Features * CPU32+ Processor (4.5 MIPS at 25 MHz) * * * * * * * * * * * * * * * - 32-bit Version of the CPU32 Core (Fully Compatible with the CPU32) - Background Debug Mode - Byte-misaligned Addressing Up to 32-bit Data Bus (Dynamic Bus Sizing for 8 and 16 Bits) Up to 32 Address Lines (At Least 28 Always Available) Complete Static Design (0 - 25 MHz Operation) Slave Mode to Disable CPU32+ (Allows Use with External Processors) - Multiple QUICCs Can Share One System Bus (One Master) - TS68040 Companion Mode Allows QUICC to be a TS68040 Companion Chip and Intelligent Peripheral (22 MIPS at 25 MHz) - Peripheral Device of TSPC603e (see DC415/D note) Four General-purpose Timers - Superset of MC68302 Timers - Four 16-bit Timers or Two 32-bit Timers - Gate Mode Can Enable/Disable Counting Two Independent DMAs (IDMAs) System Integration Module (SIM60) Communications Processor Module (CPM) Four Baud Rate Generators Four SCCs (Ethernet/IEEE 802.3 Optional on SCC1-Full 10 Mbps Support) Two SMC VCC = +5V 5% fmax = 25 MHz and 33 MHz Military Temperature Range: -55C < TC < +125C PD = 1.4W at 25 MHz; 5.25V 2W at 33 MHz; 5.25V 32-bit Quad Integrated Communication Controller TS68EN360 Description The TS68EN360 QUad Integrated Communication Controller (QUICCTM) is a versatile one-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications. It particularly excels in communications activities. The QUICC (pronounced "quick") can be described as a next-generation TS68302 with higher performance in all areas of device operation, increased flexibility, major extensions in capability, and higher integration. The term "quad" comes from the fact that there are four serial communications controllers (SCCs) on the device; however, there are actually seven serial channels: four SCCs, two serial management controllers (SMCs), and one serial peripheral interface (SPI). Screening/Quality This product is manufactured in full compliance with: * QML (class Q) * or according to Atmel standards 2113B-HIREL-06/05 R suffix PGA 241 Ceramic Pin Grid Array Cavity Up A suffix CERQUAD 240 Ceramic Leaded Chip Carrier Cavity Down 1. Introduction 1.1 QUICC Architecture Overview The QUICC is 32-bit controller that is an extension of other members of the TS68300 family. Like other members of the TS68300 family, the QUICC incorporates the intermodule bus (IMB). The TS68302 is an exception, having an 68000 bus on chip. The IMB provides a common interface for all modules of the TS68300 family, which allows the development of new devices more quickly by using the library of existing modules. Although the IMB definition always included an option for an on-chip 32-bit bus, the QUICC is the first device to implement this option. The QUICC is comprised of three modules: the CPU32+ core, the SIM60, and the CPM. Each module utilizes the 32-bit IMB. The TS68EN360 QUICC block diagram is shown in Figure 1-1. Figure 1-1. QUICC Block Diagram SIM 60 CPU32+ CORE SYSTEM PROTECTION JTAG PERIODIC TIMER BREAKPOINT LOGIC CLOCK GENERATION DRAM CONTROLLER OTHER FEATURES AND CHIP SELECTS EXTERNAL BUS INTERFACE IMB (32 BIT) SYSTEM I/F CPM COMMUNICATIONS PROCESSOR 2.5-KBYTE DUAL-PORT RAM RISC CONTROLLER TWO IDMAs FOURTEEN SERIAL DMAs SEVEN SERIAL CHANNELS 2 INTERRUPT CONTROLLER TIMER SLOT ASSIGNER FOUR GENERALPURPOSE TIMERS OTHER FEATURES TS68EN360 2113B-HIREL-06/05 TS68EN360 2. Pin Assignments Figure 2-1. 241-lead Pin Grid Array (PGA) T PA15 PA12 PA9 PA6 PA3 PA2 PB17 PB15 PB12 PB11 PA13 PA10 PA7 PA5 PA1 PB8 PB5 PB2 PC11 PC9 PC6 PC5 PC2 PB7 PB4 PB1 PC10 PC7 PC3 PC1 IRQ2 IRQ3 IRQ1 S D2 D0 PB16 PB13 PB10 D4 D3 D1 PA14 PA11 PA8 PA4 PA0 PB14 PB9 PB6 PB3 PB0 PC8 PC4 PC0 D7 D6 D5 GND GND GND Vcc Vcc GND GND Vcc Vcc GND GND GND IRQ5 BERR RESETS D10 D9 D8 GND Vcc GND Vcc GND GND HALT RMC PERR D13 D12 D11 GND GND GND GND AVEC TDO D16 D15 D14 GND Vcc D19 D18 D17 Vcc GND TRST BKPT IRQ6 R Q P NC N TMS M TD1 TCK RESETH L K CLKO2 Vcc GND Vccclk TS68EN360 GNDclk Vcc Vcc IRQ4 BGACK BG GND GND IFETCH NC1 (BOTTOM VIEW) J CLKO1 D20 D22 GND Vcc BR H D21 D23 D25 GND GNDs2 NC2 BCLRO OE D24 D26 D28 Vcc D27 D29 D31 GND D30 FC3 FC0 A31 Vccsyn GNDsyn FC2 FC1 A30 XFC Vcc GND GND Vcc Vcc GND GND GND GND Vcc GND CAS0 SIZ1 A29 EXTAL MODCK1 A27 A23 A20 A17 A14 A8 A4 A0 CS7 CS4 CS1 CAS3 FREEZE DS SIZ0 A28 MODCK0 GND A25 A22 A19 A16 A13 A10 A7 A5 A1 IRQ7 CS5 CS2 G Vcc IPIPE0 AS IPIPE1 F GND Vcc GND PRTY2 PRTY1 PRTY0 E GND Vcc GNDs1 Vcc NC3 DSACK1 PRTY3 D R/W DSACK0 C B CAS2 CAS1 A 1 Note: XTAL NC4 A26 A24 A21 A18 A15 A12 A11 A9 A6 A3 A2 TRIS CS6 CS3 CS0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Pin P9 "NC" is for guide purposes only. 3 2113B-HIREL-06/05 240-lead Cerquad CS0 CS1 CS2 CS3 Vcc GND CS4 CS5 CS6 CS7 IRQ7 TRIS A0 A1 GND A2 A3 Vcc A4 A5 GND A6 A7 Vcc GND A8 A9 GND A10 A11 Vcc A12 A13 GND A14 A15 A16 A17 A18 GND A19 A20 A21 Vcc A22 A23 A24 GND A25 A26 A27 NC4 GND MODCK1 MODCK0 XTAL EXTAL GNDsyn XFC Vccsyn Figure 2-2. GNDs1 CAS3 CAS2 Vcc CAS1 GND CAS0 FREEZE DS GND R/W NC3 Vcc DSACK0 GND DSACK1 GND PRTY3 PRTY2 GND Vcc PRTY1 PRTY0 IPIPE0 AS GNDs2 IPIPE1 Vcc NC2 BCLRO GND OE IFETCH NC1 BR Vcc GND BG BGACK Vcc IRQ4 IRQ6 GND BKPT RESETH TRST TCK TMS TDI TDO PERR GND AVEC RMC Vcc RESETS HALT GND BERR IRQ1 180 181 170 160 150 140 130 121 120 190 110 200 100 TS68EN360 (TOP VIEW) 210 90 220 80 230 70 PIN ONE INDICATOR 240 61 10 20 30 40 50 60 IRQ5 IRQ3 IRQ2 PC0 PC1 PC2 GND PC3 PC4 PC5 PC6 Vcc PC7 PC8 PC9 PC10 GND PC11 PB0 PB1 PB2 PB3 PB4 PB5 PB6 GND PB7 PB8 PB9 PB10 Vcc PB11 PB12 PB13 PB14 GND PB15 PB16 PB17 PA0 GND Vcc PA1 PA2 PA3 PA4 GND PA5 PA6 PA7 PA8 Vcc PA9 PA10 PA11 PA12 GND PA13 PA14 PA15 1 A28 A29 GND A30 A31 Vcc SIZ0 SIZ1 FC0 GND FC1 FC2 FC3 Vcc GND D31 D30 D29 GND D28 D27 D26 Vcc D25 D24 D23 GND D22 D21 D20 CLKO1 Vccclk GNDclk CLKO2 D19 D18 D17 GND D16 D15 Vcc D14 D13 D12 GND D11 D10 D9 D8 D7 GND D6 D5 Vcc D4 D3 D2 GND D1 D0 4 TS68EN360 2113B-HIREL-06/05 TS68EN360 3. Signal Description 3.1 Functional Signal Group Figure 3-1. QUICC Functional Signal Groups ADDRESS BUS A27A0 A31A28/WE0WE3 FC2FC0/TM2TM0 FC3/TT0 PORT A DATA BUS RXD1/PA0 TXD1/PA1 D31D16 RXD2/PA2 TXD2/PA3 D15D0 PRTY1PRTY2/IOUT1IOUT2 PRTY2/IOUT0/RQOUT L1TXDB/RXD3/PA4 L1RXDB/TXD3/PA5 PRTY3/16BM BUS CONTROL SIZ0 SIZ1 DSACK0/TBI DSACK1/TA L1TXDA/RXD4/PA6 L1RXDA/TXD4/PA7 TIMERs/SCCs/SIs/CLOCKs/BRG TIN1/L1RCLKA/BRGO1/CLK1/PA8 BRGCLK1/TOUT1/CLK2/PA9 R/W AS DS/TT1 OE/AMUX TIN2/L1TCLKA/BRGO2/CLK3/PA10 TOUT2/CLK4/PA11 TIN3/BRGO3/CLK5/PA12 BRGCLK2/L1RCLKB/TOUT3/CLK6/PA13 TIN4/BRGO4/CLK7/PA14 L1TCLKB/TOUT4/CLK8/PA15 PORT B (PIP) RRJCT1/SPISEL/PB0 RSTRT2/SPICLK/PB1 RRJCT2/SPIMOSI(SPITXD)/PB2 BRGO4/SPIMISO(SPIRXD)/PB3 DREQ1/BRGO1/PB4 DACK1/BRGO2/PB5 DONE1/SMTXD1/PB6 DONE2/SMRXD1/PB7 DREQ2/SMSYN1/PB8 DACK2/SMSYN2/PB9 L1CLKOB/SMTXD2/PB10 L1CLKOA/SMRXD2/PB11 L1ST1/RTS1/PB12 L1ST2/RTS2/PB13 L1ST3/L1RQB/RTS3/PB14 L1ST4/L1RQA/RTS4/PB15 STRBO/BRGO3/PB16 STRBI/RSTRT1/PB17 PORT C (INTERRUPT PARALLEL I/O) L1ST1/RTS1/PC0 L1ST2/RTS2/PC1 L1ST3/L1RQB/RTS3/PC2 L1ST4/L1RQA/RTS4/PC3 CTS1/PC4 TGATE1/CD1/PC5 CTS2/PC6 TGATE2/CD2/PC7 SDACK2/L1TSYNCB/CTS3/PC8 L1RSYNCB/CD3/PC9 SDACK1/L1TSYNCA/CTS4/PC10 L1RSYNCA/CD4/PC11 BUS ARBITRATION RMC/CONFIG0/LOCK BR BG BGACK/BB BCLRO/CONFIG1/RAS2DD SYSTEM CONTROL RESETH RESETS HALT BERR/TEA QUICC TS68360 240 PINS PERR INTERRUPT CONTROL IRQ1/OUT0/RQOUT IRQ4/OUT1 IRQ6/OUT2 IRQ2,3,5,7 AVEC/IACK5/AVECO MEMORY CONTROLLER CS6CS0/RAS6RAS0 CS/RAS7/IACK7 CAS3CAS0/IACK6,3,2,1 TEST TRIS/TS BKPT/BKPT0/DSCLK FREEZE/CONFIG2/MBARE IPIPE1/RAS1DD/BCLRI IPIPE0/BADD2/DSO IFETCH/BADD3/DSI TCK TMS TDI TDO TRST CLOCK XTAL EXTAL XFC MODCK1MODCK0 CLKO2CLKO1 5 2113B-HIREL-06/05 3.2 Signal Index Table 1. System Bus Signal Index (Normal Operation) Group Address Signal Name Mnemonic Address Bus A27-A0 A31-A28 WE3-WE0 Upper four bits of address bus (I/O), or byte write enable signals (O)(1) for accesses to external memory or peripherals. Function Codes FC3-FC0 Identifies the processor state and the address space of the current bus cycle. (I/O) Data Bus 31 - 16 D31-D16 Upper 16-bit data bus used to transfer byte or word data. Used in 16-bit bus mode. (I/O) Data Bus 15 - 0 D15-D0 Lower 16-bit data bus used to transfer 3-byte or long-word data. (I/O) Not used in 16-bit bus mode. Parity 2 - 0 Parity 3/16BM Memory Controller PRTY2-PRTY0 Parity signals for byte writes/reads from/to external memory module. (I/O) PRTY3/16BM Parity signals for byte writes/reads from/to external memory module or defines 16-bit bus mode. (I/O) Parity Error PERR Indicates a parity error during a read cycle. (O) Chip Select Row Address Select 7 Interrupt Acknowledge 7 CS RAS7 IACK7 Enables peripherals or DRAMs at programmed addresses (O) or interrupt level 7 acknowledge line. (O) Chip Select 6-0 Row Address Select 6-0 CS6-CS0 RAS6-RAS0 Enables peripherals or DRAMs at programmed addresses. (O) Column Address Select 3 - 0/Interrupt Acknowledge 1, 2, 3, 6 CAS3-CAS0/ IACK6,3,2,1 DRAM column address select or interrupt level acknowledge lines. (O) Bus Request BR Indicates that an external device requires bus mastership. (I)(1) Bus Grant BG Indicates that the current bus cycle is complete and the QUICC has relinquished the bus. (O) Bus Grand Acknowledge BGACK Read-Modify-Write Cycle Initial Configuration 0 RMC CONFIG0 Bus Arbitration Bus Clear Out/Initial Configuration 1/Row Address Select 2 Double-Drive 6 Lower 27 bits of address bus. (I/O)(1) Address Bus/Byte Write Enables Data Parity Function BCLRO/CONFIG1/ RAS2DD Indicates that an external device has assumed bus mastership. (I) Identifies the bus cycle as part of an indivisible read-modify-write operation (I/O) or initial QUICC configuration select. (I) Indicates that an internal device requires the external bus (Open-Drain O) or initial QUICC configuration select (I) or row address select 2 double-drive output. (O) TS68EN360 2113B-HIREL-06/05 TS68EN360 Table 1. System Bus Signal Index (Normal Operation) (Continued) Group Signal Name Mnemonic Data and Size Acknowledge DSACK1 - DSACK0 Function Provides asynchronous data transfer acknowledgement and dynamic bus sizing (open-drain I/O but driven high before three-stated) Address Strobe AS Indicates that a valid address is on the address bus. (I/O) Data Strobe DS During a read cycle, DS indicates that an external device should place valid data on the data bus. During a write cycle, DS indicates that valid data is on the data bus. (I/O) SIZ1-SIZ0 Indicates the number of bytes remaining to be transferred for this cycle. (I/O) Bus Control Size Read/Write Interrupt Control System Control Indicates the direction of data transfer on the bus. (I/O) Output Enable Address Multiplex OE/AMUX Active during a read cycle indicates that an external device should place valid data on the data bus (O) or provides a strobe for external address multiplexing in DRAM accesses if internal multiplexing is not used. (O) Interrupt Request Level 7-1 IRQ7-IRQ1 Provides external interrupt requests to the CPU32+ at priority levels 7-1. (I) Autovector/Interrupt Acknowledge 5 AVEC/IACK5 Autovector request during an interrupt acknowledge cycle (open-drain I/O) or interrupt level 5 acknowledge line. (O) Soft Reset RESETS Soft system reset. (open-drain I/O) Hard Reset RESETH Hard system reset. (open-drain I/O) Halt HALT Suspends external bus activity. (open-drain I/O) Bus Error BERR Indicates an erroneous bus operation is being attempted. (open-drain I/O) System Clock Out 1 CLKO1 Internal system clock output 1. (O) System Clock Out 2 CLKO2 Internal system clock output 2 - normally 2x CLKO1. (O) Crystal Oscillator External Filter Capacitor Clock Mode Select 1-0 Clock and Test R/W EXTAL, XTAL XFC MODCK1-MODCK0 Connections for an external crystal to the internal oscillator circuit. EXTAL (I), XTAL (O) Connection pin for an external capacitor to filter the circuit of the PLL. (I) Selects the source of the internal system clock. (I) THESE PINS SHOULD NOT BE SET TO 00 Instruction Fetch/ Development Serial Input IFETCH/DSI Indicates when the CPU32+ is performing an instruction word prefetch (O) or input to the CPU32+ background debug mode. (I) Instruction Pipe 0/ Development Serial Output IPIPE0/DSO Used to track movement of words through the instruction pipeline (O) or output from the CPU32+ background debug mode. (O) IPIPE1/RAS1DD Used to track movement of words through the instruction pipeline (O), or a row address select 1 "double-drive" output (O) Instruction Pipe 1/Row Address Select 1 Double-Drive Breakpoint/Development Serial Clock Freeze/Initial Configuration 2 BKPT/DSCLK FREEZE/CONFIG2 Signals a hardware breakpoint to the QUICC (open-drain I/O), or clock signal for CPU32+ background debug mode (I) Indicates that the CPU32+ has acknowledged a breakpoint (O), or initial QUICC configuration select (I) 7 2113B-HIREL-06/05 Table 1. System Bus Signal Index (Normal Operation) (Continued) Group Signal Name Clock and Test (Cont'd) Mnemonic Three-State TRIS Used to three-state all pins if QUICC is configured as a master. Always Sampled except during system reset. (I) Test Clock TCK Provides a clock for Scan test logic. (I) Test Mode Select TMS Controls test mode operations. (I) Test Data In TDI Serial test instructions and test data signal. (I) Test Data Out TDO Serial test instructions and test data signal. (O) Test Reset TRST Provides an asynchronous reset to the test controller. (I) Clock Synthesizer Power VCCSYN Power supply to the PLL of the clock synthesizer Clock Synthesizer Ground GNDSYN Ground supply to the PLL of the clock synthesizer Clock Out Power VCCCLK Power supply to clock out pins Clock Out Ground GNDCLK Ground supply to clock out pins Special Ground 1 GNDS1 Special ground for fast AC timing on certain system bus signals Special Ground 2 GNDS2 Special ground for fast AC timing on certain system bus signals Power -Note: 8 Function System Power Supply and Return VCC, GND Power supply and return to the QUICC No Connect NC4-NC1 Four no-connect pins 1. I denotes input, O denotes output and I/O is input/output. TS68EN360 2113B-HIREL-06/05 TS68EN360 Table 3-1. Peripherals Signal Index Group SCC Signal Name Mnemonic Receive Data RXD4-RXD1 Serial receive data input to the SCCs. (I) Transmit Data TXD4-TXD1 Serial transmit data output from the SCCs. (O) Request to Send RTS4-RTS1 Request to send outputs indicate that the SCC is ready to transmit data. (O) Clear to Send CTS4-CTS1 Clear to send inputs indicate to the SCC that data transmission may begin. (I) Carrier Detect CD4-CD1 Carrier detect inputs indicate that the SCC should begin reception of data. (I) Receive Start RSTRT1 This output from SCC1 identifies the start of a receive frame. Can be used by an Ethernet CAM to perform address matching. (O) Receive Reject RRJCT1 This input to SCC1 allows a CAM to reject the current Ethernet frame after it determines the frame address did not match. (I) CLK8-CLK1 Input clocks to the SCCs, SCMs, SI, and the baud rate generators. (I) DMA Request DREQ2-DREQ1 A request (input) to an IDMA channel to start an IDMA transfer. (I) DMA Acknowledge DACK2-DACK1 An acknowledgement (output) by the IDMA that an IDMA transfer is in progress. (O) DMA Done DONE2-DONE1 A bidirectional signal that indicates the last IDMA transfer in a block of data. (I/O) Timer Gate TGATE2-TGATE1 Timer Input TIN4-TIN1 Time reference input to the timer that allows it to function as a counter. (I) TOUT4-TOUT1 Output waveform (pulse or toggle) from the timer as a result of a reference value being reached. (O) SPI Master In Slave Out SPIMISO Serial data input to the SPI master (I); serial data output from an SPI slave. (O) SPI Master Out Slave In SPIMOSI Serial data output from the SPI master (O); serial data input to an SPI slave. (I) SPI Clock SPICLK Output clock from the SPI master (O); input clock to the SPI slave. (I) SPI Select SPISEL SPI slave select input. (I) Clocks IDMA TIMER Timer Output SPI SMC Function An input to a timer that enables/disables the counting function. (I) SMC Receive Data SMRXD2-SMRXD1 Serial data input to the SMCs. (I) SMC Transmit Data SMTXD2-SMTXD1 Serial data output from the SMCs. (O) SMC Sync SMSYN2-SMSYN1 SMC synchronization signal. (I) 9 2113B-HIREL-06/05 Table 3-1. Group SI Peripherals Signal Index (Continued) Signal Name Mnemonic Function SI Receive Data L1RXDA, L1RXDB Serial input to the time division multiplexed (TDM) channel A or channel B SI Transmit Data L1TXDA, L1TXDB Serial output from the TDM channel A or channel B SI Receive Clock L1RCLKA, L1RCLKB Input receive clock to TDM channel A or channel B SI Transmit Clock L1TCLKA, L1TCLKB Input transmit clock to TDM channel A or channel B SI Transmit Sync Signals L1TSYNCA, L1TSYNCB Input transmit data sync signal to TDM channel A or channel B SI Receive Sync Signals L1RSYNCA, L1RSYNCB Input receive data sync signal to TDM channel A or channel B L1RQA, L1RQB IDL interface request to transmit on the D channel. Output from the SI SI Output Clock L1CLKOA, L1CLKOB Output serial data rate clock. Can output a data rate clock when the input clock is 2x the data rate SI Data Strobes L1ST4-L1ST1 Serial data strobe outputs can be used to gate clocks to external devices that do not have a built-in time slot assigner (TSA) BRGO4-BRGO1 Baud rate generator output clock allows baud rate generator to be used externally CLK2, CLK6 Baud rate generator input clock from which BRG will derive the baud rates IDL Interface Request Baud Rate Generator Out 4-1 BRG BRG Input Clock PIP SDMA 10 Port B 15-0 PB15-BP0 Strobe Out STRBO This input causes the PIP output data to be placed on the PIP data pins Strobe In STRBI This input causes data on the PIP data pins to be latched by the PIP as input data SDACK2-SDACK1 SDMA output signals used in RISC receiver to mark fields in the Ethernet receive frame SDMA Acknowledge 2-1 PIP Data I/O Pins TS68EN360 2113B-HIREL-06/05 TS68EN360 4. Detailed Specification This specification describes the specific requirements for the microcontroller TS68EN360 25 MHz and 33 MHz in compliance with MIL-STD-883 class B or Atmel standard screening. 5. Applicable Documents 1. MIL-STD-883: test methods and procedures for electronics 2. MIL-PRF-38535: general specifications for microcircuits 3. DESC 5962-SMD-97607 The microcircuits are in accordance with the applicable document and as specified herein. 5.1 Design and Construction 5.1.1 Terminal Connections Depending on the package, the terminal connections shall be as shown in Figure 2-1 and Figure 2-2. 5.1.2 Lead Material and Finish Lead material and finish shall be as specified in MIL-STD-883 (see enclosed "Ordering Information" on page 79) 5.1.3 Package The macrocircuits are packaged in hermetically sealed ceramic packages which are conform to case outlines of MIL-STD-1835 or as follow: * PGA but see "241-pin - PGA" on page 77 * CERQUAD The precise case outlines are described at the end of the specification ("Package Mechanical Data" on page 77) and into MIL-STD-1835. 5.2 Absolute Maximum Ratings Table 5-1. Absolute Maximum Ratings Rating Supply Voltage (1)(2) Input Voltage(1)(2) Symbol Value Unit VCC -0.3 to +6.5 V VIN -0.3 to +6.5 V Storage Temperature Range TSTG -55 to +150 C Notes: 1. Permanent damage can occur if maximum ratings are exceeded. Exposure to voltages or currents in excess of recommended values affects device reliability. Device modules may not operate normally while being exposed to electrical extremes. 2. Although sections of the device contain circuitry to protect against damage from high static voltages or electrical fields, take normal precautions to avoid exposure to voltages higher than maximum-rated voltages. 3. The supply voltage VCC must start and restart from 0.0V; otherwise, the 360 will not come out of reset properly.Unless otherwise stated, all voltages are referenced to the reference terminal. 11 2113B-HIREL-06/05 This device contains protective circuitry against damage due to high static voltages or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or VDD) Table 5-2. Recommended Conditions of Use Unless otherwise stated, all voltages are referenced to the reference terminal Symbol Parameter VCC Supply Voltage Range VIL Max Unit +4.75 +5.25 V Logic Low Level Input Voltage Range GND +0.8 V VIH Logic High Level Input Voltage Range +2.0 VCC V Tcase Operating Temperature -55 +125 C VOH High Level Output Voltage +2.4 fsys System Frequency Table 5-3. Min Typ V (For 25 MHz version) 25 MHz (For 33 MHz version) 33 MHz Thermal Characteristics Symbol Parameter JC Thermal Resistance - Junction to Case JA Thermal Resistance - Junction to Ambient Value 240-pin Cerquad 2 241-pin PGA 7 240-pin Cerquad 27.4 241-pin PGA 22.8 Unit C/W C/W TJ = TA + (PD * JA) PD = (VDD * IDD) + PI/O Where PI/O is the power dissipation on pins. 5.3 Power Considerations The average chip-junction temperature, TJ, in C can be obtained from: (1) TJ = TA / (PD * JA) where: TA = Ambient Temperature, C JA = Package Thermal Resistance, Junction-to-Ambient, C/W PD = PINT + P I/O PINT = ICC * VCC, Watts-chip Internal Power PI/O = Power Dissipation on Input and Output Pins-User Determined For most applications, PI/O < 0.3 * PINT and can be neglected. 12 TS68EN360 2113B-HIREL-06/05 TS68EN360 An approximate relationship between PD and TJ (if PI/O is neglected) is: PD = K / (TJ + 273C) (2) Solving Equations (1) and (2) for K gives: K = PD * (TA + 273C) + JA * PD2 (3) where K is a constant pertaining to the particular part. K can be determined from Equation (3) by measuring PD (at thermal equilibrium) for a know TA. Using this value of K, the values of PD and TJ can be obtained by solving Equations (1) and (2) iteratively for any value of TA. 5.4 Mechanical and Environment The microcircuits shall meet all mechanical environmental requirements of either MIL-STD-883 for class B devices or for Atmel standard screening. 5.5 Marking The document where are defined the marking are identified in the related reference documents. Each microcircuit are legible and permanently marked with the following information as minimum: * Atmel logo * Manufacturer's part number * Class B identification * Date-code of inspection lot * ESD identifier if available * Country of manufacturing 6. Quality Conformance Inspection 6.1 DESC/MIL-STD-883 Is in accordance with MIL-M-38535 and method 5005 of MIL-STD-883. Group A and B inspections are performed on each production lot. Group C and D inspections are performed on a periodical basis. 7. Electrical Characteristics 7.1 General Requirements All static and dynamic electrical characteristics specified for inspection purposes and the relevant measurement conditions are given below: * Static electrical characteristics for the electrical variants * Dynamic electrical characteristics for TS68EN360 (25 MHz, 33 MHz) For static characteristics, test methods refer to IEC 748-2 method number, where existing. For dynamic characteristics, test methods refer to clause Table 7-1 of this specification. 13 2113B-HIREL-06/05 7.2 Static Characteristics The electrical specifications in this document are preliminary. (See numbered notes) Table 7-1. Static Characteristics - GND = 0 VDC, TC = -55 to +125C Characteristic Symbol Min Max Unit Input High Voltage (except EXTAL) VIH 2.0 VCC V Input Low Voltage (5V Part) VIL GND 0.8 V Input Low Voltage (Part Only; PA8-15, PB1, PC5, PC7, TCK) VIL GND 0.5 V Input Low Voltage (Part Only; All Other Pins) VIL GND 0.8 V VIHC 0.8*(VCC) VCC + 0.3 V Undershoot - - -0.8 V Input Leakage Current (All Input Only Pins except for TMS, TDI and TRST) Vin = 0/5V Iin -2.5 2.5 A Hi-Z (Off-State) Leakage Current (All Noncrystal Outputs and I/O Pins except TMS,TDI and TRST) Vin = 0/5V IOZ -2.5 -2.5 A Signal Low Input Current VIL = 0.8V (TMS, TDI and TRST Pins Only) Signal High Input Current VIH = 2.0V (TMS, TDI and TRST Pins Only) IL IH -0.5 -0.5 0.5 0.5 mA mA VOH 2.4 - V EXTAL Input High Voltage Output High Voltage IOH = -0.8 mA, VCC = 4.75V AII Noncrystal Outputs Except Open Drain Pins Output Low Voltage IOL = 2.0 mA, CLKO1-2, FREEZE, IPIPE0-1, IFETCH, BKPTO IOL = 3.2 mA, A31-A0, D31-D0, FC3-0, SIZ0-1, PA0, 2, 4, 6, 8-15, PB0-5, PB8-17, PC0-11, TDO, PERR, PRTY0-3, IOUT0-2, AVECO, AS, CAS3-0, BLCRO, RAS0-7 IOL = 5.3 mA, DSACK0-1, R/W, DS, OE, RMC, BG, BGACK, BERR IOL = 7 mA, TXD1-4 IOL = 8.9 mA, PB6, PB7, HALT, RESET, BR (Output) VOL Input Capacitance AII I/O Pins Cin - 20 pF Load Capacitance (except CLKO1-2) CL - 100 pF Load Capacitance (CLKO1-2) CLc - 50 pF Power VCC 4.75 5.25 V 7.3 0.5 0.5 - V 0.5 0.5 0.5 Dynamic Characteristics The AC specifications presented consist of output delays, input setup and hold times, and signal skew times. All signals are specified relative to an appropriate edge of the clock and possibly to one or more other signals. The measurement of the AC specifications is defined by the waveforms shown in Figure 7-1. To test the parameters guaranteed by Atmel inputs must be driven to the voltage levels specified in the figure. Outputs are specified with minimum and/or maximum limits, as appropriate, and are measured as shown. Inputs are specified with minimum setup and hold times and are measured as shown. Finally, the measurement for signal-to-signal specifications are shown. Note that the testing levels used to verify conformance to the AC specifications do not affect the guaranteed DC operation of the device as specified in the DC electrical characteristics. 14 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-1. Drive Levels and Test Points For AC Specifications 2.0V 2.0V CLKOUT 0.8V 0.8V A B OUTPUTS(1) VALID OUTPUT n 2.0V 2.0V 0.8V 0.8V VALID OUTPUT A n+1 B VALID OUTPUT n OUTPUTS(2) C 2.0V INPUTS(3) 2.0V 0.8V 0.8V 2.0V 0.8V C 2.0V INPUTS(4) VALID OUTPUT n+1 D VALID INPUT 0.8V 2.0V 0.8V D VALID INPUT 2.0V 0.8V DRIVE TO 2.4V DRIVE TO 0.5V 2.0V ALL SIGNALS(5) 0.8V E F 2.0V 0.8V Notes: 1. 2. 3. 4. 5. This output timing is applicable to all parameters specified relative to the rising edge of the clock This output timing is applicable to all parameters specified relative to the falling edge of the clock This input timing is applicable to all parameters specified relative to the rising edge of the clock This input timing is applicable to all parameters specified relative to the falling edge of the clock This timing is applicable to all parameters specified relative to the assertion/negation of another signal Legend: a) Maximum output delay specification b) Minimum output hold time c) Minimum input setup time specification d) Minimum input hold time specification e) Signal valid to signal valid specification (maximum or minimum) f) Signal valid to signal invalid specification (maximum or minimum) 15 2113B-HIREL-06/05 7.4 AC Power Dissipation Table 7-2. Typical Current Drain Symbol System Clock Frequency BRGCLK Clock Frequency SyncCLK Clock Frequency Typ Unit Normal mode (Rev A(1) and Rev B(2)) IDD 25 MHz 25 MHz 25 MHz 250 mA Normal Mode (Rev C(3) and Newer) IDD 25 MHz 25 MHz 25 MHz 237 mA Normal Mode IDD 33 MHz 33 MHz 33 MHz 327 mA Low Power Mode IDDSB Divide by 2 12.5 MHz Divide by 16 1.56 MHz Divide by 2 12.5 MHz 150 mA Low Power Mode IDDSB Divide by 4 6.25 MHz Divide by 16 1.56 MHz Divide by 4 6.25 MHz 85 mA Low Power Mode IDDSB Divide by 16 1.56 MHz Divide by 16 1.56 MHz Divide by 4 6.25 MHz 35 mA Low Power Mode IDDSB Divide by 256 97.6 kHz Divide by 16 1.56 MHz Divide by 4 6.25 MHz 20 mA Low Power Mode IDDSB Divide by 256 97.6 kHz Divide by 64 390 kHz Divide by 64 390 kHz 13 mA Low Power Stop VCO Off(4) IDDSP 0.5 mA Mode of Operation PLL Supply Current PLL Disabled IDDPD IDDPE PLL Enabled Notes: 1. Rev A mask is C63T 2. Rev B masks are C69T and F35G 3. Current Rev C masks are E63C, E68C and F15W 4. EXTAL frequency is 32 kHz TBD TBD All measurements were taken with only CLKO1 enabled, VCC = 5.0V, VIL = 0V and VIH = VCC Table 7-3. Maximum Power Dissipation System Frequency Notes: 16 VCC Max PD Unit Mask REV A (1) and REV B(2) 25 MHz 5.25V 1.80 W 25 MHz 5.25V 1.45 W REV C(3) and Newer 25 MHz 3.6V 0.65 W REV C(3) and Newer 33 MHz 5.25V 2.00 W REV C(3) and Newer 1. Rev A mask is C63T 2. Rev B masks are C69T and F35G 3. Current Rev C masks are E63C, E68C and F15W TS68EN360 2113B-HIREL-06/05 TS68EN360 7.5 AC Electrical Specifications Control Timing Table 7-4. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-2) 25 MHz Number Characteristic Symbol Min (1) 33.34 MHz Max Min Max Unit 33.34 MHz System Frequency fsys Crystal Frequency fXTAL 25 6000 25 6000 kHz On-Chip VCO System Frequency fsys 20 50 20 67 MHz Start-up Time With external clock (oscillator disabled) or after changing the multiplication factor MF tpll dc 25.00 2500 clks % CLK TBD TBD CLKO1 Period tcyc 40 - 30 - ns 1A EXTAL Duty Cycle, MF tdcyc 40 60 40 60 % 1C External Clock Input Period tEXTcyc 40 - 30 - ns 2, 3 CLKO1 Pulse Width (Measured at 1.5V) tCW1 19 - 14 - ns 2A, 3A CLKO2 Pulse Width (Measured at 1.5V) tCW2 9.5 - 7 - ns 4, 5 CLKO1 Rise and Fall Times (Full drive) tCrf1 - 2 - 2 ns 4A, 5A CLKO2 Rise and Fall Times (Full drive) tCrf2 - 2 - 1.6 ns CLKO1-2 stability 1 5B EXTAL to CLKO1 Skew-PLL enabled (MF< 5) tEXTP1 a a ns 5C EXTAL to CLKO2 Skew-PLL enabled (MF< 5) tEXTP2 a a ns a a ns 5D CLKO1 to CLKO2 Skew AtmelKW Note: 1. Note that the minimum VCO frequency and the PLL default values put some restrictions on the minimum system frequency. The following calculation should be used to determine the actual value for specifications 5B, 5C and 5D. 5B: 25 MHz (0.9 ns + 0.25 x (rise time)) (1.4 ns at rise = 2 ns; 1.9 ns at rise = 4 ns) 33 MHz (0.5 ns + 0.25 x (rise time)) (1 ns at rise = 2 ns; 1.5 ns at rise = 4 ns) 5C: 25/33 MHz (2 ns + 0.25 x (rise time)) (2.5 ns at rise = 2 ns; 3 ns at rise = 4 ns) 5D: 25 MHz (3 ns + 0.5 x (rise time)) (4 ns at rise = 2 ns; 5 ns at rise = 4 ns) 33 MHz (2.5 ns + 0.5 x (rise time)) (3.5 ns at rise = 2 ns; 4.5 ns at rise = 4 ns) 17 2113B-HIREL-06/05 Figure 7-2. Clock Timing 1A 1C EXTAL (INPUT) VOLTAGE MIDPOINT 1 5C 5B CLKO1 (OUTPUT) 4 2 5 3 5D CLKO2 (OUTPUT) 4A 7.6 5A 2A 3A External Capacitor For PLL Table 7-5. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary. Characteristic Symbol Min Max Unit MF< 5 (Recommended value MF x 400 pF)(1) MF x 340 MF x 480 pF (1) MF x 380 MF x 970 pF PLL External Capacitor (XFC to VCCSYN) MF> 4 (Recommended value MF x 540 pF) Note: 1. MF - multiplication factor. 7.6.1 Examples: Notes: 18 cXFC 1. MODCK1 pin = 0, MF = 1 CXFC = 400 pF 2. MODCK1 pin = 1, crystal is 32.768 kHz (or 4.192 MHz), initial MF = 401, initial frequency = 13.14 MHz, later on MF is changed to 762 to support a frequency of 25 MHz. Minimum CXFC is: 762 x 380 = 289 nF, Maximum CXFC is: 401 x 970 = 390 nF. The recommended CXFC for 25 MHz is: 762 x 540 = 414 nF. 289 nF < CXFC < 390 nF and closer to 414 nF. The proper available value for CXFC is 390 nF. 3. MODCK1 pin = 1, crystal is 32.768 kHz (or 4.192 MHz), initial MF = 401, initial frequency = 13.14 MHz, later on MF is changed to 1017 to support a frequency of 33.34 MHz. Minimum CXFC is: 1017 x 380 = 386 nF, Maximum CXFC is: 401 x 970 = 390 nF 386 nF < CXFC < 390 nF. The proper available value for CXFC is 390 nF. 4. In order to get higher range, higher crystal frequency can be used (i.e. 50 kHz), in this case: Minimum CXFC is: 667 x 380 = 253 nF, Maximum CXFC is: 401 x 970 = 390 nF 386 nF < CXFC < 390 nF. TS68EN360 2113B-HIREL-06/05 TS68EN360 7.7 Bus Operation AC Timing Specifications Table 7-6. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-3 to Figure 7-19) 25 MHz Number Symbol Min Max Min Max Unit CLKO1 High to Address, FC, SIZ, RMC Valid tCHAV 0 15 0 12 ns CLKO1 High to Address Valid (GAMX = 1) tCHAV 0 20 0 15 ns 7 CLKO1 High to Address, Data, FC, SIZ, RMC High Impedance tCHAZx 0 40 0 30 ns 8 CLKO1 High to Address, Data, FC, SIZ, RMC Invalid tCHAZn -2 - -2 - ns 9 CLKO1 Low to AS, DS, OE, WE, IFETCH, IPIPE, IACKx Asserted tCLSA 3 20 3 15 ns 9(10) CLKO1 Low to CSx/RASx Asserted tCLSA 4 16 4 12 ns 9B(11) 6 6A Characteristic 33.34 MHz CLKO1 High to CSx/RASx Asserted tCHCA 4 16 4 12 ns (2)(10) AS to DS or CSx/RASx or OE Asserted (Read) tSTSA -6 6 -5.625 5.625 ns (2)(11) AS to CSx/RASx Asserted tSTCA 14 26 9 21 ns Address, FC, SIZ, RMC, valid to AS, CSx/RASx, OE, WE, (and DS Read) Asserted tAVSA 10 - 8 - ns Address, FC, SIZ, RMC, Valid to CSx/RASx Asserted tAVCA 30 - 22.5 - ns CLKO1 Low to AS, DS, OE, WE, IFETCH, IPIPE, IACKx Negated tCLSN 3 20 3 15 ns CLKO1 Low to CSx/RASx Negated tCLSN 4 16 4 12 ns CLKO1 High to CSx/RASx Negated tCHCN 4 16 4 12 ns AtmelTW 15 - 12 - ns 9A 9C 11(10) 11A(11) 12 12(16) (13)(16) 12A 12B CS negate to WE negate (CSNTQ = 1) 13(12) AS, DS, CSx, OE, WE, IACKx Negated to Address, FC, SIZ Invalid (Address Hold) tSNAI 10 - 7.5 - ns 13A(13) CSx Negated to Address, FC, SIZ, Invalid (Address Hold) tCNAI 30 - 22.5 - ns 14(10)(12) AS, CSx, OE, WE (and DS Read) Width Asserted tSWA 75 - 56.25 - ns CSx Width Asserted tCWA 35 - 26.25 - ns 14A DS Width Asserted (Write) tSWAW 35 - 26.25 - ns 14B AS, CSx, OE, WE, IACKx, (and DS Read) Width Asserted (Fast Termination Cycle) tSWDW 35 - 26.25 - ns CSx Width Asserted (Fast Termination Cycle) tCWDW 15 - 10 - ns tSN 35 - 26.25 - ns CLKO1 High to AS, DS, R/W High Impedance tCHSZ - 40 - 30 ns AS, DS, CSx, WE Negated to R/W High tSNRN 10 - 7.5 - ns CSx Negated to R/W High tCNRN 30 - 22.5 - ns CLKO1 High to R/W High tCHRH 0 20 0 15 ns 14C(11)(13) 14D(13) (3)(10)(12) 15 16 (12) 17 (13) 17A 18 AS, DS, CSx, OE, WE Width Negated 19 2113B-HIREL-06/05 Table 7-6. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-3 to Figure 7-19) (Continued) 25 MHz Number Symbol Min Max Min Max Unit CLKO1 High to R/W Low tCHRL 3 20 3 15 ns R/W High to AS, CSx, OE Asserted tRAAA 10 - 7.5 - ns R/W High to CSx Asserted tRACA 30 - - ns 22 R/W Low to DS Asserted (Write) tRASA 47 - 36 - ns 23 CLKO1 High to Data-Out tCHDO - 23 - 18 ns 23A CLKO1 High to Parity Valid tCHPV - 25 - 20 ns 23B Parity Valid to CAS Low tPVCL 3 - 3 - ns 24(12) Data-Out, Parity-Out Valid to Negating Edge of AS, CSx, WE, (Fast Termination Write) tDVASN 10 - 7.5 - ns 25(12) DS, CSX, WE Negated to Data-Out, Parity-Out Invalid (Data-Out, Parity-Out Hold) tSNDOI 10 - 7.5 - ns CSx Negated to Data-Out, Parity-Out Invalid (DataOut, Parity-Out Hold) tCNDOI 35 - 25 - ns Data-Out, Parity-Out Valid to DS Asserted (Write) tDVSA 10 - 7.5 - ns Data-In, Parity-In to CLKO1 Low (Data-Setup) tDICL 1 - 1 - ns Data-In, Parity-In Valid to CLKO1 Low (Data-Setup) tDICL 20 - 15 - ns 20 (10) 21 21A(11) 25A(13) 26 (15) 27 (14) 27B Characteristic 33.34 MHz 27A Late BERR, HALT, BKPT Asserted to CLKO1 Low (Setup Time) tBELCL 10 - 7.5 - ns 28(18) AS, DS Negated to DSACKx, BERR, HALT Negated tSNDN 0 50 0 37.5 ns 29(4) DS, CSx, OE, Negated to Data-In Parity-In Invalid (Data-In, Parity-In Hold) tSNDI 0 - 0 - ns 29A(4) DS, CSx, OE Negated to Data-In High Impedance tSHDI - 40 - 30 ns CLKO1 Low to Data-In, Parity-In Invalid (Fast Termination Hold) tCLDI 10 - 7.5 - ns CLKO1 Low to Data-In High Impedance tCLDH - 60 - 45 ns DSACKx Asserted to Data-in, Parity-In Valid tDADI - 32 - 24 ns 31A DSACKx Asserted to DSACKx Valid (Skew) tDADV - 10 - 7.5 ns 31B(5)(14) DSACKx Asserted to Data-in, Parity-In Valid tDADI - 35 - 26 ns 32 HALT an RESET Input Transition Time tHRrf - 140 - 33 CLKO1 High to BG Asserted tCLBA - 20 - 15 ns 34 CLKO1 High to BG Negated tCLBN - 20 22.5 15 ns BR Asserted to BG Asserted (RMC Not Asserted) tBRAGA 1 - 1 - CLKO1 37 BGACK Asserted to BG Negated tGAGN 1 2.5 1 2.5 CLKO1 39 BG Width Negated tGH 2 - 2 - CLKO1 39A BG Width Asserted tGA 1 - 1 - CLKO1 R/W Width Asserted (Write or Read) tRWA 100 - 75 - ns 30(4) 30A(4) (5)(15) 31 35(6) 46 20 ns TS68EN360 2113B-HIREL-06/05 TS68EN360 Table 7-6. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-3 to Figure 7-19) (Continued) 25 MHz Number Characteristic 33.34 MHz Symbol Min Max Min Max Unit 46A R/W Width Asserted (Fast Termination Write or Read) tRWAS 75 - 56 - ns 47A Asynchronous Input Setup Time tAIST 5 - 4 - ns 47B Asynchronous Input Hold Time tAIHT 10 - 7.5 - ns 48(5)(7) DSACKx Asserted to BERR, HALT Asserted tDABA - 30 - 22.5 ns 53 Data-Out, Parity-Out Hold from CLKO1 High tDOCH 0 - 0 - ns 54 CLKO1 High to Dat-Out, Parity-Out High Impedance tCHDH - 20 - 15 ns 55 R/W Asserted to Data Bus Impedance Change tRADC 25 - 19 - ns 56 RESET Pulse Width (Reset Instruction) tHRPW 512 - 512 - CLKO1 RESET Pulse Width (Input from External Device) tRPWI 20 - 20 - CLKO1 57 BERR Negated to HALT Negated (Return) tBNHN 0 - 0 - ns 58 CLKO1 High to BERR, RESETS, RESETH Driven Low tCHBRL - 30 26 ns 58A CLKO1 Low RESETS Driven Low (upon Reset Instruction execution only) tCLRL - 30 26 ns 58B CLKO1 High to BERR, RESETS, RESETH tri-stated tCLRL - 20 - 15 ns 56A 60 CLKO1 High to BCLRO Asserted tCHBCA - 20 - 15 ns 61 CLKO1 High to BCLRO Negated tCHBCN - 20 - 15 ns 62(9) BR Synchronous Setup Time tBRSU 5 - 3.75 - ns 63(9) BR Synchronous Hold Time tBRH 10 - 7.5 - ns (9) BGACK Synchronous Setup Time tBGSU 5 - 3.75 - ns (9) BGACK Synchronous Hold Time tBGH 10 - 7.5 - ns 66 BR Low to CLKO1 Rising Edge (040 comp. mode) tBRCH 5 - 5 - ns 70 CLKO1 Low to Data Bus Driven (Show Cycle) tSCLDD 0 30 0 22.5 ns 71 Data Setup Time to CLKO1 Low (Show Cycle) tSCLDS 10 - 7.5 - ns 72 Data Hold from CLKO1 Low (Show Cycle) tSCLDH 6 - 3.75 - ns 73 BKPT Input Setup Time tBKST 10 - 7.5 - ns 74 BKPT Input Hold Time tBKHT 6 - 3.75 - ns 75 RESETH Low to Config2-0, MOD1-0, B16M Valid tMST - 500 - 500 CLKO1 76 Config2-0 tMSH 0 - 0 - ns 77 MOD1-0 Hold Time, B16M Hold Time tMSH 10 - 10 - CLKO1 80 DSI Input Setup Time tDSISU 10 - 7.5 - ns 81 DSI Input Hold Time tDSIH 6 - 3.75 - ns 82 DSCLC Setup Time tDSCSU 10 - 7.5 - ns 64 65 21 2113B-HIREL-06/05 Table 7-6. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-3 to Figure 7-19) (Continued) 25 MHz Number Symbol Min Max Min Max Unit 83 DSCLC Hold Time tDSCH 6 - 3.75 - ns 84 DSO Delay Time tDSOD - tcyc+2 0 - tcyc+2 0 ns 85 DSCLK Cycle tDSCCYC 2 - 2 - CLKO1 86 CLKO1 High to Freeze Asserted tFRZA 0 35 0 26.25 ns 87 CLKO1 High to Freeze Negated tFRZN 0 35 0 26.25 ns 88 CLKO1 High to IFETCH High Impedance tIFZ 0 35 0 26.25 ns 89 CLKO1 High to IFETCH Valid tIF 0 35 0 26.25 ns 90 CLKO1 High to PERR Asserted tCHPA 0 20 0 15 ns 91 CLKO1 High to PERR Negated tCHPN 0 20 0 15 ns 92 VCC Ramp-Up Time At Power-On Reset tRMIN 5 - 5 - ns Notes: 22 Characteristic 33.34 MHz 1. All AC timing is shown with respect to 0.8V and 2.0V levels unless otherwise noted. 2. This number can be reduced to 5 ns if strobes have equal loads. 3. If multiple chip selects are used, the CSx width negated (#15) applies to the time from the negation of a heavily loaded chip select to the assertion of a lightly loaded chip select. 4. Hold times are specified with respect to DS or CSx on asynchronous reads and with respect to CLKO1 on fast termination reads. The user is free to use either hold time for fast termination reads. 5. If the asynchronous setup (#17) requirements are satisfied, the DSACKx low to data setup time (#31) and DSACKx low to BERR low setup time (#48) can be ignored. The data must only satisfy the data-in to CLKO1 low setup time (#27) for the following clock cycle: BERR must only satisfy the late BERR low to CLKO1 low setup time (#27A) for the following clock cycle. 6. To ensure coherency during every operand transfer, BG will not be asserted in response to BR until after cycles of the current operand transfer are complete and RMC is negated. 7. In the absence of DSACKx, BERR is an asynchronous input using the asynchronous setup time (#47). 8. During interrupt acknowledge cycles, the processor may insert up to two wait states between states S0 and S1. 9. Specs are for Synchronous Arbitration only. ASTM = 1. 10. CSx specs are for TRLX = 0. 11. CSx specs are for TRLX = 1. 12. CSx specs are for CSNTQ = 0. 13. CSx specs are for CSNTQ = 1; or RASx specs for DRAM accesses. 14. Specs are read cycles with parity check and PBEE = 1. 15. Specs are read cycles with parity check and PBEE = 0, PAREN = 1. 16. RASx specs are for page miss case. 17. Specifications only apply to CSx/RASx pins. 18. Specification applies to non fast termination cycles. In fast termination cycles, the BERR signal must be negated by 20 ns after negation of AS, DS. TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-3. Read Cycle S0 S1 S2 S3 S4 S5 CLKO1 (OUTPUT) 6 8 A31-A0 (OUTPUT) FC3-FC0 (OUTPUT) SIZ1-SIZ0 (OUTPUT) RMC (OUTPUT) 11 16 14 AS (OUTPUT) 12 9 13 DS (OUTPUT) 15 9A CSx (OUTPUT) OE (OUTPUT) 18 20 21 R/W (OUTPUT) 46 DSACK0 (I/O) 28 47A DSACK1 (I/O) 31A 29 31 D31-D0 (INPUT) 27 48 BERR, HALT (INPUT) IFETCH IPIPE1,0 (OUTPUT) 27A 9 47A 29A 12 12 47B ASYNCHRONOUS INPUTS 73 74 BKPT (INPUT) Note: All timing is shown with respect to 0.8V and 2.0V levels. 23 2113B-HIREL-06/05 Figure 7-4. Fast Termination Read Cycle (Parity Check PAREN = 1, PBEE = 0) CPU CLEARS PERn BIT S1 S0 S4 S5 S0 S0 CLKO1 (OUTPUT) 8 6 A31-A0 (OUTPUT) FC3-FC0 (OUTPUT) SIZ1-SIZ0 (OUTPUT) 9 14B AS (OUTPUT) 12 DS (OUTPUT) CSx (OUTPUT) OE (OUTPUT) R/W (OUTPUT) 18 46A 27 30 D31-D0 (INPUT) 30A 73 74 BKPT (INPUT) 90 91 PERR (OUTPUT) 24 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-5. Read Cycle (With Parity Check, PBEE = 1) S0 S1 S2 S3 S4 S5 CLKO1 (OUTPUT) 6 8 A31-A0, FC3-FC0, SIZ1-SIZ0 (OUTPUT) RMC (OUTPUT) 11 16 14 AS (OUTPUT) 12 9 13 DS (OUTPUT) 15 9A CSx (OUTPUIT) OE (OUTPUT) 18 21 20 R/W (OUTPUT) 46 31A DSACK0 (I/O) 47A 28 DSACK1 (I/O) PRTY0-PRTY3 (INPUT) 29 31B D31-D0 (INPUT) 29A 27B BERR (INPUT) 48 27A HALT (INPUT) 9 12 12 IFETCH (OUTPUT) 47A 47B IPIPE1,0 (OUTPUT) ASYNCHRONOUS INPUTS 73 74 BKPT (INPUT) Note: All timing is shown with respect to 0.8V and 2.0V levels. 25 2113B-HIREL-06/05 Figure 7-6. SRAM: Read Cycle (TRLX = 1) S2 S1 S0 S3 S4 S5 CLKO1 (OUTPUT) 6 8 A31-A0 (OUTPUT) FC3-FC0 (OUTPUT) SIZ1-SIZ0 (OUTPUT) RMC (OUTPUT) 16 9C AS (OUTPUT) 13 11A 12 DS (OUTPUT) 15 9B CSx (OUTPUT) 20 21A OE (OUTPUT) 18 R/W (OUTPUT) 46 28 DSACK0 (I/O) 47A DSACK1 (I/O) 31A 29 31 D31-D0 (INPUT) 29A 27 26 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-7. CPU32+ IACK Cycle 0-2 CLOCKS * A1 S0 A2 A3 A4 S1 S2 S3 S4 S5 CLKO1 (OUTPUT) 8 6 A31-A0 (OUTPUT) FC3-FC0 (OUTPUT) SIZ1-SIZ0 (OUTPUT) 11 16 14 AS (OUTPUT) 13 9 12 DS (OUTPUT) 15 9A IACKx (OUTPUT) OE (OUTPUT) 18 20 21 R/W (OUTPUT) 46 31A 28 DSACK0 (I/O) 47A 31 DSACK1 (I/O) 29 D31-D0 (INPUT) 29A 27 Note: Up to two wait states may be inserted by the processor between states S0 and S1. 27 2113B-HIREL-06/05 Figure 7-8. Write Cycle S1 S0 S3 S2 S4 S5 CLKO1 (OUTPUT) 6 8 A31-A0 (OUTPUT) FC3-FC0 (OUTPUT) SIZ1-SIZ0 (OUTPUT) 11 15 14 AS (OUTPUT) 9 12 9 13 DS (OUTPUT) 14A CSn (OUTPUT) 22 WEn (OUTPUT) 17 18 20 R/W (OUTPUT) 46 DSACK0 (I/O) 31A 28 47A DSACK1 (I/O) 25 55 53 D31-D0 (OUTPUT) 23 54 26 PRTY3-PRTY0 (OUTPUT) BERR (INPUT) 48 HALT (INPUT) 73 74 BKPT (INPUT) Note: 28 All timing is shown with respect to 0.8V and 2.0V levels. TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-9. Fast Termination Write Cycle S1 S0 CLKO1 (OUTPUT) S4 S0 S5 8 6 A31-A0 (OUTPUT) FC3-FC0 (OUTPUT) SIZ1-SIZ0 (OUTPUT) 12 AS (OUTPUT) 9 14B CSx (OUTPUT) DS (OUTPUT) WEx (OUTPUT) 20 46A R/W (OUTPUT) 23 18 24 D31-D0 (OUTPUT) 25 PRTY3-PRTY0 (OUTPUT) 73 74 BKPT (INPUT) Figure 7-10. SRAM: Fast Termination Write Cycle (CSNTQ = 1) S4 S1 S0 S0 S5 CLKO1 (OUTPUT) 8 6 A31-A0 (OUTPUT) FC3-FC0 (OUTPUT) SIZ1-SIZ0 (OUTPUT) 12A AS (OUTPUT) 9 14D CSx (OUTPUT) DS (OUTPUT) WEx (OUTPUT) 20 46A R/W (OUTPUT) 18 23 D31-D0 (OUTPUT) 25A PRTY3-PRTY0 (OUTPUT) 29 2113B-HIREL-06/05 Figure 7-11. SRAM: Write Cycle (TRLX = 1, CSNTQ = 1, TCYC = 0) S1 S0 S3 S2 S4 S5 CLKO1 (OUTPUT) A31-A0 (OUTPUT) AS (OUTPUT) 9C DS (OUTPUT) 11A 9B 12A CSx (OUTPUT) 14C WEx (OUTPUT) 13A 20 17A 22 R/W (OUTPUT) 46 47A DSACK0 (I/O) 31A DSACK1 (I/O) 55 25A 26 D31-D0 (OUTPUT) 23 PRTY0-PRTY3 (OUTPUT) Note: All timing is shown with respect to 0.8V and 2.0V levels. Figure 7-12. ASYNC Bus Arbitration - IDLE Bus Case CLKO1 (OUTPUT) A31-A0 (OUTPUT) D31-D0 (OUTPUT) AS (OUTPUT) 47A 47A BR (INPUT) 35 37 BG (OUTPUT) 33 34 47A BGACK (INPUT) 47A BCLRO (OUTPUT) 60 30 61 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-13. ASYNC Bus Arbitration - Active Bus Case S0 S1 S2 S3 S4 S5 CLKO1 (OUTPUT) A31-A0 (OUTPUT) 7 D31-D0 (OUTPUT) AS (OUTPUT) 16 DS (OUTPUT) R/W (OUTPUT) DSACK0 (I/O) DSACK1 (I/O) 47A 47A BR (INPUT) 39A 35 BG (OUTPUT) 33 34 BGACK (INPUT) 47A 37 BCLRO (OUTPUT) 60 Figure 7-14. SYNC Bus Arbitration - IDLE Bus Case CLKO1 (OUTPUT) A31-A0 (OUTPUT) D31-D0 (OUTPUT) AS (OUTPUT) 63 62 BR (INPUT) 37 35 BG (OUTPUT) 33 34 65 BGACK (INPUT) 64 BCLRO (OUTPUT) 60 61 31 2113B-HIREL-06/05 Figure 7-15. SYNC Bus Arbitration - Active Bus Case S0 S1 S2 S3 S4 S5 S98 CLKO1 (OUTPUT) A31-A0 (OUTPUT) 7 D31-D0 (OUTPUT) AS (OUTPUT) 16 DS (OUTPUT) R/W (OUTPUT) DSACK0 (I/O) DSACK1 (I/O) 62 BR (INPUT) 35 39A BG (OUTPUT) 33 34 BGACK (INPUT) 64 37 BCLRO (OUTPUT) 60 Figure 7-16. Configuration and Clock Mode Select Timing RESETH CONFIG2-CONFIG0, 76 MODCK1-MODCK0, 16BM 75 32 77 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-17. Show Cycle S0 S41 S42 S0 S43 S2 S1 CLKO1 (OUTPUT) 8 6 A31-A0 (OUTPUT) 18 R/W (OUTPUT) 20 AS (OUTPUT) 12 15 9 DS (OUTPUT) 72 71 70 D31-D0 27A BKPT (INPUT) SHOW CYCLE START OF EXTERNAL CYCLE Figure 7-18. Background Debug Mode FREEZE Timing CLKO1 86 FREEZE 87 IFETCH/DSI 89 88 Figure 7-19. Background Debug Mode Serial Port Timing CLKO1 FREEZE 83 82 BKPT/DSCLK 80 81 IFETCH 84 IPIPE0/DSO 85 DSI 80 33 2113B-HIREL-06/05 Figure 7-20. DRAM: Normal Read Cycle (Internal Mux, TRLX = 0) S0 S1 S2 S3 S4 S5 S0 S1 S2 S3 SW SW CLKO1 (OUTPUT) 6A 6 8 A31-A0 (OUTPUT) 108 11 107 AS (OUTPUT) 9 12 100 9 101 RASx (OUTPUT) 103 102 106 109 104 CAS3-CAS0 (OUTPUT) 110 111 105 OE (OUTPUT) 21 18 R/W (OUTPUT) DSACK1,0 (I/O) 27 D31D0 (INPUT) PBEE = 0 29 27B PARITY3-PARITY0 (INPUT) PBEE = 1 D31-D0 (INPUT) Note: 34 All timing is shown with respect to 0.8V and 2.0V levels. TS68EN360 2113B-HIREL-06/05 TS68EN360 7.8 Bus Operation - DRAM Accesses AC Timing Specification Table 7-7. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-20 to Figure 7-24) 25.0 MHz Number Characteristic Min Max 33.34 MHz Min Unit Max 100 RASx Asserted to Row Address Invalid 15 11.25 ns 101 RASx Asserted to column Address Valid 20 15 ns 102 RASx Width Asserted 75 56.25 ns 103A RASx width Negated (Back to back Cycle) Non page mode at WBTQ = 0 75 56.25 ns 103B RASx width Negated (Back to back Cycle) Page mode at WBTQ = 0 55 41.25 ns 103C RASx width Negated (Back to back Cycle) Non page mode at WBTQ = 1 115 86.25 ns 103D RASx width Negated (Back to back Cycle) Page mode at WBTQ = 1 95 69.23 ns 104 RASx Asserted to CASx Asserted 35 26.25 ns 105 CLKO1 Low to CASx Asserted 3 13 2 10 ns CLKO1 High to CASx Asserted (Refresh Cycle) 3 13 2 10 ns 106 CLKO1 High to CASx Negated 3 13 2 10 ns 107 Column Address Valid to CASx Asserted 15 11.25 ns 108 CASx Asserted to Column Address Negated 40 30 ns 109 CASx Asserted to RASx Negated 35 27 ns 110 CASx Width Asserted 50 37.5 ns 111 CASx Width Negated (Back to Back Cycles) 95 71.25 ns 111A CASx Width Negated (Page Mode) 20 15 ns 113 WE Low to CASx Asserted 35 27 ns 114 CASx Asserted to WE Negated 35 27 ns 115 R/W Low to CASx Asserted (Write) 52.5 40 ns 116 CASx Asserted to R/W High (Write) 55 41.25 ns 117 Data-Out, Parity-Out Valid to CASx Asserted 10 7.5 ns 119 CLKO1 High to AMUX Negated 3 16 2 12 ns 120 CLKO1 High to AMUX Asserted 3 16 2 12 ns 121 AMUX High to RASx Asserted 15 11.25 ns 122 RASx Asserted to AMUX Low 15 11.25 ns 123 AMUX Low to CASx Asserted 15 11.25 ns 124 CASx Asserted to AMUX High 55 41.25 ns 125 RAS/CASx Negated to R/W change 0 0 ns 105A 1 35 2113B-HIREL-06/05 Figure 7-21. DRAM: Normal Write Cycle S1 S0 S3 S2 S5 S4 S0 CLKO1 (OUTPUT) 6A 6 8 A31-A0 (OUTPUT) 108 11 107 AS (OUTPUT) 9 12 100 RASx (OUTPUT) 101 102 106 CAS3-CAS0 (OUTPUT) 105 113 WEx (OUTPUT) 110 114 20 116 115 R/W (OUTPUT) 17 DSACK1,0 (I/O) 117 D31-D0 (OUTPUT) 23 53 PARITY0-PARITY3 (OUTPUT) Note: 36 All timing is shown with respect to 0.8V and 2.0V levels. TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-22. DRAM: Refresh Cycle S4 S5 S0 S1 CLKO1 (OUTPUT) A31-A0 (OUTPUT) 106 CAS3-CAS0 (OUTPUT) 105A 12 12 9 RASx (OUTPUT) 12A RASx (OUTPUT) PAGE MODE NOT IN PAGE MODE Note: All timing is shown with respect to 0.8V and 2.0V levels. Figure 7-23. DRAM: Page Mode - Page-Hit S0 S1 S2 S3 S4 S5 S0 S1 S4 S5 S0 S1 CLKO1 (OUTPUT) 6A 8 6A A31-A0 (OUTPUT) 108 11 INTERNAL INTERNALMUX MUX 107 107 AS (OUTPUT) 9 100 RASx (OUTPUT) 105 101 106 CAS3-CAS0 (OUTPUT) 121 122 105 111A 123 AMUX (OUTPUT) 119 120 124 EXTERNAL MUX Note: All timing is shown with respect to 0.8V and 2.0V levels. 37 2113B-HIREL-06/05 Figure 7-24. DRAM: Page Mode - Page-Miss S0 S1 S2 S3 S4 S5 S1 S0 S2 S3 SW SW CLKO1 (OUTPUT) 6A 6A 8 A31-A0 (OUTPUT) INTERNAL MUX 11 AS (OUTPUT) 9 12A RASn (OUTPUT) 106 CAS3-CAS0 (OUTPUT) 105 122 123 AMUX (OUTPUT) 120 119 120 EXTERNAL MUX Note: 38 All timing is shown with respect to 0.8V and 2.0V levels. TS68EN360 2113B-HIREL-06/05 TS68EN360 7.9 040 Bus Type Slave Mode Bus Arbitration AC Electrical Specifications Table 7-8. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-25) 25.0 MHz Number Min Max Min Max Unit Address, Transfer Attributes High Impedance to Clock High 7 - 6 - ns Clock High to BG Low - 20 - 15 ns 233 Clock High to BG High 4 20 4 15 ns 234 BB High to Clock High (040 output) 7 - 6 - ns 235 BB High Impedance to Clock High (040 output) 0 - 0 - ns 236 Clock High to BB Low (360 Output) - 20 - 15 ns 237 Clock High to BB High (360 Output) - 20 - 15 ns 20 - 15 ns 231 (1) 232 Characteristic 33.34 MHz - 238 Clock Low to BB High Impedance (360 output) Note: 1. BG remains low until either the SDMA or the IDMA requests the external bus. Figure 7-25. TS68040 Companion Mode Arbitration 040 BUS MASTER 360 BUS MASTER C2 C1 S0 S1 S2 S3 S4 S5 CLKO1 (OUTPUT) A31-A0 (I/O) 231 TRANSFER ATTRIBUTES (INPUT) 232 233 BG (OUTPUT) 234 BB (I/O) 237 235 238 236 60 61 BCLRO (OUTPUT) 140 141 BCLRI (INPUT) Notes: 1. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK. 2. BG always remains asserted until either the SDMA or the IDMA requests the external bus 39 2113B-HIREL-06/05 7.10 040 Bus Type Slave Mode Internal Read/Write/Lack Cycles AC Electrical Specifications Table 7-9. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-26 to Figure 7-29) 25.0 MHz Number Min Max Min Max Unit Address, Transfer Attributes Valid to Clock Low 15 - 11.25 - ns 252 TS Low to Clock High 7 - 6 - ns 253 Clock High to TS High 5 - 3 - ns 254 Clock high to Address, Transfer Attributes Invalid 0 - 0 - ns 255 Data-In, MBARE Valid to Clock High (040 Write) 0 - 0 - ns 256 Clock High to Data-In, MBARE Hold Time 0 - 0 - ns 257 Clock High to TA, TBI Low (External to External) 4 20 4 15 ns 257 Clock High to TA, TBI Low (External to Internal) 4 23 4 18 ns Clock High to TA, TBI High 4 20 4 15 ns 259 TA, TBI High to TA, TBI High Impedance - 15 - 11.25 ns 260 Clock Low to Data-Out Valid (040 Read) - 20 - 15 ns 262 Clock Low to Data-Out Invalid - 20 - 15 ns 263 Clock Low to Data-Out High Impedance - 15 - 264 Clock High to AVECO Low - 20 - 15 ns 265 Clock Low to AVECO High Impedance - 30 - 23 ns 266 Clock Low to IACK Low - 30 - 23 ns 267 Clock High to IACK High - 30 - 23 ns Clock Low to AVEC Low - 30 - 23 ns 251(1) 258(2)(3) 268 Notes: 40 Characteristic 33.34 MHz ns 1. Transfer attributes signals = SIZx, TTx, TMx, R/W and LOCK. 2. When TS68040 is accessing the internal registers, specification 258 is from clock low not clock high. 3. The clock reference is EXTAL, not CLK01.TS68040 Internal Registers Read Cycles TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-26. TS68040 Internal Registers Read Cycles C1 C2 CW CW CW CW C1 CLKO1 (OUTPUT) 251 A31-A0 (INPUT) 254 TRANSFER ATTRIBUTES (INPUT) 253 252 TS (INPUT) 260 263 D31-D0 (040 WRITE) (INPUT) TA (OUTPUT) 258 257 259 TBI (OUTPUT) 34 CLOCKS Notes: 1. Three wait states are inserted when reading the SIM, dual-port RAM, and CPM. Four wait states are inserted when reading the SI RAM. Additional wait states may be inserted when the SHEN1-SHEN0 = 10 and one of the internal masters is accessing an internal peripheral. 2. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK. Figure 7-27. TS68040 Internal Registers Write Cycles C1 C2 CW CW CW C1 CLKO1 (OUTPUT) 251 A31-A0 (INPUT) 254 TRANSFER ATTRIBUTES (INPUT) 252 TS (INPUT) D31-D0 (040 WRITE) (INPUT) 253 256 255 256 255 MBARE (INPUT) 258 TA (OUTPUT) 257 TBI (OUTPUT) Notes: 259 2N4 CLOCKS 1. Two wait states are inserted when writing. Three wait states are inserted when writing to the dual-port RAM and CPM. Four wait states are inserted when writing to the SI RAM. Additional wait states may be inserted when the SHEN1-SHEN0 = 10 and one of the internal masters is accessing an internal peripheral. 2. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK. 41 2113B-HIREL-06/05 Figure 7-28. TS68040 IACK Cycles (Vector Driven) C1 C2 CW CW CW CW CW CLKO1 (OUTPUT) 251 254 A31-A0 (INPUT) TRANSFER ATTRIBUTES (INPUT) 253 252 TS (INPUT) 263 262 D31-D0 (OUTPUT) 260 258 TA (OUTPUT) 257 259 TBI (OUTPUT) IACK7-1 (OUTPUT) 266 267 02 CLOCKS Notes: 1. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK. 2. Up to two wait states may be inserted for internal peripheral. Figure 7-29. TS68040 IACK Cycles (No Vector Driven) C1 C2 CW CW CLKO1 (OUTPUT) 251 254 A31-A0 (INPUT) TRANSFER ATTRIBUTES (INPUT) 253 252 TS (INPUT) 290 TA (INPUT) 289 TBI (OUTPUT) 257 250 264 265 AVECO (OUTPUT) IACK7-1 (OUTPUT) 266 Note: 42 267 TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK. TS68EN360 2113B-HIREL-06/05 TS68EN360 7.11 040 Bus Type SRAM/DRAM Cycles AC Electrical Specifications Table 7-10. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-30 to Figure 7-34) 25.0 MHz Number Characteristic 33.34 MHz Min Max Min Max Unit 280 Address Valid to BADD2-3 Valid - 20 - 15 ns 280A BADD2-3 Valid to CAS Assertion 15 - 10 - ns 281 Address Invalid to BADD2-3 Invalid 0 - 0 - ns 282 Clock High to CSx/RASx Low (TSS40 = 0) 4 16 4 12 ns 283 Clock High to CSx/RASx High (CSNT40 = 0) 4 16 4 12 ns 284 Clock High to BRK Low - 20 - 15 ns 284A Clock Low to BRK Low - 20 - 15 ns 285 Clock high to BRK High - 20 - 15 ns 286 Clock Low to CSx/RASx Low (TSS40 = 1) 4 16 4 12 ns 287 Clock Low to CSx/RASx High (CSNT40 = 1) 4 16 4 12 ns (1) Address Transfer Attributes Valid to Clock High (TSS40 = 0) 10 - 10 - ns (2) 289 TA Low to Clock High (External Termination) 11 - 9 - ns 290(2) Clock High to TA High (External Termination) - 20 - 15 ns 291 Clock High to OE Low (Read Cycles) - 20 - 15 ns 292 Clock High to OE High (Read Cycles) - 20 - 15 ns 293 Clock High to WE Low (Write Cycles) - 20 - 15 ns 294 Clock High to WE High (Write Cycles) - 20 - 15 ns 295 Clock High to CASx Low 4 13 4 10 ns Clock Low to CASx Low (040 Burst Read only) 4 13 4 10 ns Clock High to CASx High 4 13 4 10 ns 297 Clock Low to AMUX Low 3 16 3 12 ns 298 Clock High to AMUX High 3 16 3 12 ns 299 Clock High to BADD2-3 Valid (040 Burst Cycles) 4 20 4 15 ns 300 TEA Low to Clock High 11 - - ns 301(2) Clock High to TEA High 2 20 2 15 ns 302 Data, Parity Valid to Clock High (Data, Parity Setup) 7 - 6 - ns 303 Clock High to Data, Parity Invalid (Data, Parity Hold) 7 - 5 - ns 305 CLKO1 High (After TS Low) to Parity Valid - 20 - 15 ns CLKO1 High (After TA Low) to Parity Hi-Z 4 20 15 ns 288 295A (3) 296 (2) 306 Notes: 1. Transfer attributes signals = SIZx, TTx, TMx, R/W and LOCK. 2. TEA/TA should not be asserted on a DRAM burst access, or on the same clock or before RASx/CSx is asserted. 3. The clock reference is EXTAL, not CLK01. 43 2113B-HIREL-06/05 Figure 7-30. TS68040 SRAM Read/Write Cycles (TSS40 = 0, CSNT40 = 0) C1 C2 CLKO1 (OUTPUT) 288 TRANSFER ATTRIBUTES (INPUT) 254 A31-A0 (INPUT) 280 281 BADD3BADD2 (OUTPUT) TS (INPUT) 252 282 253 283 CSx (OUTPUT) 258 TA (OUTPUT) 259 257 TBI (OUTPUT) 284 BKPTO (OUTPUT) 285 OE (OUTPUT) (READ CYCLES) 291 292 WE (OUTPUT) (WRITE CYCLES) 293 294 300 301 TEA (INPUT) Note: 44 TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK. TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-31. TS68040 SRAM Read/Write Cycles (TSS40 = 1, CSNT40 = 1) C1 C2 C3 CLKO1 (OUTPUT) 251 TRANSFER ATTRIBUTES (INPUT) 254 A31-A0 (INPUT) 281 280 BADD3BADD2 (OUTPUT) 253 TS (INPUT) 252 287 CSn (OUTPUT) 286 258 TA (OUTPUT) 259 257 TBI (OUTPUT) 284A 285 BKPTO (OUTPUT) 300 301 289 290 TEA (INPUT) TA (INPUT) 45 2113B-HIREL-06/05 Figure 7-32. External TS68040 DRAM Cycles Timing Diagram C1 Cw C2 C1 CLKO1 (OUTPUT) 288 TRANSFER ATTRIBUTES (INPUT) 254 A31-A0 (INPUT) 281 280 BADD3BADD2 (OUTPUT) 253 252 TS (INPUT) 282 283 RASx (OUTPUT) 296 295 CAS3CAS0 (OUTPUT) 122 121 123 298 298 AMUX (OUTPUT) 297 WE (WRITE CYCLE OUTPUT) 294 293 258 TA (OUTPUT) 257 259 TBI (OUTPUT) 300 301 TEA (INPUT) 46 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-33. External TS68040 DRAM Burst Cycles Timing Diagram C1 Cw C2 C1 C2 CLKO1 (OUTPUT) 288 TRANSFER ATTRIBUTES (INPUT) A31-A0 (INPUT) 299 280 299 BADD3BADD2 (OUTPUT) TS (INPUT) 252 253 282 RASx (OUTPUT) 295A 296 296 CAS3CAS0 (OUTPUT) 295 295 AMUX (OUTPUT) 297 WE (WRITE CYCLE OUTPUT) 293 258 TA (OUTPUT) 257 258 257 TBI (OUTPUT) 47 2113B-HIREL-06/05 Figure 7-34. External TS68040 Parity Bit Checking Timing Diagram D31-D0 (INPUT) PRTY3PRTY0 (OUTPUT) 212 213 (a) Generation Timing Diagram CPU Clears PERn Bit C1 C2 C1 CLKO1 (OUTPUT) TRANSFER ATTRIBUTES (INPUT) A31-A0 (INPUT) BADD3BADD2 (OUTPUT) TS (INPUT) TA (OUTPUT) 302 303 D31-D0, (INPUT) 305 PRTY3PRTY0 (INPUT) 306 90 91 PERR (OUTPUT) (b) Checking Timing Diagram 48 TS68EN360 2113B-HIREL-06/05 TS68EN360 7.12 IDMA AC Electrical Specifications Table 7-11. GND = 0 VDC, TC = -55 to +125C.The electrical specifications in this document are preliminary (See Figure 7-35 and Figure 7-36) 25.0 MHz Number Characteristic 33.34 MHz Min Max Min Max Unit 1 CLKO1 Low to DACK, DONE Asserted 3 24 3 18 ns 2 CLKO1 Low to DACK, DONE Negated 3 24 3 18 ns 3(1) DREQx Asserted to AS Asserted (for DMA Bus Cycle) 4(1) 3tcyc + tAIST + tCLSA Asynchronous Input Setup Time to CLKO1 Low 12 - 9 - ns (1) Asynchronous Input Hold Time from CLKO1 Low 0 - 0 - ns 6 AS to DACK Assertion Skew 0 20 0 15 ns 7 DACK to DONE Assertion Skew -8 8 -6 6 ns 8 AS, DACK, DONE Width Asserted 70 - 52.5 - ns AS, DACK, DONE Width Asserted (Fast Termination Cycle) 28 - 20.5 - ns 10 Asynchronous Input Setup Time to CLKO1 Low 5 - 4 - ns 11(1) 5 8A (1) Asynchronous Input Hold Time from CLKO1 Low 10 - 7.5 - ns (2) DREQ Input Setup Time to CLKO1 Low 20 - 15 - ns (2) DREQ Input Hold Time from CLKO1 Low 5 - 3.75 - ns (2) 14 DONE Input Setup Time to CLKO1 Low 20 - 15 - ns 15(2) DONE Input Hold Time From CLKO1 Low 5 - 3.75 - ns 2 - 2 - clk 12 13 16(2) DREQ Asserted to AS Asserted Notes: 1. These specifications are for asynchronous mode. 2. These specifications are for synchronous mode. 49 2113B-HIREL-06/05 Figure 7-35. IDMA Signal Asynchronous Timing Diagram CPU_CYCLE (IDMA REQUEST) S0 S1 S2 IDMA_CYCLE S3 S5 S4 S0 S1 S3 S2 S5 S4 CLKO1 (OUTPUT) 4 1 5 DREQ (INPUT) 6 8 3 AS (OUTPUT) 1 2 DACK (OUTPUT) 7 DONE (OUTPUT) 1 DONE (INPUT) 11 10 Figure 7-36. IDMA Signal Synchronous Timing Diagram CPU_CYCLE (IDMA REQUEST) S0 S1 S2 IDMA_CYCLE S3 S4 S5 S0 S1 S2 S3 S4 S5 CLKO1 (OUTPUT) 12 DREQ (INPUT) 1 13 6 8 16 AS (OUTPUT) 1 2 DACK (OUTPUT) 7 DONE (OUTPUT) 1 DONE (INPUT) 15 14 50 TS68EN360 2113B-HIREL-06/05 TS68EN360 7.13 PIP/PIO Electrical Specifications Table 7-12. GND = 0 VDC, TC = -55 to +125C.The electrical specifications in this document are preliminary (See Figure 7-37 to Figure 7-41) 25.0 MHz Number Characteristic 33.34 MHz Min Max Min Max Unit 21 Data-In Setup Time to STBI Low 0 - 0 - ns 22 Data-In Hold Time to STBI High 2.5 - t3 - 2.5 - t3 - clk 23 STBI Pulse Width 1.5 - 1.5 - clk 24 STBO Pulse Width 1 CLKO1 - 5 ns - 1 CLKO1 - 5 ns - -v 25 Data-Out Setup Time to STBO Low 2 - 2 - clk 26 Data-Out Hold Time from STBO High 5 - 5 - clk 27 STBI Low to STBO Low (Rx Interlock) - 2 - 2 clk 28 STBI Low to STBO High (Tx Interlock) 2 - 2 - clk 29 Data-In Setup Time to Clock Low 20 - 15 - ns 30 Data-In Hold Time from Clock Low 10 - 7.5 - ns Clock High to Data-Out Valid (CPU Writes Data, Control, or Direction) - 25 - 25 ns Note: 1. t3 = spec. 3 on Table 7-4. Figure 7-37. PIP Rx (Interlock Mode) 26 25 DATA OUT STRBO (OUTPUT) 28 23 STRBI (INPUT) 51 2113B-HIREL-06/05 Figure 7-38. PIP Tx (Interlock Mode) 22 21 DATA IN 23 STRBI (INPUT) 24 STRBO (OUTPUT) Figure 7-39. PIP Tx (Pulse Mode) 22 21 DATA IN 23 STBI (INPUT) 24 STBO (OUTPUT) 52 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-40. PIP Tx (Pulse Mode) 26 25 DATA OUT 24 STBO (OUTPUT) 23 STBI (INPUT) Figure 7-41. Parallel I/O Data-in/Data-out Timing Diagram CLKO1 (OUTPUT) DATA IN 29 30 DATA OUT 31 CPU WRITE S4 7.14 Interrupt Controller AC Electrical Specifications Table 7-13. GND = 0 VDC, TC = -55 to +125C.The electrical specifications in this document are preliminary. (See Figure 7-42 and Figure 7-43) 25.0 MHz Number 33.34 MHz Characteristic Min Max Min Max Unit 35 Port C Interrupt Pulse Width Low (Edge Triggered Mode) 70 - 55 - ns 36 Minimum Time Between Active Edges Port C 70 - 55 - clk 37 Clock High to IOUT Valid (Slave Mode) - 20 - 17 ns 38 Clock High to RQOUT Valid (Slave Mode) - 20 - 17 ns 53 2113B-HIREL-06/05 Figure 7-42. Interrupts Timing Diagram Port C (INPUT) 35 36 Figure 7-43. Slave Mode: Interrupts Timing Diagram CLKO1 (OUTPUT) IOUT2IOUT0 (OUTPUT) 37 RQOUT (OUTPUT) 38 7.15 BAUD Rate Generator AC Electrical Specifications Table 7-14. GND = 0 VDC, TC = -55 to +125C.The electrical specifications in this document are preliminary (See Figure 7-44) 25.0 MHz Number Characteristic 33.34 MHz Min Max Min Max Unit 50 BRGO Rise and Fall Time - 10 - 7.5 ns 51 BRGO Duty Cycle 40 60 40 60 % 52 BRGO Cycle 40 30 ns Figure 7-44. Baud Rate Generator Output Signals 50 50 BRGOx 51 51 52 54 TS68EN360 2113B-HIREL-06/05 TS68EN360 7.16 Timer Electrical Specifications Table 7-15. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-45) 25.0 MHz Number Characteristic 33.34 MHz Symbol Min Max Min Max Unit 61 TIN/TGATE Rise and Fall Time trf 10 - 10 - ns 62 TIN/TGATE Low Time - 1 - 1 - clk 63 TIN/TGATE High Time - 2 - 2 - clk 64 TIN/TGATE Cycle Time - 3 - 3 - clk 65 CLKO1 High to TOUT Valid tTO 3 25 3 22 ns Figure 7-45. CPM General-purpose Timers 60 CLKO1 (OUTPUT) 61 62 63 TIN/TGATE (INPUT) 64 61 65 TOUT (OUTPUT) 55 2113B-HIREL-06/05 7.17 SI Electrical Specifications Table 7-16. GND = 0 VDC, TC = -55 to +125C.The electrical specifications in this document are preliminary (See Figure 7-46 to Figure 7-50) 25.0 MHz Number (1)(3) (1) 70 71 71A(2) Characteristic 33.34 MHz Min Max Min Max Unit L1RCLK, L1TCLK Frequency (DCS = 0) - 10 - 10 MHz L1RCLK, L1TCLK Width Low (DCS = 0) P+10 - P+10 - ns L1RCLK, L1TCLK Width High (DCS = 0) P+10 - P+10 - ns 72 L1TXD, L1ST(1-4), L1RQ, L1CLKO Rise/Fall Time - 15 - 15 ns 73 L1RSYNC, L1TSYNC Valid to L1CLK Edge (SYNC Setup Time) 20 - 20 - ns 74 L1CLK Edge to L1RSYNC, L1TSYNC Invalid (SYNC Hold Time) 35 - 35 - ns 75 L1RSYNC, L1TSYNC Rise/Fall Time - 15 - 15 ns 76 L1RXD Valid to L1CLK Edge (L1RXD Setup Time) 42 - 42 - ns 77 L1CLK Edge to L1RXD Invalid (L1RXD Hold Time) 35 - 35 - ns 78 L1CLK Edge to L1ST(1-4) Valid 10 45 10 45 ns 78A(4) L1SYNC Valid to L1ST(1-4) Valid 10 45 10 45 ns 79 L1CLK Edge to L1ST(1-4) Invalid 10 45 10 45 ns 80 L1CLK Edge to L1TXD Valid 10 65 10 65 ns L1TSYNC Valid to L1TXD Valid 10 65 10 65 ns 81 L1CLK Edge to L1TXD High Impedance 0 42 0 42 ns 82 L1RCLK, L1TCLK Frequency (DSC = 1) - 12.5 - 16 MHz 83 L1RCLK, L1TCLK Width Low (DSC = 1) P+10 - P+10 - ns 83A L1RCLK, L1TCLK Width High (DSC = 1) P+10 - P+10 - ns 84 (4) 80A (2) L1CLK Edge to L1CLKO Valid (DSC = 1) - 30 - 30 ns (3) L1RQ Valid Before Falling Edge of L1TSYNC 1 - 1 - L1TCLK (3) L1GR Setup Time 42 - 42 - ns (3) L1RG Hold Time 42 - 42 - ns 85 86 87 88 Notes: 56 1. 2. 3. 4. L1CLK Edge to L1SYNC Valid (FSD = 00, CNT = 0000, BYT = 0, - 0 - 0 DSC = 0) The ratio SyncCLK/L1RC LK must be greater than 2.5/1. Where P = 1/CLKO1. Thus for a 25 MHz CLKO1 rate, P = 40 ns. These specs are valid for IDL mode only. The strobes and Txd on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later. ns TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-46. SI Receive Timing with Normal Clocking (DSC = 0) L1RCLK (FE = 0,CE = 0) (INPUT) 72 70 L1RCLK (FE =1,CE = 1) (INPUT) 71 75 RFCD = 1 L1RSYNC (INPUT) 73 74 77 76 L1RXD (INPUT) BIT0 78 79 L1ST (4-1) (OUTPUT) 57 2113B-HIREL-06/05 Figure 7-47. SI Receive Timing with Double Speed Clocking (DSC = 1) 72 L1RCLK (FE = 0, CE = 0) (INPUT) 83A 82 L1RCLK (FE = 1, CE = 1) (INPUT) 75 RFCD = 1 L1RSYNC (INPUT) 73 74 77 76 L1RXD (INPUT) BIT0 78 79 L1ST (4-1) (OUTPUT) L1CLKO (OUTPUT) 84 58 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-48. SI Transmit Timing with Normal Clocking (DSC = 0) L1TCLK (FE = 0, CE = 0) (INPUT) 72 70 L1TCLK (FE = 1, CE = 1) (INPUT) 71 75 L1TSYNC (OUTPUT) 73 74 81 80A L1TXD (INPUT) TFCD = 0 BIT0 80 78A 79 L1ST (4-1) (OUTPUT) 78 59 2113B-HIREL-06/05 Figure 7-49. SI Transmit Timing with Double Speed Clocking (DSC = 1) 72 83A L1RCLK (FE = 0, CE = 0) (INPUT) 82 L1RCLK (FE = 1, CE = 1) (INPUT) 75 L1TSYNC (INPUT) 73 74 TFCD = 0 81 80A L1TXD (OUTPUT) BIT0 80 78A 79 L1ST (1-4) (OUTPUT) 78 L1CLKO (OUTPUT) 84 Figure 7-50. IDL Timing SI Transmit Timing with Double Speed Clocking (DSC = 1) 74 L1RSYNC (INPUT) 73 71 L1RCLK (INPUT) L1TXD (OUTPUT) 1 2 3 71 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 80 B17 B16 77 76 B17 L1RXD (INPUT) B16 B15 B14 B13 B12 B11 B10 D1 A B27 72 B15 B26 B25 B24 B23 B22 B21 B20 D2 M B24 B23 B22 B21 B20 D2 M 81 B14 B13 B12 B11 B10 D1 A B27 B26 B25 78 L1ST (4-1) (OUTPUT) 85 L1RQ (OUTPUT) 86 87 L1GR (INPUT) 60 TS68EN360 2113B-HIREL-06/05 TS68EN360 7.18 SCC in NMSI Mode-external Clock Electrical Specifications Table 7-17. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-51 to Figure 7-53) 25.0 MHz Number Min Max Min Max RCLK1 and TCLK1 Width High CLKO1 - CLKO1 - 101 RCLK1 and TCLK1 Width Low CLKO1 + 5 ns - CLKO1 + 5 ns - 102 RCLK1 and TCLK1 Rise/Fall Time - 15 - 15 ns 103 TXD1 Active Delay (From TCLK1 Falling Edge) 0 50 0 50 ns 104 RTS1 Active/Inactive Delay (From TCLK1 Falling Edge) 0 50 0 50 ns 105 CTS1 Setup Time to TCLK1 Rising Edge 40 - 40 - ns 106 RXD1 Setup Time to RCLK1 Rising Edge 40 - 40 - ns RXD1 Hold Time from RCLK1 Rising Edge 0 - 0 - ns 40 - ns (1) 100 (2) 107 Characteristic 33.34 MHz 40 - 108 CD1 Setup Time to RCLK1 Rising Edge Notes: 1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2.25/1. 2. Also applies to CD and CTS hold time when they are used as external sync signals. 7.19 Unit SCC in NMSI Mode-internal Clock Electrical Specifications Table 7-18. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-51 to Figure 7-53) 25.0 MHz Number Min Max Min Max Unit RCLK1 and TCLK1 Frequency 0 8.3 0 11 MHz 102 RCLK1 and TCLK1 Rise/Fall Time - - - - ns 103 TXD1 Active Delay (From TCLK1 Falling Edge) 0 30 0 30 ns 104 RTS1 Active/Inactive Delay (From TCLK1 Falling Edge) 0 30 40 - ns 105 CTS1 Setup Time to TCLK1 Rising Edge 40 - 40 - ns 106 RXD1 Setup Time to RCLK1 Rising Edge 40 - 0 - ns RXD1 Hold Time from RCLK1 Rising Edge 0 - 40 - ns 0 30 ns (1) 100 107(2) Characteristic 33.34 MHz 40 - 108 CD1 Setup Time to RCLK1 Rising Edge Notes: 1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1. 2. Also applies to CD and CTS hold time when they are used as external sync signals. 61 2113B-HIREL-06/05 Figure 7-51. SCC NMSI Receive 102 102 101 RCLK1 100 106 RXD1 (INPUT) 107 108 CD1 (INPUT) 107 CD1 (SYNCINPUT) Figure 7-52. SCC NMSI Transmit 102 102 101 TCLK1 100 103 TXD1 (OUTPUT) RTS1 (OUTPUT) 104 104 105 CTS1 (INPUT) 107 CTS1 (SYNCINPUT) 62 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-53. HDLC BUS Timing 102 102 101 TCLK1 100 103 TXD1 (OUTPUT) RTS1 (OUTPUT) 104 104 107 105 CTS1 (ECHO INPUT) 63 2113B-HIREL-06/05 7.20 Ethernet Electrical Specifications Table 7-19. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-54 to Figure 7-59) 25.0 MHz Number Characteristic 33.34 MHz Min Max Min Max Unit 120 CLSN Width High 40 - 40 - ns 121 RCLK1 Rise/Fall Time - 15 - 15 ns 122 RCLK1 Width Low CLKO1 + 5 ns - CLKO1 + 5 ns - 123(1) RCLK1 Width High CLKO1 - CLKO1 - 124 RXD1 Setup Time 20 - 20 - ns 125 RXD1 Hold Time 5 - 5 - ns 126 RENA Active Delay (from RCLK1 rising edge of the last data bit) 10 - 10 - ns 127 RENA Width Low 100 - 100 - ns 128 TCLK1 Rise/Fall Time - 15 - 15 ns 129 TCLK1 Width Low CLKO1 + 5 ns - CLKO1 + 5 ns - 130(1) TCLK1 Width High CLKO1 - CLKO1 - 131 TXD1 Active Delay (from TCLK1 rising edge) 10 50 10 50 ns 132 TXD1 Inactive Delay (from TCLK1 rising edge) 10 50 10 50 ns 133 TENA Active Delay (from TCLK1 rising edge) 10 50 10 50 ns 134 TENA Inactive Delay (from TCLK1 rising edge) 10 50 10 50 ns 135 RSTRT Active Delay (from TCLK1 falling edge) 10 50 10 50 ns 136 RSTRT Inactive Delay (from TCLK1 falling edge) 10 50 10 50 ns 137 RRJCT Width Low 1 - 1 - CLKO1 CLKO1 Low to SDACK Asserted - 20 - 20 ns - 20 ns 138(2) (2) 139 Notes: CLKO1 Low to SDACK Negated - 20 1. SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2.25/1 2. SDACK is asserted whenever the SDMA writes the incoming frame DA into memory. Figure 7-54. Ethernet Collision Timing CLSN (CTS1) (INPUT) 120 64 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-55. Ethernet Receive Timing 121 121 122 RCLK1 123 124 RXD1 (INPUT) LAST BIT 125 127 RENA (CD1) (INPUT) 126 Figure 7-56. Ethernet Transmit Timing 128 128 129 TCLK1 (NOTE 1) 130 131 132 TXD1 (OUTPUT) 133 TENA (RTS1) (OUTPUT) 134 RENA (CD1) (INPUT) (NOTE 2) Notes: 1. Transmit clock invert (TCI) bit in GSMR is set. 2. If RENA is deasserted before TENA, or RENA is not asserted at all during transit, then CSL bit is set in the buffer descriptor at the end of frame transmission. 65 2113B-HIREL-06/05 Figure 7-57. CAM Interface Receive Start Timing RCLK1 RXD1 (INPUT) 1 0 1 Bit # 1 Bit # 2 START FRAME DELIMITER 135 136 RSTRT (OUTPUT) Note: Valid for the ethernet protocol only. Figure 7-58. CAM Interface Reject Timing 137 RRJCT (INPUT) Note: Valid for the ethernet protocol only. Figure 7-59. SDACK Timing Diagram SDMA CYCLE S0 S1 S2 S3 S4 S5 CLKO1 (OUTPUT) AS (OUTPUT) SDACKx (OUTPUT) Note: 66 138 139 SDACKx is asserted when the SDMA writes the received Ethernet frame into memory. TS68EN360 2113B-HIREL-06/05 TS68EN360 7.21 SMC Transparent Mode Electrical Specifications Table 7-20. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-60) 25.0 MHz Number 33.34 MHz Characteristic Min Max Min Max Unit SMCLK Clock Period 100 - 100 - ns 151 SMCLK Width Low 50 - 50 - ns 151A SMCLK Width High 50 - 50 - ns 152 SMCLK Rise/Fall Time - 15 - 15 ns 153 SMTXD Active Delay (from SMCLK falling edge) 10 50 10 50 ns 154 SMRXD/SYNC1 Setup Time 20 - 20 - ns 155 SMRXD/SYNC1 Hold Time 5 - 5 - ns 150(1) Note: 1. The ratio SyncCLK/SMCLK must be greater or equal to 2/1. SMC Transparent. Figure 7-60. SMC Transparent 152 152 151A 151 SMCLK 150 TXD1 (OUTPUT) Note 1 153 154 155 SYNC1 154 RXD1 (INPUT) 155 Note: This delay is equal to an integer number of "Character length" clocks 67 2113B-HIREL-06/05 7.22 SPI Master Electrical Specifications Table 7-21. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-61 and Figure 7-62) 25.0 MHz Number Characteristic 33.34 MHz Min Max Min Max Unit 160 Master Cycle Time 4 1024 4 1024 tcyc 161 Master Clock (SPICLK) High or Low Time 2 512 2 512 tcyc 162 Master Data Setup Time (Inputs) 50 - 50 - ns 163 Master Data Hold Time (Inputs) 0 - 0 - ns 164 Master Data Valid (after SPICLK Edge) - 20 - 20 ns 165 Master Data Hold Time (Outputs) 0 - 0 - ns 166 Rise Time: Output 15 15 ns 167 Fall Time: Output 15 15 ns Figure 7-61. SPI Master (CP = 0) 167 166 SPICLK CI=0 OUTPUT 167 161 160 SPICLK CI=1 OUTPUT 161 162 166 163 SPIMISO INPUT MSB IN DATA 165 SPIMOSI OUTPUT "1" MSB OUT 167 68 MSB IN LSB IN 164 DATA LSB OUT "1" MSB OUT 166 TS68EN360 2113B-HIREL-06/05 TS68EN360 Figure 7-62. SPI Master (CP = 1) 167 160 166 SPICLK CI=0 OUTPUT 161 160 SPICLK CI=1 OUTPUT 163 166 161 162 SPIMISO INPUT MSB IN DATA 165 SPIMOSI OUTPUT "1" MSB OUT 164 DATA LSB OUT "1" MSB 166 167 7.23 MSB LSB IN SPI Slave Electrical Specifications Table 7-22. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-63 and Figure 7-64) 25.0 MHz Number Characteristic 33.34 MHz Min Max Min Max Unit - 2 - tcyc 170 Slave Cycle Time 2 171 Slave Enable Lead Time 15 15 ns 172 Slave Enable Lag Time 15 15 ns 173 Slave Clock (SPICLK) High or Low Time 1 174 Slave Sequential Transfer Delay (Does Not Require Deselect) 1 175 Slave Data Setup Time (Inputs) 20 - 20 - ns 176 Slave Data Hold Time (Inputs) 20 - 20 - ns 177 Slave Access Time 50 50 ns 178 Slave SPIMISO Disable Time 50 50 ns 179 Slave Data Valid (after SPICLK Edge) - 50 - 50 ns 180 Slave Data Hold Time (Outputs) 0 - 0 - ns 181 Rise Time: Input 15 15 ns 182 Fall Time: Input 15 15 ns - 1 - 1 tcyc tcyc 69 2113B-HIREL-06/05 Figure 7-63. SPI Slave (CP = 0) 171 172 SPISEL INPUT 174 182 181 SPICLK CI=0 INPUT 173 170 SPICLK CI=1 INPUT 181 173 SPIMISO OUTPUT 182 MSB OUT 180 179 180 177 DATA LSB OUT UNDEF. 181 176 178 MSB OUT 182 175 SPIMOSI INPUT MSB IN DATA LSB IN MSB IN Figure 7-64. SPI Slave (CP = 1) SPISEL INPUT 174 182 170 181 173 SPICLK CI=0 INPUT 172 173 171 SPICLK CI=1 INPUT 181 179 179 180 177 SPIMISO OUTPUT UNDEF. 182 MSB OUT DATA SLAVE LSB OUT 178 UNDEF. 181 176 175 SPIMOSI INPUT 70 MSB IN DATA LSB IN TS68EN360 2113B-HIREL-06/05 TS68EN360 7.24 JTAG Electrical Specifications Table 7-23. GND = 0 VDC, TC = -55 to +125C. The electrical specifications in this document are preliminary (See Figure 7-65 and Figure 7-68) 25.0 MHz Number Characteristic 33.34 MHz Min Max Min Max Unit TCK Frequency of Operation 0 25 0 25 MHz 1 TCK Cycle Time in Crystal Mode 40 - 40 - ns 2 TCK Clock Pulse Width Measured at 1.5V 18 - 18 - ns 3 TCK rise and Fall Times 0 3 0 3 ns 6 Boundary Scan Input Data Setup Time 10 - 10 - ns 7 Boundary Scan Input Data Hold Time 18 - 18 - ns 8 TCK Low to Output Data Valid 0 30 0 30 ns 9 TCK Low to Output High Impedance 0 40 0 40 ns 10 TMS, TDI Data Setup Time 10 - 10 - ns 11 TMS, TDI Data Hold Time 10 - 10 - ns 12 TCK Low to TDO Data Valid 0 20 0 20 ns 13 TCK Low to TDO High Impedance 0 20 0 20 ns 14 TRST Assert Time 100 - 100 - ns 15 TRST Setup Time to TCK Low 40 - 40 - ns Figure 7-65. Test Clock Input Timing Diagram 1 2 2 VIH TCK (INPUT) VM VM VIL 3 3 Figure 7-66. TRST Timing Diagram TCK (INPUT) 15 TRST (INPUT) 14 71 2113B-HIREL-06/05 Figure 7-67. Boundary Scan (JTAG) Timing Diagram TCK (INPUT) VIH VIL 6 DATA INPUTS 7 INPUT DATA VALID 8 DATA OUTPUTS OUTPUT DATA VALID 9 DATA OUTPUTS 8 DATA OUTPUTS OUTPUT DATA VALID Figure 7-68. Test Access Port Timing Diagram TCK (INPUT) VIH VIL 10 TDI TMS (INPUT) 11 INPUT DATA VALID 12 TDO (OUTPUT) OUTPUT DATA VALID 13 TDO (OUTPUT) 12 TDO (OUTPUT) 72 OUTPUT DATA VALID TS68EN360 2113B-HIREL-06/05 TS68EN360 8. Functional Description 8.1 CPU32+ Core The CPU32+ core is a CPU32 that has been modified to connect directly to the 32-bit IMB and apply the larger bus width. Although the original CPU32 core had a 32-bit internal data path and 32-bit arithmetic hardware, its interface to the IMB was 16 bits. The CPU32+ core can operate on 32-bit external operands with one bus cycle. This allows the CPU32+ core to fetch a longword instruction in one bus cycle an to fetch two word-length instructions in one bus cycle, filling the internal instruction queue more quickly. The CPU32+ core can also read and write 32-bit of data in one bus cycle. Although the CPU32+ instruction timings are improved, its instruction set is identical to that of the CPU32. It will also execute the entire 68000 instruction set. It contains the same background debug mode (BDM) features as the CPU32. No new compilers, assemblers or other software support tools need be implemented for the CPU32+; standard CPU32 tools can be used. The CPU32+ delivers approximately 4.5 MIPS at 25 MHz, based on the standard (accepted) assumption that a 10-MHz 68000 delivers 1 VAX MIPS. If an application requires more performance, the CPU32+ can be disabled, allowing the rest of the QUICC to operate as an intelligent peripheral to a faster processor. The QUICC provides a special mode called TS68040 companion mode to allow it to conveniently interface to members of the TS68040 family. This two-chip solution provides a 22-MIPS performance at 25 MHz. The CPU32+ also offers automatic byte alignment features that are not offered on the CPU32. These features allow 16- or 32-bit data to be read or written at an odd address. The CPU32+ automatically performs the number of bus cycles required. 8.2 System Integration Module (SIM60) The SIM60 integrates general-purpose features that would be useful in almost any 32-bit processor system. The term "SIM60" is derived from the QUICC part number, TS68EN360. The SIM60 is an enhanced version of the SIM40 that exists on the TS68332 device. First, new features, such as a DRAM controller and breakpoint logic, have been added. Second, the SIM40 was modified to support a 32-bit IMB as well as a 32-bit external system bus. Third, new configurations, such as slave mode and internal accesses by an external master, are supported. Although the QUICC is always a 32-bit device internally, it may be configured to operate with a 16-bit data bus. Regardless of the choice of the system bus size, dynamic bus sizing is supported. Bus sizing allows 8-16-, and 32-bit peripherals and memory to exist in the 32-bit system bus mode and 8- and 16-bit peripherals and memory to exist in the 16-bit system bus mode. 8.3 Communications Processor Module (CPM) The CPM contains features that allow the QUICC to excel in communications and control applications. These features may be divided into three sub-groups: * Communications Processor (CP) * Two IDMA Controllers * Four General-purpose Timers 73 2113B-HIREL-06/05 The CP provides the communication features of the QUICC. Included are a RISC processor, four SCCs, two SMCs, one SPI, 2.5K bytes of dual-port RAM, an interrupt controller, a time slot assigner, three parallel ports, a parallel interface port, four independent baud rate generators, and fourteen serial DMA channels to support the SCCs, SMCs, and SPI. The IDMAs provide two channels of general-purpose DMA capability. They offer high-speed transfers, 32-bit data movement, buffer chaining, and independent request and acknowledge logic. The RISC controller may access the IDMA registers directly in the buffer chaining modes. The QUICC IDMAs are similar to, yet enhancements of, the one IDMA channel found on the TS68302. The four general-purpose timers on the QUICC are functionally similar to the two general-purpose timers found on the TS68302. However, they offer some minor enhancements, such as the internal cascading of two timers to form a 32-bit timer. The QUICC also contains a periodic interval timer in the SIM60, bringing the total to five on-chip timers. 8.4 Ethernet on QUICC The Ethernet protocol is available only on the Ethernet version of the QUICC called the TS68EN360. The non-Ethernet version of the QUICC is the MC68360. The term "QUICC" is the overall device name that denotes all versions of the device. The TS68EN360 is a superset of the MC68360, having the additional option allowing Ethernet operation on any of the four SCCs. Due to performance reason not ass SCCs can be configured as Ethernet controller at the same time. The TS68EN360 is not restricted only to Ethernet operation. HDLC, UART, and other protocols may be used to allow dynamic switching between protocols. See Appendix A Serial Performance for available SCC performance. When the MODE bits of the SCC GSMR select the Ethernet protocol, then that SCC performs the full set of IEEE 802.3/Ethernet CSMA/CD media access control and channel interface functions (see Figure 8-1) Figure 8-1. Ethernet Block Diagram IMB SLOT TIME AND DEFER COUNTER RANDOM NO. CONTROL REGISTERS PERIPHERAL BUS CLOCK GENERATOR RX CLOCK TX CLOCK INTERNAL CLOCKS RTS = TENA RRJCT RECEIVER CONTROL UNIT RSTRT CD = RENA CTS = CLSN RXD 74 RECEIVE DATA FIFO SHIFTER TRANSMIT DATA FIFO SHIFTER TRANSMITTER CONTROL UNIT CD = RENA CTS = CLSN TXD TS68EN360 2113B-HIREL-06/05 TS68EN360 8.5 Upgrading Designs from the TS68302 Since the QUICC is a next-generation TS68302, many designers currently using the TS68302 may wish to use the QUICC in a follow-on design. The following paragraphs briefly discuss this endeavor in terms of architectural approach, hardware issues, and software issues. 8.5.1 Architectural Approach The QUICC is the logical extension of the TS86302, but the overall architecture and philosophy of the TS86302 design remains intact in the QUICC. The QUICC keeps the best features of the TS86302, while making the changes required to provide for the increased flexibility, integration, and performance requested by customers. Because the CPM is probably the most difficult module to learn, anyone who has used the TS86302 can easily become familiar with the QUICC since the CPM architectural approach remains intact. The most significant architectural change made on the QUICC was the translation of the design into the standard 68300 family IMB architecture, resulting in a faster CPU and different system integration features. Although the features of the SIM60 do not exactly correspond to those of the TS86302 SIM, they are very similar. Because of the similarity of the QUICC SIM60 and CPU to other members of the 68300 family, such as the TS68332, previous users of these devices will be comfortable with these same features on the QUICC. 8.5.2 Hardware Compatibility Issues The following list summarizes the hardware differences between the TS86302 and the QUICC: * Pinout - The pinout is not the same. The QUICC has 240 pins; the TS86302 has 132 pins * Package - Both devices offer PGA and PQFP packages. However, the QUICC QFP package has a 20-mil pitch; whereas, the TS86302 QFP package has a 25-mil pitch * System Bus - The system bus signals now look like those of the TS68020 as opposed to those of the 68000. It is still possible to interface 68000 peripherals to the QUICC, utilizing the same techniques used to interface them to a TS68020 * System Bus in Slave Mode - A number of QUICC pins take on new functionality in slave mode to support an external TS68EC040. On the TS68302, the pin names generally remained the same in slave mode * Peripheral Timing - The external timings of the peripherals (SCCs, timers, etc.) are very similar (if not identical) to corresponding peripherals on the TS68302 * Pin Assignments - The assignment of peripheral functions to I/O pins is different in several ways. First, the QUICC contains more general-purpose parallel I/O pins than the TS68302. However, the QUICC offers many more functions than even a 240-pin package would normally allow, resulting in more multifunctional pins than the TS68302 8.5.3 Software Compatibility Issues The following list summarizes the major software differences between the TS68302 and the QUICC: * Since the CPU32+ is a superset of the 68000 instruction set, all previously written code will run. However, if such code is accessing the TS68302 peripherals, it will require some modification 75 2113B-HIREL-06/05 * The QUICC contains an 8-Kbyte block of memory as opposed to a 4-Kbyte block on the TS68302. The register addresses within that memory map are different * The code used to initialize the system integration features of the TS68302 has to be modified to write the corresponding features on the QUICC SIM60 * As much as possible, QUICC CPM features were made identical to those of the TS68302 CP. The most important benefit is that the code flow (if not the code itself) will port easily from the TS68302 to the QUICC. The nuances learned from the TS68302 will still be useful in the QUICC * Although the registers used to initialize the QUICC CPM are new (for example, the SCM on the TS68302 is replaced with the GSMR and PSMR on the QUICC), most registers retain their original purpose such as the SCC event, SCC mask, SCC status, and command registers. The parameter RAM of the SCCs is very similar, and most parameter RAM register names and usage are retained. More importantly, the basic structure of a buffer descriptor (BD) on the QUICC is identical to that of the TS68302, except for a few new bit functions that were added. (In a few cases, a bit in a BD status word had to be shifted) * When porting code from the TS68302 CP to the QUICC CPM, the software writer may find that the QUICC has new options to simplify what used to be a more code-intensive process. For specific examples, see the INIT TX AND RX PARAMETERS, GRACEFUL STOP TRANSMIT, and CLOSE BD commands 9. Preparation for Delivery 9.1 Packaging Microcircuits are prepared for delivery in accordance with MIL-PRF-38535 or Atmel standards. 9.2 Certificate of Compliance Atmel offers a certificate of compliances with each shipment of parts, affirming the products are in compliance either with MIL-STD-883 or Atmel standard and guarantying the parameters not tested at temperature extremes for the entire temperature range. 10. Handling MOS devices must be handled with certain precautions to avoid damage due to accumulation of static charge. Input protection devices have been designed in the chip to minimize the effect of this static buildup. However, the following handling practices are recommended: a) Devices should be handled on benches with conductive and grounded surfaces b) Ground test equipment, tools and operator c) Do not handle devices by the leads d) Store devices in conductive foam or carriers e) Avoid use of plastic, rubber, or silk in MOS areas f) Maintain relative humidity above 50% if practical 76 TS68EN360 2113B-HIREL-06/05 TS68EN360 11. Package Mechanical Data 11.1 241-pin - PGA Inches A (top view) Millimeters Dim Min Max Min Max A 1.840 1.880 46.74 47.75 C 0.110 0.140 2.79 3.56 D 0.016 0.020 0.41 0.51 E 0.045 0.055 1.143 1.4 F 0.045 0.055 1.143 1.4 G K 0.100 BASIC 0.150 0.170 2.54 BASIC 3.81 4.32 C G E A1 D G T (BOTTOM VIEW) 1 18 F A A K 77 2113B-HIREL-06/05 240-pin - CERQUAD S VIEW AC VIEW AC 4 PLACES U AD 180 121 AD 120 Y P 181 G 11.2 -X- X = L, M or N SECTION AD 240 PLACES -N- -L- 240 D 0.08(0.003) M T L-N 61 1 60 MILLIMETERS -M- A 4 x 60 TIPS E 0.20 (0.008) M H L-N S M S W C 0.25(0.010) T L-N M -H- DATUM PLANE 0.10(0.004) AB -T- SEATING PLANE VIEW AE VIEW AE 2 -H- DATUM PLANE K AA Notes: 1. Dimensioning and tolerancing per ASME Y 14.5, 1994. 2. Controlling dimension: millimeter. 3. Datum plane -H- is located at bottom of lead and is coincident with the lead where the lead exits the ceramic body at the bottom of the parting line. 4. Datums -L-, -M- and -N- to be determined at datum plane -H-. 5. Dimensions S and V to be determined at seating plane -T-. 6. Dimensions A and B define maximum ceramic body dimensions including glass protrusion and top and bottom mismatch. S M S INCHES DIM MIN MAX MIN MAX A 30.86 31.75 1.215 1.250 B 30.86 31.75 1.215 1.250 C 3.67 4.15 0.144 0.163 D 0.20 0.30 0.0079 0.012 E 3.10 3.90 0.122 0.154 F 0.19 0.25 0.0075 0.010 G 0.50 BSC 0.019 BSC J 0.13 0.175 0.005 0.007 K 0.45 0.55 0.018 0.021 P 0.25 BSC 0.010 BSC R 0.15 BSC 0.006 BSC S U 34.41 34.75 17.30 BSC 1.355 1.37 0.681 BSC V 34.41 34.75 1.355 1.37 W 0.25 0.75 0.0035 0.0232 Y Z 17.30 BSC 0.12 0.13 0.681 BSC 0.005 0.005 AA 1.80 REF 0.071 REF AB 0.95 REF 0.037 REF 2 78 J Z B V F 1 7 1 7 TS68EN360 2113B-HIREL-06/05 TS68EN360 12. Ordering Information 12.1 Hi-REL Product Commercial Atmel Part-Number Norms Package Temperature Range Tc (C) Frequency (MHz) TS68EN360MRB/Q25L MIL-PRF-38535 PGA 241 Gold -55/+125 25 5962-9760701MXC TS68EN360MRB/Q33L MIL-PRF-38535 PGA 241 Gold -55/+125 33 5962-9760702MXC TS68EN360MR1B/Q25L MIL-PRF-38535 PGA 241 Tinned -55/+125 25 5962-9760701MXA TS68EN360MR1B/Q33L MIL-PRF-38535 PGA 241 Tinned -55/+125 33 5962-9760702MXA TS68EN360MAB/Q25L MIL-PRF-38535 CERQUAD 240 -55/+125 25 5962-9760701MYA TS68EN360MAB/Q33L MIL-PRF-38535 CERQUAD 240 -55/+125 33 5962-9760702MYA Drawing Number 12.2 DSCC Standard Product Commercial Atmel Part-Number Norms Package Temperature Range Tc (C) Frequency (MHz) TS68EN360VR25L Atmel Standard PGA 241 -40/+85 25 Internal TS68EN360MR25L Atmel Standard PGA 241 -55/+125 25 Internal TS68EN360VA25L Atmel Standard CERQUAD 240 -40/+85 25 Internal TS68EN360MA25L Atmel Standard CERQUAD 240 -55/+125 25 Internal TS68EN360VR33L Atmel Standard PGA 241 -40/+85 33 Internal TS68EN360MR33L Atmel Standard PGA 241 -55/+125 33 Internal TS68EN360VA33L Atmel Standard CERQUAD 240 -40/+85 33 Internal TS68EN360MA33L Atmel Standard CERQUAD 240 -55/+125 33 Internal (TSX) TS68EN360 M R 1 B/Q 25 L Prototype version Generic Temperature range : (TC ) M : -55C, +125C V : -40C, +110C Package : R = Pin grid array 241 (gold) A = CERQUAD 240 (tin) Revision level Operating frequency : 25 : 25 MHz 33 : 33 MHz Screening : ___ = Standard B/Q = MIL-PRF-38535 Hirel lead finish : _ = Gold (for PGA) _ = Hot solder dip (for CERQUAD) 1 = Hot solder dip (for PGA - On request) 79 2113B-HIREL-06/05 13. Document Revision History Table 13-1 provides a revision history for this hardware specification. Table 13-1. 80 Revision History Revision Number Date Substantive Change(s) 2113B 04/2005 Cerquad Package Change. See page 77 2113A 03/2002 Initial Revision TS68EN360 2113B-HIREL-06/05 TS68EN360 Table of Contents Features .................................................................................................... 1 Description ............................................................................................... 1 Screening/Quality 1 1 Introduction .............................................................................................. 2 1.1 QUICC Architecture Overview ..................................................................................2 2 Pin Assignments ...................................................................................... 3 3 Signal Description ................................................................................... 5 3.1 Functional Signal Group ...........................................................................................5 3.2 Signal Index ..............................................................................................................6 4 Detailed Specification ............................................................................ 11 5 Applicable Documents .......................................................................... 11 5.1 Design and Construction ........................................................................................11 5.2 Absolute Maximum Ratings ....................................................................................11 5.3 Power Considerations ............................................................................................12 5.4 Mechanical and Environment .................................................................................13 5.5 Marking ...................................................................................................................13 6 Quality Conformance Inspection .......................................................... 13 6.1 DESC/MIL-STD-883 ...............................................................................................13 7 Electrical Characteristics ...................................................................... 13 7.1 General Requirements ...........................................................................................13 7.2 Static Characteristics ..............................................................................................14 7.3 Dynamic Characteristics .........................................................................................14 7.4 AC Power Dissipation .............................................................................................16 7.5 AC Electrical Specifications Control Timing ...........................................................17 7.6 External Capacitor For PLL ....................................................................................18 7.7 Bus Operation AC Timing Specifications ................................................................19 7.8 Bus Operation - DRAM Accesses AC Timing Specification ..................................35 7.9 040 Bus Type Slave Mode Bus Arbitration AC Electrical Specifications ................39 7.10 040 Bus Type Slave Mode Internal Read/Write/Lack Cycles AC Electrical Specifications ................................................................................................40 7.11 040 Bus Type SRAM/DRAM Cycles AC Electrical Specifications ........................43 7.12 IDMA AC Electrical Specifications ........................................................................49 i 2113B-HIREL-06/05 7.13 PIP/PIO Electrical Specifications ..........................................................................51 7.14 Interrupt Controller AC Electrical Specifications ...................................................53 7.15 BAUD Rate Generator AC Electrical Specifications .............................................54 7.16 Timer Electrical Specifications ..............................................................................55 7.17 SI Electrical Specifications ...................................................................................56 7.18 SCC in NMSI Mode-external Clock Electrical Specifications ...............................61 7.19 SCC in NMSI Mode-internal Clock Electrical Specifications ................................61 7.20 Ethernet Electrical Specifications .........................................................................64 7.21 SMC Transparent Mode Electrical Specifications ................................................67 7.22 SPI Master Electrical Specifications .....................................................................68 7.23 SPI Slave Electrical Specifications .......................................................................69 7.24 JTAG Electrical Specifications ............................................................................71 8 Functional Description .......................................................................... 73 8.1 CPU32+ Core .........................................................................................................73 8.2 System Integration Module (SIM60) .......................................................................73 8.3 Communications Processor Module (CPM) ...........................................................73 8.4 Ethernet on QUICC ................................................................................................74 8.5 Upgrading Designs from the TS68302 ...................................................................75 9 Preparation for Delivery ........................................................................ 76 9.1 Packaging ...............................................................................................................76 9.2 Certificate of Compliance .......................................................................................76 10 Handling .................................................................................................. 76 11 Package Mechanical Data ..................................................................... 77 11.1 241-pin - PGA .....................................................................................................77 11.2 240-pin - CERQUAD ...........................................................................................78 12 Ordering Information ............................................................................. 79 12.1 Hi-REL Product ....................................................................................................79 12.2 Standard Product .................................................................................................79 13 Document Revision History .................................................................. 80 ii TS68EN360 2113B-HIREL-06/05 Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. (c) Atmel Corporation 2005. All rights reserved. Atmel(R), logo and combinations thereof, Everywhere You Are (R) and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Printed on recycled paper. 2113B-HIREL-06/05 xM