2.4 Removing Packets from the Ring (Host read data from memory)
Remote Read
A Remote Read transfer is used to move a block of data from local buffer memory to the host. The Remote DMA
will sequentially read data from the local buffer memory, begin ning at th e Remote Start Address, an d write d ata to
the I/O port. The DMA Address will be incremented and the Byte Counter will be decremented after each transfer.
The DMA is terminated when the Remote Byte Count Register reaches zero.
Packets are removed from the ring using the Remote DMA or an external device. Wh en using the Remote DMA.
The Boundary Pointer can also be m oved manually by program ming the Boundary Re gister. Care should be taken to
keep the Boundary Pointer at least one buffer behind the Current Page Pointer. The fol lowing is a suggested method
for maintaining the Receive Buffer Ring pointers.
1. At initialization set up a software variable (next_pkt) to indicate where the next packet will be read. At the
beginning of each Remote Read DMA operation, the value of next_pkt will be loaded into RSAR0 and RSAR1.
2. When initializing the AX88796B set:
BNRY = PSTART
CPR = PSTART + 1
next_pkt = PSTART + 1
3. After a packet is DMAed from the Receive Buffer Ring, the Next Page Pointer (second byte in AX88796B
receive packet buffer header) is used to update BNRY and next_pkt.
next_pkt = Next Page Pointer
BNRY = Next Page Pointer - 1
If BNRY < PSTART then BNRY = PSTOP – 1
Note the size of the Receive Buffer Ring is reduced by one 256-byte buffer; this will not, however, impede the
operation of the AX88796B. The advantage of this scheme is that it easily differentiates between buffer full and
buffer empty.
It is full when BNRY = CPR.
It is empty when BNRY = CPR-1.
ASIX ELECTRONICS CORPORATION
22
AX88796BLF / AX88796BLI
Storage Format For Received Packets
The following diagrams describe the format for how received packets are placed into memory by the local DMA
channel. These modes are selected in the Data Configuration Register.
D15 D8 D7 D0
Next Packet Pointer Receive Status
Receive Byte Count 1 Receive Byte Count 0
Destination Address 1 Destination Address 0
Destination Address 3 Destination Address 2
Destination Address 5 Destination Address 4
Source Address 1 Source Address 0
Source Address 3 Source Address 2
Source Address 5 Source Address 4
Type / Length 1 Type / Length 0
Data 1 Data 0
… …
WTS = 1 in Data Configuration Register.
This format is used with ISA or 80186 Mode.
D7 D0
Receive Status
Next Packet Pointer
Receive Byte Count 0
Receive Byte Count 1
Destination Address 0
Destination Address 1
Destination Address 2
Destination Address 3
Destination Address 4
Destination Address 5
Source Address 0
Source Address 1
Source Address 2
Source Address 3
Source Address 4
Source Address 5
Type / Length 0
Type / Length 1
Data 0
Data 1
WTS = 0 in Data Configuration Register.
This format is used with ISA or MCS-51 Mode.
ASIX ELECTRONICS CORPORATION
23
AX88796BLF / AX88796BLI
4.2.5 Other Useful Operations
Memory Diagnostics
Memory diagnostics can be achie ved by Remot e Write/Read DMA operations. The followi ng is a suggested step for
memory test and assume the AX88796B has been well initialized.
1. Issue the STOP comma nd to the AX88796B. This is accomplished be setting the STP bit in the AX88796B's
Command Register. Wr iting 21H to the Command Register will stop the AX88796B.
2. Wait for at least 1.5 ms. Since the AX88796B will complete any reception that is in progress, it is necessary
to time out for the m axim um possible duration of an Ethernet reception. This action prevents buffer m em ory
from written data through Local DMA Write.
3. Write data pattern to MUT (memory under test) by Remote DMA write operation.
4. Read data pattern from MUT (memory under test) by Remote DMA read operation.
5. Compare the read data pattern with original write data pattern and check if it is equal.
6. Repeat step 3 to step 5 with various data pattern.
Loop-back Diagnostics
1. Issue the STOP comma nd to the AX88796B. This is accomplished be setting the STP bit in the AX88796B's
Command Register. Wr iting 21h to the Command Register will stop the AX88796B.
2. Wait for at least 1.5 ms. Since the AX88796B will complete any reception that is in progress, it is necessary
to time out for the m axim um possible duration of an Ethernet reception. This action prevents buffer m em ory
from written data through Local DMA Write.
3. Place the AX88796B in mode 1 loop-back. (MAC internal loop-back) This can be accomplished by setting
LB1 and LB0, of the Transmit Configuration Register to ``0,1''.
4. Issue the START command to the AX88796B. This can be accomplished by writing 22h to the Command
Register. This is necessary to activate the AX88796B's Remote DMA channel.
5. Write data that wan t to transmit to transmit buffer by Remote DMA write operation.
6. Issue the TXP command to the AX88796B. This can be accomplished by writing 26h to the Command
Register.
7. Read data current receive buffer by Remote DMA read operation.
8. Compare the received data with original transmit data and check if it is equal.
9. Repeat step 5 to step 8 for more packets test.
ASIX ELECTRONICS CORPORATION
24
AX88796BLF / AX88796BLI
4.3 Wake-up Detection
Setting wake up Control and Status WUCS (CR page3, offset 0Ah) and D1 power saving in Power Management
Register PMR (CR page3, offset 0Bh), place the AX88796B in wake on LAN detection mode. In this m ode, normal
data reception is disabled. And detection logic within the MAC examines receive data for three kinds of WOL
events.
- Examines receive data for the pre-programmed wake-up frame patterns
- Examines receive data for the Magic Packet frame patterns
- Examines PHY link status change
4.3.1 Wake-up frame
AX88796B supports four programmable filters that support many different receive packet patterns. If the remote
wakeup mode is enable (in D1 sleep state). The remote wakeup function receives all frames and checks each frame
against the enabled filter and recognizes the frame as a rem ote wake-up frame if it passes the MAC address filtering
and CRC value ma tch. In order to determine which bytes of the frames should be checked by the CRC-16 (x16 +x15
+x2 +1) module. AX88796B use a program mable byte m ask and a programm able pattern offset for each of the four
supported filters. AX88796B also provide last byte match check and options cascade four programmable filters.
Make the four of detectors can operate simultaneously or sequentially.
The byte mask is a 32-bit field that specifies whether or not each of the 32 contiguous bytes within the frame,
beginning in t he pattern offset, shoul d be checked. If bit j in the byte m ask is set, the di ction logic checks byte offset
+j in the frame.
The pattern offset define on Offset 3 ~ 0 for each wake-up filter 3 ~ 0 and the real offset value equal to Offset
register multiplied by 2. (For example, The real offset value equal to 12 if set 6 on Offset register field)
Last bytes 3 ~ 0 for each wake-up filter 3 ~ 0 also. The contents of Last Byte register must equal to the last of Byte
Mask bit i ndicates of byte value. For exam ple, if set Byte Mask [31: 0] as 00C30003h then Byte M ask [23] is the last
byte. Thus, The contents of Last byte register must equal to byte value of offset + 23.
In order to load the 32-bi ts of wake up control register host driver software m ust perform 4 writes for every 32 bit of
registers.
The first write of 8-bit is located at [31:24]. The second write will also occupy [31:24] and shift the first write of data
to [23:16]. The first write of data will b e located at [7:0] after continue 4 times of write data.
3 2 1 0
8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 08 7 6 5 4 3 2 1 08 7 6 5 4 3 2 1 0
Byte Mask 0
Byte Mask 1
Byte Mask 2
Byte Mask 3
Wakeup Frame 1 CRC Wakeup Frame 0 CRC
Wakeup Frame 3 CRC Wakeup Frame 2 CRC
Offset 3 Offset 2 Offset 1 Offset 0
Last Byte 3 Last Byte 2 Last Byte 1 Last Byte 0
Reserved Cascade
Command
[2:0]
Command 3 Command 2 Command 1 Command 0
Wake-Up frame Byte Mask Register Structure
4th
[31:24] 3r
d
[23:16]
2n
d
[15:8]
1s
t
[7:0]
ASIX ELECTRONICS CORPORATION
25
AX88796BLF / AX88796BLI
.
For Example.
A Ping packet is configured as a Wakeup frame and AX88196B MAC address is 00 A0 0C C4 7D 69.
00 A0 0C C4 7D 69 00 0E C6 12 34 56 08 00 45 00
00 3C 01 8C 00 00 80 01 27 1E C0 09 C9 02 C0 09
C9 01 08 00 47 5C 05 00 01 00 61 62 63 64 65 66
67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76
77 61 62 63 64 65 66 67 68 69 CRC (4 bytes)
Host configure Wakeup frame registers sequences
// Go to gape3
Write CR(Offset 0h) C2h ; page3
// Set Byte Mask 0 = 00 40 08 07
Write WFBM0 (Page3, Offset 01H) 07h ; WFBM0 = 07 00 00 00h
Write WFBM0 (Page3, Offset 01H) 08h ; WFBM0 = 08 07 00 00h
Write WFBM0 (Page3, Offset 01H) 40h ; WFBM0 = 40 08 07 00h
Write WFBM0 (Page3, Offset 01H) 00h ; WFBM0 = 00 40 08 07h
// Set {Wakeup Frame 1 CRC, Wakeup Frame 0 CRC} = 00 00 2B 42h
Write WF10CRC (Offset 05H) 42h ; WF10CRC = 42 00 00 00h
Write WF1 0CRC (Offset 05H) 2Bh ; WF10CRC = 2B 42 00 00h
Write WF10CRC (Offset 05H) 00h ; WF10CRC = 00 2B 42 00h
Write WF10CRC (Offset 05H) 00h ; WF10CRC = 00 00 2B 42h
// Set {Offset 3 2 1 0} = 00 00 00 06h
Write WFOFST (Offset 07H) 06h ; WFOFST = 06 00 00 00h
Write WFOFST (Offset 07H) 00h ; WFOFST = 00 06 00 00h
Write WFOFST (Offset 07H) 00h ; WFOFST = 00 00 06 00h
Write WFOFST (Offset 07H) 00h ; WFOFST = 00 00 00 06h (Offset = 6*2 = 12)
// Set {Last Byte 3 2 1 0} = 00 00 00 08h
Write WFLB (Page3, Offset 08H) 08h ; {Last Byte 3 2 1 0} = 08 00 00 00h
Write WFLB (Page3, Offset 08H) 00h ; {Last Byte 3 2 1 0} = 00 08 00 00h
Write WFLB (Page3, Offset 08H) 00h ; {Last Byte 3 2 1 0} = 00 00 08 00h
Write WFLB (Page3, Offset 08H) 00h ; {Last Byte 3 2 1 0} = 00 00 00 08h
// Set {Cascade, Command 3 2 1 0} = 00 00 00 03h
Write WFCMD (Offset 09H) 03h ; WFCMD = 03 00 00 00h
Write WFCMD (Offset 09H) 00h ; WFCMD = 00 03 00 00h
Write WFCMD (Offset 09H) 00h ; WFCMD = 00 00 03 00h
Write WFCMD (Offset 09H) 00h ; W FCMD = 00 00 00 03h (enabled wake-up frame filter 0, and DA
match is required)
// Set PME and IRQ pin I/O Buffer Type (Please Ref. Datasheet Offset 15 descriptions)
Write BTCR (Offset 15H) ;
// Host enables wakeup frame detection then enter D1 sleep
Write WUCSR (Page3, Offset 0AH) 02h ; (Wakeup frame enable)
Write PMR (Offset 0BH) 01h ; (Enter D1 Sleep mode)
4.3.2 Magic Packet frame
AX88796B checks frame for 16 repetitions of the MAC address without any breaks or interruptions. The 16
repetitions may be anywhere in the frame but must be preceded by the synchronization stream
48’hFF_FF_FF_FF_FF_FF pattern. If the MAC address of a node is 00h 11h 22h 33h 44h 55h, then AX88796B
scans for the following data sequence in an Ethernet frame.
Destination Address (6 byte) Source Address (6 byte) . . . . . . . . . FF FF FF FF FF FF
00 11 22 33 44 55 00 11 22 33 44 55 00 11 22 33 44 55 00 11 22 33 44 55
00 11 22 33 44 55 00 11 22 33 44 55 00 11 22 33 44 55 00 11 22 33 44 55
00 11 22 33 44 55 00 11 22 33 44 55 00 11 22 33 44 55 00 11 22 33 44 55
00 11 22 33 44 55 00 11 22 33 44 55 00 11 22 33 44 55 00 11 22 33 44 55
. . . . . . . . . CRC (4 byte)
ASIX ELECTRONICS CORPORATION
26
AX88796BLF / AX88796BLI
4.4 Flow Control
The AX88796B supports Full-duplex flow control using the pause control frame. It also supports half-duplex flow
control using collision base of back-pressure method.
4.4.1 Full-Duplex Flow Control
The format of a PAUSE frame is illustrated below. It conforms to the standard Ethernet frame format but includes a
unique type field and other parameters as follows:
The destination address of the frame may be set to either the unique DA of the station to be paused, or t o the globally
assigned multicast address 01-80-C2-00-00-01 (hex). The IEEE 802.3 standard for use in MAC control PAUSE
frames has reserved this m ulticast address. The "Type" field of the PAUSE frame i s set to 88-08 (hex) to indicate the
frame is a MAC Control frame.
The MAC Control opcode field is set to 00-01 (hex) to indicate the type of MAC Control frame being used is a
PAUSE frame. The PAUSE frame is the only type of MAC Control frame currently defined.
The MAC Control Param eters field contains a 16-bit value that specifies the duration of the PAUSE event in units of
512-bit times. Valid values are 00-00 to FF-FF (hex). If an additional PAUSE frame arrives before the current
PAUSE time has expired, its parameter replaces the current PAUSE time, so a PAUSE frame with parameter zero
allows traffic to resume immediately.
A 42-byte reserved field (transmitted as all zeros) is required to pad the length of the PAUSE frame to the minim um
Ethernet frame size.
Preamble
(7-bytes)
Start Frame
Delimiter
(1-byte)
Dest. MAC
Address
(6-bytes)
= (01-80-C2-
00-00-01)
Source
MAC
Address
(6-bytes)
Length/Type
(2-bytes)
= 802.3 MAC
Control
(88-08)
MAC Control
Opcode
(2-bytes)
= PAUSE
(00-01)
MAC Control
Parameters
(2-bytes)
= (00-00 to
FF-FF)
Reserved
(42-bytes)
= all zeros
Frame
Check
Sequence
(4-bytes)
AX88796B will inhibit transmit frames for a specified period of time if a PAUSE frame received and CRC is
correct. If a PAUSE request is received while a transmit fram e is in progress, then the pause will take effect after the
transmitting is completed.
AX88796B base on “Rx Page Start Regi ster” (CR page0 Offset 01h) and “Rx Page Stop Register”(C R page0 Offset
02h) to calculate and got the total of free page count can be used for store received packets. (One page equal to 256
bytes) The total of free page count will decrease when packets received. A programmable of high water
free-page-count in “Flow Control Register” (Offset 1Ah) used to measure the water level of receive buffer.
AX88796B use XOFF / XON flow-control method to avoid missing packet if receive buffer almost full. A XON
transmitting when the total of free page count equal to or less then “high water free-page-count”. A XOFF
transmitting when the total of free page count equal to or greater then (“high water free-page-count” + 6 pages).
Fig - 6 TX / RX Flow control
RX
PAUSE frame
TX
HOST
Packet
STOP
AX88796B
TX Flow Control RX Flow Control
The total of
free pages count
Programmable of free-page-count
Start to generate XON
frame packet
generate XOF F frame
packet
High water mark
Low water mark
Packets in RX buffer
6 pages
ASIX ELECTRONICS CORPORATION
27
AX88796BLF / AX88796BLI
4.4.2 Half-Duplex Flow Control
Whenever the receive buffer becomes full crosses a certain threshold level, The MAC starts sending a Jam signal,
which will result in a collision. After sensing the collision, the remote station will back off its transmit ion.
AX88796B only generate this collision-based of back-pressure when it receives a new frame, in order to avoid any
late collisions.
A programma ble of “Back-pressure Jam Limit count” (Offset 17h) is used for avoid HUB port partition due to m any
continues of collisions. AX88796B will reset the “Back-pressure Jam Limit count” when either a transmitted or
received frame without collision. A back-pressure leakage allow when senses continue of collisions count up to
“Back-pressure Jam Limit count”, it will be no jamming one of receive frame even receive buffer is full.
4.5 Big- and Little-endian Support
AX88796B supports “Big-“ or “Little-endian” processor. To support big-endian processors, the hardware designer
must explicitly invert the layout of the byte lanes. In addition, for a 16-bit interface, the big-endian register must be
set correctly following the table below.
Additionally , please refer to Big-endian register (offset 1Eh), for additional inform ation on status i ndication on bi g-
or little-endian modes.
MODE OFOPERATION AX88796B DATA PINS DESCRIPTION
SD[15:8] SD[7:0]
Mode 0 Big-endian register (offset 1Eh) not equal to 0x0000h
Even access Byte3 Byte2
Odd access Byte1 Byte0 This mode can be used by 32-bit processors
operating with an external 16-bit bus.
Mode 0 Little-endian register (offset 1Eh) equal to 0x0000h (default)
Even access Byte1 Byte0
Odd access Byte3 Byte2 This mode can also be used by native 16-bit
processors.
Tab - 11 Byte Lane Mapping
AX88796B’s 16-bit Data Port (DP) read/write like a FIFO not rely on address pin. The “Even access” means the
first of access Data Port (DP) behind of remote read/write Command Register (CR). The second time access Data
Port (DP) is “Odd access” and then next is “Even access”, and so on.
Host can read bit-7 in “Device Status Register” (Offset 17h) to know the current of big- or little-endian types. The
default is Little-endian mode.
4.6 General Purpose Timer (GP Timer)
The programm able General Purpose Timer can be used to generate periodic host interrupts and the resol ution of this
timer is 100us.
The GP tim er is a 16-bi t of regi ster. GPT1 (CR page3 offset 0Fh) and GPT0 (CR page3 offset 0Eh) to com post thi s
16-bit of General Purpose Timer. This GP timer field of default value is FFFFh. Once set the General Purpose
Timer Enable (CR page3 Offset 0Dh) the GPT counts down until it reaches 0000h then update the a new pre-load
value into GPT, and continues counting.
The GPT interrupt has no status indicate in Interrupt Status Register (CR page0 offset 07h). The interrupt event will
keep active until host driver read Interrupt Status Register (CR page0 offset 07h) then clear GPT interrupt event.
ASIX ELECTRONICS CORPORATION
28
AX88796BLF / AX88796BLI
4.7 EEPROM Interface
AX88796B can optionally load its MAC address from an external serial EEPROM. If a properly configured
EEPROM is detected by AX88796B at power-up, hard reset or host set a reload EEPROM request (C R page3 offset
0Ch), the constants of EEPROM data will be auto loading to internal m emory from 0000h to 001Fh and from 0400h
to 040Fh automatically. It is similar NE2000 PROM store MAC address field. A detailed explanation of the
EEPROM data format in section 3.1 “EEPROM Memory Mapping”. After auto load EEPROM completed not
indicate AX88796B knew its MAC address. Host driver can get MAC address from internal memory (0000h ~
001Fh) or (0400h ~ 040Fh) and write “Physical Address Registers” (CR page1 offset 01h ~ 06h).
The AX88796B EEPROM use 3 PIN to connect to a m ost “93C46” type EEPROM configured for x16-bit operation.
A connect diagram as below
Fig - 7 EEPROM connections
After EEPROM loader has finished reading the MAC after power-on, hard reset or host set a reload EEPROM
request (CR page3 offset 0Ch), the Host is free to perform EECS, EECK and EEDIO as General Purpose I/O pin.
4.8 Power management
AX88796B supports power-down modes to allow applications to minimize power consumption. There is one
normal operation power state, D0 and there are two power saving states: D1, and D2. The “Power Management
Register”(CR Page3 Offset 0Bh) controls those of power managem ent modes. In D1 power saving state, AX88796B
supports Wake on LAN function. In D2 power saving state, AX88796B will off all function block and clocks to
minimize pow er consumption. After wakeup event, the “Power Management Register” will be cleared and state at
normal operation power stat e. When AX88796B in ei ther D1 or D2 power saving mode, host can writ e “Host Wake
Up Register” (Offset 1Fh) return t he AX88796B t o t he D0 stat e. Power i s reduced t o various modules by disabling
the clocks as outlin ed in table as below.
AX88796B
BLOCK D0
(Normal
operation)
D1
(WOL) D2
Internal
clock On On Off
MAC and
Host On Off Off
MAC power
management On Rx Block
On Off
PHY On On Off
Tab - 12 Power Management Statuses
EECS
EEC
K
EEDIO
AX88796B
EECS
EECK
EEDI
EEDO
93C46
ASIX ELECTRONICS CORPORATION
29
AX88796BLF / AX88796BLI
4.8.1 Power Management Event Indicators
The external PME signal can be setup as Push-Pull driver or open-drai n buffer. And also can be set as active high or
active low. When set the PME_IND bit to a ‘1’, (offset 15h) the external PME signal will be driven active for 60ms
upon detection of a wake-up event. When the PME_IND bit is cleared, the PME signal will be driven continuously
upon detection of a wake-up event. Host can checks which kind of wake-up event activity by reads “Wake up
Control and Status Register”(CR page3 offset 0Ah). Host can writing “Power Management Register”(CR page3
offset 0Bh) or writing a ‘1’ to clear wake-up event activity flags on “Wake up Control and Status Register”(CR
page3 offset 0Ah) to deactivated PME signal.
MPEN (CR page3 offset 0Ah)
ENB PME
logic
PME_POL (offset 15h)
PME_TYPE (offset 15h)
WUEN (CR page3 offset 0Ah)
Magic Packet Detect event
Wakeup Frame Detect event
ENB
logic
IREQ
IRQ_TYPE (offset 15h)
IRQ_POL (offset 15h)
System interrupt event
PME_IRQ_EN (offset 15h)
IRQ_TYPE (from EEPROM)
IRQ_POL (from EEPROM)
PME_IND (offset 15h)
60ms
Fig - 8 PME and IRQ signal generation
4.9 Device Ready or Busy
There are three kinds of device ready indicator in “Device Status Register” (Offset 17h). Those are indicates
AX88796B internal operation busy. In order to prevent the host access AX88796B in the busy stage, host can to
check the “Device Status Register” before doing some key operations.
When a “0” at the bit-4 (D-RDY) in “Device Status Register” (Offset 17h), indicate the AX88796B i n reset state or
power saving state or EEPROM loading state or loop-back mode swapping.
When a “0” at the bit-5 (RD-RDY) in “Device Status Register” (Offset 17h), indicate the remote-DMA-read data
not ready yet, host must not read data port (DP) in this period. The non-ready period only happen when host set a
remote-read command on “Command Register”(CR), and it will be go to ready state when a valid data pop out for
host to reading. Host driver can back-to-back read data port (DP) since checked the RD-RDY was ready. The
maxim um of rem ote-read non-ready period only spend 60ns. Host can ignore to check RD_RDY if host access time
not faster then it.
When a “0” at the bit-6 (RDMA-RDY) in “Device Status Register” (Offset 17h), indicate the remote DMA not
completed yet. This RDMA-RDY will be cleared when host write “Remote Byte Count 0” RBCR0 (CR page0
Offset 0Ah) or “Remote Byte Count 1” RBCR1 (CR page0 Offset 0Bh). The byte counter will down counting when
every data port (DP) access. This RDMA-RDY will be set when byte counter count to zero.
ASIX ELECTRONICS CORPORATION
30
AX88796BLF / AX88796BLI
5.0 Registers Operation
5.1 MAC Control and Status Registers (CSR)
All registers of MAC Core are 8-bit wide except data port (DP). Data Port is optional 8 or 16-bit wide by WTS
(DCR). Offset 01h to 0Fh mapped into pages, which are selected by PS (Page Select) in the Command Register.
Offset Page0 Page1 Page2 Page3
00H Command Register (CR)
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H, 11H Data Port (DP)
12H Inter-frame Gap Segment 1 (IFGS1)
13H Inter-frame Gap Segment 2 (IFGS2)
14H MII/EEPROM Access
15H Buffer Type Configure Register (BTCR)
16H Inter-frame Gap (IFG)
17H Device Status Register (DSR) / Back-pressure Jam Limit Count (BJLC)
18H Max Frame Size [7:0]
19H Max Frame Size [11:8]
1AH Flow Control Register (FCR)
1BH MAC Configure Register (MCR)
1CH Current TX End Page Register (CTEPR) / VLAN_ID_0
1DH Reserved / VLAN_ID_1
1EH Reserved / Big-Endian Register (BER)
1FH Software Reset / Host Wake up (HWAKE)
Page0 of registers
Page1 of registers
Page2 of registers
Page3 of registers
ASIX ELECTRONICS CORPORATION
31
AX88796BLF / AX88796BLI
PAGE 0 (PS1=0,PS0=0)
Offset Read Write
00H Command Register (CR) Command Register (CR)
01H Rx Page Start Register (PSTART) Page Start Register (PSTART)
02H Rx Page Stop Register (PSTOP) Page Stop Register (PSTOP)
03H Boundary Pointer (BNRY) Boundary Pointer (BNRY)
04H Transmit Status Register (TSR) Transmit Page Start Address (TPSR)
05H Number of Collisio ns Register (NCR) Transmit Byte Count Register 0 (TBCR0)
06H Current Page Register (CPR) Transmit Byte Count Register 1 (TBCR1)
07H Interrupt Status Register (ISR) Interrupt Status Register (ISR)
08H Current Remote DMA Address 0 (CRDA0) Remote Start Address Register 0 (RSAR0)
09H Current Remote DMA Address 1 (CRDA1) Remote Start Address Register 1 (RSAR1)
0AH Reserved Remote Byte Count 0 (RBCR0)
0BH Reserved Remote Byte Count 1 (RBCR1)
0CH Receive Status Register (RSR) Receive Configuration Register (RCR)
0DH Frame Alignment Error Tally Register
(CNTR0) Transmit Configuration Register (TCR)
0EH CRC Error Tally Register (CNTR1) Data Configuration Register (DCR)
0FH Frames Lost Tally Register (CNTR2) Interrupt Mask Register (IMR)
11H, 10H Data Port (DP) Data Port (DP)
12H Inter-frame Gap Segment 1 (IFGS1) Inter-frame Gap Segment 1 (IFGS1)
13H Inter-frame Gap Segment 2 (IFGS2) Inter-frame Gap Segment 2 (IFGS2)
14H MII/EEPROM Access MII/EEPROM Access
15H Buffer Type Configure Register (BTCR) Buffer Type Configure Register (BTCR)
16H Inter-frame Gap (IFG) Inter-frame Gap (IFG)
17H Device Status Register (DSR) Back-pressure Jam Limit count (BJLC)
18H Max Frame Size [7:0] Max Frame Size [7:0]
19H Max Frame Size [11:8] Max Frame Size [11:8]
1AH Flow Control Register (FCR) Flow Control Register (FCR)
1BH MAC Configure Register (MCR) MAC Configure Register (MCR)
1CH Current TX End Page Register (CTEPR) VLAN_ID_0
1DH Reserved VLAN_ID_1
1EH Reserved Big-Endian Register (BER)
1FH Software Reset Host Wake up (HWAKE)
Tab - 13 Page 0 of MAC Core Registers Mapping
ASIX ELECTRONICS CORPORATION
32
AX88796BLF / AX88796BLI
PAGE 1 (PS1=0,PS0=1)
Offset Read Write
01H Physical Address Register 0
(PAR0) Physical Address Register 0
(PAR0)
02H Physical Address Register 1
(PAR1) Physical Address Register 1
(PAR1)
03H Physical Address Register 2
(PAR2) Physical Address Register 2
(PAR2)
04H Physical Address Register 3
(PAR3) Physical Address Register 3
(PAR3)
05H Physical Address Register 4
(PAR4) Physical Address Register 4
(PAR4)
06H Physical Address Register 5
(PAR5) Physical Address Register 5
(PAR5)
07H Current Page Register
(CPR) Current Page Register
(CPR)
08H Multicast Address Register 0
(MAR0) Multicast Address Register 0
(MAR0)
09H Multicast Address Register 1
(MAR1) Multicast Address Register 1
(MAR1)
0AH Multicast Address Register 2
(MAR2) Multicast Address Register 2
(MAR2)
0BH Multicast Address Register 3
(MAR3) Multicast Address Register 3
(MAR3)
0CH Multicast Address Register 4
(MAR4) Multicast Address Register 4
(MAR4)
0DH Multicast Address Register 5
(MAR5) Multicast Address Register 5
(MAR5)
0EH Multicast Address Register 6
(MAR6) Multicast Address Register 6
(MAR6)
0FH Multicast Address Register 7
(MAR7) Multicast Address Register 7
(MAR7)
Tab - 14 Page 1 of MAC Core Registers Mapping
ASIX ELECTRONICS CORPORATION
33
AX88796BLF / AX88796BLI
PAGE 2 (PS1=1,PS0=0)
Offset Read Write
01H Reserved Reserved
02H Reserved Reserved
03H Reserved Reserved
04H Reserved Reserved
05H Reserved Reserved
06H Reserved Reserved
07H Reserved Reserved
08H Reserved Reserved
09H Reserved Reserved
0AH Total Receive Buffer Free Page (TFP) Reserved
0BH Chip version (00h) Reserved
0CH Receive Configuration Register (RCR) Reserved
0DH Transmit Configuration Register (TCR) Reserved
0EH Data Configuration Register (DCR) Reserved
0FH Interrupt Mask Register (IMR) Reserved
Tab - 15 Page 2 of MAC Core Registers Mapping
ASIX ELECTRONICS CORPORATION
34
AX88796BLF / AX88796BLI
PAGE 3 (PS1=1,PS0=1)
Offset Read Write
01H WFBM0 WFBM0
02H WFBM1 WFBM1
03H WFBM2 WFBM2
04H WFBM3 WFBM3
05H WF10CRC WF10CRC
06H WF32CRC WF32CRC
07H WFOFST WFOFST
08H WFLB WFLB
09H WFCMD WFCMD
0AH WUCSR WUCSR
0BH PMR PMR
0CH Reserved REER
0DH MISC MISC
0EH GPT0 GPT0
0FH GPT1 GPT1
Tab - 16 Page 3 of MAC Core Registers Mapping
ASIX ELECTRONICS CORPORATION
35
AX88796BLF / AX88796BLI
5.1.1 Command Register (CR)
Offset 00H (Read/Write)
Field Name Description (Default = 21h)
7:6 PS1, PS0 PS1, PS0: Page Select
The two bits select which register’s page is to be accessed.
It will be reset to default value when set PMR to D1 to D2 sleep state.
PS1 PS0
0 0 page 0 (default)
0 1 page 1
1 0 page 2
1 1 page 3
5:3 RD2,
RD1,
RD0
RD2, RD1, RD0: Remote DMA Command
These three encoded bits control operation of the Remote DMA channel. RD2 could be set
to abort any Remote DMA command in process. RD2 is reset by AX88796B when a
Remote DMA has been completed. The Remote Byte Count should be cleared when a
Remote DMA has been aborted. The Remote Start Address is not restored to the starting
address if the Remote DMA is aborted.
It will be reset to default value when set PMR to D1 to D2 sleep state.
RD2 RD1 RD0
0 0 0 Not allowed
0 0 1 Remote Read
0 1 0 Remote Write
0 1 1 Not allowed
1 X X Abort / Complete Remote DMA (default)
2 TXP TXP: Transmit Packet
This bit could be set to initiate transmission of a packet
1 START START:
This bit is used to active AX88796B operation.
This bit always read high when Host set once. It only clear by hardware or software reset.
0 STOP STOP: Stop AX88796B
This bit is used to stop the AX88796B operation.
It will be reset to default value when set PMR to D1 to D2 sleep state.
ASIX ELECTRONICS CORPORATION
36
AX88796BLF / AX88796BLI
5.1.2 Rx Page Start Register (PSTART)
Page0 Offset 01H (Read/Write)
Field Name Description (Default = 00h)
7:0 PSTART Receive Buffer Ring Page Start Register
5.1.3 Rx Page Stop Register (PSTOP)
Page0 Offset 02H (Read/Write)
Field Name Description (Default = 00h)
7:0 PSTOP Receive Buffer Ring Page Stop Register
5.1.4 Boundary Pointer (BNRY)
Page0 Offset 03H (Read/Write)
Field Name Description (Default = 4Ch)
7:0 BNRY Boundary Page Pointer
5.1.5 Transmit Page Start Address (TPSR)
Page0 Offset 04H (Write)
Field Name Description
7:0 TPSR Transmit Page Start Address
5.1.6 Transmit Status Register (TSR)
Page0 Offset 04H (Read)
Field Name Description (Default = 00h)
7 OWC Out of window collision
6:4 - Reserved
3 ABT Transmit Aborted
Indicates the AX88796 aborted transmission because of excessive collision.
2 COL Transmit Collided
Indicates that the transmission collided at least once with another station on the n etwork.
1 - Reserved
0 PTX Packet Transmitted
Indicates transmission without error.
5.1.7 Transmit Byte Count Register (TBCR0)
Page0 Offset 05H (Write)
Field Name Description
7:0 TBCR0 Transmit Byte Count Register. The bit assignment is shown below
ASIX ELECTRONICS CORPORATION
37
AX88796BLF / AX88796BLI
5.1.8 Number Of Collisions Register (NCR)
Page0 Offset 05H (Read)
Field Name Description (Default = 00h)
7:4 - Always zero
3:0 NCR If no collisions are experienced during a transmission attempt, the COL bit of the TSR will
not be set and the contents of NCR will be zero. If there are excessive collisions, the ABT bit
in the TSR will be set and the contents of NCR will be zero. The NCR is cleared after the
TXP bit in the CR is set.
5.1.9 Transmit Byte Count Register (TBCR1)
Page0 Offset 06H (Write)
Field Name Description
7:0 TBCR1 Transmit Byte Count Register.
5.1.10 Current Page Register (CPR)
Page0 Offset 06H (Read)
Field Name Description (Default = 4Dh)
7:0 CPR The Buffer Management Logic as a backup register for reception uses this register
internally. CURR contains the address of the first buffer to be used for a packet reception
and is used to restore DMA
p
ointers in the event of receive errors. This register is initialized
to the same value as PSTART and should not be written to again unless the controller is
Reset.
5.1.11 Interrupt Status Register (ISR)
Page0 Offset 07H (Read/Write)
Field Name Description (Default = 80h)
7 RST Reset Status:
Set when AX88796B enters reset state (or a wake-up event) and cleared when a start
command is issued to the CR. Writing to this bit is no effect.
6 RDC Remote DMA Complete
Set when remote DMA operation has b een completed. Write this bit to high then reset it.
5 CNT Counter Overflow
Set when MSB of one or more of the Tally Counters has been set. Write this bit to high
then reset its.
4 OVW OVERWRITE: Set when receive buffer ring storage resources have been exhausted.
Write this bit to high then reset it.
3 TXE Transmit Error
Set when packet transmitted with one or more of the follo wing errors
Excessive collisions, Tran smit over size and late collision.
Write this bit to high then reset it.
2 RXE Receive Error
Indicates that a packet was received with one or more of the following errors
CRC error
Frame Alignment Error
Missed Packet
Write this bit to high then reset it.
1 PTX Packet Transmitted
Indicates packet transmitted with no error
Write this bit to high then reset it.
0 PRX Packet Received
Indicates packet received with no error.
Write this bit to high then reset it.
ASIX ELECTRONICS CORPORATION
38
AX88796BLF / AX88796BLI
Remote DMA operations are programmed via the Remote Start Address (RSAR0, 1) and Remote Byte Count
(RBCR0, 1) registers.
5.1.12 Remote Start Address Register (RSAR0)
Page0 Offset 08H (Write)
Field Name Description
7:0 R SAR 0 The R emote Start Address i s used t o poi nt to the start of the block of data to be transferred.
5.1.13 Remote Start Address Register (RSAR1)
Page0 Offset 09H (Write)
Field Name Description
7:0 R SAR 1 The R emote Start Address i s used t o poi nt to the start of the block of data to be transferred.
5.1.14 Remote Byte Count Register (RBCR0)
Page0 Offset 0AH (Write)
Field Name Description
7:0 RBCR0 The Remote Byte Count is used to indicate the length of the block (in bytes).
5.1.15 Remote Byte Count Register (RBCR1)
Page0 Offset 0BH (Write)
Field Name Description
7:0 RBCR1 The Remote Byte Count is used to indicate the length of the block (in bytes).
5.1.16 Current Remote DMA Address (CRDA0)
Page0 Offset 08H (Read)
Field Name Description (Default = 00h)
7:0 CRDA0 The Current Remote DMA Registers contain the current address of the Remote DMA. The
bit assignment is shown below:
5.1.17 Current Remote DMA Address (CRDA1)
Page0 Offset 09H (Read)
Field Name Description (Default = 00h)
7:0 CRDA1 The Current Remote DMA Registers contain the current address of the Remote DMA. The
bit assignment is shown below:
ASIX ELECTRONICS CORPORATION
39
AX88796BLF / AX88796BLI
5.1.18 Receive Configuration Register (RCR)
Page0 Offset 0CH (Write)
Field Name Description
7 - Reserved
6 - Reserved
5 MON Monitor Mode
0: Normal Operation. (Default)
1: Monitor Mode, the input packet will be checked on NODE ADDRESS and CRC but not
buffered into memory.
4 PRO PRO: Promiscuous Mode
Enable the receiver to accept all packets with a physical address.
3 AM AM: Accept Multicast
Enable the receiver to accept packets with a multicast address. That multicast address must
pass the hashing array.
2 AB AB: Accept Broadcast
Enable the receiver to accept broadcast packet.
1 AR AR: Accept Runt
Enable the receiver to accept runt packet.
0 SEP SEP: Save Error Packet
Enable the receiver to accept and save packets with error.
5.1.19 Receive Status Register (RSR)
Page0 Offset 0CH (Read)
Field Name Description (Default = 00h)
7 - Reserved
6 DIS Receiver Disabled
5 PHY Multicast Address Received.
4 MPA Missed Packet
3 - Always Zero
2 FAE Frame alignment error.
1 CR CRC error.
0 PRX Packet Received Intact
ASIX ELECTRONICS CORPORATION
40
AX88796BLF / AX88796BLI
5.1.20 Transmit Configuration Register (TCR)
Page0 Offset 0DH (Write)
Field Name Description
7 FDU Full Duplex
This bit configure MAC media mode is Full Duplex or not.
0: Half duplex (Default)
1: Full duplex
This duplex setting was wire or with MCR bit-7. Each one goes high then configures MAC
as full-duplex. AX88796B will ignore this bit and MCR bit-7 when using internal PHY.
6 PD Pad Disable
0: Pad will be added when pack et length less than 60. (Default)
1: Pad will not be added when packet length less than 60.
5 RLO Retry of late collision
0: Don’t retransmit packet when late collision h appens. (Default)
1: Retransmit packet when late collision happen s .
4:3 - Reserved
2:1 LB1, LB0 Encoded Loop-back Control
These encoded configuration bits set the type of loop-back that is to be performed.
LB1 LB0
Mode0 0 0 Normal operation (Default)
Mode 1 0 1 Internal AX88796B loop-back
Mode 2 1 0 PHY loop-back
No Define 1 1 Reserved
0 CRC Inhibit CRC
0: CRC appended by transmitter. (Default)
1: CRC inhibited by transmitter.
5.1.21 Frame Alignment Error Tally Register (CNTR0)
Page0 Offset 0DH (Read)
Field Name Description (Default = 00h)
7:0 CNTR0 This counter is incremented every time a packet is received with a Frame Alignment Error.
The packet must have been recognized by the address recognition logic. The counter is
cleared after the processor reads it.
5.1.22 Data Configuration Register (DCR)
Page0 Offset 0EH (Write)
Field Name Description
7:2 - Reserved
1 - Reserved
0 WTS Word Transfer Select (Data Port Only)
0: Selects Data Port with byte-wide transfers. (Default)
1: Selects Data Port with word-wide transfers.
5.1.23 CRC Error Tally Register (CNTR1)
Page0 Offset 0EH (Read)
Field Name Description (Default = 00h)
7:0 CNTR1 This counter is incremented every time a packet is received with a CRC error. The packet
must first be recognized by the address recognition logic. The counter is cleared after the
processor reads it.
ASIX ELECTRONICS CORPORATION
41
AX88796BLF / AX88796BLI
5.1.24 Interrupt mask register (IMR)
Page0 Offset 0FH (Write)
Field Name Description
7 Reserved
6 RDCE DMA Complete Interrupt Enable. Default “low” disabled.
5 CNTE Counter Overflow Interrupt Enable. Default “low” disabled.
4 OVWE Overwrite Interrupt Enable. Default “low” disabled.
3 TXEE Transmit Error Interrupt Enable. Default “low” disabled.
2 RXEE Receive Error Interrupt Enable. Default “low” disabled.
1 PTXE Packet Transmitted Interrupt Enable. Default “low” disabled.
0 PRXE Packet Received Interrupt Enable. Default “low” disabled.
5.1.25 Frames Lost Tally Register (CNTR2)
Page0 Offset 0FH (Read)
Field Name Description (Default = 00h)
7:0 CNTR2 This counter is incremented if a packet cannot be received due to lack of buffer resources. In
monitor mode, this counter will count the number of packets that pass the address
recognition logic.
ASIX ELECTRONICS CORPORATION
42
AX88796BLF / AX88796BLI
5.1.26 Physical Address Register 0 (PAR0)
Page1 Offset 01H (Read/Write)
Field Name Description (Default = 00h)
7:0 PAR0 Physical Address Register 0
5.1.27 Physical Address Register 1 (PAR1)
Page1 Offset 02H (Read/Write)
Field Name Description (Default = 00h)
7:0 PAR1 Physical Address Register 1
5.1.28 Physical Address Register 2 (PAR2)
Page1 Offset 03H (Read/Write)
Field Name Description (Default = 00h)
7:0 PAR2 Physical Address Register 2
5.1.29 Physical Address Register 3 (PAR3)
Page1 Offset 04H (Read/Write)
Field Name Description (Default = 00h)
7:0 PAR3 Physical Address Register 3
5.1.30 Physical Address Register 4 (PAR4)
Page1 Offset 05H (Read/Write)
Field Name Description (Default = 00h)
7:0 PAR4 Physical Address Register 4
5.1.31 Physical Address Register 5 (PAR5)
Page1 Offset 06H (Read/Write)
Field Name Description (Default = 00h)
7:0 PAR5 Physical Address Register 5
The physical address registers are used to compare the destination address of incoming packets for rejecting or
accepting packets. Comparisons are performed on a byte wide basis. The bit assignment shown below relates the
sequence in PAR0 ~ PAR5 to the bit sequence of the received packet.
ASIX ELECTRONICS CORPORATION
43
AX88796BLF / AX88796BLI
5.1.32 Current Page Register (CPR)
Page1 Offset 07H (Read/Write)
Field Name Description (Default = 4Dh)
7:0 CPR The Buffer Management Logic as a backup register for reception uses this register
internally. CURR contains the address of the first buffer to be used for a packet reception
and is used to restore DMA pointers in the event of receive errors. This register is initialized
to the same value as PSTART and should not be written to again unless the controller is
Reset.
5.1.33 Multicast Address Register 0 (MAR0)
Page1 Offset 08H (Read/Write)
Field Name Description (Default = 00h)
7:0 MAR0 Multicast Address Register 0
5.1.34 Multicast Address Register 1 (MAR1)
Page1 Offset 09H (Read/Write)
Field Name Description (Default = 00h)
7:0 MAR1 Multicast Address Register 1
5.1.35 Multicast Address Register 2 (MAR2)
Page1 Offset 0AH (Read/Write)
Field Name Description (Default = 00h)
7:0 MAR2 Multicast Address Register 2
5.1.36 Multicast Address Register 3 (MAR3)
Page1 Offset 0BH (Read/Write)
Field Name Description (Default = 00h)
7:0 MAR3 Multicast Address Register 3
5.1.37 Multicast Address Register 4 (MAR4)
Page1 Offset 0CH (Read/Write)
Field Name Description (Default = 00h)
7:0 MAR4 Multicast Address Register 4
5.1.38 Multicast Address Register 5 (MAR5)
Page1 Offset 0DH (Read/Write)
Field Name Description (Default = 00h)
7:0 MAR5 Multicast Address Register 5
5.1.39 Multicast Address Register 6 (MAR6)
Page1 Offset 0EH (Read/Write)
Field Name Description (Default = 00h)
7:0 MAR6 Multicast Address Register 6
5.1.40 Multicast Address Register 7 (MAR7)
Page1 Offset 0FH (Read/Write)
Field Name Description (Default = 00h)
7:0 MAR7 Multicast Address Register 7
ASIX ELECTRONICS CORPORATION
44
AX88796BLF / AX88796BLI
5.1.41 Total Receive Buffer Free Page Register (TFP)
Page2 Offset 0AH (Read)
Field Name Description (Default = 7Fh)
7:0 TFP Indicate total free page in receive buffer ring. A default value 7Fh after hardware / software
reset. It will be update the real free page when every frame received.
5.1.42 Receive Configuration Register (RCR)
Page2 Offset 0CH (Read)
Field Name Description (Default = 00h)
7:0 RCR Reference Page0 Offset 0CH for bits deifications.
5.1.43 Transmit Configuration Register (TCR)
Page2 Offset 0DH (Read)
Field Name Description (Default = 00h)
7:0 TCR Reference Page0 Offset 0DH for bits deifications.
5.1.44 Data Configuration Register (DCR)
Page2 Offset 0EH (Read)
Field Name Description (Default = 00h)
7:0 DCR Reference Page0 Offset 0EH for bits deifications.
5.1.45 Interrupt Mask Register (IMR)
Page2 Offset 0FH (Read)
Field Name Description (Default = 00h)
7:0 IMR Reference Page0 Offset 0FH for bits deifications.
ASIX ELECTRONICS CORPORATION
45
AX88796BLF / AX88796BLI
5.1.46 Wakeup Frame Byte Mask (WFBM0)
Page3 Offset 01H (Read/Write)
Field Name Description (Default = 00h)
31:0 WFBM0 Byte mask for wake-up frame filter 0. Host continue write 4 times to completed 32-bits of
Byte Mask 0.
5.1.47 Wakeup Frame Byte Mask (WFBM1)
Page3 Offset 02H (Read/Write)
Field Name Description (Default = 00h)
31:0 WFBM1 Byte mask for wake-up frame filter 1. Host continue write 4 times to completed 32-bits of
Byte Mask 1.
5.1.48 Wakeup Frame Byte Mask (WFBM2)
Page3 Offset 03H (Read/Write)
Field Name Description (Default = 00h)
31:0 WFBM2 Byte mask for wake-up frame filter 2. Host continue write 4 times to completed 32-bits of
Byte Mask 2.
5.1.49 Wakeup Frame Byte Mask (WFBM3)
Page3 Offset 04H (Read/Write)
Field Name Description (Default = 00h)
31:0 WFBM3 Byte mask for wake-up frame filter 3. Host continue write 4 times to completed 32-bits of
Byte Mask 3.
5.1.50 Wakeup Frame 1,0 CRC (WF10CRC)
Page3 Offset 05H (Read/Write)
Field Name Description (Default = 00h)
7:0 WF0_0CRC Byte mask CRC for wake-up frame filter 0. Host continue write 4 times to completed
32-bits of Byte Mask 1 CRC and Byte Mask 0 CRC.
CRC-16 Polynomials = X^16 + X^15 + X^2 + 1
15:8 WF0_1CRC Byte mask CRC for wake-up frame filter 0.
23:16 WF1_0CRC Byte mask CRC for wake-up frame filter 1.
31:24 WF1_1CRC Byte mask CRC for wake-up frame filter 1.
5.1.51 Wakeup Frame 3,2 CRC (WF32CRC)
Page3 Offset 06H (Read/Write)
Field Name Description (Default = 00h)
7:0 WF2_0CRC Byte mask CRC for wake-up frame filter 2. Host continue write 4 times to completed
32-bits of Byte Mask 3 CRC and Byte Mask 2 CRC.
CRC-16 Polynomials = X^16 + X^15 + X^2 + 1
15:8 WF2_1CRC Byte mask CRC for wake-up frame filter 2.
23:16 WF3_0CRC Byte mask CRC for wake-up frame filter 3.
31:24 WF3_1CRC Byte mask CRC for wake-up frame filter 3.
ASIX ELECTRONICS CORPORATION
46
AX88796BLF / AX88796BLI
5.1.52 Wakeup Frame Offset (WFOFST)
Page3 Offset 07H (Read/Write)
Field Name Description (Default = 00h)
7:0 WF0OFST Byte mask Offset for wake-up frame filter 0. Host continue write 4 times to completed
32-bits of Byte Mask 3, 2, 1, 0 Offset. The unit is 16-bit. (2bytes)
15:8 WF1OFST Byte mask Offset for wake-up frame filter 1.
23:16 WF2OFST Byte mask Offset for wake-up frame filter 2.
31:24 WF3OFST Byte mask Offset for wake-up frame filter 3.
5.1.53 Wakeup Frame Last Byte (WFLB)
Page3 Offset 08H (Read/Write)
Field Name Description (Default = 00h)
7:0 WFLB0 Mask Last Byte for wake-up frame filter 0. Host continu e write 4 times to completed
32-bits of Last Byte of 3, 2, 1, 0 filter.
15:8 WFLB1 Mask Last Byte for wake-up frame filter 1.
23:16 WFLB2 Mask Last Byte for wake-up frame filter 2.
31:24 WFLB3 Mask Last Byte for wake-up frame filter 3.
5.1.54 Wakeup Frame Command (WFCMD)
Page3 Offset 09H (Read/Write)
Field Name Description (Default = 00h)
3:0 WFCMD0 Byte Mask Command for wake-up frame filter 0. Host continue write 4 times to com pleted
32-bits of Byte Mask Command of 3, 2, 1, 0 filter and Mask cascade commend.
Bit0: wake-up frame filter enable
Bit1: destination match en able
Bit2: Multicast match enable
Bit3: Reserved
7:4 WFCMD1 Byte Mask Command for wake-up frame filter 1.
11:8 WFCMD2 Byte Mask Command fo r wake-up frame filter 2.
15:12 WFCMD3 Byte Mask Command for wake-up frame filter 3.
19:16 WFCSCD Byte Mask Cascade Command for wake-up frame filter
Bit-0: cascade wake-up filter 1 and 0
Bit-1: cascade wake-up filter 2 and 1
Bit-2: cascade wake-up filter 3 and 2
31:18 - Reserved. Always zero.
5.1.55 Wakeup Control and Status Register (WUCSR)
Page3 Offset 0AH (Read/Write)
Field Name Description (Default = 00h)
7 - Reserved
6 LSC Link status chang e event flag. This bit will be clear when Host write PMR or set this bit.
5 WUFR Wake-up Frame Received event flag. This bit will be clear when Host write PMR or set
this bit.
4 MPR Magic Packet Received event flag. This bit will be clear when Host write PMR or set this
bit.
3 - Reserved
2 LSCWE Link status change wakeup enable
0: disable (Default)
1: enable
1 WUEN W ake-up frame enable
0: disable (Default)
1: enable
ASIX ELECTRONICS CORPORATION
47
AX88796BLF / AX88796BLI
0 MPEN Magic Packet wake-up enables.
0: disable (Default)
1: enable
5.1.56 Power Management Register (PMR)
Page3 Offset 0BH (Read/Write)
Field Name Description (Default = 00h)
7:5 - Reserved
4 REGSTB 0: Regulator in normal mode (Default)
1: Regulator in standby mode
3:2 - Reserved
1:0 PMM
Power Management Mode, Self clear when wake-up
00: Normal Operation (Default)
01: D1 power saving. Supported Link status change, Wake-up and Magic frame for
remote wake-up
10: D2 power saving. Only write host wake-up register (offset 1Fh) to leave D2 state.
11: Reserved. Do not set this mode.
5.1.57 Reload EEPROM Register (REER)
Page3 Offset 0CH (Write)
Field Name Description
7:1 - Reserved
0 REER Reload EEPROM
Host set this bit to active reload EEPROM process. And it will auto clear by it self.
5.1.58 Misc. Control Register (MISC)
Page3 Offset 0DH (Write/Read)
Field Name Description (Default = 00h)
7:3 - Reserved
2 GPTE General Purpose Timer Enable
0: Disable (Default)
1: Enable
1 BCB1 Burst Cycle Base On SA1 or SA0
0: Base on SA0 (Default)
1: Base on SA1
0 TBR Transmit Buffer Ring Enable
0: Remote DMA write can write any where of embedded memory. (Default)
1: Remote DMA write transmit buffer as a Ring from page 40h to PSTART –1.
5.1.59 General Purpose Timer0 Register (GPT0)
Page3 Offset 0EH (Write/Read)
Field Name Description (Default = FFh)
7:0 - General Purpose Timer [7:0]
5.1.60 General Purpose Timer1 Register (GPT1)
Page3 Offset 0FH (Write/Read)
Field Name Description (Default = FFh)
7:0 - General Purpose Timer [15:8]
ASIX ELECTRONICS CORPORATION
48
AX88796BLF / AX88796BLI
5.1.61 Data Port (DP)
Offset 10H (Read/Write)
Field Name Description (Default = 00h)
15:8 DP Data Port High byte
7:0 DP Data Port Low byte
5.1.62 Inter-frame gap Segment 1(IFGS1)
Offset 12H (Read/Write)
Field Name Description (Default = 0Ch)
7 - Reserved
6:0 IFGS1 Inter-frame Gap Segment 1.
5.1.63 Inter-frame gap Segment 2(IFGS2)
Offset 13H (Read/Write)
Field Name Description (Default = 12h)
7 - Reserved
6:0 IFGS2 Inter-frame Gap Segment 2.
5.1.64 MII/EEPROM Management Register (MEMR)
Offset 14H (Read/Write)
Field Name Description (Default = 00h)
7 EECK EECK
EEPROM Clock. It output to Pin-20
6 EEO EEO: (Read only)
EEPROM Data Out value. It reflects Pin-19 EEDIO value.
5 EEI EEI
EEPROM Data In. It output to Pin-19 EEDIO as EEPROM data input value.
4 EECS EECS
EEPROM Chip Select. It output to Pin-21
3 MDO MDO
MII Data Out. It connects to internal PHY of MDO.
2 MDI MDI (Read only)
MII Data In. It connects to internal PHY of MDI.
1 DIR Signal Direction: for both of SMI (MDIO) and EEPROM (EEDIO)
0: output direction, MDIO and EEDIO as push-pull drive out
1: input direction, MDIO and EEDIO as Z state for source from external signals
0 MDC MDC
MII Clock. It connect to internal PHY of MDC
ASIX ELECTRONICS CORPORATION
49
AX88796BLF / AX88796BLI
5.1.65 I/O Buffer Type Configure Register (BTCR)
Offset 15H (Read/Write)
Field Name Description (Default = 00h)
7 - Always write zero
6 PME_IQR_EN PME interrupt enable
0: PME interrupt disable (Default)
1: PME interrupt enable
5 IRQ_TYPE Interrupt I/O Buffer Type
0: Enable IRQ to function as an open-drain buffer for use in a wired-OR interrupt
configuration. And ignored INTP field, the interrupt output is always active low.
(Default)
1: IRQ output is a Push-Pull driver
4 IRQ_POL Interrupt Polarity
0: Low active (Default)
1: High active
3 - Reserved
2 PME_IND PME indication
0: A static signal active when detect wake-up event. (Default)
1: A 60ms pulse active when detect wake-up event.
1 PME_TYPE PME I/O Type. When cleared, PME_POL is ignored, and the output is always active
low.
0: PME to function as an open-grain buffer for use in a wired-or configuration.
(Default)
1: PME output is a Push-Pull driver.
0 PME_POL PME Polarity.
0: PME active Low (Default)
1: PME active high (ignore when PME_TYPE is low)
MPEN (CR page3 offset 0Ah)
ENB PME
logic
PME_POL (offset 15h)
PME_TYPE (offset 15h)
WUEN (CR page3 offset 0Ah)
Magic Packet Detect event
Wakeup Frame Detect event
ENB
logic
IREQ
IRQ_TYPE (offset 15h)
IRQ_POL (offset 15h)
System interrupt event
PME_IRQ_EN (offset 15h)
IRQ_TYPE (from EEPROM)
IRQ_POL (from EEPROM)
PME_IND (offset 15h)
60ms
ASIX ELECTRONICS CORPORATION
50
AX88796BLF / AX88796BLI
5.1.66 Inter-frame gap (IFG)
Offset 16H (Read/Write)
Field Name Description (Default = 15h)
7 - Reserved, Always zero.
Inter-frame Gap for Back-To-Back Transmission without collision
IFG Bit-time of Frame gap
15h – n 96 – (4*n)
15h (default) 96
6:0 IFG
15h + n 96 + (4*n)
5.1.67 Back-pressure Jam Limit Count (BJLC)
Offset 17H (Write)
Field Name Description
7:6 - Reserved, Always zero.
5:0 BJLC Back-pressure Jam Limit count, Default value is 19H.
5.1.68 Device Status Register (DSR)
Offset 17H (Read)
Field Name Description
7 B_ENDIAN When set indicates big-endian mode. (The Big-endian Register’s value not all zero)
6 RDMA_RDY Remote DMA completed. It is same as ISR bit 6.
When set, it indicates the remote DMA process was co mpleted.
5 RD_RDY Read Data Port Ready, When set, indicates data was ready from SRAM to data port for
host reading.
4 D_RDY Device Ready. When set, this bit indicates that AX88796B is ready to be accessed. This
register can be read when AX88796B in any power management mode.
When cleared, indicate AX88796B in reset, power saving or load EEPROM state.
3 - Always zero
2 I_SPEED PHY Link Speed:
0: indicate the link speed is 10Mb/s
1: indicate the link speed is 100Mb/s
1 I_DUPLEX PHY Duplex mode:
0: half-duplex
1: full-duplex
0 I_LINK Link Status:
0: Link off
1: Link up
5.1.69 MAX Frame Size Register (MFSR0)
Offset 18H (Read/Write)
Field Name Description (Default = 00h)
7:0 MFSR0 MAX Frame size [7:0], default {MFSR1, MFSR0} = 1536 bytes
5.1.70 MAX Frame Size Register (MFSR1)
Offset 19H (Read/Write)
Field Name Description (Default = 06h)
7:3 - Reserved
2:0 MFSR1 MAX Frame size [10:8]
ASIX ELECTRONICS CORPORATION
51
AX88796BLF / AX88796BLI
5.1.71 Flow Control Register (FCR)
Offset 1AH (Read/Write)
Field Name Description (Default = 07h)
7 FLWC Flow-control
0: Flow-control disable (Default)
1: Flow-control enable
6 BPEN Back Pressure in half-duplex flow-control (AX88796B will ignore this bit when running at
full-duplex mode)
0: Back Pressure disable (Default)
1: Back Pressure enable
5:0 HW PC High Water free Page Count. Default value is 7 (7 * 256 = 1792 bytes).
5.1.72 MAC Configure Register (MCR)
Offset 1BH (Read/Write)
Field Name Description
7 DUPX MAC duplex mode setting
When read, this bit is indicates the real duplex setting in MAC operation.
0: half-duplex
1: full-duplex
When write, this duplex setting was wire or with TCR bit-7. Each one goes high then
configures MAC as full-duplex mode. AX88796B will ignore this bit and TCR bit-7 when
using internal PHY.
6 BPLE Back-pressure leakage enable when continuous of collision N times.
N number is reference register 17H of Back-pressure Jam Limit count.
0: Allow flow-control leakage to avoid HUB port going partition state due to too many of
collision (Default)
1: No flow-control leakage
5 BBTC Back-To-Back Transmission Control:
0: Disable (Default)
1: Enable Back-To-Back Transmission, Host can continue set TXP without check transmit
completed
Host can ignore Number of Collisions Register (NCR)
4 MPSEL Media Select by Program
0: internal PHY is selected (Default)
1: external MII PHY is selected.
3 VLANE VLAN enable
0: No supported VLAN frame tagged (Default)
1: Only accept Tag frames. AX88796 will reject packet if Tag x8100 and VID not match
whit setting by host. Null VID (VID = 0) is acceptable.
2 CPTEFF Capture effect.
0: always write low (Default)
1: for MAC test only. Force first collision of back off is 2 slot-time and second collision of
back off is 0 slot time. Others as normal.
1 SPMAC Super MAC.
0: always write low (Default)
1: for MAC test only. Back-off only 0 ~ 3 slot-time
0 ZEROBF Zero Back Off Time.
0: always write low (Default)
1: for MAC test only. Back Off Time always zeros.
ASIX ELECTRONICS CORPORATION
52
AX88796BLF / AX88796BLI
5.1.73 VLAN ID 0 Register (VIDR0)
Offset 1CH (Write)
Field Name Description
7:0 VIDR0 VLAN ID [7:0]
5.1.74 Current TX End Page Register (CTEPR)
Offset 1CH (Read)
Field Name Description (Default = 00h)
7 TXCQF TX Command Queue full
When set, indicate the TX Command queue was full. Host must check this status before
queuing next transmit page and byte count.
6:0 CTEPR AX88796B will update CTEPR (current TX end page)
After every transmitting completed without collision.
It is for Host to conform how many free page can reuse for next transmitting.
The value is from 40h to 7Fh. It will be 00h when reset or STP.
5.1.75 VLAN ID 1 Register (VIDR1)
Offset 1DH (Write)
Field Name Description
7:5 PRI Frame’s priority
4 CFI Canonical Address Frame Indicator
3:0 VIDR1 VLAN ID [11:8]
5.1.76 Big-Endian Register (BER)
Offset 1EH (Write)
Field Name Description (Default = 00h)
7:0 - All zero, (Default): little-endian
If not all zero means set data byte order as big-endian mode.
Note: This mode can be used by 32-bit big-endian mode of processors operating with an
external 16-bit bus only.
5.1.77 Host Wake Up Register (HWUR)
Offset 1FH (Write)
Field Name Description
7:1 - Reserved
0 HWAKE
(SC) Host write one to wake up AX88796B from D2 power saving. It will be auto clear when
wake up.
5.1.78 Software Reset
Offset 1FH (Read)
Field Name Description
7:0 - Don’t care this read value.
ASIX ELECTRONICS CORPORATION
53
AX88796BLF / AX88796BLI
5.2 The Embedded PHY Registers
The MII management 16-bit register set implemented is as follows. And the following sub-section will describes each
field of the registers.
Address Name Description Default value
0 MR0 Control 3100H
1 MR1 Status 7809H
2 MR2 PHY Identifier 1 003BH
3 MR3 PHY Identifier 2 1841H
4 MR4 Autonegotiation Advertisement 01E1H
5 MR5 Autonegotiation Link Partner Ability 0000H
6 MR6 Autonegotiation Expansion 0000H
Tab - 17 The Embedded PHY Registers
Key to default:
Reset value
1: Bit set to logic one
0: Bit set to logic zero
X: No set value
Access type
RO: Read only
RW: Read or write
Attribute
SC: Self-clearing
PS: Value is permanently set
LL: Latch low
LH: Latch high
ASIX ELECTRONICS CORPORATION
54
AX88796BLF / AX88796BLI
5.2.1 MR0 -- Control Register Bit Descriptions
Field Type Description (Default = 3100h)
0.15 (SW_RESET) 0, RW / SC 1 = Software reset
0 = Normal operation
0.14 (LOOPBACK) 0, RW 1 = Loop-back enabled
0 = Normal operation
0.13(SPEED100) 1, RW 1 = 100Mbits/s
0 = 10Mbits/s
0.12 (NWAY_ENA) 1, RW 1 = Auto negotiation enabled. Bits 8 and 13 of this register are ignored
when this bit is set.
0 = Auto negotiation disabled. Bits 8 and 13 of this register determine the
link speed and mode.
0.11 (POWER DOWN) 0, RW 1 = Power down
0 = Normal operation
0.10 (ISOLATE) 0, R/W 1 = Isolate
0 = Normal operation
0.9 (REDONWAY) 0, RW / SC Restart Autonegotiation.
1 = Restart auto nego tiation
0 = Normal operation
0.8 (FULL_DUP) 1, RW Duplex Mode.
1 = Full duplex operation
0 = Normal operation
0.7 (COLTST) 0, RW Collision Test.
1 = Collision test enabled
0 = Normal operation
0.6:0 (RESERVED) X, RO Reserved.
Write as 0, read as “don’t care”
ASIX ELECTRONICS CORPORATION
55
AX88796BLF / AX88796BLI
5.2.2 MR1 -- Status Register Bit Descriptions
Field Type Description (Default = 7809h)
1.15 (T4ABLE) 0, RO / PS
100Base-T4 Ability. This bit will always be a 0.
0 = AX88796B is not able to perform in 100BASE-T4 mode
1.14 (TXFULDUP) 1, RO /PS 100Base-TX Full-Duplex Ability.
1 = AX88796B is able to perform in 100BASE-TX full duplex mode
1.13 (TXHAFDUP) 1, RO / PS 100Base-TX Half-Duplex Ability.
1 = AX88796B is able to perform in 100BASE-TX half duplex mode
1.12 (ENFULDUP) 1, RO / PS 10Base-T Full-Duplex Ability.
1 = AX88796B is able to perform in 10BASE-T full duplex mode
1.11 (ENHAFDUP) 1, RO / PS 10Base-T Half-Duplex Ability.
1 = AX88796B is able to perform in 10BASE-T half duplex mode
1.10:7 (RESERVED) 0, RO Reserved.
Write as 0, read as “don’t care”
1.6 (MF preamble
suppression) 0, RO Management frame preamble suppression:
0 = AX88796B will not accept management frames with preamble
suppressed.
1.5 (NWAYDONE) 0, RO Autonegotiation Complete.
1= Auto negotiation process complete
0 = Auto negotiation process not complete
1.4 (REM_FLT) 0, RO / LH Remote Fault.
1 = Remote fault condition detected (cleared on read or by a chip reset)
0 = No remote fault condition detected
1.3 (NWAYABLE) 1, RO / PS Autonegotiation Ability.
1 = AX88796B is able to perform auto-negotiation
1.2 (LSTAT_OK) 0, RO / LL Link Status.
1 = Valid link established (100Mb/s or 10Mb/s operation)
0 = Link not established
1.1 (JABBER) 0, RO / LH Jabber Detect.
1 = Jabber condition detected
0 = No Jabber condition detected
1.0 (EXT_ABLE) 1, RO / PS Extended Capability.
1 = Extended register capable
0 = Basic register capable only
ASIX ELECTRONICS CORPORATION
56
AX88796BLF / AX88796BLI
5.2.3 MR2 -- Identification 1 Registers
Field Type Description (Default = 003Bh)
2.15:0 (OUI[3:18]) RO Organizationally Unique Identifier. The third through the twenty-fourth
bit of the OUI assigned to the PHY manufacturer by the IEEE are to be
placed in bits. 2.15:0 and 3.15:10.
5.2.3 MR3 – Identification 2 Registers
Field Type Description (Default = 1841h)
3.15:10 (OUI[19:24]) RO Organizationally Unique Identifier. The remaining 6 bits of the OUI.
3.9:4 (MODEL[5:0]) RO Model Number. 6-bit model number of the device.
3.3:0 (VERSION[3:0]) RO Revision Number. The value of the present revision number
5.2.4 MR4 – Autonegotiation Advertisement Register
Field Type Description (Default = 01E1h)
4.15 (NEXT_PAGE) 0, RO / PS Next Page.
0 = No next page available
AX88796B does not support the next page function.
4.14 (ACK) 0, RO Acknowledge.
1 = Link partner ability data reception acknowledged
0 = Not acknowledged
4.13 (REM_FAULT) 0, RW Remote Fault.
1= Fault condition detected and advertised
0 = No fault detected
4.12:11 (RESERVED) X, RW Reserved.
Write as 0, read as “don’t care”
4.10 (PAUSE) 0, RW Pause.
1 = Pause operation is enabled for full-duplex links
0 = Pause operation is not enabled
4.9 (100BASET4) 0, RO / PS 100Base-T4.
0 = 100BASE-T4 is not supported
4.8 (100BASET_FD) 1, RW 100Base-TX Full Duplex.
1 = 100BASE-TX full-duplex is supported by this device
0 = 100BASE-TX full-duplex is not supported by this device
4.7 (100BASETX) 1, RW 100Base-TX Half Duplex.
1 = 100BASE-TX half-duplex is supported by this device
0 = 100BASE-TX half-duplex is not supported by this device
4.6 (10BASET_FD) R/W 10Base-T Full Duplex.
1 = 10BASE-T full-duplex is supported by this PHY
0 = 10BASE-T full-duplex is not supported by this PHY
4.5 (10BASET) R/W 10Base-T Half Duplex.
1 = 10BASE-T half-duplex is supported by this PHY
0 = 10BASE-T half-duplex is not supported by this PHY
4.4:0 (SELECT) [0 0001],
RW Selector Field. Reset with the value 00001 for IEEE 802.3.
ASIX ELECTRONICS CORPORATION
57
AX88796BLF / AX88796BLI
5.2.5 MR5 – Autonegotiation Link Partner Ability (Base Page) Register
Field Type Description (Default = 0000h)
5.15
(LP_NEXT_PAGE) 0, RO Link Partner Next Page.
1 = Link partner is next page able
0 = Link partner is not next page able
5.14 (LP_ACK) 0, RO Link Partner Acknowledge.
1 = Link partner reception of data word acknowledged
0 = Not acknowledged
5.13
(LP_REM_FAULT) 0, RO Remote Fault.
1 = Remote fault indicated by link partner
0 = No remote fault indicated by link partner
5.12:11 (RESERVED) X, RO Reserved.
Write as 0, read as “don’t care”
5.10 (LP_PAUSE) 0, RO Pause.
1 = Pause operation is supported by link partner
0 = Pause operation is not supported by link partner
5.9 (LP_T4) 0, RO Link Partner 100BASE-T4 supports.
1 = 100BASE-T4 is supported by link partner
0 = 100BASE-T4 is not supported by link partner
5.8 (LP_ TX_FD) 0, RO 100BASE-TX full-duplex support.
1 = 100BASE-TX full-duplex is supported by link partner
0 = 100BASE-TX full-duplex is not supported by link partner
5.7 (LP_ TX_HD) 0, RO 100BASE-TX half-duplex support.
1 = 100BASE-TX half-duplex is supported by link partner
0 = 100BASE-TX half-duplex is not supported by link partner
5.6 (LP_ 10_FD) 0, RO 10BASE-T full-duplex support.
1 = 10BASE-T full-duplex is supported by link partner
0 = 10BASE-T full-duplex is not supported by link partner
5.5 (LP_ 10_HD) 0, RO 10BASE-T half-duplex support.
1 = 10BASE-T half-duplex is supported by link partner
0 = 10BASE-T half-duplex is not supported by link partner
5.4:0 (LP_SELECT) [0 0000],
RO Selector Field.
Link partner’s binary encoded protocol selector
ASIX ELECTRONICS CORPORATION
58
AX88796BLF / AX88796BLI
5.2.6 MR6 – Autonegotiation Expansion Register
Field Type Description (Default = 0000h)
6.15:5 (RESERVED) 0, RO Reserved.
Write as 0, read as “don’t care”
6.4
(PAR_DET_FAULT) 0, RO / LH Parallel Detection Fault.
1 = Fault detected via the parallel detection function
0 = No fault detected
6.3
(LP_NEXT_PAGE_AB
LE)
0, RO Link Partner Next Page Able.
1 = Link partner is next page able
0 = Link partner is not next page able
6.2
(NEXT_PAGE_ABLE) 0, RO / PS Next Page Able.
0 = PHY is not next page able
6.1 (PAGE_REC) 0, RO / LH Page Received.
1 = New page received
0 = New page not received
6.0
(LP_NWAY_ABLE) 0, RO Link Partner Autonegotiation Capable.
1 = Link partner auto-negotiation supported
ASIX ELECTRONICS CORPORATION
59
AX88796BLF / AX88796BLI
6.0 CPU Read and Write Functions
6.1 ISA bus type access functions.
ISA bus Read function
Function Mode CSn AEN A0 RDn WRn SD[15:8] SD[7:0]
Standby Mode H X X X X High-Z High-Z
Byte Access
(For all of CSR
except DP)
L
L L
L L
H L
L H
H Not Valid
Not Valid Even-Byte
Odd-Byte
Word Access
(Only for DP
and WTS=1)
L L L L H Odd-Byte Even-Byte
ISA bus Write function
Function Mode CSn AEN A0 RDn WRn SD[15:8] SD[7:0]
Standby Mode H X X X X X X
Byte Access
(For all of CSR
except DP)
L
L L
L L
H H
H L
L X
X Even-Byte
Odd-Byte
Word Access
(Only for DP
and WTS=1)
L L L H L Odd-Byte Even-Byte
6.2 80186 CPU bus type access functions.
80186 CPU bus Read function
Function Mode CSn A0 RDn WRn SD[15:8] SD[7:0]
Standby Mode H X X X High-Z High-Z
Byte Access
(For all of CSR
except DP)
L
L L
H L
L H
H Not Valid
Odd-Byte Even-Byte
Not Valid
Word Access
(Only for DP
and WTS=1)
L L L H Odd-Byte Even-Byte
80186 CPU bus Write function
Function Mode CSn A0 RDn WRn SD[15:8] SD[7:0]
Standby Mode H X X X X X
Byte Access
(For all of CSR
except DP)
L
L L
H H
H L
L X
Odd-Byte Even-Byte
X
Word Access
(Only for DP
and WTS=1)
L L H L Odd-Byte Even-Byte
ASIX ELECTRONICS CORPORATION
60
AX88796BLF / AX88796BLI
6.3 MCS-51 CPU bus type access functions.
8051 bus Read function
Function Mode CSn PSEN SA0 RDn WRn SD[15:8] SD[7:0]
Standby Mode H
X X
L X
X X
X X
X High-Z
High-Z High-Z
High-Z
Byte Access L
L H
H L
H L
L H
H Not Valid
Not Valid Even-Byte
Odd-Byte
8051 bus Write function
Function Mode CSn PSEN SA0 RDn WRn SD[15:8] SD[7:0]
Standby Mode H
X X
L X
X X
X X
X X
X X
X
Byte Access L
L H
H L
H H
H L
L X
X Even-Byte
Odd-Byte
ASIX ELECTRONICS CORPORATION
61
AX88796BLF / AX88796BLI
6.5 CPU Access MII Serial Management Interface
Basic Operation
The primary function of station management is to transfer control and status information about the PHY to a
management entity. This function is accomplished by the MDC clock input from MAC entity. The maximum
frequency is 2.5 MHz.
The Internal PHY address is fixed to 10h and the equivalent circuit is shown as below:
Fig - 9 SMI connections
A specific set of registers and their contents (described in Tab - 19 MII Management Frames- field Description)
defines the nature of the information transferred across the MDIO interface. Frames transmitted on the MII
management interface will have the frame structure shown in Tab - 18 SMI Management Frame Format. The
order of bit transmission is from left to right. Note that reading and writing the management register must be
completed without interruption.
Read/Write
(R/W) Pre ST OP PHYAD REGAD TA DATA IDLE
R 1. . .1 01 10 AAAAA RRRRR Z0 DDDDDDDDDDDDDDDD Z
W 1. . .1 01 01 AAAAA RRRRR 10 DDDDDDDDDDDDDDDD Z
Tab - 18 SMI Management Frame Format
Field Descriptions
Pre Preamble. The PHY will accept frames with no preamble. This is indicated by a 1 in MR1 1, bit 6.
ST Start of Frame. The start of frame is indicated by a 01 pattern.
OP Operation Code. The operation code for a read transaction is 10. The operation code for a write
transaction is a 01.
PHYADD PHY Address. The PHY address is 5 bits, allowing for 32 unique addresses. The first PHY address
bit transmitted and received is the MSB of the address. A station management entity that is
attached to multiple PHY entities must have prior knowledge of the appropriate PHY address for
each entity.
REGAD Register Address. The register address is 5 bits, allowing for 32 unique registers within each PHY. The
first register address bit transmitted and received is the MSB of the address.
TA Turnaround. The turnaround time is a 2-bit time spacing between the register address field, and
the data field of a frame, to avoid drive contention on MDIO during a read transaction. During a
write to the PHY, these bits is driven to 10 by the station. During a read, the MDIO is not
driven during the first bit time and is driven to a 0 by the PHY during the second bit time.
DATA Data. The data field is 16 bits. The first bit transmitted and received will be bit 15 of the register
being addressed.
IDLE Idle Condition. The IDLE condition on MDIO is a high -impedance state. All th ree state drivers will be
disabled and the PHY’s pull-up resistor will pull the MDIO line to logic 1 .
Tab - 19 MII Management Frames- field Description
(Internal PHY)
MDC MDIO-OUT MDIO-IN
From Register
Offset 14h MDC
MDO
MDI
ASIX ELECTRONICS CORPORATION
62
AX88796BLF / AX88796BLI
7.0 Electrical Specification and Timings
7.1 Absolute Maximum Ratings
Description Rating Units
VCCK (Core power supply) -0.3 to 2.16 V
VCCIO (power supply for 3.3V I/O) -0.3 to 4.0 V
VCCIO (Input voltage of 3.3V I/O with 5V tolerance) -0.3 to 5.8 V
Storage Temperature -65 to 150 °C
IIN (DC input current) 20 mA
IOUT (Output short circuit current) 20 mA
7.2 General Operation Conditions
Description Symbol Min Typ Max Units
0 70 Operating Temperature Ta -40 85
°C
Junction Temperature Tj -40 +25 +125 °C
Supply Voltage for core (VCCK, VCC18A) Vcc18 +1.62 +1.8 +1.98 V
Supply Voltage (VCC3A3, VCC3IO, VCC3R3) Vcc3 +2.97 +3.30 +3.63 V
VCC3IO + VCC3A3 (3.3V) - - 30 10BASE-T operation VCCK + VCC18A (1.8V) - - 20 mA
VCC3IO + VCC3A3 (3.3V) - - 30 100BASE-TX operation VCCK + VCC18A (1.8V) - - 88 mA
VCC3IO + VCC3A3 (3.3V) - - 24 PHY power down VCCK + VCC18A (1.8V) - - 17 mA
VCC3IO + VCC3A3 (3.3V) - - 0.04 D2 power saving mode VCCK + VCC 18A (1.8V) - - 0.26 mA
Thermal Characteristics
Description Symbol Rating Units
Thermal resistance of junction to case ΘJC 13.47 °C/W
Thermal resistance of junction to ambient ΘJA 45.28 °C/W
7.3 DC Characteristics
7.3.1 DC Characteristics of 3.3V with 5V Tolerance
Description Symbol Min Typ Max Units
Low Input Voltage Vil - 0.8 V
High Input Voltage Vih 2.0 - V
Low Output Voltage Vol - 0.4 V
High Output Voltage Voh 2.4 - V
Switch threshold Vt 1.5 V
Schmitt trigger negative going thresho ld voltage Vt- 0.8 1.1 V
Schmitt trigger positive going threshold voltage Vt+ 1.6 2 .0 V
Input pull-up resistance Rpu 40 75 190 KΩ
Input pull-down resistance Rpd 40 75 190 KΩ
-10 ±1 10 uA
with pull-up resistance (Vin=0) -15 -45 -85 uA
Input Leakage
Current
with pull-down
resistance(Vin=VCC3I)
Iin
15 45 85 uA
Tri-state Output Leakage Current Ioz -10 ±1 10 uA
ASIX ELECTRONICS CORPORATION
63
AX88796BLF / AX88796BLI
7.3.2 Power Consumption
Device only
Power measurements base on 3.3V/25 °C condition.
Item Symbol Operating at
10BASE-T Operating at
100BASE-T
X
PHY power
down D2 power
saving Units
1 VCC3IO 10 10 8 0.04 mA
2 VCC3A3 20 20 16 0 mA
3 VCC3R3 (include VCCK,
VCC18A) 20 88 17 0.2 mA
50 118 41 0.24 mA 4 VCC3IO + VCC3A3 + VCC3R3 165 390 135 0.8 mW
Device and system components
This is the total of Ethernet connectivity solution, which includes external components supporting the AX88796B
Ethernet controller as shown in the schematic as below.
Power measurements base on 3.3V/25 °C condition.
Item Test Conditions Total Power
(Typical) Units
1 10BASE-T operation 462 mW
2 100BASE-TX operation 495 mW
3 Cable unplug and non power saving mode 587 mW
4 D1 power saving mode at 10BASE-T Link 448 mW
5 D1 power saving mode at 100BASE-TX Link 468 mW
6 PHY power down 140 mW
7 D2 power saving mode 0.9 mW
GND
C15
0.1uF
RESETN RESETN
C13
0.1uF
SD[0..15]
+
C12
22uF/16V
SA[0..5]
C1 C2
U2
93C46
CS
1
SK
2
DI
3
DO
4GND 5
NC 6
NC 7
VCC 8
R13 4.7K
R12 4.7K
VCC33
SA0
C7
0.1uF
C17
1uF
R7
49.9
R2 330
R10
49.9
R1
4.7K
R5 1M
R8
49.9
R11
1M
C23
0.1uF
D1 GREEN LED
GND
VCC33 VCC33
GND
Y1 25.000MHZ
C3
0.1uF
D2 YELLOW LED
R4 330
J1 HEADER 1
1
C16
0.1uF
R9
49.9
D3 ORANGE LED
R3 330
R6
12.1K 1%
C24
0.1uF
CON1
LU1S041X
TX+
1TX-
2CT
3NC
4NC
5NC
6RX+
7RX-
8
S9
S
10
VCC33
VCC3A
VCC33
C14
0.1uF
WAKE UP
Option
C21
0.1uF
TPO+
SD10
TPI-
TPO-
TPI+
SD11
Place C8,C9 close to Pin 9:V18F
Place C10,C11 close to Pin 10: VCC3R3
SD12
SD13
SD14
SD15
GND
PME
IRQ
VCC33
VCC18
EECS
EECK
EEDIO
RESETN
GND
SA1
XIN VCC33
GND
VCC18
GND
XOUT
L2
F.B.
VCC18A
LINK
FULL
SPEED
C27
0.1uF
C25
0.1uF
SA2
C26
0.1uF
VCC18
SA3
VCC33
SA4
SA5
SD2
SD1
VCC18
SD0
C28
10uF 10V
SD4
SD6
SD5
SD3
SD7
SD9
SD8
C22
0.1uF
VCC18A
C8
10uF 10V
TPI+
GND
VCC18A
TPI-
TPO+
TPO-
GND
GND
FULL
SPEED
LINK
C9
0.1uF
VCC3A
RDN
C20
0.1uF
WRN
C19
0.1uF
EEDIO
EECK
EECS
EEDIO
C18
0.1uF
C10
10uF 10V
C11
0.1uF
VCC33
VCC18
ASIX
AX88796B
U1
AX88796B
SA1
49
SA0
50
AEN,PSEN
51
CSn
52
RDn
53
WRn
54
IOIS16
55
TCLK
56
TEST_CK_EN
57
GND
58
VCCK
59
VCC18A
60
XTALIN
61
XTALOUT
62
GND18A
63
RSET_BG
64
SD10 32
SD11 31
SD12 30
SD13 29
SD14 28
SD15 27
GND 26
VCC3IO 25
VCCK 24
IRQ 23
PME 22
EECS 21
EECK 20
EEDIO 19
GND 18
RSTn 17
VCC3A3
1
GND3A3
2
TPI+
3
TPI-
4
VCC18A
5
TPO+
6
TPO-
7
GND18A
8
V18F
9
VCC3R3
10
GND3R3
11
TEST2
12
TEST1
13
I_LK/ACT
14
I_SPEED
15
I_FULL/COL
16
SA2 48
SA3 47
SA4 46
SA5,FIFO_SEL 45
VCC3IO 44
VCCK 43
SD0 42
SD1 41
SD2 40
SD3 39
SD4 38
SD5 37
SD6 36
SD7 35
SD8 34
SD9 33
L1
F.B.
VCC3A
C6
0.1uF
VCC33
C4
0.1uF
C5
10uF 10V
CSN
VCC18
PME
IRQ PME
IRQ
RDN
CSN
WRN
GND
AEN
ASIX ELECTRONICS CORPORATION
64
AX88796BLF / AX88796BLI
7.4 AC Timing Characteristics
7.4.1 Reset Timing
Oen
IhIs
TrstTrst
RSTn
Configuration Si gnals
Output Drive
Symbol Description Min Typ. Max Units
Trst Reset pulse width 200 - - us
Is Configuration input setup to RSTn rising 80 ns
Ih Configuration input hold after RSTn rising 10 ns
Oen Output driver after RSTn rising 80 ns
ASIX ELECTRONICS CORPORATION
65
AX88796BLF / AX88796BLI
7.4.2 ISA Bus Access Timing
(1) Read cycle:
Tof fis16Tonis16
Tdoff
TdohTdv
Tdon
Tcycle TrdhTrdhTrdl
Tah
Tcycle
TrdlTasu
A
EN, CSn, SA[5:0]
RDn
SD[15:0]
IOIS16n
Symbol Description Min Typ. Max Units
Tasu ADDRESS SETUP TIME 0 - - ns
Tah ADDRESS HOLD TIME 0 - - ns
Tonis16 IOIS16n VALID FROM SA[5:0], CSn AND AEN - - 11 ns
Toffis16 IOIS16n VALID FROM SA[5:0], CSn AND AEN - - 6 ns
Tdv DATA VALID TIME FROM RDn - - 33*1
35*2 ns
Tdoh DATA OUTPUT HOLD TIME 0 - - ns
Trdl RDn LOW REQUIRE TIME 35 - - ns
Trdh RDn HI REQUIRE TIME 13 - - ns
Tdon DATA BUFFER TURN ON TIME 0 ns
Tdoff DATA BUFFER TURN OFF TIME 7 ns
Tcycle READ CYCLE TIME 48 ns
*1 : Base on SD bus output load 25pF
*2 : Base on SD bus output load 50pF
ASIX ELECTRONICS CORPORATION
66
AX88796BLF / AX88796BLI
(2) Write cycle:
Toffis16Tonis16
TdhTds
Tcycle TwrhTwrhTwrl
Tah
Tcycle
TwrlTasu
CSn, SA[5:0]
WRn
SD[15:0]
IOIS16
Symbol Description Min Typ. Max Units
Tasu ADDRESS SETUP TIME 0 - - ns
Tah ADDRESS HOLD TIME 0 ns
Tonis16 IOIS16n VALID FROM SA[5:0], CSn AND AEN - - 11 ns
Toffis16 IOIS16n DISABLE FROM SA[5:0], CSn AND AEN - - 6 ns
Tds DATA STABLE TIME - - 15 ns
Tdh DATA HOLD TIME 0 - - ns
Twrl WRn WIDTH TIME 45 - - ns
Twrh WRn HI REQUIRE TIME 13 - - ns
Tcycle WRITE CYCLE TIME 48 - - ns
ASIX ELECTRONICS CORPORATION
67
AX88796BLF / AX88796BLI
7.4.3 80186 Type I/O Access Timing
(1) Read cycle:
Tdoff
TdohTdv
Tdon
Tcycle TrdhTrdhTrdl
Tah
Tcycle
TrdlTasu
CSn, SA[5:0]
RDn
SD[15:0]
Symbol Description Min Typ. Max Units
Tasu ADDRESS SETUP TIME 0 - - ns
Tah ADDRESS HOLD TIME 0 - - ns
Tdv DATA VALID TIME FROM RDn - - 33*1
35*2 ns
Tdoh DATA OUTPUT HOLD TIME 0 - - ns
Trdl RDn LOW REQUIRE TIME 35 - - ns
Trdh RDn HI REQUIRE TIME 13 - - ns
Tdon DATA BUFFER TURN ON TIME 0 ns
Tdoff DATA BUFFER TURN OFF TIME 7 ns
Tcycle READ CYCLE TIME 48 ns
*1 : Base on SD bus output load 25pF
*2 : Base on SD bus output load 50pF
ASIX ELECTRONICS CORPORATION
68
AX88796BLF / AX88796BLI
(2) Write Cycle
TdhTds
Tcycle Tw rhTw rhTw rl
Tah
Tcycle
Tw rlTasu
CSn, SA[5:0]
WRn
SD[15:0]
Symbol Description Min Typ. Max Units
Tasu ADDRESS SETUP TIME 0 - - ns
Tah ADDRESS HOLD TIME 0 - - ns
Tds DATA STABLE TIME - - 15 ns
Tdh DATA HOLD TIME 0 - - ns
Twrl WRn WIDTH TIME 35 - - ns
Twrh WRn HI REQUIRE TIME 13 - - ns
Tcycle WRITE CYCLE TIME 48 - - ns
ASIX ELECTRONICS CORPORATION
69
AX88796BLF / AX88796BLI
7.4.4 8051 Bus Access Timing
(1) Read cycle
Tdoff
TdohTdv
Tdon
Tcycle TrdhTrdhTrdl
Tah
Tcycle
TrdlTasu
PSEN, CSn, SA[5:0]
RDn
SD[15:0]
Symbol Description Min Typ. Max Units
Tasu ADDRESS SETUP TIME 0 - - ns
Tah ADDRESS HOLD TIME 0 - - ns
Tdv DATA VALID TIME FROM RDn - - 33*1
35*2 ns
Tdoh DATA OUTPUT HOLD TIME 0 - - ns
Trdl RDn LOW REQUIRE TIME 35 - - ns
Trdh RDn HI REQUIRE TIME 13 - - ns
Tdon DATA BUFFER TURN ON TIME 0 ns
Tdoff DATA BUFFER TURN OFF TIME 7 ns
Tcycle READ CYCLE TIME 48 ns
*1 : Base on SD bus output load 25pF
*2 : Base on SD bus output load 50pF
ASIX ELECTRONICS CORPORATION
70
AX88796BLF / AX88796BLI
(2) Write cycle
TdhTds
Tcycle Tw rhTw rhTw rl
Tah
Tcycle
Tw rlTasu
PSEN, CSn, SA[5:0]
WRn
SD[15:0]
Symbol Description Min Typ. Max Units
Tasu ADDRESS SETUP TIME 0 - - ns
Tah ADDRESS HOLD TIME 0 - - ns
Tds DATA STABLE TIME - - 15 ns
Tdh DATA HOLD TIME 0 - - ns
Twrl WRn WIDTH TIME 35 - - ns
Twrh WRn HI REQUIRE TIME 13 - - ns
Tcycle WRITE CYCLE TIME 48 - - ns
ASIX ELECTRONICS CORPORATION
71
AX88796BLF / AX88796BLI
7.4.5 Burst Reads Access Timing
Burst read access is enabled when set FIFO_SEL(SA5) is driven high during a read access. This is normally
accomplished by connecting the FIFO_SEL(SA5) signal to a high-order address line. This mode is useful when
the host processor must increment its address when accessing the AX88796B.
In this mode, performance is improved by allowing an unlimited number of back-to-back WORDS read cycles.
AX88796B base on SA0 or SA1 address toggles to identify WORD access cycle time. Host can set burst cycle
base on SA0 or SA1 toggle by BCB1 (CR page3 Offset 0Dh).
Tdoff
TdohTadvTadvTadvTdv
Tdon
TrdhTrdh
TahTasu
TacycTacycTacycTacy cTacycTacyc
FIFO_SEL(SA5)
SA1 or SA0
CSn, RDn
SD[15:0]
Symbol Description Min Typ. Max Units
Tasu ADDRESS SETUP TIME 0 - - ns
Tah ADDRESS HOLD TIME 0 - - ns
Tdv DATA VALID TIME FROM RDn - - 33*1
35*2 ns
Tadv DATA VALID TIME FROM ADDRESS 33*1
35*2 ns
Tdoh DATA OUTPUT HOLD TIME 0 - - ns
Trdh RDn HI REQUIRE TIME 13 - - ns
Tacyc READ CYCLE TIME 48 ns
Tdon DATA BUFFER TURN ON 0 ns
Tdoff DATA BUFFER TURN OFF 7 ns
*1 : Base on SD bus output load 25pF
*2 : Base on SD bus output load 50pF
ASIX ELECTRONICS CORPORATION
72
AX88796BLF / AX88796BLI
8.0 Package Information
be
D
Hd
E
He
pin 1
A2 A1
L
L1
θ
A
Symbol Dimension
(mm)
MIN. TYP MAX
A1 0.05 0.15
A2 1.35 1.40 1.45
A 1.60
b 0.13 0.18 0.23
D 7.00
E 7.00
e 0.40
Hd 9.00
He 9.00
L 0.45 0.60 0.75
L1 1.00
θ 3.5°
ASIX ELECTRONICS CORPORATION
73
AX88796BLF / AX88796BLI
9.0 Ordering Information
Model NO Description
AX88796BLF 64 PIN, LQFP Package, Commercial grade 0°C to +70 °C (Green,
Lead-Free)
AX88796BLI 64 PIN, LQFP Package, Industrial grade -40°C to +85 °C (Green,
Lead-Free)
ASIX ELECTRONICS CORPORATION
74
AX88796BLF / AX88796BLI
Appendix A1: MCS51-like (8-bit)
An example, AX88796B’s bus setting as MCS-51 mode. (Two external pull-up resister connect to EECS and
EECK)
Read Write
Host Addr
A[5:0] SD[15:8] SD[7:0] AX88796B
CSR Offset Host Addr
A[5:0] SD[15:8] SD[7:0] AX88796B
CSR Offset
0 Offset 1 Offset 0 0 0 no effect To Offset 0 0
1 Offset 1 Offset 1 1 1 no effect To Offset 1 1
2 Offset 3 Offset 2 2 2 no effect To Offset 2 2
3 Offset 3 Offset 3 3 3 no effect To Offset 3 3
4 Offset 5 Offset 4 4 4 no effect To Offset 4 4
5 Offset 5 Offset 5 5 5 no effect To Offset 5 5
6 Offset 7 Offset 6 6 6 no effect To Offset 6 6
7 Offset 7 Offset 7 7 7 no effect To Offset 7 7
8 Offset 9 Offset 8 8 8 no effect To Offset 8 8
9 Offset 9 Offset 9 9 9 no effect To Offset 9 9
A Offset B Offset A A A no effect To Offset A A
B Offset B Offset B B B no effect To Offset B B
C Offset D Offset C C C no effect To Offset C C
D Offset D Offset D D D no effect To Offset D D
E Offset F Offset E E E no effect To Offset E E
F Offset F Offset F F F no effect To Offset F F
10 (DP) (DP) (DP) 10 no effect (DP) (DP)
11 X X X 11 X X X
12 Offset 13 Offset 12 12 12 no effect To Offset 12 12
13 Offset 13 Offset 13 13 13 no effect To Offset 13 13
14 Offset 15 Offset 14 14 14 no effect To Offset 14 14
15 Offset 15 Offset 15 15 15 no effect To Offset 15 15
16 Offset 17 Offset 16 16 16 no effect To Offset 16 16
17 Offset 17 Offset 17 17 17 no effect To Offset 17 17
18 Offset 19 Offset 18 18 18 no effect To Offset 18 18
19 Offset 19 Offset 19 19 19 no effect To Offset 19 19
1A Offset 1B Offset 1A 1A 1A no effect To Offset 1A 1A
1B Offset 1B Offset 1B 1B 1B no effect To Offset 1B 1B
1C Offset 1D Offset 1C 1C 1C no effect To Offset 1C 1C
1D Offset 1D Offset 1D 1D 1D no effect To Offset 1D 1D
1E No effect Offset 1E 1E 1E no effect To Offset 1E 1E
1F (Reset) *1 (Reset) *1 1F 1F no effect To Offset 1F 1F
*1 Read offset 1Fh register will reset AX88796B
SA0
SA1 SD[15:8]
SA2
SA3
SA4
SA5/FIFO_SEL
AEN/PSEN
SD[7:0]
RDn
WRn
IRQ
A0
A1
A2
A3
A4
A5
PSEN
DATA[7:0]
RDn
WRn
INT
MCS-51 AX88796B
ASIX ELECTRONICS CORPORATION
75
AX88796BLF / AX88796BLI
Appendix A2: ISA-like (8/16-bit)
An example, AX88796B’s bus setting as ISA mode. (No external resister connect to EECS and EECK)
CSR Read CSR Write
Host Addr
A[5:0] SD[15:8] SD[7:0] AX88796B
CSR Offset Host Addr
A[5:0] SD[15:8] SD[7:0] AX88796B
CSR Offset
0 Offset 1 Offset 0 0 0 no effect To Offset 0 0
1 Offset 1 Offset 1 1 1 no effect To Offset 1 1
2 Offset 3 Offset 2 2 2 no effect To Offset 2 2
3 Offset 3 Offset 3 3 3 no effect To Offset 3 3
4 Offset 5 Offset 4 4 4 no effect To Offset 4 4
5 Offset 5 Offset 5 5 5 no effect To Offset 5 5
6 Offset 7 Offset 6 6 6 no effect To Offset 6 6
7 Offset 7 Offset 7 7 7 no effect To Offset 7 7
8 Offset 9 Offset 8 8 8 no effect To Offset 8 8
9 Offset 9 Offset 9 9 9 no effect To Offset 9 9
A Offset B Offset A A A no effect To Offset A A
B Offset B Offset B B B no effect To Offset B B
C Offset D Offset C C C no effect To Offset C C
D Offset D Offset D D D no effect To Offset D D
E Offset F Offset E E E no effect To Offset E E
F Offset F Offset F F F no effect To Offset F F
10 (DP) (DP) (DP) 10 (DP) (DP) (DP)
11 X X X 11 X X X
12 Offset 13 Offset 12 12 12 no effect To Offset 12 12
13 Offset 13 Offset 13 13 13 no effect To Offset 13 13
14 Offset 15 Offset 14 14 14 no effect To Offset 14 14
15 Offset 15 Offset 15 15 15 no effect To Offset 15 15
16 Offset 17 Offset 16 16 16 no effect To Offset 16 16
17 Offset 17 Offset 17 17 17 no effect To Offset 17 17
18 Offset 19 Offset 18 18 18 no effect To Offset 18 18
19 Offset 19 Offset 19 19 19 no effect To Offset 19 19
1A Offset 1B Offset 1A 1A 1A no effect To Offset 1A 1A
1B Offset 1B Offset 1B 1B 1B no effect To Offset 1B 1B
1C Offset 1D Offset 1C 1C 1C no effect To Offset 1C 1C
1D Offset 1D Offset 1D 1D 1D no effect To Offset 1D 1D
1E No effect Offset 1E 1E 1E no effect To Offset 1E 1E
1F (Reset) *1 (Reset) *1 1F 1F no effect To Offset 1F 1F
*1 Read offset 1Fh register will reset AX88796B
SA0
SA1
SA2
SA3
SA4
SA5/FIFO_SEL
AEN/PSEN
SD[15:0]
RDn
WRn
IRQ
A0
A1
A2
A3
A4
A5
AEN
DATA[15:0]
IORDn
IOWRn
INT
ISA AX88796B
ASIX ELECTRONICS CORPORATION
76
AX88796BLF / AX88796BLI
Appendix A3: 186-like (16-bit)
An example, AX88796B’s bus setting as 186 mode. (One external pull-up resister connect to EECK)
Read Write
Host Addr
A[5:0] SD[15:8] SD[7:0] AX88796B
CSR Offset Host Addr
A[5:0] SD[15:8] SD[7:0] AX88796B
CSR Offset
0 Offset 1 Offset 0 0 0 no effect To Offset 0 0
1 Offset 1 Offset 0 1 1 To Offset 1 no effect 1
2 Offset 3 Offset 2 2 2 no effect To Offset 2 2
3 Offset 3 Offset 2 3 3 To Offset 3 no effect 3
4 Offset 5 Offset 4 4 4 no effect To Offset 4 4
5 Offset 5 Offset 4 5 5 To Offset 5 no effect 5
6 Offset 7 Offset 6 6 6 no effect To Offset 6 6
7 Offset 7 Offset 6 7 7 To Offset 7 no effect 7
8 Offset 9 Offset 8 8 8 no effect To Offset 8 8
9 Offset 9 Offset 8 9 9 To Offset 9 no effect 9
A Offset B Offset A A A no effect To Offset A A
B Offset B Offset A B B To Offset B no effect B
C Offset D Offset C C C no effect To Offset C C
D Offset D Offset C D D To Offset D no effect D
E Offset F Offset E E E no effect To Offset E E
F Offset F Offset E F F To Offset F no effect F
10 (DP) (DP) (DP) 10 (DP) (DP) (DP)
11 X X X 11 X X X
12 Offset 13 Offset 12 12 12 no effect To Offset 12 12
13 Offset 13 Offset 12 13 13 To Offset 13 no effect 13
14 Offset 15 Offset 14 14 14 no effect To Offset 14 14
15 Offset 15 Offset 14 15 15 To Offset 15 no effect 15
16 Offset 17 Offset 16 16 16 no effect To Offset 16 16
17 Offset 17 Offset 16 17 17 To Offset 17 no effect 17
18 Offset 19 Offset 18 18 18 no effect To Offset 18 18
19 Offset 19 Offset 18 19 19 To Offset 19 no effect 19
1A Offset 1B Offset 1A 1A 1A no effect To Offset 1A 1A
1B Offset 1B Offset 1A 1B 1B To Offset 1B no effect 1B
1C Offset 1D Offset 1C 1C 1C no effect To Offset 1C 1C
1D Offset 1D Offset 1C 1D 1D To Offset 1D no effect 1D
1E No effect Offset 1E 1E 1E no effect To Offset 1E 1E
1F (Reset) *1 (Reset) *1 1F 1F To Offset 1F no effect 1F
*1 Read offset 1Fh register will reset AX88796B
SA0
SA1
SA2
SA3
SA4
SA5/FIFO_SEL
AEN/PSEN
SD[15:0]
RDn
WRn
IRQ
A0
A1
A2
A3
A4
A5
DATA[15:0]
RDn
WRn
INT
16-bit processor AX88796B
ASIX ELECTRONICS CORPORATION
77
AX88796BLF / AX88796BLI
Appendix A4: co-work with 32-bit processor
An example, AX88796B co-work with Samsung 2440 processor. (32-bit processor with external 16-bit bus)
AX88796B’s bus setting as ISA mode. (Without external resister connect to EECS and EECK) Host can use burst
read mode, it is useful host processor increment its address when moving AX88796B received data.
AX88796B supports two kinds of Data Port for receiving/transmitting packets from/to AX88796B. One is the PIO
Data Port (offset 10h); the other one is the SRAM-like Data Port (e.g. offset 800h ~ FFFh for Samsung2440
processor as described in below figure). The SR AM-l ike Data Port address range depends on which address l ine of
host processor is being connected to the address line SA5/FIFO_SEL of AX88796B.
Software on host CPU can issue Single Data Read/Write command to both PIO Data Port and SR AM-like Data Port.
However, to use Burst Data Read/W rite commands, one has to use SRAM-like Data Port, wh ich requires
SA5/FIFO_SEL (pin 45) of AX88796B connecting to an upper address l ine of host CPU. AX88796B with Samsung
2440 processor reference schematic has SA5/FIFO_SEL pin connected to upper address line (i.e. A11 of Samsung
2440) for supporting Burst Data Read/Write commands.
Read Write
Host Addr
A[11:0] SD[15:8] SD[7:0] AX88796B
CSR Offset Host Addr
A[11:0] SD[15:8] SD[7:0] AX88796B
CSR Offset
0 Offset 1 Offset 0 0 0 no effect To Offset 0 0
2 Offset 1 Offset 1 1 2 no effect To Offset 1 1
4 Offset 3 Offset 2 2 4 no effect To Offset 2 2
6 Offset 3 Offset 3 3 6 no effect To Offset 3 3
8 Offset 5 Offset 4 4 8 no effect To Offset 4 4
A Offset 5 Offset 5 5 A no effect To Offset 5 5
C Offset 7 Offset 6 6 C no effect To Offset 6 6
E Offset 7 Offset 7 7 E no effect To Offset 7 7
10 Offset 9 Offset 8 8 10 no effect To Offset 8 8
12 Offset 9 Offset 9 9 12 no effect To Offset 9 9
14 Offset B Offset A A 14 no effect To Offset A A
16 Offset B Offset B B 16 no effect To Offset B B
18 Offset D Offset C C 18 no effect To Offset C C
1A Offset D Offset D D 1A no effect To Offset D D
1C Offset F Offset E E 1C no effect To Offset E E
1E Offset F Offset F F 1E no effect To Offset F F
20 10 (DP) 10 (DP) 10 (DP) 20 10 (DP) 10 (DP) 10 (DP)
22 X X X 22 X X X
24 Offset 13 Offset 12 12 24 no effect To Offset 12 12
26 Offset 13 Offset 13 13 26 no effect To Offset 13 13
28 Offset 15 Offset 14 14 28 no effect To Offset 14 14
2A Offset 15 Offset 15 15 2A no effect To Offset 15 15
2C Offset 17 Offset 16 16 2C no effect To Offset 16 16
2E Offset 17 Offset 17 17 2E no effect To Offset 17 17
A0
A1
A2
A3
A4
A5/FIFO_SEL
CSn
RDn
WRn
IRQ
AEN/PSEN
A0
A1
A2
A3
A4
A5
A11
CSn
RDn
WRn
INT
Samsung2440
AX88796B
ASIX ELECTRONICS CORPORATION
78
AX88796BLF / AX88796BLI
30 Offset 19 Offset 18 18 30 no effect To Offset 18 18
32 Offset 19 Offset 19 19 32 no effect To Offset 19 19
34 Offset 1B Offset 1A 1A 34 no effect To Offset 1A 1A
36 Offset 1B Offset 1B 1B 36 no effect To Offset 1B 1B
38 Offset 1D Offset 1C 1C 38 no effect To Offset 1C 1C
3A Offset 1D Offset 1D 1D 3A no effect To Offset 1D 1D
3C No effect Offset 1E 1E 3C no effect To Offset 1E 1E
3E (Reset) *1 (Reset) *1 1F 3E no effect To Offset 1F 1F
40 ~7FF No used No used No used 40 ~7FF No used No used No used
800 ~ FFF (DP) (DP) 10 (DP) 800 ~ FFF (DP) (DP) 10 (DP)
*1 Read offset 1Fh register will reset AX88796B
ASIX ELECTRONICS CORPORATION
79
AX88796BLF / AX88796BLI
Appendix A5: big-endian processor of Data Byte Lands
An example, AX88796B co-work with big-endian processor like Renesas H8/SH2 MCU, etc.. (To support
big-endian processors, the hardware designer must explicitly swap the connection of data byte lanes.)
ADDR
D[7:0]
D[15:8]
CSn
RDn
WRn
IRQ
ADD
R
D[7:0]
D[15:8]
CSn
RDn
WRn
INT
Big-endian
Processor
AX88796B
ASIX ELECTRONICS CORPORATION
80
AX88796BLF / AX88796BLI
Appendix B: Disable AX88796B voltage regulator
AX88796B integrates an on-chip 3.3V to 1.8V voltage regulator for single-power supply system design. If the
system have 1.8V power source al ready, user m ay like t o disable AX88796B voltage regulat or and use the existing
1.8V power source (probably a higher efficiency version). In that case, user can connect VCC3R3 (pin-10) and
GND3R3 (pin-11) to ground, keep V18F (pin-9) open, and set REGSTB bit of PM R register (see Page3 Offset 0BH
bit-4 in section 5.1.56 Power Management Register (PMR)) to 0 (i.e. logic "low") to avoid the leakage current.
Please refer to below picture for details.
Note: If user connects the VCC 3R3 to 3.3V VCC and wants to disable the internal voltage regulator of AX88796B,
the REGSTB bit of PMR register should be set to 1 to set the regulator in standby mode to reduce the leakage
current.
AX88796B
V18F
REGSTB
VCC18A
VCC
K
VCC3R3
GND3R3
Keep NC without loading
Supply Analog 1.8V from existing power
source on system
Supply Digit al 1.8V from existi ng power source
on system
Logic “low”
ASIX ELECTRONICS CORPORATION
81
AX88796BLF / AX88796BLI
Reversion History
Revision Date Comment
V1.0 2006/03/01 Initial Release.
V1.1 2006/03/31 1. Correct some typo errors.
2. Change page3 offset 0Dh register name from P30D to MISC.
3. Change the name of bit 5 of MCR register from TQCE to BBTC.
4. Define a short name “TXCQF” for bit 7 of CTEPR register.
5. Add the default values of PHY registers into Section 5.2.
V1.2 2006/09/08 1. Correct the pin descriptions of pin 60 and 63 in Figure 2 and Section
2-5.
2. Correct the Wakeup Frame registers configuration information in
Section 4.3.1.
3. Update the reference schematics in Section 7.3.2, Appendix A1.
4. Remove Demonstration Circuit A, B, C reference schematics.
V1.3 2006/09/20
1. Modi fy the resist ance value of pin 64 (R SET_BG) from 11.8 ± 1% K
ohm to 12.1 ± 1% K ohm.
V1.4 2006/10/05
1. Add Thermal Resistance values (ΘJc, ΘJA) of Junction in Section
7.3.2.
2. Correct the SD[7:0] values of Read cycle in Appendix A3 “186-like
(16-bit)”.
3. Correct the SD[7:0] and SD[15:8] values of offset 1Fh register Read
cycle in Appendix A1~A4.
V1.5 2007/3/19 1. Add US patent approved (NO 6799231) and VLAN in the Features
page.
2. Change the product name in the Features page.
3. Correct the TPI+/TPI- pin name of AX88796B Pin Out Diagram in
Section 1.3.
4. Modify some pin descriptions in Section 2.2 and 2.5.
5. Modify the Wake-up Configuration descriptions in Section 4.3.1 and
5.1.54.
6. Change the Storage Temperature to –65 to 150 °C in Section 7.1.
7. Add Appendix A5 to indicate the reference connection for big-endian
processor.
8. Add Appendix B to indicate how to disable the internal regulator.
V1.6 2007/4/27 1. Modify the description of SA5/FIFO_SEL pin in Section 2.1 and
Appendix A4.
2. Swapped the pin name of XTALIN and XTALOUT in Section 2.5
and Figure 2.
V1.7 2007/8/18 1. Correct a typo in Revision History table.
2. Add some information into Section 7.2.
ASIX ELECTRONICS CORPORATION
82
AX88796BLF / AX88796BLI
4F, No.8, Hsin Ann Rd., Hsinchu Science Park,
Hsinchu, Taiwan, R.O.C.
TEL: +886-3-5799500
FAX: +886-3-5799558
Email: support@asix.com.tw
Web: http://www.asix.com.tw