FSB50250A / FSB50250AT Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 4www.fairchildsemi.com
FSB50250A / FSB50250AT Rev. C4
Electrical Characteristics (TJ = 25°C, VCC = VBS = 15 V unless otherwise specified.)
Inverter Part (each MOSFET unless otherwise specified.)
Control Part (each HVIC unless otherwise specified.)
Bootstrap Diode Part (each bootstrap diode unless otherwise specified.)
2nd Notes:
1. BVDSS is the absolute maxi mum voltage rating between drain and source terminal of each MOSFET inside Motion SPM® 5 product. VPN should be sufficient ly less than this
value consideri ng the ef f ect of the str ay inductance so that VPN should not exceed BVDSS in any case.
2. tON and tOFF include the propagation delay of the internal drive IC. Listed values are measured at the laboratory test condition, and they can be different according to the field
applications due to the effect of different printed circuit boards and wirings. Please see Figure 6 for the switching time definition with the switching test circuit of Figure 7.
3. The peak current and voltage of each MOSFET during the switching operation should be included in the Safe Operating Area (SOA). Please see Figure 7 for the RBSOA test
circuit that is same as the switching test circuit.
4. Vts is only for sensing-temperature of modu l e and can not shut down MOSFETs automati ca ll y.
5. Built-in bootstrap diode includes around 15 Ωresistance characteristic. Please refer to Figure 2.
Symbol Parameter Conditions Min Typ Max Unit
BVDSS Drain - Source
Breakdown Voltage VIN = 0 V, ID = 1 mA (2nd Note 1) 500 - - V
IDSS Zero Gate Voltage
Drain Current VIN = 0 V, VDS = 500 V - - 1 mA
RDS(on) Static Drain - Source
Turn-On Resistance VCC = VBS = 15 V, VIN = 5 V, ID = 0.5 A - 2.5 3.8
VSD Drain - Source Diode
Forward Voltage VCC = VBS = 15V, VIN = 0 V, ID = -0.5 A - - 1.2 V
tON
Switching Times
VPN = 300 V, VCC = VBS = 15 V, ID = 0.5 A
VIN = 0 V 5 V, Inductive Load L = 3 mH
High- and Low-Side MOSFET Switching
(2nd Note 2)
- 1150 - ns
tOFF - 950 - ns
trr - 190 - ns
EON -40- J
EOFF -10- J
RBSOA Reverse Bias Safe Oper-
ating Area
VPN = 400 V, VCC = VBS = 15 V, ID = IDP, VDS = BVDSS,
TJ = 150°C
High- and Low-Side MOSFET Switching (2nd Note 3) Full Square
Symbol Parameter Conditions Min Typ Max Unit
IQCC Quiescent VCC Current VCC = 15 V,
VIN = 0 V Applied between VCC and COM - - 200 A
IQBS Quiescent VBS Current VBS = 15 V,
VIN = 0 V Applied between VB(U) - U,
VB(V) - V, VB(W) - W - - 100 A
UVCCD Low-Side Under-Voltage
Protection (Figure 8) VCC Under-Voltage Protection Detection Level 7.4 8.0 9.4 V
UVCCR VCC Under-Voltage Protection Reset Level 8.0 8.9 9.8 V
UVBSD High-Side Under-Voltage
Protection (Figure 9) VBS Under-Voltage Protection Detection Level 7.4 8.0 9.4 V
UVBSR VBS Under-Voltage Protection Reset Level 8.0 8.9 9.8 V
VTS HVIC Temperature Sens-
ing Voltage Output VCC = 15 V, THVIC = 25°C (2nd Note 4) 600 790 980 mV
VIH ON Threshold Voltage Logic HIGH Level Applied between VIN and COM --2.9V
VIL OFF Threshold Voltage Logic LOW Level 0.8 - - V
Symbol Parameter Conditions Min Typ Max Unit
VFB Forward Voltage IF = 0.1 A, TC = 25°C (2nd Note 5) - 2.5 - V
trrB Reverse Recovery Time IF = 0.1 A, TC = 25°C - 80 - ns