POWEREX INC POWEREA SLE D MM 7294621 OOOSb4Y2 7T3 BMPRX PM10CHA060 57-27 Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14 Intellimod-3 Modules Three Phase IGBT Inverter Output 10 Amperes/110-230 Volt Line OUTLINE DRAWING DIA. a 2.0 X 0.5 MM PIN {STYPI 0.5 MM SQ PIN (15 TYP) i R - DIA. 2TYPIe Vupi 12, Un Vuec 13YN 1 2 3 4, 5. Vvpt 15. Fo 6. Vvec 16. P 7. 8 3 Vel 18 YU . WPC 3. 10 Vue 20 W CONNECTION DIAGRAM PY sto 4 Up VN 110-230 Voit Line, PM10CHA060 Outline Drawing Dimensions Inches Millimeters Dimensions Inches Millimeters A 3.86+0.04 98.0+1.0 L 0.55 14.0 8 3.4240.02 87.0+0.5 M 0.521 13.24 Cc 2.99 76.0 N 0.39 10.0 D 2.76 70.0 P 0.28 7.12 E 2.20+0.04 56.0+1.0 Q 0.24R 6.0R F 1.77 45.0 R 0.22 Dia. 5.5 Dia G 1.14 29.0 Ss 0.20 5.0 H 0.83 21.0 T 0.14 3.56 J 0.63 16.0 U 0.06 1.5V K 0.61 15.5 Description Powerex Intellimod-3 Modules are designed for applications requiring a high frequency (20kHz) output switching inverter. The modules ara isolated from the baseplate, con- sisting of complete drive, control and protection circuitry for the IGBT inverter. Features: [] Complete Output Power Circuit (] Gate Drive Circuit L] Protection Logic Short Circuit Over-Current Over Temperature Under Voltage Applications: (J Inverters CL] Small UPS ] Motion/Servo Control {-] AC Motor Control Ordering Information PM10CHA060POWEREX INC 3-2 TOAMEREX SLE D MM 7294621 0005643 &3T MPRX a Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14 purocagso TT 57-24 intellimod-3 Modules Three Phase IGBT inverter Output 10 Amperes/1 10-230 Volt Line Absolute Maximum Ratings, T|= 25 C unless otherwise specified Characteristics Symhot PM10CHA06O Units Power Device Junction Temperature T, -20 to +150 C Storage Temperature Tstg -40 to +125 C Case Operating Temperature To -20 to +100 C Mounting Torque, MS Mounting Screws _ 17 Kg-cm Module Weight (Typical) _ 90 Grams Supply Voltage Protected by OC and SC (Vp = 13.5 - 16.5 V, Inverter Part) Vee (prot) 400 Volts Isolation Voltage AC 1 minute, 60Hz Vas 2500 Volts Control Sector Supply Voltage Applied between (Vyp; - Vupc. Vvp1 - Vvpc> Vwe1 ~ Vwec: Yui ~ Vn) Vp 20 Volts Input Current Applied between (Up, Vp, Wp, Un, Vin, Wr) loin 20 mA Input Voltage Applied between (Up, Vp, We, Un, Vn, Wn) Von 20 Volts Fault Output Supply Voltage Vro 20 Volts Fault Output Current leg 20 mA IGBT Inverter Sector Collector-Emitter Voltage Fig. 1 Voes 600 Volts Collector Current + le 10 Amperes Peak Collector Current + lop 20 Amperes Supply Voltage (Applied between P - N) Voc 400 Volts Supply Voltage (Surge) Applied between P - N Voc (surge) 500 Volts Collector Dissipation Po 39 WattsPOWEREX INC SlE D MM 7294621 OOOSEY4 S?b MPRX i Powerex, inc., Hillis Street, Youngwood, Pennsylvania 15697 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14 PM10CHA060 T~ 7- vy intellimod-3 Modules Three Phase IGBT Inverter Output 10 Amperes/110-230 Volt Line Electricai Characteristics, T= 25 C unless otherwise specified Characteristics Symbol Test Conditions Min. Typ. Max. Units Contro! Sector Overcurrent Trip Level Inverter Part OC -20C < T < 125C 12 18 - Amperes Short Circuit Trip Level Inverter Part Sc -20C < T< 125C - 27 - Amperes Overcurrent Delay Time toto0) Vp = 15V Fig. 7 - 10 - Bs Over Temperature Protection OT Trip Level 100 110 120 C Over Temperature Protection OT, Reset Level - 90 - C Supply Circuit Under Voltage Protection UV Trip Level 11.5 12.0 12.5 Volts Supply Circuit Under Voltage Protection UVa Reset Level ~ 12.5 - Volts Supply Voltage Vb Applied between Vyup1 - Vupc: 13.5 15 16.5 Volts Vve1- Veo: Vwe1- Vweo: Vni - nc Circuit Current Ip Vp = 15V, Io = IMA, Vins - Vine - 25 40 mA Ib Vp = 15V, lo = IMA, Vxp1 - Vxpc - 7 12 mA Input Bias On Current lein(on) Sink Current at 0.1 0.22 0.5 mA Up, Vp, We, Un, Vn Wn Input Bias Off Current lon(off) Sink current at 0.1 0.22 0.5 mA Up, Vp. Wp, Un, Va Wr PWM Input Frequency fpwu 3-@ Sinusoidal = 15 20 kHz Dead Time tpEAD For each Input Pulse 2.0 - - us Using example Interface Circuit" 5.0 - - ps Fault Output Current Troi) Vp = 15V, Veo = 15V = - 0.01 mA Iron) Vp = 15V, Veo = 15V - 10 15 mA Minimum Fault Output Pulse Width teo Vp = 15V 20 40 60 ps Using example Interface Circuit* 25 100 - BS Vp = 15V *See Intellimod-3 Applications Data Section 4.3. 3-3POMEREX POWEREX INC Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14 SLE D MM 7294621 oO005b45 402 MEPRX Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (412) 925-7272 PM10CHA060 T-57- Aq Intellimod-3 Modules Three Phase IGBT Inverter Output 10 Amperes/1 10-230 Volt Line Electrical Characteristics, Tj= 25 C unless otherwise specified Characteristics Symbol Test Conditions Min. Typ. Max. Units IGBT Inverter Sector Collector Cutoff Current Icex Voce = Voex, Tj = 25 C, Fig. 6 ~ - 1 mA Collector Cutoff Current Ioex Voe = Voex: T, = 125 C, Fig. 6 - - 10 mA Diode Forward Voltage Vem cle = 10A, Vp = 1V, Ion = 1mA, - 1.5 2.5 Volts Fig. 3 Collector Emitter Saturation Voltage Voe{sat) Vp = 15, low = OMA, Ig = 10A, - 2.6 3.5 Volts Fig. 2 Collector Emitter Saturation Voltage VoeE(at) Vp = 18V, Iciy = OMA, Ig = 10A, - 2.5 3.4 Volts T, = 125 C, Fig. 2 Inductive Load Switching Times ton Vp = 15V, loin = OMA, 0.5 0.8 1.5 nS ty Voc = 300V, Io = 10A, = O15 0.4 uS tevon) T= 125C ~ 0.3 1.0 nS tot oo" - 11 2.5 us toioth Fig. 4, Fig. 5 _ 05 5 us Thermal Characteristics Characteristics Symbol Test Conditions Min. Typ. Max. Units Junction to Case Thermal Resistances Piny-c)0 Inverter IGBT Part - ~ 3.2 C/W Ring-cyr Inverter FWD ~ - 45 C/W Contact Thermal Resistance Pinch Case to Fin, Thermal Grease Applied - - 0.4 C/W Recommended Operating Conditions Characteristics Symbol Test Conditions Value Units Supply Voltage Veco Applied across P-N Terminais 0 ~ 400 Volts Vb Applied between Vupi - Vure 1541.5 Volts Vat - Vno: Vves - Vue: Vwe1 - Vwec Input On Current leincon) Applied between 0~0.5 mA input Off Current loin (ot Up, Vp, We, Un, Vi Wy 0.5~2 mA PWM Input Frequency fowa Using example interface Circuit* 5 ~ 20 kHz ini Tim focap Using example Interface Circuit* 5.0 uS See Intellimod-3 Applications Data Section 4.3,VEOAMEREX | POWEREX INC SLE D MB 729462) OOOSb4b 349 MPRX Powerex, inc., Hillis Street, Youngwood, Pennsylvania 15697 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14 2o PM10CHA060 T-5 a Intellimod-3 Modules Three Phase IGBT Inverter Output 10Amperes/1 10-230 Volt Line SATURATION VOLTAGE COLLECTOR-EMITTER SATURATION CHARACTERISTICS (TYPICAL) VOLTAGE (TYPICAL) Vp = 15V loin = OMA meme T= 25C mere T= 125C _ T= 25C loin = OMA wo Veeteaty: (VOLTS) 1] SATURATION VOLTAGE, Vg (sat) (VOLTS) COLLECTOR-EMITTER SATURATION VOLTAGE, 0 QO 4 8 12 16 20 12 14 16 18 20 22 CURRENT COLLECTOR, tc, (AMPERES) SUPPLY VOLTAGE, Vp, (VOLTS) SWITCHING TIME VS. COLLECTOR CURRENT (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) 20 101 T= 25C T, = 125C Ion = OMA Voc = 300 Vp = 15V INDUCTIVE LOAD 10 COLLECTOR CURRENT, Ic, (AMPERES) SWITCHING TIMES, ton tott: Lefon) tootty (HS) 0 0 1 2 3 4 5 COLLECTOR-EMITTER VOLTAGE, Veg, (VOLTS) REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 10 T = 125C Vec = 300V Vp = 15V INDUCTIVE 102 100 10! 102 EMITTER CURRENT, Ie, (AMPERES) 101 109 10! 102 COLLECTOR CURRENT, Ic (AMPERES) REVERSE COLLECTOR CURRENT VS. EMITTER-COLLECTOR VOLTAGE (DIODE FORWARD CHARACTERISTICS) (TYPICAL) = o ny COLLECTOR CURRENT, Ic, (AMPERES) 3 ? a = a Oo 0 04 0.8 1.2 16 20 EMITTER-COLLECTOR VOLTAGE, Vee, (VOLTS)3-6 TOORMEREX POWEREX INC SLE D MM 7294621] 0005647? 285 MPRX Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14 PM10CHA060 T-57- 24 intellimod-3 Modules Three Phase IGBT Inverter Output 10 Amperes/1 10-230 Volt Line POWER DISSIPATION DERATING CURVE POWER DISSIPATION DERATING CURVE (PER IGBT ELEMENT) (PER FWDi ELEMENT) a a E E = = a a a a Zz 2 Q e E < < a a a Q a a a x oc Wi w = = 5 5 ao a 0 40 80 120 160 0 40 80 120 160 CASE TEMPERATURE, Te, (C) CASE TEMPERATURE, Te, (C) TRANSIENT THERMAL TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS IMPEDANCE CHARACTERISTICS s {IGBT) o (FWDi) = 103 102 i071 10 101 = 103 102 1077 109 101 N 101 N 101 oO Single Pulse o Single Puise 4 To = 25C To = 25C a _ 0; ao _ 2 w 409 Per Unit Base = Ring-o) = 3 2C/W B90 Per Unit Base = Ping c) = 4 5C/W 2 2 a a < < = = x c wi 1 1 yu 1 -4 z= 10 10 = 10 10 b bE Zz 2 Ww Ww Q on z Z c 102 102 me 102 10-2 Ee E a a N N = z Zz 103 103 Zz 103 103 9 105 10-4 103 g 105 10-4 103 TIME, (s) TIME, (s) 2th = Ain * (NORMALIZED Zin = Pin + (NORMALIZED VALUE) VALUE)TEOAMENREX POWEREX INC PM10CHA060 intellimod-3 Modules Three Phase IGBT Inverter Output 10 Amperes/1 10-230 Volt Line SIGNAL P, (U,V, W) INPUT Z (imayt hic U, V, WN) Vo (ALL) Figure 1 Voge Test SIGNAL INPUT P, {U, V, W) umayh Ld iis (ALL) ea U, V, W (N} SLE D MM 7259462) OOOSE48 111 BPRX Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14 T-S7-X SIGNAL P, (U,V, W) INPUT ; J CIN Vv \ camayt tie TTS bid U, V, W (N) Vp (ALL) Figure 2 VoEs. AT) Test tHe Figure 3 V., Test A) LOWER ARM SWITCHING SIGNAL INPUT (UPPER ARM) Ion } (1mA) +}. SIGNAL INPUT (LOWER ARM) loin B) UPPER ARM SWITCHING SIGNAL INPUT (UPPER ARM) loin SIGNAL INPUT {LOWER ARM) U,V, Ww Vo = = a" 7 7 Voc az hd Vb (ALL) ret > iN CURRENT PROBE Figure 4 Switching Time Test (ALL) lo.tuF Vcc TeT _ NL CURRENT PROBE 3-7VEEN XK POWEREX INC SLE D MM 7294621 0005649 o5a MB PRX Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14 PM10CHAO60 T= S T- QA intellimod-3 Modules Three Phase IGBT Inverter Output 10 Amperes/1 10-230 Volt Line 90% 10% : 10% *e. / $F Prneeccececcssccsecccreccesesececeee | to (an) Icin td (on) tr td (off) 4 {ton = tg (an) + tr) (tott = ta cotty + te) Figure 5 Switching Test Waveform SIGNAL P.(U. Vv, WI} INPUT icin (imay} vce U,V, W(N) Vo (ALL) Figure 6 lces Test P, (U,V, W) R J tow #LE Vee uv.winy ho Vp 'c current PROBE (ALL) R = 0 FOR SHORT CIRCUIT Figure 7 Over Current and Short Circuit Test