Features
CPU32+ Processor (4.5 MIPS at 25 MHz)
32-bit Version of the CPU32 Core (Fully Compatible with the CPU32)
Background Debug Mode
Byte-misaligned Addressing
Up to 32-bit Data Bus (Dynamic Bus Sizing for 8 and 16 Bits)
Up to 32 Address Lines (At Least 28 Always Available)
Complete Static Design (0 - 25 MHz Operation)
Slave Mode to Disable CPU32+ (Allows Use with External Processors)
Multiple QUICCs Can Share One System Bus (One Master)
TS68040 Companion Mode Allows QUICC to be a TS68040 Companion Chip and
Intelligent Peripheral (22 MIPS at 25 MHz)
Peripheral Device of TSPC603e (see DC415/D note)
Four General-purpose Timers
Superset of MC68302 Timers
Four 16-bit Timers or Two 32-bit Timers
Gate Mode Can Enable/Disable Counting
Two Independent DMAs (IDMAs)
System Integration Module (SIM60)
Communications Processor Module (CPM)
Four Baud Rate Generators
Four SCCs (Ethernet/IEEE 802.3 Optional on SCC1-Full 10 Mbps Support)
Two SMC
VCC = +5V ± 5%
fmax = 25 MHz and 33 MHz
Military Temperature Range: -55°C < TC < +125°C
PD = 1.4W at 25 MHz; 5.25V
2W at 33 MHz; 5.25V
Description
The TS68EN360 QUad Integrated Communication Controller (QUICC) is a versatile
one-chip integrated microprocessor and peripheral combination that can be used in a
variety of controller applications. It particularly excels in communications activities.
The QUICC (pronounced “quick”) can be described as a next-generation TS68302
with higher performance in all areas of device operation, increased flexibility, major
extensions in capability, and higher integration. The term “quad” comes from the fact
that there are four serial communications controllers (SCCs) on the device; however,
there are actually seven serial channels: four SCCs, two serial management control-
lers (SMCs), and one serial peripheral interface (SPI).
Screening/Quality
This product is manufactured in full compliance with:
QML (class Q)
or according to Atmel standards
32-bit Quad
Integrated
Communication
Controller
TS68EN360
2113B–HIREL–06/05
2
2113B–HIREL–06/05
TS68EN360
1. Introduction
1.1 QUICC Architecture Overview
The QUICC is 32-bit controller that is an extension of other members of the TS68300 family.
Like other members of the TS68300 family, the QUICC incorporates the intermodule bus (IMB).
The TS68302 is an exception, having an 68000 bus on chip. The IMB provides a common inter-
face for all modules of the TS68300 family, which allows the development of new devices more
quickly by using the library of existing modules. Although the IMB definition always included an
option for an on-chip 32-bit bus, the QUICC is the first device to implement this option.
The QUICC is comprised of three modules: the CPU32+ core, the SIM60, and the CPM. Each
module utilizes the 32-bit IMB. The TS68EN360 QUICC block diagram is shown in Figure 1-1.
Figure 1-1. QUICC Block Diagram
R suffix
PGA 241
Ceramic Pin Grid Array Cavity Up
A suffix
CERQUAD 240
Ceramic Leaded Chip Carrier Cavity Down
EXTERNAL
BUS
INTERFACE
SYSTEM
PROTECTION
SIM 60
CPU32+
CORE
IMB (32 BIT)
RISC
CONTROLLER
SYSTEM
I/F
2.5-KBYTE
DUAL-PORT
RAM
DRAM
CONTROLLER
AND
CHIP SELECTS
CPM
PERIODIC
TIMER
CLOCK
GENERATION
OTHER
FEATURES
BREAKPOINT
LOGIC
JTAG
COMMUNICATIONS PROCESSOR
FOUR
GENERAL-
PURPOSE
TIMERS
INTERRUPT
CONTROLLER
OTHER
FEATURES
TIMER SLOT
ASSIGNER
SEVEN
SERIAL
CHANNELS
TWO
IDMAs FOURTEEN SERIAL
DMAs
3
2113B–HIREL–06/05
TS68EN360
2. Pin Assignments
Figure 2-1. 241-lead Pin Grid Array (PGA)
Note: Pin P9 “NC” is for guide purposes only.
123456789101112131415161718
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
D2
PA15
D4
D7
D10
D13
D16
D19
CLKO2
CLKO1
D21
D24
D27
D30
FC2
SIZ1
SIZ0
D0
PA12
D3
D6
D9
D12
D15
D18
Vcc
D20
D23
D26
D29
FC3
FC1
A29
A28
XTAL
PA13
PA9
D1
D5
D8
D11
D14
D17
GND
D22
D25
D28
D31
FC0
A30
EXTAL
MODCK0
NC4
PA10
PA6
PA14
GND
GND
GND
GND
Vcc
Vccclk
GND
GND
Vcc
GND
A31
XFC
MODCK1
GND
A26
PA7
PA3
PA11
GND
Vcc
GND
GNDclk
Vcc
GND
Vccsyn
Vcc
A27
A25
A24
PA5
PA2
PA8
GND
GND
GNDsyn
GND
A23
A22
A21
PA1
PB17
PA4
Vcc
GND
A20
A19
A18
PB16
PB15
PA0
Vcc
Vcc
A17
A16
A15
PB13
PB12
PB14
GND
NC
GND
Vcc
A14
A13
A12
PB10
PB11
PB9
GND
GND
A8
A10
A11
PB7
PB8
PB6
Vcc
GND
A4
A7
A9
PB4
PB5
PB3
Vcc
GND
A0
A5
A6
PB1
PB2
PB0
GND
Vcc
Vcc
GND
CS7
A1
A3
PC10
PC11
PC8
GND
GND
GND
Vcc
GND
Vcc
GNDs1
Vcc
CS4
IRQ7
A2
PC7
PC9
PC4
GND
GND
GND
Vcc
GND
Vcc
GND
GNDs2
Vcc
GND
Vcc
GND
CS1
CS5
TRIS
PC3
PC6
PC0
IRQ5
HALT
AVEC
TD1
TRST
IRQ4
IFETCH
NC2
IPIPE0
PRTY2
NC3
CAS0
CAS3
CS2
CS6
PC1
PC5
IRQ3
BERR
RMC
TDO
TCK
BKPT
BGACK
NC1
BCLRO
AS
PRTY1
DSACK1
R/W
FREEZE
CAS2
CS3
IRQ2
PC2
IRQ1
RESETS
PERR
TMS
RESETH
IRQ6
BG
BR
OE
IPIPE1
PRTY0
PRTY3
DSACK0
DS
CAS1
CS0
TS68EN360
(BOTTOM VIEW)
4
2113B–HIREL–06/05
TS68EN360
Figure 2-2. 240-lead Cerquad
IRQ1 240
BERR
GND
HALT
RESETS
Vcc
RMC
AVEC
GND
PERR
TDO 230
TDI
TMS
TCK
TRST
RESETH
BKPT
GND
IRQ6
IRQ4
Vcc 220
BGACK
BG
GND
Vcc
BR
NC1
IFETCH
OE
GND
BCLRO 210
NC2
Vcc
IPIPE1
GNDs2
AS
IPIPE0
PRTY0
PRTY1
Vcc
GND 200
PRTY2
PRTY3
GND
DSACK1
GND
DSACK0
Vcc
NC3
R/W
GND 190
DS
FREEZE
CAS0
GND
CAS1
Vcc
CAS2
CAS3
GNDs1 181
D061 D1
GND
D2
D3
D4
Vcc
D5
D6
GND70 D7
D8
D9
D10
D11
GND
D12
D13
D14
Vcc80 D15
D16
GND
D17
D18
D19
CLKO2
GNDclk
Vccclk
CLKO190 D20
D21
D22
GND
D23
D24
D25
Vcc
D26
D27100 D28
GND
D29
D30
D31
GND
Vcc
FC3
FC2
FC1110 GND
FC0
SIZ1
SIZ0
Vcc
A31
A30
GND
A29
A28120
CS0
180
CS1
CS2
CS3
Vcc
GND
CS4
CS5
CS6
CS7
IRQ7
170
TRIS
A0
A1
GND
A2
A3
Vcc
A4
A5
GND
160
A6
A7
Vcc
GND
A8
A9
GND
A10
A11
Vcc
150
A12
A13
GND
A14
A15
A16
A17
A18
GND
A19
140
A20
A21
Vcc
A22
A23
A24
GND
A25
A26
A27
130
NC4
GND
MODCK1
MODCK0
XTAL
EXTAL
GNDsyn
XFC
Vccsyn
121
IRQ5
1
IRQ3
IRQ2
PC0
PC1
PC2
GND
PC3
PC4
PC5
10
PC6
Vcc
PC7
PC8
PC9
PC10
GND
PC11
PB0
PB1
20
PB2
PB3
PB4
PB5
PB6
GND
PB7
PB8
PB9
PB10
30
Vcc
PB11
PB12
PB13
PB14
GND
PB15
PB16
PB17
PA0
40
GND
Vcc
PA1
PA2
PA3
PA4
GND
PA5
PA6
PA7
50
PA8
Vcc
PA9
PA10
PA11
PA12
GND
PA13
PA14
PA15
60
TS68EN360
(TOP VIEW)
PIN ONE INDICATOR
5
2113B–HIREL–06/05
TS68EN360
3. Signal Description
3.1 Functional Signal Group
Figure 3-1. QUICC Functional Signal Groups
QUICC
A31±A28/WE0±WE3
A27±A0
DATA BUS
D31±D16
D15±D0
PRTY3/16BM
BUS CONTROL
SIZ0
SIZ1
R/W
AS
BUS ARBITRATION
BR
BG
BCLRO/CONFIG1/RAS2DD
SYSTEM CONTROL
RESETH
RESETS
HALT
PERR
INTERRUPT CONTROL
AVEC/IACK5/AVECO
MEMORY CONTROLLER
CS6±CS0/RAS6±RAS0
CS/RAS7/IACK7
CAS3±CAS0/IACK6,3,2,1
TCK
TMS
TDI
TDO
TRST
CLOCK
XTAL
EXTAL
XFC
MODCK1±MODCK0
CLKO2±CLKO1
ADDRESS BUS
RXD1/PA0
PORT A
TXD1/PA1
RXD2/PA2
TXD2/PA3
L1TXDB/RXD3/PA4
L1RXDB/TXD3/PA5
L1TXDA/RXD4/PA6
L1RXDA/TXD4/PA7
TIMERs/SCCs/SIs/CLOCKs/BRG
TIN1/L1RCLKA/BRGO1/CLK1/PA8
BRGCLK1/TOUT1/CLK2/PA9
TIN2/L1TCLKA/BRGO2/CLK3/PA10
TOUT2/CLK4/PA11
TIN3/BRGO3/CLK5/PA12
BRGCLK2/L1RCLKB/TOUT3/CLK6/PA13
TIN4/BRGO4/CLK7/PA14
L1TCLKB/TOUT4/CLK8/PA15
PORT B (PIP)
RRJCT1/SPISEL/PB0
RSTRT2/SPICLK/PB1
RRJCT2/SPIMOSI(SPITXD)/PB2
BRGO4/SPIMISO(SPIRXD)/PB3
DREQ1/BRGO1/PB4
DACK1/BRGO2/PB5
DONE1/SMTXD1/PB6
DONE2/SMRXD1/PB7
DREQ2/SMSYN1/PB8
DACK2/SMSYN2/PB9
L1CLKOB/SMTXD2/PB10
L1CLKOA/SMRXD2/PB11
L1ST1/RTS1/PB12
L1ST2/RTS2/PB13
L1ST3/L1RQB/RTS3/PB14
L1ST4/L1RQA/RTS4/PB15
STRBO/BRGO3/PB16
STRBI/RSTRT1/PB17
PORT C (INTERRUPT PARALLEL I/O)
L1ST1/RTS1/PC0
L1ST2/RTS2/PC1
L1ST3/L1RQB/RTS3/PC2
L1ST4/L1RQA/RTS4/PC3
CTS1/PC4
TGATE1/CD1/PC5
CTS2/PC6
TGATE2/CD2/PC7
SDACK2/L1TSYNCB/CTS3/PC8
L1RSYNCB/CD3/PC9
SDACK1/L1TSYNCA/CTS4/PC10
L1RSYNCA/CD4/PC11
TS68360
240 PINS
TEST
FC2±FC0/
TM2±TM0
FC3/
TT0
PRTY1±PRTY2/
IOUT1±IOUT2
PRTY2/IOUT0/
RQOUT
DSACK0/
TBI
DSACK1/
TA
DS/
TT1
OE/AMUX
RMC/CONFIG0/
LOCK
BGACK/
BB
BERR/
TEA
IRQ1/
OUT0
/RQOUTIRQ1/
OUT0
/RQOUT
IRQ4/
OUT1
IRQ6/
OUT2
IRQ2,3,5,7
TRIS/
TS
BKPT/
BKPT0
/DSCLK
FREEZE/CONFIG2/
MBARE
IPIPE1/RAS1DD/
BCLRI
IPIPE0/
BADD2
/DSO
IFETCH/
BADD3
/DSI
6
2113B–HIREL–06/05
TS68EN360
3.2 Signal Index
Table 1. System Bus Signal Index (Normal Operation)
Group Signal Name Mnemonic Function
Address
Address Bus A27-A0 Lower 27 bits of address bus. (I/O)(1)
Address Bus/Byte Write
Enables
A31-A28
WE3-WE0
Upper four bits of address bus (I/O), or byte write enable
signals (O)(1) for accesses to external memory or peripherals.
Function Codes FC3-FC0 Identifies the processor state and the address space of the
current bus cycle. (I/O)
Data
Data Bus 31 - 16 D31-D16 Upper 16-bit data bus used to transfer byte or word data.
Used in 16-bit bus mode. (I/O)
Data Bus 15 - 0 D15-D0
Lower 16-bit data bus used to transfer 3-byte or long-word
data. (I/O)
Not used in 16-bit bus mode.
Parity
Parity 2 - 0 PRTY2-PRTY0 Parity signals for byte writes/reads from/to external memory
module. (I/O)
Parity 3/16BM PRTY3/16BM Parity signals for byte writes/reads from/to external memory
module or defines 16-bit bus mode. (I/O)
Parity Error PERR Indicates a parity error during a read cycle. (O)
Memory
Controller
Chip Select
Row Address Select 7
Interrupt Acknowledge 7
CS
RAS7
IACK7
Enables peripherals or DRAMs at programmed addresses (O)
or interrupt level 7 acknowledge line. (O)
Chip Select 6-0
Row Address Select 6-0
CS6-CS0
RAS6-RAS0
Enables peripherals or DRAMs at programmed addresses.
(O)
Column Address Select
3 - 0/Interrupt
Acknowledge 1, 2, 3, 6
CAS3-CAS0/
IACK6,3,2,1
DRAM column address select or interrupt level acknowledge
lines. (O)
Bus Arbitration
Bus Request BR Indicates that an external device requires bus mastership.
(I)(1)
Bus Grant BG Indicates that the current bus cycle is complete and the
QUICC has relinquished the bus. (O)
Bus Grand Acknowledge BGACK Indicates that an external device has assumed bus
mastership. (I)
Read-Modify-Write Cycle
Initial Configuration 0
RMC
CONFIG0
Identifies the bus cycle as part of an indivisible
read-modify-write operation (I/O) or initial QUICC
configuration select. (I)
Bus Clear Out/Initial
Configuration 1/Row
Address Select 2
Double-Drive
BCLRO/CONFIG1/
RAS2DD
Indicates that an internal device requires the external bus
(Open-Drain O) or initial QUICC configuration select (I) or row
address select 2 double-drive output. (O)
7
2113B–HIREL–06/05
TS68EN360
Bus Control
Data and Size
Acknowledge DSACK1 - DSACK0
Provides asynchronous data transfer acknowledgement and
dynamic bus sizing (open-drain I/O but driven high before
three-stated)
Address Strobe AS Indicates that a valid address is on the address bus. (I/O)
Data Strobe DS
During a read cycle, DS indicates that an external device
should place valid data on the data bus. During a write cycle,
DS indicates that valid data is on the data bus. (I/O)
Size SIZ1-SIZ0 Indicates the number of bytes remaining to be transferred for
this cycle. (I/O)
Read/Write R/W Indicates the direction of data transfer on the bus. (I/O)
Output Enable Address
Multiplex OE/AMUX
Active during a read cycle indicates that an external device
should place valid data on the data bus (O) or provides a
strobe for external address multiplexing in DRAM accesses if
internal multiplexing is not used. (O)
Interrupt
Control
Interrupt Request
Level 7-1 IRQ7-IRQ1 Provides external interrupt requests to the CPU32+ at priority
levels 7-1. (I)
Autovector/Interrupt
Acknowledge 5 AVEC/IACK5 Autovector request during an interrupt acknowledge cycle
(open-drain I/O) or interrupt level 5 acknowledge line. (O)
System
Control
Soft Reset RESETS Soft system reset. (open-drain I/O)
Hard Reset RESETH Hard system reset. (open-drain I/O)
Halt HALT Suspends external bus activity. (open-drain I/O)
Bus Error BERR Indicates an erroneous bus operation is being attempted.
(open-drain I/O)
Clock and Test
System Clock Out 1 CLKO1 Internal system clock output 1. (O)
System Clock Out 2 CLKO2 Internal system clock output 2 - normally 2x CLKO1. (O)
Crystal Oscillator EXTAL, XTAL Connections for an external crystal to the internal oscillator
circuit. EXTAL (I), XTAL (O)
External Filter Capacitor XFC Connection pin for an external capacitor to filter the circuit of
the PLL. (I)
Clock Mode Select 1-0 MODCK1-MODCK0 Selects the source of the internal system clock. (I) THESE
PINS SHOULD NOT BE SET TO 00
Instruction Fetch/
Development Serial Input IFETCH/DSI
Indicates when the CPU32+ is performing an instruction word
prefetch (O) or input to the CPU32+ background debug mode.
(I)
Instruction Pipe 0/
Development Serial
Output
IPIPE0/DSO
Used to track movement of words through the instruction
pipeline (O) or output from the CPU32+ background debug
mode. (O)
Instruction Pipe 1/Row
Address Select 1
Double-Drive
IPIPE1/RAS1DD
Used to track movement of words through the instruction
pipeline (O), or a row address select 1 “double-drive” output
(O)
Breakpoint/Development
Serial Clock BKPT/DSCLK Signals a hardware breakpoint to the QUICC (open-drain I/O),
or clock signal for CPU32+ background debug mode (I)
Freeze/Initial
Configuration 2 FREEZE/CONFIG2 Indicates that the CPU32+ has acknowledged a breakpoint
(O), or initial QUICC configuration select (I)
Table 1. System Bus Signal Index (Normal Operation) (Continued)
Group Signal Name Mnemonic Function
8
2113B–HIREL–06/05
TS68EN360
Note: 1. I denotes input, O denotes output and I/O is input/output.
Clock and Test
(Cont’d)
Three-State TRIS Used to three-state all pins if QUICC is configured as a
master. Always Sampled except during system reset. (I)
Test Clock TCK Provides a clock for Scan test logic. (I)
Test Mode Select TMS Controls test mode operations. (I)
Test Data In TDI Serial test instructions and test data signal. (I)
Test Data Out TDO Serial test instructions and test data signal. (O)
Test Reset TRST Provides an asynchronous reset to the test controller. (I)
Power
Clock Synthesizer Power VCCSYN Power supply to the PLL of the clock synthesizer
Clock Synthesizer
Ground GNDSYN Ground supply to the PLL of the clock synthesizer
Clock Out Power VCCCLK Power supply to clock out pins
Clock Out Ground GNDCLK Ground supply to clock out pins
Special Ground 1 GNDS1 Special ground for fast AC timing on certain system bus
signals
Special Ground 2 GNDS2 Special ground for fast AC timing on certain system bus
signals
System Power Supply
and Return VCC, GND Power supply and return to the QUICC
-- No Connect NC4-NC1 Four no-connect pins
Table 1. System Bus Signal Index (Normal Operation) (Continued)
Group Signal Name Mnemonic Function
9
2113B–HIREL–06/05
TS68EN360
Table 3-1. Peripherals Signal Index
Group Signal Name Mnemonic Function
SCC
Receive Data RXD4-RXD1 Serial receive data input to the SCCs. (I)
Transmit Data TXD4-TXD1 Serial transmit data output from the SCCs. (O)
Request to Send RTS4-RTS1 Request to send outputs indicate that the SCC is ready to
transmit data. (O)
Clear to Send CTS4-CTS1 Clear to send inputs indicate to the SCC that data
transmission may begin. (I)
Carrier Detect CD4-CD1 Carrier detect inputs indicate that the SCC should begin
reception of data. (I)
Receive Start RSTRT1
This output from SCC1 identifies the start of a receive frame.
Can be used by an Ethernet CAM to perform address
matching. (O)
Receive Reject RRJCT1
This input to SCC1 allows a CAM to reject the current
Ethernet frame after it determines the frame address did not
match. (I)
Clocks CLK8-CLK1 Input clocks to the SCCs, SCMs, SI, and the baud rate
generators. (I)
IDMA
DMA Request DREQ2-DREQ1 A request (input) to an IDMA channel to start an IDMA
transfer. (I)
DMA Acknowledge DACK2-DACK1 An acknowledgement (output) by the IDMA that an IDMA
transfer is in progress. (O)
DMA Done DONE2-DONE1 A bidirectional signal that indicates the last IDMA transfer in
a block of data. (I/O)
TIMER
Timer Gate TGATE2-TGATE1 An input to a timer that enables/disables the counting
function. (I)
Timer Input TIN4-TIN1 Time reference input to the timer that allows it to function as
a counter. (I)
Timer Output TOUT4-TOUT1 Output waveform (pulse or toggle) from the timer as a result
of a reference value being reached. (O)
SPI
SPI Master In Slave Out SPIMISO Serial data input to the SPI master (I); serial data output from
an SPI slave. (O)
SPI Master Out Slave In SPIMOSI Serial data output from the SPI master (O); serial data input
to an SPI slave. (I)
SPI Clock SPICLK Output clock from the SPI master (O); input clock to the SPI
slave. (I)
SPI Select SPISEL SPI slave select input. (I)
SMC
SMC Receive Data SMRXD2-SMRXD1 Serial data input to the SMCs. (I)
SMC Transmit Data SMTXD2-SMTXD1 Serial data output from the SMCs. (O)
SMC Sync SMSYN2-SMSYN1 SMC synchronization signal. (I)
10
2113B–HIREL–06/05
TS68EN360
SI
SI Receive Data L1RXDA, L1RXDB Serial input to the time division multiplexed (TDM) channel A
or channel B
SI Transmit Data L1TXDA, L1TXDB Serial output from the TDM channel A or channel B
SI Receive Clock L1RCLKA, L1RCLKB Input receive clock to TDM channel A or channel B
SI Transmit Clock L1TCLKA, L1TCLKB Input transmit clock to TDM channel A or channel B
SI Transmit Sync Signals L1TSYNCA,
L1TSYNCB
Input transmit data sync signal to TDM channel A or
channel B
SI Receive Sync Signals L1RSYNCA,
L1RSYNCB
Input receive data sync signal to TDM channel A or
channel B
IDL Interface Request L1RQA, L1RQB IDL interface request to transmit on the D channel. Output
from the SI
SI Output Clock L1CLKOA, L1CLKOB Output serial data rate clock. Can output a data rate clock
when the input clock is 2x the data rate
SI Data Strobes L1ST4-L1ST1
Serial data strobe outputs can be used to gate clocks to
external devices that do not have a built-in time slot assigner
(TSA)
BRG
Baud Rate Generator
Out 4-1 BRGO4-BRGO1 Baud rate generator output clock allows baud rate generator
to be used externally
BRG Input Clock CLK2, CLK6 Baud rate generator input clock from which BRG will derive
the baud rates
PIP
Port B 15-0 PB15-BP0 PIP Data I/O Pins
Strobe Out STRBO This input causes the PIP output data to be placed on the
PIP data pins
Strobe In STRBI This input causes data on the PIP data pins to be latched by
the PIP as input data
SDMA SDMA Acknowledge 2-1 SDACK2-SDACK1 SDMA output signals used in RISC receiver to mark fields in
the Ethernet receive frame
Table 3-1. Peripherals Signal Index (Continued)
Group Signal Name Mnemonic Function
11
2113B–HIREL–06/05
TS68EN360
4. Detailed Specification
This specification describes the specific requirements for the microcontroller TS68EN360 -
25 MHz and 33 MHz in compliance with MIL-STD-883 class B or Atmel standard screening.
5. Applicable Documents
1. MIL-STD-883: test methods and procedures for electronics
2. MIL-PRF-38535: general specifications for microcircuits
3. DESC 5962-SMD-97607
The microcircuits are in accordance with the applicable document and as specified herein.
5.1 Design and Construction
5.1.1 Terminal Connections
Depending on the package, the terminal connections shall be as shown in Figure 2-1 and Figure
2-2.
5.1.2 Lead Material and Finish
Lead material and finish shall be as specified in MIL-STD-883 (see enclosed ”Ordering Informa-
tion” on page 79)
5.1.3 Package
The macrocircuits are packaged in hermetically sealed ceramic packages which are conform to
case outlines of MIL-STD-1835 or as follow:
PGA but see ”241-pin – PGA” on page 77
CERQUAD
The precise case outlines are described at the end of the specification (”Package Mechanical
Data” on page 77) and into MIL-STD-1835.
5.2 Absolute Maximum Ratings
Notes: 1. Permanent damage can occur if maximum ratings are exceeded. Exposure to voltages or cur-
rents in excess of recommended values affects device reliability. Device modules may not
operate normally while being exposed to electrical extremes.
2. Although sections of the device contain circuitry to protect against damage from high static
voltages or electrical fields, take normal precautions to avoid exposure to voltages higher than
maximum-rated voltages.
3. The supply voltage VCC must start and restart from 0.0V; otherwise, the 360 will not come out
of reset properly.Unless otherwise stated, all voltages are referenced to the reference terminal.
Table 5-1. Absolute Maximum Ratings
Rating Symbol Value Unit
Supply Voltage(1)(2) VCC -0.3 to +6.5 V
Input Voltage(1)(2) VIN -0.3 to +6.5 V
Storage Temperature Range TSTG -55 to +150 °C
12
2113B–HIREL–06/05
TS68EN360
This device contains protective circuitry against damage due to high static voltages or electrical
fields; however, it is advised that normal precautions be taken to avoid application of any volt-
ages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation
is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or
VDD)
TJ = TA + (PD · θJA)
PD = (VDD · IDD) + PI/O
Where PI/O is the power dissipation on pins.
5.3 Power Considerations
The average chip-junction temperature, TJ, in °C can be obtained from:
TJ = TA ÷ (PD · ΘJA)(1)
where:
TA = Ambient Temperature, °C
ΘJA = Package Thermal Resistance,
Junction-to-Ambient, C/W
PD = PINT + P I/O
PINT = ICC · VCC, Watts-chip Internal Power
PI/O = Power Dissipation on Input and Output Pins-User Determined
For most applications, PI/O < 0.3 · PINT and can be neglected.
Table 5-2. Recommended Conditions of Use
Unless otherwise stated, all voltages are referenced to the reference terminal
Symbol Parameter Min Typ Max Unit
VCC Supply Voltage Range +4.75 +5.25 V
VIL Logic Low Level Input Voltage Range GND +0.8 V
VIH Logic High Level Input Voltage Range +2.0 VCC V
Tcase Operating Temperature -55 +125 °C
VOH High Level Output Voltage +2.4 V
fsys System Frequency (For 25 MHz version) 25 MHz
(For 33 MHz version) 33 MHz
Table 5-3. Thermal Characteristics
Symbol Parameter Value Unit
θJC Thermal Resistance - Junction to Case 240-pin Cerquad 2
°C/W
241-pin PGA 7
θJA Thermal Resistance - Junction to Ambient 240-pin Cerquad 27.4
°C/W
241-pin PGA 22.8
13
2113B–HIREL–06/05
TS68EN360
An approximate relationship between PD and TJ (if PI/O is neglected) is:
PD = K ÷ (TJ + 273°C) (2)
Solving Equations (1) and (2) for K gives:
K = PD · (TA + 273°C) + ΘJA · PD2(3)
where K is a constant pertaining to the particular part. K can be determined from Equation (3) by
measuring PD (at thermal equilibrium) for a know TA. Using this value of K, the values of PD and
TJ can be obtained by solving Equations (1) and (2) iteratively for any value of TA.
5.4 Mechanical and Environment
The microcircuits shall meet all mechanical environmental requirements of either MIL-STD-883
for class B devices or for Atmel standard screening.
5.5 Marking
The document where are defined the marking are identified in the related reference documents.
Each microcircuit are legible and permanently marked with the following information as
minimum:
Atmel logo
Manufacturer’s part number
Class B identification
Date-code of inspection lot
ESD identifier if available
Country of manufacturing
6. Quality Conformance Inspection
6.1 DESC/MIL-STD-883
Is in accordance with MIL-M-38535 and method 5005 of MIL-STD-883. Group A and B inspec-
tions are performed on each production lot. Group C and D inspections are performed on a
periodical basis.
7. Electrical Characteristics
7.1 General Requirements
All static and dynamic electrical characteristics specified for inspection purposes and the rele-
vant measurement conditions are given below:
Static electrical characteristics for the electrical variants
Dynamic electrical characteristics for TS68EN360 (25 MHz, 33 MHz)
For static characteristics, test methods refer to IEC 748-2 method number, where existing.
For dynamic characteristics, test methods refer to clause Table 7-1 of this specification.
14
2113B–HIREL–06/05
TS68EN360
7.2 Static Characteristics
The electrical specifications in this document are preliminary. (See numbered notes)
7.3 Dynamic Characteristics
The AC specifications presented consist of output delays, input setup and hold times, and signal
skew times. All signals are specified relative to an appropriate edge of the clock and possibly to
one or more other signals.
The measurement of the AC specifications is defined by the waveforms shown in Figure 7-1. To
test the parameters guaranteed by Atmel inputs must be driven to the voltage levels specified in
the figure. Outputs are specified with minimum and/or maximum limits, as appropriate, and are
measured as shown. Inputs are specified with minimum setup and hold times and are measured
as shown. Finally, the measurement for signal-to-signal specifications are shown.
Note that the testing levels used to verify conformance to the AC specifications do not affect the
guaranteed DC operation of the device as specified in the DC electrical characteristics.
Table 7-1. Static Characteristics – GND = 0 VDC, TC = -55 to +125°C
Characteristic Symbol Min Max Unit
Input High Voltage (except EXTAL) VIH 2.0 VCC V
Input Low Voltage (5V Part) VIL GND 0.8 V
Input Low Voltage (Part Only; PA8-15, PB1, PC5, PC7, TCK) VIL GND 0.5 V
Input Low Voltage (Part Only; All Other Pins) VIL GND 0.8 V
EXTAL Input High Voltage VIHC 0.8*(VCC)V
CC + 0.3 V
Undershoot ––-0.8V
Input Leakage Current (All Input Only Pins except for TMS, TDI and TRST)
Vin = 0/5V Iin -2.5 2.5 µA
Hi-Z (Off-State) Leakage Current (All Noncrystal Outputs and I/O Pins except
TMS,TDI and TRST) Vin = 0/5V IOZ -2.5 -2.5 µA
Signal Low Input Current VIL = 0.8V (TMS, TDI and TRST Pins Only)
Signal High Input Current VIH = 2.0V (TMS, TDI and TRST Pins Only)
IL
IH
-0.5
-0.5
0.5
0.5
mA
mA
Output High Voltage
IOH = -0.8 mA, VCC = 4.75V
AII Noncrystal Outputs Except Open Drain Pins
VOH 2.4 V
Output Low Voltage
IOL = 2.0 mA, CLKO1-2, FREEZE, IPIPE0-1, IFETCH, BKPTO
IOL = 3.2 mA, A31-A0, D31-D0, FC3-0, SIZ0-1, PA0, 2, 4, 6, 8-15, PB0-5,
PB8-17, PC0-11, TDO, PERR, PRTY0-3, IOUT0-2, AVECO, AS, CAS3-0,
BLCRO, RAS0-7
IOL = 5.3 mA, DSACK0-1, R/W, DS, OE, RMC, BG, BGACK, BERR
IOL = 7 mA, TXD1-4
IOL = 8.9 mA, PB6, PB7, HALT, RESET, BR (Output)
VOL
0.5
0.5
0.5
0.5
0.5
V
Input Capacitance
AII I/O Pins Cin 20 pF
Load Capacitance (except CLKO1-2) CL 100 pF
Load Capacitance (CLKO1-2) CLc– 50pF
Power VCC 4.75 5.25 V
15
2113B–HIREL–06/05
TS68EN360
Figure 7-1. Drive Levels and Test Points For AC Specifications
Notes: 1. This output timing is applicable to all parameters specified relative to the rising edge of the clock
2. This output timing is applicable to all parameters specified relative to the falling edge of the clock
3. This input timing is applicable to all parameters specified relative to the rising edge of the clock
4. This input timing is applicable to all parameters specified relative to the falling edge of the clock
5. This timing is applicable to all parameters specified relative to the assertion/negation of another signal
Legend:
a) Maximum output delay specification
b) Minimum output hold time
c) Minimum input setup time specification
d) Minimum input hold time specification
e) Signal valid to signal valid specification (maximum or minimum)
f) Signal valid to signal invalid specification (maximum or minimum)
0.8V
2.0V
B
2.0V
0.8V
VALID
OUTPUT nVALID
OUTPUT n + 1
2.0V
0.8V
2.0V
0.8V
2.0V
0.8V
VALID
OUTPUT nVALID
OUTPUT n+1
2.0V
0.8V
B
A
VALID
INPUT
2.0V
0.8V
2.0V
0.8V
D
VALID
INPUT
2.0V
0.8V
2.0V
0.8V
D
DRIVE
TO 0.5V
DRIVE
TO 2.4V
2.0V
0.8V
2.0V
0.8V
F
CLKOUT
OUTPUTS(1)
OUTPUTS(2)
INPUTS(3)
INPUTS(4)
ALL SIGNALS(5)
E
A
C
C
16
2113B–HIREL–06/05
TS68EN360
7.4 AC Power Dissipation
Notes: 1. Rev A mask is C63T
2. Rev B masks are C69T and F35G
3. Current Rev C masks are E63C, E68C and F15W
4. EXTAL frequency is 32 kHz
All measurements were taken with only CLKO1 enabled, VCC = 5.0V, VIL = 0V and VIH = VCC
Notes: 1. Rev A mask is C63T
2. Rev B masks are C69T and F35G
3. Current Rev C masks are E63C, E68C and F15W
Table 7-2. Typical Current Drain
Mode of Operation Symbol
System Clock
Frequency
BRGCLK Clock
Frequency
SyncCLK Clock
Frequency Typ Unit
Normal mode (Rev A(1) and Rev B(2))I
DD 25 MHz 25 MHz 25 MHz 250 mA
Normal Mode (Rev C(3) and Newer) IDD 25 MHz 25 MHz 25 MHz 237 mA
Normal Mode IDD 33 MHz 33 MHz 33 MHz 327 mA
Low Power Mode IDDSB
Divide by 2
12.5 MHz
Divide by 16
1.56 MHz
Divide by 2
12.5 MHz 150 mA
Low Power Mode IDDSB
Divide by 4
6.25 MHz
Divide by 16
1.56 MHz
Divide by 4
6.25 MHz 85 mA
Low Power Mode IDDSB
Divide by 16
1.56 MHz
Divide by 16
1.56 MHz
Divide by 4
6.25 MHz 35 mA
Low Power Mode IDDSB
Divide by 256
97.6 kHz
Divide by 16
1.56 MHz
Divide by 4
6.25 MHz 20 mA
Low Power Mode IDDSB
Divide by 256
97.6 kHz
Divide by 64
390 kHz
Divide by 64
390 kHz 13 mA
Low Power Stop VCO Off(4) IDDSP 0.5 mA
PLL Supply Current
PLL Disabled
PLL Enabled
IDDPD
IDDPE
TBD
TBD
Table 7-3. Maximum Power Dissipation
System Frequency VCC Max PDUnit Mask
25 MHz 5.25V 1.80 W REV A(1) and REV B(2)
25 MHz 5.25V 1.45 W REV C(3) and Newer
25 MHz 3.6V 0.65 W REV C(3) and Newer
33 MHz 5.25V 2.00 W REV C(3) and Newer
17
2113B–HIREL–06/05
TS68EN360
7.5 AC Electrical Specifications Control Timing
Note: 1. Note that the minimum VCO frequency and the PLL default values put some restrictions on the minimum system frequency.
The following calculation should be used to determine the actual value for specifications 5B, 5C and 5D.
5B: 25 MHz ±(0.9 ns + 0.25 x (rise time)) (1.4 ns at rise = 2 ns; 1.9 ns at rise = 4 ns)
33 MHz ±(0.5 ns + 0.25 x (rise time)) (1 ns at rise = 2 ns; 1.5 ns at rise = 4 ns)
5C: 25/33 MHz ±(2 ns + 0.25 x (rise time)) (2.5 ns at rise = 2 ns; 3 ns at rise = 4 ns)
5D: 25 MHz ±(3 ns + 0.5 x (rise time)) (4 ns at rise = 2 ns; 5 ns at rise = 4 ns)
33 MHz ±(2.5 ns + 0.5 x (rise time)) (3.5 ns at rise = 2 ns; 4.5 ns at rise = 4 ns)
Table 7-4. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure
7-2)
Number Characteristic Symbol
25 MHz 33.34 MHz
UnitMin Max Min Max
System Frequency fsys dc(1) 25.00 33.34 MHz
Crystal Frequency fXTAL 25 6000 25 6000 kHz
On-Chip VCO System Frequency fsys 20 50 20 67 MHz
Start-up Time
With external clock (oscillator disabled) or after
changing the multiplication factor MF
tpll 2500 clks
CLKO1-2 stability CLK TBD TBD %
1 CLKO1 Period tcyc 40 30 ns
1A EXTAL Duty Cycle, MF tdcyc 40 60 40 60 %
1C External Clock Input Period tEXTcyc 40 30 ns
2, 3 CLKO1 Pulse Width (Measured at 1.5V) tCW1 19 14 ns
2A, 3A CLKO2 Pulse Width (Measured at 1.5V) tCW2 9.5 7 ns
4, 5 CLKO1 Rise and Fall Times (Full drive) tCrf1 –2–2ns
4A, 5A CLKO2 Rise and Fall Times (Full drive) tCrf2 –2–1.6ns
5B EXTAL to CLKO1 Skew-PLL enabled (MF< 5) tEXTP1 aans
5C EXTAL to CLKO2 Skew-PLL enabled (MF< 5) tEXTP2 aans
5D CLKO1 to CLKO2 Skew AtmelKW aans
18
2113B–HIREL–06/05
TS68EN360
Figure 7-2. Clock Timing
7.6 External Capacitor For PLL
Note: 1. MF – multiplication factor.
7.6.1 Examples:
Notes: 1. MODCK1 pin = 0, MF = 1 CXFC = 400 pF
2. MODCK1 pin = 1, crystal is 32.768 kHz (or 4.192 MHz), initial MF = 401, initial frequency =
13.14 MHz, later on MF is changed to 762 to support a frequency of 25 MHz. Minimum CXFC
is: 762 x 380 = 289 nF, Maximum CXFC is: 401 x 970 = 390 nF. The recommended CXFC for 25
MHz is: 762 x 540 = 414 nF. 289 nF < CXFC < 390 nF and closer to 414 nF. The proper avail-
able value for CXFC is 390 nF.
3. MODCK1 pin = 1, crystal is 32.768 kHz (or 4.192 MHz), initial MF = 401, initial frequency =
13.14 MHz, later on MF is changed to 1017 to support a frequency of 33.34 MHz. Minimum
CXFC is: 1017 x 380 = 386 nF, Maximum CXFC is: 401 x 970 = 390 nF 386 nF < CXFC < 390
nF. The proper available value for CXFC is 390 nF.
4. In order to get higher range, higher crystal frequency can be used (i.e. 50 kHz), in this case:
Minimum CXFC is: 667 x 380 = 253 nF, Maximum CXFC is: 401 x 970 = 390 nF 386 nF <
CXFC < 390 nF.
EXTAL
CLKO1
CLKO2
(INPUT)
(OUTPUT)
(OUTPUT)
5
4
1
1C
23
2A 3A
4A 5A
5C 5B
5D
VOLTAGE MIDPOINT
1A
Table 7-5. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary.
Characteristic Symbol Min Max Unit
PLL External Capacitor (XFC to VCCSYN) cXFC
MF< 5 (Recommended value MF x 400 pF)(1) MF x 340 MF x 480 pF
MF> 4 (Recommended value MF x 540 pF)(1) MF x 380 MF x 970 pF
19
2113B–HIREL–06/05
TS68EN360
7.7 Bus Operation AC Timing Specifications
Table 7-6. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-3 to Figure 7-19)
Number Characteristic Symbol
25 MHz 33.34 MHz
UnitMin Max Min Max
6 CLKO1 High to Address, FC, SIZ, RMC Valid tCHAV 0 15 0 12 ns
6A CLKO1 High to Address Valid (GAMX = 1) tCHAV 0 20 0 15 ns
7CLKO1 High to Address, Data, FC, SIZ, RMC High
Impedance tCHAZx 0 40 0 30 ns
8CLKO1 High to Address, Data, FC, SIZ, RMC
Invalid tCHAZn -2 -2 ns
9CLKO1 Low to AS, DS, OE, WE, IFETCH, IPIPE,
IACKx Asserted tCLSA 3 20 3 15 ns
9(10) CLKO1 Low to CSx/RASx Asserted tCLSA 4 16 4 12 ns
9B(11) CLKO1 High to CSx/RASx Asserted tCHCA 4 16 4 12 ns
9A(2)(10) AS to DS or CSx/RASx or OE Asserted (Read) tSTSA -6 6 -5.625 5.625 ns
9C(2)(11) AS to CSx/RASx Asserted tSTCA 14 26 9 21 ns
11(10) Address, FC, SIZ, RMC, valid to AS, CSx/RASx,
OE, WE, (and DS Read) Asserted tAVSA 10 8 ns
11A(11) Address, FC, SIZ, RMC, Valid to CSx/RASx
Asserted tAVCA 30 22.5 ns
12 CLKO1 Low to AS, DS, OE, WE, IFETCH, IPIPE,
IACKx Negated tCLSN 3 20 3 15 ns
12(16) CLKO1 Low to CSx/RASx Negated tCLSN 4 16 4 12 ns
12A(13)(16) CLKO1 High to CSx/RASx Negated tCHCN 4 16 4 12 ns
12B CS negate to WE negate (CSNTQ = 1) AtmelTW 15 12 ns
13(12) AS, DS, CSx, OE, WE, IACKx Negated to Address,
FC, SIZ Invalid (Address Hold) tSNAI 10 7.5 ns
13A(13) CSx Negated to Address, FC, SIZ, Invalid (Address
Hold) tCNAI 30 22.5 ns
14(10)(12) AS, CSx, OE, WE (and DS Read) Width Asserted tSWA 75 56.25 ns
14C(11)(13) CSx Width Asserted tCWA 35 26.25 ns
14A DS Width Asserted (Write) tSWAW 35 26.25 ns
14B AS, CSx, OE, WE, IACKx, (and DS Read) Width
Asserted (Fast Termination Cycle) tSWDW 35 26.25 ns
14D(13) CSx Width Asserted (Fast Termination Cycle) tCWDW 15 10 ns
15(3)(10)(12) AS, DS, CSx, OE, WE Width Negated tSN 35 26.25 ns
16 CLKO1 High to AS, DS, R/W High Impedance tCHSZ 40 30 ns
17(12) AS, DS, CSx, WE Negated to R/W High tSNRN 10 7.5 ns
17A(13) CSx Negated to R/W High tCNRN 30 22.5 ns
18 CLKO1 High to R/W High tCHRH 0 20 0 15 ns
20
2113B–HIREL–06/05
TS68EN360
20 CLKO1 High to R/W Low tCHRL 3 20 3 15 ns
21(10) R/W High to AS, CSx, OE Asserted tRAAA 10 7.5 ns
21A(11) R/W High to CSx Asserted tRACA 30 ns
22 R/W Low to DS Asserted (Write) tRASA 47 36 ns
23 CLKO1 High to Data-Out tCHDO 23 18 ns
23A CLKO1 High to Parity Valid tCHPV 25 20 ns
23B Parity Valid to CAS Low tPVCL 3–3–ns
24(12) Data-Out, Parity-Out Valid to Negating Edge of AS,
CSx, WE, (Fast Termination Write) tDVASN 10 7.5 ns
25(12) DS, CSX, WE Negated to Data-Out, Parity-Out
Invalid (Data-Out, Parity-Out Hold) tSNDOI 10 7.5 ns
25A(13) CSx Negated to Data-Out, Parity-Out Invalid (Data-
Out, Parity-Out Hold) tCNDOI 35 25 ns
26 Data-Out, Parity-Out Valid to DS Asserted (Write) tDVSA 10 7.5 ns
27(15) Data-In, Parity-In to CLKO1 Low (Data-Setup) tDICL 1–1–ns
27B(14) Data-In, Parity-In Valid to CLKO1 Low (Data-Setup) tDICL 20 15 ns
27A Late BERR, HALT, BKPT Asserted to CLKO1 Low
(Setup Time) tBELCL 10 7.5 ns
28(18) AS, DS Negated to DSACKx, BERR, HALT
Negated tSNDN 050037.5ns
29(4) DS, CSx, OE, Negated to Data-In Parity-In Invalid
(Data-In, Parity-In Hold) tSNDI 0–0–ns
29A(4) DS, CSx, OE Negated to Data-In High Impedance tSHDI 40 30 ns
30(4) CLKO1 Low to Data-In, Parity-In Invalid (Fast
Termination Hold) tCLDI 10 7.5 ns
30A(4) CLKO1 Low to Data-In High Impedance tCLDH 60 45 ns
31(5)(15) DSACKx Asserted to Data-in, Parity-In Valid tDADI 32 24 ns
31A DSACKx Asserted to DSACKx Valid (Skew) tDADV –10–7.5ns
31B(5)(14) DSACKx Asserted to Data-in, Parity-In Valid tDADI 35 26 ns
32 HALT an RESET Input Transition Time tHRrf –140– ns
33 CLKO1 High to BG Asserted tCLBA 20 15 ns
34 CLKO1 High to BG Negated tCLBN 2022.515 ns
35(6) BR Asserted to BG Asserted (RMC Not Asserted) tBRAGA 1–1–CLKO1
37 BGACK Asserted to BG Negated tGAGN 12.512.5CLKO1
39 BG Width Negated tGH 2–2–CLKO1
39A BG Width Asserted tGA 1–1–CLKO1
46 R/W Width Asserted (Write or Read) tRWA 100 75 ns
Table 7-6. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-3 to Figure 7-19) (Continued)
Number Characteristic Symbol
25 MHz 33.34 MHz
UnitMin Max Min Max
21
2113B–HIREL–06/05
TS68EN360
46A R/W Width Asserted (Fast Termination Write or
Read) tRWAS 75 56 ns
47A Asynchronous Input Setup Time tAIST 5–4–ns
47B Asynchronous Input Hold Time tAIHT 10 7.5 ns
48(5)(7) DSACKx Asserted to BERR, HALT Asserted tDABA –30–22.5ns
53 Data-Out, Parity-Out Hold from CLKO1 High tDOCH 0–0–ns
54 CLKO1 High to Dat-Out, Parity-Out High
Impedance tCHDH 20 15 ns
55 R/W Asserted to Data Bus Impedance Change tRADC 25 19 ns
56 RESET Pulse Width (Reset Instruction) tHRPW 512 512 CLKO1
56A RESET Pulse Width (Input from External Device) tRPWI 20 20 CLKO1
57 BERR Negated to HALT Negated (Return) tBNHN 0–0–ns
58 CLKO1 High to BERR, RESETS, RESETH Driven
Low tCHBRL –30 26ns
58A CLKO1 Low RESETS Driven Low (upon Reset
Instruction execution only) tCLRL –30 26ns
58B CLKO1 High to BERR, RESETS, RESETH
tri-stated tCLRL 20 15 ns
60 CLKO1 High to BCLRO Asserted tCHBCA 20 15 ns
61 CLKO1 High to BCLRO Negated tCHBCN 20 15 ns
62(9) BR Synchronous Setup Time tBRSU 5 3.75 ns
63(9) BR Synchronous Hold Time tBRH 10 7.5 ns
64(9) BGACK Synchronous Setup Time tBGSU 5 3.75 ns
65(9) BGACK Synchronous Hold Time tBGH 10 7.5 ns
66 BR Low to CLKO1 Rising Edge (040 comp. mode) tBRCH 5–5–ns
70 CLKO1 Low to Data Bus Driven (Show Cycle) tSCLDD 030022.5ns
71 Data Setup Time to CLKO1 Low (Show Cycle) tSCLDS 10 7.5 ns
72 Data Hold from CLKO1 Low (Show Cycle) tSCLDH 6 3.75 ns
73 BKPT Input Setup Time tBKST 10 7.5 ns
74 BKPT Input Hold Time tBKHT 6 3.75 ns
75 RESETH Low to Config2-0, MOD1-0, B16M Valid tMST –500–500CLKO1
76 Config2-0 tMSH 0–0–ns
77 MOD1-0 Hold Time, B16M Hold Time tMSH 10 10 CLKO1
80 DSI Input Setup Time tDSISU 10 7.5 ns
81 DSI Input Hold Time tDSIH 6 3.75 ns
82 DSCLC Setup Time tDSCSU 10 7.5 ns
Table 7-6. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-3 to Figure 7-19) (Continued)
Number Characteristic Symbol
25 MHz 33.34 MHz
UnitMin Max Min Max
22
2113B–HIREL–06/05
TS68EN360
Notes: 1. All AC timing is shown with respect to 0.8V and 2.0V levels unless otherwise noted.
2. This number can be reduced to 5 ns if strobes have equal loads.
3. If multiple chip selects are used, the CSx width negated (#15) applies to the time from the negation of a heavily loaded chip
select to the assertion of a lightly loaded chip select.
4. Hold times are specified with respect to DS or CSx on asynchronous reads and with respect to CLKO1 on fast termination
reads. The user is free to use either hold time for fast termination reads.
5. If the asynchronous setup (#17) requirements are satisfied, the DSACKx low to data setup time (#31) and DSACKx low to
BERR low setup time (#48) can be ignored. The data must only satisfy the data-in to CLKO1 low setup time (#27) for the fol-
lowing clock cycle: BERR must only satisfy the late BERR low to CLKO1 low setup time (#27A) for the following clock cycle.
6. To ensure coherency during every operand transfer, BG will not be asserted in response to BR until after cycles of the cur-
rent operand transfer are complete and RMC is negated.
7. In the absence of DSACKx, BERR is an asynchronous input using the asynchronous setup time (#47).
8. During interrupt acknowledge cycles, the processor may insert up to two wait states between states S0 and S1.
9. Specs are for Synchronous Arbitration only. ASTM = 1.
10. CSx specs are for TRLX = 0.
11. CSx specs are for TRLX = 1.
12. CSx specs are for CSNTQ = 0.
13. CSx specs are for CSNTQ = 1; or RASx specs for DRAM accesses.
14. Specs are read cycles with parity check and PBEE = 1.
15. Specs are read cycles with parity check and PBEE = 0, PAREN = 1.
16. RASx specs are for page miss case.
17. Specifications only apply to CSx/RASx pins.
18. Specification applies to non fast termination cycles. In fast termination cycles, the BERR signal must be negated by 20 ns
after negation of AS, DS.
83 DSCLC Hold Time tDSCH 6 3.75 ns
84 DSO Delay Time tDSOD tcyc+2
0tcyc+2
0ns
85 DSCLK Cycle tDSCCYC 2–2–CLKO1
86 CLKO1 High to Freeze Asserted tFRZA 0 35 0 26.25 ns
87 CLKO1 High to Freeze Negated tFRZN 0 35 0 26.25 ns
88 CLKO1 High to IFETCH High Impedance tIFZ 0 35 0 26.25 ns
89 CLKO1 High to IFETCH Valid tIF 0 35 0 26.25 ns
90 CLKO1 High to PERR Asserted tCHPA 0 20 0 15 ns
91 CLKO1 High to PERR Negated tCHPN 0 20 0 15 ns
92 VCC Ramp-Up Time At Power-On Reset tRMIN 5–5–ns
Table 7-6. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-3 to Figure 7-19) (Continued)
Number Characteristic Symbol
25 MHz 33.34 MHz
UnitMin Max Min Max
23
2113B–HIREL–06/05
TS68EN360
Figure 7-3. Read Cycle
Note: All timing is shown with respect to 0.8V and 2.0V levels.
DSACK0
R/W
DS
BERR,
FC3-FC0
A31-A0
CLKO1
S0 S2 S4S1 S3 S5
6 8
11
AS
14
16
9
9A
12 13
20
18
46
47A 28
29
29A
D31-D0
27
27A
48
9
47B
47A
SIZ1-SIZ0
DSACK1
IFETCH
IPIPE1,0
ASYNCHRONOUS
INPUTS
HALT
31
BKPT
OE
RMC
CSx
21
12
74
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(INPUT)
(OUTPUT)
(INPUT)
(INPUT)
(I/O)
(I/O)
73
(OUTPUT)
12
31A
15
24
2113B–HIREL–06/05
TS68EN360
Figure 7-4. Fast Termination Read Cycle (Parity Check PAREN = 1, PBEE = 0)
AS
(OUTPUT)
A31-A0
(OUTPUT)
CLKO1
(OUTPUT)
S0 S4 S0
S1 S5
8
6
9
DS
(OUTPUT)
D31-D0
(INPUT)
12
14B
46A
30
27
30A
R/W
(OUTPUT)
CSx
(OUTPUT)
18
BKPT
(INPUT)
FC3-FC0
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
OE
(OUTPUT)
PERR
(OUTPUT)
91
90
73 74
CPU CLEARS PERn BIT
S0
25
2113B–HIREL–06/05
TS68EN360
Figure 7-5. Read Cycle (With Parity Check, PBEE = 1)
Note: All timing is shown with respect to 0.8V and 2.0V levels.
R/W
(OUTPUT)
DS
(OUTPUT)
AS
(OUTPUT)
A31-A0, FC3-FC0,
SIZ1-SIZ0 (OUTPUT)
11
14
9
9A
12
20
21
46
CSx
(OUTPUIT)
DSACK1
(I/O)
BERR
(INPUT)
D31-D0
(INPUT)
47A
29
27A
48
12
12
9
47A
HALT
(INPUT)
IFETCH
(OUTPUT)
ASYNCHRONOUS
INPUTS
BKPT
(INPUT)
RMC
(OUTPUT)
47B
29A
CLKO1
(OUTPUT)
S0 S2 S4S1 S3 S5
8
18
DSACK0
(I/O)
6
13
OE
(OUTPUT)
16
28
31B
PRTY0-PRTY3
(INPUT)
73 74
27B
31A
IPIPE1,0
(OUTPUT)
15
26
2113B–HIREL–06/05
TS68EN360
Figure 7-6. SRAM: Read Cycle (TRLX = 1)
DSACK0
(I/O)
R/W
(OUTPUT)
AS
(OUTPUT)
DS
(OUTPUT)
A31-A0
(OUTPUT)
CLKO1
(OUTPUT)
S0 S1 S2 S3 S5S4
68
20
13
12
28
29
FC3-FC0
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
29A
27
D31-D0
(INPUT)
47A
DSACK1
(I/O)
RMC
(OUTPUT)
9C
31
31A
11A
CSx
(OUTPUT)
9B
21A
OE
(OUTPUT) 18
46
16
15
27
2113B–HIREL–06/05
TS68EN360
Figure 7-7. CPU32+ IACK Cycle
Note: Up to two wait states may be inserted by the processor between states S0 and S1.
DSACK0
(I/O)
R/W
(OUTPUT)
AS
(OUTPUT)
DS
(OUTPUT)
A31-A0
(OUTPUT)
CLKO1
(OUTPUT)
S0 S1 S2 S3 S5S4
68
14
11
20
13
12
9
9A
21
18
46
IACKx
(OUTPUT)
28
31
29
FC3-FC0
(OUTPUT)
29A
27
D31-D0
(INPUT)
47A
31A
DSACK1
(I/O)
0-2 CLOCKS*
A1 A2 A3 A4
16
OE
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
15
28
2113B–HIREL–06/05
TS68EN360
Figure 7-8. Write Cycle
Note: All timing is shown with respect to 0.8V and 2.0V levels.
R/W
(OUTPUT)
AS
(OUTPUT)
DS
(OUTPUT)
A31-A0
(OUTPUT)
CLKO1
(OUTPUT)
S0 S2 S4
S1 S3 S5
68
11
14 15
912 13
22
CSn
(OUTPUT)
9
14A
17
DSACK0
(I/O)
BERR
(INPUT)
D31-D0
(OUTPUT)
47A
28
73
48
HALT
(INPUT)
25
53
55
26
23 54
BKPT
(INPUT)
46
DSACK1
(I/O)
FC3-FC0
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
WEn
(OUTPUT) 20
74
31A
PRTY3-PRTY0
(OUTPUT)
18
29
2113B–HIREL–06/05
TS68EN360
Figure 7-9. Fast Termination Write Cycle
Figure 7-10. SRAM: Fast Termination Write Cycle (CSNTQ = 1)
AS
A31-A0
CLKO1
S0 S1 S0
R/W
DS
S4 S5
D31-D0
WEx
SIZ1-SIZ0
FC3-FC0
CSx
BKPT
PRTY3-PRTY0
(INPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
R/W
8
6
12
914B
20 46A
25
24
23
74
73
18
AS
(OUTPUT)
A31-A0
(OUTPUT)
CLKO1
(OUTPUT)
S0 S1 S0
R/W
DS
(OUTPUT)
S4 S5
D31-D0
WEx
SIZ1-SIZ0
(OUTPUT)
FC3-FC0
(OUTPUT)
CSx
(OUTPUT)
PRTY3-PRTY0
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
23
12A
20
18
25A
8
9
46A
6
14D
30
2113B–HIREL–06/05
TS68EN360
Figure 7-11. SRAM: Write Cycle (TRLX = 1, CSNTQ = 1, TCYC = 0)
Note: All timing is shown with respect to 0.8V and 2.0V levels.
Figure 7-12. ASYNC Bus Arbitration – IDLE Bus Case
R/W
(OUTPUT)
AS
(OUTPUT)
DS
(OUTPUT)
A31-A0
(OUTPUT)
CLKO1
(OUTPUT)
S0 S2 S4
S1 S3 S5
9C
CSx
(OUTPUT)
DSACK0
(I/O)
D31-D0
(OUTPUT)
DSACK1
(I/O)
WEx
(OUTPUT)
PRTY0-PRTY3
(OUTPUT)
9B 12A
13A
17A
11A
25A
20
22
46
47A
31A
55
26
23
14C
CLKO1
(OUTPUT)
AS
(OUTPUT)
D31-D0
(OUTPUT)
A31-A0
(OUTPUT)
BR
(INPUT)
BG
(OUTPUT)
BCLRO
(OUTPUT)
47A
37
35
33 34
47A
6160
47A
47A
BGACK
(INPUT)
31
2113B–HIREL–06/05
TS68EN360
Figure 7-13. ASYNC Bus Arbitration – Active Bus Case
Figure 7-14. SYNC Bus Arbitration – IDLE Bus Case
CLKO1
(OUTPUT)
A31-A0
(OUTPUT)
R/W
(OUTPUT)
AS
(OUTPUT)
DS
(OUTPUT)
D31-D0
(OUTPUT)
DSACK1
(I/O)
BR
(INPUT)
BG
(OUTPUT)
BGACK
(INPUT)
S0 S1 S2 S3 S4
33
16
7
S5
39A
34
35
37
DSACK0
(I/O)
BCLRO
(OUTPUT)
47A 47A
60
47A
CLKO1
(OUTPUT)
AS
(OUTPUT)
D31-D0
(OUTPUT)
A31-A0
(OUTPUT)
BR
(INPUT)
BG
(OUTPUT)
BGACK
(INPUT)
37
35
33 34
61
60
BCLRO
(OUTPUT)
64
65
63
62
32
2113B–HIREL–06/05
TS68EN360
Figure 7-15. SYNC Bus Arbitration – Active Bus Case
Figure 7-16. Configuration and Clock Mode Select Timing
CLKO1
(OUTPUT)
A31-A0
(OUTPUT)
R/W
(OUTPUT)
AS
(OUTPUT)
DS
(OUTPUT)
D31-D0
(OUTPUT)
DSACK1
(I/O)
BR
(INPUT)
BG
(OUTPUT)
BGACK
(INPUT)
S0 S1 S2 S3 S4
62
33
16
7
S5
39A35
37
DSACK0
(I/O)
S98
BCLRO
(OUTPUT)
34
64
60
RESETH
CONFIG2-CONFIG0,
76
MODCK1-MODCK0,
16BM
75 77
33
2113B–HIREL–06/05
TS68EN360
Figure 7-17. Show Cycle
Figure 7-18. Background Debug Mode FREEZE Timing
Figure 7-19. Background Debug Mode Serial Port Timing
AS
A31-A0
CLKO1
S0 S42 S1S41 S43 S2
S0
8
6
18
20
15
9
12
70 72
71
R/W
DS
D31-D0
BKPT
27A
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(INPUT)
SHOW CYCLE START OF EXTERNAL CYCLE
FREEZE
CLKO1
IFETCH/DSI
86
88
87
89
FREEZE
CLKO1
82 83
80
81
84
85
BKPT/DSCLK
IFETCH
IPIPE0/DSO
DSI
80
34
2113B–HIREL–06/05
TS68EN360
Figure 7-20. DRAM: Normal Read Cycle (Internal Mux, TRLX = 0)
Note: All timing is shown with respect to 0.8V and 2.0V levels.
AS
A31-A0
CLKO1
S0 S2 S4S1 S3 S5
8
OE
RASx
PARITY3-PARITY0
CAS3-CAS0
106
109
11
102 103
S0
R/W 18
D31-D0
27
21
29
S2S1 S3 SW SW
105
104
9
6A
6
DSACK1,0
D31ÐD0
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(I/O)
(INPUT)
(INPUT)
(INPUT)
9
110 111
27B
101
100
107
108
12
PBEE = 0
PBEE = 1
35
2113B–HIREL–06/05
TS68EN360
7.8 Bus Operation – DRAM Accesses AC Timing Specification
Table 7-7. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure
7-20 to Figure 7-24)
Number Characteristic
25.0 MHz 33.34 MHz Unit
Min Max Min Max
100 RASx Asserted to Row Address Invalid 15 11.25 ns
101 RASx Asserted to column Address Valid 20 15 ns
102 RASx Width Asserted 75 56.25 ns
103A RASx width Negated (Back to back Cycle) Non page mode at
WBTQ = 0 75 56.25 ns
103B RASx width Negated (Back to back Cycle) Page mode at WBTQ = 0 55 41.25 ns
103C RASx width Negated (Back to back Cycle) Non page mode at
WBTQ = 1 115 86.25 ns
103D RASx width Negated (Back to back Cycle) Page mode at WBTQ = 1 95 69.23 ns
104 RASx Asserted to CASx Asserted 35 26.25 ns
105 CLKO1 Low to CASx Asserted 3 13 2 10 ns
105A CLKO1 High to CASx Asserted (Refresh Cycle) 3 13 2 10 ns
106 CLKO1 High to CASx Negated 3 13 2 10 ns
107 Column Address Valid to CASx Asserted 15 11.25 ns
108 CASx Asserted to Column Address Negated 40 30 ns
109 CASx Asserted to RASx Negated 35 27 ns
110 CASx Width Asserted 50 37.5 ns
1111CASx Width Negated (Back to Back Cycles) 95 71.25 ns
111A CASx Width Negated (Page Mode) 20 15 ns
113 WE Low to CASx Asserted 35 27 ns
114 CASx Asserted to WE Negated 35 27 ns
115 R/W Low to CASx Asserted (Write) 52.5 40 ns
116 CASx Asserted to R/W High (Write) 55 41.25 ns
117 Data-Out, Parity-Out Valid to CASx Asserted 10 7.5 ns
119 CLKO1 High to AMUX Negated 3 16 2 12 ns
120 CLKO1 High to AMUX Asserted 3 16 2 12 ns
121 AMUX High to RASx Asserted 15 11.25 ns
122 RASx Asserted to AMUX Low 15 11.25 ns
123 AMUX Low to CASx Asserted 15 11.25 ns
124 CASx Asserted to AMUX High 55 41.25 ns
125 RAS/CASx Negated to R/W change 0 0 ns
36
2113B–HIREL–06/05
TS68EN360
Figure 7-21. DRAM: Normal Write Cycle
Note: All timing is shown with respect to 0.8V and 2.0V levels.
R/W
AS
A31-A0
CLKO1
S0 S2 S4
S1 S3 S5
8
912
WEx
DSACK1,0
20
17
D31-D0
RASx
PARITY0-PARITY3
CAS3-CAS0
11
S0
66A
23 53
(OUTPUT)
(I/O)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
108
106
102
105
114
110
113
115 116
117
100
101
107
37
2113B–HIREL–06/05
TS68EN360
Figure 7-22. DRAM: Refresh Cycle
Note: All timing is shown with respect to 0.8V and 2.0V levels.
Figure 7-23. DRAM: Page Mode – Page-Hit
Note: All timing is shown with respect to 0.8V and 2.0V levels.
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
A31-A0
CLKO1
RASx
NOT IN PAGE MODE PAGE MODE
RASx
S4 S5 S0 S1
105A
106
12
12
12A
CAS3-CAS0
9
AS
A31-A0
CLKO1
RASx
AMUX
INTERNAL MUX
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
S0 S2 S4S1 S3 S5
8
9
108
100
105
107
106
11
S0 S4S1 S5 S0 S1
107
105
6A
124
122 123
120
121
119
101
6A
111A
INTERNAL MUX
EXTERNAL MUX
CAS3-CAS0
38
2113B–HIREL–06/05
TS68EN360
Figure 7-24. DRAM: Page Mode – Page-Miss
Note: All timing is shown with respect to 0.8V and 2.0V levels.
AS
A31-A0
CLKO1
RASn
AMUX
INTERNAL MUX
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
S0 S2 S4S1 S3 S5 S0 S1 S2 SWS3 SW
8
105
123
106
11
120 119 120
12A
6A
6A
CAS3-CAS0
9
EXTERNAL MUX
122
39
2113B–HIREL–06/05
TS68EN360
7.9 040 Bus Type Slave Mode Bus Arbitration AC Electrical Specifications
Note: 1. BG remains low until either the SDMA or the IDMA requests the external bus.
Figure 7-25. TS68040 Companion Mode Arbitration
Notes: 1. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
2. BG always remains asserted until either the SDMA or the IDMA requests the external bus
Table 7-8. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure
7-25)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
231Address, Transfer Attributes High Impedance to Clock High 7–6–ns
232(1) Clock High to BG Low 20 15 ns
233 Clock High to BG High 4 20 4 15 ns
234 BB High to Clock High (040 output) 7–6–ns
235 BB High Impedance to Clock High (040 output) 0–0–ns
236 Clock High to BB Low (360 Output) 20 15 ns
237 Clock High to BB High (360 Output) 20 15 ns
238 Clock Low to BB High Impedance (360 output) 20 15 ns
(OUTPUT)
BCLRO
BG
(OUTPUT)
BB
(I/O)
A31-A0
(I/O)
CLKO1
TRANSFER
ATTRIBUTES
(INPUT)
(OUTPUT)
(INPUT)
BCLRI
S0 S1 S2 S3 S4 S5
C2
C1
238
040 BUS MASTER 360 BUS MASTER
60
61
237
234
231
233 232
235
140 141
236
40
2113B–HIREL–06/05
TS68EN360
7.10 040 Bus Type Slave Mode Internal Read/Write/Lack Cycles AC Electrical Specifications
Notes: 1. Transfer attributes signals = SIZx, TTx, TMx, R/W and LOCK.
2. When TS68040 is accessing the internal registers, specification 258 is from clock low not clock high.
3. The clock reference is EXTAL, not CLK01.TS68040 Internal Registers Read Cycles
Table 7-9. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-26 to Figure 7-29)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
251(1) Address, Transfer Attributes Valid to Clock Low 15 11.25 ns
252 TS Low to Clock High 7 6 ns
253 Clock High to TS High 5 3 ns
254 Clock high to Address, Transfer Attributes Invalid 0 0 ns
255 Data-In, MBARE Valid to Clock High (040 Write) 0 0 ns
256 Clock High to Data-In, MBARE Hold Time 0–0–ns
257 Clock High to TA, TBI Low (External to External) 4 20 4 15 ns
257 Clock High to TA, TBI Low (External to Internal) 4 23 4 18 ns
258(2)(3) Clock High to TA, TBI High 420415ns
259 TA, TBI High to TA, TBI High Impedance 15 11.25 ns
260 Clock Low to Data-Out Valid (040 Read) 20 15 ns
262 Clock Low to Data-Out Invalid 20 15 ns
263 Clock Low to Data-Out High Impedance 15 ns
264 Clock High to AVECO Low –20–15ns
265 Clock Low to AVECO High Impedance 30 23 ns
266 Clock Low to IACK Low 30 23 ns
267 Clock High to IACK High –30–23ns
268 Clock Low to AVEC Low 30 23 ns
41
2113B–HIREL–06/05
TS68EN360
Figure 7-26. TS68040 Internal Registers Read Cycles
Notes: 1. Three wait states are inserted when reading the SIM, dual-port RAM, and CPM. Four wait states are inserted when reading
the SI RAM. Additional wait states may be inserted when the SHEN1-SHEN0 = 10 and one of the internal masters is
accessing an internal peripheral.
2. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
Figure 7-27. TS68040 Internal Registers Write Cycles
Notes: 1. Two wait states are inserted when writing. Three wait states are inserted when writing to the dual-port RAM and CPM. Four
wait states are inserted when writing to the SI RAM. Additional wait states may be inserted when the SHEN1-SHEN0 = 10
and one of the internal masters is accessing an internal peripheral.
2. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
CLKO1
TS
(INPUT)
A31-A0
(INPUT)
TRANSFER
ATTRIBUTES
(INPUT)
C1 C2 CW CW
TA
(OUTPUT)
D31-D0
(040 WRITE)
TBI
(OUTPUT)
3Ð4 CLOCKS
(OUTPUT)
252 253
251
254
263
258
257
CW CW
260
C1
259
(INPUT)
CLKO1
TS
A31-A0
TRANSFER
ATTRIBUTES
(INPUT)
TA
D31-D0
(040 WRITE)
MBARE
TBI
2Ñ4 CLOCKS
(OUTPUT)
(INPUT)
252 253
251
255
255
254
258
257
C1 C2 CW CW CW C1
(INPUT)
(INPUT)
(INPUT)
(OUTPUT)
(OUTPUT)
256
256
259
42
2113B–HIREL–06/05
TS68EN360
Figure 7-28. TS68040 IACK Cycles (Vector Driven)
Notes: 1. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
2. Up to two wait states may be inserted for internal peripheral.
Figure 7-29. TS68040 IACK Cycles (No Vector Driven)
Note: TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
CLKO1
253
TS
A31-A0
(INPUT)
TRANSFER
ATTRIBUTES
C1 C2 CW CW CW
TA
D31-D0
TBI
CW CW
266
IACK7-1
0Ð2 CLOCKS
(OUTPUT)
(OUTPUT)
252
254
263
262
258
257
260
267
251
(INPUT)
(INPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
259
CLKO1
253
TS
(INPUT)
A31-A0
(INPUT)
TRANSFER
ATTRIBUTES
(INPUT)
C1 C2 CW CW
TA
(INPUT)
TBI
(OUTPUT)
266
IACK7-1
(OUTPUT)
(OUTPUT)
252
254
290
267
251
289
257 250
AVECO
(OUTPUT)
264 265
43
2113B–HIREL–06/05
TS68EN360
7.11 040 Bus Type SRAM/DRAM Cycles AC Electrical Specifications
Notes: 1. Transfer attributes signals = SIZx, TTx, TMx, R/W and LOCK.
2. TEA/TA should not be asserted on a DRAM burst access, or on the same clock or before RASx/CSx is asserted.
3. The clock reference is EXTAL, not CLK01.
Table 7-10. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-30 to Figure 7-34)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
280 Address Valid to BADD2-3 Valid 20 15 ns
280A BADD2-3 Valid to CAS Assertion 15 10 ns
281Address Invalid to BADD2-3 Invalid 0–0–ns
282 Clock High to CSx/RASx Low (TSS40 = 0) 4 16 4 12 ns
283 Clock High to CSx/RASx High (CSNT40 = 0) 4 16 4 12 ns
284 Clock High to BRK Low 20 15 ns
284A Clock Low to BRK Low 20 15 ns
285 Clock high to BRK High 20 15 ns
286 Clock Low to CSx/RASx Low (TSS40 = 1) 4 16 4 12 ns
287 Clock Low to CSx/RASx High (CSNT40 = 1) 4 16 4 12 ns
288(1) Address Transfer Attributes Valid to Clock High (TSS40 = 0) 10 10 ns
289(2) TA Low to Clock High (External Termination) 11 9 ns
290(2) Clock High to TA High (External Termination) 20 15 ns
291 Clock High to OE Low (Read Cycles) 20 15 ns
292 Clock High to OE High (Read Cycles) 20 15 ns
293 Clock High to WE Low (Write Cycles) 20 15 ns
294 Clock High to WE High (Write Cycles) 20 15 ns
295 Clock High to CASx Low 4 13 4 10 ns
295A Clock Low to CASx Low (040 Burst Read only) 4 13 4 10 ns
296(3) Clock High to CASx High 4 13 4 10 ns
297 Clock Low to AMUX Low 3 16 3 12 ns
298 Clock High to AMUX High 3 16 3 12 ns
299 Clock High to BADD2-3 Valid (040 Burst Cycles) 4 20 4 15 ns
300(2) TEA Low to Clock High 11 ns
301(2) Clock High to TEA High 2 20 2 15 ns
302Data, Parity Valid to Clock High (Data, Parity Setup) 7–6–ns
303Clock High to Data, Parity Invalid (Data, Parity Hold) 7–5–ns
305 CLKO1 High (After TS Low) to Parity Valid 20 15 ns
306 CLKO1 High (After TA Low) to Parity Hi-Z 4 20 15 ns
44
2113B–HIREL–06/05
TS68EN360
Figure 7-30. TS68040 SRAM Read/Write Cycles (TSS40 = 0, CSNT40 = 0)
Note: TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
CLKO1
(OUTPUT)
TS
(INPUT)
A31-A0
(INPUT)
TRANSFER
ATTRIBUTES
(INPUT)
C1 C2
TA
(OUTPUT)
TBI
(OUTPUT)
CSx
(OUTPUT)
BADD3-
BADD2
(OUTPUT)
BKPTO
(OUTPUT)
OE
(OUTPUT)
(READ
CYCLES)
WE
(OUTPUT)
TEA
(INPUT)
288
254
281
253
280
282
258
257
284 285
292
291
293 294
301
252
283
300
259
(WRITE
CYCLES)
45
2113B–HIREL–06/05
TS68EN360
Figure 7-31. TS68040 SRAM Read/Write Cycles (TSS40 = 1, CSNT40 = 1)
C1 C2
CLKO1
(OUTPUT)
TS
(INPUT)
A31-A0
(INPUT)
TRANSFER
ATTRIBUTES
(INPUT)
BADD3-
BADD2
(OUTPUT)
C3
BKPTO
(OUTPUT)
TEA
(INPUT)
CSn
(OUTPUT)
TA
(INPUT)
251
280
252 253
254
281
289 290
300 301
285
284A
TBI
(OUTPUT)
258
TA
(OUTPUT)
257
286
287
259
46
2113B–HIREL–06/05
TS68EN360
Figure 7-32. External TS68040 DRAM Cycles Timing Diagram
C1 C2Cw
CLKO1
(OUTPUT)
WE
(WRITE CYCLE
OUTPUT)
CAS3-
CAS0
AMUX
TS
(INPUT)
A31-A0
(INPUT)
TRANSFER
ATTRIBUTES
(INPUT)
RASx
(OUTPUT)
BADD3-
BADD2
(OUTPUT)
C1
TA
(OUTPUT)
TBI
(OUTPUT)
(OUTPUT)
(OUTPUT)
TEA
(INPUT)
288
280
252 253
282
121
298
122
123
295
254
281
283
296
298
294
293
297
259
258
257
300 301
47
2113B–HIREL–06/05
TS68EN360
Figure 7-33. External TS68040 DRAM Burst Cycles Timing Diagram
C1 C2Cw
CLKO1
(OUTPUT)
WE
(WRITE
CYCLE
OUTPUT)
CAS3-
CAS0
AMUX
TS
(INPUT)
A31-A0
(INPUT)
TRANSFER
ATTRIBUTES
(INPUT)
RASx
(OUTPUT)
BADD3-
BADD2
(OUTPUT)
C1
TA
(OUTPUT)
TBI
(OUTPUT)
C2
(OUTPUT)
(OUTPUT)
299299
288
280
252 253
282
295
296
295
296
297
293
257
258
257
258
295A
48
2113B–HIREL–06/05
TS68EN360
Figure 7-34. External TS68040 Parity Bit Checking Timing Diagram
(a) Generation Timing Diagram
213
212
D31-D0
(INPUT)
PRTY3-
PRTY0
(OUTPUT)
(b) Checking Timing Diagram
CLKO1
(OUTPUT)
TS
(INPUT)
A31-A0
(INPUT)
TRANSFER
ATTRIBUTES
(INPUT)
C1 C2
TA
(OUTPUT)
BADD3-
BADD2
(OUTPUT)
PERR
(OUTPUT)
CPU Clears PERn Bit
C1
D31-D0,
(INPUT)
302
303
90 91
PRTY3-
PRTY0
(INPUT)
305
306
49
2113B–HIREL–06/05
TS68EN360
7.12 IDMA AC Electrical Specifications
Notes: 1. These specifications are for asynchronous mode.
2. These specifications are for synchronous mode.
Table 7-11. GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary
(See Figure 7-35 and Figure 7-36)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
1 CLKO1 Low to DACK, DONE Asserted 3 24 3 18 ns
2 CLKO1 Low to DACK, DONE Negated 3 24 3 18 ns
3(1) DREQx Asserted to AS Asserted (for DMA Bus Cycle) 3tcyc + tAIST + tCLSA
4(1) Asynchronous Input Setup Time to CLKO1 Low 12 9 ns
5(1) Asynchronous Input Hold Time from CLKO1 Low 0 0 ns
6AS
to DACK Assertion Skew 0 20 0 15 ns
7DACK
to DONE Assertion Skew -88-66ns
8AS
, DACK, DONE Width Asserted 70 52.5 ns
8A AS, DACK, DONE Width Asserted (Fast Termination Cycle) 28 20.5 ns
10(1) Asynchronous Input Setup Time to CLKO1 Low 5 4 ns
11(1) Asynchronous Input Hold Time from CLKO1 Low 10 7.5 ns
12(2) DREQ Input Setup Time to CLKO1 Low 20 15 ns
13(2) DREQ Input Hold Time from CLKO1 Low 5 3.75 ns
14(2) DONE Input Setup Time to CLKO1 Low 20 15 ns
15(2) DONE Input Hold Time From CLKO1 Low 5 3.75 ns
16(2) DREQ Asserted to AS Asserted 2 2 clk
50
2113B–HIREL–06/05
TS68EN360
Figure 7-35. IDMA Signal Asynchronous Timing Diagram
Figure 7-36. IDMA Signal Synchronous Timing Diagram
AS
CLKO1
DREQ
41
8
2
1
6
3
7
1
DACK
DONE
(OUTPUT)
DONE
(INPUT)
S0 S2 S4 S0 S2 S4
S1 S3 S5 S1 S3 S5
CPU_CYCLE
(IDMA REQUEST) IDMA_CYCLE
10
5
11
(OUTPUT)
(INPUT)
(OUTPUT)
(OUTPUT)
AS
CLKO1
DREQ
12 1
8
21
6
16
7
1
DACK
DONE
(OUTPUT)
DONE
(INPUT)
S0 S2 S4 S0 S2 S4
S1 S3 S5 S1 S3 S5
CPU_CYCLE
(IDMA REQUEST) IDMA_CYCLE
14
13
15
(OUTPUT)
(INPUT)
(OUTPUT)
(OUTPUT)
51
2113B–HIREL–06/05
TS68EN360
7.13 PIP/PIO Electrical Specifications
Note: 1. t3 = spec. 3 on Table 7-4.
Figure 7-37. PIP Rx (Interlock Mode)
Table 7-12. GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary
(See Figure 7-37 to Figure 7-41)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
21Data-In Setup Time to STBI Low 0–0–ns
22 Data-In Hold Time to STBI High 2.5 – t3 2.5 – t3 clk
23 STBI Pulse Width 1.5 1.5 clk
24 STBO Pulse Width 1 CLKO1 –
5 ns 1 CLKO1 –
5 ns ––v
25Data-Out Setup Time to STBO Low 2–2–clk
26Data-Out Hold Time from STBO High 5–5–clk
27STBI Low to STBO Low (Rx Interlock) –2–2clk
28STBI Low to STBO High (Tx Interlock) 2–2–clk
29 Data-In Setup Time to Clock Low 20 15 ns
30 Data-In Hold Time from Clock Low 10 7.5 ns
Clock High to Data-Out Valid (CPU Writes Data,
Control, or Direction) 25 25 ns
DATA OUT
STRBO
STRBI
(INPUT)
(OUTPUT)
25
28
26
23
52
2113B–HIREL–06/05
TS68EN360
Figure 7-38. PIP Tx (Interlock Mode)
Figure 7-39. PIP Tx (Pulse Mode)
DATA IN
STRBI
STRBO
(INPUT)
(OUTPUT)
21
23
22
24
DATA IN
STBI
STBO
(INPUT)
(OUTPUT)
21
23
22
24
53
2113B–HIREL–06/05
TS68EN360
Figure 7-40. PIP Tx (Pulse Mode)
Figure 7-41. Parallel I/O Data-in/Data-out Timing Diagram
7.14 Interrupt Controller AC Electrical Specifications
DATA OUT
STBO
STBI
(INPUT)
(OUTPUT)
25
24
26
23
DATA OUT
DATA IN
30
CPU WRITE S4
31
CLKO1
(OUTPUT)
29
Table 7-13. GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary.
(See Figure 7-42 and Figure 7-43)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
35 Port C Interrupt Pulse Width Low (Edge Triggered Mode) 70 55 ns
36 Minimum Time Between Active Edges Port C 70 55 clk
37 Clock High to IOUT Valid (Slave Mode) 20 17 ns
38 Clock High to RQOUT Valid (Slave Mode) 20 17 ns
54
2113B–HIREL–06/05
TS68EN360
Figure 7-42. Interrupts Timing Diagram
Figure 7-43. Slave Mode: Interrupts Timing Diagram
7.15 BAUD Rate Generator AC Electrical Specifications
Figure 7-44. Baud Rate Generator Output Signals
Port C
(INPUT)
35
36
IOUT2-
IOUT0
CLKO1
RQOUT
(OUTPUT)
(OUTPUT)
(OUTPUT)
37
38
Table 7-14. GND = 0 VDC, TC = -55 to +125
°
C.The electrical specifications in this document are preliminary (See Figure
7-44)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
50 BRGO Rise and Fall Time 10 7.5 ns
51BRGO Duty Cycle 40604060%
52 BRGO Cycle 40 30 ns
50
51 51
BRGOx
52
50
55
2113B–HIREL–06/05
TS68EN360
7.16 Timer Electrical Specifications
Figure 7-45. CPM General-purpose Timers
Table 7-15. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure
7-45)
Number Characteristic Symbol
25.0 MHz 33.34 MHz
UnitMin Max Min Max
61 TIN/TGATE Rise and Fall Time trf 10 10 ns
62TIN/TGATE Low Time 1–1–clk
63TIN/TGATE High Time 2–2–clk
64TIN/TGATE Cycle Time 3–3–clk
65 CLKO1 High to TOUT Valid tTO 3 25 3 22 ns
62
65
63
64
61
61
60
CLKO1
(OUTPUT)
TIN/TGATE
(INPUT)
TOUT
(OUTPUT)
56
2113B–HIREL–06/05
TS68EN360
7.17 SI Electrical Specifications
Notes: 1. The ratio SyncCLK/L1RC LK must be greater than 2.5/1.
2. Where P = 1/CLKO1. Thus for a 25 MHz CLKO1 rate, P = 40 ns.
3. These specs are valid for IDL mode only.
4. The strobes and Txd on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.
Table 7-16. GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary
(See Figure 7-46 to Figure 7-50)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
70(1)(3) L1RCLK, L1TCLK Frequency (DCS = 0) 10 10 MHz
71(1) L1RCLK, L1TCLK Width Low (DCS = 0) P+10 P+10 ns
71A(2) L1RCLK, L1TCLK Width High (DCS = 0) P+10 P+10 ns
72 L1TXD, L1ST(1-4), L1RQ, L1CLKO Rise/Fall Time 15 15 ns
73 L1RSYNC, L1TSYNC Valid to L1CLK Edge (SYNC Setup Time) 20 20 ns
74 L1CLK Edge to L1RSYNC, L1TSYNC Invalid (SYNC Hold Time) 35 35 ns
75 L1RSYNC, L1TSYNC Rise/Fall Time 15 15 ns
76 L1RXD Valid to L1CLK Edge (L1RXD Setup Time) 42 42 ns
77 L1CLK Edge to L1RXD Invalid (L1RXD Hold Time) 35 35 ns
78 L1CLK Edge to L1ST(1-4) Valid 10 45 10 45 ns
78A(4) L1SYNC Valid to L1ST(1-4) Valid 10 45 10 45 ns
79 L1CLK Edge to L1ST(1-4) Invalid 10 45 10 45 ns
80 L1CLK Edge to L1TXD Valid 10 65 10 65 ns
80A(4) L1TSYNC Valid to L1TXD Valid 10651065 ns
81 L1CLK Edge to L1TXD High Impedance 0 42 0 42 ns
82 L1RCLK, L1TCLK Frequency (DSC = 1) 12.5 16 MHz
83 L1RCLK, L1TCLK Width Low (DSC = 1) P+10 P+10 ns
83A(2) L1RCLK, L1TCLK Width High (DSC = 1) P+10 P+10 ns
84 L1CLK Edge to L1CLKO Valid (DSC = 1) 30 30 ns
85(3) L1RQ Valid Before Falling Edge of L1TSYNC 1–1–L1TCLK
86(3) L1GR Setup Time 42 42 ns
87(3) L1RG Hold Time 42 42 ns
88 L1CLK Edge to L1SYNC Valid (FSD = 00, CNT = 0000, BYT = 0,
DSC = 0) –0–0ns
57
2113B–HIREL–06/05
TS68EN360
Figure 7-46. SI Receive Timing with Normal Clocking (DSC = 0)
L1RSYNC
(INPUT)
71
L1ST (4-1)
(OUTPUT)
RFCD = 1
70
73 74
75
L1RXD
(INPUT)
78
76
BIT0
L1RCLK
(FE =1,CE = 1)
(INPUT)
72
L1RCLK
(FE = 0,CE = 0)
(INPUT)
77
79
58
2113B–HIREL–06/05
TS68EN360
Figure 7-47. SI Receive Timing with Double Speed Clocking (DSC = 1)
L1RSYNC
(INPUT)
L1ST (4-1)
(OUTPUT)
79
RFCD = 1
73 74
75
L1RXD
(INPUT)
77
76
BIT0
L1RCLK
(FE = 1,
CE = 1)
(INPUT)
L1RCLK
(FE = 0,
CE = 0)
(INPUT) 82
72 83A
L1CLKO
(OUTPUT)
84
78
59
2113B–HIREL–06/05
TS68EN360
Figure 7-48. SI Transmit Timing with Normal Clocking (DSC = 0)
L1TXD
(INPUT) BIT0
81
L1TSYNC
(OUTPUT)
71
L1ST (4-1)
(OUTPUT)
78
79
TFCD = 0
70
73 74
75
L1TCLK
(FE = 1,
CE = 1)
(INPUT)
72
L1TCLK
(FE = 0,
CE = 0)
(INPUT)
80A
80
78A
60
2113B–HIREL–06/05
TS68EN360
Figure 7-49. SI Transmit Timing with Double Speed Clocking (DSC = 1)
Figure 7-50. IDL Timing SI Transmit Timing with Double Speed Clocking (DSC = 1)
L1TXD
(OUTPUT) BIT0
81
L1TSYNC
(INPUT)
L1ST (1-4)
(OUTPUT)
78
79
TFCD = 0
73 74
75
80A
80
78A
L1RCLK
(FE = 1,
CE = 1)
(INPUT)
L1RCLK
(FE = 0,
CE = 0)
(INPUT)
82
72 83A
L1CLKO
(OUTPUT)
84
1 2 3 4 5 6 7 8 9 10111213141516171819 20
L1RSYNC
(INPUT)
L1RCLK
(INPUT)
L1TXD
(OUTPUT)
L1RXD
(INPUT)
L1ST (4-1)
(OUTPUT)
L1RQ
(OUTPUT)
L1GR
(INPUT)
71
71
73
74
80
77 72
76
78
87
85
86
81
B17 B16 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M
B17 B16 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M
61
2113B–HIREL–06/05
TS68EN360
7.18 SCC in NMSI Mode-external Clock Electrical Specifications
Notes: 1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2.25/1.
2. Also applies to CD and CTS hold time when they are used as external sync signals.
7.19 SCC in NMSI Mode-internal Clock Electrical Specifications
Notes: 1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.
2. Also applies to CD and CTS hold time when they are used as external sync signals.
Table 7-17. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-51 to Figure 7-53)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
100(1) RCLK1 and TCLK1 Width High CLKO1 CLKO1
101 RCLK1 and TCLK1 Width Low CLKO1 + 5 ns CLKO1 + 5 ns
102 RCLK1 and TCLK1 Rise/Fall Time 15 15 ns
103 TXD1 Active Delay (From TCLK1 Falling Edge) 0 50 0 50 ns
104 RTS1 Active/Inactive Delay (From TCLK1 Falling Edge) 0 50 0 50 ns
105 CTS1 Setup Time to TCLK1 Rising Edge 40 40 ns
106 RXD1 Setup Time to RCLK1 Rising Edge 40 40 ns
107(2) RXD1 Hold Time from RCLK1 Rising Edge 0 0 ns
108 CD1 Setup Time to RCLK1 Rising Edge 40 40 ns
Table 7-18. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-51 to Figure 7-53)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
100(1) RCLK1 and TCLK1 Frequency 0 8.3 0 11 MHz
102RCLK1 and TCLK1 Rise/Fall Time ––––ns
103 TXD1 Active Delay (From TCLK1 Falling Edge) 0 30 0 30 ns
104 RTS1 Active/Inactive Delay (From TCLK1 Falling Edge) 0 30 40 ns
105 CTS1 Setup Time to TCLK1 Rising Edge 40 40 ns
106 RXD1 Setup Time to RCLK1 Rising Edge 40 0 ns
107(2) RXD1 Hold Time from RCLK1 Rising Edge 0 40 ns
108 CD1 Setup Time to RCLK1 Rising Edge 40 0 30 ns
62
2113B–HIREL–06/05
TS68EN360
Figure 7-51. SCC NMSI Receive
Figure 7-52. SCC NMSI Transmit
RXD1
(INPUT)
RCLK1
108
107
106
102 102
100
101
CD1
(INPUT)
107
CD1
(SYNC-
INPUT)
TXD1
(OUTPUT
)
TCLK1
102
CTS1
(INPUT)
RTS1
(OUTPUT
)
104
CTS1
(SYNC
-
INPUT)
102
101
100
103
104
105
107
63
2113B–HIREL–06/05
TS68EN360
Figure 7-53. HDLC BUS Timing
TXD1
(
OUTPUT)
TCLK1
104
100
101
102
102
105
RTS1
(
OUTPUT)
104
CTS1
(ECHO
INPUT)
103
107
64
2113B–HIREL–06/05
TS68EN360
7.20 Ethernet Electrical Specifications
Notes: 1. SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2.25/1
2. SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.
Figure 7-54. Ethernet Collision Timing
Table 7-19. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-54 to Figure 7-59)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
120 CLSN Width High 40 40 ns
121 RCLK1 Rise/Fall Time 15 15 ns
122 RCLK1 Width Low CLKO1 +
5 ns CLKO1 +
5 ns
123(1) RCLK1 Width High CLKO1 CLKO1
124 RXD1 Setup Time 20 20 ns
125RXD1 Hold Time 5–5–ns
126 RENA Active Delay (from RCLK1 rising edge of the last
data bit) 10 10 ns
127 RENA Width Low 100 100 ns
128 TCLK1 Rise/Fall Time 15 15 ns
129 TCLK1 Width Low CLKO1 +
5 ns CLKO1 +
5 ns
130(1) TCLK1 Width High CLKO1 CLKO1
131 TXD1 Active Delay (from TCLK1 rising edge) 10 50 10 50 ns
132 TXD1 Inactive Delay (from TCLK1 rising edge) 10 50 10 50 ns
133 TENA Active Delay (from TCLK1 rising edge) 10 50 10 50 ns
134 TENA Inactive Delay (from TCLK1 rising edge) 10 50 10 50 ns
135 RSTRT Active Delay (from TCLK1 falling edge) 10 50 10 50 ns
136 RSTRT Inactive Delay (from TCLK1 falling edge) 10 50 10 50 ns
137RRJCT Width Low 1–1–CLKO1
138(2) CLKO1 Low to SDACK Asserted 20 20 ns
139(2) CLKO1 Low to SDACK Negated 20 20 ns
CLSN (CTS1)
(INPUT)
120
65
2113B–HIREL–06/05
TS68EN360
Figure 7-55. Ethernet Receive Timing
Figure 7-56. Ethernet Transmit Timing
Notes: 1. Transmit clock invert (TCI) bit in GSMR is set.
2. If RENA is deasserted before TENA, or RENA is not asserted at all during transit, then CSL bit is set in the buffer descriptor
at the end of frame transmission.
RXD1
(INPUT)
RCLK1
125
124
121
123
122
RENA (CD1)
(INPUT)
LAST BIT
127
126
121
TXD1
(OUTPUT)
TCLK1
(NOTE 1)
132
131
128 128
130
129
TENA (RTS1)
(OUTPUT)
RENA (CD1)
(INPUT)
(NOTE 2)
133
134
66
2113B–HIREL–06/05
TS68EN360
Figure 7-57. CAM Interface Receive Start Timing
Note: Valid for the ethernet protocol only.
Figure 7-58. CAM Interface Reject Timing
Note: Valid for the ethernet protocol only.
Figure 7-59. SDACK Timing Diagram
Note: SDACKx is asserted when the SDMA writes the received Ethernet frame into memory.
RXD1
(INPUT)
RCLK1
RSTRT
(OUTPUT)
011
START FRAME DELIMITER
Bit # 1 Bit # 2
135 136
RRJCT
(INPUT)
137
AS
CLKO1
138
SDACKx
S0 S2 S4S1 S3 S5
SDMA CYCLE
(OUTPUT)
(OUTPUT)
(OUTPUT)
139
67
2113B–HIREL–06/05
TS68EN360
7.21 SMC Transparent Mode Electrical Specifications
Note: 1. The ratio SyncCLK/SMCLK must be greater or equal to 2/1. SMC Transparent.
Figure 7-60. SMC Transparent
Note: This delay is equal to an integer number of “Character length” clocks
Table 7-20. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure
7-60)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
150(1) SMCLK Clock Period 100 100 ns
151 SMCLK Width Low 50 50 ns
151A SMCLK Width High 50 50 ns
152 SMCLK Rise/Fall Time 15 15 ns
153 SMTXD Active Delay (from SMCLK falling edge) 10 50 10 50 ns
154 SMRXD/SYNC1 Setup Time 20 20 ns
155SMRXD/SYNC1 Hold Time 5–5–ns
RXD1
(INPUT)
155
154
TXD1
(OUTPUT)
153
150
151
152
152
SYNC1
154
155
Note 1
SMCLK
151A
68
2113B–HIREL–06/05
TS68EN360
7.22 SPI Master Electrical Specifications
Figure 7-61. SPI Master (CP = 0)
Table 7-21. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-61 and Figure 7-62)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
160 Master Cycle Time 4 1024 4 1024 tcyc
161 Master Clock (SPICLK) High or Low Time 2 512 2 512 tcyc
162 Master Data Setup Time (Inputs) 50 50 ns
163Master Data Hold Time (Inputs) 0–0–ns
164 Master Data Valid (after SPICLK Edge) 20 20 ns
165Master Data Hold Time (Outputs) 0–0–ns
166 Rise Time: Output 15 15 ns
167 Fall Time: Output 15 15 ns
MSB IN
MSB OUT
MSB OUT DATA LSB OUT "1"
"1"
DATA LSB IN
MSB IN
SPICLK
CI=0
OUTPUT
SPICLK
CI=1
OUTPUT
SPIMISO
INPUT
SPIMOSI
OUTPUT
167
166
161 160
161 166
165
167 166
167
163
162
164
69
2113B–HIREL–06/05
TS68EN360
Figure 7-62. SPI Master (CP = 1)
7.23 SPI Slave Electrical Specifications
MSB
MSBMSB OUT DATA LSB OUT "1"
"1"
DATA LSB IN
MSB IN
SPICLK
CI=0
OUTPUT
SPICLK
CI=1
OUTPUT
SPIMISO
INPUT
SPIMOSI
OUTPUT
167
166
161 160
161 166
162
160
163
164
165
167 166
Table 7-22. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-63 and Figure 7-64)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
170Slave Cycle Time 2–2–tcyc
171 Slave Enable Lead Time 15 15 ns
172 Slave Enable Lag Time 15 15 ns
173Slave Clock (SPICLK) High or Low Time 1–1–tcyc
174 Slave Sequential Transfer Delay (Does Not Require Deselect) 1 1 tcyc
175 Slave Data Setup Time (Inputs) 20 20 ns
176 Slave Data Hold Time (Inputs) 20 20 ns
177 Slave Access Time 50 50 ns
178 Slave SPIMISO Disable Time 50 50 ns
179 Slave Data Valid (after SPICLK Edge) 50 50 ns
180Slave Data Hold Time (Outputs) 0–0–ns
181 Rise Time: Input 15 15 ns
182 Fall Time: Input 15 15 ns
70
2113B–HIREL–06/05
TS68EN360
Figure 7-63. SPI Slave (CP = 0)
Figure 7-64. SPI Slave (CP = 1)
DATA LSB OUT UNDEF. MSB OUT
MSB IN
MSB OUT
MSB IN DATA LSB IN
SPISEL
INPUT
SPICLK
CI=0
INPUT
SPICLK
CI=1
INPUT
SPIMISO
OUTPUT
SPIMOSI
INPUT
172 171
174
182
181
173 170
173 181 182 180 178
179
182181
180
176
177
175
MSB OUT DATA SLAVE
LSB OUT UNDEF.UNDEF.
MSB IN DATA LSB IN
SPISEL
INPUT
SPICLK
CI=0
INPUT
SPICLK
CI=1
INPUT
SPIMISO
OUTPUT
SPIMOSI
INPUT
174
182
181
173
182
181
178
179
181
179
177
175
170 173
171 172
180
176
71
2113B–HIREL–06/05
TS68EN360
7.24 JTAG Electrical Specifications
Figure 7-65. Test Clock Input Timing Diagram
Figure 7-66. TRST Timing Diagram
Table 7-23. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7-65 and Figure 7-68)
Number Characteristic
25.0 MHz 33.34 MHz
UnitMin Max Min Max
TCK Frequency of Operation 0 25 0 25 MHz
1 TCK Cycle Time in Crystal Mode 40 40 ns
2 TCK Clock Pulse Width Measured at 1.5V 18 18 ns
3TCK rise and Fall Times 0303ns
6 Boundary Scan Input Data Setup Time 10 10 ns
7 Boundary Scan Input Data Hold Time 18 18 ns
8 TCK Low to Output Data Valid 0 30 0 30 ns
9 TCK Low to Output High Impedance 0 40 0 40 ns
10 TMS, TDI Data Setup Time 10 10 ns
11 TMS, TDI Data Hold Time 10 10 ns
12 TCK Low to TDO Data Valid 0 20 0 20 ns
13 TCK Low to TDO High Impedance 0 20 0 20 ns
14 TRST Assert Time 100 100 ns
15 TRST Setup Time to TCK Low 40–40–ns
V
V
TCK
1
22
3
3
VM VM
IH
IL
(INPUT)
TCK
TRST
(INPUT)
(INPUT)
15
14
72
2113B–HIREL–06/05
TS68EN360
Figure 7-67. Boundary Scan (JTAG) Timing Diagram
Figure 7-68. Test Access Port Timing Diagram
TC
K
V
V
DATA
OUTPUT
S
DATA
INPUTS
OUTPUT DATA VALID
DATA
OUTPUT
S
OUTPUT DATA VALID
DATA
OUTPUT
S
IL
IH
INPUT DATA VALID
67
8
9
8
(INPUT)
TC
K
V
V
TDO
TDI
TMS
OUTPUT DATA VALID
TDO OUTPUT DATA VALID
TDO
IL
IH
INPUT DATA VALID
1
0
11
1
2
1
3
1
2
(INPUT)
(INPUT)
(OUTPUT
(OUTPUT
(OUTPUT
73
2113B–HIREL–06/05
TS68EN360
8. Functional Description
8.1 CPU32+ Core
The CPU32+ core is a CPU32 that has been modified to connect directly to the 32-bit IMB and
apply the larger bus width. Although the original CPU32 core had a 32-bit internal data path and
32-bit arithmetic hardware, its interface to the IMB was 16 bits. The CPU32+ core can operate
on 32-bit external operands with one bus cycle. This allows the CPU32+ core to fetch a long-
word instruction in one bus cycle an to fetch two word-length instructions in one bus cycle, filling
the internal instruction queue more quickly. The CPU32+ core can also read and write 32-bit of
data in one bus cycle.
Although the CPU32+ instruction timings are improved, its instruction set is identical to that of
the CPU32. It will also execute the entire 68000 instruction set. It contains the same background
debug mode (BDM) features as the CPU32. No new compilers, assemblers or other software
support tools need be implemented for the CPU32+; standard CPU32 tools can be used.
The CPU32+ delivers approximately 4.5 MIPS at 25 MHz, based on the standard (accepted)
assumption that a 10-MHz 68000 delivers 1 VAX MIPS. If an application requires more perfor-
mance, the CPU32+ can be disabled, allowing the rest of the QUICC to operate as an intelligent
peripheral to a faster processor. The QUICC provides a special mode called TS68040 compan-
ion mode to allow it to conveniently interface to members of the TS68040 family. This two-chip
solution provides a 22-MIPS performance at 25 MHz.
The CPU32+ also offers automatic byte alignment features that are not offered on the CPU32.
These features allow 16- or 32-bit data to be read or written at an odd address. The CPU32+
automatically performs the number of bus cycles required.
8.2 System Integration Module (SIM60)
The SIM60 integrates general-purpose features that would be useful in almost any 32-bit pro-
cessor system. The term “SIM60” is derived from the QUICC part number, TS68EN360. The
SIM60 is an enhanced version of the SIM40 that exists on the TS68332 device.
First, new features, such as a DRAM controller and breakpoint logic, have been added. Second,
the SIM40 was modified to support a 32-bit IMB as well as a 32-bit external system bus. Third,
new configurations, such as slave mode and internal accesses by an external master, are
supported.
Although the QUICC is always a 32-bit device internally, it may be configured to operate with a
16-bit data bus. Regardless of the choice of the system bus size, dynamic bus sizing is sup-
ported. Bus sizing allows 8-16-, and 32-bit peripherals and memory to exist in the 32-bit system
bus mode and 8- and 16-bit peripherals and memory to exist in the 16-bit system bus mode.
8.3 Communications Processor Module (CPM)
The CPM contains features that allow the QUICC to excel in communications and control appli-
cations. These features may be divided into three sub-groups:
Communications Processor (CP)
Two IDMA Controllers
Four General-purpose Timers
74
2113B–HIREL–06/05
TS68EN360
The CP provides the communication features of the QUICC. Included are a RISC processor,
four SCCs, two SMCs, one SPI, 2.5K bytes of dual-port RAM, an interrupt controller, a time slot
assigner, three parallel ports, a parallel interface port, four independent baud rate generators,
and fourteen serial DMA channels to support the SCCs, SMCs, and SPI.
The IDMAs provide two channels of general-purpose DMA capability. They offer high-speed
transfers, 32-bit data movement, buffer chaining, and independent request and acknowledge
logic. The RISC controller may access the IDMA registers directly in the buffer chaining modes.
The QUICC IDMAs are similar to, yet enhancements of, the one IDMA channel found on the
TS68302.
The four general-purpose timers on the QUICC are functionally similar to the two general-pur-
pose timers found on the TS68302. However, they offer some minor enhancements, such as the
internal cascading of two timers to form a 32-bit timer. The QUICC also contains a periodic inter-
val timer in the SIM60, bringing the total to five on-chip timers.
8.4 Ethernet on QUICC
The Ethernet protocol is available only on the Ethernet version of the QUICC called the
TS68EN360. The non-Ethernet version of the QUICC is the MC68360. The term “QUICC” is the
overall device name that denotes all versions of the device.
The TS68EN360 is a superset of the MC68360, having the additional option allowing Ethernet
operation on any of the four SCCs. Due to performance reason not ass SCCs can be configured
as Ethernet controller at the same time. The TS68EN360 is not restricted only to Ethernet oper-
ation. HDLC, UART, and other protocols may be used to allow dynamic switching between
protocols. See Appendix A Serial Performance for available SCC performance.
When the MODE bits of the SCC GSMR select the Ethernet protocol, then that SCC performs
the full set of IEEE 802.3/Ethernet CSMA/CD media access control and channel interface func-
tions (see Figure 8-1)
Figure 8-1. Ethernet Block Diagram
IMB
CONTROL
REGISTERS
SLOT TIME
AND DEFER
COUNTER
CLOCK
GENERATOR
PERIPHERAL BUS
RECEIVER
CONTROL
UNIT
RECEIVE
DATA
FIFO
TRANSMITTER
CONTROL
UNIT
TRANSMIT
DATA
FIFO
SHIFTER SHIFTER TXD
RXD
RRJCT
RSTRT
CD = RENA CD = RENA
CTS = CLSN CTS = CLSN
RTS = TENA
INTERNAL CLOCKS
RX CLOCK
TX CLOCK
RANDOM NO.
75
2113B–HIREL–06/05
TS68EN360
8.5 Upgrading Designs from the TS68302
Since the QUICC is a next-generation TS68302, many designers currently using the TS68302
may wish to use the QUICC in a follow-on design. The following paragraphs briefly discuss this
endeavor in terms of architectural approach, hardware issues, and software issues.
8.5.1 Architectural Approach
The QUICC is the logical extension of the TS86302, but the overall architecture and philosophy
of the TS86302 design remains intact in the QUICC. The QUICC keeps the best features of the
TS86302, while making the changes required to provide for the increased flexibility, integration,
and performance requested by customers. Because the CPM is probably the most difficult mod-
ule to learn, anyone who has used the TS86302 can easily become familiar with the QUICC
since the CPM architectural approach remains intact.
The most significant architectural change made on the QUICC was the translation of the design
into the standard 68300 family IMB architecture, resulting in a faster CPU and different system
integration features.
Although the features of the SIM60 do not exactly correspond to those of the TS86302 SIM, they
are very similar.
Because of the similarity of the QUICC SIM60 and CPU to other members of the 68300 family,
such as the TS68332, previous users of these devices will be comfortable with these same fea-
tures on the QUICC.
8.5.2 Hardware Compatibility Issues
The following list summarizes the hardware differences between the TS86302 and the QUICC:
Pinout – The pinout is not the same. The QUICC has 240 pins; the TS86302 has 132 pins
Package – Both devices offer PGA and PQFP packages. However, the QUICC QFP package
has a 20-mil pitch; whereas, the TS86302 QFP package has a 25-mil pitch
System Bus – The system bus signals now look like those of the TS68020 as opposed to
those of the 68000. It is still possible to interface 68000 peripherals to the QUICC, utilizing the
same techniques used to interface them to a TS68020
System Bus in Slave Mode – A number of QUICC pins take on new functionality in slave
mode to support an external TS68EC040. On the TS68302, the pin names generally
remained the same in slave mode
Peripheral Timing – The external timings of the peripherals (SCCs, timers, etc.) are very
similar (if not identical) to corresponding peripherals on the TS68302
Pin Assignments – The assignment of peripheral functions to I/O pins is different in several
ways. First, the QUICC contains more general-purpose parallel I/O pins than the TS68302.
However, the QUICC offers many more functions than even a 240-pin package would
normally allow, resulting in more multifunctional pins than the TS68302
8.5.3 Software Compatibility Issues
The following list summarizes the major software differences between the TS68302 and the
QUICC:
Since the CPU32+ is a superset of the 68000 instruction set, all previously written code will
run. However, if such code is accessing the TS68302 peripherals, it will require some
modification
76
2113B–HIREL–06/05
TS68EN360
The QUICC contains an 8-Kbyte block of memory as opposed to a 4-Kbyte block on the
TS68302. The register addresses within that memory map are different
The code used to initialize the system integration features of the TS68302 has to be modified
to write the corresponding features on the QUICC SIM60
As much as possible, QUICC CPM features were made identical to those of the TS68302 CP.
The most important benefit is that the code flow (if not the code itself) will port easily from the
TS68302 to the QUICC. The nuances learned from the TS68302 will still be useful in the
QUICC
Although the registers used to initialize the QUICC CPM are new (for example, the SCM on
the TS68302 is replaced with the GSMR and PSMR on the QUICC), most registers retain
their original purpose such as the SCC event, SCC mask, SCC status, and command
registers. The parameter RAM of the SCCs is very similar, and most parameter RAM register
names and usage are retained. More importantly, the basic structure of a buffer descriptor
(BD) on the QUICC is identical to that of the TS68302, except for a few new bit functions that
were added. (In a few cases, a bit in a BD status word had to be shifted)
When porting code from the TS68302 CP to the QUICC CPM, the software writer may find
that the QUICC has new options to simplify what used to be a more code-intensive process.
For specific examples, see the INIT TX AND RX PARAMETERS, GRACEFUL STOP
TRANSMIT, and CLOSE BD commands
9. Preparation for Delivery
9.1 Packaging
Microcircuits are prepared for delivery in accordance with MIL-PRF-38535 or Atmel standards.
9.2 Certificate of Compliance
Atmel offers a certificate of compliances with each shipment of parts, affirming the products are
in compliance either with MIL-STD-883 or Atmel standard and guarantying the parameters not
tested at temperature extremes for the entire temperature range.
10. Handling
MOS devices must be handled with certain precautions to avoid damage due to accumulation of
static charge. Input protection devices have been designed in the chip to minimize the effect of
this static buildup. However, the following handling practices are recommended:
a) Devices should be handled on benches with conductive and grounded surfaces
b) Ground test equipment, tools and operator
c) Do not handle devices by the leads
d) Store devices in conductive foam or carriers
e) Avoid use of plastic, rubber, or silk in MOS areas
f) Maintain relative humidity above 50% if practical
77
2113B–HIREL–06/05
TS68EN360
11. Package Mechanical Data
11.1 241-pin – PGA
(top view)
A
Dim
Inches Millimeters
Min Max Min Max
A 1.840 1.880 46.74 47.75
C 0.110 0.140 2.79 3.56
D 0.016 0.020 0.41 0.51
E 0.045 0.055 1.143 1.4
F 0.045 0.055 1.143 1.4
G 0.100 BASIC 2.54 BASIC
K 0.150 0.170 3.81 4.32
118
A
T
(BOTTOM VIEW)
A1
A
G
C
K
E
G
DF
78
2113B–HIREL–06/05
TS68EN360
11.2 240-pin – CERQUAD
240
181
61
120
180 121
1 60
U
S
Y
V
0.25 (0.010) T L–N M MH S
L–N S
0.20 (0.008) M
W
E
C
0.10 (0.004)
–H– DATUM
PLANE
SEATING
PLANE
VIEW AC
4 PLACES
AB
θ2
K
AA
VIEW AE
–H– DATUM
PLANE
VIEW AE
–T–
4 x 60 TIPS
–L–
–M– A
–N–
B
G
P
–X–
AD
AD
X = L, M or N
VIEW AC
J
D
Z
T M S
L–N S
0.08 (0.003) M
SECTION AD
240 PLACES
F
DIM
MILLIMETERS INCHES
MINMAXMINMAX
A 30.86 31.75 1.215 1.250
B 30.86 31.75 1.215 1.250
C 3.67 4.15 0.144 0.163
D 0.20 0.30 0.0079 0.012
E 3.10 3.90 0.122 0.154
F 0.19 0.25 0.0075 0.010
G 0.50 BSC 0.019 BSC
J 0.13 0.175 0.005 0.007
K 0.45 0.55 0.018 0.021
P 0.25 BSC 0.010 BSC
R 0.15 BSC 0.006 BSC
S 34.41 34.75 1.355 1.37
U 17.30 BSC 0.681 BSC
V 34.41 34.75 1.355 1.37
W 0.25 0.75 0.0035 0.0232
Y 17.30 BSC 0.681 BSC
Z 0.12 0.13 0.005 0.005
AA 1.80 REF 0.071 REF
AB 0.95 REF 0.037 REF
θ21°7°1°7°
Notes: 1. Dimensioning and tolerancing per ASME Y 14.5, 1994.
2. Controlling dimension: millimeter.
3. Datum plane -H- is located at bottom of lead and is coincident with the
lead where the lead exits the ceramic body at the bottom of the parting
line.
4. Datums -L-, -M- and -N- to be determined at datum plane -H-.
5. Dimensions S and V to be determined at seating plane -T-.
6. Dimensions A and B define maximum ceramic body dimensions
including glass protrusion and top and bottom mismatch.
79
2113B–HIREL–06/05
TS68EN360
12. Ordering Information
12.1 Hi-REL Product
Commercial Atmel
Part-Number Norms Package
Temperature
Range Tc (°C)
Frequency
(MHz) DSCC
TS68EN360MRB/Q25L MIL-PRF-38535 PGA 241 Gold -55/+125 25 5962-9760701MXC
TS68EN360MRB/Q33L MIL-PRF-38535 PGA 241 Gold -55/+125 33 5962-9760702MXC
TS68EN360MR1B/Q25L MIL-PRF-38535 PGA 241 Tinned -55/+125 25 5962-9760701MXA
TS68EN360MR1B/Q33L MIL-PRF-38535 PGA 241 Tinned -55/+125 33 5962-9760702MXA
TS68EN360MAB/Q25L MIL-PRF-38535 CERQUAD 240 -55/+125 25 5962-9760701MYA
TS68EN360MAB/Q33L MIL-PRF-38535 CERQUAD 240 -55/+125 33 5962-9760702MYA
12.2 Standard Product
Commercial Atmel
Part-Number Norms Package
Temperature
Range Tc (°C)
Frequency
(MHz) Drawing Number
TS68EN360VR25L Atmel Standard PGA 241 -40/+85 25 Internal
TS68EN360MR25L Atmel Standard PGA 241 -55/+125 25 Internal
TS68EN360VA25L Atmel Standard CERQUAD 240 -40/+85 25 Internal
TS68EN360MA25L Atmel Standard CERQUAD 240 -55/+125 25 Internal
TS68EN360VR33L Atmel Standard PGA 241 -40/+85 33 Internal
TS68EN360MR33L Atmel Standard PGA 241 -55/+125 33 Internal
TS68EN360VA33L Atmel Standard CERQUAD 240 -40/+85 33 Internal
TS68EN360MA33L Atmel Standard CERQUAD 240 -55/+125 33 Internal
Operating frequency :
Generic
TS68EN360 M R B/Q
M : -55˚C, +125˚C
V : -40˚C, +110˚C
25 L
Temperature range : (TC )
R = Pin grid array 241 (gold)
A = CERQUAD 240 (tin)
Package :
25 : 25 MHz
33 : 33 MHz
Revision level
___ = Standard
B/Q = MIL-PRF-38535
Screening :
_ = Gold (for PGA)
_ = Hot solder dip (for CERQUAD)
1 = Hot solder dip (for PGA - On request)
Hirel lead finish :
(TSX)
Prototype version
1
80
2113B–HIREL–06/05
TS68EN360
13. Document Revision History
Table 13-1 provides a revision history for this hardware specification.
Table 13-1. Revision History
Revision Number Date Substantive Change(s)
2113B 04/2005 Cerquad Package Change. See page 77
2113A 03/2002 Initial Revision
i
2113B–HIREL–06/05
TS68EN360
Table of Contents
Features .................................................................................................... 1
Description ............................................................................................... 1
Screening/Quality 1
1 Introduction .............................................................................................. 2
1.1 QUICC Architecture Overview ..................................................................................2
2 Pin Assignments ...................................................................................... 3
3 Signal Description ................................................................................... 5
3.1 Functional Signal Group ...........................................................................................5
3.2 Signal Index ..............................................................................................................6
4 Detailed Specification ............................................................................ 11
5 Applicable Documents .......................................................................... 11
5.1 Design and Construction ........................................................................................11
5.2 Absolute Maximum Ratings ....................................................................................11
5.3 Power Considerations ............................................................................................12
5.4 Mechanical and Environment .................................................................................13
5.5 Marking ...................................................................................................................13
6 Quality Conformance Inspection .......................................................... 13
6.1 DESC/MIL-STD-883 ...............................................................................................13
7 Electrical Characteristics ...................................................................... 13
7.1 General Requirements ...........................................................................................13
7.2 Static Characteristics ..............................................................................................14
7.3 Dynamic Characteristics .........................................................................................14
7.4 AC Power Dissipation .............................................................................................16
7.5 AC Electrical Specifications Control Timing ...........................................................17
7.6 External Capacitor For PLL ....................................................................................18
7.7 Bus Operation AC Timing Specifications ................................................................19
7.8 Bus Operation – DRAM Accesses AC Timing Specification ..................................35
7.9 040 Bus Type Slave Mode Bus Arbitration AC Electrical Specifications ................39
7.10 040 Bus Type Slave Mode Internal Read/Write/Lack Cycles AC Electrical
Specifications ................................................................................................40
7.11 040 Bus Type SRAM/DRAM Cycles AC Electrical Specifications ........................43
7.12 IDMA AC Electrical Specifications ........................................................................49
ii
2113B–HIREL–06/05
TS68EN360
7.13 PIP/PIO Electrical Specifications ..........................................................................51
7.14 Interrupt Controller AC Electrical Specifications ...................................................53
7.15 BAUD Rate Generator AC Electrical Specifications .............................................54
7.16 Timer Electrical Specifications ..............................................................................55
7.17 SI Electrical Specifications ...................................................................................56
7.18 SCC in NMSI Mode-external Clock Electrical Specifications ...............................61
7.19 SCC in NMSI Mode-internal Clock Electrical Specifications ................................61
7.20 Ethernet Electrical Specifications .........................................................................64
7.21 SMC Transparent Mode Electrical Specifications ................................................67
7.22 SPI Master Electrical Specifications .....................................................................68
7.23 SPI Slave Electrical Specifications .......................................................................69
7.24 JTAG Electrical Specifications ............................................................................71
8 Functional Description .......................................................................... 73
8.1 CPU32+ Core .........................................................................................................73
8.2 System Integration Module (SIM60) .......................................................................73
8.3 Communications Processor Module (CPM) ...........................................................73
8.4 Ethernet on QUICC ................................................................................................74
8.5 Upgrading Designs from the TS68302 ...................................................................75
9 Preparation for Delivery ........................................................................ 76
9.1 Packaging ...............................................................................................................76
9.2 Certificate of Compliance .......................................................................................76
10 Handling .................................................................................................. 76
11 Package Mechanical Data ..................................................................... 77
11.1 241-pin – PGA .....................................................................................................77
11.2 240-pin – CERQUAD ...........................................................................................78
12 Ordering Information ............................................................................. 79
12.1 Hi-REL Product ....................................................................................................79
12.2 Standard Product .................................................................................................79
13 Document Revision History .................................................................. 80
Printed on recycled paper.
2113B–HIREL–06/05 xM
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others are registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.
Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Literature Requests
www.atmel.com/literature