Visit our website: www.e2v.com
for the latest version of the datasheet
e2v semiconductors SAS 2008
PC8280/PC8270 Power QUICC II
Integrated Communication Processors
Datasheet - Preliminary Specification
0836E–HIREL–04/08
Features
PC603e Microprocessor (Embedded PowerPC® Core) at 166-450 MHz
603e Core with 16K Inst and 16K Data Caches
64-bit 60x Bus, 32-bit Local/PCI Bus
128K ROM, 32K IRAM, 32K DPRAM
Three FCCs Supporting ATM, 10/100 Ethernet or HDLC
256 HDLC Channels, 8 TDMs
4 SCCs, 2 SMCs, SPI, I2C
Memory Controller Built from SDRAM, UPM, GPCM Machines
New Features - USB, RMII, UTOPIA Improvements
Performance
400 MHz CPU, 250 MHz CPM, 83 MHz Bus
Less than 2W at Full Performance, 1.5V
Technology
3.3V I/O, 1.5V Core
480 TBGA, 37.5 × 37.5 mm, 1.27 mm Ball Pitch
Description
This document contains detailed information about power considerations, DC/AC electrical characteristics, and AC timing
specifications for 130 nm members of the PowerQUICC II family of integrated communications processors: the PC8280
and the PC8270 (collectively called 'the PC8280' throughout this document).
Screening/Quality/Packaging
This product is manufactured in full compliance with:
Upscreening Based Upon e2v Standards
Military Temperature Range (Tcase = -55°C, TJ = +125°C)
480-ball Tape Ball Grid Array Package (TBGA 37.5 × 37.5 mm)
2
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
1. Overview
Table 1-1 shows the functionality supported by the PC8280.
Table 1-1. PC8280 PowerQUICC II Functionality
Functionality Package
PC8270 PC8280
480 TBGA 480 TBGA
Serial communications controllers (SCCs) 4 4
QUICC multi-channel controller (QMC)
Fast communication controllers (FCCs) 3 3
I-Cache (Kbyte) 16 16
D-Cache (Kbyte) 16 16
Ethernet (10/100) 3 3
UTOPIA II Ports 0 2
Multi-channel controllers (MCCs) 1 2
PCI bridge Yes Yes
Transmission convergence (TC) layer Yes
Inverse multiplexing for ATM (IMA) Yes
Universal serial bus (USB) 2 full/low rate 1 1
Security engine (SEC)
3
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Figure 1-1. PC8280 Block Diagram
Notes: 1. PC8280 only (not on PC8270)
2. PC8280 has 2 serial interface (SI) blocks and 8 TDM ports. PC8270 has only 1 SI block and 4 TDM ports (TDM2[A–D]).
3. PC8280 only (not on PC8270)
1.1 Features
The major features of the PC8280 are as follows:
Dual-issue integer (G2_LE) core
A core version of the EC603e microprocessor
System core microprocessor supporting frequencies of 166–450 MHz
Separate 16-Kbyte data and instruction caches:
Four-way set associative
Physically addressed
LRU replacement algorithm
Architecture-compliant memory management unit (MMU)
Common on-chip processor (COP) test interface
High-performance (SPEC95 benchmark at 450 MHz; 855 Dhrystones MIPS at 450 MHz)
Supports bus snooping for data cache coherency
16 Kbytes
I-Cache
G2_LE Core
I-MMU
16 Kbytes
D-Cache
D-MMU
Communication Processor Module (CPM)
Timers
Parallel I/Q
Baud Rate
Generators
32 KB
Instruction
RAM
32 KB
Data
RAM
32-bit RISC Microcontroller
and Program ROM
Serial
DMAs
4 Virtual
IDMAs
60x-to-PCI
Bridge
Memory Controller
Clock Counter
System Functions
System Interface Unit
(SIU)
PCI Bus
32 bits, up to 66 MHz
or
MCC1 MCC2 FCC1 FCC2 FCC3 SCC1 SCC2 SCC3 SCC4/
USB
SMC1 SMC2 SPI
I C
2
3 MII or RMII
Port
2 UTOPIA
Ports3
60x Bus
IMA1
Microcode
Interrupt
Controller
Time Slot Assigner
TC Layer Hardware1
8 TDM Ports2 Non-Multiplexed
I/O
60x-to-Local
Bridge
Serial Interface2
Bus Interface Unit
Local Bus
32 bits, up to 100 MHz
4
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
Floating-point unit (FPU)
Separate power supply for internal logic and for I/O
Separate PLLs for G2_LE core and for the CPM
G2_LE core and CPM can run at different frequencies for power/performance optimization
Internal core/bus clock multiplier that provides 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 6:1, 7:1, 8:1
ratios
Internal CPM/bus clock multiplier that provides 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1, 8:1 ratios
64-bit data and 32-bit address 60x bus
Bus supports multiple master designs
Supports single- and four-beat burst transfers
64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
Supports data parity or ECC and address parity
32-bit data and 18-bit address local bus
Single-master bus, supports external slaves
Eight-beat burst transfers
32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
60x-to-PCI bridge
Programmable host bridge and agent
32-bit data bus, 66.67/83.3/100 MHz, 3.3V
Synchronous and asynchronous 60x and PCI clock modes
All internal address space available to external PCI host
DMA for memory block transfers
PCI-to-60x address remapping
PCI bridge
PCI Specification Revision 2.2 compliant and supports frequencies up to 66 MHz
On-chip arbitration
Support for PCI-to-60x-memory and 60x-memory-to-PCI streaming
PCI host bridge or peripheral capabilities
Includes 4 DMA channels for the following transfers:
PCI-to-60x to 60x-to-PCI
60x-to-PCI to PCI-to-60x
PCI-to-60x to PCI-to-60x
60x-to-PCI to 60x-to-PCI–
Includes all of the configuration registers (which are automatically loaded from the EPROM and used
to configure the PC8280) required by the PCI standard as well as message and doorbell registers
Supports the I2O standard
5
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Hot-swap friendly (supports the hot swap specification as defined by PICMG 2.1 R1.0 August 3,
1998)
Support for 66.67/83.33/100 MHz, 3.3V specification
60x-PCI bus core logic that uses a buffer pool to allocate buffers for each port
Uses the local bus signals, removing need for additional pins
System Interface Unit (SIU)
Clock synthesizer
Reset controller
Real-time clock (RTC) register
Periodic interrupt timer
Hardware bus monitor and software watchdog timer
IEEE® 1149.1 JTAG test access port
12-bank memory controller
Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash and other user- definable
peripherals
Byte write enables and selectable parity generation
32-bit address decodes with programmable bank size
Three user-programmable machines, general-purpose chip-select machine, and page-mode pipe-
line SDRAM machine
Byte selects for 64-bus width (60x) and byte selects for 32-bus width (local)
Dedicated interface logic for SDRAM
CPU core can be disabled and the device can be used in slave mode to an external core
Communications Processor Module (CPM)
Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for
communications protocols
Interfaces to G2_LE core through an on-chip 32-Kbyte dual-port data RAM, an on-chip 32-Kbyte
dual-port instruction RAM and DMA controller
Serial DMA channels for receive and transmit on all serial channels
Parallel I/O registers with open-drain and interrupt capability
Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
Three fast communications controllers supporting the following protocols:
10/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through media independent interface
(MII) or reduced media independent interface (RMII)
ATM: Full-duplex SAR protocols at 155 Mbps, through UTOPIA interface, AAL5, AAL1, AAL0
protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 64 K external connections (no
ATM support for the PC8270)
Transparent
6
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
HDLC: Up to T3 rates (clear channel)
FCC2 can also be connected to the TC layer
Two multichannel controllers (MCCs) (one MCC on the PC8270)
Each MCC handles 128 serial, full-duplex, 64-Kbps data channels. Each MCC can be split
into four subgroups of 32 channels each.
Almost any combination of subgroups can be multiplexed to single or multiple TDM
interfaces up to four TDM interfaces per MCC
Four serial communications controllers (SCCs) identical to those on the MPC860, supporting the
digital portions of the following protocols:
Ethernet/IEEE 802.3 CDMA/CS
HDLC/SDLC and HDLC bus
Universal asynchronous receiver transmitter (UART)
Synchronous UART
Binary synchronous (BISYNC) communications
Transparent
Universal serial bus (USB) controller
Supports USB 2.0 full/low rate compatible
USB host mode
Supports control, bulk, interrupt, and isochronous data transfers
CRC16 generation and checking
NRZI encoding/decoding with bit stuffing
Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and
data rate configuration). Note that low-speed operation requires an external hub.
Flexible data buffers with multiple buffers per frame
Supports local loopback mode for diagnostics (12 Mbps only)
Supports USB slave mode
Four independent endpoints support control, bulk, interrupt, and isochronous data transfers
CRC16 generation and checking
CRC5 checking
NRZI encoding/decoding with bit stuffing
12- or 1.5-Mbps data rate
Flexible data buffers with multiple buffers per frame
Automatic retransmission upon transmit error
Two serial management controllers (SMCs), identical to those of the MPC860
Provide management for BRI devices as general circuit interface (GCI) controllers in
timedivision-multiplexed (TDM) channels
Transparent
UART (low-speed operation)
One serial peripheral interface identical to the MPC860 SPI
7
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
One inter-integrated circuit (I2C) controller (identical to the MPC860 I2C controller)
Microwire compatible
Multiple-master, single-master, and slave modes
Up to eight TDM interfaces (four on the PC8270)
Supports two groups of four TDM channels for a total of eight TDMs
2,048 bytes of SI RAM
Bit or byte resolution
Independent transmit and receive routing, frame synchronization
Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN basic rate, ISDN
primary rate, Freescale interchip digital link (IDL), general circuit interface (GCI), and user-
defined TDM serial interfaces
Eight independent baud rate generators and 20 input clock pins for supplying clocks to FCCs, SCCs,
SMCs, and serial channels
Four independent 16-bit timers that can be interconnected as two 32-bit timers
Inverse multiplexing for ATM capabilities (IMA). Supported by eight transfer transmission
convergence (TC) layers between the TDMs and FCC2.
Transmission convergence (TC) layer
2. Detailed Specification
This specification describes the specific requirements for the microprocessor PC7447A in compliance
with e2v standard screening.
2.1 Applicable Documents
1. MIL-STD-883: Test methods and procedures for electronics
2. MIL-PRF-38535: Appendix A: General specifications for microcircuits
The microcircuits are in accordance with the applicable documents and as specified herein.
2.2 Operating Conditions
Table 2-1 shows the maximum electrical ratings.
Notes: 1. Absolute maximum ratings are stress ratings only; functional operation (see Table 2-2 on page 8) at the
maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause perma-
nent damage.
Table 2-1. Absolute Maximum Ratings(1)
Rating Symbol Value Unit
Core supply voltage(2) VDD -0.3 to +2.25 V
PLL supply voltage(2) VCCSYN -0.3 to +2.25 V
I/O supply voltage(3) VDDH -0.3 to +4 V
Input voltage(4) VIN GND(-0.3) to +3.6 V
Storage temperature range TSTG -65 to +150 °C
8
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
2. Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4V during normal operation. It is rec-
ommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on
reset. VDD/VCCSYN may exceed VDDH by more than 0.4V during power-on reset for no more than
100 ms.
3. Caution: VDDH can exceed VDD/VCCSYN by 3.3V during power on reset by no more than 100 mSec.
VDDH should not exceed VDD/VCCSYN by more than 2.5V during normal operation.
4. Caution: VIN must not exceed VDDH by more than 2.5V at any time, including during power-on reset.
Table 2-2 lists recommended operational voltage conditions.
Notes: 1. Caution: These are the recommended and tested operating conditions. Proper operation outside of
these conditions is not guaranteed.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an a propriate logic voltage level (either GND or VCC).
Figure 2-1 on page 8 shows the undershoot and overshoot voltage of the 60x and local bus memory
interface of the PC8280. Note that in PCI mode the I/O interface is different.
Figure 2-1. Overshoot/Undershoot Voltage
Table 2-2. Recommended Operaging Conditions(1)
Rating Symbol Value Unit
Core supply voltage VDD 1.45 – 1.60 V
PLL supply voltage VCCSYN 1.45 – 1.60 V
I/O supply voltage VDDH 3.135 – 3.4 V
Input voltage VIN GND (-0.3) – 3.465 V
Junction temperature (maximum) TJ125 °C
Ambient temperature Tcase -55 °C
GND
GND – 0.3V
GND – 1.0V Not to exceed 10% of tSDRAM_CLK
4V
GVDD + 5%
GVDD
VIH
VIL
9
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
3. DC Electrical Characteristics
Table 3-1 shows DC electrical characteristics.
Table 3-1. DC Electrical Characteristics(1)
Characteristic Symbol Min Max Unit
Input high voltage: all inputs except TCK, TRST and PORESET(2) VIH 2 3.465 V
Input low voltage VIL GND 0.8 V
CLKin input high voltage VIHC 2.4 3.465 V
CLKin input low voltage VILC GND 0.4 V
Input leakage current, VIN = VDDH(3) IIN –10µA
Hi-Z (off state) leakage current, VIN = VDDH(3) IOZ –10µA
Signal low input current, VIL = 0.8V(4) IL–1µA
Signal high input current, VIH = 2V IH–1µA
Output high voltage, IOH = -2 mA except UTOPIA mode, and open drain pins
In UTOPIA mode (UTOPIA pins only): IOH = -8 mA
PA[0-31]
PB[4-31]
PC[0-31]
PD[4-31]
VOH 2.4
In UTOPIA mode (UTOPIA pins only): IOL= 8 mA
PA[0-31]
PB[4-31]
PC[0-31]
PD[4-31]
VOL –0.5
10
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
IOL = 6 mA
BR
BG
ABB/IRQ2
TS
A[0-31]
TT[0-4]
TBST
TSIZE[0–3]
AACK
ARTRY
DBG
DBB/IRQ3
D[0-63]
DP(0)/RSRV/EXT_BR2
DP(1)/IRQ1/EXT_BG2
DP(2)/TLBISYNC/IRQ2/EXT_DBG2
DP(3)/IRQ3/EXT_BR3/CKSTP_OUT
DP(4)/IRQ4/EXT_BG3/CORE_SREST
DP(5)/TBEN/EXT_DBG3/IRQ5/CINT
DP(6)/CSE(0)/IRQ6
DP(7)/CSE(1)/IRQ7
PSDVAL
TA
TEA
GBL/IRQ1
CI/BADDR29/IRQ2
WT/BADDR30/IRQ3
L2_HIT/IRQ4
CPU_BG/BADDR31/IRQ5/CINT
CPU_DBG
CPU_BR
IRQ0/NMI_OUT
IRQ7/INT_OUT/APE
PORESET
HRESET
SRESET
RSTCONF
VOL –0.4
Table 3-1. DC Electrical Characteristics(1) (Continued)
Characteristic Symbol Min Max Unit
11
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Notes: 1. The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC cur-
rent, it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs.
2. TCK, TRST and PORESET have min VIH = 2.5V.
IOL = 5.3 mA
CS[0-9]
CS(10)/BCTL1
CS(11)/AP(0)
BADDR[27–28]
ALE
BCTL0
PWE[0–7]/PSDDQM[0–7]/PBS[0–7]
PSDA10/PGPL0
PSDWE/PGPL1
POE/PSDRAS/PGPL2
PSDCAS/PGPL3
PGTA/PUPMWAIT/PGPL4/PPBS
PSDAMUX/PGPL5
LWE[0–3]LSDDQM[0–3]/LBS[0–3]/PCI_CFG[0–3]
LSDA10/LGPL0/PCI_MODCKH0
LSDWE/LGPL1/PCI_MODCKH1
LOE/LSDRAS/LGPL2/PCI_MODCKH2
LSDCAS/LGPL3/PCI_MODCKH3
LGTA/LUPMWAIT/LGPL4/LPBS
LSDAMUX/LGPL5/PCI_MODCK
LWR
MODCK[1–3]/AP[1–3]/TC[0–2]/BNKSEL[0–2]
VOL –0.4V
IOL = 3.2 mA
L_A14/PAR
L_A15/FRAME/SMI
L_A16/TRDY
L_A17/IRDY/CKSTP_OUT
L_A18/STOP
L_A19/DEVSEL
L_A20/IDSEL
L_A21/PERR
L_A22/SERR
L_A23/REQ0
L_A24/REQ1/HSEJSW
L_A25/GNT0
L_A26/GNT1/HSLED
L_A27/GNT2/HSENUM
L_A28/RST/CORE_SRESET
L_A29/INTA
L_A30/REQ2
L_A31
LCL_D[0-31]/AD[0-31]
LCL_DP[0-3]/C/BE[0-3]
PA[0–31]
PB[4–31]
PC[0–31]
PD[4–31]
TDO
QREQ
VOL –0.4V
Table 3-1. DC Electrical Characteristics(1) (Continued)
Characteristic Symbol Min Max Unit
12
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
3. The leakage current is measured for nominal VDDH,VCCSYN, and VDD.
4. VIL for IIC interface does not match IIC standard, but does meet IIC standard for VOL and should not cause any compatibility
issue.
4. Thermal Characteristics
Table 4-1 describes thermal characteristics for both the packages. For the discussions Section 4.1 and
Section 4.5, PD = (VDD × IDD) + PI/O, where PI/O is the power dissipation of the I/O drivers.
Notes: 1. Assumes no thermal vias.
2. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temper-
ature is measured on the top surface of the board near the package.
3. Thermal resistance between the die and the case top surface as measured by the cold plate method
(MIL SPEC-883 Method 1012.1).
4. Thermal characterization parameter indicating the temperature difference between package top and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal charac-
terization parameter is written as Psi-JT.
4.1 Estimation with Junction-to-Ambient Thermal Resistance
An estimation of the chip junction temperature, TJ, in °C can be obtained from the following equation:
TJ = Tamb + (RθJA × PD)
where:
Tamb = ambient temperature (°C)
RθJA = package junction-to-ambient thermal resistance (°C/W)
PD = power dissipation in package
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy
estimation of thermal performance. However, the answer is only an estimate; test cases have demon-
strated that errors of a factor of two (in the quantity TJ – Tamb) are possible.
Table 4-1. Thermal Characteristics
Characteristic Symbol
Value
Unit Air Flow480 TBGA
Junction to ambient,
single-layer board(1) RθJA
16 °C/W
Natural
convection
11 1 m/s
Junction to ambient,
four-layer board RθJA
12 °C/W
Natural
convection
91 m/s
Junction to board(2) RθJB C/W–
Junction to case(3) RθJC C/W–
Junction-to-package top(4) ψJT C/W–
13
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
4.2 Estimation with Junction-to-Case Thermal Resistance
Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case ther-
mal resistance and a case-to-ambient thermal resistance:
RθJA = RθJC + RθCA
where:
RθJA = junction-to-ambient thermal resistance (°C/W)
RθJC = junction-to-case thermal resistance (°C/W)
RθCA = case-to-ambient thermal resistance (°C/W)
RθJC is device related and cannot be influenced by the user. The user adjusts the thermal environment to
affect the case-to-ambient thermal resistance, RθCA. For instance, the user can change the air flow
around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or
change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is
most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case
and the heat sink to the ambient environment. For most packages, a better model is required.
4.3 Estimation with Junction-to-Board Thermal Resistance
A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-
resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-
to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount
of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the
thermal performance when most of the heat is conducted to the printed circuit board. It has been
observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly
dependent on the board temperature.
If the board temperature is known, an estimate of the junction temperature in the environment can be
made using the following equation:
TJ = TB + (RθJB × PD)
where:
RθJB = junction-to-board thermal resistance (°C/W)
TB = board temperature (°C)
PD = power dissipation in package
If the board temperature is known and the heat loss from the package case to the air can be ignored,
acceptable predictions of junction temperature can be made. For this method to work, the board and
board mounting must be similar to the test board used to determine the junction-to-board thermal resis-
tance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the
ground plane.
4.4 Estimation Using Simulation
When the board temperature is not known, a thermal simulation of the application is needed. The simple
two-resistor model can be used with the thermal simulation of the application, or a more accurate and
complex model of the package can be used in the thermal simulation.
14
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
4.5 Experimental Determination
To determine the junction temperature of the device in the application after prototypes are available, the
thermal characterization parameter (ψJT) can be used to determine the junction temperature with a mea-
surement of the temperature at the top center of the package case using the following equation:
TJ = TT + (ψJT × PD)
where:
ψJT = thermal characterization parameter
TT = thermocouple temperature on top of package
PD = power dissipation in package
The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-
gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be
positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed
over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple
wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermo-
couple wire.
4.6 Layout Practices
Each VDD and VDDH pin should be provided with a low-impedance path to the board’s power supplies.
Each ground pin should likewise be provided with a low-impedance path to ground. The power supply
pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to
ground using by-pass capacitors located as close as possible to the four sides of the package. For filter-
ing high frequency noise, a capacitor of 0.1 µF on each VDD and VDDH pin is recommended. Further,
for medium frequency noise, a total of 2 capacitors of 47 µF for VDD and 2 capacitors of 47 µF for VDDH
are also recommnded. The capacitor leads and associated printed circuit traces connecting to chip VDD,
VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ
separate inner layers for power and GND planes.
All output pins on the PC8280 have fast rise and fall times. Printed circuit (PC) trace interconnection
length should be minimized to minimize overdamped conditions and reflections caused by these fast out-
put switching times. This recommendation particularly applies to the address and data buses. Maximum
PC trace lengths of six inches are recommended. Capacitance calculations should consider all device
loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypass-
ing becomes especially critical in systems with higher capacitive loads because these loads create
higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be
inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.
5. Power Dissipation
Table 5-1 on page 15 provides preliminary, estimated power dissipation for various configurations. Note
that suitable thermal management is required to ensure the junction temperature does not exceed the
maximum specified value.
Also note that the I/O power should be included when determining whether to use a heat sink. For a
complete list of possible clock configurations, refer to section “Clock Configuration Modes” on page 25.
15
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Notes: 1. Test temperature = 105°C
2. PINT = IDD x VDD Watts
3. Values do not include I/O. Add the following estimates for active I/O based on the following bus speeds:
66.7 MHz = 0.45W (nominal), 0.5W (maximum)
83.3 MHz = 0.5W (nominal), 0.6W (maximum)
100 MHz = 0.6 W (nominal), 0.7W (maximum)
6. AC Electrical Characteristics
The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and
inputs for 66.67/83.33/100 MHz devices. Note that AC timings are based on a 50-pf load for MAX Delay
and 10 pF load for MIN delay. Typical output buffer impedances are shown in Table 6-1.
Notes: 1. These are typical values at 65°C. Impedance may vary by ±25% with process and temperature.
2. On silicon revision 0.0 (mask #: 0K49M), selectable impedance is not available. Impedance is set at
45. On all other revisions, impedance value is selected through the SIUMCR[20,21]. Refer to the
PC8280 PowerQUICC II Family Reference Manual.
Table 5-1. Estimated Power Dissipation for Various Configuration(1)
Bus (MHz)
CPM
Multiplication
Factor CPM (MHz)
CPU
Multiplication
Factor CPU (MHz)
PINT(W)(2)(3)
Vddl 1.5 Volts
Nominal Maximum
66.67 2.5 166 3.5 233 0.95 1
66.67 2.5 166 4 266 1 1.05
66.67 3 200 4 266 1.05 1.1
66.67 3.5 233 4.5 300 1.05 1.15
83.33 3 250 4 333 1.25 1.35
83.33 3 250 4.5 375 1.3 1.4
83.33 3.5 292 5 417 1.45 1.55
100 3 300 4 400 1.5 1.6
100 3 300 4.5 450 1.55 1.65
Table 6-1. Output Buffer Impedances(1)
Output Buffers Typical Impedance ()
60x bus 45 or 27(2)
Local bus 45
Memory controller 45 or 27(2)
Parallel I/O 45
PCI 27
16
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
6.1 CPM AC Characteristics
Table 6-2 lists CPM output characteristics.
Note: 1. Output specifications are measured from the 50% level of the rising edge of CLKin to the 50% level of the signal. Timings are
measured at the pin.
Table 6-3 lists CPM input characteristics.
Note: Rise/Fall Time on CPM Input Pins.
It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be
enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time
refers to transitions from 90% to 10% of VCC.
Note: 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKin. Timings are
measured at the pin.
Table 6-2. AC Characteristics for CPM Outputs(1)
Spec Number
Characteristic
Value (ns)
Max Min
Maximum Delay Minimum Delay
66 MHz 83 MHz 100 MHz 66 MHz 83 MHz 100 MHz
sp36a sp37a FCC outputs, internal clock
(NMSI) 6 5.5 5.5 0.5 0.5 0.5
sp36b sp37b FCC outputs, external clock
(NMSI) 888222
sp38a sp39a SCC/SMC/SPI/I2C outputs,
internal clock (NMSI) 10 10 10 0 0 0
sp38b sp39b SCC/SMC/SPI/I2C outputs,
external clock (NMSI) 888222
sp40 sp41 TDM outputs/SI 11 11 11 2.5 2.5 2.5
sp42 sp43 TIMER/IDMA outputs 11 11 11 0.5 0.5 0.5
sp42a sp43a PIO outputs 11 11 11 0.5 0.5 0.5
Table 6-3. AC Characteristics for CPM Inputs(1)
Spec Number
Characteristic
Value (ns)
Setup Hold
Setup Hold
66 MHz 83 MHz 100 MHz 66 MHz 83 MHz 100 MHz
sp16a sp17a FCC inputs, internal clock
(NMSI) 666000
sp16b sp17b inputs, external clock (NMSI) 2.5 2.5 2.5 2 2 2
sp18a sp19a SCC/SMC/SPI/I2Cclock
inputs, internal (NMSI) 666000
sp18b sp19b SCC/SMC/SPI/I2Cclock
inputs, external (NMSI) 444222
sp20 sp21 TDM inputs/SI 5 5 5 2.5 2.5 2.5
sp22 sp23 PIO/TIMER/IDMA inputs 8 8 8 0.5 0.5 0.5
17
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Note: Although the specifications generally reference the rising edge of the clock, the following AC timing dia-
grams also apply when the falling edge is the active edge.
Figure 6-1 shows the FCC internal clock.
Figure 6-1. FCC Internal Clock Diagram
Figure 6-2 shows the FCC external clock.
Figure 6-2. FCC External Clock Diagram
BRG_OUT
FCC input signals
FCC output signals
Note: When GFMR[TCI] = 0
sp36a/sp37a
sp17a
sp16a
FCC output signals
Note: When GFMR.[TCI] = 1
sp36a/sp37a
Serial CLKin
FCC input signals
FCC output signals
Note: When GFMR[TCI] = 0
sp36b/sp37b
sp17b
sp16b
FCC output signals
Note: When GFMR.[TCI] = 1
sp36b/sp37b
18
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
Figure 6-3 shows the SCC/SMC/SPI/I2C external clock.
Figure 6-3. SCC/SMC/SPI/I2C External Clock Diagram
Note: There are four possible timing conditions for SCC and SPI:
1. Input sampled on the rising edge and output driven on the rising edge (shown).
2. Input sampled on the rising edge and output driven on the falling edge.
3. Input sampled on the falling edge and output driven on the falling edge.
4. Input sampled on the falling edge and output driven on the rising edge.
Figure 6-4 shows the SCC/SMC/SPI/I2C internal clock.
Figure 6-4. SCC/SMC/SPI/I2C Internal Clock Diagram
Note: There are four possible timing conditions for SCC and SPI:
1. Input sampled on the rising edge and output driven on the rising edge (shown).
2. Input sampled on the rising edge and output driven on the falling edge.
3. Input sampled on the falling edge and output driven on the falling edge.
4. Input sampled on the falling edge and output driven on the rising edge.
SCC/SMC/SPI/I2C input signals
(see note)
SCC/SMC/SPI/I2C output signals
(see note)
sp18b sp19b
sp38b/sp39b
Serial CLKin
BRG_OUT
SCC/SMC/SPI/I2C input signals
SCC/SMC/SPI/I2C output signals
sp18a sp19a
sp38a/sp39a
(See note)
(See note)
19
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Figure 6-5. TDM Signal Diagram
Note: There are four possible TDM timing conditions:
1. Input sampled on the rising edge and output driven on the rising edge (shown).
2. Input sampled on the rising edge and output driven on the falling edge.
3. Input sampled on the falling edge and output driven on the falling edge.
4. Input sampled on the falling edge and output driven on the rising edge.
Figure 6-6 shows PIO and timer signals.
Figure 6-6. PIO and Timer Signal Diagram
Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge.
Serial CLKin
TDM input signals
TDM output signals
sp20 sp21
sp40/sp41
Sys clk
PIO/IDMA/TIMER[TGATE assertion] input signals
IDMA output signals
sp22
sp42/sp43
TIMER (sp42/43)/ PIO(sp42a/sp43a)
output signals
sp42a/sp43a
sp42/sp43
sp22
sp23
sp23
(See note)
TIMER input signal [TGATE deassertion]
(See note)
20
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
6.2 SIU AC Characteristics
1. CLKin Jitter and Duty Cycle
The CLKIN input to the PC8280 should not exceed ±150 psec of jitter (peak-to-peak). This rep-
resents total input jitter: the combination of short term (cycle-to-cycle) and long term
(cumulative). The duty cycle of CLKIN should not exceed the ratio of 40:60. The rise/file time of
CLKIN should adhere to the typical SDRAM device AC clock requirement of 1 V/ns to meet
SDRAM AC specs.
2. Spread Spectrum Clocking
Spread spectrum clocking is allowed with 1% input frequency down-spread at maximum 60
KHz modulation rate regardless of input frequency.
3. PCI AC Timing
The PC8280 meets the timing requirements of PCI Specification Revision 2.2. Refer to Section
7.2 ”PCI Host Mode” on page 28 and Section 7.3 ”PCI Agent Mode” on page 36 and “Note: Tval
(Output Hold)” to determine if a specific clock configuration is compliant.
Table 6-4 lists SIU input characteristics.
Notes: 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKin. Timings are
measured at the pin.
2. Not supported at 66 MHz
Table 6-4. AC Characteristics for SIU Inputs(1)
Spec Number
Characteristic
Value (ns)
Setup Hold
Setup Hold
66 MHz 83 MHz 100 MHz 66 MHz 83 MHz 100 MHz
sp11 sp10 AACK/TA/TS/DBG/BG/BR/
ARTRY/TEA 6 5 3.50.50.50.5
sp12 sp10 Data bus in normal mode 5 4 3.5 0.5 0.5 0.5
sp13 sp10 Data bus in ECC and
PARITY modes 7 5 3.5 0.5 0.5 0.5
sp13a sp10
Pipeline mode – Data bus in
PARITY mode(2)
ECC mode
5 4 2.5 0.5 0.5 0.5
sp14 sp10 DP pins 7 5 3.5 0.5 0.5 0.5
sp14a sp10 Pipeline mode – DP pins(2) 4 2.5 0.5 0.5
sp15 sp10 All other pins 5 4 3.5 0.5 0.5 0.5
21
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Table 6-5 lists SIU output characteristics.
Notes: 1. Output specifications are measured from the 50% level of the rising edge of CLKin to the 50% level of the signal. Timings are
measured at the pin.
2. To achieve 1 ns of hold time at 66, 83, or 100 MHz, a minimum loading of 20 pF is required.
Note: Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.
Table 6-5. AC Characteristics for SIU Outputs(1)
Spec Number
Characteristic
Value (ns)
Max Min
Maximum Delay Minimum Delay
66 MHz 83 MHz 100 MHz 66 MHz 83 MHz 100 MHz
sp31 sp30 PSDVAL/TEA/TA765.5111
sp32 sp30 ADD/ADD_atr./BADDR/CI/G
BL/WT 8 6.5 5.5 1 1 1
sp33a sp30 Data bus(2) 6.5 6.5 5.5 0.7 0.7 0.7
sp33b sp30 DP 6 5.5 5.5 1 1 1
sp34 sp30 Memory controller
signals/ALE 6 5.5 5.5 1 1 1
sp35 sp30 All other signals 6 5.5 5.5 1 1 1
sp35a sp30 AP 7 7 7 1 1 1
22
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
Figure 6-7 shows the interaction of several bus signals.
Figure 6-7. Bus Signals
CLKin
DATA bus normal mode
input signal
PSDVAL/TEA/TA output signals
ADD/ADD_atr/BADDR/CI/
GBL/WT output signals
sp11
sp12
sp15
sp10
sp10
sp10
sp30
sp30
sp30
sp30
sp32
sp33a
sp35
AACK/TA/TS/
DBG/BG/BR input signals
sp31
AP signals
sp30
sp35a
ARTRY/TEA input signals
sp11a sp10
All other output signals
(except AP)
DATA bus output signals
All other input signals
23
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Figure 6-8 shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity).
Figure 6-8. Parity Mode Diagram
Figure 6-9 shows signal behavior in MEMC mode.
Figure 6-9. MEMC Mode Diagram
Note: Generally, all PC8280 bus and system output signals are driven from the rising edge of the input clock
(CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is
divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling
edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in
Table 6-6 on page 24.
CLKin
DATA bus, ECC, and PARITY mode
input signals
sp13
sp10
sp14a
sp10
sp10
DP mode input signal
sp14
sp10
sp30
sp33b
sp13a
Pipeline mode:
DATA bus, ECC, and PARITY mode
input signals
Pipeline mode:
DP mode input signal
DP mode output signal
CLKin
V_CLK
Memory controller signals
sp34/sp30
24
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
Figure 6-10 is a representation of the information in Table 6-6 on page 24.
Figure 6-10. Internal Tick Spacing for Memory Controller Signals
Note: The UPM machine outputs change on the internal tick determined by the memory controller programming;
the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs
change on CLKin’s rising edge.
6.3 JTAG Timings
Table 6-7 lists the JTAG timings.
Table 6-6. Tick Spacing for Memory Controller Signals
PLL Clock Ratio
Tick Spacing (T1 Occurs at the Rising Edge of CLKin)
T2 T3 T4
1:2, 1:3, 1:4, 1:5, 1:6 1/4 CLKin 1/2 CLKin 3/4 CLKin
1:2.5 3/10 CLKin 1/2 CLKin 8/10 CLKin
1:3.5 4/14 CLKin 1/2 CLKin 11/14 CLKin
CLKin
T1 T2 T3 T4
CLKin
T1 T2 T3 T4
CLKin
T1 T2 T3 T4
for 1:2, 1:3, 1:4, 1:5, 1:6
for 1:2.5
for 1:3.5
Table 6-7. JTAG Timings(1)
Symbol Parameter Min Max Unit
fJTG JTAG external clock frequency of operation 0 33.3 MHz
tJTG JTAG external clock cycle time 30 ns
tJTKHKL JTAG external clock pulse width measured at 1.4V 15 ns
tJTGR and tJTGF(6) JTAG external clock rise and fall times 0 5 ns
tTRST(3)(6) TRST assert time 25 ns
tJTDVKH(4)(7)
tJTIVKH(4)(7)
Input setup times:
Boundary-scan data
TMS, TDI
4
4
ns
ns
tJTDXKH(4)(7)
tJTIXKH(4)(7)
Input hold times:
Boundary-scan data
TMS, TDI
10
10
ns
ns
25
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Notes: 1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question.
The output timings are measured at the pins. All output timings assume a purely resistive 50 load. Time-of-flight delays
must be added for trace lengths, vias, and connectors in the system.
2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device timing
(JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K) going to
the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals (D)
went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the clock reference
symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the
latter convention is used with the appropriate letter: R (rise) or F (fall).
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
4. Non-JTAG signal input timing with respect to tTCLK.
5. Non-JTAG signal output timing with respect to tTCLK.
6. Guaranteed by design.
7. Guaranteed by design and device characterization.
7. Clock Configuration Modes
The PC8280 has three clocking modes: local, PCI host, and PCI agent. The clocking mode is set accord-
ing to three input pins, PCI_MODE, PCI_CFG[0], PCI_MODCK, as shown in Table 7-1.
Note: 1. Determines PCI clock frequency range. Refer to Section 7.2 and Section 7.3.
In each clocking mode, the configuration of bus, core, PCI, and CPM frequencies is determined by seven
bits during the power-up reset: three hardware configuration pins (MODCK[1–3]) and four bits from hard-
ware configuration word[28–31] (MODCK_H). Both the PLLs and the dividers are set according to the
selected PC8280 clock operation mode as described in the following sections.
tJTKLDV(5)(7)
tJTKLOV(5)(7)
Output hold times:
Boundary-scan data
TDO
10
10
ns
ns
tJTKLDX(5)(7)
tJTKLOX(5)(7)
Output hold times:
Boundary-scan data
TDO
1
1
ns
ns
tJTKLDZ(5)(6)
tJTKLOZ(5)(6)
JTAG external clock to output hig impedance
Boundary-scan data
TDO
1
1
10
10
ns
Table 6-7. JTAG Timings(1) (Continued)
Symbol Parameter Min Max Unit
Table 7-1. PC8280 Clocking Modes
Pins
Clocking Mode
PCI Clock Frequency
Range (MHZ ReferencePCI_MODE PCI_CFG[0] PCI_MODCK
1 Local bus Table 7-2 on page 26
000
PCI host 50-66 Table 7-3 on page 29
0 0 1 25-50 Table 7-4 on page 32
010
PCI agent 50-66 Table 7-5 on page 36
0 1 1 25-50 Table 7-6 on page 39
26
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
7.1 Local Bus Mode
Table 7-2 lists clock configurations for the PC8280 in local bus mode. The frequencies listed are for the
purpose of illustration only. Users must select a mode and input bus frequency so that the resulting con-
figuration does not exceed the frequency rating of the user’s device.
Note: Clock configurations change only after PORESET is asserted.
Table 7-2. Clock Configurations for Local Bus Mode(1)
Mode(2) Bus Clock(3) (MHz) CPM
Multiplication
Factor(4)
CPM Clock (MHz) CPU
Multiplication
Factor(5)
CPU Clock (MHz)
MODCK_H-MODCK[1-3] Low High Low High Low High
Default Modes (MODCK_H = 0000)
0000_000 37.5 133.3 3 112.5 400 4 150 533.3
0000_001 33.3 133.3 3 100 400 5 166.7 666.7
0000_010 37.5 100 4 150 400 4 150 400
0000_011 30 100 4 120 400 5 150 500
0000_100 60 167 2 120 334 2.5 150 417.5
0000_101 50 167 2 100 334 3 150 501
0000_110 60 160 2.5 150 400. 2.5 150 400
0000_111 50 160 2.5 125 400. 3 150 480
Full Configuration Modes
0001_000 50 167 2 100 334 4 200 668
0001_001 50 167 2 100 334 5 250 835
0001_010 50 145.8 2 100 291.7 6 300 875
0001_011 Reserved
0001_100 Reserved
0001_101 37.5 133.3 3 112.5 400 4 150 533.3
0001_110 33.3 133.3 3 100 400 5 166.7 666.7
1000_111 33.3 133.3 3 100 400 5.5 183.3 733.3
0001_111 33.3 133.3 3 100 400 6 200 800
0010_000 Reserved
0010_001 Reserved
0010_010 37.5 100 4 150 400 4 150 400
0010_011 30 100 4 120 400 5 150 500
0010_100 25 100 4 100 400 6 150 600
0010_101 25 100 4 100 400 7 175 700
0010_110 25 100 4 100 400 8 200 800
27
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
0010_111 Reserved
0011_000 30 80 5 150 400 5 150 400
0011_001 25 80 5 125 400 6 150 480
0011_010 25 80 5 125 400 7 175 560
0011_011 25 80 5 125 400 8 200 640
0011_100 Reserved
0011_101 Reserved
0011_110 25 66.7 6 150 400 6 150 400
0011_111 25 66.7 6 150 400 7 175 466.7
0100_000 25 66.7 6 150 400 8 200 533.3
0101_101 75 167 2 150 334 2 166.7 334
0101_110 60 167 2 120 334 2.5 166.7 417.5
0101_111 50 167 2 100 334 3 200 501
0110_000 50 167 2 100 334 3.5 250 584.5
0110_001 50 167 2 100 334 4 250 668
0110_010 50 167 2 100 334 4.5 250 751.5
0110_011 Reserved
0110_100 60 160 2.5 150 400 2.5 150 400
0110_101 50 160 2.5 125 400 3 150 480
0110_110 42.9 160 2.5 107.1 400 3.5 150 560
0110_111 40 160 2.5 100 400 4 160 640
0111_000 40 160 2.5 100 400 4.5 180 720
0111_001 Reserved
0111_010 Reserved
0111_011 50 133.3 3 150 400 3 150 400
0111_100 42.9 133.3 3 128.6 400 3.5 150 466.7
0111_101 37.5 133.3 3 112.5 400 4 150 533.3
0111_110 33.3 133.3 3 100 400 4.5 150 600
0111_111 Reserved
Table 7-2. Clock Configurations for Local Bus Mode(1) (Continued)
Mode(2) Bus Clock(3) (MHz) CPM
Multiplication
Factor(4)
CPM Clock (MHz) CPU
Multiplication
Factor(5)
CPU Clock (MHz)
MODCK_H-MODCK[1-3] Low High Low High Low High
28
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
Notes: 1. The “low” values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry
guarantees only the required minimum CPU operating frequency. The “high” values are for the purpose of illustration only.
Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of
the user’s device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For
modes with a CPU multiplication factor 3, the minimum CPU frequency is 150 MHz for commercial temperature devices
and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor 3.5: for Rev0.1 the minimum
CPU frequency is 250 MHz; for RevA or later the minimum CPU frequency is 150 MHz for commercial temperature devices
and 175 MHz for extended temperature devices.
2. MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
3. 60x and local bus frequency. Identical to CLKin.
4. CPM multiplication factor = CPM clock/bus clock.
5. CPU multiplication factor = Core PLL multiplication factor.
7.2 PCI Host Mode
Table 7-3 on page 29 and Table 7-4 on page 32 show clock configurations for PCI host mode. The fre-
quencies listed are for the purpose of illustration only. Users must select a mode and input bus
frequency so that the resulting configuration does not exceed the frequency rating of the user’s device.
In addition, note the following:
Notes: 1. PCI_MODCK
In PCI mode only, PCI_MODCK comes from the LGPL5 pin and MODCK_H[0–3] comes from {LGPL0,
LGPL1, LGPL2, LGPL3}.
2. Tval (Output Hold)
The minimum Tval = 2 ns when PCI_MODCK = 1, and the minimum Tval = 1 ns when PCI_MODCK =
0. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant
AC timing.
1000_000 Reserved
1000_001 Reserved
1000_010 42.9 114.3 3.5 150 400 3.5 150 400
1000_011 37.5 114.3 3.5 131.3 400 4 150 457.1
1000_100 33.3 114.3 3.5 116.7 400 4.5 150 514.3
1000_101 30 114.3 3.5 105 400 5 150 571.4
1000_110 28.6 114.3 3.5 100 400 5.5 150 628.6
1100_000 Reserved
1100_001 Reserved
1100_010 Reserved
1101_000 Reserved
Table 7-2. Clock Configurations for Local Bus Mode(1) (Continued)
Mode(2) Bus Clock(3) (MHz) CPM
Multiplication
Factor(4)
CPM Clock (MHz) CPU
Multiplication
Factor(5)
CPU Clock (MHz)
MODCK_H-MODCK[1-3] Low High Low High Low High
29
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Table 7-3. Clock Configurations for PCI Host Mode (PCI_MODCK = 0)(1)(2)
Mode(3) Bus Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPM
Multiplication
Factor(6)
CPU Clock
(MHz) PCI
Division
Factor
PCI Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
Default Modes (MODCK_H = 0000)
0000_000 60 66.7 2 120 133.3 2.5 150 166.7 2 60 66.7
0000_001 50 66.7 2 100 133.3 3 150 200 2 50 66.7
0000_010 60 80 2.5 150 200 3 180 240 3 50 66.7
0000_011 60 80 2.5 150 200 3.5 210 280 3 50 66.7
0000_100 60 80 2.5 150 200 4 240 320 3 50 66.7
0000_101 50 66.7 3 150 200 3 150 200 3 50 66.7
0000_110 50 66.7 3.5 150 200 3.5 175 233.3 3 50 66.7
0000_111 50 66.7 3 150 200 4 200 266.6 3 50 66.7
Full Configuration Modes
0001_000 50 66.7 3 150 200 5 250 333.3 3 50 66.7
0001_001 50 66.7 3 150 200 6 300 400 3 50 66.7
0001_010 50 66.7 3 150 200 7 350 466.6 3 50 66.7
0001_011 50 66.7 3 150 200 8 400 533.3 3 50 66.7
0010_000 50 66.7 4 200 266.6 5 250 333.3 4 50 66.7
0010_001 50 66.7 4 200 266.6 6 300 400 4 50 66.7
0010_010 50 66.7 4 200 266.6 7 350 466.6 4 50 66.7
0010_011 50 66.7 4 200 266.6 8 400 533.3 4 50 66.7
0010_100 75 100 4 300 400 5 375 500 6 50 66.7
0010_101 75 100 4 300 400 5.5 412.
5549.9 6 50 66.7
0010_110 75 100 4 300 400 6 450 599.9 6 50 66.7
0011_000 50 66.7 5 250 333.3 5 250 333.3 5 50 66.7
0011_001 50 66.7 5 250 333.3 6 300 400 5 50 66.7
0011_010 50 66.7 5 250 333.3 7 350 466.6 5 50 66.7
0011_011 50 66.7 5 250 333.3 8 400 533.3 5 50 66.7
0100_000 Reserved
0100_001 50 66.7 6 300 400 6 300 400 6 50 66.7
0100_010 50 66.7 6 300 400 7 350 466.6 6 50 66.7
0100_011 50 66.7 6 300 400 8 400 533.3 6 50 66.7
30
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
0101_000 60 66.7 2 120 133.3 2.5 150 166.7 2 60 66.7
0101_001 50 66.7 2 100 133.3 3 150 200 2 50 66.7
0101_010 50 66.7 2 100 133.3 3.5 175 233.3 2 50 66.7
0101_011 50 66.7 2 100 133.3 4 200 266.6 2 50 66.7
0101_100 50 66.7 2 100 133.3 4.5 225 300 2 50 66.7
0110_000 60 80 2.5 150 200 2.5 150 200 3 50 66.7
0110_001 60 80 2.5 150 200 3 180 240 3 50 66.7
0110_010 60 80 2.5 150 200 3.5 210 280 3 50 66.7
0110_011 60 80 2.5 150 200 4 240 320 3 50 66.7
0110_100 60 80 2.5 150 200 4.5 270 360 3 50 66.7
0110_101 60 80 2.5 150 200 5 300 400 3 50 66.7
0110_110 60 80 2.5 150 200 6 360 480 3 50 66.7
0111_000 Reserved
0111_001 50 66.7 3 150 200 3 150 200 3 50 66.7
0111_010 50 66.7 3 150 200 3.5 175 233.3 3 50 66.7
0111_011 50 66.7 3 150 200 4 200 266.6 3 50 66.7
0111_100 50 66.7 3 150 200 4.5 225 300 3 50 66.7
1000_000 Reserved
1000_001 66.7 88.9 3 200 266.6 3 200 266.6 4 50 66.7
1000_010 66.7 88.9 3 200 266.6 3.5 233.
3311.1 4 50 66.7
1000_011 66.7 88.9 3 200 266.6 4 266.
7355.5 4 50 66.7
1000_100 66.7 88.9 3 200 266.6 4.5 300 400 4 50 66.7
1000_101 66.7 88.9 3 200 266.6 6 400 533.3 4 50 66.7
1000_110 66.7 88.9 3 200 266.6 6.5 433.
3577.7 4 50 66.7
1001_000 Reserved
1001_001 Reserved
Table 7-3. Clock Configurations for PCI Host Mode (PCI_MODCK = 0)(1)(2) (Continued)
Mode(3) Bus Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPM
Multiplication
Factor(6)
CPU Clock
(MHz) PCI
Division
Factor
PCI Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
31
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
1001_010 57.1 76.2 3.5 200 266.6 3.5 200 266.6 4 50 66.7
1001_011 57.1 76.2 3.5 200 266.6 4 228.
6304.7 4 50 66.7
1001_100 57.1 76.2 3.5 200 266.6 4.5 257.
1342.8 4 50 66.7
1001_101 85.7 114.3 3.5 300 400 5 428.
6571.4 6 50 66.7
1001_110 85.7 114.3 3.5 300 400 5.5 471.
4628.5 6 50 66.7
1001_111 85.7 114.3 3.5 300 400 6 514.
3685.6 6 50 66.7
1010_000 75 100 2 150 200 2 150 200 3 50 66.7
1010_001 75 100 2 150 200 2.5 187.
5250 3 50 66.7
1010_010 75 100 2 150 200 3 225 300 3 50 66.7
1010_011 75 100 2 150 200 3.5 262.
5350 3 50 66.7
1010_100 75 100 2 150 200 4 300 400 3 50 66.7
1011_000 Reserved
1011_001 80 106.7 2.5 200 266.6 2.5 200 266.6 4 50 66.7
1011_010 80 106.7 2.5 200 266.6 3 240 320 4 50 66.7
1011_011 80 106.7 2.5 200 266.6 3.5 280 373.3 4 50 66.7
1011_100 80 106.7 2.5 200 266.6 4 320 426.6 4 50 66.7
1011_101 80 106.7 2.5 200 266.6 4.5 360 480 4 50 66.7
1101_000 100 133.3 2.5 250 333.3 3 300 400 5 50 66.7
1101_001 100 133.3 2.5 250 333.3 3.5 350 466.6 5 50 66.7
1101_010 100 133.3 2.5 250 333.3 4 400 533.3 5 50 66.7
1101_011 100 133.3 2.5 250 333.3 4.5 450 599.9 5 50 66.7
1101_100 100 133.3 2.5 250 333.3 5 500 666.6 5 50 66.7
1101_101 125 166.7 2 250 333.3 3 375 500 5 50 66.7
1101_110 125 166.7 2 250 333.3 4 500 666.6 5 50 66.7
Table 7-3. Clock Configurations for PCI Host Mode (PCI_MODCK = 0)(1)(2) (Continued)
Mode(3) Bus Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPM
Multiplication
Factor(6)
CPU Clock
(MHz) PCI
Division
Factor
PCI Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
32
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
Notes: 1. The “low” values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry
guarantees only the required minimum CPU operating frequency. The “high” values are for the purpose of illustration only.
Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of
the user’s device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For
modes with a CPU multiplication factor 3, the minimum CPU frequency is 150 MHz for commercial temperature devices
and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor 3.5: for Rev0.1 the minimum
CPU frequency is 250 MHz; for RevA or later the minimum CPU frequency is 150 MHz for commercial temperature devices
and 175 MHz for extended temperature devices.
2. As Table 7-1 on page 25 shows, PCI_MODCK determines the PCI clock frequency range. Refer to Table 7-4 on page 32 for
lower configurations.
3. MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
4. 60x and local bus frequency. Identical to CLKin.
5. CPM multiplication factor = CPM clock/bus clock.
6. CPU multiplication factor = Core PLL multiplication factor.
1110_000 100 133.3 3 300 400 3.5 350 466.6 6 50 66.7
1110_001 100 133.3 3 300 400 4 400 533.3 6 50 66.7
1110_010 100 133.3 3 300 400 4.5 450 599.9 6 50 66.7
1110_011 100 133.3 3 300 400 5 500 666.6 6 50 66.7
1110_100 100 133.3 3 300 400 5.5 550 733.3 6 50 66.7
1100_000 Reserved
1100_001 Reserved
1100_010 Reserved
Table 7-3. Clock Configurations for PCI Host Mode (PCI_MODCK = 0)(1)(2) (Continued)
Mode(3) Bus Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPM
Multiplication
Factor(6)
CPU Clock
(MHz) PCI
Division
Factor
PCI Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
Table 7-4. Clock Configurations for PCI Host Mode (PCI_MODCK = 1)(1)(2)
Mode(3) Bus Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPM
Multiplication
Factor(6)
CPU Clock
(MHz) PCI
Division
Factor
PCI Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
Default Modes (MODCK_H = 0000)
0000_000 60 100 2 120 200 2.5 150 250 4 30 50
0000_001 50 100 2 100 200 3 150 300 4 25 50
0000_010 60 120 2.5 150 300 3 180 360 6 25 50
0000_011 60 120 2.5 150 300 3.5 210 420 6 25 50
0000_100 60 120 2.5 150 300 4 240 480 6 25 50
0000_101 50 100 3 150 300 3 150 300 6 25 50
0000_110 50 100 3 150 300 3.5 175 350 6 25 50
33
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
0000_111 50 100 3 150 300 4 200 400 6 25 50
Full Configuration Modes
0001_000 50 100 3 150 300 5 250 500 6 25 50
0001_001 50 100 3 150 300 6 300 600 6 25 50
0001_010 50 100 3 150 300 7 350 700 6 25 50
0001_011 50 100 3 150 300 8 400 800 6 25 50
0010_000 50 100 4 200 400 5 250 500 8 25 50
0010_001 50 100 4 200 400 6 300 600 8 25 50
0010_010 50 100 4 200 400 7 350 700 8 25 50
0010_011 50 100 4 200 400 8 400 800 8 25 50
0010_100 37.5 75 4 150 300 5 187.5 375 6 25 50
0010_101 37.5 75 4 150 300 5.5 206.3 412.5 6 25 50
0010_110 37.5 75 4 150 300 6 225 450 6 25 50
0011_000 30 50 5 150 250 5 150 250 5 30 50
0011_001 25 50 5 125 250 6 150 300 5 25 50
0011_010 25 50 5 125 250 7 175 350 5 25 50
0011_011 25 50 5 125 250 8 200 400 5 25 50
0100_000 Reserved
0100_001 25 50 6 150 300 6 150 300 6 25 50
0100_010 25 50 6 150 300 7 175 350 6 25 50
0100_011 25 50 6 150 300 8 200 400 6 25 50
0101_000 60 100 2 120 200 2.5 150 250 4 30 50
0101_001 50 100 2 100 200 3 150 300 4 25 50
0101_010 50 100 2 100 200 3.5 175 350 4 25 50
0101_011 50 100 2 100 200 4 200 400 4 25 50
0101_100 50 100 2 100 200 4.5 225 450 4 25 50
0110_000 60 120 2.5 150 300 2.5 150 300 6 25 50
Table 7-4. Clock Configurations for PCI Host Mode (PCI_MODCK = 1)(1)(2) (Continued)
Mode(3) Bus Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPM
Multiplication
Factor(6)
CPU Clock
(MHz) PCI
Division
Factor
PCI Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
34
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
0110_001 60 120 2.5 150 300 3 180 360 6 25 50
0110_010 60 120 2.5 150 300 3.5 210 420 6 25 50
0110_011 60 120 2.5 150 300 4 240 480 6 25 50
0110_100 60 120 2.5 150 300 4.5 270 540 6 25 50
0110_101 60 120 2.5 150 300 5 300 600 6 25 50
0110_110 60 120 2.5 150 300 6 360 720 6 25 50
0111_000 Reserved
0111_001 50 100 3 150 300 3 150 300 6 25 50
0111_010 50 100 3 150 300 3.5 175 350 6 25 50
0111_011 50 100 3 150 300 4 200 400 6 25 50
0111_100 50 100 3 150 300 4.5 225 450 6 25 50
1000_000 Reserved
1000_001 66.7 133.3 3 200 400 3 200 400 8 25 50
1000_010 66.7 133.3 3 200 400 3.5 233.3 466.7 8 25 50
1000_011 66.7 133.3 3 200 400 4 266.7 533.3 8 25 50
1000_100 66.7 133.3 3 200 400 4.5 300 600 8 25 50
1000_101 66.7 133.3 3 200 400 6 400 800 8 25 50
1000_110 66.7 133.3 3 200 400 6.5 433.3 866.7 8 25 50
1001_000 Reserved
1001_001 Reserved
1001_010 57.1 114.3 3.5 200 400 3.5 200 400 8 25 50
1001_011 57.1 114.3 3.5 200 400 4 228.6 457.1 8 25 50
1001_100 57.1 114.3 3.5 200 400 4.5 257.1 514.3 8 25 50
1001_101 42.9 85.7 3.5 150 300 5 214.3 428.6 6 25 50
1001_110 42.9 85.7 3.5 150 300 5.5 235.7 471.4 6 25 50
1010_000 75 150 2 150 300 2 150 300 6 25 50
1010_001 75 150 2 150 300 2.5 187.5 375 6 25 50
1010_010 75 150 2 150 300 3 225 450 6 25 50
Table 7-4. Clock Configurations for PCI Host Mode (PCI_MODCK = 1)(1)(2) (Continued)
Mode(3) Bus Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPM
Multiplication
Factor(6)
CPU Clock
(MHz) PCI
Division
Factor
PCI Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
35
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Notes: 1. The “low” values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry
guarantees only the required minimum CPU operating frequency. The “high” values are for the purpose of illustration only.
Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of
the user’s device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For
modes with a CPU multiplication factor 3, the minimum CPU frequency is 150 MHz for commercial temperature devices
and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor 3.5: for Rev0.1 the minimum
CPU frequency is 250 MHz; for RevA or later the minimum CPU frequency is 150 MHz for commercial temperature devices
and 175 MHz for extended temperature devices.
1010_011 75 150 2 150 300 3.5 262.5 525 6 25 50
1010_100 75 150 2 150 300 4 300 600 6 25 50
1011_000 Reserved
1011_001 80 160 2.5 200 400 2.5 200 400 8 25 50
1011_010 80 160 2.5 200 400 3 240 480 8 25 50
1011_011 80 160 2.5 200 400 3.5 280 560 8 25 50
1011_100 80 160 2.5 200 400 4 320 640 8 25 50
1011_101 80 160 2.5 200 400 4.5 360 720 8 25 50
1101_000 50 100 2.5 125 250 3 150 300 5 25 50
1101_001 50 100 2.5 125 250 3.5 175 350 5 25 50
1101_010 50 100 2.5 125 250 4 200 400 5 25 50
1101_011 50 100 2.5 125 250 4.5 225 450 5 25 50
1101_100 50 100 2.5 125 250 5 250 500 5 25 50
1101_101 62.5 125 2 125 250 3 187.5 375 5 25 50
1101_110 62.5 125 2 125 250 4 250 500 5 25 50
1110_000 50 100 3 150 300 3.5 175 350 6 25 50
1110_001 50 100 3 150 300 4 200 400 6 25 50
.. .
1110_011 50 100 3 150 300 5 250 500 6 25 50
1110_100 50 100 3 150 300 5.5 275 550 6 25 50
1100_000 Reserved
1100_001 Reserved
1100_010 Reserved
Table 7-4. Clock Configurations for PCI Host Mode (PCI_MODCK = 1)(1)(2) (Continued)
Mode(3) Bus Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPM
Multiplication
Factor(6)
CPU Clock
(MHz) PCI
Division
Factor
PCI Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
36
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
2. As Table 7-1 on page 25 shows, PCI_MODCK determines the PCI clock frequency range. Refer to Table 7-3 on page 29 for
higher configurations.
3. MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
4. 60x and local bus frequency. Identical to CLKin.
5. CPM multiplication factor = CPM clock/bus clock.
6. CPU multiplication factor = Core PLL multiplication factor.
7.3 PCI Agent Mode
Table 7-5 and Table 7-6 on page 39 show configurations for PCI agent mode. The frequencies listed are
for the purpose of illustration only. Users must select a mode and input bus frequency so that the result-
ing configuration does not exceed the frequency rating of the user’s device. In addition, note the
following:
Notes: 1. PCI_MODCK
In PCI mode only, PCI_MODCK comes from the LGPL5 pin and MODCK_H[0–3] comes from {LGPL0,
LGPL1, LGPL2, LGPL3}.
2. Tval (Output Hold)
The minimum Tval = 2 ns when PCI_MODCK = 1, and the minimum Tval = 1 ns when PCI_MODCK =
0. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant
AC timing.
Table 7-5. Clock Configurations for PCI Agent Mode (PCI_MODCK = 0)(1)(2)
Mode(3) PCI Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPU
Multiplication
Factor
CPU Clock
(MHz) Bus
Division
Factor
Bus Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
Default Modes (MODCK_H = 0000)
0000_000 60 66.7 2 120 133.3 2.5 150 166.7 2 60 66.7
0000_001 50 66.7 2 100 133.3 3 150 200 2 50 66.7
0000_010 50 66.7 3 150 200 3 150 200 3 50 66.7
0000_011 50 66.7 3 150 200 4 200 266.6 3 50 66.7
0000_100 50 66.7 3 150 200 3 180 240 2.5 60 80
0000_101 50 66.7 3 150 200 3.5 210 280 2.5 60 80
0000_110 50 66.7 4 200 266.6 3.5 233.3 311.1 3 66.7 88.9
0000_111 50 66.7 4 200 266.6 3 240 320 2.5 80 106.7
Full Configuration Modes
0001_001 60 66.7 2 120 133.3 5 150 166.7 4 30 33.3
0001_010 50 66.7 2 100 133.3 6 150 200 4 25 33.3
0001_011 50 66.7 2 100 133.3 7 175 233.3 4 25 33.3
0001_100 50 66.7 2 100 133.3 8 200 266.6 4 25 33.3
0010_001 50 66.7 3 150 200 3 180 240 2.5 60 80
37
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
0010_010 50 66.7 3 150 200 3.5 210 280 2.5 60 80
0010_011 50 66.7 3 150 200 4 240 320 2.5 60 80
0010_100 50 66.7 3 150 200 4.5 270 360 2.5 60 80
0011_000 Reserved
0011_001 Reserved
0011_010 Reserved
0011_011 Reserved
0011_100 Reserved
0100_000 Reserved
0100_001 50 66.7 2 150 200 3 150 200 3 50 66.7
0100_010 50 66.7 3 150 200 3.5 175 200 3 50 66.7
0100_011 50 66.7 3 150 200 4 200 266.6 3 50 66.7
0100_100 50 66.7 3 150 200 4.5 225 300 3 50 66.7
0101_000 50 66.7 5 250 333.3 2.5 250 333.3 2.5 100 133.3
0101_001 50 66.7 5 250 333.3 3 300 400 2.5 100 133.3
0101_010 50 66.7 5 250 333.3 3.5 350 466.6 2.5 100 133.3
0101_011 50 66.7 5 250 333.3 4 400 533.3 2.5 100 133.3
0101_100 50 66.7 5 250 333.3 4.5 450 599.9 2.5 100 133.3
0101_101 50 66.7 5 250 333.3 5 500 666.6 2.5 100 133.3
0101_110 50 66.7 5 250 333.3 5.5 550 733.3 2.5 100 133.3
0110_000 Reserved
0110_001 50 66.7 4 200 266.6 3 200 266.6 3 66.7 88.9
0110_010 50 66.7 4 200 266.6 3.5 233.3 311.1 3 66.7 88.9
0110_011 50 66.7 4 200 266.6 4 266.7 355.5 3 66.7 88.9
0110_100 50 66.7 4 200 266.6 4.5 300 400 3 66.7 88.9
0111_000 50 66.7 3 150 200 2 150 200 2 75 100
0111_001 50 66.7 3 150 200 2.5 187.5 250 2 75 100
0111_010 50 66.7 3 150 200 3 225 300 2 75 100
0111_011 50 66.7 3 150 200 3.5 262.5 350 2 75 100
Table 7-5. Clock Configurations for PCI Agent Mode (PCI_MODCK = 0)(1)(2) (Continued)
Mode(3) PCI Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPU
Multiplication
Factor
CPU Clock
(MHz) Bus
Division
Factor
Bus Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
38
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
1000_000 Reserved
1000_001 50 66.7 3 150 200 2.5 150 166.7 2.5 60 80
1000_010 50 66.7 3 150 200 3 180 240 2.5 60 80
1000_011 50 66.7 3 150 200 3.5 210 280 2.5 60 80
1000_100 50 66.7 3 150 200 4 240 320 2.5 60 80
1000_101 50 66.7 3 150 200 4.5 270 360 2.5 60 80
1001_000 Reserved
1001_001 Reserved
1001_010 Reserved
1001_011 50 66.7 4 200 266.6 4 200 266.6 4 50 66.7
1001_100 50 66.7 4 200 266.6 4.5 225 300 4 50 66.7
1010_000 Reserved
1010_001 50 66.7 4 200 266.6 3 200 266.6 3 66.7 88.9
1010_010 50 66.7 4 200 266.6 3.5 233.3 311.1 3 66.7 88.9
1010_011 50 66.7 4 200 266.6 4 266.7 355.5 3 66.7 88.9
1010_100 50 66.7 4 200 266.6 4.5 300 400 3 66.7 88.9
1011_000 Reserved
1011_001 50 66.7 4 200 266.6 2.5 200 266.6 2.5 80 106.7
1011_010 50 66.7 4 200 266.6 3 240 320 2.5 80 106.7
1011_011 50 66.7 4 200 266.6 3.5 280 373.3 2.5 80 106.7
1011_100 50 66.7 4 200 266.6 4 320 426.6 2.5 80 106.7
1100_101 50 66.7 6 300 400 4 400 533.3 3 100 133.3
1100_110 50 66.7 6 300 400 4.5 450 599.9 3 100 133.3
1100_111 50 66.7 6 300 400 5 500 666.6 3 100 133.3
1101_000 50 66.7 6 300 400 5.5 550 733.3 3 100 133.3
1101_001 50 66.7 6 300 400 3.5 420 559.9 2.5 120 160
1101_010 50 66.7 6 300 400 4 480 639.9 2.5 120 160
1101_011 50 66.7 6 300 400 4.5 540 719.9 2.5 120 160
Table 7-5. Clock Configurations for PCI Agent Mode (PCI_MODCK = 0)(1)(2) (Continued)
Mode(3) PCI Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPU
Multiplication
Factor
CPU Clock
(MHz) Bus
Division
Factor
Bus Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
39
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Notes: 1. The “low” values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry
guarantees only the required minimum CPU operating frequency. The “high” values are for the purpose of illustration only.
Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of
the user’s device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For
modes with a CPU multiplication factor 3, the minimum CPU frequency is 150 MHz for commercial temperature devices
and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor 3.5: for Rev0.1 the minimum
CPU frequency is 250 MHz; for RevA or later the minimum CPU frequency is 150 MHz for commercial temperature devices
and 175 MHz for extended temperature devices.
2. As shown in Table 7-1 on page 25, PCI_MODCK determines the PCI clock frequency range. Refer to Table 7-6 for lower
configurations.
3. MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
4. CPM multiplication factor = CPM clock/PCI clock.
5. CPU multiplication factor = Core PLL multiplication factor.
1101_100 50 66.7 6 300 400 5 600 799.9 2.5 120 160
1110_000 50 66.7 5 250 333.3 2.5 312.5 416.6 2 125 166.7
1110_001 50 66.7 5 250 333.3 3 375 500 2 125 166.7
1110_010 50 66.7 5 250 333.3 3.5 437.5 583.3 2 125 166.7
1110_011 50 66.7 5 250 333.3 4 500 666.6 2 125 166.7
1110_100 50 66.7 5 250 333.3 4 333.3 444.4 3 83.3 111.1
1110_101 50 66.7 5 250 333.3 4.5 375 500 3 83.3 111.1
1110_110 50 66.7 5 250 333.3 5 416.7 555.5 3 83.3 111.1
1110_111 50 66.7 5 250 333.3 5.5 458.3 611.1 3 83.3 111.1
1100_000 Reserved
1100_001 Reserved
1100_010 Reserved
Table 7-5. Clock Configurations for PCI Agent Mode (PCI_MODCK = 0)(1)(2) (Continued)
Mode(3) PCI Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPU
Multiplication
Factor
CPU Clock
(MHz) Bus
Division
Factor
Bus Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
Table 7-6. Clock Configurations for PCI Agent Mode (PCI_MODCK = 1)(1)(2)
Mode(3) PCI Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPU
Multiplication
Factor
CPU Clock
(MHz) Bus
Division
Factor
Bus Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
Default Modes (MODCK_H = 0000)
0000_000 30 50 4 120 200 2.5 150 250 2 60 100
0000_001 25 50 4 100 200 3 150 300 2 50 100
40
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
0000_010 25 50 6 150 300 3 150 300 3 50 100
0000_011 25 50 6 150 300 4 200 400 3 50 100
0000_100 25 50 6 150 300 3 180 360 2.5 60 120
0000_101 25 50 6 150 300 3.5 210 420 2.5 60 120
0000_110 25 50 8 200 400 3.5 233.3 466.7 3 66.7 133.3
0000_111 25 50 8 200 400 3 240 480 2.5 80 160
Full Configuration Modes
0001_001 30 50 4 120 200 5 150 250 4 30 50
0001_010 25 50 4 100 200 6 150 300 4 25 50
0001_011 25 50 4 100 200 7 175 350 4 25 50
0001_100 25 50 4 100 200 8 200 400 4 25 50
0010_001 25 50 6 150 300 3 180 360 2.5 60 120
0010_010 25 50 6 150 300 3.5 210 420 2.5 60 120
0010_011 25 50 6 150 300 4 240 480 2.5 60 120
0010_100 25 50 6 150 300 4.5 270 540 2.5 60 120
0011_000 Reserved
0011_001 37.5 50 4 150 200 3 150 200 3 50 66.7
0011_010 32.1 50 4 128.6 200 3.5 150 233.3 3 42.9 66.7
0011_011 28.1 50 4 112.5 200 4 150 266.7 3 37.5 66.7
0011_100 25 50 4 100 200 4.5 150 300 3 33.3 66.7
0100_000 Reserved
0100_001 25 50 6 150 300 3 150 300 3 50 100
0100_010 25 50 6 150 300 3.5 175 350 3 50 100
0100_011 25 50 6 150 300 4 200 400 3 50 100
0100_100 25 50 6 150 300 4.5 225 450 3 50 100
0101_000 30 50 5 150 250 2.5 150 250 2.5 60 100
0101_001 25 50 5 125 250 3 150 300 2.5 50 100
0101_010 25 50 5 125 250 3.5 175 350 2.5 50 100
0101_011 25 50 5 125 250 4 200 400 2.5 50 100
Table 7-6. Clock Configurations for PCI Agent Mode (PCI_MODCK = 1)(1)(2) (Continued)
Mode(3) PCI Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPU
Multiplication
Factor
CPU Clock
(MHz) Bus
Division
Factor
Bus Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
41
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
0101_100 25 50 5 125 250 4.5 225 450 2.5 50 100
0101_101 25 50 5 125 250 5 250 500 2.5 50 100
0101_110 25 50 5 125 250 5.5 275 550 2.5 50 100
0110_000 Reserved
0110_001 25 50 8 200 400 3 200 400 3 66.7 133.3
0110_010 25 50 8 200 400 3.5 233.3 466.7 3 66.7 133.3
0110_011 25 50 8 200 400 4 266.7 533.3 3 66.7 133.3
0110_100 25 50 8 200 400 4.5 300 600 3 66.7 133.3
0111_000 25 50 6 150 300 2 150 300 2 75 150
0111_001 25 50 6 150 300 2.5 187.5 375 2 75 150
0111_010 25 50 6 150 300 3 225 450 2 75 150
0111_011 25 50 6 150 300 3.5 262.5 525 2 75 150
1000_000 Reserved
1000_001 25 50 6 150 300 2.5 150 300 2.5 60 120
1000_010 25 50 6 150 300 3 180 360 2.5 60 120
1000_011 25 50 6 150 300 3.5 210 420 2.5 60 120
1000_100 25 50 6 150 300 4 240 480 2.5 60 120
1000_101 25 50 6 150 300 4.5 270 540 2.5 60 120
1001_000 Reserved
1001_001 Reserved
1001_010 Reserved
1001_011 25 50 8 200 400 4 200 400 4 50 100
1001_100 25 50 8 200 400 4.5 225 450 4 50 100
1010_000 Reserved
1010_001 25 50 8 200 400 3 200 400 3 66.7 133.3
1010_010 25 50 8 200 400 3.5 233.3 466.7 3 66.7 133.3
1010_011 25 50 8 200 400 4 266.7 533.3 3 66.7 133.3
1010_100 25 50 8 200 400 4.5 300 600 3 66.7 133.3
Table 7-6. Clock Configurations for PCI Agent Mode (PCI_MODCK = 1)(1)(2) (Continued)
Mode(3) PCI Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPU
Multiplication
Factor
CPU Clock
(MHz) Bus
Division
Factor
Bus Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
42
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
Notes: 1. The “low” values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry
guarantees only the required minimum CPU operating frequency. The “high” values are for the purpose of illustration only.
Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of
the user’s device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode.
1011_000 Reserved
1011_001 25 50 8 200 400 2.5 200 400 2.5 80 160
1011_010 25 50 8 200 400 3 240 480 2.5 80 160
1011_011 25 50 8 200 400 3.5 280 560 2.5 80 160
1011_100 25 50 8 200 400 4 320 640 2.5 80 160
1100_101 25 50 6 150 300 4 200 400 3 50 100
1100_110 25 50 6 150 300 4.5 225 450 3 50 100
1100_111 25 50 6 150 300 5 250 500 3 50 100
1101_000 25 50 6 150 300 5.5 275 550 3 50 100
1101_001 25 50 6 150 300 3.5 210 420 2.5 60 120
1101_010 25 50 6 150 300 4 240 480 2.5 60 120
1101_011 25 50 6 150 300 4.5 270 540 2.5 60 120
1101_100 25 50 6 150 300 5 300 600 2.5 60 120
1110_000 25 50 5 125 250 2.5 156.3 312.5 2 62.5 125
1110_001 25 50 5 125 250 3 187.5 375 2 62.5 125
1110_010 25 50 5 125 250 3.5 218.8 437.5 2 62.5 125
1110_011 25 50 5 125 250 4 250 500 2 62.5 125
1110_100 25 50 5 125 250 4 166.7 333.3 3 41.7 83.3
1110_101 25 50 5 125 250 4.5 187.5 375 3 41.7 83.3
1110_110 25 50 5 125 250 5 208.3 416.7 3 41.7 83.3
1110_111 25 50 5 125 250 5.5 229.2 458.3 3 41.7 83.3
1100_000 Reserved
1100_001 Reserved
1100_010 Reserved
Table 7-6. Clock Configurations for PCI Agent Mode (PCI_MODCK = 1)(1)(2) (Continued)
Mode(3) PCI Clock(4)
(MHz) CPM
Multiplication
Factor(5)
CPM Clock
(MHz) CPU
Multiplication
Factor
CPU Clock
(MHz) Bus
Division
Factor
Bus Clock
(MHz)
MODCK_H-
MODCK[1-3] Low High Low High Low High Low High
43
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
For modes with a CPU multiplication factor 3, the minimum CPU frequency is 150 MHz for commercial temperature
devices and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor 3.5: for Rev0.1 the
minimum CPU frequency is 250 MHz; for RevA or later the minimum CPU frequency is 150 MHz for commercial temperature
devices and 175 MHz for extended temperature devices.
2. As shown in Table 7-1 on page 25, PCI_MODCK determines the PCI clock range. Refer to Table 7-5 on page 36 for higher
range configurations.
3. MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
4. CPM multiplication factor = CPM clock/PCI clock.
5. CPU multiplication factor = Core PLL multiplication factor.
8. Pinout
This section provides the pin assignments and pinout lists for PowerQUICC II TBGA package.
The following figures and table represent the standard 480 TBGA package.
Figure 8-1 on page 44 shows the pinout of the package as viewed from the top surface.
44
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
Figure 8-1. Pinout of the 480 TBGA Package (View from Top)
Figure 8-2 shows the side profile of the TBGA package to indicate the direction of the top surface view.
Figure 8-2. Side View of the TBGA Package
1 2 3 4 5 6 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29
1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
Not to scale
Solder Mask
Copper Traces
Copper Heat Spreader
(Oxidized for Insulation)
Glob-Top Dam
Etched
Cavity
Pressure Sensitive
Adhesive
Die
Glob-Top Filled Area
View
Wire Bonds
Die
Attach
1.27 mm Pitch
Polymide Tape
45
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Table 8-1 shows the pinout list of the PC8280 and MPC8270. Table 8-2 on page 58 defines conventions
and acronyms used in Table 8-2 on page 58.
Table 8-1. PC8280 and PC8270 Pinout List
Pin Name
BallPC8280/PC8270 PC8280 only
BR W5
BG F4
ABB/IRQ2 E2
TS E3
A0 G1
A1 H5
A2 H2
A3 H1
A4 J5
A5 J4
A6 J3
A7 J2
A8 J1
A9 K4
A10 K3
A11 K2
A12 K1
A13 L5
A14 L4
A15 L3
A16 L2
A17 L1
A18 M5
A19 N5
A20 N4
A21 N3
A22 N2
A23 N1
A24 P4
A25 P3
A26 P2
A27 P1
46
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
A28 R1
A29 R3
A30 R5
A31 R4
TT0 F1
TT1 G4
TT2 G3
TT3 G2
TT4 F2
TBST D3
TSIZ0 C1
TSIZ1 E4
TSIZ2 D2
TSIZ3 F5
AACK F3
ARTRY E1
DBG V1
DBB/IRQ3 V2
D0 B20
D1 A18
D2 A16
D3 A13
D4 E12
D5 D9
D6 A6
D7 B5
D8 A20
D9 E17
D10 B15
D11 B13
D12 A11
D13 E9
D14 B7
D15 B4
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
47
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
D16 D19
D17 D17
D18 D15
D19 C13
D20 B11
D21 A8
D22 A5
D23 C5
D24 C19
D25 C17
D26 C15
D27 D13
D28 C11
D29 B8
D30 A4
D31 E6
D32 E18
D33 B17
D34 A15
D35 A12
D36 D11
D37 C8
D38 E7
D39 A3
D40 D18
D41 A17
D42 A14
D43 B12
D44 A10
D45 D8
D46 B6
D47 C4
D48 C18
D49 E16
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
48
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
D50 B14
D51 C12
D52 B10
D53 A7
D54 C6
D55 D5
D56 B18
D57 B16
D58 E14
D59 D12
D60 C10
D61 E8
D62 D6
D63 C2
DP0/RSRV/EXT_BR2 B22
IRQ1/DP1/EXT_BG2 A22
IRQ2/DP2/TLBISYNC/EXT_DBG2 E21
IRQ3/DP3/CKSTP_OUT/EXT_BR3 D21
IRQ4/DP4/CORE_SRESET/EXT_BG3 C21
IRQ5/CINT/DP5/TBEN/EXT_DBG3 B21
IRQ6/DP6/CSE0 A21
IRQ7/DP7/CSE1 E20
PSDVAL V3
TA C22
TEA V5
GBL/IRQ1 W1
CI/BADDR29/IRQ2 U2
WT/BADDR30/IRQ3 U3
L2_HIT/IRQ4 Y4
CPU_BG/BADDR31/IRQ5/CINT U4
CPU_DBG R2
CPU_BR Y3
CS0 F25
CS1 C29
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
49
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
CS2 E27
CS3 E28
CS4 F26
CS5 F27
CS6 F28
CS7 G25
CS8 D29
CS9 E29
CS10/BCTL1 F29
CS11/AP0 G28
BADDR27 T5
BADDR28 U1
ALE T2
BCTL0 A27
PWE0/PSDDQM0/PBS0 C25
PWE1/PSDDQM1/PBS1 E24
PWE2/PSDDQM2/PBS2 D24
PWE3/PSDDQM3/PBS3 C24
PWE4/PSDDQM4/PBS4 B26
PWE5/PSDDQM5/PBS5 A26
PWE6/PSDDQM6/PBS6 B25
PWE7/PSDDQM7/PBS7 A25
PSDA10/PGPL0 E23
PSDWE/PGPL1 B24
POE/PSDRAS/PGPL2 A24
PSDCAS/PGPL3 B23
PGTA/PUPMWAIT/PGPL4/PPBS A23
PSDAMUX/PGPL5 D22
LWE0/LSDDQM0/LBS0/PCI_CFG0 H28
LWE1/LSDDQM1/LBS1/PCI_CFG1 H27
LWE2/LSDDQM2/LBS2/PCI_CFG2 H26
LWE3/LSDDQM3/LBS3/PCI_CFG3 G29
LSDA10/LGPL0/PCI_MODCKH0 D27
LSDWE/LGPL1/PCI_MODCKH1 C28
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
50
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
LOE/LSDRAS/LGPL2/PCI_MODCKH2 E26
LSDCAS/LGPL3/PCI_MODCKH3 D25
LGTA/LUPMWAIT/LGPL4/LPBS C26
LGPL5/LSDAMUX/PCI_MODCK B27
LWR D28
L_A14/PAR N27
L_A15/FRAME/SMI T29
L_A16/TRDY R27
L_A17/IRDY/CKSTP_OUT R26
L_A18/STOP R29
L_A19/DEVSEL R28
L_A20/IDSEL W29
L_A21/PERR P28
L_A22/SERR N26
L_A23/REQ0 AA27
L_A24/REQ1/HSEJSW P29
L_A25/GNT0 AA26
L_A26/GNT1/HSLED N25
L_A27/GNT2/HSENUM AA25
L_A28/RST/CORE_SRESET AB29
L_A29/INTA AB28
L_A30/REQ2 P25
L_A31/DLLOUT AB27
LCL_D0/AD0 H29
LCL_D1/AD1 J29
LCL_D2/AD2 J28
LCL_D3/AD3 J27
LCL_D4/AD4 J26
LCL_D5/AD5 J25
LCL_D6/AD6 K25
LCL_D7/AD7 L29
LCL_D8/AD8 L27
LCL_D9/AD9 L26
LCL_D10/AD10 L25
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
51
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
LCL_D11/AD11 M29
LCL_D12/AD12 M28
LCL_D13/AD13 M27
LCL_D14/AD14 M26
LCL_D15/AD15 N29
LCL_D16/AD16 T25
LCL_D17/AD17 U27
LCL_D18/AD18 U26
LCL_D19/AD19 U25
LCL_D20/AD20 V29
LCL_D21/AD21 V28
LCL_D22/AD22 V27
LCL_D23/AD23 V26
LCL_D24/AD24 W27
LCL_D25/AD25 W26
LCL_D26/AD26 W25
LCL_D27/AD27 Y29
LCL_D28/AD28 Y28
LCL_D29/AD29 Y25
LCL_D30/AD30 AA29
LCL_D31/AD31 AA28
LCL_DP0/C0/BE0 L28
LCL_DP1/C1/BE1 N28
LCL_DP2/C2/BE2 T28
LCL_DP3/C3/BE3 W28
IRQ0/NMI_OUT T1
IRQ7/INT_OUT/APE D1
TRST(1) AH3
TCK AG5
TMS AJ3
TDI AE6
TDO AF5
TRIS AB4
PORESET(1) AG6
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
52
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
HRESET AH5
SRESET AF6
QREQ AA3
RSTCONF AJ4
MODCK1/AP1/TC0/BNKSEL0 W2
MODCK2/AP2/TC1/BNKSEL1 W3
MODCK3/AP3/TC2/BNKSEL2 W4
CLKin1 AH4
PA0/RESTART1/DREQ3 FCC2_UTM_TXADDR2 AC29(2)
PA1/REJECT1/DONE3 FCC2_UTM_TXADDR1 AC25(2)
PA2/CLK20/DACK3 FCC2_UTM_TXADDR0 AE28(2)
PA3/CLK19/DACK4/L1RXD1A2 FCC2_UTM_RXADDR0 AG29(2)
PA4/REJECT2/DONE4 FCC2_UTM_RXADDR1 AG28(2)
PA5/RESTART2/DREQ4 FCC2_UTM_RXADDR2/
FCC1_UT_RXPRTY AG26(2)
PA6/FCC2_RXADDR3 L1RSYNCA1 AE24(2)
PA7/SMSYN2/FCC2_TXADDR3 L1TSYNCA1/L1GNTA1 AH25(2)
PA8/SMRXD2/FCC2_TXADDR4 L1RXD0A1/L1RXDA1 AF23(2)
PA9/SMTXD2 L1TXD0A1 AH23(2)
PA10/MSNUM5 FCC1_UT8_RXD0/FCC1_UT16_RXD8 AE22(2)
PA11/MSNUM4 FCC1_UT8_RXD1/
FCC1_UT16_RXD9 AH22(2)
PA12/MSNUM3 FCC1_UT8_RXD2/
FCC1_UT16_RXD10 AJ21(2)
PA13/MSNUM2 FCC1_UT8_RXD3/
FCC1_UT16_RXD11 AH20(2)
PA14/FCC1_MII_HDLC_RXD3 FCC1_UT8_RXD4/
FCC1_UT16_RXD12 AG19(2)
PA15/FCC1_MII_HDLC_RXD2 FCC1_UT8_RXD5/
FCC1_UT16_RXD13 AF18(2)
PA16/FCC1_MII_HDLC_RXD1/
FCCI_RMII_RXD1
FCC1_UT8_RXD6/
FCC1_UT16_RXD14 AF17(2)
PA17/FCC1_MII_HDLC_RXD0/
FCC1_MII_TRAN_RXD/
FCCI_RMII_RXD0
FCC1_UT8_RXD7/
FCC1_UT16_RXD15 AE16(2)
PA18/FCC1_MII_HDLC_TXD0/
FCC1_MII_TRAN_TXD/
FCC1_RMII_TXD0
FCC1_UT8_TXD7/
FCC1_UT16_TXD15 AJ16(2)
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
53
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
PA19/FCC1_MII_HDLC_TXD1/
FCC1_RMII_TXD1
FCC1_UT8_TXD6/
FCC1_UT16_TXD14 AG15(2)
PA20/FCC1_MII_HDLC_TXD2 FCC1_UT8_TXD5/
FCC1_UT16_TXD13 AJ13(2)
PA21/FCC1_MII_HDLC_TXD3 FCC1_UT8_TXD4/
FCC1_UT16_TXD12 AE13(2)
PA22 FCC1_UT8_TXD3/
FCC1_UT16_TXD11 AF12(2)
PA23 FCC1_UT8_TXD2/
FCC1_UT16_TXD10 AG11(2)
PA24/MSNUM1 FCC1_UT8_TXD1/
FCC1_UT16_TXD9 AH9(2)
PA25/MSNUM0 FCC1_UT8_TXD0/
FCC1_UT16_TXD8 AJ8(2)
PA26/FCC1_RMII_RX_ER FCC1_UTM_RXCLAV/
FCC1_UTS_RXCLAV AH7(2)
PA27/FCC1_MII_RX_DV/
FCC1_RMII_CRS_DV FCC1_UT_RXSOC AF7(2)
PA28/FCC1_MII_TX_EN/
FCC1_RMII_TX_EN
FCC1_UTM_RXENB/
FCC1_UTS_RXENB AD5(2)
PA29/FCC1_MII_TX_ER FCC1_UT_TXSOC AF1(2)
PA30/FCC1_MII_CRS/
FCC1_RTS
FCC1_UTM_TXCLAV/
FCC1_UTS_TXCLAV AD3(2)
PA31/FCC1_MII_COL FCC1_UTM_TXENB/
FCC1_UTS_TXENB AB5(2)
PB4/FCC3_MII_HDLC_TXD3/
L1RSYNCA2/FCC3_RTS FCC2_UT8_RXD0 AD28(2)
PB5/FCC3_MII_HDLC_TXD2/
L1TSYNCA2/L1GNTA2 FCC2_UT8_RXD1 AD26(2)
PB6/FCC3_MII_HDLC_TXD1/
FCC3_RMII_TXD1/
L1RXDA2/L1RXD0A2
FCC2_UT8_RXD2 AD25(2)
PB7/FCC3_MII_HDLC_TXD0/
FCC3_RMII_TXD0/
FCC3_TXD/L1TXDA2/L1TXD0A2
FCC2_UT8_RXD3 AE26(2)
PB8/FCC3_MII_HDLC_RXD0/
FCC3_RMII_RXD0/FCC3_RXD/TXD3 FCC2_UT8_TXD3/L1RSYNCD1 AH27(2)
PB9/FCC3_MII_HDLC_RXD1/
FCC3_RMII_RXD1/L1TXD2A2
FCC2_UT8_TXD2/
L1TSYNCD1/L1GNTD1 AG24(2)
PB10/FCC3_MII_HDLC_RXD2 FCC2_UT8_TXD1/L1RXDD1 AH24(2)
PB11/FCC3_MII_HDLC_RXD3 FCC2_UT8_TXD0/L1TXDD1 AJ24(2)
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
54
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
PB12/FCC3_MII_CRS/TXD2 L1CLKOB1/L1RSYNCC1 AG22(2)
PB13/FCC3_MII_COL/L1TXD1A2 L1RQB1/L1TSYNCC1/L1GNTC1 AH21(2)
PB14/FCC3_MII_RMII_TX_EN/RXD3 L1RXDC1 AG20(2)
PB15/FCC3_MII_TX_ER/RXD2 L1TXDC1 AF19(2)
PB16/FCC3_MII_RMII_RX_ER/CLK18 L1CLKOA1 AJ18(2)
PB17/FCC3_MII_RX_DV/
CLK17/FCC3_RMII_CRS_DV L1RQA1 AJ17(2)
PB18/FCC2_MII_HDLC_RXD3/
L1CLKOD2/L1RXD2A2
PB19FCC2_MII_HDLC_RXD2/
L1RQD2/L1RXD3A2
FCC2_UT8_RXD4 AE14(2)
FCC2_UT8_RXD5 AF13(2)
PB20/FCC2_MII_HDLC_RMII_RXD1/
L1RSYNCD2 FCC2_UT8_RXD6/L1TXD1A1 AG12(2)
PB21/FCC2_MII_HDLC_RMII_RXD0/
FCC2_TRAN_RXD/
L1TSYNCD2/L1GNTD2
FCC2_UT8_RXD7/L1TXD2A1 AH11(2)
PB22/FCC2_MII_HDLC_TXD0/
FCC2_TXD/FCC2_RMII_TXD0/L1RXDD2 FCC2_UT8_TXD7/L1RXD1A1 AH16(2)
PB23/FCC2_MII_HDLC_TXD1/
L1RXD2A1/L1TXDD2/
FCC2_RMII_TXD1
FCC2_UT8_TXD6/L1RXD2A1 AE15(2)
PB24/FCC2_MII_HDLC_TXD2/
L1RSYNCC2 FCC2_UT8_TXD5/L1RXD3A1 AJ9(2)
PB25/FCC2_MII_HDLC_TXD3/
L1TSYNCC2/L1GNTC2 FCC2_UT8_TXD4/L1TXD3A1 AE9(2)
PB26/FCC2_MII_CRS/L1RXDC2 FCC2_UT8_TXD1 AJ7(2)
PB27/FCC2_MII_COL/L1TXDC2 FCC2_UT8_TXD0 AH6(2)
PB28/FCC2_MII_RX_ER/
FCC2_RMII_RX_ER/FCC2_RTS/
L1TSYNCB2/L1GNTB2/TXD1
AE3(2)
PB29/L1RSYNCB2/FCC2_MII_TX_EN/
FCC2_RMII_TX_EN
FCC2_UTM_RXCLAV/
FCC2_UTS_RXCLAV AE2(2)
PB30/FCC2_MII_RX_DV/
FCC2_RMII_CRS_DV/L1RXDB2 FCC2_UT_TXSOC AC5(2)
PB31/FCC2_MII_TX_ER/L1TXDB2 FCC2_UT_RXSOC AC4(2)
PC0/DREQ1/BRGO7/SMSYN2/L1CLKOA2 AB26(2)
PC1/DREQ2/BRGO6/L1RQA2/SPISEL AD29(2)
PC2/FCC3_CD/DONE2 FCC2_UT8_TXD3 AE29(2)
PC3/FCC3_CTS/DACK2/CTS4/USB_RP FCC2_UT8_TXD2 AE27(2)
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
55
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
PC4/SI2_L1ST4/FCC2_CD FCC2_UTM_RXENB/
FCC2_UTS_RXENB AF27(2)
PC5/SI2_L1ST3/FCC2_CTS FCC2_UTM_TXCLAV/
FCC2_UTS_TXCLAV AF24(2)
PC6/FCC1_CD
L1CLKOC1/FCC1_UTM_RXADDR2/
FCC1_UTS_RXADDR2/
FCC1_UTM_RXCLAV1
AJ26(2)
PC7/FCC1_CTS
L1RQC1/FCC1_UTM_TXADDR2/
FCC1_UTS_TXADDR2/
FCC1_UTM_TXCLAV1
AJ25(2)
PC8/CD4/RENA4/SI2_L1ST2/
CTS3/USBRN FCC1_UT16_TXD0 AF22(2)
PC9/CTS4/CLSN4/SI2_L1ST1/
L1TSYNCA2/L1GNTA2/USB_RP FCC1_UT16_TXD1 AE21(2)
PC10/CD3/RENA3 FCC1_UT16_TXD2/SI1_L1ST4/
FCC2_UT8_RXD3 AF20(2)
PC11/CTS3/CLSN3/L1TXD3A2 L1CLKOD1/FCC2_UT8_RXD2 AE19(2)
PC12/CD2/RENA2 SI1_L1ST3/FCC1_UTM_RXADDR1/
FCC1_UTS_RXADDR1 AE18(2)
PC13/CTS2/CLSN2 L1RQD1/FCC1_UTM_TXADDR1/
FCC1_UTS_TXADDR1 AH18(2)
PC14/CD1/RENA1 FCC1_UTM_RXADDR0/
FCC1_UTS_RXADDR0 AH17(2)
PC15/CTS1/CLSN1/SMTXD2 FCC1_UTM_TXADDR0/
FCC1_UTS_TXADDR0 AG16(2)
PC16/CLK16/TIN4 AF15(2)
PC17/CLK15/TIN3/BRGO8 AJ15(2)
PC18/CLK14/TGATE2 AH14(2)
PC19/CLK13/BRGO7/SPICLK AG13(2)
PC20/CLK12/TGATE1/USB_OE AH12(2)
PC21/CLK11/BRGO6 AJ11(2)
PC22/CLK10/DONE1/FCC1_UT_TXPRTY AG10(2)
PC23/CLK9/BRGO5/DACK1 AE10(2)
PC24/CLK8/TOUT4 FCC2_UT8_TXD3 AF9(2)
PC25/CLK7/BRGO4 FCC2_UT8_TXD2 AE8(2)
PC26/CLK6/TOUT3/TMCLK AJ6(2)
PC27/FCC3_TXD/FCC3_MII_TXD0/
FCC3_RMII_TXD0/CLK5/BRGO3 AG2(2)
PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2/FCC2_RXADDR4 AF3(2)
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
56
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
PC29/CLK3/TIN2/BRGO2/CTS1/CLSN1 AF2(2)
PC30/CLK2/TOUT1 FCC2_UT8_TXD3 AE1(2)
PC31/CLK1/BRGO1 AD1(2)
PD4/BRGO8/FCC3_RTS/SMRXD2 L1TSYNCD1/L1GNTD1 AC28(2)
PD5/DONE1 FCC1_UT16_TXD3 AD27(2)
PD6/DACK1 FCC1_UT16_TXD4 AF29(2)
PD7/SMSYN1/FCC1_TXCLAV2
FCC1_UTM_TXADDR3/
FCC1_UTS_TXADDR3/
FCC2_UTM_TXADDR4
FCC2_UTS_TXADDR1
AF28(2)
PD8/SMRXD1/BRGO5 FCC2_UT_TXPRTY AG25(2)
PD9/SMTXD1/BRGO3 FCC2_UT_RXPRTY AH26(2)
PD10/L1CLKOB2/BRGO4 FCC2_UT8_RXD1/L1RSYNCB1 AJ27(2)
PD11/L1RQB2 FCC2_UT8_RXD0/
L1TSYNCB1/L1GNTB1 AJ23(2)
PD12 SI1_L1ST2/L1RXDB1 AG23(2)
PD13 SI1_L1ST1/L1TXDB1 AJ22(2)
PD14/L1CLKOC2/I2CSCL FCC1_UT16_RXD0 AE20(2)
PD15/L1RQC2/I2CSDA FCC1_UT16_RXD1 AJ20(2)
PD16/SPIMISO FCC1_UT_TXPRTY/
L1TSYNCC1/L1GNTC1 AG18(2)
PD17/BRGO2/SPIMOSI FCC1_UT_RXPRTY AG17(2)
PD18/SPICLK
FCC1_UTM_RXADDR4/
FCC1_UTS_RXADDR4/
FCC1_UTM_RXCLAV3/
FCC2_UTM_RXADDR3/
FCC2_UTS_RXADDR0
AF16(2)
PD19/SPISEL/BRGO1
FCC1_UTM_TXADDR4/
FCC1_UTS_TXADDR4/
FCC1_UTM_TXCLAV3/
FCC2_UTM_TXADDR3/
FCC2_UTS_TXADDR0
AH15(2)
PD20/RTS4/TENA4/L1RSYNCA2/
USB_TP FCC1_UT16_RXD2 AJ14(2)
PD21/TXD4/L1RXD0A2/
L1RXDA2/USB_TN FCC1_UT16_RXD3 AH13(2)
PD22/RXD4L1TXD0A2/
L1TXDA2/USB_RXD FCC1_UT16_TXD5 AJ12(2)
PD23/RTS3/TENA3 FCC1_UT16_RXD4/L1RSYNCD1 AE12(2)
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
57
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Notes: 1. Should be tied to VDDH via a 2 k external pull-up resistor.
2. The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC cur-
rent, it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs.
3. Must be pulled down or left floating.
4. If PCI is not desired, must be pulled up or left floating.
PD24/TXD3 FCC1_UT16_RXD5/L1RXDD1 AF10(2)
PD25/RXD3 FCC1_UT16_TXD6/L1TXDD1 AG9(2)
PD26/RTS2/TENA2 FCC1_UT16_RXD6/L1RSYNCC1 AH8(2)
PD27/TXD2 FCC1_UT16_RXD7/L1RXDC1 AG7(2)
PD28/RXD2 FCC1_UT16_TXD7/L1TXDC1 AE4(2)
PD29/RTS1/TENA1
FCC1_UTM_RXADDR3/
FCC1_UTS_RXADDR3/
FCC1_UTM_RXCLAV2/
FCC2_UTM_RXADDR4/
FCC2_UTS_RXADDR1
AG1(2)
PD30/TXD1 FCC2_UTM_TXENB/
FCC2_UTS_TXENB AD4(2)
PD31/RXD1 AD2(2)
VCCSYN AB3
VCCSYN1 B9
CLKin2 AE11
SPARE4(3) U5
PCI_MODE(4) AF25
SPARE6(3) V4
Noconnect(5) AA1, AG4
I/Opower
AG21, AG14, AG8, AJ1, AJ2, AH1, AH2,
AG3, AF4, AE5, AC27, Y27, T27, P27,
K26, G27, AE25, AF26, AG27, AH28,
AH29, AJ28, AJ29, C7, C14, C16, C20,
C23, E10, A28, A29, B28, B29, C27, D26,
E25, H3, M4, T3, AA4, A1, A2, B1, B2, C3,
D4, E5
Core power
U28, U29, K28, K29, A9, A19, B19, M1,
M2, Y1, Y2, AC1, AC2, AH19, AJ19,
AH10, AJ10, AJ5
Ground
AA5, AB1(6), AB2(7), AF21, AF14, AF8,
AE7, AF11, AE17, AE23, AC26, AB25,
Y26, V25, T26, R25, P26, M25, K27, H25,
G26, D7, D10, D14, D16, D20, D23, C9,
E11, E13, E15, E19, E22, B3, G5, H4, K5,
M3, P5, T4, Y5, AA2, AC3
Table 8-1. PC8280 and PC8270 Pinout List (Continued)
Pin Name
BallPC8280/PC8270 PC8280 only
58
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
5. Sphere is not connected to die.
6. GNDSYN (AB1): This pin exists as a separate ground signal in MPC826x(A) devices; it does not exist as a separate ground
signal on the PC8280. New designs must connect AB1 to GND and follow the suggestions in Section 4.6 ”Layout Practices”
on page 14. Old designs in which the PC8280 is used as a drop-in replacement can leave the pin connected to GND with the
noise filtering capacitors.
7. XFC (AB2) pin: This pin is used in MPC826x(A) devices; it is not used in PC8280 because there is no need for external
capacitor to operate the PLL. New designs should connect AB2 (XFC) pin to GND. Old designs in which the PC8280 is used
as a drop-in replacement can leave the pin connected to the current capacitor.
Symbols used in Table 8-2 are described in Table 9-1 on page 58.
9. Package Description
The following sections provide the package parameters and mechanical dimensions.
9.1 Package Parameters
Package parameters are provided in Table 9-1.
Table 8-2. Symbol Legend
Symbol Meaning
OVERBAR Signals with overbars, such as TA, are active low
UTM Indicates that a signal is part of the UTOPIA master interface
UTS Indicates that a signal is part of the UTOPIA slave interface
UT8 Indicates that a signal is part of the 8-bit UTOPIA interface
UT16 Indicates that a signal is part of the 16-bit UTOPIA interface
MII Indicates that a signal is part of the media independent interface
RMII Indicates that a signal is part of the reduced media independent interface
Table 9-1. Package Parameters
Package Devices Outline (mm) Type Interconnects Pitch (mm)
Nominal
Unmounted
Height (mm)
TP PC8280
PC8270 37.5 x 37.5 TBGA 480 1.27 1.55
59
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
9.2 Mechanical Dimensions
Figure 9-1 provides the mechanical dimensions and bottom surface nomenclature of the 480 TBGA
package.
Figure 9-1. Mechanical Dimensions and Bottom Surface Nomenclature – 480 TBGA
Dim Millimeters
Min Max
A 1.45 1.65
A1 0.60 0.70
A2 0.85 0.95
A3 0.25
b 0.65 0.85
D 37.50 BSC
D1 35.56 REF
e 1.27 BSC
E 37.50 BSC
E1 35.56 REF
Notes:
1. Dimensions and tolerancing per
ASME Y14.5M-1994
2. Dimensions in millimeters
3. Dimension b is measured at the
maximum solder ball diameter,
parallel to primary data A.
4. Primary data A and the seating
plane are defined by the spherical
crowns of the solder balls.
DB
E
C
A
A
TOP VIEW
A1
BOTTOM VIEW
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 3 4 5 6 7 8 9 101112 13141516171819202122232425262728 29
3480X b
ABC
A
3
15
M
M
(E1)
28X e
28X e
(D1)
SEATING
PLANE
A3
4X 0.2
A1
A
A2
0.15 A
480X
0.25 A
60
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
10. Ordering Information
Figure 10-1 provides an example of the e2v part numbering nomenclature for the PC8280. In addition to
the processor frequency, the part numbering scheme also consists of a part modifier that indicates any
enhancement(s) in the part from the original production design. Each part number also contains a revi-
sion code that refers to the die mask revision number and is specified in the part numbering scheme for
identification purposes only.
Figure 10-1. Ordering Information
Notes: 1. For availability of the different versions, contact your local e2v sales office.
2. The letter X in the part number designates a "Prototype" product that has not been qualified by e2v. Reliability of a PCX part-
number is not guaranteed and such part-number shall not be used in Flight Hardware. Product changes may still occur while
shipping prototypes.
11. Definitions
11.1 Life Support Applications
These products are not designed for use in life support appliances, devices or systems where malfunc-
tion of these products can reasonably be expected to result in personal injury. e2v customers using or
selling these products for use in such applications do so at their own risk and agree to fully indemnify e2v
for any damages resulting from such improper use or sale.
xx y xx nnn
xx nnn
x8280
Part
Identifier
8280 M: Tcase = -55˚C
TJ = +125˚C
TP = 480 TBGA
Product
Code(1)
PC(X)(2)
Package(1)
CPU/CPM/Bus Speed(1) Revision
Level(1)
Temperature
Range(1)
U
Q = 333 MHz
L = 250 MHz
D = 83 MHz
Screening
Level
Upscreening A
xx y x8270
Part
Identifier
8270 M: Tcase = -55˚C
TJ = +125˚C TP = 480 TBGA
Product
Code(1)
PC(X)(2)
Package(1)
CPU/CPM/Bus Speed(1) Revision
Level(1)
Temperature
Range(1)
U
T = 400 MHz
Q = 333 MHz
L = 250 MHz
D = 83 MHz
Screening
Level
Upscreening A
61
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
12. Document Revision History
Table 12-1 provides a revision history for this hardware specification.
Table 12-1. Document Revision History
Revision Date Substantive Change(s)
E 04/08 Table 8-1, “PC8280 and PC8270 Pinout List,” on page 45 update
D 02/07
Name change from Atmel to e2v
Section 6. ”AC Electrical Characteristics” on page 15: removed deratings statement and clarified AC
timing descriptions
C 05/06
Table 6-4, “AC Characteristics for SIU Inputs(1),” on page 20: Added text to clarify that Data Bus Parity
is not supported at 66 MHz
Table 6-4, “AC Characteristics for SIU Inputs(1),” on page 20: Added text to clarify that Data Bus ECC is
supported at 66 MHz
Table 6-4, “AC Characteristics for SIU Inputs(1),” on page 20: Added note to DP pins to show it is not
supported at 66 MHz
Table 6-5, “AC Characteristics for SIU Outputs(1),” on page 21: Added note to support 1 ns hold time
B 03/06
- Added the PC8270 characteristics
- In Section 6.2 ”SIU AC Characteristics” on page 20, modified the note on CLKIN Jitter and duty cycle
- Added Section 6.3 ”JTAG Timings” on page 24
- Modified Figure 9-1 on page 59 to display all text
A 11/05 Initial revision
i
0836E–HIREL–04/08
e2v semiconductors SAS 2008
PC8280/PC8270 [Preliminary]
Table of Contents
Features .................................................................................................... 1
Description ............................................................................................... 1
Screening/Quality/Packaging ................................................................. 1
1 Overview ................................................................................................... 2
1.1 Features ..................................................................................................................3
2 Detailed Specification ............................................................................. 7
2.1 Applicable Documents .............................................................................................7
2.2 Operating Conditions ...............................................................................................7
3 DC Electrical Characteristics .................................................................. 9
4 Thermal Characteristics ........................................................................ 12
4.1 Estimation with Junction-to-Ambient Thermal Resistance ....................................12
4.2 Estimation with Junction-to-Case Thermal Resistance .........................................13
4.3 Estimation with Junction-to-Board Thermal Resistance ........................................13
4.4 Estimation Using Simulation ..................................................................................13
4.5 Experimental Determination ..................................................................................14
4.6 Layout Practices ....................................................................................................14
5 Power Dissipation .................................................................................. 14
6 AC Electrical Characteristics ................................................................ 15
6.1 CPM AC Characteristics ........................................................................................16
6.2 SIU AC Characteristics ..........................................................................................20
6.3 JTAG Timings ........................................................................................................24
7 Clock Configuration Modes .................................................................. 25
7.1 Local Bus Mode .....................................................................................................26
7.2 PCI Host Mode ......................................................................................................28
7.3 PCI Agent Mode ....................................................................................................36
8 Pinout ...................................................................................................... 43
9 Package Description ............................................................................. 58
9.1 Package Parameters .............................................................................................58
9.2 Mechanical Dimensions ........................................................................................59
10 Ordering Information ............................................................................. 60
ii
0836E–HIREL–04/08
PC8280/PC8270 [Preliminary]
e2v semiconductors SAS 2008
11 Definitions .............................................................................................. 60
11.1 Life Support Applications .....................................................................................60
12 Document Revision History .................................................................. 61
Whilst e2v has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any
use thereof and also reserves the right to change the specific ation of goods without notice. e2v accepts no liability beyond that set out in its stan-
dard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accorda nce w ith inform a-
tion contained herein.
How to reach us
Home page: www.e2v.com
Sales Office:
Northern Europe
e2v ltd
106 Waterhouse Lane
Chelmsford
Essex CM1 2QU
England
Tel: +44 (0)1245 493493
Fax: +44 (0)1245 492492
E-Mail: enquiries@e2v.com
Southern Europe
e2v sas
16 Burospace
F-91572 Bièvres
Cedex
France
Tel: +33 (0) 1 60 19 55 00
Fax:+33 (0) 1 60 19 55 29
E-Mail: enquiries-fr@e2v.com
Germany and Austria
e2v gmbh
Industriestraße 29
82194 Gröbenzell
Germany
Tel: +49 (0) 842 410 570
Fax:: +49 (0) 842 284 547
E-Mail: enquiries-de@e2v.com
Americas
e2v inc.
4 Westchester Plaza
Elmsford
NY 10523-1482
USA
Tel: +1 (914) 592 6050
Fax: +1 (914) 592-5148
E-Mail: enquiries-na@e2v.com
Asia Pacific
e2v ltd
11/F,
Onfem Tower,
29 Wyndham Street,Central,
Hong Kong
Tel: +852 3679 364 8/9
Fax: +852 3583 1084
E-Mail: enquiries-ap@e2v.com
Product Contact:
e2v
Avenue de Rochepleine
BP 123 - 38521 Saint-Egrève Cedex
France
Tel: +33 (0)4 7 6 58 30 00
Hotline:
std-hotline@e2v.com
0836E–HIREL–04/08
e2v semiconductors SAS 2008