General Description
The MAX19997A dual downconversion mixer is a versa-
tile, highly integrated diversity downconverter that pro-
vides high linearity and low noise figure for a multitude of
1800MHz to 2900MHz base-station applications. The
MAX19997A fully supports both low- and high-side LO
injection architectures for the 2300MHz to 2900MHz
WiMAX™, LTE, WCS, and MMDS bands, providing
8.7dB gain, +24dBm input IP3, and 10.3dB NF in the
low-side configuration, and 8.7dB gain, +24dBm input
IP3, and 10.4dB NF in the high-side configuration. High-
side LO injection architectures can be further extended
down to 1800MHz with the addition of one tuning ele-
ment (a shunt inductor) on each RF port.
The device integrates baluns in the RF and LO ports,
an LO buffer, two double-balanced mixers, and a pair
of differential IF output amplifiers. The MAX19997A
requires a typical LO drive of 0dBm and a supply cur-
rent guaranteed below 420mA to achieve the targeted
linearity performance.
The MAX19997A is available in a compact 6mm x 6mm,
36-pin thin QFN lead-free package with an exposed
pad. Electrical performance is guaranteed over the
extended temperature range, from TC= -40°C to +85°C.
Applications
2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
UMTS/WCDMA and cdma2000®3G Base
Stations
PCS1900 and EDGE Base Stations
PHS/PAS Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
o1800MHz to 2900MHz RF Frequency Range
o1950MHz to 3400MHz LO Frequency Range
o50MHz to 550MHz IF Frequency Range
oSupports Both Low-Side and High-Side LO
Injection
o8.7dB Conversion Gain
o+24dBm Input IP3
o10.3dB Noise Figure
o+11.3dBm Input 1dB Compression Point
o70dBc Typical 2 x 2 Spurious Rejection at
PRF = -10dBm
oDual Channels Ideal for Diversity Receiver
Applications
oIntegrated LO Buffer
oIntegrated LO and RF Baluns for Single-Ended
Inputs
oLow -3dBm to +3dBm LO Drive
oPin Compatible with the MAX19999 3000MHz to
4000MHz Mixer
oPin Similar to the MAX9995/MAX9995A and
MAX19995/MAX19995A 1700MHz to 2200MHz
Mixers and the MAX9985/MAX9985A and
MAX19985/MAX19985A 700MHz to 1000MHz
Mixers
o42dB Channel-to-Channel Isolation
oSingle +5.0V or +3.3V Supply
oExternal Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/Reduced-
Performance Mode
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-4288; Rev 3; 8/11
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
PART TEMP RANGE PIN-PACKAGE
MAX19997AETX+ -40°C to +85°C
36 Thin QFN-EP*
MAX19997AETX+T
-40°C to +85°C
36 Thin QFN-EP*
+
Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
Pin Configuration/Functional Block Diagram appears at
end of data sheet.
WiMAX is a trademark of WiMAX Forum.
cdma2000 is a registered trademark of Telecommunications
Industry Association.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC = +4.75V to
+5.25V, TC= -40°C to +85°C. Typical values are at VCC = +5.0V, TC= +25°C, unless otherwise noted. R1, R4 = 750, R2, R5 = 698.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
VCC to GND...........................................................-0.3V to +5.5V
RF_, LO to GND.....................................................-0.3V to +0.3V
IFM_, IFD_, IFM_SET, IFD_SET, LO_ADJ_M,
LO_ADJ_D to GND.................................-0.3V to (VCC + 0.3V)
RF_, LO Input Power ......................................................+15dBm
RF_, LO Current (RF_ and LO is DC
shorted to GND through balun)................................... ...50mA
Continuous Power Dissipation (Note 1) ..............................8.7W
Operating Case Temperature Range
(Note 4) ...................................................TC= -40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 4.75 5.25 V
VCC = 5.0V 388 420
Total Supply Current ICC VCC = 5.25V 390.4 mA
VCC (Pin 4) Supply Current
(Main and Diversity Paths) VCC = 5.25V 2.5 mA
VCC (Pin 10) Supply Current
(Diversity Path) VCC = 5.25V 8.9 mA
VCC (Pin 16) Supply Current
(Diversity Path) VCC = 5.25V 109.3 mA
VCC (Pin 21) Supply Current
(Main and Diversity Paths) VCC = 5.25V 28.3 mA
VCC (Pin 30) Supply Current
(Main Path) VCC = 5.25V 109.3 mA
VCC (Pin 36) Supply Current
(Main Path) VCC = 5.25V 8.9 mA
IFM Bias Supply Current (Main
Path)
Total bias feeding IFM- and IFM+ through
R3, L1 and L2; VCC = 5.25V 61.6 mA
IFD Bias Supply Current
(Diversity Path)
Total bias feeding IFD+ and IFD- through
R6, L3 and L4; VCC = 5.25V 61.6 mA
Note 1: Based on junction temperature TJ= TC+ (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the
Applications Information
section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature TJ= TA+ (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TCis the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
PACKAGE THERMAL CHARACTERISTICS
Junction-to-Ambient Thermal Resistance (θJA)
(Notes 2, 3)...................................................................38°C/W
Junction-to-Case Thermal Resistance (θJC)
(Notes 1, 3)..................................................................7.4°C/W
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 3
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 3.0 3.3 3.6 V
Supply Current ICC Total supply current, VCC = +3.3V 279 310 mA
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC = +3.0V to
+3.6V, TC= -40°C to +85°C. Typical values are at VCC = +3.3V, TC= +25°C, unless otherwise noted. R1, R4 = 1.1k, R2, R5 = 845.)
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Without External
Tuning fRF (Note 5) 2400 2900 MHz
RF Frequency with External
Tuning fRF
S ee Tab l e 2 for an outl i ne of tuni ng el em ents
op ti m i zed for 1950M H z op er ati on;
op ti m i zati on at other fr eq uenci es w i thi n the
1800M H z to 2400M H z r ang e can b e
achi eved w i th different component values;
contact the factory for details
1800 2400 MHz
LO Frequency fLO (Notes 5, 6) 1950 3400 MHz
Using Mini-Circuits TC4-1W-17 4:1
transformer as defined in the Typical
Application Circuit, IF matching
components affect the IF frequency range
(Notes 5, 6)
100 550
IF Frequency fIF
Using alternative Mini-Circuits TC4-1W-7A
4:1 transformer, IF matching components
affect the IF frequency range (Notes 5, 6)
50 250
MHz
LO Drive Level PLO -3 +3 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Gain GCfRF = 2400MHz to 2900MHz,
TC = +25°C (Notes 8, 9, 10) 8.1 8.7 9.3 dB
fRF = 2305MHz to 2360MHz 0.15
fRF = 2500MHz to 2570MHz 0.15
fRF = 2570MHz to 2620MHz 0.1
fRF = 2500MHz to 2690MHz 0.15
Conversion Gain Flatness
fRF = 2700MHz to 2900MHz 0.15
dB
Gain Variation Over Temperature TCCG fRF = 2300MHz to 2900MHz,
TC = -40°C to +85°C -0.01 dB/°C
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1),V
CC = +4.75V to +5.25V, RF and LO ports are driven
from 50sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz,
fRF < fLO, TC= -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz,
fIF = 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
4 _______________________________________________________________________________________
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Input Compression Point IP1dB (Notes 8, 9, 11) 9.6 11.3 dBm
fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone
(Notes 8, 9) 22.0 24
Third-Order Input Intercept Point IIP3 fRF = 2600MHz, fRF1 - fRF2 = 1MHz,
PRF = -5dBm per tone, TC = +25°C
(Notes 8, 9)
22.5 24
dBm
Thi r d - O r d er Inp ut Inter cep t P oi nt
V ar i ati on Over Tem p er atur efRF1 - fRF2 = 1MHz, TC = -40°C to +85°C ±0.3 dBm
S i ng l e si d eb and , no b l ocker s p r esent
fRF
= 2400M H z to 2900M H z ( N otes 6, 8, 10) 10.4 12.5
Noise Figure NFSSB Single sideband, no blockers present,
fR F = 2400M H z to 2900M H z , TC = +25°C
(Note 6, 8, 10)
10.4 11.4
dB
Noise Figure Temperature
Coefficient TCNF Single sideband, no blockers present,
TC = -40°C to +85°C 0.018 dB/°C
Noise Figure Under Blocking
Conditions NFB
fBLOCKER = 2412MHz, PBLOCKER = 8dBm,
fRF = 2600MHz, fLO = 2950MHz, PLO =
0dBm, V
C C
= + 5.0V , TC
= + 25°C ( Notes 8, 12)
22.5 25 dB
fRF = 2600MHz, fLO = 2950MHz,
PRF = -10dBm, fSPUR = fLO - 175MHz
(Note 8)
62 69
2LO - 2RF Spur 2 x 2
fRF = 2600MHz, fLO = 2950MHz,
PRF = -5dBm, fSPUR = fLO - 175MHz
(Notes 8, 9)
57 64
dBc
fRF = 2600MHz, fLO = 2950MHz,
PRF = -10dBm, fSPUR = fLO - 116.67MHz,
TC = +25°C (Note 8)
73 84
3LO - 3RF Spur 3 x 3
fRF = 2600MHz, fLO = 2950MHz,
PRF = -5dBm, fSPUR = fLO - 116.67MHz,
TC = +25°C (Notes 8, 9)
63 74
dBc
RF Input Return Loss LO on and IF terminated into a matched
impedance 14 dB
LO Input Return Loss RF and IF terminated into a matched
impedance 13 dB
IF Output Impedance ZIF Nominal differential impedance at the IC’s
IF outputs 200
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1),V
CC = +4.75V to +5.25V, RF and LO ports are driven
from 50sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz,
fRF < fLO, TC= -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz,
fIF = 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 5
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1),V
CC = +4.75V to +5.25V, RF and LO ports are driven
from 50sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz,
fRF < fLO, TC= -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz,
fIF = 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
IF Output Return Loss
RF terminated into 50, LO driven by 50
source, IF transformed to 50 using
external components shown in the Typical
Application Circuit
21 dB
RF-to-IF Isolation 25 dB
LO Leakage at RF Port (Notes 8, 9) -28 dBm
2LO Leakage at RF Port -33 dBm
LO Leakage at IF Port -18.5 dBm
Channel Isolation
RFMAIN (RFDIV) converted power
measured at IFDIV (IFMAIN) relative to
IFMAIN (IFDIV), all unused ports terminated
to 50
38.5 43 dB
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Gain GCfRF = 2400MHz to 2900MHz,
TC = +25°C (Notes 8, 9, 10) 8.1 8.7 9.3 dB
fRF = 2305MHz to 2360MHz 0.2
fRF = 2500MHz to 2570MHz 0.15
fRF = 2570MHz to 2620MHz 0.2
fRF = 2500MHz to 2690MHz 0.25
Conversion Gain Flatness
fRF = 2700MHz to 2900MHz 0.25
dB
Gain Variation Over Temperature TCCG fRF = 2300MHz to 2900MHz, TC = -40°C to
+85°C -0.01 dB/°C
Input Compression Point IP1dB (Notes 6, 8, 11) 9.6 11.3 dBm
fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone
(Notes 8, 9) 21.6 23 dBm
Third-Order Input Intercept Point IIP3 fRF = 2600MHz, fRF1 - fRF2 = 1MHz,
PRF = -5dBm per tone, TC = +25°C
(Notes 8, 9)
22 23.8 dBm
Thi r d - O r d er Inp ut Inter cep t P oi nt
V ar i ati on Over Tem p er atur efRF1 - fRF2 = 1MHz, TC = -40°C to +85°C ±0.3 dBm
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz,
fRF > fLO, TC= -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz,
fIF = 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
6 _______________________________________________________________________________________
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Single sideband, no blockers present
fRF = 2400MHz to 2900MHz (Notes 6, 8) 10.3 13.0
Noise Figure NFSSB Single sideband, no blockers present,
fRF = 2400MHz to 2900MHz, TC = +25°C
(Notes 6, 8)
10.3 11.3
dB
Noise Figure Temperature
Coefficient TCNF Single sideband, no blockers present,
TC = -40°C to +85°C 0.018 dB/°C
Noise Figure Under Blocking
Conditions NFB
fBLOCKER = 2793MHz, PBLOCKER = 8dBm,
fRF = 2600MHz, fLO = 2250MHz,
PLO = 0dBm, V
C C
= + 5.0V , TC
= +25°C
(Notes 6, 8, 12)
22 25 dB
fRF = 2600MHz, fLO = 2250MHz,
PRF = -10dBm, fSPUR = fLO + 175MHz,
TC = +25°C (Note 8)
62 67
2RF - 2LO Spur 2 x 2
fRF = 2600MHz, fLO = 2250MHz,
PRF = -5dBm, fSPUR = fLO + 175MHz,
TC = +25°C (Notes 8, 9)
57 62
dBc
fRF = 2600MHz, fLO = 2250MHz,
PRF = -10dBm, fSPUR = fLO + 116.67MHz,
TC = +25°C (Note 8)
78 83
3RF - 3LO Spur 3 x 3
fRF = 2600MHz, fLO = 2250MHz,
PRF = -5dBm, fSPUR = fLO + 116.67MHz,
TC = +25°C (Notes 8, 9)
68 73
dBc
RF Input Return Loss LO on and IF terminated into a matched
impedance 16 dB
LO Input Return Loss RF and IF terminated into a matched
impedance 11.5 dB
IF Output Impedance ZIF Nominal differential impedance at the IC’s
IF outputs 200
IF Output Return Loss
RF terminated into 50, LO driven by 50
source, IF transformed to 50 using
external components shown in the Typical
Application Circuit
20 dB
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz,
fRF > fLO, TC= -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz,
fIF = 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 7
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF-to-IF Isolation 23.5 dB
LO Leakage at RF Port (Notes 8, 9) -31 -24 dBm
2LO Leakage at RF Port -27 dBm
LO Leakage at IF Port -9.6 dBm
Channel Isolation
RFMAIN (RFDIV) converted power
measured at IFDIV (IFMAIN) relative to
IFMAIN (IFDIV), all unused ports terminated
to 50 (Notes 8, 9)
38.5 42 dB
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1). Typical values are at VCC = +3.3V, PRF = -5dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Gain GC(Note 9) 8.5 dB
fRF = 2305MHz to 2360MHz 0.2
fRF = 2500MHz to 2570MHz 0.15
fRF = 2570MHz to 2620MHz 0.15
fRF = 2500MHz to 2690MHz 0.25
Conversion Gain Flatness
fRF = 2700MHz to 2900MHz 0.15
dB
Gain Variation Over Temperature TCCG fRF = 2300MHz to 2900MHz,
TC = -40°C to +85°C -0.01 dB/°C
Input Compression Point IP1dB 7.7 dBm
Thi r d - O r d er Inp ut Inter cep t P oi nt IIP3 fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone 19.7 dBm
Third-Order Input Intercept
Variation Over Temperature fRF1 - fRF2 = 1MHz, TC = -40°C to +85°C ±0.5 dBm
Noise Figure NFSSB Single sideband, no blockers present 9.7 dB
Noise Figure Temperature
Coefficient TCNF Single sideband, no blockers present,
TC = -40°C to +85°C 0.018 dB/°C
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz,
fRF > fLO, TC= -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz,
fIF = 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
8 _______________________________________________________________________________________
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1). Typical values are at VCC = +3.3V, PRF = -5dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
PRF = -10dBm, fSPUR = fLO + 175MHz 74
2RF - 2LO Spur 2 x 2 PRF = -5dBm, fSPUR = fLO + 175MHz 69 dBc
PRF = -10dBm, fSPUR = fLO + 116.67MHz 74
3RF - 3LO Spur 3 x 3 PRF = -5dBm, fSPUR = fLO + 116.67MHz 64 dBc
RF Input Return Loss LO on and IF terminated into a matched
impedance 16 dB
LO Input Return Loss RF and IF terminated into a matched
impedance 11 dB
IF Output Impedance ZIF Nominal differential impedance at the IC’s
IF outputs 200
IF Output Return Loss
RF terminated into 50, LO driven by 50
source, IF transformed to 50 using
external components shown in the Typical
Application Circuit
26 dB
RF-to-IF Isolation 25 dB
LO Leakage at RF Port -36 dBm
2LO Leakage at RF Port -31 dBm
LO Leakage at IF Port -13.5 dBm
Channel Isolation
RFMAIN (RFDIV) converted power
measured at IFDIV (IFMAIN) relative to
IFMAIN (IFDIV), all unused ports terminated
to 50
42 dB
Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the
Typical Operating
Characteristics
.
Note 6: Not production tested.
Note 7: All limits reflect losses of external components, including a 0.8dB loss at fIF = 350MHz due to the 4:1 impedance trans-
former. Output measurements taken at the IF outputs of
Typical Application Circuit
.
Note 8: Guaranteed by design and characterization.
Note 9: 100% production tested for functional performance.
Note 10: RF frequencies below 2400MHz require external RF tuning similar to components listed in Table 2.
Note 11: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50source.
Note 12: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of
all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021:
Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers
.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________
9
Typical Operating Characteristics
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc01
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
280026002400
7
8
9
10
11
6
2200 3000
TC = -30°C
TC = +25°C
TC = +85°C
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc02
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
280026002400
7
8
9
10
11
6
2200 3000
PLO = -3dBm, 0dBm, +3dBm
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc03
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
280026002400
7
8
9
10
11
6
2200 3000
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc04
INPUT IP3 (dBm)
23
24
25
26
22
RF FREQUENCY (MHz)
2800260024002200 3000
TC = -30°C
PRF = -5dBm/TONE
TC = +25°C
TC = +85°C
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc05
INPUT IP3 (dBm)
23
24
25
26
22
RF FREQUENCY (MHz)
2800260024002200 3000
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc06
INPUT IP3 (dBm)
23
24
25
26
22
RF FREQUENCY (MHz)
2800260024002200 3000
PRF = -5dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc07
NOISE FIGURE (dB)
8
9
10
11
12
13
7
RF FREQUENCY (MHz)
2800260024002200 3000
TC = -30°C
TC = +25°C
TC = +85°C
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc08
NOISE FIGURE (dB)
8
9
10
11
12
13
7
RF FREQUENCY (MHz)
2800260024002200 3000
PLO = -3dBm, 0dBm, +3dBm
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc09
NOISE FIGURE (dB)
8
9
10
11
12
13
7
RF FREQUENCY (MHz)
2800260024002200 3000
VCC = 4.75V, 5.0V, 5.25V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
10 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc10
2LO - 2RF RESPONSE (dBc)
60
70
80
50
RF FREQUENCY (MHz)
2800260024002200 3000
TC = -30°C
PRF = -5dBm
TC = +25°C
TC = +85°C
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc11
2LO - 2RF RESPONSE (dBc)
60
70
80
50
RF FREQUENCY (MHz)
2800260024002200 3000
PLO = +3dBm
PRF = -5dBm
PLO = 0dBm
PLO = -3dBm
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc12
2LO - 2RF RESPONSE (dBc)
60
70
80
50
RF FREQUENCY (MHz)
2800260024002200 3000
VCC = 4.75V, 5.0V, 5.25V
PRF = -5dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc13
3LO - 3RF RESPONSE (dBc)
65
75
85
95
55
RF FREQUENCY (MHz)
2800260024002200 3000
TC = -30°C
TC = +25°C, +85°C
PRF = -5dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc14
3LO - 3RF RESPONSE (dBc)
65
75
85
95
55
RF FREQUENCY (MHz)
2800260024002200 3000
PLO = -3dBm, 0dBm, +3dBm
PRF = -5dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc15
3LO - 3RF RESPONSE (dBc)
65
75
85
95
55
RF FREQUENCY (MHz)
2800260024002200 3000
VCC = 4.75V, 5.0V, 5.25V
PRF = -5dBm
INPUT P1dB vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc16
INPUT P1dB (dBm)
10
11
12
13
9
RF FREQUENCY (MHz)
2800260024002200 3000
TC = -30°C
TC = +25°C
TC = +85°C
INPUT P1dB vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc17
INPUT P1dB (dBm)
10
11
12
13
9
RF FREQUENCY (MHz)
2800260024002200 3000
PLO = -3dBm, 0dBm, +3dBm
INPUT P1dB vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc18
INPUT P1dB (dBm)
10
11
12
13
9
RF FREQUENCY (MHz)
2800260024002200 3000
VCC = 4.75V
VCC = 5.25V VCC = 5.0V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
11
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc19
CHANNEL ISOLATION (dB)
35
40
45
50
55
60
30
RF FREQUENCY (MHz)
2800260024002200 3000
TC = -30°C, +25°C, +85°C
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc20
CHANNEL ISOLATION (dB)
35
40
45
50
55
60
30
RF FREQUENCY (MHz)
2800260024002200 3000
PLO = -3dBm, 0dBm, +3dBm
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc21
CHANNEL ISOLATION (dB)
35
40
45
50
55
60
30
RF FREQUENCY (MHz)
2800260024002200 3000
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc22
LO LEAKAGE AT IF PORT (dBm)
-30
-20
-10
0
-40
LO FREQUENCY (MHz)
3150295027502550 3350
TC = -30°C
TC = +25°C, +85°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc23
LO LEAKAGE AT IF PORT (dBm)
-30
-20
-10
0
-40
LO FREQUENCY (MHz)
3150295027502550 3350
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc24
LO LEAKAGE AT IF PORT (dBm)
-30
-20
-10
0
-40
LO FREQUENCY (MHz)
3150295027502550 3350
VCC = 4.75V, 5.0V, 5.25V
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc25
RF-TO-IF ISOLATION (dB)
20
30
40
10
RF FREQUENCY (MHz)
2800260024002200 3000
TC = -30°CTC = +25°C
TC = +85°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc26
RF-TO-IF ISOLATION (dB)
20
30
40
10
RF FREQUENCY (MHz)
2800260024002200 3000
PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc27
RF-TO-IF ISOLATION (dB)
20
30
40
10
RF FREQUENCY (MHz)
2800260024002200 3000
VCC = 4.75V, 5.0V, 5.25V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
12 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc28
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-40
-30
-20
-10
-50
2300 3400
TC = -30°C, +25°C, +85°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc29
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-40
-30
-20
-10
-50
2300 3400
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc30
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-40
-30
-20
-10
-50
2300 3400
VCC = 4.75V, 5.0V, 5.25V
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc31
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-40
-30
-20
-10
-50
2300 3400
TC = -30°C, +25°C, +85°C
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc32
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-40
-30
-20
-10
-50
2300 3400
PLO = -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc33
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-40
-30
-20
-10
-50
2300 3400
VCC = 4.75V, 5.0V, 5.25V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
13
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
LO PORT RETURN LOSS vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc37
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
31502900265024002150
20
15
10
5
0
25
1900 3400
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
SUPPLY CURRENT vs. TEMPERATURE (TC)
(LO > RF, STANDARD RF BAND)
MAX19997A toc38
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
6545255-15
360
370
380
390
400
350
-35 85
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
RF PORT RETURN LOSS vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc34
RF PORT RETURN LOSS (dB)
25
20
15
10
5
0
30
RF FREQUENCY (MHz)
2800260024002200 3000
PLO = -3dBm, 0dBm, +3dBm
fIF = 350MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc35
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
410320230140
25
20
15
10
5
0
30
50 500
VCC = 4.75V, 5.0V, 5.25V
fLO = 2600MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc36
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
410320230140
25
20
15
10
5
0
30
50 500
fLO = 2600MHz fLO = 2950MHz
fLO = 2350MHz
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
14 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc39
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
2200210020001900
7
8
9
10
11
6
1800 2300
TC = -30°C
TC = +25°C
TC = +85°C
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc40
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
2200210020001900
7
8
9
10
11
6
1800 2300
PLO = -3dBm, 0dBm, +3dBm
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc41
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
2200210020001900
7
8
9
10
11
6
1800 2300
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc42
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2200210020001900
23
24
25
26
22
1800 2300
TC = -30°C
PRF = -5dBm/TONE
TC = +25°C
TC = +85°C
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc43
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2200210020001900
23
24
25
26
22
1800 2300
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc44
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2200210020001900
23
24
25
26
22
1800 2300
PRF = -5dBm/TONE
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc45
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
2200210020001900
9
8
10
11
12
13
7
1800 2300
TC = -30°C
TC = +25°C
TC = +85°C
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc46
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
2200210020001900
9
8
10
11
12
13
7
1800 2300
PLO = -3dBm, 0dBm, +3dBm
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc47
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
2200210020001900
9
8
10
11
12
13
7
1800 2300
VCC = 4.75V, 5.0V, 5.25V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
15
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc49
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
2200210020001900
50
60
70
40
1800 2300
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc51
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
2200210020001900
65
85
75
95
55
1800 2300
PRF = -5dBm
TC = -30°C
TC = +25°C, +85°C
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
INPUT P1dB vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc55
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
2200210020001900
10
11
12
13
9
1800 2300
PLO = -3dBm, 0dBm, +3dBm
INPUT P1dB vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc56
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
2200210020001900
10
11
12
13
9
1800 2300
VCC = 4.75V
VCC = 5.0V VCC = 5.25V
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc48
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
2200210020001900
50
60
70
40
1800 2300
TC = -30°C
TC = +25°C
TC = +85°CPRF = -5dBm
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc50
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
2200210020001900
50
60
70
40
1800 2300
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc52
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
2200210020001900
65
85
75
95
55
1800 2300
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc53
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
2200210020001900
65
85
75
95
55
1800 2300
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
INPUT P1dB vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc54
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
2200210020001900
10
11
12
13
9
1800 2300
TC = -30°CTC = +25°C
TC = +85°C
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
16 ______________________________________________________________________________________
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc65
RF-TO-IF ISOLATION (dB)
2200210020001900
20
30
10
1800 2300
RF FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc63
RF-TO-IF ISOLATION (dB)
2200210020001900
20
30
10
1800 2300
TC = -30°C
TC = +25°C
TC = +85°C
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc62
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
2550245023502250
-20
-10
0
-30
2150 2650
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc61
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
2550245023502250
-20
-10
0
-30
2150 2650
PLO = -3dBm, 0dBm, +3dBm
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc58
RF FREQUENCY (MHz)
CHANNEL ISOLATION (dB)
2200210020001900
40
35
45
55
50
60
30
1800 2300
PLO = -3dBm, 0dBm, +3dBm
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc59
RF FREQUENCY (MHz)
CHANNEL ISOLATION (dB)
2200210020001900
40
35
45
55
50
60
30
1800 2300
VCC = 4.75V, 5.0V, 5.25V
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc57
RF FREQUENCY (MHz)
CHANNEL ISOLATION (dB)
2200210020001900
40
35
45
55
50
60
30
1800 2300
TC = -30°C, +25°C, +85°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc60
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
2550245023502250
-20
-10
0
-30
2150 2650
TC = -30°C, +25°C, +85°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc64
RF-TO-IF ISOLATION (dB)
2200210020001900
20
30
10
1800 2300
RF FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
17
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc68
LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-30
-40
-20
-10
-50
2300 3400
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc66
LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-30
-40
-20
-10
-50
2300 3400
LO FREQUENCY (MHz)
TC = -30°C, +25°C, +85°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc67
LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-30
-40
-20
-10
-50
2300 3400
LO FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(LO > RF, EXTENDED RF BAND)
MAX19997A toc69
2LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-30
-40
-20
-10
-50
2300 3400
LO FREQUENCY (MHz)
TC = -30°C, +25°C, +85°C
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(LO > RF, EXTENDED RF BAND)
MAX19997A toc70
2LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-30
-40
-20
-10
-50
2300 3400
LO FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(LO > RF, EXTENDED RF BAND)
MAX19997A toc71
2LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-30
-40
-20
-10
-50
2300 3400
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
18 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
RF PORT RETURN LOSS vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc72
RF PORT RETURN LOSS (dB)
2200210020001900
15
10
25
20
5
0
30
1800 2300
RF FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
fIF = 350MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc73
IF PORT RETURN LOSS (dB)
410320230140
15
10
25
20
5
0
30
50 500
IF FREQUENCY (MHz)
fLO = 2600MHz
VCC = 4.75V, 5.0V, 5.25V
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc74
IF PORT RETURN LOSS (dB)
410320230140
15
10
25
20
5
0
30
50 500
IF FREQUENCY (MHz)
fLO = 2600MHz
fLO = 2950MHz
fLO = 2350MHz
LO PORT RETURN LOSS vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
MAX19997A toc75
LO PORT RETURN LOSS (dB)
2900 3150265024002150
10
20
15
5
0
25
1900 3400
LO FREQUENCY (MHz)
PLO = -3dBm PLO = 0dBm
PLO = +3dBm
SUPPLY CURRENT vs. TEMPERATURE (TC)
(LO > RF, EXTENDED RF BAND)
MAX19997A toc76
SUPPLY CURRENT (mA)
45 65255-15
380
360
370
390
400
350
-35 85
TEMPERATURE (°C)
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
19
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc82
INPUT IP3 (dBm)
280026002400
23
24
25
26
22
2200 3000
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc81
INPUT IP3 (dBm)
280026002400
23
24
25
26
22
2200 3000
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc79
CONVERSION GAIN (dB)
280026002400
9
7
8
10
11
6
2200 3000
RF FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc77
CONVERSION GAIN (dB)
280026002400
9
7
8
10
11
6
2200 3000
RF FREQUENCY (MHz)
TC = +85°C
TC = +25°C
TC = -30°C
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc83
NOISE FIGURE (dB)
280026002400
8
9
10
11
12
13
7
2200 3000
RF FREQUENCY (MHz)
TC = +85°C
TC = +25°CTC = -30°C
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc84
NOISE FIGURE (dB)
280026002400
8
9
10
11
12
13
7
2200 3000
RF FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc85
NOISE FIGURE (dB)
280026002400
8
9
10
11
12
13
7
2200 3000
RF FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc78
CONVERSION GAIN (dB)
280026002400
9
7
8
10
11
6
2200 3000
RF FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc80
INPUT IP3 (dBm)
280026002400
23
24
25
26
22
2200 3000
RF FREQUENCY (MHz)
TC = +85°C
TC = +25°C
PRF = -5dBm/TONE
TC = -30°C
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
20 ______________________________________________________________________________________
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc94
INPUT P1dB (dBm)
280026002400
10
11
12
13
9
2200 3000
RF FREQUENCY (MHz)
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc90
3RF - 3LO RESPONSE (dBc)
280026002400
65
75
85
95
55
2200 3000
RF FREQUENCY (MHz)
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc86
2RF - 2LO RESPONSE (dBc)
280026002400
60
70
80
50
2200 3000
RF FREQUENCY (MHz)
TC = +85°CPRF = -5dBm
TC = +25°C
TC = -30°C
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc87
2RF - 2LO RESPONSE (dBc)
280026002400
60
70
80
50
2200 3000
RF FREQUENCY (MHz)
PLO = 0dBm
PRF = -5dBm
PLO = -3dBm
PLO = +3dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc88
2RF - 2LO RESPONSE (dBc)
280026002400
60
70
80
50
2200 3000
RF FREQUENCY (MHz)
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc89
3RF - 3LO RESPONSE (dBc)
280026002400
65
85
75
95
55
2200 3000
RF FREQUENCY (MHz)
PRF = -5dBm
TC = -30°C, +25°C, +85°C
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc91
3RF - 3LO RESPONSE (dBc)
280026002400
65
75
85
95
55
2200 3000
RF FREQUENCY (MHz)
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc92
INPUT P1dB (dBm)
280026002400
10
11
12
13
9
2200 3000
RF FREQUENCY (MHz)
TC = -30°CTC = +25°C
TC = +85°C
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc93
INPUT P1dB (dBm)
280026002400
10
11
12
13
9
2200 3000
RF FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
21
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc100
LO LEAKAGE AT IF PORT (dBm)
245022502050
-20
-10
0
-30
1850 2650
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc96
CHANNEL ISOLATION (dB)
280026002400
40
35
45
50
55
30
2200 3000
RF FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc101
RF-TO-IF ISOLATION (dB)
280026002400
20
30
10
2200 3000
RF FREQUENCY (MHz)
TC = -30°C
TC = +25°C
TC = +85°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc102
RF-TO-IF ISOLATION (dB)
280026002400
20
30
10
2200 3000
RF FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc103
RF-TO-IF ISOLATION (dB)
280026002400
20
30
10
2200 3000
RF FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc95
CHANNEL ISOLATION (dB)
280026002400
40
35
45
50
55
30
2200 3000
RF FREQUENCY (MHz)
TC = -30°C, +25°C, +85°C
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc97
CHANNEL ISOLATION (dB)
280026002400
40
35
45
50
55
30
2200 3000
RF FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc98
LO LEAKAGE AT IF PORT (dBm)
245022502050
-20
-10
0
-30
1850 2650
LO FREQUENCY (MHz)
TC = -30°C, +25°C, +85°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc99
LO LEAKAGE AT IF PORT (dBm)
245022502050
-20
-10
0
-30
1850 2650
LO FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
22 ______________________________________________________________________________________
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc106
LO LEAKAGE AT RF PORT (dBm)
2700250023002100
-30
-40
-20
-10
-50
1900 2900
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc104
LO LEAKAGE AT RF PORT (dBm)
2700250023002100
-30
-40
-20
-10
-50
1900 2900
LO FREQUENCY (MHz)
TC = -30°C, +25°C, +85°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc105
LO LEAKAGE AT RF PORT (dBm)
2700250023002100
-30
-40
-20
-10
-50
1900 2900
LO FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
MAX19997A toc107
2LO LEAKAGE AT RF PORT (dBm)
2700250023002100
-30
-40
-20
-10
-50
1900 2900
LO FREQUENCY (MHz)
TC = -30°C, +25°C, +85°C
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
MAX19997A toc108
2LO LEAKAGE AT RF PORT (dBm)
2700250023002100
-30
-40
-20
-10
-50
1900 2900
LO FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
MAX19997A toc109
2LO LEAKAGE AT RF PORT (dBm)
2700250023002100
-30
-40
-20
-10
-50
1900 2900
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
23
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
SUPPLY CURRENT vs. TEMPERATURE (TC)
(RF > LO, STANDARD RF BAND)
MAX19997A toc114
SUPPLY CURRENT (mA)
25 45 655-15
370
360
390
380
400
350
-35 85
TEMPERATURE (°C)
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc112
IF PORT RETURN LOSS (dB)
320 410230140
15
25
20
5
10
0
30
50 500
IF FREQUENCY (MHz)
fLO = 2250MHz
fLO = 2650MHz
fLO = 1850MHz
LO PORT RETURN LOSS vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc113
LO PORT RETURN LOSS (dB)
2650 2900 315024002150
15
20
5
10
0
25
1900 3400
LO FREQUENCY (MHz)
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc111
IF PORT RETURN LOSS (dB)
320 410230140
15
25
20
5
10
0
30
50 500
IF FREQUENCY (MHz)
fLO = 2250MHz
VCC = 4.75V, 5.0V, 5.25V
RF PORT RETURN LOSS vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc110
RF PORT RETURN LOSS (dB)
280026002400
15
25
20
5
10
0
30
2200 3000
RF FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
fIF = 350MHz
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
24 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +3.3V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc123
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
280026002400
10
11
12
13
7
8
9
2200 3000
VCC = 3.0V, 3.3V, 3.6V
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc122
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
280026002400
10
11
12
13
7
8
9
2200 3000
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc121
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
280026002400
10
11
12
13
7
8
9
2200 3000
VCC = 3.3V
TC = -30°C
TC = +25°C
TC = +85°C
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc117
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
280026002400
7
8
9
10
11
5
6
2200 3000
VCC = 3.0V, 3.3V, 3.6V
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc118
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
280026002400
19
20
21
22
17
18
2200 3000
PRF = -5dBm/TONE
TC = -30°C
VCC = 3.3V
TC = +25°C
TC = +85°C
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc119
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
280026002400
19
20
21
22
17
18
2200 3000
PRF = -5dBm/TONE
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc120
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
280026002400
19
20
21
22
17
18
2200 3000
PRF = -5dBm/TONE
VCC = 3.0V, 3.3V, 3.6V
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc115
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
280026002400
7
8
9
10
11
5
6
2200 3000
TC = -30°CVCC = 3.3V
TC = +25°C
TC = +85°C
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc116
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
280026002400
7
8
9
10
11
5
6
2200 3000
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
25
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +3.3V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc132
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
280026002400
7
9
8
10
5
6
2200 3000
VCC = 3.3V VCC = 3.6V
VCC = 3.0V
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc127
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
280026002400
65
85
75
95
45
55
2200 3000
PRF = -5dBm
VCC = 3.3V
TC = -30°C, +25°C, +85°C
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc128
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
280026002400
65
85
75
95
45
55
2200 3000
PRF = -5dBm
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc129
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
280026002400
65
85
75
95
45
55
2200 3000
PRF = -5dBm
VCC = 3.0V, 3.3V, 3.6V
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc130
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
280026002400
7
9
8
10
5
6
2200 3000
VCC = 3.3V
TC = -30°CTC = +25°C
TC = +85°C
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc131
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
280026002400
7
9
8
10
5
6
2200 3000
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc126
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
280026002400
70
80
90
50
60
2200 3000
PRF = -5dBm
VCC = 3.6V
VCC = 3.0V
VCC = 3.3V
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc124
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
280026002400
70
80
90
50
60
2200 3000
PRF = -5dBm
VCC = 3.3V
TC = -30°C
TC = +25°C
TC = +85°C
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc125
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
280026002400
70
80
90
50
60
2200 3000
PRF = -5dBm
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
VCC = 3.3V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
26 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +3.3V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc136
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
245022502050
-20
-10
0
-30
1850 2650
TC = -30°C
TC = +25°C
TC = +85°C
VCC = 3.3V
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc137
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
245022502050
-20
-10
0
-30
1850 2650
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc138
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
245022502050
-20
-10
0
-30
1850 2650
VCC = 3.0V, 3.3V, 3.6V
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc133
RF FREQUENCY (MHz)
CHANNEL ISOLATION (dB)
280026002400
40
50
45
55
30
35
2200 3000
VCC = 3.3V
TC = -30°C, +25°C, +85°C
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc134
RF FREQUENCY (MHz)
CHANNEL ISOLATION (dB)
280026002400
40
50
45
55
30
35
2200 3000
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc135
RF FREQUENCY (MHz)
CHANNEL ISOLATION (dB)
280026002400
40
50
45
55
30
35
2200 3000
VCC = 3.0V, 3.3V, 3.6V
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc139
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
280026002400
15
25
20
30
10
2200 3000
VCC = 3.3V
TC = -30°C
TC = +25°C
TC = +85°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc140
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
280026002400
15
25
20
30
10
2200 3000
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc141
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
280026002400
15
25
20
30
10
2200 3000
VCC = 3.0V, 3.3V, 3.6V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
27
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc143
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2500 270023002100
-40
-20
-30
-10
-50
1900 2900
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +3.3V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
MAX19997A toc146
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
2500 270023002100
-40
-20
-30
-10
-50
1900 2900
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc145
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
2500 270023002100
-40
-20
-30
-10
-50
1900 2900
TC = -30°C, +25°C, +85°C
VCC = 3.3V
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
MAX19997A toc147
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
2500 270023002100
-40
-20
-30
-10
-50
1900 2900
VCC = 3.0V, 3.3V, 3.6V
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc142
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2500 270023002100
-40
-20
-30
-10
-50
1900 2900
TC = -30°C, +25°C, +85°C
VCC = 3.3V
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc144
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2500 270023002100
-40
-20
-30
-10
-50
1900 2900
VCC = 3.0V, 3.3V, 3.6V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
28 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC = +3.3V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC= +25°C, unless otherwise noted.)
RF PORT RETURN LOSS vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc148
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
2600 28002400
20
25
5
10
15
0
30
2200 3000
VCC = 3.3V fIF = 350MHz
PLO = -3dBm, 0dBm, +3dBm
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc149
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
230 320 410140
30
10
20
0
40
50 500
fLO = 2250MHz
VCC = 3.0V, 3.3V, 3.6V
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc150
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
230 320 410140
30
10
20
0
40
50 500
fLO = 2250MHz
fLO = 1850MHz
fLO = 2650MHz
VCC = 3.3V
LO PORT RETURN LOSS vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc151
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
2400 2650 2900 31502150
20
15
5
10
0
25
1900 3400
PLO = 0dBm
PLO = -3dBm
PLO = +3dBm
VCC = 3.3V
SUPPLY CURRENT vs. TEMPERATURE (TC)
(RF > LO, STANDARD RF BAND)
MAX19997A toc152
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
6545255-15
260
270
280
290
300
250
-35 85
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________ 29
Detailed Description
The MAX19997A dual, downconversion mixer provides
high linearity and low noise figure for a multitude of
1800MHz to 2900MHz base-station applications. The
device fully supports both low-side and high-side LO
injection architectures for the 2300MHz to 2900MHz
WiMAX, LTE, WCS, and MMDS bands. WCDMA,
cdma2000, and PCS1900 applications utilizing high-
side LO injection architectures are also supported by
adding one additional tuning element (a shunt inductor)
on each RF port.
The MAX19997A operates over an LO range of
1950MHz to 3400MHz and an IF range of 50MHz to
550MHz. Integrated baluns and matching circuitry allow
50single-ended interfaces to the RF and LO ports.
The integrated LO buffer provides a high drive level to
the mixer core, reducing the LO drive required at the
MAX19997A’s input to a range of -3dBm to +3dBm. The
IF port incorporates a differential output, which is ideal
for providing enhanced 2RF - 2LO (low-side injection)
and 2LO - 2RF (high-side injection) performance.
RF Input and Balun
The MAX19997A’s two RF inputs (RFMAIN and RFDIV)
provide a 50match when combined with a series DC-
blocking capacitor. This DC-blocking capacitor is
required as the input is internally DC shorted to ground
through each channel’s on-chip balun. When using a
22pF DC-blocking capacitor, the RF port input return
loss is typically 15dB over the RF frequency range of
2600MHz to 2900MHz.
Pin Description
PIN NAME FUNCTION
1 RFMAIN Main Channel RF Input. Internally matched to 50. Requires an input DC-blocking
capacitor.
2, 5, 6, 8, 12, 15,
18, 23, 28, 31, 34 GND Ground. Not internally connected. Ground these pins or leave unconnected.
3, 7, 20, 22, 24–27 GND Ground. Internally connected to the exposed pad. Connect all ground pins and the
exposed pad (EP) together.
4, 10, 16, 21, 30,
36 VCC Power Supply. Connect bypass capacitors as close as possible to the pin (see the
Typical Application Circuit).
9 RFDIV Diversity Channel RF Input. Internal matched to 50. Requires a DC-blocking capacitor.
11 IFD_SET IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the
bias current for the diversity IF amplifier.
13, 14 IFD+, IFD- Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins
to VCC (see the Typical Application Circuit).
17 LO_ADJ_D LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the
bias current for the diversity LO amplifier.
19 LO Local Oscillator Input. This input is internally matched to 50. Requires an input DC-
blocking capacitor.
29 LO_ADJ_M LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias
current for the main LO amplifier.
32, 33 IFM-, IFM+ Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to
VCC (see the Typical Application Circuit).
35 IFM_SET IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias
current for the main IF amplifier.
—EP
E xp osed P ad . Inter nal l y connected to GN D . S ol d er thi s exp osed p ad to a P C B p ad that
uses m ul ti p l e g r ound vi as to p r ovi d e heat tr ansfer out of the d evi ce i nto the P C B g r ound
p l anes. These m ul ti p l e g r ound vi as ar e al so r eq ui r ed to achi eve the noted RF p er for m ance.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
30 ______________________________________________________________________________________
The MAX19997A’s RF range can be further extended
down to 1800MHz by adding one additional tuning ele-
ment on each RF port. For 1950MHz RF applications,
connect a 12nH shunt inductor from pins 1 and 9 to
ground. Also, change the value of the DC-blocking
capacitors (C1 and C8) from 22pF to 1pF. See the
Typical Application Circuit
for details.
LO Input, Buffer, and Balun
A two-stage internal LO buffer allows a wide input
power range for the LO drive. All guaranteed specifica-
tions are for an LO signal power from -3dBm to +3dBm.
The on-chip low-loss balun, along with an LO buffer,
drives the double-balanced mixer. All interfacing and
matching components from the LO input to the IF out-
puts are integrated on-chip.
High-Linearity Mixer
The core of the MAX19997A is a pair of double-
balanced, high-performance passive mixers.
Exceptional linearity is provided by the large LO swing
from the on-chip LO buffer. When combined with the
integrated IF amplifiers, the cascaded IIP3, 2RF - 2LO
rejection, and NF performance are typically +24dBm
IIP3, -67dBc, and 10.3dB, respectively for low-side LO
injection architectures covering the 2300MHz to
2900MHz band. Cascaded performance levels are
comparable for high-side LO injection architectures;
IIP3, 2LO - 2RF rejection, and NF levels are typically
rated at +24dBm IIP3, -73dBc, and 10.4dB, respective-
ly over the same 2300MHz to 2900MHz band.
Differential IF Output Amplifier
The MAX19997A mixers have an IF frequency range of
50MHz to 550MHz. The differential, open-collector IF
output ports require external pullup inductors to VCC.
These pullup inductors are also used to resonate out the
parasitic shunt capacitance of the IC, PCB components,
and PCB to provide an optimized IF match at the fre-
quency of interest. Note that differential IF outputs are
ideal for providing enhanced 2RF - 2LO and 2LO - 2RF
rejection performance. Single-ended IF applications
require a 4:1 balun to transform the 200differential
output impedance to a 50single-ended output. After
the balun, voltage standing-wave ratio (VSWR) is typi-
cally 1.2:1.
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50. No
matching components are required for RF frequencies
ranging from 2400MHz to 2900MHz. RF and LO inputs
require only DC-blocking capacitors for interfacing.
If desired, the RF band can be extended down to
1800MHz by adding two external matching compo-
nents on each RF port. See the
Typical Application
Circuit
and Table 2 for details.
The IF output impedance is 200(differential). For
evaluation, an external low-loss 4:1 (impedance ratio)
balun transforms this impedance down to a 50single-
ended output (see the
Typical Application Circuit
).
Reduced-Power Mode
Each channel of the MAX19997A has two pins
(LO_ADJ_ _, IF_ _SET) that allow external resistors to set
the internal bias currents. Nominal values for these
resistors are shown in Tables 1 and 2. Larger-value
resistors can be used to reduce power dissipation at the
expense of some performance loss. If ±1% resistors are
not readily available, ±5% resistors may be substituted.
Significant reductions in power consumption can be
realized by operating the mixer with an optional supply
voltage of +3.3V. Doing so reduces the overall power
consumption by up to 53%. See the
+3.3V Supply,
Low-Side LO Injection AC Electrical Characteristics
table and the relevant +3.3V curves in the
Typical
Operating Characteristics
section to evaluate the power
vs. performance tradeoffs.
Layout Considerations
A properly designed PCB is an essential part of any
RF/microwave circuit. Keep RF signal lines as short as
possible to reduce losses, radiation, and inductance.
For the best performance, route the ground pin traces
directly to the exposed pad under the package.
The PCB exposed pad MUST be connected to the
ground plane of the PCB. It is suggested that multiple
vias be used to connect this pad to the lower-level
ground planes. This method provides a good RF/ther-
mal-conduction path for the device. Solder the exposed
pad on the bottom of the device package to the PCB.
The MAX19997A evaluation kit can be used as a refer-
ence for board layout. Gerber files are available upon
request at www.maxim-ic.com.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________ 31
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
C1, C8 2 22pF microwave capacitors (0402) Murata Electronics North
America, Inc.
C14 1 1.5pF microwave capacitor (0402) Murata Electronics North
America, Inc.
C4, C9, C13, C15,
C17, C18 6 0.01µF microwave capacitors (0402) Murata Electronics North
America, Inc.
C10, C11, C12,
C19, C20, C21 6 82pF microwave capacitors (0603) Murata Electronics North
America, Inc.
L1, L2, L3, L4 4 120nH wire-wound high-Q inductors* (0805) Coilcraft, Inc.
L7, L8 0 Not used
750 ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R1, R4 2
1.1k ±1% resistors (0402). Use for VCC = +3.3V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
698 ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R2, R5 2
845 ±1% resistors (0402). Use for VCC = +3.3V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R3, R6 2
0 resistors (1206). These resistors can be increased in value to reduce
power dissipation in the device, but reduces the compression point. Full
P1dB performance achieved using 0.
Digi-Key Corp.
T1, T2 2 4:1 IF baluns (TC4-1W-17+) Mini-Circuits
U1 1 MAX19997A IC (36 TQFN-EP) Maxim Integrated Products,
Inc.
Table 1. Standard RF Band Application Circuit Component Values (Optimized for
Frequencies Ranging from 2400MHz to 2900MHz)
*
Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.
Power-Supply Bypassing
Proper voltage supply bypassing is essential for high-
frequency circuit stability. Bypass each VCC pin with
the capacitors shown in the
Typical Application Circuit
.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX19997A’s 36-pin thin
QFN-EP package provides a low thermal-resistance
path to the die. It is important that the PCB on which the
MAX19997A is mounted be designed to conduct heat
from the EP. In addition, provide the EP with a low-
inductance path to electrical ground. The EP MUST be
soldered to a ground plane on the PCB, either directly
or through an array of plated via holes.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
32 ______________________________________________________________________________________
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
C1, C8 2 1pF microwave capacitors (0402) Murata Electronics North
America, Inc.
C14 1 1.5pF microwave capacitor (0402) Murata Electronics North
America, Inc.
C4, C9, C13, C15,
C17, C18 6 0.01µF microwave capacitors (0402) Murata Electronics North
America, Inc.
C10, C11, C12,
C19, C20, C21 6 82pF microwave capacitors (0603) Murata Electronics North
America, Inc.
L1, L2, L3, L4 4 120nH wire-wound high-Q inductors* (0805) Coilcraft, Inc.
L7, L8 2 12nH i nd uctor s ( 0402) . U se to i m p r ove RF m atch fr om 1800M H z to
2400M H z. C onnect L7 and L8 fr om p i ns 1 and 9, r esp ecti vel y, to g r ound .Coilcraft, Inc.
R1, R4 2
750 ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R2, R5 2
698 ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R3, R6 2
0 resistors (1206). These resistors can be increased in value to reduce
power dissipation in the device, but reduces the compression point. Full
P1dB performance achieved using 0.
Digi-Key Corp.
T1, T2 2 4:1 IF baluns (TC4-1W-17+) Mini-Circuits
U1 1 MAX19997A IC (36 TQFN-EP) Maxim Integrated Products,
Inc.
Table 2. Extended RF Band Application Circuit Component Values (Optimized for
1950MHz Operation)
*
Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________ 33
Typical Application Circuit
RF MAIN INPUT
RF DIV INPUT
C1
C8
C9
C13
C17
C18
R1
VCC
L2*
L1*
R3
C20
C19
IF MAIN OUTPUT
T1
R2
C14
LO
4:1
4:1
VCC
VCC
VCC
VCC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 28
29
30
31
32
33
34
35
36
19
20
21
22
23
24
25
26
27 GND
VCC
GND
GND
GND
GND
GND
GND
RFMAIN
RFDIV
EXPOSED
PAD
IFD_SET
GND
GND
LO_ADJ_D
GND
V
CC
V
CC
GND
LO_ADJ_M
V
CC
GND
GND
IFM_SET
IFD+
IFD-
V
CC
IFM+
IFM-
LO
*USE 390nH (0805) INDUCTORS FOR AN IF FREQUENCY OF 200MHz.
CONTACT FACTORY FOR DETAILS.
**CONNECT INDUCTORS TO IMPROVE RF MATCH FROM 1800MHz TO
2400MHz. SEE TABLE 2 FOR DETAILS.
GND
GND
GND
GND
GND
VCC
MAX19997A
C4
VCC
C21
C15
VCC
R5
R4
VCC
L3*
L4*
R6
C10
C11
T2
IF DIV OUTPUT
C12
+
L7**
L8**
GND
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
34 ______________________________________________________________________________________
1
+
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 28
29
30
31
32
33
34
35
36
19
20
21
22
23
24
25
26
27 GND
VCC
GND
GND
GND
GND
GND
GND
RFMAIN
RFDIV
EXPOSED
PAD
IFD_SET
GND
GND
LO_ADJ_D
GND
VCC
VCC
GND
LO_ADJ_M
VCC
GND
GND
IFM_SET
IFD+
IFD-
VCC
IFM+
IFM-
LO
GND
GND
GND
GND
GND
GND
VCC
MAX19997A
EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.
6mm x 6mm THIN QFN (EXPOSED PAD)
TOP VIEW
Chip Information
PROCESS: SiGe BiCMOS
Pin Configuration/
Functional Block Diagram
Package Information
For the latest package outline information and land patterns
(footprints), go to www.maxim-ic.com/packages. Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE OUTLINE NO. LAND
PATTERN NO.
36 Thin QFN-EP T3666+2 21-0141 90-0049
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
35
© 2010 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
35
© 2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Revision History
REVISION
NUMBER
REVISION
DATE DESCRIPTION PAGES
CHANGED
0 10/08 Initial release
1 9/10 Minor style edits 2, 3, 4, 10,
15, 29, 30, 34
2 2/11 Increased IF frequency range from 50MHz to 550MHz 1, 3, 29, 30
3 8/11 Expanded +5.0V Supply DC Electrical Characteristics table without
changing existing limits 2