Wireless Components
Data Sheet
Revision 1.6, 2010-12-21
TDA 5201
ASK Single Conversion Receiver
Version 1.6
Edition 2010-12-21
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
TDA 5201
ASK Single Conversion Receiver
Data Sheet 3 Revision 1.6, 2010-12-21
Trademarks of Infineon Technologies AG
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™,
CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,
MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™,
PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™,
SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of
Diodes Zetex Limited.
Last Trademarks Update 2010-10-26
Revision History
Page or Item Subjects (major changes since previous revision)
Previous Revision: 1.5
Revision 1.6, 2010-12-21
all Converted into structured FrameMaker (EDD 3.4)
4-3 More detailed explanation of AGC
5-5, 5-7 More detailed information of LNA high gain mode and LNA low gain mode
5-3, 5-4 Enhanced sensitivity values
TDA 5201
ASK Single Conversion Receiver
Table of Contents
Data Sheet 4 Revision 1.6, 2010-12-21
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1Product Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Low Noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.4 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.5 Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.6 Data Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.7 Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.8 Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.9 Bandgap Reference Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Choice of LNA Threshold Voltage and Time Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Quartz Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Quartz Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1 Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Test Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Test Board Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Appendix - Noise Figure and Gain Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table of Contents
TDA 5201
ASK Single Conversion Receiver
List of Figures
Data Sheet 5 Revision 1.6, 2010-12-21
Figure 1 PG-TSSOP-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2 PG-TSSOP-28 Package Outlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3 IC Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4 Main Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5 LNA Automatic Gain Control Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 6 Typical Curve of RSSI Level and Permissive AGC Threshold Levels . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7 Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 8 Determination of Series Capacitance Value for the Quartz Oscillator . . . . . . . . . . . . . . . . . . . . . . 24
Figure 9 Data Slicer Threshold Generation with External R-C Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 10 Data Slicer Threshold Generation Utilizing the Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 11 Schematic of the Evaluation Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 12 Top Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 13 Bottom Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 14 Component Placement on the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 15 Gain and Noise Circles of the TDA5201 at 315 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
List of Figures
TDA 5201
ASK Single Conversion Receiver
List of Tables
Data Sheet 6 Revision 1.6, 2010-12-21
Table 1 Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2 CSEL Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 3 PDWN Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 4 PLL Division Ratio Dependence on States of CSEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 5 Absolute Maximum Ratings, Ambient Temperature TAMB = - 40 °C ... + 85 °C . . . . . . . . . . . . . . . 27
Table 6 Operating Range, Ambient Temperature TAMB = - 40 °C ... + 85 °C . . . . . . . . . . . . . . . . . . . . . . . 27
Table 7 AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 9 Bill of Materials Addendum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
List of Tables
TDA 5201
ASK Single Conversion Receiver
Product Info
Data Sheet 7 Revision 1.6, 2010-12-21
1 Product Info
General Description
The IC is a very low power consumption single chip ASK Single Conversion Receiver for receive frequencies
between 310 MHz and 350 MHz. The Receiver offers a high level of integration and needs only a few external
components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a
PLL synthesizer, a crystal oscillator, a limiter with RSSI generator, a data filter, a data comparator (slicer) and a
peak detector. Additionally there is a power down feature to save battery life.
Features
Low supply current (Is = 4.6 mA typ.)
Supply voltage range 5 V ±10 %
Power down mode with very low supply current (50 nA typ)
Fully integrated VCO and PLL Synthesizer
RF input sensitivity < – 110 dBm
Selectable frequency ranges around 315 MHz and 345 MHz
Selectable reference frequency
Limiter with RSSI generation, operating at 10.7 MHz
•2
nd order low pass data filter with external capacitors
Data slicer with self-adjusting threshold
Application
Keyless Entry Systems
Remote Control Systems
Fire Alarm Systems
Low Bitrate Communication Systems
Package
Figure 1 PG-TSSOP-28
Ordering Information
Type Ordering Code Package1)
1) Available on tape and reel
TDA5201 SP000012902 PG-TSSOP-28
TDA 5201
ASK Single Conversion Receiver
Product Description
Data Sheet 8 Revision 1.6, 2010-12-21
2 Product Description
2.1 Overview
The IC is a very low power consumption single chip ASK Superheterodyne Receiver (SHR) for the frequency
bands 315 MHz and 345 MHz. The SHR offers a high level of integration and needs only a few external
components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a
PLL synthesizer, a crystal oscillator, a limiter with RSSI generator, a data filter, a data comparator (slicer) and a
peak detector. Additionally there is a power down feature to save battery life.
2.2 Application
Keyless Entry Systems
Remote Control Systems
Fire Alarm Systems
Low Bitrate Communication Systems
2.3 Features
Low supply current (Is = 4.6 mA typ.)
Supply voltage range 5 V ±10 %
Power down mode with very low supply current (50 nA typ.)
Fully integrated VCO and PLL Synthesizer
RF input sensitivity < – 110 dBm
Selectable receive frequency bands 315 MHz and 345 MHz
Selectable reference frequency
Limiter with RSSI generation, operating at 10.7 MHz
•2
nd order low pass data filter with external capacitors
Data slicer with self-adjusting threshold
TDA 5201
ASK Single Conversion Receiver
Product Description
Data Sheet 9 Revision 1.6, 2010-12-21
2.4 Package Outlines
Figure 2 PG-TSSOP-28 Package Outlines
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 10 Revision 1.6, 2010-12-21
3 Functional Description
3.1 Pin Configuration
Figure 3 IC Pin Configuration
CRST2
PDWN
PDO
DATA
3VOUT
THRES
FFB
OPP
SLN
SLP
LIMX
LIM
CSEL
LF
CRST1
VCC
LNI
TAGC
AGND
LNO
VCC
MI
MIX
AGND
FSEL
IFO
DGND
VDD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
TDA 5201
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 11 Revision 1.6, 2010-12-21
3.2 Pin Definition and Function
Table 1 Pin Definition and Function
Pin
No.
Name Pin
Type
Buffer Type Function
1 CRST1 In/Out External Crystal Connector 1
2VCCIn 5 V Supply
3LNI In LNA Input
4.15V
50uA
1
57uA
4k
1k
3
500uA
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 12 Revision 1.6, 2010-12-21
4TAGCIn/Out AGC Time Constant Control
5AGNDIn Analogue Ground Return
6LNOOut LNA Output
7VCCIn 5 V Supply
8MI In Mixer Input
Table 1 Pin Definition and Function (cont’d)
Pin
No.
Name Pin
Type
Buffer Type Function
1k
4.2uA
1.5uA
1.7V
4.3V
4
6
1k
5V
8
1.7V
9
400uA
2k 2k
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 13 Revision 1.6, 2010-12-21
9 MIX In Complementary Mixer Input
10 AGND In Analogue Ground Return
11 FSEL
Not applicable - has to be left
open
12 IFO Out IF Mixer Output
10.7 MHz
13 DGND In Digital Ground Return
14 VDD In 5 V Supply
PLL Counter Circuitry
Table 1 Pin Definition and Function (cont’d)
Pin
No.
Name Pin
Type
Buffer Type Function
8
1.7V
9
400uA
2k 2k
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 14 Revision 1.6, 2010-12-21
15 LF In/Out PLL Filter Access Point
16 CSEL In Quartz Selector
5.xx MHz or 10.xx MHz
17 LIM In Limiter Input
Table 1 Pin Definition and Function (cont’d)
Pin
No.
Name Pin
Type
Buffer Type Function
15
200
30uA
30uA
4.6V
2.4V
5V
100
1.2V
80k
16
330
15k
15k
18
17
2.4V
75uA
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 15 Revision 1.6, 2010-12-21
18 LIMX In Complementary Limiter Input
19 SLP In Data Slicer Positive Input
20 SLN In Data Slicer Negative Input
21 OPP In OpAmp Noninverting Input
Table 1 Pin Definition and Function (cont’d)
Pin
No.
Name Pin
Type
Buffer Type Function
330
15k
15k
18
17
2.4V
75uA
9
40uA
15uA
3k
100
5uA
20
10k
21
200
5uA
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 16 Revision 1.6, 2010-12-21
22 FFB In Data Filter Feedback Pin
23 THRES In AGC Threshold Input
24 3VOUT Out 3 V Reference Output
25 DATA Out Data Output
26 PDO Out Peak Detector Output
Table 1 Pin Definition and Function (cont’d)
Pin
No.
Name Pin
Type
Buffer Type Function
100k
5uA
22
10k
5uA
23
3V
24
25
200
80k
26
200
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 17 Revision 1.6, 2010-12-21
27 PDWN In Power Down Input
28 CRST2 In/Out External Crystal Connector 2
Table 1 Pin Definition and Function (cont’d)
Pin
No.
Name Pin
Type
Buffer Type Function
27
220k
220k
4.15V
50uA
28
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 18 Revision 1.6, 2010-12-21
3.3 Functional Block Diagram
Figure 4 Main Block Diagram
IF
Filter
VDD
VCC
LNO MI MIX IFO LIM LIMX FFB OPP SLP SLN
DATA
PDO
SLICERRSSI
THRES
LNA
RF
TAGC
DGND
VCC AGND FSEL CSEL PDWN
Crystal
Loop
Filter
Bandgap
Reference
UREF
TDA 5201 AGC
Reference
3VOUT
3
4
14
13
2/7 5/10 11 15
LF
16 1 28 27
24
23
26
25
201921
22
181712
9
86
Crystal
OSC
Φ
DET
: 128/64VCO: 1/2
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 19 Revision 1.6, 2010-12-21
3.4 Functional Blocks
3.4.1 Low Noise Amplifier (LNA)
The LNA is an on-chip cascode amplifier with a voltage gain of 15 dB to 20 dB. The gain figure is determined by
the external matching networks situated ahead of LNA and between the LNA output LNO (Pin 6) and the Mixer
Inputs MI and MIX (Pin 8 and Pin 9). The noise figure of the LNA is approximately 2 dB, the current consumption
is 500 µA. The gain can be reduced by approximately 18 dB. The switching point of this AGC action can be
determined externally by applying a threshold voltage at the THRES pin (Pin 23). This voltage is compared
internally with the received signal (RSSI) level generated by the limiter circuitry. In case that the RSSI level is
higher than the threshold voltage the LNA gain is reduced and vice versa. The threshold voltage can be generated
by attaching a voltage divider between the 3VOUT pin (Pin 24) which provides a temperature stable 3 V output
generated from the internal bandgap voltage and the THRES pin as described in Chapter 4.1. The time constant
of the AGC action can be determined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen
along with the appropriate threshold voltage according to the intended operating case and interference scenario
to be expected during operation. The optimum choice of AGC time constant and the threshold voltage is described
in Chapter 4.1.
3.4.2 Mixer
The Double Balanced Mixer down-converts the input frequency (RF) in the range of 310 MHz to 350 MHz to the
intermediate frequency (IF) at 10.7 MHz with a voltage gain of approximately 21 dB by utilizing either high- or low-
side injection of the local oscillator signal. In case the mixer is interfaced only single-ended, the unused mixer input
has to be tied to ground via a capacitor. The mixer is followed by a low pass filter with a corner frequency of 20 MHz
in order to suppress RF signals to appear at the IF output (IFO pin). The IF output is internally consisting of an
emitter follower that has a source impedance of approximately 330 to facilitate interfacing the pin directly to a
standard 10.7 MHz ceramic filter without additional matching circuitry.
3.4.3 PLL Synthesizer
The Phase Locked Loop synthesizer consists of a VCO, an asynchronous divider chain, a phase detector with
charge pump and a loop filter and is fully implemented on-chip. The VCO is including spiral inductors and varactor
diodes. The FSEL pin (Pin 11) has to be left open. The tuning range of the VCO was designed to guarantee over
production spread and the specified temperature range a receive frequency range between 310 MHz and
350 MHz depending on whether high- or low-side injection of the local oscillator is used. The oscillator signal is
fed both to the synthesizer divider chain and to a divider that is dividing the signal by 2 before it is applied to the
down-converting mixer. Local oscillator high side injection has to be used for receive frequencies between
approximately 310 MHz and 330 MHz, low side injection for receive frequencies between 330 MHz and 350 MHz
- see also Chapter 4.4.
3.4.4 Crystal Oscillator
The on-chip crystal oscillator circuitry allows for utilization of quartzes both in the 5 MHz and 10 MHz range as the
overall division ratio of the PLL can be switched between 64 and 128 via the CSEL (Pin 16) pin according to the
following table.
Table 2 CSEL Pin Operating States
CSEL Crystal Frequency
Open 5.xx MHz
Shorted to ground 10.xx MHz
TDA 5201
ASK Single Conversion Receiver
Functional Description
Data Sheet 20 Revision 1.6, 2010-12-21
The calculation of the value of the necessary quartz load capacitance is shown in Chapter 4.3, the quartz
frequency calculation is explained in Chapter 4.4.
3.4.5 Limiter
The Limiter is an AC coupled multistage amplifier with a cumulative gain of approximately 80 dB that has a
bandpass-characteristic centered around 10.7 MHz. It has an input impedance of 330 to allow for easy
interfacing to a 10.7 MHz ceramic IF filter. The limiter circuit acts as a Receive Signal Strength Indicator (RSSI)
generator, which produces a DC voltage that is directly proportional to the input signal level as can be seen in
Figure 6. This signal is used to demodulate the ASK receive signal in the subsequent baseband circuitry and to
turn down the LNA gain by approximately 18 dB in case the input signal strength is too strong as described in
Chapter 3.4.1 and Chapter 4.1.
3.4.6 Data Filter
The data filter comprises an OP-Amp with a bandwidth of 100 kHz used as a voltage follower and two 100 k on-
chip resistors. Along with two external capacitors a 2nd order Sallen-Key low pass filter is formed. The selection of
the capacitor values is described in Chapter 4.2.
3.4.7 Data Slicer
The data slicer is a fast comparator with a bandwidth of 100 kHz. This allows for a maximum receive data rate of
approximately 120 kBaud. The maximum achievable data rate also depends on the IF Filter bandwidth and the
local oscillator tolerance values. Both inputs are accessible. The output delivers a digital data signal (CMOS-like
levels) for the detector. The self-adjusting threshold on pin 20 is generated by RC-term or peak detector
depending on the baseband coding scheme. The data slicer threshold generation alternatives are described in
more detail in Chapter 4.5.
3.4.8 Peak Detector
The peak detector generates a DC voltage which is proportional to the peak value of the receive data signal. An
external RC network is necessary. The output can be used as an indicator for the signal strength and also as a
reference for the data slicer. The maximum output current is 500 µA.
3.4.9 Bandgap Reference Circuitry
A Bandgap Reference Circuit provides a temperature stable reference voltage for the device. A power down mode
is available to switch off all sub-circuits which is controlled by the PWDN pin (Pin 27) as shown in the following
table. The supply current drawn in this case is typically 50 nA.
Table 3 PDWN Pin Operating States
PDWN Operating State
Open or tied to ground Power Down Mode
Tied to VCC Receiver On
TDA 5201
ASK Single Conversion Receiver
Applications
Data Sheet 21 Revision 1.6, 2010-12-21
4 Applications
4.1 Choice of LNA Threshold Voltage and Time Constant
In the following figure the internal circuitry of the LNA automatic gain control is shown.
Figure 5 LNA Automatic Gain Control Circuitry
The LNA automatic gain control circuitry consists of an operational transimpedance amplifier that is used to
compare the received signal strength signal (RSSI) generated by the Limiter with an externally provided threshold
voltage Uthres. As shown in the following figure the threshold voltage can have any value between approximately
typically 0.8 V and 2.8 V to provide a switching point within the receive signal dynamic range.
This voltage Uthres is applied to the THRES pin (Pin 23). The threshold voltage can be generated by attaching a
voltage divider between the 3VOUT pin (Pin 24) which provides a temperature stable 3 V output generated from
the internal bandgap voltage and the THRES pin. If the RSSI level generated by the Limiter is higher than Uthres,
the OTA generates a positive current Iload. This yields a voltage rise on the TAGC pin (Pin 4). Otherwise, the OTA
generates a negative current. These currents do not have the same values in order to achieve a fast-attack and
slow-release action of the AGC and are used to charge an external capacitor which finally generates the LNA gain
control voltage.
Pins: 24 23
4
LNA
R4 R5
Uthreshold
RSSI (0.8 - 2.8V)
VCC
Gain control
voltage
OTA
+3V
Iload
RSSI > Uthreshold: Iload=4.2µA
RSSI < Uthreshold: Iload= -1.5µA
UC
C
Uc:< 2.6V : Gain high
Uc:> 2.6V : Gain low
Ucmax= VCC -0.7V
Ucmin = 1.67V
TDA 5201
ASK Single Conversion Receiver
Applications
Data Sheet 22 Revision 1.6, 2010-12-21
Figure 6 Typical Curve of RSSI Level and Permissive AGC Threshold Levels
The switching point should be chosen according to the intended operating scenario. The determination of the
optimum point is described in the accompanying Application Note, a threshold voltage level of 1.8 V is apparently
a viable choice. It should be noted that the output of the 3VOUT pin is capable of driving up to 50 µA, but that the
THRES pin input current is only in the region of 40 nA. As the current drawn out of the 3VOUT pin is directly related
to the receiver power consumption, the power divider resistors should have high impedance values. R4 can be
chosen as 120 k, R5 as 180 k to yield an overall 3VOUT output current of 10 µA.
Notes
1. To keep the LNA in high gain mode for the complete RF-input level range a voltage equal or higher than 3.3 V
has to be applied at pin 23. Alternatively, pin 23 has to be connected to pin 24 and pin 4 has to be connected
to GND. In addition this would save an external capacitor.
2. To keep the LNA in low gain mode for the complete RF-input level range a voltage lower than 0.7 V has to be
applied to the THRES pin (e.g. THRES connected to GND). In the above-mentioned mode pin 4 has to be
connected by a capacitor to GND.
3. As stated above, the gain control voltage of the LNA is generated at the capacitor connected to the TAGC pin
by the charging and discharging currents of the OTA. Consequently this capacitor is responsible for the AGC
time constant. As the charging and discharging currents are not equal two different time constants will result.
The time constant corresponding to the charging process of the capacitor shall be chosen according to the
data rate. According to measurements performed at Infineon the capacitor value should be greater than 47 nF.
LNA always
in high gain mode
0
0.5
1
1.5
2
2.5
3
-120 -110 -100 -90 -80 -70 -60 -50 -40 -30
Input Level at LNA Input [dBm]
UTHRES Voltage Range
RSSI Level Range LNA always
in low gain mode
RSSI Level
TDA 5201
ASK Single Conversion Receiver
Applications
Data Sheet 23 Revision 1.6, 2010-12-21
4.2 Data Filter Design
Utilizing the on-board voltage follower and the two 100 k on-chip resistors a 2nd order Sallen-Key low pass data
filter can be constructed by adding 2 external capacitors between pin 19 (SLP) and pin 22 (FFB) and to pin 21
(OPP) as depicted in the following figure and described in the following formulas1).
Figure 7 Data Filter Design
(1)
(2)
with
(3)
1) Taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999
the quality factor of the poles where
in case of a Bessel filter a = 1.3617, b = 0.618
and thus Q = 0.577
and in case of a Butterworth filter a = 1.141, b = 1
and thus Q = 0.71
Example
Butterworth filter with f3dB = 5 kHz and R = 100 k
C1 = 450 pF, C2 = 225 pF
Pins: 22 21 19
RR
100k 100k
C1C2
dB
fR
bQ
C
3
2
2
1Π
=
dB
fQR
b
C
3
4
2Π
=
a
b
Q=
TDA 5201
ASK Single Conversion Receiver
Applications
Data Sheet 24 Revision 1.6, 2010-12-21
4.3 Quartz Load Capacitance Calculation
The value of the capacitor necessary to achieve that the quartz oscillator is operating at the intended frequency is
determined by the reactive part of the negative resistance of the oscillator circuit as shown in Chapter 1.1.3 and
by the quartz specifications given by the quartz manufacturer.
Figure 8 Determination of Series Capacitance Value for the Quartz Oscillator
Crystal specified with load capacitance
(4)
with CL the load capacitance (refer to the quartz crystal specification).
These values may be obtained by putting two capacitors in series to the quartz, such as 18 pF and 22 pF in the
5.1 MHz case and 18 pF and 12 pF in the 10.2 MHz case.
But please note that the calculated value of CS includes the parasitic capacitors also.
Examples
5.1 MHz CL = 12 pF XL = 580 CS = 9.8 pF
10.18 MHz CL = 12 pF XL = 870 CS = 7.2 pF
CS
Crystal Input
impedance
Z1-28 TDA5201
Pin 28
Pin 1
L
L
S
Xf
C
C
π
2
1
1
+
=
TDA 5201
ASK Single Conversion Receiver
Applications
Data Sheet 25 Revision 1.6, 2010-12-21
4.4 Quartz Frequency Calculation
As described in Chapter 3.4.3, the operating range of the on-chip VCO is wide enough to guarantee a receive
frequency range between 310 MHz and 350 MHz. The VCO signal is divided by 2 before applied to the mixer .
This local oscillator signal can be used to down-convert the RF signals both with high- or low-side injection at the
mixer. High-side injection of the local oscillator has to be used for receive frequencies between 310 MHz and 330
MHz. In this case the local oscillator frequency is calculated by adding the IF frequency (10.7 MHz) to the RF
frequency.
Low-side injection has to be used for receive frequencies between 330 MHz and 350 MHz. The local oscillator
frequency is calculated by subtracting the IF frequency (10.7 MHz) from the RF frequency then. The overall
division ratios in the PLL are 64 or 32 depending on whether the CSEL-pin is left open or tied to ground.
Therefore, the quartz frequency may be calculated by using the following formula:
(5)
with
Example
Addition of 10.7 is used in case of operation the device at 315 MHz, subtraction in case of operation at 345 MHz
for instance. This yields the following frequencies:
CSEL tied to GND:
(6)
(7)
CSEL open:
(8)
(9)
ƒRF Receive frequency
ƒLO Local oscillator (PLL) frequency (ƒRF ± 10.7)
ƒQU Quartz oscillator frequency
rRatio of local oscillator (PLL) frequency and quartz frequency as shown in the subsequent table
Table 4 PLL Division Ratio Dependence on States of CSEL
CSEL Ratio r = (ƒLO/ƒQU)
Open 64
GND 32
r
f
fRF
QU
7.10
=
()
MHzMHzMHzf 1781.1032/7.10315
QU
=+=
()
MHzMHzMHzf 4469.1032/7.10345
QU
==
()
MHzMHzMHzf 0891.564/7.10315
QU
=+=
()
MHzMHzMHzf 2234.564/7.10345
QU
==
TDA 5201
ASK Single Conversion Receiver
Applications
Data Sheet 26 Revision 1.6, 2010-12-21
4.5 Data Slicer Threshold Generation
The threshold of the data slicer especially for a coding scheme without DC-content, can be generated in two ways,
depending on the signal coding scheme used. In case of a signal coding scheme without DC content such as
Manchester coding the threshold can be generated using an external RC-Integrator as shown in Figure 9. The
time constant TA of the RC-Integrator has to be significantly larger than the longest period of no signal change TL
within the data sequence. In order to keep distortion low, the minimum value for R is 20 k.
Figure 9 Data Slicer Threshold Generation with External R-C Integrator
Another possibility for threshold generation is to use the peak detector in connection with two resistors and one
capacitor as shown in the following figure. The component values are depending on the coding scheme and the
protocol used.
Figure 10 Data Slicer Threshold Generation Utilizing the Peak Detector
Pins: 2019
R
C
25
data out
Uthreshold
data slicer
data
filter
Pins: 20
19 25
data out
Uthreshold
data slicer
data
filter
26
peak detector
C
R
R
TDA 5201
ASK Single Conversion Receiver
Electrical Characteristics
Data Sheet 27 Revision 1.6, 2010-12-21
5Electrical Characteristics
5.1 Electrical Data
5.1.1 Absolute Maximum Ratings
Attention: The maximum ratings may not be exceeded under any circumstances, not even momentarily
and individually, as permanent damage to the IC will result.
5.1.2 Operating Range
Within the operating range the IC operates as explained in the circuit description. The AC/DC characteristic limits
are not guaranteed.
Supply voltage: VCC = 4.5 V ... 5.5 V
Table 5 Absolute Maximum Ratings, Ambient Temperature TAMB = - 40 °C ... + 85 °C
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Supply Voltage Vs-0.3 5.5 V 1.1
Junction Temperature Tj-40 +125 °C 1.2
Storage Temperature Ts-40 +150 °C 1.3
Thermal Resistance RthJA 114 K/W 1.4
ESD HBM integrity, all pins VESD ±1,5 kV AEC Q100-002 /
JESD22-A114B
1.5
ESD SDM integrity, all pins VESD ±750 V AINSI / ESD
SP5.3.2-2008
1.6
Table 6 Operating Range, Ambient Temperature TAMB = - 40 °C ... + 85 °C
Parameter Symbol Values Unit Note /
Test Condition
Test Number
Min. Typ. Max.
Supply Current IS5.2 mA fRF = 315 MHz 2.1
Receiver Input Level RFin -111 -13 dBm @ source
impedance 50 ,
BER 2E-3,
average power
level, Manchester
encoded data rate
4 kBit, 280 kHz IF
Bandwidth
2.2
LNI Input Frequency fRF 310 350 MHz 2.3
MI/X Input Frequency fMI 310 350 MHz 2.4
3 dB IF Frequency
Range
fIF -3 dB 523MHz 2.5
TDA 5201
ASK Single Conversion Receiver
Electrical Characteristics
Data Sheet 28 Revision 1.6, 2010-12-21
Attention: Test means that the parameter is not subject to production test.
It was verified by design/characterization.
5.1.3 AC/DC Characteristics
AC/DC characteristics involve the spread of values guaranteed within the specified voltage and ambient
temperature range. Typical characteristics are the median of the production.
Power Mode Off VOFF 00.8V 2.6
Power Mode Off VON 2VCC V2.7
Gain Control Voltage,
LNA high gain state
VTHRES 2.8 VCC-1 V 2.8
Gain Control Voltage,
LNA low gain state
VTHRES 00.7V 2.9
Table 7 AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V
Parameter Symbol Values Unit Note /
Test Condition
Test Number
Min. Typ. Max.
Supply Current
Supply current
standby mode
IS PDWN 50 70 nA Pin 27 (PDWN)
open or tied to 0 V
3.1
Supply current IS4.6 5 mA 3.2
LNA - Signal Input LNI (PIN 3), VTHRES > 3.3 V, High Gain Mode
Average Power Level
at BER = 2E-3
(Sensitivity)
RFin -113 dBm Manchester
encoded data rate
4 kBit, 280 kHz IF
Bandwidth
3.3
Input impedance
fRF = 315 MHz
S11 LNA 0.895 /
-25.5 deg
3.4
Input level @ 1 dB C.P.
fRF =315MHz
P1dBLNA -14 dBm 3.5
Input 3rd order intercept
point fRF = 315 MHz
IIP3LNA -10 dBm fin = 315 MHz &
317 MHz
3.6
LO signal feedthrough at
antenna port
LOLNI -119 dBm 3.7
LNA - Signal Output LNO (PIN 6), VTHRES > 3.3 V, High Gain Mode
Gain fRF = 315 MHz S21 LNA 1.577 /
150.3 deg
3.8
Output impedance,
fRF =315MHz
S22 LNA 0.897 /
-10.3 deg
3.9
Voltage Gain Antenna to
MI fRF =315MHz
GAntMI 21 dB 3.10
Table 6 Operating Range, Ambient Temperature TAMB = - 40 °C ... + 85 °C (cont’d)
Parameter Symbol Values Unit Note /
Test Condition
Test Number
Min. Typ. Max.
TDA 5201
ASK Single Conversion Receiver
Electrical Characteristics
Data Sheet 29 Revision 1.6, 2010-12-21
Noise Figure NFLNA 2dBExcluding
matching network
loss see Appendix
3.11
LNA - Signal Input LNI, VTHRES = GND, Low Gain Mode
Input impedance
fRF =315MHz
S11 LNA 0.918 /
-25.2 deg
3.12
Input level @ 1 dB C. P.
fRF =315MHz
P1dBLNA -7 dBm Matched input 3.13
Input 3rd order intercept
point fRF =315MHz
IIP3LNA -13 dBm fin = 315 MHz and
317 MHz
3.14
LNA - Signal Output LNO, VTHRES = GND, Low Gain Mode
Gain fRF =315MHz S21 LNA 0.007 /
153.7 deg
3.15
Output impedance
,fRF =315MHz
S22 LNA 0.907 /
-10.5 deg
3.16
Voltage Gain Antenna to
MI fRF =315MHz
GAntMI 2dB 3.17
AGC - Signal 3VOUT (PIN 24)
Output voltage V3VOUT 3V 3.18
Current out I3VOUT 50 µA 3.19
AGC - Signal THRES (PIN 23)
Input Voltage range VTHRES 0VCC-1 V See chapter 4.1 3.20
LNA low gain mode VTHRES 0V 3.21
LNA high gain mode VTHRES 3.31) VCC-11) V Voltage must not
be higher than
VCC-1 V
3.22
Current in ITHRES_in 5nA 3.23
AGC - Signal TAGC (PIN 4)
Current out,
LNA low gain state
ITAGC_out 4.2 µA RSSI > VTHRES 3.24
Current in,
LNA high gain state
ITAGC_in 1.5 µA RSSI < VTHRES 3.25
MIXER - Signal Input MI/MIX (PINS 8/9)
Input impedance
fRF =315MHz
S11 MIX 0.954 /
-10.9 deg
3.26
Input 3rd order intercept
point
IIP3MIX -25 dBm 3.27
MIXER - Signal Output IFO (PIN 12)
Output impedance ZIFO 330 3.28
Table 7 AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V (cont’d)
Parameter Symbol Values Unit Note /
Test Condition
Test Number
Min. Typ. Max.
TDA 5201
ASK Single Conversion Receiver
Electrical Characteristics
Data Sheet 30 Revision 1.6, 2010-12-21
Conversion Voltage Gain
fRF =315MHz
GMIX +21 dB 3.29
Noise Figure, SSB
(~DSB NF + 3 dB)
NFMIX 13 dB 3.30
RF to IF isolation ARF-IF 46 dB 3.31
LIMITER - Signal Input LIM/LIMX (PINS 17/18)
Input Impedance ZLIM 264 330 396 3.32
RSSI dynamic range DRRSSI 60 80 dB 3.33
RSSI linearity LINRSSI ±1 dB 3.34
Operating frequency
(3 dB points)
fLIM 510.723MHz 3.35
DATA FILTER
Useable bandwidth BWBB FILT 100 kHz 3.36
RSSI Level at Data Filter
Output SLP
RSSIlow 1.1 V LNA in high gain
RFIN = -103 dBm
3.37
RSSI Level at Data Filter
Output SLP
RSSIhigh 2.65 V LNA in high gain
RFIN = -30 dBm
3.38
SLICER - Signal Output DATA (PIN 25)
Useable bandwidth BWBB SLIC 100 kHz 3.39
Capacitive loading of
output
Cmax SLIC 20 pF 3.40
LOW output voltage VSLIC_L 0V 3.41
HIGH output voltage VSLIC_H VCC-1.3 VCC-1 VCC-0.7 V Output current
=20A
3.42
Output current ISLIC_out 200 µA 3.43
PEAK DETECTOR - Signal Output PDO (PIN 26)
LOW output voltage VSLIC_L 0V 3.44
HIGH output voltage VSLIC_H VCC-1 V 3.45
Load current Iload -500 µA Static load current
must not exceed
-500 µA
3.46
Leakage current Ileakage 700 nA 3.47
CRYSTAL OSCILLATOR - Signals CRST1, CRST2, (PINS 1/28)
Operating frequency fCRSTL 5 11 MHz Fundamental
mode, series
resonance
3.48
Input Impedance
@~5MHz
Z1-28 -760
+ j580
3.49
Input Impedance
@~10MHz
Z1-28 -600
+ j870
3.50
Table 7 AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V (cont’d)
Parameter Symbol Values Unit Note /
Test Condition
Test Number
Min. Typ. Max.
TDA 5201
ASK Single Conversion Receiver
Electrical Characteristics
Data Sheet 31 Revision 1.6, 2010-12-21
Attention: Test means that the parameter is not subject to production test.
It was verified by design/characterization.
Serial Capacity
@~5MHz
CS5 = C1 9.3 pF 3.51
Serial Capacity
@~10MHz
CS10 = C1 6.4 pF 3.52
PLL - Signal LF (PIN 15)
Tuning voltage relative to
VCC
VTUNE 0.4 1.6 2.4 V 3.53
POWER DOWN MODE - Signal PDWN (PIN 27)
Power Mode On VON 2.8 VCC V3.54
Power Mode Off VOff 0 0.8 V 3.55
Input bias current PDWN IPDWN 19 µA 3.56
Start-up Time until valid
IF signal is detected
TSU 1 ms Depends on the
used crystal
3.57
PLL DIVIDER - Signal CSEL (PIN 16)
fCRSTL range 5.xx MHz VCSEL 1.4 42) V or open 3.58
fCRSTL range 10.xx MHz VCSEL 0 0.2 V 3.59
Input bias current CSEL ICSEL 5 µA CSEL tied to GND 3.60
1) See Chapter 4.1, Choice of LNA Threshold Voltage and Time Constant
2) Maximum voltage in Power-On state is 4 V, but in PDWN-state the maximum voltage is 2.8 V.
Table 7 AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V (cont’d)
Parameter Symbol Values Unit Note /
Test Condition
Test Number
Min. Typ. Max.
TDA 5201
ASK Single Conversion Receiver
Electrical Characteristics
Data Sheet 32 Revision 1.6, 2010-12-21
5.2 Test Board
5.2.1 Test Circuit
The device performance parameters marked with in Chapter 5.1.3 are not subject to production test. They were
verified by design/characterization.
Figure 11 Schematic of the Evaluation Board
TDA 5201
ASK Single Conversion Receiver
Electrical Characteristics
Data Sheet 33 Revision 1.6, 2010-12-21
5.2.2 Test Board Layouts
Figure 12 Top Side of the Evaluation Board
Figure 13 Bottom Side of the Evaluation Board
TDA 5201
ASK Single Conversion Receiver
Electrical Characteristics
Data Sheet 34 Revision 1.6, 2010-12-21
Figure 14 Component Placement on the Evaluation Board
TDA 5201
ASK Single Conversion Receiver
Electrical Characteristics
Data Sheet 35 Revision 1.6, 2010-12-21
5.2.3 Bill of Materials
The following components are necessary for evaluation of the TDA5201 at 315 MHz without use of a Microchip
HCS515 decoder.
The following components are necessary in addition to the above mentioned ones for evaluation of the TDA5201
in conjunction with a Microchip HCS515 decoder.
Table 8 Bill of Materials
Ref Value Specification
R1 100 k0805, ±5 %
R2 100 k0805, ±5 %
R3 820 k0805, ±5 %
R4 120 k0805, ±5 %
R5 180 k0805, ±5 %
R6 10 k0805, ±5 %
L1 15 nH Toko, PTL2012-F15N0G
L2 12 pF 0805,COG, ±2 %
C1 3.3 pF 0805, COG, ±0.1 pF
C2 10 pF 0805, COG, ±0.1 pF
C3 6.8 pF 0805, COG, ±0.1 pF
C4 100 pF 0805, COG, ±5 %
C5 47 nF 1206, X7R, ±10 %
C6 15 nH Toko, PTL2012-F15N0G
C7 100 pF 0805, COG, ±5 %
C8 33 pF 0805, COG, ±5 %
C9 100 pF 0805, COG, ±5 %
C10 10 nF 0805, X7R, ±10 %
C11 10 nF 0805, X7R, ±10 %
C12 220 pF 0805, COG, ±5 %
C13 47 nF 0805, X7R, ±10 %
C14 470 pF 0805, COG, ±5 %
C15 47 nF 0805, X7R, ±10 %
C16 18 pF 0805, COG, ±0.1 pF
C17 12 pF 0805, COG, ±2 %
Q2 (315 + 10.7 MHz)/32 HC49/U, fundamental mode, CL = 12 pF,
315 MHz: Jauch Q 10.17813-S11-1323-12-10/20
F1 SFE10.7MA5-A Murata
X2, X3 142-0701-801 Johnson
X1, X4, S1, S5 2-pole pin connector
S4 3-pole pin connector, or not equipped
IC1 TDA5201 Infineon
TDA 5201
ASK Single Conversion Receiver
Electrical Characteristics
Data Sheet 36 Revision 1.6, 2010-12-21
Table 9 Bill of Materials Addendum
Ref Value Specification
R21 22 k0805, ±5 %
R22 100 k0805, ±5 %
R23 22 k0805, ±5 %
R24 820 k0805, ±5 %
R25 560 k0805, ±5 %
C21 100 nF 1206, X7R, ±10 %
C22 100 nF 1206, X7R, ±10 %
IC2 HCS515 Microchip
T1 BC 847B Infineon
D1 LS T670-JL Infineon
TDA 5201
ASK Single Conversion Receiver
Appendix - Noise Figure and Gain Circles
Data Sheet 37 Revision 1.6, 2010-12-21
Appendix - Noise Figure and Gain Circles
The following gain and noise figure circles were measured utilizing Microlab Stub Stretchers and a HP8514
network analyzer. Maximum gain is shown at point 1 at 18.5 dB, minimum noise figure is 1.9 dB at point 2, step
size of circles is 0.5 dB.
Figure 15 Gain and Noise Circles of the TDA5201 at 315 MHz
Published by Infineon Technologies AG
www.infineon.com