RT9013
1
DS9013-10 April 2011 www.richtek.com
Pin Configurations
Applications
CDMA/GSM Cellular Handsets
Portable Information Appliances
Laptop, Palmtops, Notebook Computers
Hand-Held Instruments
Mini PCI & PCI-Express Cards
PCMCIA & New Cards
500mA, Low Dropout, Low Noise Ultra-Fast Without
Bypass Capacitor CMOS LDO Regulator
Ordering Information Marking Information
For marking information, contact our sales representative
directly or through a Richtek distributor located in your
area.
General Description
The RT9013 is a high-performance, 500mA LDO regulator,
offering extremely high PSRR and ultra-low dropout. Ideal
for portable RF and wireless applications with demanding
performance and space requirements.
The RT9013 quiescent current as low as 25μA, further
prolonging the battery life. The RT9013 also works with
low-ESR ceramic capacitors, reducing the amount of board
space necessary for power applications, critical in hand-
held wireless devices.
The RT9013 consumes typical 0.7μA in shutdown mode
and has fast turn-on time less than 40μs. The other features
include ultra-low dropout voltage, high output accuracy,
current limiting protection, and high ripple rejection ratio.
Available in the SC-82, SOT-23-5, SC-70-5 and WDFN-6L
2x2 package.
(TOP VIEW)
WDFN-6L 2x2
Features
Wide Operating Voltage Ranges : 2.2V to 5.5V
Low Dropout : 250mV at 500mA
Ultra-Low-Noise for RF Application
Ultra-Fast Response in Line/Load Transient
Current Limiting Protection
Thermal Shutdown Protection
High Power Supply Rejection Ratio
Output Only 1μμ
μμ
μF Capacitor Required for Stability
TTL-Logic-Controlled Shutdown Input
RoHS Compliant and 100% Lead (Pb)-Free
SOT-23-5 / SC-70-5
Note :
Richtek products are :
` RoHS compliant and compatible with the current require-
ments of IPC/JEDEC J-STD-020.
` Suitable for use in SnPb or Pb-free soldering processes.
VIN GND EN
VOUT NC
4
23
5
EN
GND
NC
NC
VOUTVIN
5
4
1
2
3
6
GND
7
VIN VOUT
EN GND
3
2
4
SC-82
RT9013
Package Type
Y : SC-82
B : SOT-23-5
U5 : SC-70-5
QW : WDFN-6L 2x2 (W-Type)
Lead Plating System
P : Pb Free
G : Green (Halogen Free and Pb Free)
Fixed Output Voltage
12 : 1.2V
13 : 1.3V
15 : 1.5V
16 : 1.6V
:
32 : 3.2V
33 : 3.3V
1B : 1.25V
1H : 1.85V
2H : 2.85V
-
RT9013
2
DS9013-10 April 2011www.richtek.com
Typical Application Circuit
Functional Pin Description
Pin Number
SC-82 SOT-23-5 /
SC-70-5 WDFN-6 L 2x 2 Pin Na me Pin Fun ction
3 5 4 VOUT Regulator Output.
-- 4 5, 6 NC No Internal Connection.
2 2
2,
7 (Exposed
Pad)
GND
Common Ground. The exposed pad must be soldered to a
large PCB and connected to GND for maximum power
dissipation.
1 3 1 EN
Enable Input Logic, Active High. When the EN goes to a
logic low, the device will be shutdown mode.
4 1 3 VIN Supply Input.
Function Block Diagram
+
-
POR
OTP
EN
VIN
VOUT
GND
MOS
Driver
Current
Limit
VREF
VIN
GND
VOUT
RT9013
COUT
1µF/X7R
1µF/X7R
NC
EN
CIN
VIN VOUT
Chip Enable
Rpull_down
100k
RT9013
3
DS9013-10 April 2011 www.richtek.com
Absolute Maximum Ratings (Note 1)
Supply Input Voltage ------------------------------------------------------------------------------------------------------ 6V
EN Input Voltage ----------------------------------------------------------------------------------------------------------- 6V
Power Dissipation, PD @ TA = 25°C
SOT-23-5 -------------------------------------------------------------------------------------------------------------------- 0.4W
SC-70-5/ SC-82 ------------------------------------------------------------------------------------------------------------ 0.3W
WDFN-6L 2x2 -------------------------------------------------------------------------------------------------------------- 0.606W
Package Thermal Resistance (Note 2)
SOT-23-5, θJA --------------------------------------------------------------------------------------------------------------- 250°C/W
SOT-23-5, θJC -------------------------------------------------------------------------------------------------------------- 25°C/W
SC-70-5/ SC-82, θJA ------------------------------------------------------------------------------------------------------ 333°C/W
WDFN-6L 2x2, θJA --------------------------------------------------------------------------------------------------------- 165°C/W
WDFN-6L 2x2, θJC --------------------------------------------------------------------------------------------------------- 20°C/W
Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------- 260°C
Junction Temperature ----------------------------------------------------------------------------------------------------- 150°C
Storage Temperature Range -------------------------------------------------------------------------------------------- 65°C to 150°C
ESD Susceptibility (Note 3)
HBM -------------------------------------------------------------------------------------------------------------------------- 2kV
MM ---------------------------------------------------------------------------------------------------------------------------- 200V
Recommended Operating Conditions (Note 4)
Supply Input Voltage ------------------------------------------------------------------------------------------------------ 2.2V to 5.5V
Junction Temperature Range -------------------------------------------------------------------------------------------- 40°C to 125°C
Ambient Temperature Range -------------------------------------------------------------------------------------------- 40°C to 85°C
Electrical Characteristics
Parameter Symbol Test Conditions Min Typ Max Unit
Input Voltage Range VIN 2.2 -- 5.5 V
Output Noise Voltage VON VOUT = 1.5V, COUT = 1 μF, IOUT =
0mA -- 30 -- μVRMS
Output Voltage Accuracy
(Fixed Output Voltage) ΔVOUT I
OUT = 10mA 2 0 +2 %
Quiescent Current (Note 5) IQ V
EN = 5V, IOUT = 0mA -- 25 50 μA
Shutdown Current ISHDN V
EN = 0V -- 0.7 1.5 μA
RLOAD = 0Ω, 2.2V VIN < 2.6V 0.4 0.5 0.85 A
Current Limit ILIM RLOAD = 0Ω, 2.7V VIN 5.5V 0.5 0.6 0.85 A
IOUT = 400mA, 2.2V V
IN < 2.7V -- 160 320
Dropout Voltage (Note 6) VDROP IOUT = 500mA, 2.7V V
IN 5.5V -- 250 400 mV
1mA < IOUT < 400mA
2.2V VIN < 2.7V -- -- 0.6
Load Regulation (Note 7)
(Fixed Output Voltage) ΔVLOAD 1mA < IOUT < 500 mA
2.7V VIN 5.5V -- -- 1
%
(VIN = VOUT + 0.5V, VEN = VIN, CIN = COUT = 1μF (Ceramic, X7R), TA = 25°C unless otherwise specified)
To be continued
RT9013
4
DS9013-10 April 2011www.richtek.com
Note 1. Stresses listed as the above Absolute Maximum Ratings may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational
sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may
remain possibility to affect device reliability.
Note 2. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of JEDEC 51-3
thermal measurement standard. The case position of θJC is on the exposed pad for the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT under no
load condition (IOUT = 0mA). The total current drawn from the supply is the sum of the load current plus the ground pin
current.
Note 6. The dropout voltage is defined as VIN -VOUT, which is measured when VOUT is VOUT(NORMAL) - 100mV.
Note 7. Regulation is measured at constant junction temperature by using a 2ms current pulse. Devices are tested for load
regulation in the load range from 10mA to 500mA.
Parameter Symbol Test Conditions Min Typ Max Unit
Logic-Low VIL 0 -- 0.6
EN Threshold Voltage Logic-High VIH 1.6 -- 5.5 V
Enable Pin Current IEN -- 0.1 1 μA
Power Supply Rejection Rate PSRR IOUT = 100mA, f = 10kHz -- 50 -- dB
Line Regulation ΔVLINE VIN = (VOUT+0.5) to 5.5V,
IOUT = 1mA -- 0.01 0.2 %/V
Thermal Shutdown Temperature TSD -- 170 --
Thermal Shutdown Hysteresis ΔTSD -- 30 -- °C
RT9013
5
DS9013-10 April 2011 www.richtek.com
Typical Operating Characteristics
Output Voltage vs. Temperature
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
-50 -25 0 25 50 75 100 125
Temperature
Output Voltage (V)
VIN = 2.5V
(°C)
(CIN = COUT = 1μ/X7R, unless otherwise specified)
Dropout Voltage vs. Load Current
0
50
100
150
200
250
300
350
0 50 100 150 200 250 300 350 400 450 500
Load Current (mA)
Dropout Voltage (mV)
RT9013-33PQW
TJ = 125°C
TJ = 25°C
TJ = -40°C
VIN = 2.5V, ILOAD = 75mA
Start Up
Time (5μs/Div)
EN Pin Voltage
(V)
Output Voltage
(V)
4
2
0
1.0
0.5
0
RT9013-15PQW
VIN = 2.5V, ILOAD = 50mA
EN Pin Shutdown Response
EN Pin Voltage
(V)
Time (100μs/Div)
Output Voltage
(V)
4
2
0
2
1
0
RT9013-15PQW
Quiescent Current vs. Temperature
10
12
14
16
18
20
22
24
26
28
30
-50 -25 0 25 50 75 100 125
Temperature
Quiescent Current (uA)
VIN = 2.5V
(°C)
Dropout Voltage vs. Load Current
0
50
100
150
200
250
300
350
0 50 100 150 200 250 300 350 400 450 500
Load Current (mA)
Dropout Voltage (mV)
RT9013-25PQW
TJ = 125°C
TJ = 25°C
TJ = -40°C
RT9013
6
DS9013-10 April 2011www.richtek.com
VIN = 2.5V, ILOAD = 10mA to 100mA
Load Transient Response
Load Current
(mA)
Time (100μs/Div)
Output Voltage
Deviation (mV)
100
50
0
50
0
-50
RT9013-15PQW
VIN = 2.6V to 3.6V, ILOAD = 10mA
Line Transient Response
Input Voltage
Deviation (V)
Time (100μs/Div)
Output Voltage
Deviation (mV)
3.6
2.6
20
0
-20
RT9013-15PQW
Line Transient Response
Input Voltage
Deviation (V)
Time (100μs/Div)
Output Voltage
Deviation (mV)
3.6
2.6
20
0
-20
VIN = 2.6V to 3.6V, ILOAD = 100mA
RT9013-15PQW
VIN = 3.0V (By Battery), ILOAD = 10mA
Noise
Time (10ms/Div)
Noise (μV/Div)
300
200
100
0
-100
-200
-300
RT9013-15PQW
VIN = 3.0V (By Battery), No Load
Noise
Time (10ms/Div)
Noise (μV/Div)
300
200
100
0
-100
-200
-300
RT9013-15PQW
VIN = 2.5V, ILOAD = 10mA to 300mA
Load Transient Response
Load Current
(mA)
Time (100μs/Div)
Output Voltage
Deviation (mV)
400
200
0
50
0
-50
RT9013-15PQW
RT9013
7
DS9013-10 April 2011 www.richtek.com
PSRR
-70
-60
-50
-40
-30
-20
-10
0
10
20
10 100 1000 10000 100000 1000000
Frequency (Hz)
PSRR(dB)
ILOAD = 100mA
ILOAD = 300mA
ILOAD = 10mA
VIN = 2.5V to 2.6V
VIN = 3.0V (By Battery), ILOAD = 300mA
Noise
Time (10ms/Div)
Noise (μV/Div)
300
200
100
0
-100
-200
-300
RT9013-15PQW
RT9013
8
DS9013-10 April 2011www.richtek.com
Applications Information
Like any low-dropout regulator, the external capacitors used
with the RT9013 must be carefully selected for regulator
stability and performance. Using a capacitor whose value
is > 1μF/X7R on the RT9013 input and the amount of
capacitance can be increased without limit. The input
capacitor must be located a distance of not more than 0.5
inch from the input pin of the IC and returned to a clean
analog ground. Any good quality ceramic can be used for
this capacitor. The capacitor with larger value and lower
ESR (equivalent series resistance) provides better PSRR
and line-transient response.
The output capacitor must meet both requirements for
minimum amount of capacitance and ESR in all LDOs
application. The RT9013 is designed specifically to work
with low ESR ceramic output capacitor in space-saving
and performance consideration. Using a ceramic capacitor
whose value is at least 1μF with ESR is > 5mΩ on the
RT9013 output ensures stability. The RT9013 still works
well with output capacitor of other types due to the wide
stable ESR range. Figure 1. shows the curves of allowable
ESR range as a function of load current for various output
capacitor values. Output capacitor of larger capacitance
can reduce noise and improve load transient response,
stability, and PSRR. The output capacitor should be located
not more than 0.5 inch from the VOUT pin of the RT9013
and returned to a clean analog ground.
Figure 1
Enable
The RT9013 goes into sleep mode when the EN pin is in a
logic low condition. During this condition, the RT9013 has
an EN pin to turn on or turn off regulator, When the EN pin
is logic hight, the regulator will be turned on. The supply
current to 0.7μA typical. The EN pin may be directly tied
to VIN to keep the part on. The Enable input is CMOS
logic and cannot be left floating.
PSRR
The power supply rejection ratio (PSRR) is defined as the
gain from the input to output divided by the gain from the
supply to the output. The PSRR is found to be
×= ΔSupply
Error ΔGain
log20 PSRR
Note that when heavy load measuring, Δsupply will cause
Δtemperature. And Δtemperature will cause Δoutput
voltage. So the heavy load PSRR measuring is include
temperature effect.
Current limit
The RT9013 contains an independent current limiter, which
monitors and controls the pass transistor's gate voltage,
limiting the output current to 0.6A (typ.). The output can
be shorted to ground indefinitely without damaging the part.
Thermal Considerations
Thermal protection limits power dissipation in RT9013.
When the operation junction temperature exceeds 170°C,
the OTP circuit starts the thermal shutdown function and
turns the pass element off. The pass element turn on again
after the junction temperature cools by 30°C.
For continuous operation, do not exceed absolute
maximum operation junction temperature 125°C. The
power dissipation definition in device is :
PD = (VIN VOUT) x IOUT + VIN x IQ
The maximum power dissipation depends on the thermal
resistance of IC package, PCB layout, the rate of
surroundings airflow and temperature difference between
junction to ambient. The maximum power dissipation can
be calculated by following formula :
Region of Stable COUT ESR vs . Loa d Curre nt
0.001
0.010
0.100
1.000
10.000
100.000
0 50 100 150 200 250 300
Load Current (mA)
C
OUT
ESR
()
Region of Stable COUT ESR (Ω)
COUT = 1μF
Stable Range
Unstable Range
Unstable Range
100
0
1
0.1
0.01
0.001
RT9013
9
DS9013-10 April 2011 www.richtek.com
Figure 2. Derating Curves for RT9013 Packages
PD(MAX) = ( TJ(MAX) TA ) /θJA
Where TJ(MAX) is the maximum operation junction
temperature, TA is the ambient temperature and the θJA is
the junction to ambient thermal resistance.
For recommended operating conditions specification of
RT9013 the maximum junction temperature is 125°C and
TA is the operated ambient temperature. The junction to
ambient thermal resistance θJA (θJA is layout dependent)
for WDFN-6L 2x2 package is 165°C/W, SOT-23-5 package
is 250°C/W and SC-70-5/ SC-82 package is 333°C/W on
the standard JEDEC 51-3 single-layer thermal test board.
The maximum power dissipation at TA = 25°C can be
calculated by following formula :
PD(MAX) = (125°C 25°C) / 165°C/W = 0.606 W for
WDFN-6L 2x2 packages
PD(MAX) = (125°C 25°C) / 250°C/W = 0.400 W for
SOT-23-5 packages
PD(MAX) = (125°C 25°C) / 333°C/W = 0.300 W for
SC-70-5/ SC-82 packages
The maximum power dissipation depends on operating
ambient temperature for fixed TJ(MAX) and thermal resistance
θJA. For RT9013 package, the Figure 2 of derating curves
allows the designer to see the effect of rising ambient
temperature on the maximum power dissipation allowed.
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 12.5 25 37.5 50 62.5 75 87.5 100 113 125
Ambient Temperature
Power Dissipation (W)
(°C)
Single Layer PCB
WDFN-6L 2x2
SOT-23-5
SC-70-5/
SC-82
RT9013
10
DS9013-10 April 2011www.richtek.com
Outline Dimension
Dimensions In M illimeters Dimensions In Inches
Symbol Min Max Min Max
A 0.800 1.100 0.031 0.043
A1 0.000 0.100 0.000 0.004
B 1.150 1.350 0.045 0.053
b 0.150 0.400 0.006 0.016
b1 0.350 0.500 0.014 0.020
C 1.800 2.450 0.071 0.096
D 1.800 2.200 0.071 0.087
e 1.300 0.051
H 0.080 0.260 0.003 0.010
L 0.200 0.460 0.008 0.018
SC-82 Surface Mount Package
e
D
A
C
b
A1
L
B
b1
H
e
RT9013
11
DS9013-10 April 2011 www.richtek.com
AA1
e
b
B
D
C
H
L
SOT-23-5 Surface Mount Package
Dimensions In Millimeters Dimens ions In In ch e s
Symbol Min Max Min Max
A 0.889 1.295 0.035 0.051
A1 0.000 0.152 0.000 0.006
B 1.397 1.803 0.055 0.071
b 0.356 0.559 0.014 0.022
C 2.591 2.997 0.102 0.118
D 2.692 3.099 0.106 0.122
e 0.838 1.041 0.033 0.041
H 0.080 0.254 0.003 0.010
L 0.300 0.610 0.012 0.024
RT9013
12
DS9013-10 April 2011www.richtek.com
AA1
e
b
B
D
C
H
L
SC-70-5 Surface Mount Package
Dimensions In Millimeters Dimensio ns In Inches
Symbol Min Max Min Max
A 0.800 1.100 0.031 0.044
A1 0.000 0.100 0.000 0.004
B 1.150 1.350 0.045 0.054
b 0.150 0.400 0.006 0.016
C 1.800 2.450 0.071 0.096
D 1.800 2.250 0.071 0.089
e 0.650 0.026
H 0.080 0.260 0.003 0.010
L 0.210 0.460 0.008 0.018
RT9013
13
DS9013-10 April 2011 www.richtek.com
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design,
specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed
by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
Richtek Technology Corporation
Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Richtek Technology Corporation
Taipei Office (Marketing)
5F, No. 95, Minchiuan Road, Hsintien City
Taipei County, Taiwan, R.O.C.
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com
W-Type 6L DFN 2x2 Package
Dimensions In Millimeters Dimensions In Inches
Symbol Min Max Min Max
A 0.700 0.800 0.028 0.031
A1 0.000 0.050 0.000 0.002
A3 0.175 0.250
0.007 0.010
b 0.200 0.350 0.008 0.014
D 1.950 2.050 0.077 0.081
D2 1.000 1.450 0.039 0.057
E 1.950 2.050 0.077 0.081
E2 0.500 0.850 0.020 0.033
e 0.650 0.026
L 0.300 0.400
0.012 0.016
D
1
E
A3
A
A1
eb
L
D2
E2
SEE DETAIL A
11
2
2
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
DETAIL A
Pin #1 ID and Tie Bar Mark Options