DDR3 SDRAM Unbuffered DIMM DDR3 SDRAM Specification 240pin Unbuffered DIMM based on 1Gb F-die 64-bit Non-ECC 78FBGA with Lead-Free & Halogen-Free (RoHS compliant) INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND. 1. For updates or additional information about Samsung products, contact your nearest Samsung office. 2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. * Samsung Electronics reserves the right to change products or specification without notice. 1 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM Table Contents 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 DDR3 Registered DIMM Ordering Information ..........................................................................5 Key Features ................................................................................................................................5 Address Configuration ................................................................................................................5 x64 DIMM Pin Configurations (Front side/Back side) ..............................................................6 x72 DIMM Pin Configurations (Front side/Back side) ..............................................................7 Pin Description ...........................................................................................................................8 SPD and Thermal Sensor for ECC UDIMMs ..............................................................................8 Input/Output Functional Description .........................................................................................9 8.1 Address Mirroring Feature ...........................................................................................................10 8.1.1 DRAM Pin Wiring Mirroring ...................................................................................................10 9.0 Function Block Diagram: ..........................................................................................................11 9.1 1GB, 128Mx64 Non ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs) .....................................11 9.2 1GB, 128Mx72 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ...................................................12 9.3 2GB, 256Mx64 Non ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ....................................13 9.4 2GB, 256Mx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAM) ............................................14 10.0 Absolute Maximum Ratings ....................................................................................................15 10.1 Absolute Maximum DC Ratings ..................................................................................................15 10.2 DRAM Component Operating Temperature Range ........................................................................15 11.0 AC & DC Operating Conditions ..............................................................................................15 11.1 Recommended DC Operating Conditions (SSTL - 15) ....................................................................15 12.0 AC & DC Input Measurement Levels ......................................................................................16 12.1 AC & DC Logic Input Levels for Single-ended Signals ...................................................................16 12.2 VREF Tolerances .......................................................................................................................17 12.3 AC & DC Logic Input Levels for Differential Signals ......................................................................18 12.3.1 Differential Signals Definition ..............................................................................................18 12.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ............................18 12.3.3 Single-ended Requirements for Differential Signals ...............................................................19 12.3.4 Differential Input Cross Point Voltage ...................................................................................20 12.4 Slew Rate Definition for Single-ended Input Signals ......................................................................20 12.5 Slew Rate Definition for Differential Input Signals .........................................................................20 13.0 AC & DC Output Measurement Levels ...................................................................................21 13.1 Single-ended AC & DC Output Levels ..........................................................................................21 13.2 Differential AC & DC Output Levels .............................................................................................21 13.3 Single-ended Output Slew Rate ..................................................................................................21 13.4 DIfferential Output Slew Rate ....................................................................................................22 14.0 IDD Specification Definition ....................................................................................................23 14.1 IDD SPEC Table ........................................................................................................................25 2 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 15.0 Input/Output Capacitance .......................................................................................................27 15.1 Non ECC UDIMM - 1GB(128Mx64) Module ....................................................................................27 15.2 ECC UDIMM - 1GB(128Mx74) Module ...........................................................................................27 15.3 Non ECC UDIMM - 2GB(256Mx64) Module ....................................................................................27 15.4 ECC UDIMM - 2GB(256Mx72) Module ...........................................................................................27 16.0 Electrical Characteristics and AC timing ..............................................................................28 16.1 Refresh Parameters by Device Density ........................................................................................28 16.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin .............................................28 16.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ..............................................28 16.3.1 Speed Bin Table Notes .......................................................................................................31 17.0 Timing Parameters by Speed Grade ......................................................................................32 17.1 Jitter Notes ..............................................................................................................................35 17.2 Timing Parameter Notes ............................................................................................................36 18.0 Physical Dimensions ...............................................................................................................37 18.1 128Mbx8 based 128Mx64/x72 Module (1 Rank) .............................................................................37 18.2 128Mbx8 based 256Mx64/x72 Module (2 Ranks) ...........................................................................38 3 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM Revision History Revision Month Year 0.9 September 2009 History - Initial Release 4 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 1.0 DDR3 Registered DIMM Ordering Information Part Number Density Organization Component Composition Number of Rank Height M378B2873FHS-CF8/H9/K0 1GB 128Mx64 128Mx8(K4B1G0846F-HC##)*8 1 30mm M378B5673FH0-CF8/H9/K0 2GB 256Mx64 256Mx8(K4B1G0846F-HC##)*16 2 30mm Note : - "##" - F8/H9/K0 - F8 - 1066Mbps 7-7-7 & H9 - 1333Mbps 9-9-9 & K0 - 1600Mbps 11-11-11 2.0 Key Features Speed DDR3-1066 DDR3-1333 DDR3-1600 7-7-7 9-9-9 11-11-11 1.875 1.5 1.25 ns tCK(min) * * * * * * * * * * * * * * Unit CAS Latency 7 9 11 tCK tRCD(min) 13.125 13.5 13.75 ns tRP(min) 13.125 13.5 13.75 ns tRAS(min) 37.5 36 35 ns tRC(min) 50.625 49.5 48.75 ns JEDEC standard 1.5V 0.075V Power Supply VDDQ = 1.5V 0.075V 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin 8 independent internal bank Programmable CAS Latency: 6,7,8,9,10, 11 Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock Programmable CAS Write Latency(CWL) = 6 (DDR3-1066), 7 (DDR3-1333) and 8 (DDR3-1600) 8-bit pre-fetch Burst Length: 8 (Interleave without any limit, sequential with starting address "000" only), 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS] Bi-directional Differential Data Strobe Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm 1%) On Die Termination using ODT pin Average Refresh Period 7.8us at lower then TCASE 85C, 3.9us at 85C < TCASE 95C Asynchronous Reset 3.0 Address Configuration Organization Row Address Column Address Bank Address Auto Precharge 128x8(1Gb) based Module A0-A13 A0-A9 BA0-BA2 A10/AP 5 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 4.0 x64 DIMM Pin Configurations (Front side/Back side) Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back 1 VREFDQ 121 VSS 42 NC 2 VSS 122 DQ4 43 NC 162 NC 82 DQ33 202 VSS 163 VSS 83 VSS 203 DM4 3 DQ0 123 DQ5 44 VSS 164 NC 84 DQS4 204 NC 4 DQ1 124 VSS 45 NC 165 NC 85 DQS4 205 VSS 5 VSS 125 DM0 46 NC 166 VSS 86 VSS 206 DQ38 6 DQS0 126 NC 47 VSS 167 NC (TEST)3 87 DQ34 207 DQ39 7 DQS0 127 VSS 48 NC 168 Reset 88 DQ35 208 VSS 49 NC 169 CKE1,NC1 8 VSS 128 DQ6 9 DQ2 129 DQ7 10 DQ3 130 VSS 50 CKE0 170 11 VSS 131 DQ12 51 VDD 171 89 VSS 209 DQ44 90 DQ40 210 DQ45 VDD 91 DQ41 211 VSS NC 92 VSS 212 DM5 KEY 12 DQ8 132 DQ13 52 BA2 172 A14 93 DQS5 213 NC 13 DQ9 133 VSS 53 NC 173 VDD 94 DQS5 214 VSS 14 VSS 134 DM1 54 VDD 174 A12/BC 95 VSS 215 DQ46 15 DQS1 135 NC 55 A11 175 A9 96 DQ42 216 DQ47 16 DQS1 136 VSS 56 A7 176 VDD 97 DQ43 217 VSS 17 VSS 137 DQ14 57 VDD 177 A8 98 VSS 218 DQ52 18 DQ10 138 DQ15 58 A5 178 A6 99 DQ48 219 DQ53 19 DQ11 139 VSS 59 A4 179 VDD 100 DQ49 220 VSS 20 VSS 140 DQ20 60 VDD 180 A3 101 VSS 221 DM6 21 DQ16 141 DQ21 61 A2 181 A1 102 DQS6 222 NC 22 DQ17 142 VSS 62 VDD 182 VDD 103 DQS6 223 VSS 23 VSS 143 DM2 63 CK1,NC2 183 VDD 104 VSS 224 DQ54 24 DQS2 144 NC 64 CK1,NC2 184 CK0 105 DQ50 225 DQ55 25 DQS2 145 VSS 65 VDD 185 CK0 106 DQ51 226 VSS 26 VSS 146 DQ22 66 VDD 186 VDD 107 VSS 227 DQ60 27 DQ18 147 DQ23 67 VREFCA 187 NC 108 DQ56 228 DQ61 28 DQ19 148 VSS 68 NC 188 A0 109 DQ57 229 VSS DM7 29 VSS 149 DQ28 69 VDD 189 VDD 110 VSS 230 30 DQ24 150 DQ29 70 A10/AP 190 BA1 111 DQS7 231 NC 232 VSS 31 DQ25 151 VSS 71 BA0 191 VDD 112 DQS7 32 VSS 152 DM3 72 VDD 192 RAS 113 VSS 233 DQ62 33 DQS3 153 NC 73 WE 193 S0 114 DQ58 234 DQ63 34 DQS3 154 VSS 74 CAS 194 VDD 115 DQ59 235 VSS VDD 195 ODT0 116 VSS 236 VDDSPD 196 A13 117 SA0 237 SA1 35 VSS 155 DQ30 75 36 DQ26 156 DQ31 76 S1, NC 37 DQ27 157 VSS 77 ODT1, NC1 197 VDD 118 SCL 238 SDA 38 VSS 158 NC 78 VDD 198 NC 119 SA2 239 VSS 120 VTT 240 VTT 1 39 NC 159 NC 79 NC 199 VSS 40 NC 160 VSS 80 VSS 200 DQ36 41 VSS 161 NC 81 DQ32 201 DQ37 NC = No Connect; NF = No Function; NU = Not Usable; RFU = Reserved Future Use 1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs 2. CK1,NC2 and CK1,NC2 : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated 3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs) SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice. 6 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 5.0 Pin Description Pin Name Description Pin Name Description A0-A14 SDRAM address bus SCL I2C serial bus clock for EEPROM BA0-BA2 SDRAM bank select SDA I2C serial bus data line for EEPROM RAS SDRAM row address strobe SA0-SA2 I2C serial address select for EEPROM CAS SDRAM column address strobe VDD* SDRAM core power supply WE SDRAM write enable VDDQ* SDRAM I/O Driver power supply S0, S1 DIMM Rank Select Lines VREFDQ SDRAM I/O reference supply CKE0,CKE1 SDRAM clock enable lines VREFCA SDRAM command/address reference supply ODT0, ODT1 On-die termination control lines VSS Power supply return (ground) DQ0 - DQ63 DIMM memory data bus VDDSPD Serial EEPROM positive power supply CB0 - CB7 DIMM ECC check bits NC Spare Pins(no connect) DQS0 - DQS8 SDRAM data strobes (positive line of differential pair) TEST Used by memory bus analysis tools (unused on memory DIMMs) DQS0-DQS8 SDRAM differential data strobes (negative line of differential pair) RESET Set DRAMs Known State DM0-DM8 SDRAM data masks/high data strobes (x8-based x72 DIMMs) EVENT Reserved for optional temperature-sensing hardware CK0, CK1 SDRAM clocks (positive line of differential pair) VTT SDRAM I/O termination supply CK0, CK1 SDRAM clocks (negative line of differential pair) RFU Reserved for future use *The VDD and VDDQ pins are tied common to a single power-plane on these designs. 7 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 6.0 Input/Output Functional Description Symbol Type Function CK0-CK1 CK0-CK1 SSTL CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl inputs are sampled on the crossing of positive edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK (Both directions of crossing) CKE0-CKE1 SSTL Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self-Refresh mode S0-S1 SSTL Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new command are ignored but previous operations continue. This signal provides for external rank selection on systems with multiple ranks. RAS, CAS, WE SSTL RAS, CAS, and WE (ALONG WITH S) define the command being entered. ODT0-ODT1 SSTL When high, termination resistance is enabled for all DQ, DQS, DQS and DM pins, assuming the function is enabled in the Extended Mode Register Set (EMRS). VREFDQ Supply Reference voltage for SSTL 15 I/O inputs. VREFCA Supply Reference voltage for SSTL 15 command/address inputs. VDDQ Supply Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered DIMM designs, VDDQ shares the same power plane as VDD pins. BA0-BA2 SSTL Selects which SDRAM bank of eight is activated. A0-A13 SSTL During a Bank Activate command cycle, Address input defines the row address (RA0-RA13) During a Read or Write command cycle, Address input defines the column address, In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a precharge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used to define which bank to precharge. A12(BC) is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH, no burst chop; Low, burst chopped). DQ0-DQ63 CB0-CB7 SSTL Data and Check Bit Input/Output pins. DM0-DM8 SSTL DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading. VDD,VSS Supply DQS0-DQS8 DQS0-DQS8 SSTL SA0-SA2 - Power and ground for DDR3 SDRAM input buffers, and core logic. VDD and VDDQ pins are tied to VDD/VDDQ planes on these modules. Data strobe for input and output data. For raw cards using x16 organized DRAMs, Pins DQ0-7 are associated with the LDQS and LDQS pins and Pins DQ8-15 are associated with UDQS and UDQS pins. These signals and tied at the system planar to either VSS or VDDSPD to configure the serial SPD EERPOM address range. SDA - This bidirectional pin is used to transfer data into or out of the SPD EEPROM. An external resistor may be connected from the SDA bus line to VDDSPD to act as a pull-up on the system board. SCL - This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL bus time to VDDSPD to act as a pull-up on the system board. VDDSPD Supply RESET - EVENT Output Power supply for SPD EEPROM. This supply is separate from the VDD/VDDQ power plane. EEPROM supply is operable from 3.0V to 3.6V. The RESET pin is connected to the RESET pin on each DRAM. When low, all DRAMs are set to a know state. This signal indicates that a thermal event has been detected in the thermal sensing device. The system should guarantee the electrical level requirement is met for the EVENT pin on TS/SPD part 8 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 6.1 Address Mirroring Feature There is a via grid located under the DRAMs for wiring the CA signals (address, bank address, command, and control lines) to the DRAM pins. The length of the traces from the vias to the DRAMs places limitations on the bandwidth of the module. The shorter these traces, the higher the bandwidth. To extend the bandwidth of the CA bus for DDR3 modules, a scheme was defined to reduce the length of these traces. The pins on the DRAM are defined in a manner that allows for these short trace lengths. The CA bus pins in Columns 2 and 8, ignoring the mechanical support pins, do not have any special functions (secondary functions). This allows the most flexibility with these pins. These are address pins A3, A4, A5, A6, A7, A8 and bank address pins BA0 and BA1. Refer to Table . Rank 0 DRAM pins are wired straight, with no mismatch between the connector pin assignment and the DRAM pin assignment. Some of the Rank 1 DRAM pins are cross wired as defined in the table. Pins not listed in the table are wired straight. 6.1.1 DRAM Pin Wiring Mirroring Connector Pin DRAM Pin Rank 0 Rank 1 A3 A3 A4 A4 A4 A3 A5 A5 A6 A6 A6 A5 A7 A7 A8 A8 A8 A7 BA0 BA0 BA1 BA1 BA1 BA0 Figure 1 illustrates the wiring in both the mirrored and non-mirrored case. The lengths of the traces to the DRAM pins, is obviously shorter. The via grid is smaller as well. Figure 1. Wiring Differences for Mirrored and Non-Mirrored Addresses Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. This requires the controller to know if the rank is mirrored or not. This requires a few rules. Mirroring is done on 2 rank modules and can only be done on the second rank. There is not a requirement that the second rank be mirrored. There is a bit assignment in the SPD that indicates whether the module has been designed with the mirrored feature or not. See the DDR3 UDIMM SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring the address when accessing the second rank. 9 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 7.0 Function Block Diagram: 7.1 1GB, 128Mx64 Non ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs) S0 DQS0 DQS0 DM0 DQS4 DQS4 DM4 DM DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 D0 ZQ DQS1 DQS1 DM1 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D4 ZQ DQS5 DQS5 DM5 DM DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 D1 ZQ DQS2 DQS2 DM2 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D5 ZQ DQS6 DQS6 DM6 DM DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 D2 ZQ DQS3 DQS3 DM3 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D6 ZQ DQS7 DQS7 DM7 DM DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 NU/ CS DQS DQS DM DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 D3 ZQ I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D7 ZQ Serial PD SCL BA0 - BA2 A0 - A13 RAS BA0-BA2 : SDRAMs D0 - D7 A0-A13 : SDRAMs D0 - D7 RAS : SDRAMs D0 - D7 CAS CAS : SDRAMs D0 - D7 CKE0 CKE : SDRAMs D0 - D7 WE ODT0 CK0 WE : SDRAMs D0 - D7 ODT : SDRAMs D0 - D7 CK : SDRAMs D0 - D7 SDA WP A0 A1 A2 SA0 SA1 SA2 VDDSPD SPD VDD/VDDQ D0 - D7 VREFDQ D0 - D7 VSS D0 - D7 VREFCA D0 - D7 10 of 34 Note : 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ, DM, DQS/DQS resistors: Refer to associated topology diagram. 4. Refer to the appropriate clock wiring topology under the DIMM wiring details section of this document. 5. Refer to section 7.1 of this document for details on address mirroring. 6. For each DRAM, a unique ZQ resistor is connected to ground. The ZQ resistor is 240 Ohm +/- 1% 7. One SPD exists per module. Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 7.2 2GB, 256Mx64 Non ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) S1 S0 DQS0 DQS0 DM0 DQS4 DQS4 DM4 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D0 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS ZQ DQS1 DQS1 DM1 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D1 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D2 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D3 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 BA0-BA2 : SDRAMs D0 - D15 A0-A15 : SDRAMs D0 - D15 DM ZQ I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CKE : SDRAMs D0 - D7 RAS RAS : SDRAMs D0 - D15 CAS CAS : SDRAMs D0 - D15 WE WE : SDRAMs D0 - D15 ODT0 ODT : SDRAMs D0 - D7 ODT : SDRAMs D8 - D15 CK : SDRAMs D0 - D7 CK : SDRAMs D8 - D15 CS DQS DQS DM DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 D11 ZQ I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 Serial PD ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D12 ZQ CS DQS DQS D5 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D13 ZQ CS DQS DQS D6 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D14 ZQ CS DQS DQS D7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D15 ZQ Note : SCL CKE : SDRAMs D8 - D15 CKE0 CK1 DQS DQS D4 DQS7 DQS7 DM7 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 CK0 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 D10 DQS3 DQS3 DM3 ODT1 CS DQS6 DQS6 DM6 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 CKE1 DM DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 D9 DQS2 DQS2 DM2 A0 - A15 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQS5 DQS5 DM5 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 BA0 - BA2 DM DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 D8 SDA WP A0 A1 A2 SA0 SA1 SA2 VDDSPD SPD VDD/VDDQ D0 - D15 VREFDQ D0 - D15 VSS D0 - D15 VREFCA D0 - D15 11 of 34 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ, DM, DQS/DQS resistors: Refer to associated topology diagram. 4. Refer to section 7.1 of this document for details on address mirroring. 5. For each DRAM, a unique ZQ resistor is connected to ground. The ZQ resistor is 240 Ohm +/- 1% 6. One SPD exists per module. Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 8.0 Absolute Maximum Ratings 8.1 Absolute Maximum DC Ratings Symbol Parameter Rating Units Notes VDD Voltage on VDD pin relative to VSS -0.4 V ~ 1.975 V V 1,3 VDDQ Voltage on VDDQ pin relative to VSS -0.4 V ~ 1.975 V V 1,3 VIN, VOUT Voltage on any pin relative to VSS -0.4 V ~ 1.975 V V 1 TSTG Storage Temperature -55 to +100 C 1, 2 Note : 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. 8.2 DRAM Component Operating Temperature Range Symbol Parameter rating Unit Notes TOPER Operating Temperature Range 0 to 95 C 1, 2, 3 Note : 1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85C under all operating conditions 3. Some applications require operation of the Extended Temperature Range between 85C and 95C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b) 9.0 AC & DC Operating Conditions 9.1 Recommended DC Operating Conditions (SSTL - 15) Symbol VDD VDDQ Parameter Rating Min. Typ. Max. Units Notes Supply Voltage 1.425 1.5 1.575 V 1,2 Supply Voltage for Output 1.425 1.5 1.575 V 1,2 Note : 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. 12 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 10.0 AC & DC Input Measurement Levels 10.1 AC & DC Logic Input Levels for Single-ended Signals Single Ended AC and DC input levels for Command and Address Symbol VIH.CA(DC) Parameter DDR3-1066 Min. DDR3-1333/1600 Max. Min. Max. Unit Notes mV 1 DC input logic high VREF + 100 VDD VREF + 100 VDD VIL.CA(DC) DC input logic low VSS VREF - 100 VSS VREF - 100 mV 1 VIH.CA(AC) AC input logic high VREF + 175 - VREF + 175 - mV 1,2 VIL.CA(AC) AC input logic low - VREF - 175 - VREF - 175 mV 1,2 VIH.CA(AC150) AC input logic high - - VREF+150 - mV 1,2 VIL.CA(AC150) AC input logic low - - - VREF-150 mV 1,2 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 Unit Notes VREFCA(DC) Reference Voltage for ADD, CMD inputs Note : 1. For input only pins except RESET, VREF = VREFCA(DC) 2. See "Overshoot and Undershoot specifications" section. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than 1% VDD (for reference : approx. 15mV) 4. For reference : approx. VDD/2 15mV Single Ended AC and DC input levels for DQ and DM Symbol Parameter VIH.DQ(DC100) DC input logic high DDR3-1066 DDR3-1333/1600 Min. Max. Min. Max. VREF + 100 VDD VREF + 100 VDD mV 1 VREF - 100 mV 1 VIL.DQ(DC100) DC input logic low VSS VREF - 100 VSS VIH.DQ(AC175) AC input logic high VREF + 175 - VREF + 150 - mV 1,2,5 VIL.DQ(AC175) AC input logic low - VREF - 175 - VREF - 150 mV 1,2,5 VIH.DQ(AC150) AC input logic high VREF + 150 Note 2 - - mV 1,2,5 VIL.DQ(AC150) AC input logic low Note 2 VREF - 150 - - mV 1,2,5 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 VREFDQ(DC) I/O Reference Voltage(DQ) Note : 1. For input only pins except RESET, VREF = VREFDQ(DC) 2. See 9.6 "Overshoot and Undershoot specifications" section. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than 1% VDD (for reference : approx. 15mV) 4. For reference : approx. VDD/2 15mV 5. Single ended swing requirement for DQS - DQS is 350mV (peak to peak). Differential swing for DQS - DQS is 700mV (peak to peak). 13 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 10.2 VREF Tolerances The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 2. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise). VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than 1% VDD. voltage VDD VSS time Figure 2. Illustration of VREF(DC) tolerance and VREF ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF. "VREF" shall be understood as VREF(DC), as defined in Figure 2. This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. 14 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 10.3 AC & DC Logic Input Levels for Differential Signals 10.3.1 Differential Signals Definition tDVAC Differential Input Voltage (i.e. DQS-DQS, CK-CK) VIH.DIFF.AC.MIN VIH.DIFF.MIN 0.0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Figure 3. Definition of differential ac-swing and "time above ac level" tDVAC 10.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) Symbol Parameter VIHdiff DDR3-1066/1333/1600 unit Note note 3 V 1 -0.2 V 1 2 x (VIH(AC)-VREF) note 3 V 2 note 3 2 x (VREF - VIL(AC)) V 2 min max differential input high +0.2 VILdiff differential input low note 3 VIHdiff(AC) differential input high ac VILdiff(AC) differential input low ac Notes: 1. Used to define a differential signal slew-rate. 2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification " on page20. Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS. Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV min max min max > 4.0 75 - 175 - 4.0 57 - 170 - 3.0 50 - 167 - 2.0 38 - 163 - 1.8 34 - 162 - 1.6 29 - 161 - 1.4 22 - 159 - 1.2 13 - 155 - 1.0 0 - 150 - < 1.0 0 - 150 - 15 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 10.3.3 Single-ended Requirements for Differential Signals Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every half-cycle. DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ's might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK . VDD or VDDQ VSEH min VSEH VDD/2 or VDDQ/2 CK or DQS VSEL max VSEL VSS or VSSQ time Figure 4. Single-ended requirement for differential signals Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. Single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU Symbol VSEH VSEL Parameter DDR3-1066/1333/1600 Min Max Unit Notes Single-ended high-level for strobes (VDD/2)+0.175 Note3 V 1, 2 Single-ended high-level for CK, CK (VDD/2)+0.175 Note3 V 1, 2 Single-ended low-level for strobes Note3 (VDD/2)-0.175 V 1, 2 Single-ended low-level for CK, CK Note3 (VDD/2)-0.175 V 1, 2 Notes: 1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(AC) of DQs. 2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here 3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification" 16 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 10.3.4 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the mid level between of VDD and VSS. VDD CK, DQS VIX VDD/2 VIX VIX CK, DQS VSS Figure 5. VIX Definition Cross point voltage for differential input signals (CK, DQS) Symbol DDR3-1066/1333/1600 Parameter VIX Differential Input Cross Point Voltage relative to VDD/2 for CK,CK VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS Unit Min Max -150 150 mV -175 175 mV -150 150 mV Notes 1 Note : 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2 =/-250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. Refer to table 11 on page 17 for VSEL and VSEH standard values. 10.4 Slew Rate Definition for Single-ended Input Signals See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals. See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.tDH nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF 10.5 Slew Rate Definition for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below. Differential input slew rate definition Measured Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Defined by From To VILdiffmax VIHdiffmin VIHdiffmin VIHdiffmin - VILdiffmax Delta TRdiff VIHdiffmin - VILdiffmax VILdiffmax Delta TFdiff Note : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds VIHdiffmin 0 VILdiffmax delta TRdiff delta TFdiff Figure 6. Differential Input Slew Rate definition for DQS, DQS and CK, CK 17 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 11.0 AC & DC Output Measurement Levels 11.1 Single-ended AC & DC Output Levels Single Ended AC and DC output levels Symbol Parameter DDR3-1066/1333/1600 Units VOH(DC) DC output high measurement level (for IV curve linearity) 0.8 x VDDQ V VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V Notes VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V 1 VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V 1 Note : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 and an effective test load of 25 to VTT=VDDQ/2. 11.2 Differential AC & DC Output Levels Differential AC and DC output levels Symbol Parameter DDR3-1066/1333/1600 Units Notes VOHdiff(AC) AC differential output high measurement level (for output SR) +0.2 x VDDQ V 1 VOLdiff(DC) AC differential output low measurement level (for output SR) -0.2 x VDDQ V 1 Note : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 and an effective test load of 25 to VTT=VDDQ/2 at each of the differential outputs. 11.3 Single-ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in below. Single Ended Output slew rate definition Measured Description Defined by From To Single ended output slew rate for rising edge VOL(AC) VOH(AC) Single ended output slew rate for falling edge VOH(AC) VOL(AC) VOH(AC)-VOL(AC) Delta TRse VOH(AC)-VOL(AC) Delta TFse Note : Output slew rate is verified by design and characterization, and may not be subject to production test. Single Ended Output slew rate Parameter Symbol Single ended output slew rate SRQse DDR3-1066 DDR3-1333 DDR3-1600 Min Max Min Max Min Max 2.5 5 2.5 5 TBD 5 Units V/ns Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output se : Singe-ended Signals, For Ron = RZQ/7 setting Note 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane. - Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ signals in the same byte lane are static (i.e they stay at either high or low). - Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies. 18 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM VOH(AC) VTT VOL(AC) delta TFse delta TRse Figure 7. Single Ended Output Slew Rate definition 11.4 DIfferential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in below. Differential Output slew rate definition Measured Description Differential output slew rate for rising edge To VOLdiff(AC) VOHdiff(AC) VOHdiff(AC) Differential output slew rate for falling edge Defined by From VOHdiff(AC)-VOLdiff(AC) Delta TRdiff VOHdiff(AC)-VOLdiff(AC) VOLdiff(AC) Delta TFdiff Note : Output slew rate is verified by design and characterization, and may not be subject to production test. Differential Output slew rate Parameter Symbol Single ended output slew rate SRQse DDR3-1066 DDR3-1333 DDR3-1600 Min Max Min Max Min Max 5 10 5 10 TBD 10 Units V/ns Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output diff : Singe-ended Signals For Ron = RZQ/7 setting VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 8. Differential Output Slew Rate definition 19 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 12.0 IDD Specification Definition Symbol Description Operating One Bank Active-Precharge Current IDD0 CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern Operating One Bank Active-Read-Precharge Current IDD1 CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: High between ACT, RD and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern Precharge Standby Current IDD2N CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern Precharge Standby ODT Current DD2NT CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 35 ; Pattern Details: Refer to Component Datasheet for detail pattern DDQ2NT Precharge Standby ODT IDDQ Current Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current Precharge Power-Down Current Slow Exit IDD2P0 CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc) Precharge Power-Down Current Fast Exit IDD2P1 CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc) Precharge Quiet Standby Current IDD2Q CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Active Standby Current IDD3N CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 34 on page 36 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern Active Power-Down Current IDD3P CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Operating Burst Read Current IDD4R CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDDQ4R Operating Burst Read IDDQ Current Same definition like for IDD4R, however measuring IDDQ current instead of IDD current Operating Burst Write Current IDD4W CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: Refer to Component Datasheet for detail pattern Burst Refresh Current IDD5B CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern Self Refresh Current: Normal Temperature Range IDD6 TCASE: 0 - 85C; Auto Self-Refresh (ASR): Disabledd); Self-Refresh Temperature Range (SRT): Normale); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING 20 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM Symbol Description f) Self-Refresh Current: Extended Temperature Range (optional) IDD6ET TCASE: 0 - 95C; Auto Self-Refresh (ASR): Disabledd); Self-Refresh Temperature Range (SRT): Extendede); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Auto Self-Refresh Current (optional)f) IDD6TC TCASE: 0 - 95C; Auto Self-Refresh (ASR): Enabledd); Self-Refresh Temperature Range (SRT): Normale); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING; DM:stable at 0; Bank Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Operating Bank Interleave Read Current IDD7 CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 8a); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD8 RESET Low Current RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal : FLOATING a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B c) Pecharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature e) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device g) IDD current measure method and detail patterns are described on DDR3 component datasheet 21 of 34 Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 12.1 IDD SPEC Table M378B2873FHS : 1GB(128Mx64) Module Symbol CF8 (DDR3-1066@CL=7) CH9 (DDR3-1333@CL=9) CK0 (DDR3-1333@CL=11) Unit IDD0 TBD TBD TBD mA mA IDD1 TBD TBD TBD IDD2P0(slow exit) TBD TBD TBD mA IDD2P1(fast exit) TBD TBD TBD mA IDD2N TBD TBD TBD mA IDD2NT TBD TBD TBD mA IDDQ2NT TBD TBD TBD mA IDD2Q TBD TBD TBD mA IDD3P(fast exit) TBD TBD TBD mA IDD3N TBD TBD TBD mA IDD4R TBD TBD TBD mA IDDQ4R TBD TBD TBD mA IDD4W TBD TBD TBD mA IDD5B TBD TBD TBD mA IDD6 TBD TBD TBD mA IDD7 TBD TBD TBD mA IDD8 TBD TBD TBD mA Notes M378B5673FH0 : 2GB(256Mx64) Module Symbol CF8 (DDR3-1066@CL=7) CH9 (DDR3-1333@CL=9) CK0 (DDR3-1333@CL=11) Unit IDD0 TBD TBD TBD mA mA IDD1 TBD TBD TBD IDD2P0(slow exit) TBD TBD TBD mA IDD2P1(fast exit) TBD TBD TBD mA IDD2N TBD TBD TBD mA IDD2NT TBD TBD TBD mA IDDQ2NT TBD TBD TBD mA IDD2Q TBD TBD TBD mA IDD3P(fast exit) TBD TBD TBD mA IDD3N TBD TBD TBD mA IDD4R TBD TBD TBD mA IDDQ4R TBD TBD TBD mA IDD4W TBD TBD TBD mA IDD5B TBD TBD TBD mA IDD6 TBD TBD TBD mA IDD7 TBD TBD TBD mA IDD8 TBD TBD TBD mA 22 of 34 Notes Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 13.0 Input/Output Capacitance 13.1 Non ECC UDIMM - 1GB(128Mx64) Module M378B2873FHS Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Min Max Min Max Min Max Min Max Units Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) CIO - TBD - TBD - TBD - TBD pF Input capacitance (CK and CK) CCK - TBD - TBD - TBD - TBD pF CI - TBD - TBD - TBD - TBD pF CZQ - TBD - TBD - TBD - TBD pF Input capacitance (All other input-only pins) Input/output capacitance of ZQ pin 13.2 Non ECC UDIMM Notes - 2GB(256Mx64) Module M378B5673FH0 Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units Min Max Min Max Min Max Min Max - TBD - TBD - TBD - TBD pF Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) CIO Input capacitance (CK and CK) CCK - TBD - TBD - TBD - TBD pF CI - TBD - TBD - TBD - TBD pF CZQ - TBD - TBD - TBD - TBD pF Input capacitance (All other input-only pins) Input/output capacitance of ZQ pin 23 of 34 Notes Rev. 0.9 September 2009 DDR3 SDRAM Unbuffered DIMM 14.0 Electrical Characteristics and AC timing (0 C