128M GDDR SDRAM
K4D263238K
- 1/19 - Rev. 1.1 July 2007
128Mbit GDDR SDRAM
Revision 1.1
July 2007
Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL
INFORMATION IN THIS DOCUMENT IS PROVIDED
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.
1. For updates or additional information about Samsung products, contact your nearest Samsung office.
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar
applications where Product failure could result in loss of life or personal or physical harm, or any military or
defense application, or any governmental procurement to which special terms or provisions may apply.
* Samsung Electronics reserves the right to change products or specification without notice.
128M GDDR SDRAM
K4D263238K
- 2/19 - Rev. 1.1 July 2007
Revision History
Revision Month Year History
1.0 January 2007 - Release revision 1.0 SPEC
- Corrected Package Outline
1.1 July 2007 - Revised comment about voltage of power up sequence
- Revised ICC2P current to 20mA
128M GDDR SDRAM
K4D263238K
- 3/19 - Rev. 1.1 July 2007
The K4D263238K is 134,217,728 bits of hyper synchronous data rate Dynamic RAM organized as 4 x 1,048,576 words by
32 bits, fabricated with SAMSUNGs high performance CMOS technology. Synchronous features with Data Strobe allow
extremely high performance up to 2.0GB/s/chip. I/O transactions are possible on both edges of the clock cycle. Range of
operating frequencies, programmable burst length and programmable latencies allow the device to be useful for a variety
of high performance memory system applications.
• 2.5V ± 5% power supply for device operation
• 2.5V ± 5% power supply for I/O interface
• SSTL_2 compatible inputs/outputs
• 4 banks operation
• MRS cycle with address key programs
-. Read latency 3 (clock)
-. Burst length (2, 4, 8 and Full page)
-. Burst type (sequential & interleave)
• Full page burst length for sequential burst type only
• Start address of the full page burst should be even
• All inputs except data & DM are sampled at the positive
going edge of the system clock
• Differential clock input
• Write Interrupted by Read function
GENERAL DESCRIPTION
FEATURES
• Data I/O transactions on both edges of Data strobe
• DLL aligns DQ and DQS transitions with Clock transition
• Edge aligned data & data strobe output
• Center aligned data & data strobe input
• DM for write masking only
• Auto & Self refresh
• 32ms refresh period (4K cycle)
• 144pin FBGA package
• Maximum clock frequency up to 250MHz
• Maximum data rate up to 500Mbps/pin
FOR 1M x 32Bit x 4 Bank DDR SDRAM
1M x 32Bit x 4 Banks Double Data Rate Synchronous DRAM
with Bi-directional Data Strobe and DLL
ORDERING INFORMATION
K4D263238K-GC is the Leaded package part number.
Part NO. Max Freq. Max Data Rate Interface Package
K4D263238K-VC40 250MHz 500Mbps/pin SSTL_2 144FBGA
K4D263238K-VC50 200MHz 400Mbps/pin
128M GDDR SDRAM
K4D263238K
- 4/19 - Rev. 1.1 July 2007
PIN CONFIGURATION (Top View)
PIN DESCRIPTION
CK,CK Differential Clock Input BA0, BA1 Bank Select Address
CKE Clock Enable A0 ~A11 Address Input
CS Chip Select DQ0 ~ DQ31 Data Input/Output
RAS Row Address Strobe VDD Power
CAS Column Address Strobe VSS Ground
WE Write Enable VDDQ Power for DQs
DQS Data Strobe VSSQ Ground for DQs
DM Data Mask NC No Connection
RFU Reserved for Future Use
DQS0
VSS
RFU1
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSSQ
VSSQ VSSQ VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSS VSS VSS VSS
VSSVSSVSSVSS
VSS
RFU2A5
A6
DQ4
DQ6
DQ7
DQ17
DQ19
DQS2
DQ21
DQ22
CAS
RAS
CS
DM0
VDDQ
DQ5
VDDQ
DQ16
DQ18
DM2
DQ20
DQ23
WE
NC
NC
NC
VDD
VDDQ
VDDQ
NC
VDDQ
VDDQ
VDD
NC
BA0
BA1
A0
DQ3
VDDQ
DQ31
DQ1
A10
A2
A1
VDD VDD
VDD
DQ2
VDDQ
VDD
A11
A3
A9
A4
DQ0
VDDQ
VDD
DQ29
DQ30
DQ28
VDDQ NC
VSS
A7
VDDQ
VDDQ
NC
VDDQ
VDDQ
VDD
CK
A8/AP
DM3
VDDQ
DQ26
VDDQ
DQ15
DQ13
DM1
DQ11
DQ9
NC
CK
CKE
DQS3
DQ27
DQ25
DQ24
DQ14
DQ12
DQS1
DQ10
DQ8
NC
VREF
2345678910111213
B
C
D
E
F
G
H
J
K
L
M
N
NOTE:
1. RFU1 is reserved for A12
2. RFU2 is reserved for BA2
3. VSS Thermal balls are optional
NC
128M GDDR SDRAM
K4D263238K
- 5/19 - Rev. 1.1 July 2007
INPUT/OUTPUT FUNCTIONAL DESCRIPTION
*1 : The timing reference point for the differential clocking is the cross point of CK and CK.
For any applications using the single ended clocking, apply VREF to CK pin.
Symbol Type Function
CK, CK*1 Input
The differential system clock Input.
All of the inputs are sampled on the rising edge of the clock except
DQs and DMs that are sampled on both edges of the DQS.
CKE Input
Activates the CK signal when high and deactivates the CK signal
when low. By deactivating the clock, CKE low indicates the Power
down mode or Self refresh mode.
CS Input
CS enables the command decoder when low and disabled the com-
mand decoder when high. When the command decoder is disabled,
new commands are ignored but previous operations continue.
RAS Input Latches row addresses on the positive going edge of the CK with
RAS low. Enables row access & precharge.
CAS Input Latches column addresses on the positive going edge of the CK with
CAS low. Enables column access.
WE Input Enables write operation and row precharge.
Latches data in starting from CAS, WE active.
DQS Input/Output Data input and output are synchronized with both edge of DQS.
DM0 ~ DM3Input
Data In mask. Data In is masked by DM Latency=0 when DM is high
in burst write. DM0 for DQ0 ~ DQ7, DM1 for DQ8 ~ DQ15, DM2 for
DQ16 ~ DQ23, DM3 for DQ24 ~ DQ31.
DQ0 ~ DQ31 Input/Output Data inputs/Outputs are multiplexed on the same pins.
BA0, BA1Input Selects which bank is to be active.
A0 ~ A11 Input
Row/Column addresses are multiplexed on the same pins.
Row addresses : RA0 ~ RA11, Column addresses : CA0 ~ CA7.
Column address CA8 is used for auto precharge.
VDD/VSS Power Supply Power and ground for the input buffers and core logic.
VDDQ/VSSQ Power Supply Isolated power supply and ground for the output buffers to provide
improved noise immunity.
VREF Power Supply Reference voltage for inputs, used for SSTL interface.
128M GDDR SDRAM
K4D263238K
- 6/19 - Rev. 1.1 July 2007
BLOCK DIAGRAM (1Mbit x 32I/O x 4 Bank)
Bank Select
Timing Register
Address Register
Refresh Counter
Row Buffer
Row Decoder Col. Buffer
Data Input Register
Serial to parallel
1Mx32
1Mx32
1Mx32
1Mx32
Sense AMP
2-bit prefetch
Output BufferI/O Control
Column Decoder
Latency & Burst Length
Programming Register
Strobe
Gen.
CK,CK
ADDR
LCKE
CK,CK CKE CS RAS CAS WE DMi
LDMi
CK,CK
LCAS
LRAS LCBR LWE
LWCBR
LRAS
LCBR
CK, CK
64
64 32
32
LWE
LDMi
x32
DQi
Data Strobe
Intput Buffer
DLL
128M GDDR SDRAM
K4D263238K
- 7/19 - Rev. 1.1 July 2007
Power-Up Sequence
DDR SDRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.
1. Apply power and keep CKE at low state (All other inputs may be undefined)
- Apply VDD before or with VDDQ .
- Apply VDDQ before or with VREF & VTT
- The VDD voltage ramp time must be no greater than 200 ms from when VDD ramps
from 300 mV to VDD min and the power voltage ramps are without any slope reversal.
2. Start clock and maintain stable condition for minimum 200us.
3. The minimum of 200us after stable power and clock(CK,CK ), apply NOP and take CKE to be high.
4. Issue precharge command for all banks of the device.
5. Issue a EMRS command to enable DLL
*1 6. Issue a MRS command to reset DLL. The additional 200 clock cycles are required to lock the DLL.
*1,2 7. Issue precharge command for all banks of the device.
8. Issue at least 2 or more auto-refresh commands.
9. Issue a mode register set command with A8 to low to initialize the mode register.
*1 The additional 200cycles of clock input is required to lock the DLL after enabling DLL.
*2 Sequence of 6&7 is regardless of the order.
FUNCTIONAL DESCRIPTION
Power up & Initialization Sequence
Command
012345678910111213141516171819
tRP 2 Clock min.
precharge
ALL Banks
2nd Auto
Refresh
Mode
Register Set
Any
Command
tRFC
1st Auto
Refresh
tRFC
EMRS MRS
2 Clock min.
DLL Reset
precharge
ALL Banks
tRP
CK
CK
Inputs must be
stable for 200us
200 Clock min.
2 Clock min.
* When the operating frequency is changed, DLL reset should be required again.
After DLL reset again, the minimum 200 cycles of clock input is needed to lock the DLL.
128M GDDR SDRAM
K4D263238K
- 8/19 - Rev. 1.1 July 2007
The mode register stores the data for controlling the various operating modes of DDR SDRAM. It programs CAS latency,
addressing mode, burst length, test mode, DLL reset and various vendor specific options to make DDR SDRAM useful for
variety of different applications. The default value of the mode register is not defined, therefore the mode register must be
written after EMRS setting for proper operation. The mode register is written by asserting low on CS, RAS, CAS and
WE(The DDR SDRAM should be in active mode with CKE already high prior to writing into the mode register). The state of
address pins A0 ~ A11 and BA0, BA1 in the same cycle as CS, RAS, CAS and WE going low is written in the mode register.
Minimum two clock cycles are requested to complete the write operation in the mode register. The mode register contents
can be changed using the same command and clock cycle requirements during operation as long as all banks are in the
idle state. The mode register is divided into various fields depending on functionality. The burst length uses A0 ~ A2,
addressing mode uses A3, CAS latency(read latency from column address) uses A4 ~ A6. A7 is used for test mode. A8 is
used for DLL reset. A7,A8, BA0 and BA1 must be set to low for normal MRS operation. Refer to the table for specific codes
for various burst length, addressing modes and CAS latencies.
MODE REGISTER SET(MRS)
Address Bus
Mode
CAS Latency
A6A5A4Latency
0 0 0 Reserved
0 0 1 Reserved
0 1 0 Reserved
011 3
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 Reserved
Burst Length
A2A1A0
Burst Type
Sequential Interleave
0 0 0 Reserve Reserve
001 2 2
010 4 4
011 8 8
1 0 0 Reserve Reserve
1 0 1 Reserve Reserve
1 1 0 Reserve Reserve
1 1 1 Full page Reserve
Burst Type
A3Type
0 Sequential
1 Interleave
* RFU(Reserved for future use)
should stay "0" during MRS
cycle.
MRS Cycle
Command
*1: MRS can be issued only at all banks precharge state.
*2: Minimum tRP is required to issue MRS command.
CK, CK
Precharge NOP NOPMRS NOPNOP
201 534 867
Any
NOP All Banks Command
tRP tMRD=2 tCK
BA1BA0A11 A10 A9A8A7A6A5A4A3A2A1A0
RFU 0 RFU DLL TM CAS Latency BT Burst Length
BA0An ~ A0
0MRS
1EMRS
DLL
A8DLL Reset
0No
1Yes
Test Mode
A7mode
0Normal
1Test
Register
NOP
128M GDDR SDRAM
K4D263238K
- 9/19 - Rev. 1.1 July 2007
The extended mode register stores the data for enabling or disabling DLL and selecting output driver strength. The
default value of the extended mode register is not defined, therefore the extend mode register must be written after power
up for enabling or disabling DLL. The extended mode register is written by asserting low on CS, RAS, CAS, WE and high
on BA0(The DDR SDRAM should be in all bank precharge with CKE already high prior to writing into the extended mode
register). The state of address pins A0, A2 ~ A5, A7 ~ A11 and BA1 in the same cycle as CS, RAS, CAS and WE going
low are written in the extended mode register. A1 and A6 are used for setting driver strength to weak or matched imped-
ance. Two clock cycles are required to complete the write operation in the extended mode register. The mode register
contents can be changed using the same command and clock cycle requirements during operation as long as all banks
are in the idle state. A0 is used for DLL enable or disable. “High” on BA0 is used for EMRS. All the other address pins
except A0,A1,A6 and BA0 must be set to low for proper EMRS operation. Refer to the table for specific codes.
A0DLL Enable
0 Enable
1 Disable
BA0An ~ A0
0MRS
1EMRS
Figure 7. Extend Mode Register set
EXTENDED MODE REGISTER SET(EMRS)
Address Bus
Extended
BA1BA0A11 A10 A9A8A7A6A5A4A3A2A1A0
RFU 1 RFU D.I.C RFU D.I.C DLL Mode Register
* RFU(Reserved for future use)
should stay "0" during EMRS
cycle.
A6A1Output Driver Impedance Control
00 Full 100%
01 Weak 60%
10 N/A Do not use
11 Matched 30%
128M GDDR SDRAM
K4D263238K
- 10/19 - Rev. 1.1 July 2007
ABSOLUTE MAXIMUM RATINGS
Parameter Symbol Value Unit
Voltage on any pin relative to Vss VIN, VOUT -0.5 ~ 3.6 V
Voltage on VDD supply relative to Vss VDD -1.0 ~ 3.6 V
Voltage on VDD supply relative to Vss VDDQ -0.5 ~ 3.6 V
Storage temperature TSTG -55 ~ +150 °C
Power dissipation PD1.8 W
Short circuit current IOS 50 mA
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
Functional operation should be restricted to recommended operating condition.
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.
Note :
POWER & DC OPERATING CONDITIONS(SSTL_2 In/Out)
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 65°C)
Parameter Symbol Min Typ Max Unit Note
Device Supply voltage VDD 2.375 2.50 2.625 V 1
Output Supply voltage VDDQ 2.375 2.50 2.625 V 1
Reference voltage VREF 0.49*VDDQ - 0.51*VDDQ V2
Termination voltage Vtt VREF-0.04 VREF VREF+0.04 V 3
Input logic high voltage VIH VREF+0.15 - VDDQ+0.30 V 4
Input logic low voltage VIL -0.30 - VREF-0.15 V 5
Output logic high voltage VOH Vtt+0.76 - - V IOH=-15.2mA
Output logic low voltage VOL - - Vtt-0.76 V IOL=+15.2mA
Input leakage current IIL -5 - 5 uA 6
Output leakage current IOL -5 - 5 uA 6
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VREF is expected to equal 0.50*VDDQ of the transmitting device and to track variations in the DC level of the same. Peak to
peak noise on the VREF may not exceed + 2% of the DC value. Thus, from 0.50*VDDQ, VREF is allowed + 25mV for DC error
and an additional + 25mV for AC noise.
3. Vtt of the transmitting device must track VREF of the receiving device.
4. VIH(max.)= VDDQ +1.5V for a pulse and it which can not be greater than 1/3 of the cycle rate.
5. VIL(min.)= -1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.
6. For any pin under test input of 0V VIN VDD is acceptable. For all other pins that are not under test VIN=0V.
Note :
128M GDDR SDRAM
K4D263238K
- 11/19 - Rev. 1.1 July 2007
DC CHARACTERISTICS
Note: 1. Measured with outputs open.
2. Refresh period is 32ms.
Parameter Symbol Test Condition
Version Unit Note
-40 -50
Operating Current
(One Bank Active) ICC1 Burst Lenth=2 tRC tRC(min)
IOL=0mA, tCC= tCC(min) 189 170 mA 1
Precharge Standby Current
in Power-down mode ICC2PCKE VIL(max), tCC= tCC(min) 20 20 mA
Precharge Standby Current
in Non Power-down mode ICC2NCKE VIH(min), CS VIH(min),
tCC= tCC(min). 48 43 mA
Active Standby Current
power-down mode ICC3PCKE VIL(max), tCC= tCC(min) 78 67 mA
Active Standby Current in
in Non Power-down mode ICC3NCKE VIH(min), CSVIH(min),
tCC= tCC(min) . 153 134 mA
Operating Current
( Burst Mode) ICC4 IOL=0mA ,tCC= tCC(min), Page
Burst, All Banks activated. 402 344 mA
Refresh Current ICC5 tRC tRFC(min) 159 135 mA 2
Self Refresh Current ICC6 CKE 0.2V 10 mA
Recommended operating conditions Unless Otherwise Noted, TA=0 to 65°C)
AC INPUT OPERATING CONDITIONS
Recommended operating conditions(Voltage referenced to VSS=0V, VDD/ VDDQ=2.5V+ 5%, TA=0 to 65°C)
Parameter Symbol Min Typ Max Unit Note
Input High (Logic 1) Voltage; DQ VIH VREF+0.35 - - V
Input Low (Logic 0) Voltage; DQ VIL --VREF-0.35 V
Clock Input Differential Voltage; CK and CK VID 0.7 - VDDQ+0.6 V 1
Clock Input Crossing Point Voltage; CK and CK VIX 0.5*VDDQ-0.2 - 0.5*VDDQ+0.2 V 2
1. VID is the magnitude of the difference between the input level on CK and the input level on CK
2. The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the DC level of the same
Note :
128M GDDR SDRAM
K4D263238K
- 12/19 - Rev. 1.1 July 2007
AC OPERATING TEST CONDITIONS (VDD/ VDDQ=2.5V+ 5% , TA= 0 to 65°C)
Parameter Value Unit Note
Input reference voltage for CK(for single ended) 0.50*VDDQ V
CK and CK signal maximum peak swing 1.5 V
CK signal minimum slew rate 1.0 V/ns
Input Levels(VIH/VIL)VREF+0.35/VREF-0.35 V
Input timing measurement reference level VREF V
Output timing measurement reference level Vtt V
Output load condition See Fig.1
RT=50
Output
CLOAD=30pF
(Fig. 1) Output Load Circuit
Z0=50
VREF
=0.5*VDDQ
Vtt=0.5*VDDQ
DECOUPLING CAPACITANCE GUIDE LINE
Recommended decoupling capacitance added to power line at board.
Parameter Symbol Value Unit
Decoupling Capacitance between VDD and VSS CDC1 0.1 + 0.01 uF
Decoupling Capacitance between VDDQ and VSSQ CDC2 0.1 + 0.01 uF
1. VDD and VDDQ pins are separated each other.
All VDD pins are connected in chip. All VDDQ pins are connected in chip.
2. VSS and VSSQ pins are separated each other
All VSS pins are connected in chip. All VSSQ pins are connected in chip.
Note :
CAPACITANCE (VDD=2.5V, TA= 25°C, f=1MHz)
Parameter Symbol Min Max Unit
Input capacitance( CK, CK )CIN1 1.0 5.0 pF
Input capacitance(A0~A11, BA0~BA1)CIN2 1.0 4.0 pF
Input capacitance
( CKE, CS, RAS,CAS, WE ) CIN3 1.0 4.0 pF
Data & DQS input/output capacitance(DQ0~DQ31)COUT 1.0 6.0 pF
Input capacitance(DM0 ~ DM3) CIN4 1.0 6.0 pF
128M GDDR SDRAM
K4D263238K
- 13/19 - Rev. 1.1 July 2007
13467
tCL
tCK
Hi-Z
Hi-Z
CK, CK
DQS
DQ
CS
DM
25
tIS
tIH
8
tDS tDH
01
tRPST
tRPRE
Db0 Db1
tDQSS tDQSH
tCH
Da1
Da2
tWPST
COMMAND
READA WRITEB
tDQSQ
tWPRES
tWPREH
tDQSCK
tAC
AC CHARACTERISTICS
Simplified Timing @ BL=2, CL=3
Parameter Symbol -40 -50 Unit Note
Min Max Min Max
CK cycle time CL=3 tCK 4.0 10 5.0 10 ns
CK high level width tCH 0.45 0.55 0.45 0.55 tCK
CK low level width tCL 0.45 0.55 0.45 0.55 tCK
DQS out access time from CK tDQSCK -0.6 0.6 -0.7 +0.7 ns
Output access time from CK tAC -0.6 0.6 -0.7 +0.7 ns
Data strobe edge to Dout edge tDQSQ - 0.4 - +0.45 ns
Read preamble tRPRE 0.9 1.1 0.9 1.1 tCK
Read postamble tRPST 0.4 0.6 0.4 0.6 tCK
CK to valid DQS-in tDQSS 0.85 1.15 0.8 1.2 tCK
DQS-In setup time tWPRES 0 - 0 - ns
DQS-in hold time tWPREH 0.35 - 0.25 - tCK
DQS write postamble tWPST 0.4 0.6 0.4 0.6 tCK
DQS-In high level width tDQSH 0.4 0.6 0.4 0.6 tCK
DQS-In low level width tDQSL 0.4 0.6 0.4 0.6 tCK
Address and Control input setup tIS 0.9 - 1.0 - ns
Address and Control input hold tIH 0.9 - 1.0 - ns
DQ and DM setup time to DQS tDS 0.4 - 0.45 - ns
DQ and DM hold time to DQS tDH 0.4 - 0.45 - ns
Clock half period tHP
tCLmin
or
tCHmin
-
tCLmin
or
tCHmin
-ns
Data output hold time from DQS tQH tHP-0.4 - tHP-0.45 - ns
128M GDDR SDRAM
K4D263238K
- 14/19 - Rev. 1.1 July 2007
Note 1 :
- The JEDEC DDR specification currently defines the output data valid window(tDV) as the time period when the data
strobe and all data associated with that data strobe are coincidentally valid.
- The previously used definition of tDV(=0.35tCK) artificially penalizes system timing budgets by assuming the worst case
output valid window even then the clock duty cycle applied to the device is better than 45/55%
- A new AC timing term, tQH which stands for data output hold time from DQS is defined to account for clock duty cycle
variation and replaces tDV
- tQHmin = tHP-X where
. tHP=Minimum half clock period for any given cycle and is defined by clock high or clock low time(tCH,tCL)
. X=A frequency dependent timing allowance account for tDQSQmax
tQH Timing (CL3, BL2)
134
tHP
CK, CK
DQS
DQ
CS
25
01
COMMAND
READA
tQH
Da0
tDQSQ(max)
tDQSQ(max)
Da1
128M GDDR SDRAM
K4D263238K
- 15/19 - Rev. 1.1 July 2007
AC CHARACTERISTICS (I)
Note : 1. For normal write operation, even numbers of Din are to be written inside DRAM
2. The number of clock of tRP is restricted by the number of clock of tRAS and tRP
3. The number of clock of tWR_A is fixed. It can’t be changed by tCK
4. tRCDWR is equal to tRCDRD-2tCK and the number of clock can not be lower than 2tCK.
5. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then
rounding off to the next higher integer unconditionally.
Parameter Symbol -40 -50 Unit Note
Min Max Min Max
Row cycle time tRC 48 - 50 - ns 2,5
Refresh row cycle time tRFC 56 - 55 - ns 5
Row active time tRAS 32 100K 35 100K ns 5
RAS to CAS delay for Read tRCDRD 16 - 15 - ns 5
RAS to CAS delay for Write tRCDWR 8 10 ns 4
Row precharge time tRP 16 - 15 - ns 5
Row active to Row active tRRD 10 - 10 - ns 5
Last data in to Row precharge tWR 15 - 15 - ns 5
Last data in to Row precharge
@Auto Precharge tWR_A 3 - 3 - tCK 3
Auto precharge write recovery + Pre-
charge tDAL 7 - 6 - tCK 3,5
Last data in to Read command tCDLR 2 - 2 - tCK 1
Col. address to Col. address tCCD 1 - 1 - tCK
Mode register set cycle time tMRD 2 - 2 - tCK
Exit self refresh to read command tXSR 200 - 200 - tCK
Power down exit time tPDEX 3tCK+tIS -
3tCK+tIS
-ns
Refresh interval time tREF - 7.8 - 7.8 us
AC CHARACTERISTICS (II)
* 200/166MHz are supported in K4D263238K-VC40
* 166MHz is supported in K4D263238K-VC50
K4D263238K-VC40
Frequency Cas Latency tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
250MHz ( 4.0ns ) 3 12 14 8 4 2 4 3 7 tCK
200MHz ( 5.0ns ) 3 10 11 7 3 2 3 2 6 tCK
166MHz ( 6.0ns ) 3 9 9 6 3 2 3 2 6 tCK
K4D263238K-VC50
Frequency Cas Latency tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
200MHz ( 5.0ns ) 3 10 11 7 3 2 3 2 6 tCK
166MHz ( 6.0ns ) 3 9 9 6 3 2 3 2 6 tCK
128M GDDR SDRAM
K4D263238K
- 16/19 - Rev. 1.1 July 2007
01 23 45 678
BAa
Ra
Ra
tRCD
ACTIVEA ACTIVEB WRITEA WRITEB
Db0 Db1 Db3
13 14 15 16 17 18 19 20 21
BAa BAb
Ca Cb
BAa
Ca
9101112
PRECH
BAa
22
Ra
Da0 Da1 Da2 Da3
Normal Write Burst
(@ BL=4)
Multi Bank Interleaving Write Burst
(@ BL=4)
BAa
Ra
Ra
BAb
Rb
Rb
Db2
tRAS
tRC
tRP
tRRD
COMMAND
DQS
DQ
WE
DM
CK, CK
A8/AP
ADDR
(A0~A7,
BA[1:0]
A9~,A11)
ACTIVEA WRITEA
Da0 Da1 Da2 Da3
Simplified Timing(2) @ BL=4, CL=3
128M GDDR SDRAM
K4D263238K
- 17/19 - Rev. 1.1 July 2007
PACKAGE DIMENSIONS (144-Ball FBGA)
Unit : mm
12.0
12.0
0.8
0.8
0.35 ± 0.05
1.40 Max
<Top View>
<Bottom View>
0.45 ± 0.05
0.8x11=8.8
0.40
0.8x11=8.8
0.40
B
C
D
E
F
G
H
J
K
L
M
N
13 12 11 10 9 8 7 6 5 4 3 2
A1 INDEX MARK
A1 INDEX MARK
0.10 Max
128M GDDR SDRAM
K4D263238K
- 18/19 - Rev. 1.1 July 2007
Minimum Maximum Minimum Maximum
00000
0.1 4.2 5.24 1.84 2.44
0.2 9.92 11.36 -2.88 -2.88
0.3 15.28 17.24 -7.44 -8.16
0.4 20.56 23.12 -11.84 -13.16
0.5 25.6 28.76 -16 -18.24
0.6 30.36 34.24 -20.04 -23.08
0.7 34.88 39.48 -23.92 -27.84
0.8 38.96 44.64 -27.52 -32.4
0.9 42.64 49.48 -30.8 -36.84
1 45.76 53.92 -33.88 -41.04
1.1 48.4 57.92 -36.6 -45.04
1.2 50.48 61.56 -39 -48.84
1.3 52.04 64.72 -41.08 -52.48
1.4 53.24 67.28 -42.84 -55.76
1.5 54.16 69.44 -44.24 -58.84
1.6 54.8 71.2 -45.44 -61.56
1.7 55.32 72.52 -46.44 -64.04
1.8 55.76 73.48 -47.28 -66.16
1.9 56.16 74.28 -47.96 -68.04
2 56.48 74.92 -48.68 -69.64
2.1 56.8 75.4 -49.28 -71.04
2.2 57.08 75.84 -49.84 -72.24
2.3 57.36 76.24 -50.36 -73.36
2.4 57.64 76.56 -50.48 -74.24
2.5 57.84 76.8 -50.52 -75.08
2.6 58.08 77.12 -50.55 -75.84
2.7 58.28 77.36 -50.58 -76.56
Voltage(V) Pulldown Current(mA) Pullup Current(mA)
IBIS :I/V Characteristics for Input and Output Buffers
Full Strength Driver Characteristics
128M GDDR SDRAM
K4D263238K
- 19/19 - Rev. 1.1 July 2007
Minimum Maximum Minimum Maximum
0 0000
0.1 3.48 4.32 0.96 -2.68
0.2 7.96 9.2 -2.92 -7.4
0.3 12.24 14 -6.56 -11.96
0.4 16.44 18.76 -10.12 -16.4
0.5 20.36 23.2 -13.64 -20.68
0.6 24.08 27.6 -16.8 -24.84
0.7 27.36 31.8 -19.88 -28.88
0.8 30.48 35.68 -22.72 -32.8
0.9 33.12 39.36 -25.32 -36.48
1 35.32 42.6 -27.64 -40.08
1.1 37.08 45.6 -29.72 -43.44
1.2 38.4 48.08 -31.52 -46.44
1.3 39.44 50.2 -33.04 -49.36
1.4 40.16 51.92 -34.28 -51.96
1.5 40.72 53.28 -35.36 -54.4
1.6 41.12 54.32 -36.2 -56.48
1.7 41.52 55.08 -36.92 -58.36
1.8 41.84 55.68 -37.6 -60
1.9 42.08 56.2 -38.12 -61.48
2 42.32 56.56 -38.6 -62.72
2.1 42.56 56.92 -39.08 -63.8
2.2 42.76 57.24 -39.48 -64.8
2.3 42.96 57.44 -39.92 -65.64
2.4 43.16 57.72 -40.12 -66.4
2.5 43.32 57.92 -40.15 -67.12
2.6 43.52 58.12 -40.18 -67.72
2.7 43.68 58.32 -40.2 -68.32
Pulldown Current(mA) Pullup Current(mA)
Voltage(V)
Weak Strength Driver Characteristics
128M GDDR SDRAM
K4D263238K
- 20/19 - Rev. 1.1 July 2007
Minimum Maximum Minimum Maximum
00000
0.1 3.08 0.84 0.24 -2.36
0.2 6.76 4.84 -2.76 -5.88
0.3 10.28 8.56 -5.68 -9.36
0.4 13.72 12.32 -8.44 -12.8
0.5 16.84 15.92 -11.08 -16.16
0.6 19.84 19.36 -13.56 -19.24
0.7 22.48 22.64 -15.8 -22.32
0.8 24.88 25.72 -17.96 -25.16
0.9 26.8 28.56 -19.88 -27.92
1 28.44 31.16 -21.56 -30.52
1.1 29.6 33.44 -23.04 -32.92
1.2 30.52 35.36 -24.36 -35.12
1.3 31.24 36.96 -25.36 -37.12
1.4 31.8 38.16 -26.24 -38.88
1.5 32.12 39.12 -26.96 -40.52
1.6 32.44 39.84 -27.56 -41.96
1.7 32.68 40.4 -28.04 -43.12
1.8 32.92 40.84 -28.56 -44.24
1.9 33.16 41.2 -28.92 -45.12
2 33.28 41.44 -29.28 -45.96
2.1 33.48 41.72 -29.6 -46.6
2.2 33.64 41.88 -29.96 -47.28
2.3 33.8 42.08 -30.24 -47.84
2.4 33.92 42.24 -30.34 -48.36
2.5 34.12 42.44 -30.38 -48.84
2.6 34.24 42.56 -30.41 -49.28
2.7 34.36 42.68 -30.42 -49.68
Pulldown Current(mA) Pullup Current(mA)
Voltage(V)
Matched Strength Driver Characteristics