TOP252-262
TOPSwitch-HX Family
www.power.com August 2016
Enhanced EcoSmart, Integrated Off-Line Switcher with
Advanced Feature Set and Extended Power Range
This Product is Covered by Patents and/or Pending Patent Applications.
Product Highlights
Lower System Cost, Higher Design Flexibility
Multi-mode operation maximizes efficiency at all loads
New eSIP-7F and eSIP-7C packages
Low thermal impedance junction-to-case (2 °C per watt)
Low height is ideal for adapters where space is limited
Simple mounting using a clip to aid low cost manufacturing
Horizontal eSIP-7F package ideal for ultra low height adapter
and monitor applications
Extended package creepage distance from DRAIN pin to
adjacent pin and to heat sink
No heat sink required up to 35 W using P, G and M packages
with universal input voltage and up to 48 W at 230 VAC
Output overvoltage protection (OVP) is user programmable for
latching/non-latching shutdown with fast AC reset
Allows both primary and secondary sensing
Line undervoltage (UV) detection prevents turn-off glitches
Line overvoltage (OV) shutdown extends line surge limit
Accurate programmable current limit
Optimized line feed-forward for line ripple rejection
132 kHz frequency (254Y-258Y and all E/L packages) reduces
transformer and power supply size
Half frequency option for video applications
Frequency jittering reduces EMI filter cost
Figure 1. Typical Flyback Application.
Heat sink is connected to SOURCE for low EMI
Improved auto-restart delivers <3% of maximum power in
short circuit and open loop fault conditions
Accurate hysteretic thermal shutdown function automatically
recovers without requiring a reset
Fully integrated soft-start for minimum start-up stress
Extended creepage between DRAIN and all other pins
improves field reliability
Output Power Table
Product5
230 VAC ±15%485-265 VAC
Adapter1Open
Frame2Peak3Adapter1Open
Frame2Peak3
TOP252PN/GN
9 W 15 W
21 W
6 W 10 W
13 W
TOP252MN 21 W 13 W
TOP253PN/GN
15 W 25 W
38 W
9 W 15 W
25 W
TOP253MN 43 W 29 W
TOP254PN/GN
16 W 28 W
47 W
11 W 20 W
30 W
TOP254MN 62 W 40 W
TOP255PN/GN
19 W 30 W
54 W
13 W 22 W
35 W
TOP255MN 81 W 52 W
TOP256PN/GN
21 W 34 W
63 W
15 W 26 W
40 W
TOP256MN 98 W 64 W
TOP257PN/GN
25 W 41 W
70 W
19 W 30 W
45 W
TOP257MN 119 W 78 W
TOP258PN/GN
29 W 48 W
77 W
22 W 35 W
50 W
TOP258MN 140 W 92 W
Table 1. Output Power Table. (for notes see page 2).
Product5
230 VAC ±15% 85-265 VAC
Adapter1Open
Frame2Adapter1Open
Frame2
TOP252EN/EG 10 W 21 W 6 W 13 W
TOP253EN/EG 21 W 43 W 13 W 29 W
TOP254EN/YN/EG 30 W 62 W 20 W 43 W
TOP255EN/YN/EG 40 W 81 W 26 W 57 W
TOP255LN 40 W 81 W 26 W 57 W
TOP256EN/YN/EG 60 W 119 W 40 W 86 W
TOP256LN 60 W 88 W 40 W 64 W
TOP257EN/YN/EG 85 W 157 W 55 W 119 W
TOP257LN 85 W 105 W 55 W 78 W
TOP258EN/YN/EG 105 W 195 W 70 W 148 W
TOP258LN 105 W 122 W 70 W 92 W
TOP259EN/YN/EG 128 W 238 W 80 W 171 W
TOP259LN 128 W 162 W 80 W 120 W
TOP260EN/YN/EG 147 W 275 W 93 W 200 W
TOP260LN 147 W 190 W 93 W 140 W
TOP261EN/YN/EG 177 W 333 W 118 W 254 W
TOP261LN 177 W 244 W 118 W 177 W
TOP262EN6177 W 333 W 118 W 254 W
TOP262LN6177 W 244 W 118 W 177 W
PI-4510-100206
AC
IN
DC
OUT
D
S
C
TOPSwitch-HX
CONTROL
V
+
-
FX
Rev. J 08/16
2
TOP252-262
www.power.com
EcoSmart– Energy Efficient
Energy efficient over entire load range
No-load consumption
Less than 200 mW at 230 VAC
Standby power for 1 W input
>600 mW output at 110 VAC input
>500 mW output at 265 VAC input
Description
TOPSwitch™-HX cost effectively incorporates a 700 V power
MOSFET, high voltage switched current source, PWM control,
oscillator, thermal shutdown circuit, fault protection and other
control circuitry onto a monolithic device.
Figure 2. Typical Flyback Application TOP259YN, TOP260YN and TOP261YN.
Y Package Option for TOP259-261
In order to improve noise-immunity on large TOPSwitch-HX
Y package parts, the F pin has been removed (TOP259-261YN
are fixed at 66 kHz switching frequency) and replaced with a
SIGNAL GROUND (G) pin. This pin acts as a low noise path for
the C pin capacitor and the X pin resistor. It is only required for
the TOP259-261YN package parts.
Notes for Table 1:
1. Minimum continuous power in a typical non-ventilated
enclosed adapter measured at +50 °C ambient. Use of an
external heat sink will increase power capability.
2. Minimum continuous power in an open frame design at
+50 °C ambient.
3. Peak power capability in any design at +50 °C ambient.
4. 230 VAC or 110/115 VAC with doubler.
5. Packages: P: DIP-8C, G: SMD-8C, M: SDIP-10C,
Y: TO-220-7C, E: eSIP-7C, L: eSIP-7F.
See part ordering information.
6. TOP261 and TOP262 have the same current limit set point. In
some applications TOP262 may run cooler than TOP261 due
to a lower RDS(ON) for the larger device.
PI-4973-122607
AC
IN
DC
OUT
D
S
C
TOPSwitch-HX
CONTROL
V
+
-
GX
Rev. J 08/16
3
TOP252-262
www.power.com
Section List
Functional Block Diagram ....................................................................................................................................... 4
Pin Functional Description ...................................................................................................................................... 6
TOPSwitch-HX Family Functional Description ....................................................................................................... 7
CONTROL (C) Pin Operation .................................................................................................................................... 8
Oscillator and Switching Frequency .......................................................................................................................... 8
Pulse Width Modulator ............................................................................................................................................ 9
Maximum Load Cycle .............................................................................................................................................. 9
Error Amplifier .......................................................................................................................................................... 9
On-Chip Current Limit with External Programmability ............................................................................................... 9
Line Undervoltage Detection (UV) ........................................................................................................................... 10
Line Overvoltage Shutdown (OV) ............................................................................................................................ 11
Hysteretic or Latching Output Overvoltage Protection (OVP)................................................................................... 11
Line Feed-Forward with DCMAX Reduction .............................................................................................................. 13
Remote ON/OFF and Synchronization .................................................................................................................... 13
Soft-Start ............................................................................................................................................................... 13
Shutdown/Auto-Restart ......................................................................................................................................... 13
Hysteretic Over-Temperature Protection ................................................................................................................. 13
Bandgap Reference ............................................................................................................................................... 13
High-Voltage Bias Current Source .......................................................................................................................... 13
Typical Uses of FREQUENCY (F) Pin ...................................................................................................................... 15
Typical Uses of VOLTAGE MONITOR (V) and EXTERNAL CURRENT LIMIT (X) Pins .......................................... 16
Typical Uses of MULTI-FUNCTION (M) Pin ........................................................................................................... 18
Application Examples .............................................................................................................................................. 21
A High Efficiency, 35 W, Dual Output – Universal Input Power Supply ..................................................................... 21
A High Efficiency, 150 W, 250-380 VDC Input Power Supply .................................................................................. 22
A High Efficiency, 20 W Continuous – 80 W Peak, Universal Input Power Supply ................................................... 23
A High Efficiency, 65 W, Universal Input Power Supply ........................................................................................... 24
Key Application Considerations .............................................................................................................................. 25
TOPSwitch-HX vs.TOPSwitch-GX
.......................................................................................................................
. 25
TOPSwitch-HX Design Considerations .................................................................................................................. 26
TOPSwitch-HX Layout Considerations ................................................................................................................... 27
Quick Design Checklist .......................................................................................................................................... 31
Design Tools .......................................................................................................................................................... 31
Product Specifications and Test Conditions .......................................................................................................... 32
Typical Performance Characteristics .................................................................................................................... 39
Package Outlines .................................................................................................................................................... 43
Part Ordering Information ........................................................................................................................................ 47
Rev. J 08/16
4
TOP252-262
www.power.com
Figure 3a. Functional Block Diagram (P and G Packages).
Figure 3b. Functional Block Diagram (M Package).
PI-4643-040507
SHUTDOWN/
AUTO-RESTART
CLOCK
CONTROLLED
TURN-ON
GATE DRIVER
CURRENT LIMIT
COMPARATOR
INTERNAL UV
COMPARATOR
INTERNAL
SUPPLY
5.8 V
4.8 V
SOURCE (S)
SOURCE (S)
S
R
Q
DMAX
STOP SOFT
START
CONTROL (C)
VOLTAGE
MONITOR (V)
-
+
5.8 V
IFB
1 V
ZC
VC
+
-
+
-
+
-
LEADING
EDGE
BLANKING
÷ 16
1
HYSTERETIC
THERMAL
SHUTDOWN
SHUNT REGULATOR/
ERROR AMPLIFIER +
-
DRAIN (D)
ON/OFF
DCMAX
DCMAX
0
OV/
UV
OVPV
VI (LIMIT)
CURRENT
LIMIT
ADJUST
VBG + VT
LINE
SENSE
SOFT START
OFF
F REDUCTION
F REDUCTION
STOP LOGIC
EXTERNAL
CURRENT
LIMIT (X)
OSCILLATOR
WITH JITTER
PWM
IPS(UPPER)
IPS(LOWER)
SOFT START
IFB
IPS(UPPER)
IPS(LOWER)
IPS(UPPER)
IPS(LOWER)
PI-4508-120307
SHUTDOWN/
AUTO-RESTART
CLOCK
CONTROLLED
TURN-ON
GATE DRIVER
CURRENT LIMIT
COMPARATOR
INTERNAL UV
COMPARATOR
INTERNAL
SUPPLY
5.8 V
4.8 V
KPS(UPPER)
KPS(LOWER)
SOURCE (S)
SOURCE (S)
S
R
Q
DMAX
STOP SOFT
START
CONTROL (C)
MULTI-
FUNCTION (M)
-
+
5.8 V
IFB
ZC
VC
+
-
+
-
+
-
LEADING
EDGE
BLANKING
÷ 16
1
HYSTERETIC
THERMAL
SHUTDOWN
SHUNT REGULATOR/
ERROR AMPLIFIER +
-
DRAIN (D)
ON/OFF
DCMAX
DCMAX
0
OV/
UV
OVPV
VI (LIMIT)
CURRENT
LIMIT
ADJUST
VBG + VT
LINE
SENSE
SOFT START
SOFT START
IFB
IPS(UPPER)
IPS(LOWER)
KPS(UPPER)
KPS(LOWER)
OFF
F REDUCTION
F REDUCTION
STOP LOGIC
OSCILLATOR
WITH JITTER
PWM
Rev. J 08/16
5
TOP252-262
www.power.com
Figure 3c. Functional Block Diagram (TOP254-258 YN Package and all eSIP Packages).
PI-4511-012810
SHUTDOWN/
AUTO-RESTART
CLOCK
CONTROLLED
TURN-ON
GATE DRIVER
CURRENT LIMIT
COMPARATOR
INTERNAL UV
COMPARATOR
INTERNAL
SUPPLY
5.8 V
4.8 V
SOURCE (S)
SOURCE (S)
S
R
Q
DMAX
STOP SOFT
START
CONTROL (C)
VOLTAGE
MONITOR (V)
FREQUENCY (F)
-
+
5.8 V
IFB
1 V
ZC
VC
+
-
+
-
+
-
LEADING
EDGE
BLANKING
÷ 16
1
HYSTERETIC
THERMAL
SHUTDOWN
SHUNT REGULATOR/
ERROR AMPLIFIER +
-
DRAIN (D)
ON/OFF
DCMAX DCMAX
66k/132k
0
OV/
UV
OVPV
VI (LIMIT)
CURRENT
LIMIT
ADJUST
VBG + VT
LINE
SENSE
SOFT START
OFF
F REDUCTION
F REDUCTION
STOP LOGIC
EXTERNAL CURRENT
LIMIT (X)
OSCILLATOR
WITH JITTER
PWM
KPS(UPPER)
KPS(LOWER)
SOFT START
IFB
IPS(UPPER)
IPS(LOWER)
KPS(UPPER)
KPS(LOWER)
PI-4974-122607
SHUTDOWN/
AUTO-RESTART
CLOCK
CONTROLLED
TURN-ON
GATE DRIVER
CURRENT LIMIT
COMPARATOR
INTERNAL UV
COMPARATOR
INTERNAL
SUPPLY
5.8 V
4.8 V
SIGNAL
GROUND (G)
SOURCE (S)
S
R
Q
DMAX
STOP SOFT
START
CONTROL (C)
VOLTAGE
MONITOR (V)
-
+
5.8 V
IFB
1 V
ZC
VC
+
-
+
-
+
-
LEADING
EDGE
BLANKING
÷ 16
1
HYSTERETIC
THERMAL
SHUTDOWN
SHUNT REGULATOR/
ERROR AMPLIFIER +
-
DRAIN (D)
SOURCE (S)
ON/OFF
DCMAX DCMAX
0
OV/
UV
OVPV
VI (LIMIT)
CURRENT
LIMIT
ADJUST
VBG + VT
LINE
SENSE
SOFT START
OFF
F REDUCTION
F REDUCTION
STOP LOGIC
EXTERNAL
CURRENT
LIMIT (X)
OSCILLATOR
WITH JITTER
PWM
KPS(UPPER)
KPS(LOWER)
SOFT START
IFB
IPS(UPPER)
IPS(LOWER)
KPS(UPPER)
KPS(LOWER)
Figure 3d. Functional Block Diagram TOP259YN, TOP260YN, TOP261YN.
Rev. J 08/16
6
TOP252-262
www.power.com
Pin Functional Description
DRAIN (D) Pin:
High-voltage power MOSFET DRAIN pin. The internal start-up
bias current is drawn from this pin through a switched high-
voltage current source. Internal current limit sense point for
drain current.
CONTROL (C) Pin:
Error amplifier and feedback current input pin for duty cycle
control. Internal shunt regulator connection to provide internal
bias current during normal operation. It is also used as the
connection point for the supply bypass and auto-restart/
compensation capacitor.
EXTERNAL CURRENT LIMIT (X) Pin (Y, M, E and L package):
Input pin for external current limit adjustment and remote
ON/OFF. A connection to SOURCE pin disables all functions on
this pin.
Figure 4. Pin Configuration (Top View).
X
PI-4711-021308
DC
Input
Voltage
+
-
D
S
C
CONTROL
V
RIL
RLS
12 k
4 M
VUV = IUV × RLS + VV (IV = IUV)
VOV = IOV × RLS + VV (IV = IOV)
For RLS = 4 M
DCMAX@100 VDC = 76%
DCMAX@375 VDC = 41%
For RIL = 12 k
ILIMIT = 61%
See Figure 55b for
other resistor values
(RIL) to select different
ILIMIT values.
VUV = 102.8 VDC
VOV = 451 VDC
Figure 5. TOP254-258 Y and All M/E/L Package Line Sense and Externally Set
Current Limit.
PI-4712-120307
DC
Input
Voltage
+
-
D M
S
C
VUV = IUV × RLS + VM (IM = IUV)
VOV = IOV × RLS + VM (IM = IOV)
For RLS = 4 M
VUV = 102.8 VDC
VOV = 451 VDC
DCMAX@100 VDC = 76%
DCMAX@375 VDC = 41%
CONTROL
RLS 4 M
Figure 7. P/G Package Line Sense.
X G
PI-4983-021308
DC
Input
Voltage
+
-
D
S
C
CONTROL
V
RIL
RLS
12 k
4 M
VUV = IUV × RLS + VV (IV = IUV)
VOV = IOV × RLS + VV (IV = IOV)
For RLS = 4 M
DCMAX@100 VDC = 76%
DCMAX@375 VDC = 41%
For RIL = 12 k
ILIMIT = 61%
See Figure 55b for
other resistor values
(RIL) to select different
ILIMIT values.
VUV = 102.8 VDC
VOV = 451 VDC
Figure 6. TOP259-261 Y Package Line Sense and External Current Limit.
VOLTAGE MONITOR (V) Pin (Y & M package only):
Input for OV, UV, line feed forward with DCMAX reduction, output
overvoltage protection (OVP), remote ON/OFF and device reset.
A connection to the SOURCE pin disables all functions on this pin.
MULTI-FUNCTION (M) Pin (P & G packages only):
This pin combines the functions of the VOLTAGE MONITOR (V)
and EXTERNAL CURRENT LIMIT (X) pins of the Y package into
one pin. Input pin for OV, UV, line feed forward with DCMAX
PI-4644-091108
Tab Internally
Connected to
SOURCE Pin
Tab Internally
Connected to
SOURCE Pin
Lead Bend
Outward from Drawing
(Refer to eSIP-7F Package
Outline Drawing)
Exposed Pad
(Hidden)
Internally
Connected to
SOURCE Pin
Y Package (TO-220-7C)
D
CS
S
S
S
S
S
S
S
S
7
D
5
F
4
S
3
C
2
X
1
V
7
D
5
S
4
F
3
C
2
X
1
V
7
D
5
S
4
F
3
C
2
X
1
V
7
D
5
G
4
S
3
C
2
X
1
V
M
P and G Package
M Package
8
5
7
1
4
2
6
D
X
C
V10
6
9
1
5
8
7
2
3
Note: Y package for TOP259-261
Note: Y package for TOP254-258
E Package (eSIP-7C)
L Package (eSIP-7F)
Y Package (TO-220-7C)
Rev. J 08/16
7
TOP252-262
www.power.com
PI-4713-021308
DC
Input
Voltage
+
-
D M
S
C
For RIL = 12 k
ILIMIT = 61%
CONTROL
RIL
See Figure 55b for other
resistor values (RIL) to
select different ILIMIT values.
For RIL = 19 k
ILIMIT = 37%
Figure 8. P/G Package Externally Set Current Limit.
reduction, output overvoltage protection (OVP), external current
limit adjustment, remote ON/OFF and device reset. A
connection to SOURCE pin disables all functions on this pin
and makes TOPSwitch-HX operate in simple three terminal
mode (like TOPSwitch-II).
FREQUENCY (F) Pin (TOP254-258Y, and all E and L packages):
Input pin for selecting switching frequency 132 kHz if connected
to SOURCE pin and 66 kHz if connected to CONTROL pin.
The switching frequency is internally set for fixed 66 kHz
operation in the P, G, M package and TOP259YN, TOP260YN
and TOP261YN.
SIGNAL GROUND (G) Pin (TOP259YN, TOP260YN &
TOP261YN only):
Return for C pin capacitor and X pin resistor.
SOURCE (S) Pin:
Output MOSFET source connection for high voltage power
return. Primary side control circuit common and reference point.
TOPSwitch-HX Family Functional Description
Like TOPSwitch-GX, TOPSwitch-HX is an integrated switched
mode power supply chip that converts a current at the control
input to a duty cycle at the open drain output of a high voltage
power MOSFET. During normal operation the duty cycle of the
power MOSFET decreases linearly with increasing CONTROL
pin current as shown in Figure 9.
In addition to the three terminal TOPSwitch features, such as
the high voltage start-up, the cycle-by-cycle current limiting,
loop compensation circuitry, auto-restart and thermal
shutdown, the TOPSwitch-HX incorporates many additional
functions that reduce system cost, increase power supply
performance and design flexibility. A patented high voltage
CMOS technology allows both the high-voltage power MOSFET
and all the low voltage control circuitry to be cost effectively
integrated onto a single monolithic chip.
Three terminals, FREQUENCY, VOLTAGE-MONITOR, and
EXTERNAL CURRENT LIMIT (available in Y and E/L packages),
two terminals, VOLTAGE-MONITOR and EXTERNAL CURRENT
LIMIT (available in M package) or one terminal MULTI-FUNCTION
(available in P and G package) have been used to implement
some of the new functions. These terminals can be connected
to the SOURCE pin to operate the TOPSwitch-HX in a
TOPSwitch-like three terminal mode. However, even in this three
terminal mode, the TOPSwitch-HX offers many transparent
features that do not require any external components:
1. A fully integrated 17 ms soft-start significantly reduces or
eliminates output overshoot in most applications by sweeping
both current limit and frequency from low to high to limit the
peak currents and voltages during start-up.
2. A maximum duty cycle (DCMAX) of 78% allows smaller input
storage capacitor, lower input voltage requirement and/or
higher power capability.
3. Multi-mode operation optimizes and improves the power
supply efficiency over the entire load range while maintaining
good cross regulation in multi-output supplies.
Figure 9. Control Pin Characteristics (Multi-Mode Operation).
PI-4645-041107
Duty Cycle (%) Drain Peak Current
To Current Limit Ratio (%)
Frequency (kHz)
CONTROL
Current
CONTROL
Current
CONTROL
Current
ICOFF
IC03
IC02
IC01
IB
ICD1
100
78
55
25
132
66
30
Slope = PWM Gain
(constant over load range)
Auto-Restart
Variable
Frequency
Mode
Low
Frequency
Mode
Multi-Cycle
Modulation
Jitter
Full Frequency Mode
Rev. J 08/16
8
TOP252-262
www.power.com
4. Switching frequency of 132 kHz reduces the transformer size
with no noticeable impact on EMI.
5. Frequency jittering reduces EMI in the full frequency mode at
high load condition.
6. Hysteretic over-temperature shutdown ensures automatic
recovery from thermal fault. Large hysteresis prevents circuit
board overheating.
7. Packages with omitted pins and lead forming provide large
drain creepage distance.
8. Reduction of the auto-restart duty cycle and frequency to
improve the protection of the power supply and load during
open loop fault, short circuit, or loss of regulation.
9. Tighter tolerances on I2f power coefficient, current limit
reduction, PWM gain and thermal shutdown threshold.
The VOLTAGE-MONITOR (V) pin is usually used for line sensing
by connecting a 4 MW resistor from this pin to the rectified DC
high voltage bus to implement line overvoltage (OV), under-
voltage (UV) and dual-slope line feed-forward with DCMAX
reduction. In this mode, the value of the resistor determines the
OV/UV thresholds and the DCMAX is reduced linearly with a dual
slope to improve line ripple rejection. In addition, it also
provides another threshold to implement the latched and
hysteretic output overvoltage protection (OVP). The pin can
also be used as a remote ON/OFF using the IUV threshold.
The EXTERNAL CURRENT LIMIT (X) pin can be used to reduce
the current limit externally to a value close to the operating peak
current, by connecting the pin to SOURCE through a resistor.
This pin can also be used as a remote ON/OFF input.
For the P and G package the VOLTAGE-MONITOR and
EXTERNAL CURRENT LIMIT pin functions are combined on
one MULTI-FUNCTION (M) pin. However, some of the functions
become mutually exclusive.
The FREQUENCY (F) pin in the TOP254-258 Y and E/L packages
set the switching frequency in the full frequency PWM mode to
the default value of 132 kHz when connected to SOURCE pin. A
half frequency option of 66 kHz can be chosen by connecting
this pin to the CONTROL pin instead. Leaving this pin open is
not recommended. In the P, G and M packages and the
TOP259-261 Y packages, the frequency is set internally at
66 kHz in the full frequency PWM mode.
CONTROL (C) Pin Operation
The CONTROL pin is a low impedance node that is capable of
receiving a combined supply and feedback current. During
normal operation, a shunt regulator is used to separate the
feedback signal from the supply current. CONTROL pin voltage
VC is the supply voltage for the control circuitry including the
MOSFET gate driver. An external bypass capacitor closely
connected between the CONTROL and SOURCE pins is
required to supply the instantaneous gate drive current. The
total amount of capacitance connected to this pin also sets the
auto-restart timing as well as control loop compensation.
When rectified DC high voltage is applied to the DRAIN pin
during start-up, the MOSFET is initially off, and the CONTROL
pin capacitor is charged through a switched high voltage
current source connected internally between the DRAIN and
CONTROL pins. When the CONTROL pin voltage VC reaches
approximately 5.8 V, the control circuitry is activated and the
soft-start begins. The soft-start circuit gradually increases the
drain peak current and switching frequency from a low starting
value to the maximum drain peak current at the full frequency
over approximately 17 ms. If no external feedback/supply
current is fed into the CONTROL pin by the end of the soft-start,
the high voltage current source is turned off and the CONTROL
pin will start discharging in response to the supply current
drawn by the control circuitry. If the power supply is designed
properly, and no fault condition such as open loop or shorted
output exists, the feedback loop will close, providing external
CONTROL pin current, before the CONTROL pin voltage has
had a chance to discharge to the lower threshold voltage of
approximately 4.8 V (internal supply undervoltage lockout
threshold). When the externally fed current charges the
CONTROL pin to the shunt regulator voltage of 5.8 V, current in
excess of the consumption of the chip is shunted to SOURCE
through an NMOS current mirror as shown in Figure 3. The
output current of that NMOS current mirror controls the duty
cycle of the power MOSFET to provide closed loop regulation.
The shunt regulator has a finite low output impedance ZC that
sets the gain of the error amplifier when used in a primary
feedback configuration. The dynamic impedance ZC of the
CONTROL pin together with the external CONTROL pin
capacitance sets the dominant pole for the control loop.
When a fault condition such as an open loop or shorted output
prevents the flow of an external current into the CONTROL pin,
the capacitor on the CONTROL pin discharges towards 4.8 V.
At 4.8 V, auto-restart is activated, which turns the output
MOSFET off and puts the control circuitry in a low current
standby mode. The high-voltage current source turns on and
charges the external capacitance again. A hysteretic internal
supply undervoltage comparator keeps VC within a window of
typically 4.8 V to 5.8 V by turning the high-voltage current
source on and off as shown in Figure 11. The auto-restart
circuit has a divide-by-sixteen counter, which prevents the
output MOSFET from turning on again until sixteen discharge/
charge cycles have elapsed. This is accomplished by enabling
the output MOSFET only when the divide-by-sixteen counter
reaches the full count (S15). The counter effectively limits
TOPSwitch-HX power dissipation by reducing the auto-restart
duty cycle to typically 2%. Auto-restart mode continues until
output voltage regulation is again achieved through closure of
the feedback loop.
Oscillator and Switching Frequency
The internal oscillator linearly charges and discharges an
internal capacitance between two voltage levels to create a
triangular waveform for the timing of the pulse width modulator.
This oscillator sets the pulse width modulator/current limit latch
at the beginning of each cycle.
The nominal full switching frequency of 132 kHz was chosen to
minimize transformer size while keeping the fundamental EMI
frequency below 150 kHz. The FREQUENCY pin (available only
in TOP254-258 Y and E, L packages), when shorted to the
CONTROL pin, lowers the full switching frequency to 66 kHz
Rev. J 08/16
9
TOP252-262
www.power.com
Figure 10. Switching Frequency Jitter (Idealized VDRAIN Waveforms).
PI-4530-041107
fOSC -
4 ms
Time
Switching
Frequency
VDRAIN
fOSC +
(half frequency), which may be preferable in some cases such
as noise sensitive video applications or a high efficiency
standby mode. Otherwise, the FREQUENCY pin should be
connected to the SOURCE pin for the default 132 kHz. In the
M, P and G packages and the TOP259-261 Y package option,
the full frequency PWM mode is set at 66 kHz, for higher
efficiency and increased output power in all applications.
To further reduce the EMI level, the switching frequency in the
full frequency PWM mode is jittered (frequency modulated) by
approximately ±2.5 kHz for 66 kHz operation or ±5 kHz for
132 kHz operation at a 250 Hz (typical) rate as shown in
Figure 10. The jitter is turned off gradually as the system is
entering the variable frequency mode with a fixed peak drain
current.
Pulse Width Modulator
The pulse width modulator implements multi-mode control by
driving the output MOSFET with a duty cycle inversely
proportional to the current into the CONTROL pin that is in
excess of the internal supply current of the chip (see Figure 9).
The feedback error signal, in the form of the excess current, is
filtered by an RC network with a typical corner frequency of
7 kHz to reduce the effect of switching noise in the chip supply
current generated by the MOSFET gate driver.
To optimize power supply efciency, four different control
modes are implemented. At maximum load, the modulator
operates in full frequency PWM mode; as load decreases, the
modulator automatically transitions, first to variable frequency
PWM mode, then to low frequency PWM mode. At light load,
the control operation switches from PWM control to multi-cycle-
modulation control, and the modulator operates in multi-cycle-
modulation mode. Although different modes operate differently
to make transitions between modes smooth, the simple
relationship between duty cycle and excess CONTROL pin
current shown in Figure 9 is maintained through all three PWM
modes. Please see the following sections for the details of the
operation of each mode and the transitions between modes.
Full Frequency PWM mode: The PWM modulator enters full
frequency PWM mode when the CONTROL pin current (IC)
reaches IB. In this mode, the average switching frequency is
kept constant at fOSC (66 kHz for P, G and M packages and
TOP259-261 Y, pin selectable 132 kHz or 66 kHz for Y and E/L
packages). Duty cycle is reduced from DCMAX through the
reduction of the on-time when IC is increased beyond IB. This
operation is identical to the PWM control of all other TOPSwitch
families. TOPSwitch-HX only operates in this mode if the
cycle-by-cycle peak drain current stays above kPS(UPPER)*ILIMIT(set),
where kPS(UPPER) is 55% (typical) and ILIMIT(set) is the current limit
externally set via the X or M pin.
Variable Frequency PWM mode: When peak drain current is
lowered to kPS(UPPER)* ILIMIT(set) as a result of power supply load
reduction, the PWM modulator initiates the transition to variable
frequency PWM mode, and gradually turns off frequency jitter.
In this mode, peak drain current is held constant at kPS(UPPER)*
ILIMIT(set) while switching frequency drops from the initial full
frequency of fOSC (132 kHz or 66 kHz) towards the minimum
frequency of fMCM(MIN) (30 kHz typical). Duty cycle reduction is
accomplished by extending the off-time.
Low Frequency PWM mode: When switching frequency
reaches fMCM(MIN) (30 kHz typical), the PWM modulator starts to
transition to low frequency mode. In this mode, switching
frequency is held constant at fMCM(MIN) and duty cycle is reduced,
similar to the full frequency PWM mode, through the reduction
of the on-time. Peak drain current decreases from the initial
value of kPS(UPPER)* ILIMIT(set) towards the minimum value of
kPS(LOWER)*ILIMIT(set), where kPS(LOWER) is 25% (typical) and ILIMIT(set) is
the current limit externally set via the X or M pin.
Multi-Cycle-Modulation mode: When peak drain current is
lowered to kPS(LOWER)*ILIMIT(set), the modulator transitions to
multi-cycle-modulation mode. In this mode, at each turn-on,
the modulator enables output switching for a period of TMCM(MIN)
at the switching frequency of fMCM(MIN) (4 or 5 consecutive pulses
at 30 kHz) with the peak drain current of kPS(LOWER)*ILIMIT(set), and
stays off until the CONTROL pin current falls below IC(OFF). This
mode of operation not only keeps peak drain current low but
also minimizes harmonic frequencies between 6 kHz and
30 kHz. By avoiding transformer resonant frequency this way,
all potential transformer audible noises are greatly suppressed.
Maximum Duty Cycle
The maximum duty cycle, DCMAX, is set at a default maximum
value of 78% (typical). However, by connecting the VOLTAGE-
MONITOR or MULTI-FUNCTION pin (depending on the
package) to the rectified DC high voltage bus through a resistor
with appropriate value (4 MW typical), the maximum duty cycle
can be made to decrease from 78% to 40% (typical) when input
line voltage increases from 88 V to 380 V, with dual gain slopes.
Error Amplifier
The shunt regulator can also perform the function of an error
amplifier in primary side feedback applications. The shunt
regulator voltage is accurately derived from a temperature-
compensated bandgap reference. The CONTROL pin dynamic
impedance ZC sets the gain of the error amplifier. The
CONTROL pin clamps external circuit signals to the VC voltage
level. The CONTROL pin current in excess of the supply current
is separated by the shunt regulator and becomes the feedback
current Ifb for the pulse width modulator.
Rev. J 08/16
10
TOP252-262
www.power.com
On-Chip Current Limit with External Programmability
The cycle-by-cycle peak drain current limit circuit uses the
output MOSFET ON-resistance as a sense resistor. A current
limit comparator compares the output MOSFET on-state drain
to source voltage VDS(ON) with a threshold voltage. High drain
current causes VDS(ON) to exceed the threshold voltage and turns
the output MOSFET off until the start of the next clock cycle.
The current limit comparator threshold voltage is temperature
compensated to minimize the variation of the current limit due
to temperature related changes in RDS(ON) of the output MOSFET.
The default current limit of TOPSwitch-HX is preset internally.
However, with a resistor connected between EXTERNAL
CURRENT LIMIT (X) pin (Y, E/L and M packages) or MULTI-
FUNCTION (M) pin (P and G package) and SOURCE pin (for
TOP259-261 Y, the X pin is connected to the SIGNAL GROUND
(G) pin), current limit can be programmed externally to a lower
level between 30% and 100% of the default current limit. By
setting current limit low, a larger TOPSwitch-HX than necessary
for the power required can be used to take advantage of the
lower RDS(ON) for higher efficiency/smaller heat sinking
requirements. TOPSwitch-HX current limit reduction initial
tolerance through the X pin (or M pin) has been improved
significantly compare with previous TOPSwitch-GX. With a
second resistor connected between the EXTERNAL CURRENT
LIMIT (X) pin (Y, E/L and M packages) or MULTI-FUNCTION (M)
pin (P and G package) and the rectified DC high voltage bus,
the current limit is reduced with increasing line voltage, allowing
a true power limiting operation against line variation to be
implemented. When using an RCD clamp, this power limiting
technique reduces maximum clamp voltage at high line. This
allows for higher reflected voltage designs as well as reducing
clamp dissipation.
The leading edge blanking circuit inhibits the current limit
comparator for a short time after the output MOSFET is turned
on. The leading edge blanking time has been set so that, if a
power supply is designed properly, current spikes caused by
primary-side capacitances and secondary-side rectifier reverse
recovery time should not cause premature termination of the
switching pulse.
The current limit is lower for a short period after the leading
edge blanking time. This is due to dynamic characteristics of
the MOSFET. During startup and fault conditions the controller
prevents excessive drain currents by reducing the switching
frequency.
Line Undervoltage Detection (UV)
At power up, UV keeps TOPSwitch-HX off until the input line
voltage reaches the undervoltage threshold. At power down,
UV prevents auto-restart attempts after the output goes out of
regulation. This eliminates power down glitches caused by slow
discharge of the large input storage capacitor present in
applications such as standby supplies. A single resistor
connected from the VOLTAGE-MONITOR pin (Y, E/L and M
packages) or MULTI-FUNCTION pin (P and G packages) to the
rectified DC high voltage bus sets UV threshold during power
up. Once the power supply is successfully turned on, the UV
threshold is lowered to 44% of the initial UV threshold to allow
extended input voltage operating range (UV low threshold). If
the UV low threshold is reached during operation without the
power supply losing regulation, the device will turn off and stay
off until UV (high threshold) has been reached again. If the
power supply loses regulation before reaching the UV low
threshold, the device will enter auto-restart. At the end of each
auto-restart cycle (S15), the UV comparator is enabled. If the
UV high threshold is not exceeded, the MOSFET will be
disabled during the next cycle (see Figure 11). The UV feature
can be disabled independent of the OV feature.
PI-4531-121206
S13 S12 S0 S15 S13 S12 S0 S15S14 S13 S15
S14 S14 5.8 V
4.8 V
S15
0 V
0 V
0 V
VLINE
VC
VDRAIN
VOUT
Note: S0 through S15 are the output states of the auto-restart counter
2
1234
0 V
~
~
~
~
~
~~
~~
~
S0 S15
~
~~
~
~
~
~
~
VUV
~
~
~
~
~
~
~
~
S12
~
~
Figure 11. Typical Waveforms for (1) Power Up (2) Normal Operation (3) Auto-Restart (4) Power Down.
Rev. J 08/16
11
TOP252-262
www.power.com
Line Overvoltage Shutdown (OV)
The same resistor used for UV also sets an overvoltage
threshold, which, once exceeded, will force TOPSwitch-HX to
stop switching instantaneously (after completion of the current
switching cycle). If this condition lasts for at least 100 ms, the
TOPSwitch-HX output will be forced into off state. Unlike with
TOPSwitch-GX, however, when the line voltage is back to
normal with a small amount of hysteresis provided on the OV
threshold to prevent noise triggering, the state machine sets to
S13 and forces TOPSwitch-HX to go through the entire auto-
restart sequence before attempting to switch again. The ratio
of OV and UV thresholds is preset at 4.5, as can be seen in
Figure 12. When the MOSFET is off, the rectified DC high
voltage surge capability is increased to the voltage rating of the
MOSFET (700 V), due to the absence of the reflected voltage
and leakage spikes on the drain. The OV feature can be
disabled independent of the UV feature.
In order to reduce the no-load input power of TOPSwitch-HX
designs, the V-pin (or M-pin for P Package) operates at very low
currents. This requires careful layout considerations when
designing the PCB to avoid noise coupling. Traces and
components connected to the V-pin should not be adjacent to
any traces carrying switching currents. These include the drain,
clamp network, bias winding return or power traces from other
converters. If the line sensing features are used, then the sense
resistors must be placed within 10 mm of the V-pin to minimize
the V-pin node area. The DC bus should then be routed to the
line sense resistors. Note that external capacitance must not
be connected to the V-pin as this may cause misoperation of
the V pin related functions.
Hysteretic or Latching Output Overvoltage Protection (OVP)
The detection of the hysteretic or latching output overvoltage
protection (OVP) is through the trigger of the line overvoltage
threshold. The V-pin or M-pin voltage will drop by 0.5 V, and
the controller measures the external attached impedance
immediately after this voltage drops. If IV or IM exceeds IOV(LS)
(336 mA typical) longer than 100 ms, TOPSwitch-HX will latch
into a permanent off state for the latching OVP. It only can be
reset if VV or VM goes below 1 V or VC goes below the power-
up-reset threshold (VC(RESET)) and then back to normal.
If IV or IM does not exceed IOV(LS) or exceeds no longer than
100 ms, TOPSwitch-HX will initiate the line overvoltage and the
hysteretic OVP. Their behavior will be identical to the line
overvoltage shutdown (OV) that has been described in detail in
the previous section.
Voltage Monitor and External Current Limit Pin Table*
Figure Number 16 17 18 19 20 21 22 23 24 25 26 27 28
Three Terminal Operation 3
Line Undervoltage 3333 33
Line Overvoltage 3 3 3 3 3 3
Line Feed-Forward (DCMAX)333 33
Output Overvoltage Protection 3 3
Overload Power Limiting 3
External Current Limit 33 333
Remote ON/OFF 333
Device Reset 3
*This table is only a partial list of many VOLTAGE MONITOR and EXTERNAL CURRENT LIMIT Pin Configurations that are possible.
Table 2. VOLTAGE MONITOR (V) Pin and EXTERNAL CURRENT LIMIT (X) Pin Configuration Options.
Multi-Function Pin Table*
Figure Number 29 30 31 32 33 34 35 36 37 38 39 40
Three Terminal Operation 3
Line Undervoltage 3333
Line Overvoltage 3 3 3 3
Line Feed-Forward (DCMAX)333
Output Overvoltage Protection 3 3
Overload Power Limiting 3
External Current Limit 3 3 3 3
Remote ON/OFF 333
Device Reset 3
*This table is only a partial list of many MULTI-FUNCTIONAL Pin Configurations that are possible.
Table 3. MULTI-FUNCTION (M) Pin Configuration Options.
Rev. J 08/16
12
TOP252-262
www.power.com
Figure 12. MULTI-FUNCTION (P and G package). VOLTAGE MONITOR and EXTERNAL CURRENT LIMIT (Y, E/L and M package) Pin Characteristics.
-250 -200 -150 -100 -50 0 25 50 75 100 125 336
PI-4646-071708
Output
MOSFET
Switching
(Enabled)
(Disabled)
(Non-Latching) (Latching)
ILIMIT (Default)
DCMAX (78%)
Current
Limit
M Pin
V Pin X Pin
Maximum
Duty Cycle
VBG
I
I
I
I
IUV
IREM(N) IOV IOV(LS)
Pin Voltage
Note: This figure provides idealized functional characteristics with typical performance values. Please refer to the parametric
table and typical performance characteristics sections of the data sheet for measured data. For a detailed description of
each functional pin operation refer to the Functional Description section of the data sheet.
X and V Pins (Y, E, L and M Packages) and M Pin (P and G Packages) Current (µA)
Disabled when supply
output goes out of
regulation
The circuit examples shown in Figures 41, 42 and 43 show a
simple method for implementing the primary sensed over-
voltage protection.
During a fault condition resulting from loss of feedback, output
voltage will rapidly rise above the nominal voltage. The increase
in output voltage will also result in an increase in the voltage at
the output of the bias winding. A voltage at the output of the
bias winding that exceeds of the sum of the voltage rating of the
Zener diode connected from the bias winding output to the
V-pin (or M-pin) and V-pin (or M-pin) voltage, will cause a current
in excess of IV or IM to be injected into the V-pin
(or M-pin), which will trigger the OVP feature.
The primary sensed OVP protection circuit shown in Figures 41,
42 and 43 is triggered by a significant rise in output voltage (and
therefore bias winding voltage). If the power supply is operating
under heavy load or low input line conditions when an open
loop occurs, the output voltage may not rise significantly.
Under these conditions, a latching shutdown will not occur until
load or line conditions change. Nevertheless, the operation
provides the desired protection by preventing significant rise in
the output voltage when the line or load conditions do change.
Primary side OVP protection with the TOPSwitch-HX in a typical
application will prevent a nominal 12 V output from rising above
approximately 20 V under open loop conditions. If greater
accuracy is required, a secondary sensed OVP circuit is
recommended.
Rev. J 08/16
13
TOP252-262
www.power.com
Line Feed-Forward with DCMAX Reduction
The same resistor used for UV and OV also implements line voltage
feed-forward, which minimizes output line ripple and reduces
power supply output sensitivity to line transients. Note that for the
same CONTROL pin current, higher line voltage results in smaller
operating duty cycle. As an added feature, the maximum duty
cycle DCMAX is also reduced from 78% (typical) at a voltage slightly
lower than the UV threshold to 36% (typical) at the OV threshold.
DCMAX of 36% at high line was chosen to ensure that the power
capability of the TOPSwitch-HX is not restricted by this feature
under normal operation. TOPSwitch-HX provides a better fit to the
ideal feed-forward by using two reduction slopes: -1% per mA for all
bus voltage less than 195 V (typical for 4 MW line impedance) and
-0.25% per mA for all bus voltage more than 195 V. This dual
slope line feed-forward improves the line ripple rejection
significantly compared with the TOPSwitch-GX.
Remote ON/OFF
TOPSwitch-HX can be turned on or off by controlling the
current into the VOLTAGE-MONITOR pin or out from the
EXTERNAL CURRENT LIMIT pin (Y, E/L and M packages) and
into or out from the MULTI-FUNCTION pin (P and G package,
see Figure 12). In addition, the VOLTAGE-MONITOR pin has a
1 V threshold comparator connected at its input. This voltage
threshold can also be used to perform remote ON/OFF control.
When a signal is received at the VOLTAGE-MONITOR pin or the
EXTERNAL CURRENT LIMIT pin (Y, E/L and M packages) or the
MULTI-FUNCTION pin (P and G package) to disable the output
through any of the pin functions such as OV, UV and remote
ON/OFF, TOPSwitch-HX always completes its current switching
cycle before the output is forced off.
As seen above, the remote ON/OFF feature can also be used as
a standby or power switch to turn off the TOPSwitch-HX and
keep it in a very low power consumption state for indefinitely
long periods. If the TOPSwitch-HX is held in remote off state for
long enough time to allow the CONTROL pin to discharge to the
internal supply undervoltage threshold of 4.8 V (approximately
32 ms for a 47 mF CONTROL pin capacitance), the CONTROL
pin goes into the hysteretic mode of regulation. In this mode,
the CONTROL pin goes through alternate charge and discharge
cycles between 4.8 V and 5.8 V (see CONTROL pin operation
section above) and runs entirely off the high voltage DC input,
but with very low power consumption (160 mW typical at
230 VAC with M or X pins open). When the TOPSwitch-HX is
remotely turned on after entering this mode, it will initiate a
normal start-up sequence with soft-start the next time the
CONTROL pin reaches 5.8 V. In the worst case, the delay from
remote on to start-up can be equal to the full discharge/charge
cycle time of the CONTROL pin, which is approximately 125 ms
for a 47 mF CONTROL pin capacitor. This reduced
consumption remote off mode can eliminate expensive and
unreliable in-line mechanical switches. It also allows for
microprocessor controlled turn-on and turn-off sequences that
may be required in certain applications such as inkjet and laser
printers.
Soft-Start
The 17 ms soft-start sweeps the peak drain current and
switching frequency linearly from minimum to maximum value
by operating through the low frequency PWM mode and the
variable frequency mode before entering the full frequency
mode. In addition to start-up, soft-start is also activated at each
restart attempt during auto-restart and when restarting after
being in hysteretic regulation of CONTROL pin voltage (VC), due
to remote OFF or thermal shutdown conditions. This effectively
minimizes current and voltage stresses on the output MOSFET,
the clamp circuit and the output rectifier during start-up. This
feature also helps minimize output overshoot and prevents
saturation of the transformer during start-up.
Shutdown/Auto-Restart
To minimize TOPSwitch-HX power dissipation under fault
conditions, the shutdown/auto-restart circuit turns the power
supply on and off at an auto-restart duty cycle of typically 2% if
an out of regulation condition persists. Loss of regulation
interrupts the external current into the CONTROL pin. VC
regulation changes from shunt mode to the hysteretic auto-
restart mode as described in CONTROL pin operation section.
When the fault condition is removed, the power supply output
becomes regulated, VC regulation returns to shunt mode, and
normal operation of the power supply resumes.
Hysteretic Over-Temperature Protection
Temperature protection is provided by a precision analog circuit
that turns the output MOSFET off when the junction temperature
exceeds the thermal shutdown temperature (142 °C typical).
When the junction temperature cools to below the lower
hysteretic temperature point, normal operation resumes, thus
providing automatic recovery. A large hysteresis of 75 °C
(typical) is provided to prevent overheating of the PC board due
to a continuous fault condition. VC is regulated in hysteretic
mode, and a 4.8 V to 5.8 V (typical) triangular waveform is
present on the CONTROL pin while in thermal shutdown.
Bandgap Reference
All critical TOPSwitch-HX internal voltages are derived from a
temperature-compensated bandgap reference. This voltage
reference is used to generate all other internal current
references, which are trimmed to accurately set the switching
frequency, MOSFET gate drive current, current limit, and the line
OV/UV/OVP thresholds. TOPSwitch-HX has improved circuitry
to maintain all of the above critical parameters within very tight
absolute and temperature tolerances.
High-Voltage Bias Current Source
This high-voltage current source biases TOPSwitch-HX from the
DRAIN pin and charges the CONTROL pin external capacitance
during start-up or hysteretic operation. Hysteretic operation
occurs during auto-restart, remote OFF and over-temperature
shutdown. In this mode of operation, the current source is
switched on and off, with an effective duty cycle of approxi-
mately 35%. This duty cycle is determined by the ratio of
CONTROL pin charge (IC) and discharge currents (ICD1 and ICD2).
This current source is turned off during normal operation when
the output MOSFET is switching. The effect of the current
source switching will be seen on the DRAIN voltage waveform
as small disturbances and is normal.
Rev. J 08/16
14
TOP252-262
www.power.com
VBG + VT
1 V
VREF
200 µA
400 µA
CONTROL (C)
(Voltage Sense)
(Positive Current Sense - Undervoltage,
Overvoltage, ON/OFF, Maximum Duty
Cycle Reduction, Output Over-
voltage Protection)
(Negative Current Sense - ON/OFF,
Current Limit Adjustment)
PI-4714-071408
TOPSwitch-HX
VOLTAGE MONITOR (V)
EXTERNAL CURRENT LIMIT (X)
Y, E/L and M Package
VBG + VT
VREF
200 µA
400 µA
CONTROL (C)
MULTI-FUNCTION (M)
(Positive Current Sense - Undervoltage,
Overvoltage, Maximum Duty Cycle Reduction,
Output Overvoltage Protection)
(Negative Current Sense - ON/OFF,
Current Limit Adjustment)
PI-4715-071408
TOPSwitch-HX
P and G Package
Figure 13a. VOLTAGE MONITOR (V) and EXTERNAL CURRENT LIMIT (X) Pin Input Simplified Schematic.
Figure 13b. MULTI-FUNCTION (M) Pin Input Simplified Schematic.
Rev. J 08/16
15
TOP252-262
www.power.com
Typical Uses of FREQUENCY (F) Pin
PI-2654-071700
DC
Input
Voltage
+
-
D
S
C
CONTROL
F
PI-2655-071700
DC
Input
Voltage
+
-
D
S
C
CONTROL
F
Figure 14. Full Frequency Operation (132 kHz). Figure 15. Half Frequency Operation (66 kHz).
Rev. J 08/16
16
TOP252-262
www.power.com
Typical Uses of VOLTAGE MONITOR (V) and EXTERNAL CURRENT LIMIT (X) Pins
X F
PI-4716-020508
DC
Input
Voltage
+
-
D
C S D
S
C
CONTROL
V
V X C S F D
DS C
D C X V
S SS S S
TOP254-258YTOP252-258M
PI-4717-120307
DC
Input
Voltage
+
-
D
S
C
CONTROL
V
4 MRLS
VUV = IUV × RLS + VV (IV = IUV)
VOV = IOV × RLS + VV (IV = IOV)
For RLS = 4 M
VUV = 102.8 VDC
VOV = 451 VDC
DCMAX@100 VDC = 76%
DCMAX@375 VDC = 41%
PI-4756-121007
DC
Input
Voltage
Sense Output Voltage
+
-
D V
S
C
VUV = IUV × RLS + VV (IV = IUV)
VOV = IOV × RLS + VV (IV = IOV)
For RLS = 4 M
VUV = 102.8 VDC
VOV = 451 VDC
DCMAX @ 100 VDC = 76%
DCMAX @ 375 VDC = 41%
CONTROL
RLS 4 M
10 k
Reset
QR
PI-4719-120307
DC
Input
Voltage
Sense Output Voltage
+
-
D V
S
C
VUV = IUV × RLS + VV (IV = IUV)
VOV = IOV × RLS + VV (IV = IOV)
For RLS = 4 M
VUV = 102.8 VDC
VOV = 451 VDC
DCMAX @ 100 VDC = 76%
DCMAX @ 375 VDC = 41%
CONTROL
RLS 4 M
ROVP >3k
VROVP
ROVP
Figure 16a. Three Terminal Operation (VOLTAGE MONITOR and EXTERNAL
CURRENT LIMIT Features Disabled. FREQUENCY Pin Tied to
SOURCE or CONTROL Pin) for TOP254-258 Y Packages.
Figure 17. Line-Sensing for Undervoltage, Overvoltage and Line Feed-Forward.
Figure 18. Line-Sensing for Undervoltage, Overvoltage, Line Feed-Forward and
Latched Output Overvoltage Protection.
Figure 19. Line-Sensing for Undervoltage, Overvoltage, Line Feed-Forward and
Hysteretic Output Overvoltage Protection.
Figure 16c. Three Terminal Operation (VOLTAGE MONITOR and EXTERNAL
CURRENT LIMIT Features Disabled. FREQUENCY Pin Tied to
SOURCE or CONTROL Pin) for TOP252-262 L and E Packages.
X G
PI-4984-020708
DC
Input
Voltage
+
-
D
C S D
S
C
CONTROL
V
TOP259-261Y
V X C S G D
Figure 16b. Three Terminal Operation (VOLTAGE MONITOR and EXTERNAL
CURRENT LIMIT Features Disabled for TOP259-261 Y Packages.
X F
DC
Input
Voltage
+
-
D
C S D
S
C
CONTROL
V
V X C SF D
C S D
PI-4956-071708
eSIP E Package
V X C SF D
eSIP L Package
Rev. J 08/16
17
TOP252-262
www.power.com
PI-4720-120307
DC
Input
Voltage
+
-
D V
S
C
VUV = RLS × IUV + VV (IV = IUV)
For Values Shown
VUV = 103.8 VDC
RLS
6.2 V
4 M
40 k
CONTROL
PI-4721-120307
DC
Input
Voltage
+
-
D
S
C
CONTROL
V
4 M
55 k
RLS
1N4148
VOV = IOV × RLS + VV (IV = IOV)
For Values Shown
VOV = 457.2 VDC
Figure 20. Line Sensing for Undervoltage Only (Overvoltage Disabled). Figure 21. Line-Sensing for Overvoltage Only (Undervoltage Disabled). Maximum
Duty Cycle Reduced at Low Line and Further Reduction with
Increasing Line Voltage.
Typical Uses of VOLTAGE MONITOR (V) and EXTERNAL CURRENT LIMIT (X) Pins (cont.)
Figure 22. External Set Current Limit.
X
PI-4722-021308
DC
Input
Voltage
+
-
D
S
C
RIL
For RIL = 12 k
ILIMIT = 61%
See Figure 55b for other
resistor values (RIL).
TOP259-261YN would
use the G pin as the
return for RIL.
For RIL = 19 k
ILIMIT = 37%
CONTROL
X
PI-4723-011008
DC
Input
Voltage
+
-
D
S
C
2.5 MRLS
6 k
RIL
100% @ 100 VDC
53% @ 300 VDC
ILIMIT =
ILIMIT =
TOP259-261YN would
use the G pin as the
return for RIL.
CONTROL
X
PI-2625-011008
DC
Input
Voltage
+
-
D
S
C
ON/OFF
47 K
QR can be an optocoupler
output or can be replaced by
a manual switch.
TOP259-261YN would
use the G pin as the
return for QR.
QR
CONTROL
X
ON/OFF
16 k
PI-4724-011008
DC
Input
Voltage
+
-
D
S
C
RIL QR
12 k
For RIL =
ILIMIT = 61%
19 k
For RIL =
ILIMIT = 37%
QR can be an optocoupler
output or can be replaced
by a manual switch.
CONTROL
TOP259-261YN would
use the G pin as the
return for QR.
Figure 23. Current Limit Reduction with Line Voltage.
Figure 24. Active-on (Fail Safe) Remote ON/OFF. Figure 25. Active-on Remote ON/OFF with Externally Set Current Limit.
Rev. J 08/16
18
TOP252-262
www.power.com
Typical Uses of VOLTAGE MONITOR (V) and EXTERNAL CURRENT LIMIT (X) Pins (cont.)
PI-4727-061207
DC
Input
Voltage
+
-
D
S
C
CONTROL
M
D
S SS
D S C
S
CM
PI-4728-120307
DC
Input
Voltage
+
-
D M
S
C
VUV = IUV × RLS + VM (IM = IUV)
VOV = IOV × RLS + VM (IM = IOV)
For RLS = 4 M
VUV = 102.8 VDC
VOV = 451 VDC
DCMAX @ 100 VDC = 76%
DCMAX @ 375 VDC = 41%
CONTROL
RLS 4 M
Figure 29. Three Terminal Operation (MULTI-FUNCTION Features Disabled). Figure 30. Line Sensing for Undervoltage, Overvoltage and Line Feed-Forward.
Figure 28. Line-Sensing for Undervoltage, Overvoltage, Line Feed-Forward and
Latched Output Overvoltage Protection with Device Reset.
PI-4756-121007
DC
Input
Voltage
Sense Output Voltage
+
-
D V
S
C
VUV = IUV × RLS + VV (IV = IUV)
VOV = IOV × RLS + VV (IV = IOV)
For RLS = 4 M
VUV = 102.8 VDC
VOV = 451 VDC
DCMAX @ 100 VDC = 76%
DCMAX @ 375 VDC = 41%
CONTROL
RLS 4 M
10 k
Reset
QR
Typical Uses of MULTI-FUNCTION (M) Pin
X
ON/OFF
16 k
PI-4725-011008
DC
Input
Voltage
+
-
D
S
C
CONTROL
V
RIL
RLS
QR
4 M
VUV = IUV × RLS + VV (IV = IUV)
VOV = IOV × RLS + VV (IV = IoV)
DCMAX@100 VDC = 76%
DCMAX@375 VDC = 41%
12 k
For RIL =
ILIMIT = 61%
QR can be an optocoupler
output or can be replaced
by a manual switch.
TOP259-261YN would
use the G pin as the
return for QR.
X
PI-4726-021308
DC
Input
Voltage
+
-
D
S
C
CONTROL
V
RIL
RLS
12 k
4 M
VUV = IUV x RLS + VV (IV = IUV)
VOV = IOV x RLS + VV (IV = IoV)
For RLS = 4 M
DCMAX @ 100 VDC = 76%
DCMAX @ 375 VDC = 41%
For RIL = 12 k
ILIMIT = 61%
See Figure 55b for
other resistor values
(RIL) to select different
ILIMIT values.
VUV = 102.8 VDC
VOV = 451 VDC
TOP259-261YN would
use the G pin as the
return for RIL.
Figure 26. Active-on Remote ON/OFF with Line-Sense and External
Current Limit.
Figure 27. Line Sensing and Externally Set Current Limit.
Rev. J 08/16
19
TOP252-262
www.power.com
PI-4729-120307
DC
Input
Voltage
Sense Output Voltage
+
-
D M
S
C
VUV = IUV × RLS + VM (IM = IUV)
VOV = IOV × RLS + VM (IM = IOV)
For RLS = 4 M
VUV = 102.8 VDC
VOV = 451 VDC
DCMAX @ 100 VDC = 76%
DCMAX @ 375 VDC = 41%
CONTROL
RLS 4 M
Figure 31. Line Sensing for Undervoltage, Overvoltage, Line Feed-Forward and
Latched Output Overvoltage Protection.
PI-4730-120307
DC
Input
Voltage
Sense Output Voltage
+
-
D M
S
C
VUV = IUV × RLS + VM (IM = IUV)
VOV = IOV × RLS + VM (IM = IOV)
For RLS = 4 M
VUV = 102.8 VDC
VOV = 451 VDC
DCMAX @ 100 VDC = 76%
DCMAX @ 375 VDC = 41%
CONTROL
RLS 4 M
VROVP
ROVP
ROVP >3k
Figure 32. Line Sensing for Undervoltage, Overvoltage, Line Feed-Forward and
Hysteretic Output Overvoltage Protection.
PI-4731-120307
DC
Input
Voltage
+
-
D M
S
C
VUV = RLS × IUV + VM (IM = IUV)
For Values Shown
VUV = 103.8 VDC
RLS
6.2 V
4 M
40 k
CONTROL
PI-4732-120307
DC
Input
Voltage
+
-
D M
S
C
VOV = IOV × RLS + VM (IM = IOV)
For Values Shown
VOV = 457.2 VDC
CONTROL
RLS
1N4148
4 M
55 k
Figure 33. Line Sensing for Undervoltage Only (Overvoltage Disabled). Figure 34. Line Sensing for Overvoltage Only (Undervoltage Disabled). Maximum
Duty Cycle Reduced at Low Line and Further Reduction with
Increasing Line Voltage.
Typical Uses of MULTI-FUNCTION (M) Pin (cont.)
Figure 35. Externally Set Current Limit (Not Normally Required – See M Pin
Operation Description).
PI-4733-021308
DC
Input
Voltage
+
-
D M
S
C
For RIL = 12 k
ILIMIT = 61%
CONTROL
RIL
See Figures 55b for other
resistor values (RIL) to
select different ILIMIT values.
For RIL = 19 k
ILIMIT = 37%
PI-4734-092107
DC
Input
Voltage
+
-
D M
S
C
CONTROL
RIL
RLS 2.5 M
6 k
100% @ 100 VDC
53% @ 300 VDC
ILIMIT =
ILIMIT =
Figure 36. Current Limit Reduction with Line Voltage (Not Normally Required –
See M Pin Operation Description).
Rev. J 08/16
20
TOP252-262
www.power.com
Typical Uses of MULTI-FUNCTION (M) Pin (cont.)
PI-4757-120307
DC
Input
Voltage
Sense Output Voltage
+
-
D M
S
C
VUV = IUV × RLS + VM (IM = IUV)
VOV = IOV × RLS + VM (IM = IOV)
For RLS = 4 M
VUV = 102.8 VDC
VOV = 451 VDC
DCMAX @ 100 VDC = 76%
DCMAX @ 375 VDC = 41%
CONTROL
RLS 4 M
10 k
QR
Reset
Figure 40. Line-Sensing for Undervoltage, Overvoltage, Line Feed-Forward and
Latched Output Overvoltage Protection with Device Reset.
PI-4736-060607
DC
Input
Voltage
+
-
D
S
C
RIL
RMC 24 k
12 k
M
CONTROL
QR
2RIL
RMC =
QR can be an optocoupler
output or can be replaced
by a manual switch.
ON/OFF
7 k
Figure 39. Active-off Remote ON/OFF with Externally Set Current Limit
(see M Pin Operation Description).
PI-4735-092107
DC
Input
Voltage
+
-
D
S
C
QR
RIL M
CONTROL
12 k
For RIL =
ILIMIT = 61%
QR can be an optocoupler
output or can be replaced
by a manual switch.
ON/OFF
16 k
19 k
For RIL =
ILIMIT = 37%
Figure 38. Active-on Remote ON/OFF with Externally Set Current Limit
(see M Pin Operation Description).
PI-2519-040501
DC
Input
Voltage
+
-
D
S
C
QR
ON/OFF
M
CONTROL
QR can be an optocoupler
output or can be replaced
by a manual switch.
47 k
Figure 37. Active-on (Fail Safe) Remote ON/OFF.
Rev. J 08/16
21
TOP252-262
www.power.com
Application Examples
A High Efficiency, 35 W, Dual Output - Universal Input
Power Supply
The circuit in Figure 41 takes advantage of several of the
TOPSwitch-HX features to reduce system cost and power
supply size and to improve efciency. This design delivers
35 W total continuous output power from a 90 VAC to 265 VAC
input at an ambient of 50 ºC in an open frame configuration. A
nominal efficiency of 84% at full load is achieved using
TOP258P. With a DIP-8 package, this design provides 35 W
continuous output power using only the copper area on the
circuit board underneath the part as a heat sink. The different
operating modes of the TOPSwitch-HX provide significant
improvement in the no-load, standby, and light load performance
of the power supply as compared to the previous generations of
the TOPSwitch.
Resistors R3 and R4 provide line sensing, setting line UV at
100 VDC and line OV at 450 VDC.
Diode D5, together with resistors R6, R7, capacitor C6 and TVS
VR1, forms a clamp network that limits the drain voltage of the
TOPSwitch after the integrated MOSFET turns off. TVS VR1
provides a defined maximum clamp voltage and typically only
conducts during fault conditions such as overload. This allows
the RCD clamp (R6, R7, C6 and D5) to be sized for normal
operation, thereby maximizing efciency at light load. Should
the feedback circuit fail, the output of the power supply may
exceed regulation limits. This increased voltage at output will
also result in an increased voltage at the output of the bias
winding. Zener VR2 will break down and current will flow into
the “M” pin of the TOPSwitch initiating a hysteretic overvoltage
protection with automatic restart attempts. Resistor R5 will limit
the current into the M pin to < 336 mA, thus setting hysteretic
OVP. If latching OVP is desired, the value of R5 can be reduced
to 20 W.
The output voltage is controlled using the amplifier TL431.
Diode D9, capacitor C20 and resistor R16 form the soft finish
circuit. At startup, capacitor C20 is discharged. As the output
voltage starts rising, current flows through the optocoupler diode
inside U2A, resistor R13 and diode D9 to charge capacitor C20.
This provides feedback to the circuit on the primary side. The
current in the optocoupler diode U2A gradually decreases as the
capacitor C20 becomes charged and the control amplifier IC U3
becomes operational. This ensures that the output voltage
increases gradually and settles to the final value without any
overshoot. Resistor R16 ensures that the capacitor C20 is
maintained charged at all times after startup, which effectively
isolates C20 from the feedback circuit after startup. Capacitor
C20 discharges through R16 when the supply shuts down.
Resistors R20, R21 and R18 form a voltage divider network.
The output of this divider network is primarily dependent on the
divider circuit formed using R20 and R21 and will vary to some
extent for changes in voltage at the 15 V output due to the
connection of resistor R18 to the output of the divider network.
Resistor R19 and Zener VR3 improve cross regulation in case
only the 5 V output is loaded, which results in the 12 V output
operating at the higher end of the specification.
Figure 41. 35 W Dual Output Power Supply using TOP258PN.
D
S
C
M
CONTROL
PI-4747-020508
R11
33
R12
33
R3
2.0 M
R16
10 kR17
10 k
R21
10 k
1%
R18
196 k
1%
R19
10
R14
22
R13
330
R15
1 k
R20
12.4 k
1%
D9
1N4148
U3
TL431
2%
VR3
BZX55B8V2
8.2 V
2%
R7
20
1/2 W
VR2
1N5250B
20 V
VR1
P6KE200A
D5
FR106
R4
2.0 M
R5
5.1 k
R1
1 MR2
1 M
R8
6.8
R10
4.7
R6
22 k
2 W
U2B
PS2501-
1-H-A
U2A
PS2501-
1-H-A
L2
3.3 µH
L1
6.8 mH
L3
3.3 µH
U1
TOP258PN
C9
47 µF
16 V C20
10 µF
50 V
C21
220 nF
50 V
C19
1.0 µF
50 V
C10
10 µF
50 V C11
2.2 nF
250 VAC
D6
FR106
D8
SB530
D7
SB560
C8
100 nF
50 V
D1
1N4937
D2
1N4007
D3
1N4937
D4
1N4007
C13
680 µF
25 V
C14
680 µF
25 V
C15
220 µF
25 V
C18
220 µF
10 V
C17
2200 µF
10 V
C12
470 pF
100 V
C16
470 pF
100 V
2
T1
EER28 7
11
9
3
6
5
4
C4
100 µF
400 V
C6
3.9 nF
1 kV
C7
2.2 nF
250 VAC
C3
220 nF
275 VAC
RT1
10
F1
3.15 A
TOPSwitch-HX
L
E
N
+12 V,
2 A
RTN
+5 V,
2.2 A
RTN
tO
90 - 265
VAC
Rev. J 08/16
22
TOP252-262
www.power.com
A High Efficiency, 150 W, 250 – 380 VDC Input
Power Supply
The circuit shown in Figure 42 delivers 150 W (19 V @ 7.7 A) at
84% efficiency using a TOP258Y from a 250 VDC to 380 VDC
input. A DC input is shown, as typically at this power level a
power factor correction stage would precede this supply,
providing the DC input. Capacitor C1 provides local decoupling,
necessary when the supply is remote from the main PFC output
capacitor.
The flyback topology is still usable at this power level due to the
high output voltage, keeping the secondary peak currents low
enough so that the output diode and capacitors are reasonably
sized. In this example, the TOP258YN is at the upper limit of its
power capability.
Resistors R3, R6 and R7 provide output power limiting,
maintaining relatively constant overload power with input voltage.
Line sensing is implemented by connecting a 4 MW resistor from
the V pin to the DC rail. Resistors R4 and R5 together form the
4 MW line sense resistor. If the DC input rail rises above
450 VDC, then TOPSwitch-HX will stop switching until the
voltage returns to normal, preventing device damage.
Due to the high primary current, a low leakage inductance
transformer is essential. Therefore, a sandwich winding with a
copper foil secondary was used. Even with this technique, the
leakage inductance energy is beyond the power capability of a
simple Zener clamp. Therefore, R1, R2 and C3 are added in
parallel to VR1 and VR3, two series TVS diodes being used to
reduce dissipation. During normal operation, very little power is
dissipated by VR1 and VR3, the leakage energy instead being
dissipated by R1 and R2. However, VR1 and VR3 are essential
to limit the peak drain voltage during start-up and/or overload
conditions to below the 700 V rating of the TOPSwitch-HX
MOSFET. The schematic shows an additional turn-off snubber
circuit consisting of R20, R21, R22, D5 and C18. This reduces
turn-off losses in the TOPSwitch-HX.
The secondary is rectified and smoothed by D2, D3 and C5,
C6, C7 and C8. Two windings are used and rectified with
separate diodes D2 and D3 to limit diode dissipation. Four
capacitors are used to ensure their maximum ripple current
specification is not exceeded. Inductor L1 and capacitors C15
and C16 provide switching noise filtering.
Output voltage is controlled using a TL431 reference IC and
R15, R16 and R17 to form a potential divider to sense the
output voltage. Resistor R12 and R24 together limit the
optocoupler LED current and set overall control loop DC gain.
Control loop compensation is achieved using components C12,
C13, C20 and R13. Diode D6, resistor R23 and capacitor C19
form a soft finish network. This feeds current into the control
pin prior to output regulation, preventing output voltage
overshoot and ensuring startup under low line, full load
conditions.
Sufficient heat sinking is required to keep the TOPSwitch-HX
device below 110 °C when operating under full load, low line
and maximum ambient temperature. Airflow may also be
required if a large heat sink area is not acceptable.
L1
D4
1N4148
C11
100 nF
50 V
+19 V,
7.7 A
RTN
RT1
5
R19
4.7
D3
MBR20100CT
R7
4.7 M
D2
MBR20100CT
C15-C16
820 µF
25 V
C14
47 pF
1 kV
R20
1.5 k
2 W
C10
47 µF
10 V
D1
BYV26C
T1
EI35
11
4
13,14
5
12
1
9,10
7
R15
4.75 k
1%
C20
1.0 µF
50 V
C17
47 pF
1 kV
C9
10 µF
50 V
R23
15 k
0.125 W
R14
22
0.5 W
R3
8.06 k
1%
C4
2.2 nF
250 VAC
R10
6.8
C3
4.7 nF
1 kV
C1
22 µF
400 V
R22
1.5 k
2 W
D6
1N4148
R8
4.7
R1
68 k
2 W
F1
4 A
C18
120 pF
1 kV
R16
31.6 k
1%
R2
68 k
2 W
VR2
1N5258B
36 V
R11
1 k
0.125 W
C19
10 µF
50 V
R12
240
0.125 W
U1
TOP258YN
R24
30
0.125 W
C5-C8
25 V
VR1, VR3
P6KE100A
R18
22
0.5 W
R21
2 W
D5
1N4937
U2
PC817A
U3
TL431
2%
C12
4.7 nF
50 V
R17
562
1%
R13
56 k
0.125 W
C13
100 nF
50 V
U2
PC817B
3.3 µH
R4
2.0 M
R5
2.0 ΜΩ
1.5 k
t
O
TOPSwitch-HX
R6
4.7 M
820 µF
250 - 380
VDC
PI-4795-092007
D
S
C
V
FX
CONTROL
Figure 42. 150 W, 19 V Power Supply using TOP258YN.
Rev. J 08/16
23
TOP252-262
www.power.com
A High Efficiency, 20 W continuous – 80 W Peak, Universal
Input Power Supply
The circuit shown in Figure 43 takes advantage of several of
TOPSwitch-HX features to reduce system cost and power
supply size and to improve power supply efficiency while
delivering significant peak power for a short duration. This
design delivers continuous 20 W and peak 80 W at 32 V from
an 90 VAC to 264 VAC input. A nominal efficiency of 82% at full
load is achieved using TOP258MN. The M-package part has an
optimized current limit to enable design of power supplies
capable of delivering high power for a short duration.
Resistor R12 sets the current limit of the part. Resistors R11
and R14 provide line feed forward information that reduces the
current limit with increasing DC bus voltage, thereby maintaining
a constant overload power level with increasing line voltage.
Resistors R1 and R2 implement the line undervoltage and
overvoltage function and also provide feed forward compensation
for reducing line frequency ripple at the output. The overvoltage
feature inhibits TOPSwitch-HX switching during a line surge
extending the high voltage withstand to 700 V without device
damage.
The snubber circuit comprising of VR7, R17, R25, C5 and D2
limits the maximum drain voltage and dissipates energy stored in
the leakage inductance of transformer T1. This clamp configuration
maximizes energy efficiency by preventing C5 from discharging
below the value of VR7 during the lower frequency operating
modes of TOPSwitch-HX. Resistor R25 damps high frequency
ringing for reduced EMI.
A combined output overvoltage and over power protection
circuit is provided via the latching shutdown feature of
TOPSwitch-HX and R20, C9, R22 and VR5. Should the bias
winding output voltage across C13 rise due to output overload
or an open loop fault (opto coupler failure), then VR5 conducts
triggering the latching shutdown. To prevent false triggering
due to short duration overload, a delay is provided by R20, R22
and C9.
To reset the supply following a latching shutdown, the V pin
must fall below the reset threshold. To prevent the long reset
delay associated with the input capacitor discharging, a fast AC
reset circuit is used. The AC input is rectified and filtered by
D13 and C30. While the AC supply is present, Q3 is on and Q1
is off, allowing normal device operation. However when AC is
removed, Q1 pulls down the V pin and resets the latch. The supply
will then return to normal operation when AC is again applied.
Transistor Q2 provides an additional lower UV threshold to the
level programmed via R1, R2 and the V pin. At low input AC
voltage, Q2 turns off, allowing the X pin to float and thereby
disabling switching.
A simple feedback circuit automatically regulates the output
voltage. Zener VR3 sets the output voltage together with the
voltage drop across series resistor R8, which sets the DC gain
of the circuit. Resistors R10 and C28 provide a phase boost to
improve loop bandwidth.
Diodes D6 and D7 are low-loss Schottky rectifiers, and
capacitor C20 is the output filter capacitor. Inductor L3 is a
common mode choke to limit radiated EMI when long output
cables are used and the output return is connected to safety
earth ground. Example applications where this occurs include
PC peripherals, such as inkjet printers.
Figure 43. 20 W Continuous, 80 W Peak, Universal Input Power Supply using TOP258MN.
Rev. J 08/16
24
TOP252-262
www.power.com
A High Efficiency, 65 W, Universal Input Power Supply
The circuit shown in Figure 44 delivers 65 W (19 V @ 3.42 A) at
88% efficiency using a TOP260EN operating over an input
voltage range of 90 VAC to 265 VAC.
Capacitors C1 and C6 and inductors L1 and L2 provide
common mode and differential mode EMI filtering. Capacitor C2
is the bulk filter capacitor that ensures low ripple DC input to the
flyback converter stage. Capacitor C4 provides decoupling for
switching currents reducing differential mode EMI.
In this example, the TOP260EN is used at reduced current limit
to improve efficiency.
Resistors R5, R6 and R7 provide power limiting, maintaining
relatively constant overload power with input voltage. Line
sensing is implemented by connecting a 4 MW impedance from
the V pin to the DC rail. Resistors R3 and R4 together form the
4 MW line sense resistor. If the DC input rail rises above
450 VDC, then TOPSwitch-HX will stop switching until the
voltage returns to normal, preventing device damage.
This circuit features a high efficiency clamp network consisting
of diode D1, zener VR1, capacitor C5 together with resistors R8
and R9. The snubber clamp is used to dissipate the energy of
the leakage reactance of the transformer. At light load levels,
very little power is dissipated by VR1 improving efficiency as
compared to a conventional RCD clamp network.
The secondary output from the transformer is rectified by diode
D2 and filtered by capacitors C13 and C14. Ferrite Bead L3 and
capacitors C15 form a second stage filter and effectively reduce
the switching noise to the output.
Output voltage is controlled using a LM431 reference IC.
Resistor R19 and R20 form a potential divider to sense the
output voltage. Resistor R16 limits the optocoupler LED current
and sets the overall control loop DC gain. Control loop
compensation is achieved using C18 and R21. The components
connected to the control pin on the primary side C8, C9 and
R15 set the low frequency pole and zero to further shape the
control loop response. Capacitor C17 provides a soft finish
during startup. Optocoupler U2 is used for isolation of the
feedback signal.
Diode D4 and capacitor C10 form the bias winding rectifier and
filter. Should the feedback loop break due to a defective
component, a rising bias winding voltage will cause the Zener
VR2 to break down and trigger the over voltage protection
which will inhibit switching.
An optional secondary side over voltage protection feature
which offers higher precision (as compared to sensing via the
bias winding) is implemented using VR3, R18 and U3. Excess
voltage at the output will cause current to flow through the
optocoupler U3 LED which in turn will inject current in the V-pin
through resistor R13, thereby triggering the over voltage
protection feature.
Figure 44. 65 W, 19 V Power Supply Using TOP260EN.
PI-4998-021408
R16
33
R21
1 k
R20
10 k
R19
68.1 k
R18
47
R16
680
U4
LM431
2%
VR3
BZX79-C22
22 V
D1
DL4937
D6
1N4148
D3
BAV19WS
D5
BAV19WS
VR2
1N5248B
18 V
VR1
BZY97C180
180 V
R13
5.1
R14
100
R12
5.1 k
R11
2 M
R1
2.2 MR2
2.2 M
R15
6.8
R10
73.2 k
R8
100 R9
1 k
U3B
PC357A
U3A
PC357A
U2B
LTY817C
U2A
LTY817C
L3
Ferrite
Bead
L1
12 mH
L2
Ferrite Bead
U1
TOP260EN
C9
47 µF
16 V
C16
1 µF
50 V
C17
33 µF
35 V
C18
100 nF
C11
100 nF
50 V
C10
22 µF
50 V
D4 BAV19WS
D2
MBR20100CT
C8
100 nF
50 V
C4
100 nF
400 V
3KBP08M
BR1
C13
470 µF
25 V
C14
470 µF
25 V
C15
47 µF
25 V
C12
1 nF
100 V
4
T1
RM10 FL1
FL2
5
3
2
6
C6
2.2 nF
250 VAC
C1
330 nF
275 VAC
F1
4 A TOPSwitch-HX
L
E
N
19 V, 3.42 A
RTN
C2
120 µF
400 V
C3
470 pF
250 VAC
C7
100 nF
25 V
C5
2.2 nF
1 kV
90 - 265
VAC
D
S
C
V
FX
CONTROL
R3
2.0 MR5
5.1 M
R4
2.0 M
R7
15 k
1%
R6
6.8 M
Rev. J 08/16
25
TOP252-262
www.power.com
Key Application Considerations
TOPSwitch-HX vs. TOPSwitch-GX
Table 4 compares the features and performance differences
between TOPSwitch-HX and TOPSwitch-GX. Many of the new
features eliminate the need for additional discrete components.
Other features increase the robustness of design, allowing cost
savings in the transformer and other power components.
TOPSwitch-HX vs. TOPSwitch-GX
Function TOPSwitch-GX TOPSwitch-HX TOPSwitch-HX Advantages
EcoSmart Linear frequency reduction to
30 kHz (@ 132 kHz) for
duty cycles < 10%
Multi-mode operation with
linear frequency reduction to
30 kHz (@ 132 kHz) and
multi-cycle modulation
(virtually no audible noise)
Improved efficiency over load (e.g. at 25% load
point)
Improved standby efficiency
Improved no-load consumption
Output Overvoltage
Protection (OVP)
Not available User programmable primary
or secondary hysteretic or
latching OVP
Protects power supply output during open loop fault
Maximum design flexibility
Line Feed-Forward with Duty
Cycle Reduction
Linear reduction Dual slope reduction with
lower, more accurate onset
point
Improved line ripple rejection
Smaller DC bus capacitor
Switching Frequency DIP-8
Package
132 kHz 66 kHz Increased output power for given MOSFET size due
to higher efficiency
Lowest MOSFET On
Resistance in DIP-8 Package
3.0 W (TOP246P) 1.8 W (TOP258P) Increased output power in designs without external
heat sink
I2f Trimming Not available -10% / +20% Increased output power for given core size
Reduced over-load power
Auto-restart Duty Cycle 5.6% 2% Reduced delivered average output power during
open loop faults
Frequency Jitter ±4 kHz @ 132 kHz
±2 kHz @ 66 kHz
±5 kHz @ 132 kHz
±2.5 kHz @ 66 kHz
Reduced EMI filter cost
Thermal Shutdown 130 °C to 150 °C 135 °C to 150 °C Increased design margin
External Current Limit 30%-100% of ILIMIT 30%-100% of ILIMIT, additional
trim at 0.7 × ILIMIT
Reduced tolerances when current limit is set
externally
Line UV Detection Threshold 50 mA (2 MW sense
impedance)
25 mA (4 MW sense
impedance)
Reduced dissipation for lower no-load consumption
Soft-Start 10 ms duty cycle and current
limit ramp
17 ms sweep through
multi-mode characteristic
Reduced peak current and voltage component
stress at startup
Smooth output voltage rise
Table 4. Comparison Between TOPSwitch-GX and TOPSwitch-HX.
Rev. J 08/16
26
TOP252-262
www.power.com
TOPSwitch-HX Design Considerations
Power Table
The data sheet power table (Table 1) represents the maximum
practical continuous output power based on the following
conditions:
1. 12 V output.
2. Schottky or high efficiency output diode.
3. 135 V reflected voltage (VOR) and efficiency estimates.
4. A 100 VDC minimum for 85-265 VAC and 250 VDC mini-
mum for 230 VAC.
5. Sufficient heat sinking to keep device temperature ≤100 °C.
6. Power levels shown in the power table for the M/P package
device assume 6.45 cm2 of 610 g/m2 copper heat sink area
in an enclosed adapter, or 19.4 cm2 in an open frame.
The provided peak power depends on the current limit for the
respective device.
TOPSwitch-HX Selection
Selecting the optimum TOPSwitch-HX depends upon required
maximum output power, efficiency, heat sinking constraints,
system requirements and cost goals. With the option to
externally reduce current limit, an Y, E/L or M package
TOPSwitch-HX may be used for lower power applications
where higher efciency is needed or minimal heat sinking is
available.
Input Capacitor
The input capacitor must be chosen to provide the minimum
DC voltage required for the TOPSwitch-HX converter to
maintain regulation at the lowest specified input voltage and
maximum output power. Since TOPSwitch-HX has a high
DCMAX limit and an optimized dual slope line feed forward for
ripple rejection, it is possible to use a smaller input capacitor.
For TOPSwitch-HX, a capacitance of 2 mF per watt is possible
for universal input with an appropriately designed transformer.
Primary Clamp and Output Reflected Voltage VOR
A primary clamp is necessary to limit the peak TOPSwitch-HX
drain to source voltage. A Zener clamp requires few parts and
takes up little board space. For good efficiency, the clamp
Zener should be selected to be at least 1.5 times the output
reflected voltage VOR, as this keeps the leakage spike conduction
time short. When using a Zener clamp in a universal input
application, a VOR of less than 135 V is recommended to allow
for the absolute tolerances and temperature variations of the
Zener. This will ensure efficient operation of the clamp circuit
and will also keep the maximum drain voltage below the rated
breakdown voltage of the TOPSwitch-HX MOSFET. A high VOR
is required to take full advantage of the wider DCMAX of
TOPSwitch-HX. An RCD clamp provides tighter clamp voltage
tolerance than a Zener clamp and allows a VOR as high as 150
V. RCD clamp dissipation can be minimized by reducing the
external current limit as a function of input line voltage (see
Figures 23 and 36). The RCD clamp is more cost effective than
the Zener clamp but requires more careful design (see Quick
Design Checklist).
Output Diode
The output diode is selected for peak inverse voltage, output
current, and thermal conditions in the application (including heat
sinking, air circulation, etc.). The higher DCMAX of TOPSwitch-HX,
along with an appropriate transformer turns ratio, can allow the
use of a 80 V Schottky diode for higher efficiency on output
voltages as high as 15 V (see Figure 41).
Bias Winding Capacitor
Due to the low frequency operation at no-load, a 10 mF bias
winding capacitor is recommended.
Soft-Start
Generally, a power supply experiences maximum stress at
start-up before the feedback loop achieves regulation. For a
period of 17 ms, the on-chip soft-start linearly increases the
drain peak current and switching frequency from their low
starting values to their respective maximum values. This
causes the output voltage to rise in an orderly manner, allowing
time for the feedback loop to take control of the duty cycle.
This reduces the stress on the TOPSwitch-HX MOSFET, clamp
circuit and output diode(s), and helps prevent transformer
saturation during start-up. Also, soft-start limits the amount of
output voltage overshoot and, in many applications, eliminates
the need for a soft-finish capacitor.
EMI
The frequency jitter feature modulates the switching frequency
over a narrow band as a means to reduce conducted EMI peaks
associated with the harmonics of the fundamental switching
frequency. This is particularly beneficial for average detection
mode. As can be seen in Figure 45, the benefits of jitter increase
with the order of the switching harmonic due to an increase in
frequency deviation. Devices in the P, G or M package and
TOP259-261YN operate at a nominal switching frequency of
66 kHz. The FREQUENCY pin of devices in the TOP254-258 Y
and E packages offer a switching frequency option of 132 kHz or
66 kHz. In applications that require heavy snubber on the drain
node for reducing high frequency radiated noise (for example,
video noise sensitive applications such as VCRs, DVDs, monitors,
TVs, etc.), operating at 66 kHz will reduce snubber loss, resulting
in better efficiency. Also, in applications where transformer size is
not a concern, use of the 66 kHz option will provide lower EMI
and higher efficiency. Note that the second harmonic of 66 kHz
is still below 150 kHz, above which the conducted EMI
specifications get much tighter. For 10 W or below, it is possible
to use a simple inductor in place of a more costly AC input
common mode choke to meet worldwide conducted EMI limits.
Transformer Design
It is recommended that the transformer be designed for
maximum operating flux density of 3000 Gauss and a peak flux
density of 4200 Gauss at maximum current limit. The turns
ratio should be chosen for a reflected voltage (VOR) no greater
than 135 V when using a Zener clamp or 150 V (max) when
using an RCD clamp with current limit reduction with line
voltage (overload protection). For designs where operating
current is significantly lower than the default current limit, it is
recommended to use an externally set current limit close to the
operating peak current to reduce peak flux density and peak
power (see Figures 22 and 35). In most applications, the tighter
current limit tolerance, higher switching frequency and soft-start
features of TOPSwitch-HX contribute to a smaller transformer
when compared to TOPSwitch-GX.
Rev. J 08/16
27
TOP252-262
www.power.com
Figure 45b. TOPSwitch-HX Full Range EMI Scan (132 kHz With Jitter) With
Identical Circuitry and Conditions.
-20
-10
0
-10
20
30
40
50
60
70
80
0.15 1 10 30
Frequency (MHz)
Amplitude (dBµV)
PI-2576-010600
EN55022B (QP)
EN55022B (AV)
EN55022B (QP)
EN55022B (AV)
-20
-10
0
-10
20
30
40
50
60
70
80
0.15 1 10 30
Frequency (MHz)
Amplitude (dBµV)
PI-2577-010600
TOPSwitch-HX (with jitter)
Figure 45a. Fixed Frequency Operation Without Jitter.
Standby Consumption
Frequency reduction can significantly reduce power loss at light
or no load, especially when a Zener clamp is used. For very low
secondary power consumption, use a TL431 regulator for
feedback control. A typical TOPSwitch-HX circuit automatically
enters MCM mode at no load and the low frequency mode at
light load, which results in extremely low losses under no-load
or standby conditions.
High Power Designs
The TOPSwitch-HX family contains parts that can deliver up to
333 W. High power designs need special considerations.
Guidance for high power designs can be found in the Design
Guide for TOPSwitch-HX (AN-43).
TOPSwitch-HX Layout Considerations
The TOPSwitch-HX has multiple pins and may operate at
high power levels. The following guidelines should be
carefully followed.
Primary Side Connections
Use a single point (Kelvin) connection at the negative terminal of
the input filter capacitor for the TOPSwitch-HX SOURCE pin
and bias winding return. This improves surge capabilities by
returning surge currents from the bias winding directly to the
input filter capacitor. The CONTROL pin bypass capacitor
should be located as close as possible to the SOURCE and
CONTROL pins, and its SOURCE connection trace should not
be shared by the main MOSFET switching currents. All
SOURCE pin referenced components connected to the
MULTI-FUNCTION (M-pin), VOLTAGE MONITOR (V-pin) or
EXTERNAL CURRENT LIMIT (X-pin) pins should also be located
closely between their respective pin and SOURCE. Once again,
the SOURCE connection trace of these components should not
be shared by the main MOSFET switching currents. It is very
critical that SOURCE pin switching currents are returned to the
input capacitor negative terminal through a separate trace that
is not shared by the components connected to CONTROL,
MULTI-FUNCTION, VOLTAGE MONITOR or EXTERNAL
CURRENT LIMIT pins. This is because the SOURCE pin is also
the controller ground reference pin. Any traces to the M, V, X or
C pins should be kept as short as possible and away from the
DRAIN trace to prevent noise coupling. VOLTAGE MONITOR
resistors (R1 and R2 in Figures 46, 47, 48, R3 and R4 in
Figure 49, and R14 in Figure 50) should be located close to the
M or V pin to minimize the trace length on the M or V pin side.
Resistors connected to the M, V or X pin should be connected
as close to the bulk cap positive terminal as possible while
routing these connections away from the power switching
circuitry. In addition to the 47 μF CONTROL pin capacitor, a
high frequency bypass capacitor in parallel may be used for
better noise immunity. The feedback optocoupler output
should also be located close to the CONTROL and SOURCE
pins of TOPSwitch-HX and away from the drain and clamp
component traces.
Y Capacitor
The Y capacitor should be connected close to the secondary
output return pin(s) and the positive primary DC input pin of the
transformer.
Heat Sinking
The tab of the Y package (TO-220C) and E package (eSIP-7C)
and L package (eSIP-7F) are internally electrically tied to the
SOURCE pin. To avoid circulating currents, a heat sink
attached to the tab should not be electrically tied to any primary
ground/source nodes on the PC board. When using a P (DIP-8),
G (SMD-8) or M (DIP-10) package, a copper area underneath
the package connected to the SOURCE pins will act as an
effective heat sink. On double sided boards, topside and bottom
side areas connected with vias can be used to increase the
effective heat sinking area. In addition, sufcient copper area
should be provided at the anode and cathode leads of the
output diode(s) for heat sinking. In Figures 46 to 50 a narrow
trace is shown between the output rectifier and output filter
capacitor. This trace acts as a thermal relief between the rectifier
and filter capacitor to prevent excessive heating of the capacitor.
Rev. J 08/16
28
TOP252-262
www.power.com
Figure 46. Layout Considerations for TOPSwitch-HX Using P Package.
Figure 47. Layout Considerations for TOPSwitch-HX Using M Package.
+- DC
Out
+
-
HV
PI-4753-090407
Y1-
Capacitor
C6
Isolation Barrier
Output
Rectier
R1 R2
JP1
J1
C1
U1
R3
C2
R4
D1
VR1
C4
C3
R8
D2
VR2
C5
C9
D3
C7
L1
C8
J2
R8
R13
R14
R6
R7
JP2
R12
R11
R10
U3
R9
C10
T1
Output Filter
Capacitor
Input Filter
Capacitor
Maximize hatched copper
areas ( ) for optimum
heat sinking
U2
Transformer
D
S
S
S
S
C
M
Optional PCB slot for external
heatsink in contact with
SOURCE pins
Electrically quiet
copper area
Simplied PCB layout
improves heat sinking
Optional slot for
insertion of heat sink
>3.5 mm
+- DC
Out
+
-
HV
PI-4752-070307
Isolation Barrier
Output
Rectier
R1
JP1
J1
C1
U1
R5
C2
R6
D1
VR1
C4
R7
C3
R8
R9
D2
C5
D3
C7
L1
C8
J2
R11
R10
JP2
C9
R15
U3
R16
R17
R14
R12
T1
R13
VR2
R2
R3 R4
Output Filter
Capacitor
Input Filter
Capacitor
Optional PCB slot for external
heatsink in contact with
SOURCE pins
Maximize hatched copper
areas ( ) for optimum
heat sinking
S
SD
C
X
V
S
S
S
U2
Y1-
Capacitor
C6
Transformer
Rev. J 08/16
29
TOP252-262
www.power.com
Figure 48. Layout Considerations for TOPSwitch-HX Using TOP254-258 Y Package.
+- DC
Out
+
-
HV
PI-4751-070307
Y1-
Capacitor
C6
Isolation Barrier
Output
Rectier
R1 R2
R3 R4
JP1
J1
C1
U1
HS1
R3
C2
R4
D1
VR1
C4
R7 R10 R13
D2
VR2
C5 C9
D3
C7
L1
C8
J2
R9
R11
R16
R14
R8
JP2
R12
R17
R15
U3
R12
C10
T1
Output Filter
Capacitor
Input Filter
Capacitor
Transformer
SF
C
XV
D
U2
Figure 49. Layout Considerations for TOPSwitch-HX Using TOP259-261 Y Package.
+
-
HV
+- DC
Out PI-4977-021408
Y1-
Capacitor
C7
Isolation Barrier
J1
J2
C4 HS1
R3
R22
R14 R8
C9
C8
U5
D5
R7
C6
R6
VR1
R9
R5
VR2
R10
D6 C10
JP2
R11
R4
L3
C17
D8
R12
C16
R15
U4 C21
R17
R13
R21
R20
C18
JP1
U2
T1
Output Filter
Capacitor
Input Filter
Capacitor
Transformer
C
G
D
V
S
X
Rev. J 08/16
30
TOP252-262
www.power.com
+- DC
Out
+
-
HV
PI-4975-022108
Y1-
Capacitor
C7
Isolation Barrier
Output
Rectier
R4
R3
R11
R5
U1
C9
R22
R8
R14
D6
C10
R10
JP2 U2
U4
HS1
R17
C21
R13
R15 R21
R9
VR2
R6 D5
R7
VR1
C6
C4
C8
H52
C17
C18
R20
L3
C19
D8
C16 R12
T1
Output Filter
Capacitor
Input Filter
Capacitor
Transformer
J1
J2
X
F
D
C
S
V
Figure 50a. Layout Considerations for TOPSwitch-HX Using E Package and Operating at 66 kHz.
+
-
HV
+- DC
Out PI-4976-091608
Y1-
Capacitor
C7
Isolation Barrier
T1
Output
Rectier
R4
R3
R11
R5
J1
J2
U1
R6 D5
C6 R7
R8
C8
R22
D6
C10
R10
R9
VR2
C9
R14
VR1
HS1
C4
U2
R15
R13
R17
JP2
U4
C21
R21
R20
C19
L3
H52
D8
C16 R12
C18
C17
Output Filter
Capacitor
Input Filter
Capacitor
Transformer
X
F
D
C
S
V
Figure 50b. Layout Considerations for TOPSwitch-HX Using E Package and Operating at 132 kHz.
Rev. J 08/16
31
TOP252-262
www.power.com
Quick Design Checklist
In order to reduce the no-load input power of TOPSwitch-HX
designs, the V-pin (or M-pin for P Package) operates at very
low current. This requires careful layout considerations when
designing the PCB to avoid noise coupling. Traces and
components connected to the V-pin should not be adjacent to
any traces carrying switching currents. These include the drain,
clamp network, bias winding return or power traces from other
converters. If the line sensing features are used, then the sense
resistors must be placed within 10 mm of the V-pin to minimize
the V pin node area. The DC bus should then be routed to the
line sense resistors. Note that external capacitance must not
be connected to the V-pin as this may cause misoperation of
the V pin related functions.
As with any power supply design, all TOPSwitch-HX designs
should be verified on the bench to make sure that components
specifications are not exceeded under worst-case conditions.
The following minimum set of tests is strongly recommended:
1. Maximum drain voltage – Verify that peak VDS does not
exceed 675 V at highest input voltage and maximum
overload output power. Maximum overload output power
occurs when the output is overloaded to a level just before
the power supply goes into auto-restart (loss of regulation).
2. Maximum drain current – At maximum ambient temperature,
maximum input voltage and maximum output load, verify
drain current waveforms at start-up for any signs of trans-
former saturation and excessive leading edge current spikes.
TOPSwitch-HX has a leading edge blanking time of 220 ns
to prevent premature termination of the ON-cycle. Verify that
the leading edge current spike is below the allowed current
limit envelope (see Figure 53) for the drain current waveform
at the end of the 220 ns blanking period.
3. Thermal check – At maximum output power, both minimum
and maximum voltage and ambient temperature; verify that
temperature specifications are not exceeded for
TOPSwitch-HX, transformer, output diodes and output
capacitors. Enough thermal margin should be allowed for
the part-to-part variation of the RDS(ON) of TOPSwitch-HX, as
specified in the data sheet. The margin required can either
be calculated from the values in the parameter table or it can
be accounted for by connecting an external resistance in
series with the DRAIN pin and attached to the same heat
sink, having a resistance value that is equal to the difference
between the measured RDS(ON) of the device under test and
the worst case maximum specification.
Design Tools
Up-to-date information on design tools can be found at the
Power Integrations website: www.power.com
Figure 50c. Layout Considerations for TOPSwitch-HX Using L Package and Operating at 132 kHz.
+- DC
Out
+
-
HV
PI-5216-091508
Y1-
Capacitor
C7
Isolation Barrier
Output
Rectier
J1
R11
R3
R4
R5
R14
JP1
C4 R6
D5
C6
R7
VR1
R22
C8
R8
U1
C9
D6
C10
R10
VR2
R9
JP2
R15
R13
R17
U4
C21
R21
D8
C16
R12
HS2
HS1
C17
J2
R20
C19
L3
C18
T1
Output Filter
Capacitor
Input Filter
Capacitor
Note: Components U1, R8, C8, C9 and R22
are under heat sink HS1.
Transformer
XF D
YS
C
U2
Rev. J 08/16
32
TOP252-262
www.power.com
Absolute Maximum Ratings(2)
DRAIN Peak Voltage ........................................... -0.3 V to 700 V
DRAIN Peak Current: TOP252 ......................................... 0.68 A
DRAIN Peak Current: TOP253 ......................................... 1.37 A
DRAIN Peak Current: TOP254 ......................................... 2.08 A
DRAIN Peak Current: TOP255 ......................................... 2.72 A
DRAIN Peak Current: TOP256 ......................................... 4.08 A
DRAIN Peak Current: TOP257 ......................................... 5.44 A
DRAIN Peak Current: TOP258 ......................................... 6.88 A
DRAIN Peak Current: TOP259 ......................................... 7.73 A
DRAIN Peak Current: TOP260 ......................................... 9.00 A
DRAIN Peak Current: TOP261 ....................................... 11.10 A
DRAIN Peak Current: TOP262 ....................................... 11.10 A
CONTROL Voltage ................................................. -0.3 V to 9 V
CONTROL Current ........................................................ 100 mA
VOLTAGE MONITOR Pin Voltage ........................... -0.3 V to 9 V
CURRENT LIMIT Pin Voltage .............................. -0.3 V to 4.5 V
MULTI-FUNCTION Pin Voltage ............................... -0.3 V to 9 V
FREQUENCY Pin Voltage ...................................... -0.3 V to 9 V
Storage Temperature ...................................... -65 °C to 150 °C
Operating Junction Temperature ......................-40 °C to 150 °C
Lead Temperature(1) ........................................................260 °C
Notes:
1. 1/16 in. from case for 5 seconds.
2. Maximum ratings specified may be applied one at a time
without causing permanent damage to the product.
Exposure to Absolute Maximum Rating conditions for
extended periods of time may affect product reliability.
Thermal Resistance
Parameter Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
See Figure 54
(Unless Otherwise Specified)
Min Typ Max Units
Control Functions
Switching Frequency
in Full Frequency
Mode (average)
fOSC TJ = 25 °C
FREQUENCY Pin
Connected to SOURCE
119 132 145
kHz
TOP252-258Y
TOP255-262L
TOP252-262E
FREQUENCY Pin
Connected to CONTROL
59.4 66 72.6
TOP252-258Y
TOP255-262L
TOP252-262E
TOP252-258P/G/M
TOP259-261Y 59.4 66 72.6
Frequency Jitter
Deviation Df132 kHz Operation ±5 kHz
66 kHz Operation ±2.5
Frequency Jitter
Modulation Rate fM250 Hz
Maximum Duty Cycle DCMAX IC = ICD1
IV ≤ IV(DC) or IM ≤ IM(DC) or
VV, VM = 0 V 75 78 83
%
IV or IM = 95 mA 30
Soft-Start Time tSOFT TJ = 25 °C 17 ms
PWM Gain DCreg TJ = 25 °C
TOP252-255 -31 -25 -20
%/mATOP256-258 -27 -22 -17
TOP259-262 -25 -20 -15
PWM Gain
Temperature Drift See Note A -0.01 %/mA/°C
External Bias Current IB66 kHz Operation
TOP252-255 0.9 1.5 2.1
mATOP256-258 1.0 1.6 2.2
TOP259-262 1.1 1.7 2.4
Thermal Resistance: Y Package:
(qJA) ........................................... 80 °C/W(1)
(qJC) ............................................. 2 °C/W(2)
P, G and M Packages:
(qJA) ......................... .70 °C/W(3); 60 °C/W(4)
(qJC) .......................................... .11 °C/W(5)
E/L Package:
(qJA) ............................................105 °C/W(1)
(qJC) ............................................. 2 °C/W(2)
Notes:
1. Free standing with no heat sink.
2. Measured at the back surface of tab.
3. Soldered to 0.36 sq. in. (232 mm2), 2 oz. (610 g/m2) copper clad.
4. Soldered to 1 sq. in. (645 mm2), 2 oz. (610 g/m2) copper clad.
5. Measured on the SOURCE pin close to plastic interface.
Rev. J 08/16
33
TOP252-262
www.power.com
Parameter Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min Typ Max Units
Control Functions (cont.)
External Bias Current IB132 kHz Operation
TOP252-255 1.0 1.6 2.2
mATOP256-258 1.3 1.9 2.5
TOP259-262 1.6 2.2 2.9
CONTROL Current at
0% Duty Cycle IC(OFF)
66 kHz Operation
TOP252-255 4.4 5.8
mA
TOP256-258 4.7 6.1
TOP259-262 5.1 6.5
132 kHz Operation
TOP252-255 4.6 6.0
TOP256-258 5.1 6.5
TOP259-262 6.0 7.4
Dynamic Impedance ZCIC = 4 mA; TJ = 25 °C, See Figure 52 10 18 22 W
Dynamic Impedance
Temperature Drift 0.18 %/°C
CONTROL Pin Internal
Filter Pole 7 kHz
Upper Peak Current to
Set Current Limit Ratio kPS(UPPER)
TJ = 25 °C
See Note B 50 55 60 %
Lower Peak Current to
Set Current Limit Ratio kPS(LOWER)
TJ = 25 °C
See Note B 25 %
Multi-Cycle-
Modulation Switching
Frequency
fMCM(MIN) TJ = 25 °C 30 kHz
Minimum Multi-Cycle-
Modulation On Period TMCM(MIN) TJ = 25 °C 135 ms
Shutdown/Auto-Restart
Control Pin
Charging Current IC(CH) TJ = 25 °C
VC = 0 V -5.0 -3.5 -1.0 mA
VC = 5 V -3.0 -1.8 -0.6
Charging Current
Temperature Drift See Note A 0.5 %/°C
Auto-Restart
Upper Threshold
Voltage
VC(AR)U 5.8 V
Auto-Restart Lower
Threshold Voltage VC(AR)L 4.5 4.8 5.1 V
Multi-Function (M), Voltage Monitor (V) and External Current Limit (X) Inputs
Auto-Restart
Hysteresis Voltage VC(AR)hyst 0.8 1.0 V
Auto-Restart Duty
Cycle DC(AR) 2 4 %
Auto-Restart
Frequency f(AR) 0.5 Hz
Line Undervoltage
Threshold Current and
Hysteresis (M or V Pin)
IUV TJ = 25 °C
Threshold 22 25 27 mA
Hysteresis 14 mA
Line Overvoltage
Threshold Current and
Hysteresis (M or V Pin)
IOV TJ = 25 °C
Threshold 107 112 117 mA
Hysteresis 4 mA
Rev. J 08/16
34
TOP252-262
www.power.com
Parameter Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min Typ Max Units
Multi-Function (M), Voltage Monitor (V) and External Current Limit (X) Inputs
Output Overvoltage
Latching Shutdown
Threshold Current
IOV(LS) TJ = 25 °C 269 336 403 mA
V or M Pin Reset Voltage VV(TH) or
VM(TH)
TJ = 25 °C 0.8 1.0 1.6 V
Remote ON/OFF
Negative Threshold
Current and Hysteresis
(M or X Pin)
IREM (N) TJ = 25 °C
Threshold -35 -27 -20
mA
Hysteresis 5
V or M Pin Short Circuit
Current
IV(SC) or
IM(SC)
TJ = 25 °C VV, VM = VC300 400 500 mA
X or M Pin Short Circuit
Current
IX(SC) or
IM(SC)
VX, VM = 0 V Normal Mode -260 -200 -140 mA
Auto-Restart Mode -95 -75 -55
V or M Pin Voltage
(Positive Current) VV or VM
IV or IM = IUV 2.10 2.8 3.20
V
IV or IM = IOV
TOP252-TOP257 2.79 3.0 3.21
TOP258-TOP262 2.83 3.0 3.25
V or M Pin Voltage
Hysteresis (Positive
Current)
VV(hyst) or
VM(hyst)
IV or IM = IOV 0.2 0.5 V
X or M Pin Voltage
(Negative Current) VX or VM
IX or IM = -50 mA 1.23 1.30 1.37 V
IX or IM = -150 mA 1.15 1.22 1.29
Maximum Duty Cycle
Reduction Onset
Threshold Current
IV(DC) or
IM(DC)
IC ≥ IB, TJ = 25 °C 18.9 22.0 24.2 mA
Maximum Duty Cycle
Reduction Slope TJ = 25 °C
IV(DC) < IV <48 mA or
IM(DC) < IM <48 mA-1.0
%/mA
IV or IM ≥48 mA -0.25
Remote OFF DRAIN
Supply Current ID(RMT) VDRAIN = 150 V
X, V or M Pin
Floating 0.6 1.0
mA
V or M Pin Shorted to
CONTROL 1.0 1.6
Remote ON Delay tR(ON)
From Remote ON to Drain
Turn-On
See Note B
66 kHz 3.0
ms
132 kHz 1.5
Remote OFF
Setup Time tR(OFF)
Minimum Time Before Drain
Turn-On to Disable Cycle
See Note B
66 kHz 3.0
ms
132 kHz 1.5
Frequency Input
FREQUENCY Pin
Threshold Voltage VFSee Note B 2.9 V
FREQUENCY Pin
Input Current IFTJ = 25 °C VF = VC10 55 90 mA
Rev. J 08/16
35
TOP252-262
www.power.com
Parameter Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min Typ Max Units
Circuit Protection
Self Protection
Current Limit
(See Note C)
ILIMIT
TOP252PN/GN/MN
TJ = 25 °C di/dt = 45 mA/ms 0.400 0.43 0.460
A
TOP252EN
TJ = 25 °C di/dt = 90 mA/ms 0.400 0.43 0.460
TOP253PN/GN
TJ = 25 °C di/dt = 80 mA/ms 0.697 0.75 0.803
TOP253MN
TJ = 25 °C di/dt = 90 mA/ms 0.790 0.85 0.910
TOP253EN
TJ = 25 °C di/dt = 180 mA/ms 0.790 0.85 0.910
TOP254PN/GN
TJ = 25 °C di/dt = 105 mA/ms 0.93 1.00 1.07
TOP254MN
TJ = 25 °C di/dt = 135 mA/ms 1.209 1.30 1.391
TOP254YN/EN
TJ = 25 °C di/dt = 270 mA/ms 1.209 1.30 1.391
TOP255PN/GN
TJ = 25 °C di/dt = 120 mA/ms 1.069 1.15 1.231
TOP255MN
TJ = 25 °C di/dt = 175 mA/ms 1.581 1.70 1.819
TOP255LN
TJ = 25 °C di/dt = 350 mA/ms 1.581 1.70 1.819
TOP255YN/EN
TJ = 25 °C di/dt = 350 mA/ms 1.581 1.70 1.819
TOP256PN/GN
TJ = 25 °C di/dt = 140 mA/ms 1.255 1.35 1.445
TOP256MN
TJ = 25 °C di/dt = 220 mA/ms 1.953 2.10 2.247
TOP256LN
TJ = 25 °C di/dt = 435 mA/ms 1.953 2.10 2.247
TOP256YN/EN
TJ = 25 °C di/dt = 530 mA/ms 2.371 2.55 2.729
TOP257PN/GN
TJ = 25 °C di/dt = 155 mA/ms 1.395 1.50 1.605
TOP257MN
TJ = 25 °C di/dt = 265 mA/ms 2.371 2.55 2.729
TOP257LN
TJ = 25 °C di/dt = 530 mA/ms 2.371 2.55 2.729
TOP257YN/EN
TJ = 25 °C di/dt = 705 mA/ms 3.162 3.40 3.638
TOP258PN/GN
TJ = 25 °C di/dt = 170 mA/ms 1.534 1.65 1.766
TOP258MN
TJ = 25 °C di/dt = 310 mA/ms 2.790 3.00 3.210
TOP258LN
TJ = 25 °C di/dt = 620 mA/ms 2.790 3.00 3.210
Rev. J 08/16
36
TOP252-262
www.power.com
Parameter Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min Typ Max Units
Circuit Protection (cont.)
Self Protection
Current Limit
(See Note C)
ILIMIT
TOP258YN/EN
TJ = 25 °C di/dt = 890 mA/ms 3.999 4.30 4.601
A
TOP259LN
TJ = 25 °C di/dt = 720 mA/ms 3.236 3.48 3.724
TOP259YN/EN
TJ = 25 °C di/dt = 1065 mA/ms 4.790 5.15 5.511
TOP260LN
TJ = 25 °C di/dt = 870 mA/ms 3.906 4.20 4.494
TOP260YN/EN
TJ = 25 °C di/dt = 1240 mA/ms 5.580 6.00 6.420
TOP261LN
TJ = 25 °C di/dt = 1065 mA/ms 4.808 5.17 5.532
TOP261YN/EN
TJ = 25 °C di/dt = 1530 mA/ms 6.882 7.40 7.918
TOP262LN
TJ = 25 °C di/dt = 1065 mA/ms 4.808 5.17 5.532
TOP262EN
TJ = 25 °C di/dt = 1530 mA/ms 6.882 7.40 7.918
Initial Current Limit IINIT See Note B 0.70 ×
ILIMIT(MIN)
A
Power Coefficient PCOEFF
TJ = 25 °C,
See Note D
IX or IM ≤ - 165 mA 0.9 × I2f I2f 1.2 × I2f
A2kHz
IX or IM ≤ - 117 mA 0.9 × I2f I2f 1.2 × I2f
Leading Edge
Blanking Time tLEB TJ = 25 °C, See Figure 53 220 ns
Current Limit Delay tIL(D) 100 ns
Thermal Shutdown
Temperature 135 142 150 °C
Thermal Shutdown
Hysteresis 75 °C
Power-Up Reset
Threshold Voltage VC(RESET) Figure 54 (S1 Open Condition) 1.75 3.0 4.25 V
Output
ON-State
Resistance RDS(ON)
TOP252
ID = 50 mA
TJ = 25 °C 19.1 22.00
W
TJ = 100 °C 28.8 33.40
TOP253
ID = 100 mA
TJ = 25 °C 8.8 10.10
TJ = 100 °C 13.1 15.20
TOP254
ID = 150 mA
TJ = 25 °C 5.4 6.25
TJ = 100 °C 8.35 9.70
TOP255
ID = 200 mA
TJ = 25 °C 4.1 4.70
TJ = 100 °C 6.3 7.30
TOP256
ID = 300 mA
TJ = 25 °C 2.8 3.20
TJ = 100 °C 4.1 4.75
TOP257
ID = 400 mA
TJ = 25 °C 2.0 2.30
TJ = 100 °C 3.1 3.60
TOP258
ID = 500 mA
TJ = 25 °C 1.7 1.95
TJ = 100 °C 2.5 2.90
Rev. J 08/16
37
TOP252-262
www.power.com
NOTES:
A. For specifications with negative values, a negative temperature coefficient corresponds to an increase in magnitude with increas-
ing temperature, and a positive temperature coefficient corresponds to a decrease in magnitude with increasing temperature.
B. Guaranteed by characterization. Not tested in production.
C. For externally adjusted current limit values, please refer to Figures 55a and 55b (Current Limit vs. External Current Limit Resis-
tance) in the Typical Performance Characteristics section. The tolerance specified is only valid at full current limit.
D. I2f calculation is based on typical values of ILIMIT and fOSC, i.e. ILIMIT(TYP)
2 × fOSC, where fOSC = 66 kHz or 132 kHz depending on package
/ F pin connection. See fOSC specification for detail.
E. The TOPSwitch-HX will start up at 18 VDC drain voltage. The capacitance of electrolytic capacitors drops significantly at tempera-
tures below 0 °C. For reliable start up at 18 V in sub zero temperatures, designers must ensure that circuit capacitors meet
recommended capacitance values.
F. Breakdown voltage may be checked against minimum BVDSS specification by ramping the DRAIN pin voltage up to but not
exceeding minimum BVDSS.
Parameter Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min Typ Max Units
Output (cont.)
ON-State
Resistance RDS(ON)
TOP259
ID = 600 mA
TJ = 25 °C 1.45 1.70
W
TJ = 100 °C 2.25 2.60
TOP260
ID = 700 mA
TJ = 25 °C 1.20 1.40
TJ = 100 °C 1.80 2.10
TOP261
ID = 800 mA
TJ = 25 °C 1.05 1.20
TJ = 100 °C 1.55 1.80
TOP262
ID = 900 mA
TJ = 25 °C 0.90 1.05
TJ = 100 °C 1.35 1.55
DRAIN Supply Voltage
TJ ≤ 85 °C, See Note E 18
V
36
OFF-State Drain
Leakage Current IDSS
VV, VM = Floating, IC = 4 mA,
VDS = 560 V, TJ = 125 °C470 mA
Breakdown
Voltage BVDSS
VV, VM = Floating, IC = 4 mA,
TJ = 25 °C
See Note F
700 V
Rise Time tRMeasured in a Typical Flyback
Converter Application
100 ns
Fall Time tF50 ns
Supply Voltage Characteristics
Control Supply/
Discharge Current
ICD1
Output
MOSFET
Enabled
VX, VV, VM =
0 V
66 kHz
Operation
TOP252-255 0.6 1.2 2.0
mA
TOP256-258 0.9 1.4 2.3
TOP259-262 1.1 1.6 2.5
132 kHz
Operation
TOP252-255 0.8 1.3 2.2
TOP256-258 1.1 1.6 2.5
TOP259-262 1.5 2.2 2.9
ICD2
Output MOSFET Disabled
VX, VV, VM = 0 V 0.3 0.6 1.3
Rev. J 08/16
38
TOP252-262
www.power.com
Figure 51. Duty Cycle Measurement.
Figure 52. CONTROL Pin I-V Characteristic. Figure 53. Drain Current Operating Envelope.
Figure 54. TOPSwitch-HX General Test Circuit.
PI-2039-033001
DRAIN
VOLTAGE
HV
0 V
90%
10%
90%
t2
t1
D = t1
t2
120
100
80
40
20
60
0
5 6 7 8 9
CONTROL Pin Voltage (V)
CONTROL Pin Current (mA)
1
Slope
Dynamic
Impedance =
PI-4737-061207
0.8
1.3
1.2
1.1
0.9
0.8
1.0
0
0 1 2 6 83
Time (µs)
DRAIN Current (normalized)
PI-4758-061407
4 5 7
0.7
0.6
0.5
0.4
0.3
0.2
0.1
IINIT(MIN)
tLEB (Blanking Time)
PI-4738-071408
5-50 V
5-50 V
S4
40 V
0.1 µF47 µF
470
5 W
TOP254-258 Y, all E, L or M Packages (X and V Pins)
P or G Package (M Pin)
470
0-300 k
0-60 k
0-60 k
0-300 k
NOTES: 1. This test circuit is not applicable for current limit or output characteristic measurements.
2. For P, G and M packages, short all SOURCE pins together.
D
D
SFX
C
V
M
C
CONTROL
TOPSwitch-HX
S1 S5
S3
0-15 V
S2
SGX
C
CONTROL
TOP259-261 Y (X and V Pins)
5-50 V
0-300 k
Rev. J 08/16
39
TOP252-262
www.power.com
Figure 55a. Normalized Current Limit vs. X or M Pin Current.
Figure 55b. Normalized Current Limit vs. External Current Limit Resistance.
PI-4754-120307
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
-200 -150 -100 -50 0
I
X
or I
M
( µA )
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
Typical
Notes:
1. Maximum and Minimum levels are
based on characterization.
2. T
J
= 0
O
C to 125
O
C.
Minimum
Maximum
Normalized Current Limit
Normalized di/dt
PI-4755-120307
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
0510 15 20 25 30 35 40 45
R
IL
( k )
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
Notes:
1. Maximum and Minimum levels are
based on characterization.
2. T
J
= 0
O
C to 125
O
C.
3. Includes the variation of X or M pin
voltage
Typical
Maximum
Minimum
Normalized Current Limit
Normalized di/dt
.
Typical Performance Characteristics
Rev. J 08/16
40
TOP252-262
www.power.com
Typical Performance Characteristics (cont.)
1.1
1.0
0.9
-50 -25 0 25 50 75 100 125 150
Junction Temperature (°C)
Breakdown Voltage
(Normalized to 25
°C)
PI-176B-033001
1.2
1.0
0.8
0.6
0.4
0.2
0
-50 -25 0 25 50 75 100 125 150
Junction Temperature (°C)
PI-4759-061407
Output Frequency
(Normalized to 25
°C)
1.2
1.0
0.8
0.6
0.4
0.2
0
-50 -25 0 25 50 75 100 125 150
Junction Temperature (°C)
PI-4760-061407
Current Limit
(Normalized to 25
°C)
1.2
1.0
0.8
0.6
0.4
0.2
0
-50 -25 0 25 50 75 100 125 150
Junction Temperature (°C)
PI-4739-061507
Current Limit
(Normalized to 25
°C)
1.2
1.0
0.8
0.6
0.4
0.2
0
-50 -25 0 25 50 75 100 125 150
Junction Temperature (
°
C)
PI-4761-061407
Overvoltage Threshold
(Normalized to 25
°C)
1.2
1.0
0.8
0.6
0.4
0.2
0
-50 -25 0 25 50 75 100 125 150
Junction Temperature (°C)
PI-4762-061407
Under-Voltage Threshold
(Normalized to 25
°C)
Figure 56. Breakdown Voltage vs. Temperature. Figure 57. Frequency vs. Temperature.
Figure 58. Internal Current Limit vs. Temperature. Figure 59. External Current Limit vs. Temperature with RIL = 10.5 kW.
Figure 60. Overvoltage Threshold vs. Temperature. Figure 61. Undervoltage Threshold vs. Temperature.
Rev. J 08/16
41
TOP252-262
www.power.com
Typical Performance Characteristics (cont.)
6
4.5
5.5
5
2
0 100 200 500400300
VOLTAGE-MONITOR Pin Current (µA)
VOLTAGE MONITOR Pin Voltage (V)
PI-4740-060607
3
2.5
3.5
4
1.6
1.0
1.4
1.2
0
-200 -150 -50-100 0
EXTERNAL CURRENT LIMIT Pin Current (µA)
EXTERNAL CURRENT LIMIT
Pin Voltage (V)
PI-4741-110907
0.4
0.2
0.6
0.8
VX = 1.354 - 1147.5 × IX + 1.759 × 106 ×
(IX)2 with -180 µA < IX < -25 µA
6
5
4
3
2
1
0
-200 -100 0 100 200 300 400 500
PI-4742-021308
MULTI-FUNCTION Pin Voltage (V)
MULTI-FUNCTION Pin Current (µA)
See expanded
version
(Figure 63b)
1.2
1.4
1.6
0.4
0.6
0.2
0.8
1.0
0
-200 -150 -50-100 0
MULTI-FUNCTION Pin Voltage (V)
PI-4743-061407
MULTI-FUNCTION Pin Current (µA)
VM = 1.354 - 1147.5 × IM + 1.759 × 106 ×
(IM)2 with -180 µA < IM < -25 µA
1.2
1.0
0.8
0.6
0.4
0.2
0
-50 -25 0 25 50 75 100 125 150
Junction Temperature (°C)
PI-4763-072208
CONTROL Current
(Normalized to 25
°C)
1.2
1.0
0.8
0.6
0.4
0.2
0
-50 -25 0 25 50 75 100 125 150
Junction Temperature (°C)
PI-4764-061407
Onset Threshold Current
(Normalized to 25
°C)
Figure 62b. EXTERNAL CURRENT LIMIT Pin Voltage vs. Current.
Figure 63a. MULTI-FUNCTION Pin Voltage vs. Current. Figure 63b. MULTI-FUNCTION Pin Voltage vs. Current (Expanded).
Figure 64. Control Current Out at 0% Duty Cycle vs. Temperature. Figure 65. Maximum Duty Cycle Reduction Onset Threshold
Current vs. Temperature.
Figure 62a. VOLTAGE-MONITOR Pin vs. Current.
Rev. J 08/16
42
TOP252-262
www.power.com
Typical Performance Characteristics (cont.)
1
-0.5
0
0.5
-2.5
020 40 60 80 100
Drain Pin Voltage (V)
CONTROL Pin Current (mA)
PI-4744-072208
-1.5
-2
-1
VC = 5 V
Figure 66. Output Characteristics. Figure 67. IC vs. DRAIN Voltage.
Figure 68. COSS vs. DRAIN Voltage. Figure 69. DRAIN Capacitance Power.
Figure 70. Remote OFF DRAIN Supply Current vs. Temperature.
5
0
02 4 6 8 10 12 14 16 18 20
Drain Voltage (V)
DRAIN Current (A)
PI-4748-071708
2
1
TCASE = 25 °C
TCASE = 100 °C
4
3TOP262 1.82
TOP261 1.62
TOP260 1.42
TOP259 1,17
TOP258 1.00
TOP257 0.85
TOP256 0.61
TOP255 0.42
TOP254 0.32
TOP253 0.20
TOP252 0.10
Scaling Factors:
0 100 200 300 400 500 600
10
100
1000
10000
PI-4749-071708
Drain Pin Voltage (V)
DRAIN Capacitance (pF)
TOP262 1.82
TOP261 1.62
TOP260 1.42
TOP259 1.17
TOP258 1.00
TOP257 0.85
TOP256 0.61
TOP255 0.42
TOP254 0.32
TOP253 0.20
TOP252 0.10
Scaling Factors:
500
400
200
100
300
0
0 200100 400 500 600300 700
Drain Pin Voltage (V)
Power (mW)
PI-4750-071708
132 kHz
66 kHz
TOP262 1.82
TOP261 1.62
TOP260 1.42
TOP259 1.17
TOP258 1.00
TOP257 0.85
TOP256 0.61
TOP255 0.42
TOP254 0.32
TOP253 0.20
TOP252 0.10
Scaling Factors:
1.2
0.8
1.0
0
-50 0-25 5025 10075 125 150
Junction Temperature (°C)
Remote OFF DRAIN Supply Current
(Normalized to 25
°C)
PI-4745-061407
0.2
0.4
0.6
Rev. J 08/16
43
TOP252-262
www.power.com
PI-2644-040110
Notes:
1. Controlling dimensions are inches. Millimeter
dimensions are shown in parentheses.
2. Pin numbers start with Pin 1, and continue from left
to right when viewed from the front.
3. Dimensions do not include mold flash or other
protrusions. Mold flash or protrusions shall not
exceed .006 (.15 mm) on any side.
4. Minimum metal to metal spacing at the package
body for omitted pin locations is .068 in. (1.73 mm).
5. Position of terminals to be measured at a location
.25 (6.35) below the package body.
6. All terminals are solder plated.
Y07C
PIN 1 PIN 7
MOUNTING HOLE PATTERN
.050 (1.27)
.150 (3.81)
.050 (1.27)
.150 (3.81)
.050 (1.27)
.050 (1.27)
.100 (2.54)
.180 (4.58)
.200 (5.08)
PIN 1
+
.010 (.25) M
.461 (11.71)
.495 (12.57)
.390 (9.91)
.420 (10.67)
.146 (3.71)
.156 (3.96)
.860 (21.84)
.880 (22.35)
.024 (.61)
.034 (.86)
.068 (1.73) MIN
.050 (1.27) BSC
.150 (3.81) BSC
.108 (2.74) REF
PIN 1 & 7
7° TYP.
PIN 2 & 4
.040 (1.02)
.060 (1.52)
.190 (4.83)
.210 (5.33)
.012 (.30)
.024 (.61)
.080 (2.03)
.120 (3.05)
.234 (5.94)
.261 (6.63)
.165 (4.19)
.185 (4.70)
.040 (1.02)
.060 (1.52)
.045 (1.14)
.055 (1.40)
.670 (17.02)
REF.
.570 (14.48)
REF.
TO-220-7C (Y Package)
Rev. J 08/16
44
TOP252-262
www.power.com
Notes:
1. Package dimensions conform to JEDEC specification
MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP)
package with .300 inch row spacing.
2. Controlling dimensions are inches. Millimeter sizes are
shown in parentheses.
3. Dimensions shown do not include mold flash or other
protrusions. Mold flash or protrusions shall not exceed
.006 (.15) on any side.
4. Pin locations start with Pin 1, and continue counter-clock-
wise to Pin 8 when viewed from the top. The notch and/or
dimple are aids in locating Pin 1. Pin 3 is omitted.
5. Minimum metal to metal spacing at the package body for
the omitted lead location is .137 inch (3.48 mm).
6. Lead width measured at package body.
7. Lead spacing measured with the leads constrained to be
perpendicular to plane T.
.008 (.20)
.015 (.38)
.300 (7.62) BSC
(NOTE 7)
.300 (7.62)
.390 (9.91)
.356 (9.05)
.387 (9.83)
.240 (6.10)
.260 (6.60)
.125 (3.18)
.145 (3.68)
.057 (1.45)
.068 (1.73)
.118 (3.00)
.140 (3.56)
.015 (.38)
MINIMUM
.048 (1.22)
.053 (1.35)
.100 (2.54) BSC
.014 (.36)
.022 (.56)
-E-
Pin 1
SEATING
PLANE
-D-
-T-
P08C
PDIP-8C (P Package)
PI-3933-081716
D S .004 (.10)
T E D S .010 (.25) M
(NOTE 6)
.137 (3.48)
MINIMUM
Notes:
1. Package dimensions conform to JEDEC specification MS-019.
2. Controlling dimensions are inches. Millimeter sizes are shown
in parentheses.
3. Dimensions shown do not include mold flash or other protrusions.
Mold flash or protrusions shall not exceed .006 (.15) on any side.
4. D, E and F are reference datums.
5. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
.008 (.20)
.015 (.38)
.300 (7.62)
.390 (9.91)
.240 (6.10)
.260 (6.60)
10 6
15
.200 (5.08) Max
.020 (.51) Min
.367 (9.32)
.387 (9.83)
.120 (3.05)
.140 (3.56)
.030 (.76)
.040 (1.02)
.070 (1.78) BSC .300 BSC
.300 (7.62)
.340 (8.64
.014 (.36)
.022 (.56)
.125 (3.18)
.145 (3.68)
-E-
SEATING
PLANE
-D-
P10C
SDIP-10C (M Package)
PI-4648-101507
F D E
.010 (.25) M
-F-
Rev. J 08/16
45
TOP252-262
www.power.com
SMD-8C (G Package)
PI-4015-081716
.004 (.10)
.012 (.30)
.036 (0.91)
.044 (1.12)
.004 (.10)
0 -
° 8°
.356 (9.05)
.387 (9.83)
.048 (1.22) .009 (.23)
.053 (1.35)
.032 (.81)
.037 (.94)
.125 (3.18)
.145 (3.68)
-D-
Notes:
1. Controlling dimensions are
inches. Millimeter sizes are
shown in parentheses.
2. Dimensions shown do not
include mold flash or other
protrusions. Mold flash or
protrusions shall not exceed
.006 (.15) on any side.
3. Pin locations start with Pin 1,
and continue counter-clock-
wise to Pin 8 when viewed
from the top. Pin 3 is omitted.
4. Minimum metal to metal
spacing at the package body
for the omitted lead location
is .137 inch (3.48 mm).
5. Lead width measured at
package body.
6. D and E are referenced
datums on the package
body.
.057 (1.45)
.068 (1.73)
(NOTE 5)
E S
.100 (2.54) (BSC)
.372 (9.45)
.240 (6.10) .388 (9.86)
.260 (6.60) .010 (.25)
-E-
Pin 1
D S .004 (.10)
G08C
.420
.046 .060 .060 .046
.080
Pin 1
.086
.186
.286
Solder Pad Dimensions
.137 (3.48)
MINIMUM
Rev. J 08/16
46
TOP252-262
www.power.com
PI-4917-061510
MOUNTING HOLE PATTERN
(not to scale)
PIN 7
PIN 1
0.100 (2.54) 0.100 (2.54)
0.059 (1.50)
0.059 (1.50)
0.050 (1.27)
0.050 (1.27)
0.100 (2.54)
0.155 (3.93)
0.020 (0.50)
Notes:
1. Dimensioning and tolerancing per ASME Y14.5M-1994.
2. Dimensions noted are determined at the outermost
extremes of the plastic body exclusive of mold flash,
tie bar burrs, gate burrs, and interlead flash, but including
any mismatch between the top and bottom of the plastic
body. Maximum mold protrusion is 0.007 [0.18] per side.
3. Dimensions noted are inclusive of plating thickness.
4. Does not include inter-lead flash or protrusions.
5. Controlling dimensions in inches (mm).
0.403 (10.24)
0.397 (10.08)
0.325 (8.25)
0.320 (8.13)
0.050 (1.27)
FRONT VIEW
2
2
B
A
0.070 (1.78) Ref.
Pin #1
I.D.
3
C
0.016 (0.41)
Ref.
0.290 (7.37)
Ref.
0.047 (1.19)
0.100 (2.54)
0.519 (13.18)
Ref.
0.198 (5.04) Ref.
0.264 (6.70)
Ref.
0.118 (3.00)
3
0.140 (3.56)
0.120 (3.05)
0.021 (0.53)
0.019 (0.48)
0.378 (9.60)
Ref. 0.019 (0.48) Ref.
0.060 (1.52)
Ref.
0.048 (1.22)
0.046 (1.17)
0.081 (2.06)
0.077 (1.96)
0.207 (5.26)
0.187 (4.75)
0.033 (0.84)
0.028 (0.71)
0.016 (0.41)
0.011 (0.28)
eSIP-7C (E Package)
10° Ref.
All Around
0.020 M 0.51 M C
0.010 M 0.25 M C A B
SIDE VIEW
END VIEW
BACK VIEW
4
0.023 (0.58)
0.027 (0.70)
DETAIL A
Detail A
Rev. J 08/16
47
TOP252-262
www.power.com
1 7
END VIEW
0.021 (0.53)
0.019 (0.48)
0.060 (1.52) Ref.
0.019 (0.48) Ref. 0.378 (9.60)
Ref.
0.048 (1.22)
0.046 (1.17)
C
SIDE VIEW
0.129 (3.28)
0.122 (3.08)
0.081 (2.06)
0.077 (1.96)
Detail A
0.084 (2.14)
0.047 (1.19) Ref.
0.290 (7.37)
Ref.
0.016 (0.41)
0.011 (0.28)
0.020 M 0.51 M C
3
PI-5204-061510
Notes:
1. Dimensioning and tolerancing per ASME
Y14.5M-1994.
2. Dimensions noted are determined at the
outermost extremes of the plastic body
exclusive of mold flash, tie bar burrs, gate
burrs, and interlead flash, but including
any mismatch between the top and bottom
of the plastic body. Maximum mold
protrusion is 0.007 [0.18] per side.
3. Dimensions noted are inclusive of plating
thickness.
4. Does not include inter-lead flash or
protrusions.
5. Controlling dimensions in inches (mm).
eSIP-7F (L Package)
2
A
B
1 7
BOTTOM VIEW
Pin 1 I.D.
0.403 (10.24)
0.397 (10.08)
0.325 (8.25)
0.320 (8.13)
0.050 (1.27)
0.070 (1.78) Ref.
Exposed pad hidden Exposed pad up
2
17
TOP VIEW
0.089 (2.26)
0.079 (2.01)
0.173 (4.40)
0.163 (4.15)
0.198 (5.04) Ref.
0.264 (6.70) Ref.
0.100 (2.54)
0.490 (12.45) Ref.
0.033 (0.84)
0.028 (0.71)
0.010 M 0.25 M C A B
43
0.020 (0.50)
0.023 (0.58)
0.027 (0.70)
DETAIL A (Not drawn to scale)
Rev. J 08/16
48
TOP252-262
www.power.com
Part Ordering Information
• TOPSwitch Product Family
• HX Series Number
• Package Identifier
P Plastic DIP-8C
G Plastic SMD-8C
M Plastic SDIP-10C
Y Plastic TO-220-7C
E Plastic eSIP-7C
L Plastic eSIP-7F
• Pin Finish
N Pure Matte Tin (Pb-Free) (P, G, M, E, L and Y Packages)
G Green Mold Compound (Specific E Packages Only)
• Tape & Reel and Other Options
Blank Standard Configurations
TL G Package (1000 min/mult.)
TOP 258 G N - TL
Rev. J 08/16
49
TOP252-262
www.power.com
Revision Notes Date
B Data sheet release. 02/08
C Added L package and TOP262. 07/08
D Changed eSIP-7E to eSIP-7F. Added detail to PI-4917 and PI-5204. 08/08
E Released TOP255-259LN and TOP262EN parts. 10/08
F Added note for TOP256E halogen free part availability. 01/09
GAdded note for TOP258P and TOP259E halogen free part availability. Updated E & L bend package drawings. Minor text
changes to page 27. 01/10
H Added EG parts. Removed Note 7 from Table 1 on page 2. 06/13
I Updated with new Brand Style. 05/15
JUpdated PDIP-8C (P Package) and SMD-8C (G Package) per PCN-16232. 08/16
For the latest updates, visit our website: www.power.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS
MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD
PARTY RIGHTS.
Patent Information
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be
covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power
Integrations. A complete list of Power Integrations patents may be found at www.power.com. Power Integrations grants its
customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.
Life Support Policy
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS.
As used herein:
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and
(iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in
significant injury or death to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
The PI logo, TOPSwitch, TinySwitch, SENZero, SCALE-iDriver, Qspeed, PeakSwitch, LYTSwitch, LinkZero, LinkSwitch, InnoSwitch,
HiperTFS, HiperPFS, HiperLCS, DPA-Switch, CAPZero, Clampless, EcoSmart, E-Shield, Filterfuse, FluxLink, StakFET, PI Expert and
PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2016, Power
Integrations, Inc.
World Headquarters
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: usasales@power.com
China (Shanghai)
Rm 2410, Charity Plaza, No. 88
North Caoxi Road
Shanghai, PRC 200030
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: chinasales@power.com
China (Shenzhen)
17/F, Hivac Building, No. 2, Keji
Nan 8th Road, Nanshan District,
Shenzhen, China, 518057
Phone: +86-755-8672-8689
Fax: +86-755-8672-8690
e-mail: chinasales@power.com
Germany
Lindwurmstrasse 114
80337 Munich
Germany
Phone: +49-895-527-39110
Fax: +49-895-527-39200
e-mail: eurosales@power.com
Germany
HellwegForum 1
59469 Ense
Germany
Tel: +49-2938-64-39990
e-mail: igbt-driver.sales@
power.com
India
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail: indiasales@power.com
Italy
Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni (MI)
Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail: eurosales@power.com
Japan
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama,
Kohoku-ku
Yokohama-shi, Kanagawa
222-0033 Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: japansales@power.com
Korea
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: koreasales@power.com
Singapore
51 Newton Road
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail: singaporesales@power.
com
Taiwan
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail: taiwansales@power.com
UK
Cambridge Semiconductor,
a Power Integrations company
Westbrook Centre, Block 5,
2nd Floor
Milton Road
Cambridge CB4 1YG
Phone: +44 (0) 1223-446483
e-mail: eurosales@power.com
Power Integrations Worldwide Sales Support Locations