IRF3610SPbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits HEXFET(R) Power MOSFET D G S VDSS RDS(on) typ. max. ID Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free 100V 9.3m 11.6m 103A D S G D2Pak IRF3610SPbF G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS Max. Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V d Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds f dv/dt TJ TSTG Thermal Resistance Symbol RJC RJA 1 c Parameter jk Junction-to-Case Junction-to-Ambient (PCB Mount) i www.irf.com (c) 2014 International Rectifier W W/C V V/ns C Single Pulse Avalanche Energy (Thermally Limited) Avalanche Current Repetitive Avalanche Energy c A 300 (1.6mm from case) Avalanche Characteristics EAS IAR EAR Units 103 73 410 333 2.2 20 23 -55 to + 175 d 460 See Fig. 14, 15, 22a, 22b mJ A mJ Typ. Max. Units --- --- 0.50 40 C/W Submit Datasheet Feedback March 26, 2014 IRF3610SPbF Static @ TJ = 25C (unless otherwise specified) Symbol Parameter V(BR)DSS V(BR)DSS/TJ RDS(on) VGS(th) gfs RG IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Internal Gate Resistance Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 100 --- --- 2.0 110 --- --- --- --- --- --- 0.10 9.3 --- --- 2.2 --- --- --- --- --- --- 11.6 4.0 --- --- 20 250 200 -200 Conditions V VGS = 0V, ID = 250A V/C Reference to 25C, ID = 1.0mA m VGS = 10V, ID = 62A V VDS = VGS, ID = 250A S VDS = 25V, ID = 62A A VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125C nA VGS = 20V VGS = -20V c f Dynamic @ TJ = 25C (unless otherwise specified) Symbol Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) Min. Typ. Max. Units --- --- --- --- --- --- --- --- --- --- --- --- --- 100 23 42 58 15 55 77 43 5380 690 100 560 750 150 --- --- --- --- --- --- --- --- --- --- --- --- nC Conditions ID = 62A VDS =50V VGS = 10V ID = 62A, VDS =0V, VGS = 10V VDD = 65V ID = 62A RG = 2.7 VGS = 10V VGS = 0V VDS = 25V = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 80V , See Fig. 11 VGS = 0V, VDS = 0V to 80V f ns pF f h g Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM d Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25C, L = 0.24mH RG = 50, IAS = 62A, VGS =10V. Part not recommended for use above this value. ISD 62A, di/dt 1935A/s, VDD V(BR)DSS, TJ 175C. Pulse width 400s; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . 2 www.irf.com (c) 2014 International Rectifier Min. Typ. Max. Units --- --- --- --- 103 410 Conditions A MOSFET symbol A showing the integral reverse D G p-n junction diode. TJ = 25C, IS = 62A, VGS = 0V VR = 85V, TJ = 25C TJ = 125C IF = 62A di/dt = 100A/s TJ = 25C S f --- --- 1.3 V --- 110 --- ns --- 120 --- --- 570 --- nC TJ = 125C --- 710 --- --- -9.5 --- A TJ = 25C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) f Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom- mended footprint and soldering techniques refer to application note #AN-994. R is measured at TJ approximately 90C. RJC value shown is at time zero. Submit Datasheet Feedback March 26, 2014 IRF3610SPbF 1000 1000 100 BOTTOM 100 10 1 VGS 15V 10V 6.0V 5.0V 4.7V 4.5V 4.2V 4.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 6.0V 5.0V 4.7V 4.5V 4.2V 4.0V 4.0V BOTTOM 4.0V 10 60s PULSE WIDTH 60s PULSE WIDTH Tj = 175C Tj = 25C 1 0.1 0.1 1 10 100 0.1 1000 Fig 1. Typical Output Characteristics 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 100 Fig 2. Typical Output Characteristics 1000 T J = 175C 100 TJ = 25C 10 1 VDS = 50V 60s PULSE WIDTH 0.1 ID = 62A VGS = 10V 2.5 2.0 1.5 1.0 0.5 2 3 4 5 6 7 8 9 10 11 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (C) VGS, Gate-to-Source Voltage (V) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 62A C oss = C ds + C gd 10000 C, Capacitance (pF) 10 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Ciss Coss 1000 Crss 100 12.0 VDS= 80V VDS= 50V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 3 1 www.irf.com (c) 2014 International Rectifier 0 20 40 60 80 100 120 140 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback March 26, 2014 IRF3610SPbF 10000 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) T J = 175C 100 T J = 25C 10 1000 100 100s 10 1ms 1 VGS = 0V 1.0 10ms DC 0.1 0.0 0.5 1.0 1.5 2.0 1 VSD, Source-to-Drain Voltage (V) 80 60 40 20 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 100 50 100 125 ID = 1.0mA 120 115 110 105 100 95 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( C ) T C , Case Temperature (C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 3.5 EAS , Single Pulse Avalanche Energy (mJ) 2000 3.0 ID 13A 27A BOTTOM 62A TOP 1600 Energy (J) 2.5 1200 2.0 1.5 1.0 0.5 0.0 800 400 0 0 20 40 60 80 100 120 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 1000 Fig 8. Maximum Safe Operating Area 120 25 10 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage ID, Drain Current (A) 3ms Tc = 25C Tj = 175C Single Pulse www.irf.com (c) 2014 International Rectifier 25 50 75 100 125 150 175 Starting T J , Junction Temperature (C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent Submit Datasheet Feedback March 26, 2014 IRF3610SPbF Thermal Response ( Z thJC ) C/W 1 D = 0.50 0.20 0.1 0.10 0.05 0.01 0.02 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150C and Tstart =25C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25C and Tstart = 150C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs. Pulse Width EAR , Avalanche Energy (mJ) 500 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 13, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 62A 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (C) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav Fig 15. Maximum Avalanche Energy vs. Temperature 5 www.irf.com (c) 2014 International Rectifier Submit Datasheet Feedback March 26, 2014 IRF3610SPbF 60 4.0 3.5 IRRM (A) VGS(th) , Gate threshold Voltage (V) 4.5 3.0 ID = 250A 2.5 50 IF = 41A V R = 85V 40 TJ = 25C TJ = 125C 30 20 ID = 1.0mA ID = 1.0A 10 2.0 1.5 -100 0 -50 0 50 100 150 100 200 300 400 500 600 700 800 900 1000 200 diF /dt (A/s) T J , Temperature ( C ) Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 4000 50 IF = 62A V R = 85V 40 TJ = 25C TJ = 125C 3500 3000 QRR (nC) IRRM (A) 60 30 20 IF = 41A V R = 85V TJ = 25C TJ = 125C 2500 2000 1500 10 1000 500 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/s) diF /dt (A/s) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 4000 3500 QRR (nC) 3000 IF = 62A V R = 85V TJ = 25C TJ = 125C 2500 2000 1500 1000 500 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/s) Fig. 20 - Typical Stored Charge vs. dif/dt 6 www.irf.com (c) 2014 International Rectifier Submit Datasheet Feedback March 26, 2014 IRF3610SPbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01 tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width 1 s Duty Factor 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50K 12V tf .2F .3F D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 7 www.irf.com (c) 2014 International Rectifier Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform Submit Datasheet Feedback March 26, 2014 IRF3610SPbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com (c) 2014 International Rectifier Submit Datasheet Feedback March 26, 2014 IRF3610SPbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 9 www.irf.com (c) 2014 International Rectifier Submit Datasheet Feedback March 26, 2014