© 2017 IXYS CORPORATION, All Rights Reserved.
VCES = 2500V
IC110 = 8A
VCE(sat) 


4.0V
tfi(typ) = 86ns
DS100835A(5/17)
Symbol Test Conditions Characteristic Values
(TJ = 25C, Unless Otherwise Specified) Min. Typ. Max.
BVCES IC = 250A, VGE = 0V 2500 V
VGE(th) IC= 250A, VCE = VGE 3.0 5.0 V
ICES VCE = VCES, VGE = 0V 10 A
TJ = 150C 3 mA
IGES VCE = 0V, VGE = 20V 100 nA
VCE(sat) IC= 8A, VGE = 15V, Note 1 3.35 4.00 V
TJ = 150C 4.75 V
Symbol Test Conditions Maximum Ratings
VCES TJ= 25°C to 175°C 2500 V
VCGR TJ= 25°C to 175°C, RGE = 1M 2500 V
VGES Continuous ±20 V
VGEM Transient ±30 V
IC25 TC= 25°C 29 A
IC110 TC= 110°C 8 A
ICM TC= 25°C, 1ms 70 A
SSOA VGE = 15V, TVJ = 150°C, RG = 15 ICM = 32 A
(RBSOA) Clamped Inductive Load 1500 V
PCTC= 25°C 280 W
TJ-55 ... +175 °C
TJM 175 °C
Tstg -55 ... +175 °C
TLMaximum Lead Temperature for Soldering 300 °C
TSOLD 1.6 mm (0.062in.) from Case for 10s 260 °C
MdMounting Torque 1.13/10 Nm/lb.in.
Weight TO-263HV 2.5 g
TO-247HV 6.0 g
High Voltage
XPTTM IGBT
Advance Technical Information
Features
High Voltage Packages
High Blocking Voltage
High Peak Current Capability
Low Saturation Voltage
Advantages
Low Gate Drive Requirement
High Power Density
Applications
Switch-Mode and Resonant-Mode
Power Supplies
Uninterruptible Power Supplies (UPS)
Laser Generators
Capacitor Discharge Circuits
AC Switches
IXYA8N250CHV
IXYH8N250CHV
TO-247HV (IXYH)
C (Tab)
G
E
C
G = Gate C = Collector
E = Emitter Tab = Collector
G
E
TO-263HV (IXYA)
C (Tab)
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYA8N250CHV
IXYH8N250CHV
IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 7,005,734 B2 7,157,338B2
by one or more of the following U.S. patents: 4,860,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 7,063,975 B2
4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2 7,071,537
Notes:
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a
"considered reflection" of the anticipated result. IXYS reserves the right to change limits, test
conditions, and dimensions without notice.
Symbol Test Conditions Characteristic Values
(TJ = 25°C Unless Otherwise Specified) Min. Typ. Max.
gfs IC = 8A, VCE = 10V, Note 1 5.4 9.0 S
RGi Gate Input Resistance 11
Cies 936 pF
Coes VCE = 25V, VGE = 0V, f = 1MHz 57 pF
Cres 14 pF
Qg(on) 45 nC
Qge IC = 8A, VGE = 15V, VCE = 0.5 • VCES 6 nC
Qgc 21 nC
td(on) 11 ns
tri 5 ns
Eon 2.60 mJ
td(off) 180 ns
tfi 86 ns
Eoff 1.07 mJ
td(on) 12 ns
tri 12 ns
Eon 3.70 mJ
td(off) 200 ns
tfi 128 ns
Eoff 1.20 mJ
RthJC 0.53 °C/W
RthCS TO-247HV 0.21 °C/W
Inductive load, TJ = 25°C
IC = 8A, VGE = 15V
VCE = 0.5 • VCES, RG = 15
Note 2
Inductive load, TJ = 150°C
IC = 8A, VGE = 15V
VCE = 0.5 • VCES, RG = 15
Note 2
TO-247HV Outline
PINS:
1 - Gate 2 - Emitter
3, 4 - Collector
E
RA
QS
A3
e
D
cb
A1
L1
D3
D1
D2
E2
E3
3X
2X
4X
3X
A2
b1
0P
E1
0P1
4
31 2
e1
L
TO-263HV Outline
PIN: 1 - Gate
2 - Emitter
3 - Collector
+
H
b
D
EL1 C2
b2
A1
e2
e1
A
+
C
E1
D1
L4
L3
12
3
GAUGE
PLANE
0º - 8º
A2
© 2017 IXYS CORPORATION, All Rights Reserved.
Fig. 1. Output Characteristics @ T
J
= 25
o
C
0
2
4
6
8
10
12
14
16
00.511.522.533.544.555.5
V
CE
- Volts
I
C
- Amperes
V
GE
= 15V
12V
10V
9V
8V
7V
6V
Fig. 2. Extended Output Characteristics @ T
J
= 25
o
C
0
20
40
60
80
100
120
0 5 10 15 20 25
V
CE
- Volts
I
C
-
Amperes
V
GE
= 15V
10V
8V
11V
12V
7V
6V
9V
14V
13V
Fig. 3. Output Characteristics @ T
J
= 150
o
C
0
2
4
6
8
10
12
14
16
012345678
V
CE
- Volts
I
C
- Amperes
8V
V
GE
= 15V
13V
11V
10V
9V
5V
6V
7V
Fig. 4. Dependence of V
CE(sat)
on
Junction Temperature
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
-50 -25 0 25 50 75 100 125 150 175
T
J
- Degrees Centigrade
V
CE(sat)
- Normalized
V
GE
= 15V
I
C
= 8A
I
C
= 4A
I
C
= 16A
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
2
3
4
5
6
7
8
5 6 7 8 9 10 11 12 13 14 15
V
GE
- Volts
V
CE
- Volts
I
C
= 16A
T
J
= 25
o
C
8A
4A
Fig. 6. Input Admittance
0
5
10
15
20
25
30
35
44.555.566.577.588.599.5
V
GE
- Volts
I
C
-
Amperes
T
J
= 150
o
C
25
o
C - 40
o
C
IXYA8N250CHV
IXYH8N250CHV
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYA8N250CHV
IXYH8N250CHV
Fig. 7. Transconductance
0
2
4
6
8
10
12
14
16
18
0 5 10 15 20 25 30 35 40 45 50
I
C
- Amperes
g
f s
-
Siemens
TJ
= - 40
o
C
25
o
C
150
o
C
Fig. 10. Reverse-Bias Safe Operating Area
0
4
8
12
16
20
24
28
32
36
250 500 750 1000 1250 1500 1750 2000 2250 2500
V
CE
- Volts
I
C
- Amperes
TJ
= 150
o
C
RG = 15
dv / dt < 10V / ns
Fig. 11. Maximum Transient Thermal Impedance (IGBT)
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Pulse Width - Second
Z
(th)JC
- K / W
Fig. 8. Gate Charge
0
2
4
6
8
10
12
14
16
0 5 10 15 20 25 30 35 40 45
Q
G
- NanoCoulombs
V
GE
- Volts
V
CE
= 1250V
I
C
= 8A
I
G
= 10mA
Fig. 9. Capacitance
10
100
1,000
10,000
0 5 10 15 20 25 30 35 40
V
CE
- Volts
Capacitance - PicoFarad
f
= 1 MHz
Cies
Coes
Cres
© 2017 IXYS CORPORATION, All Rights Reserved.
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
0
1
2
3
4
5
10 20 30 40 50 60 70 80 90 100
R
G
- Ohms
E
off
- MilliJoules
2
4
6
8
10
12
E
on
- MilliJoules
E
off
E
on
T
J
= 150
o
C , V
GE
= 15V
V
CE
= 1250V
I
C
= 8A
I
C
= 16A
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
60
80
100
120
140
160
180
10 20 30 40 50 60 70 80 90 100
R
G
- Ohms
t
f i
- Nanoseconds
0
100
200
300
400
500
600
t
d(off)
- Nanoseconds
t
f i
t
d(off)
T
J
= 150
o
ºC, V
GE
= 15V
V
CE
= 1250V
I
C
= 8A
I
C
= 16A
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
8 9 10 11 12 13 14 15 16
I
C
- Amperes
E
off
- MilliJoules
0
1
2
3
4
5
6
7
8
E
on
- MilliJoules
E
off
E
on
R
G
= 15

V
GE
= 15V
V
CE
= 1250V
T
J
= 150
o
C
T
J
= 25
o
C
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
25 50 75 100 125 150
T
J
- Degrees Centigrade
E
off
- MilliJoules
1
2
3
4
5
6
7
8
9
E
on
- MilliJoules
E
off
E
on
R
G
= 15

V
GE
= 15V
V
CE
= 1250V
I
C
= 8A
I
C
= 16A
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
60
80
100
120
140
160
180
8 9 10 11 12 13 14 15 16
I
C
- Amperes
t
f i
- Nanoseconds
120
140
160
180
200
220
240
t
d(off)
- Nanoseconds
t
f i
t
d(off)
R
G
= 15
, V
GE
= 15V
V
CE
= 1250V
T
J
= 150
o
C
T
J
= 25
o
C
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
60
80
100
120
140
160
180
25 50 75 100 125 150
T
J
- Degrees Centigrade
t
f i
- Nanoseconds
140
160
180
200
220
240
260
t
d(off)
- Nanoseconds
t
f i
t
d(off)
R
G
= 15
, V
GE
= 15V
V
CE
= 1250V
I
C
= 16A
I
C
= 8A
I
C
= 16A
IXYA8N250CHV
IXYH8N250CHV
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYA8N250CHV
IXYH8N250CHV
IXYS REF: IXY_8N250C(3T-P628) 1-31-17
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
0
5
10
15
20
25
30
8 9 10 11 12 13 14 15 16
IC - Amperes
t
r i
- Nanoseconds
8
10
12
14
16
18
20
t
d(on) - Nanoseconds
t
r i
t
d(on)
R
G
= 15
, V
GE
= 15V
V
CE
= 1250V
T
J
= 25
o
C
T
J
= 150
o
C
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
0
5
10
15
20
25
30
35
25 50 75 100 125 150
TJ - Degrees Centigrade
t
r i
- Nanoseconds
6
8
10
12
14
16
18
20
t
d(on) - Nanoseconds
t
r i
t
d(on)
R
G
= 15
, V
GE
= 15V
V
CE
= 1250V
I
C
= 16A
I
C
= 8A
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
0
10
20
30
40
50
60
10 20 30 40 50 60 70 80 90 100
RG - Ohms
t
r i - Nanoseconds
0
10
20
30
40
50
60
t
d(on) - Nanoseconds
t
r i
t
d(on)
T
J
= 150
o
C, V
GE
= 15V
V
CE
= 1250V
I
C
= 8A
I
C
= 16A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.