HEXFET® Power MOSFET
Specifically designed for Automotive applications, this
Stripe Planar design of HEXFET® Power MOSFETs
utilizes the latest processing techniques to achieve
extremely low on-resistance per silicon area. Additional
features of this HEXFET power MOSFET are a 150°C
junction operating temperature, fast switching speed
and improved repetitive avalanche rating. These benefits
combine to make this design an extremely efficient and
reliable device for use in Automotive applications and a
wide variety of other applications.
Absolute Maximum Ratings
Description
11/27/06
www.irf.com 1
lAdvanced Process Technology
lUltra Low On-Resistance
lFast Switching
lRepetitive Avalanche Allowed up to Tjmax
Benefits
Typical Applications
lRelay replacement
lAnti-lock Braking System
lAir Bag
PD - 94446C
IRF7484
VDSS RDS(on) max (mW) ID
40V 10@VGS = 7.0V 14A
SO-8
Top View
8
1
2
3
45
6
7
D
D
D
DG
S
A
S
S
A
Symbol Parameter Typ. Max. Units
RθJL Junction-to-Drain Lead ––– 20
RθJA Junction-to-Ambient ––– 50 °C/W
Thermal Resistance
Parameter Max. Units
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 14
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 11 A
IDM Pulsed Drain Current 110
PD @TA = 25°C Power Dissipation2.5 W
Linear Derating Factor 0.02 W/°C
VGS Gate-to-Source Voltage ± 8.0 V
EAS Single Pulse Avalanche Energy230 mJ
IAR Avalanche CurrentSee Fig.16c, 16d, 19, 20 A
EAR Repetitive Avalanche EnergymJ
TJ, TSTG Junction and Storage Temperature Range -55 to + 150 °C
http://store.iiic.cc/
IRF7484
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) showing the
ISM Pulsed Source Current integral reverse
(Body Diode) p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 2.3A, VGS = 0V
trr Reverse Recovery Time ––– 59 89 ns TJ = 25°C, IF = 2.3A
Qrr Reverse Recovery Charge ––– 110 170 nC di/dt = 100A/µs
Source-Drain Ratings and Characteristics
A
110




Repetitive rating; pulse width limited by
max. junction temperature.
Pulse width 400µs; duty cycle 2%.
Surface mounted on 1 in square Cu board.
Starting TJ = 25°C, L = 2.3mH, RG = 25,
IAS = 14A. (See Figure 12).
Notes:
ISD 14A, di/dt 140A/µs, VDD V(BR)DSS,
TJ 150°C.
Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive
avalanche performance.
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.040 –– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance –– 10 mVGS = 7.0V, ID = 14A
VGS(th) Gate Threshold Voltage 1.0 ––– 2.0 V VDS = VGS, ID = 250µA
gfs Forward Transconductance 40 ––– ––– S VDS = 10V, ID = 14A
––– ––– 20 VDS = 40V, VGS = 0V
––– ––– 250 VDS = 32V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– 200 VGS = 8.0V
Gate-to-Source Reverse Leakage ––– ––– -200 VGS = -8.0V
QgTotal Gate Charge ––– 69 100 ID = 14A
Qgs Gate-to-Source Charge ––– 9.0 ––– nC VDS = 32V
Qgd Gate-to-Drain ("Miller") Charge ––– 16 ––– VGS = 7.0V
td(on) Turn-On Delay Time ––– 9.3 ––– VDD = 20V
trRise Time ––– 5.0 ––– ID = 1.0A
td(off) Turn-Off Delay Time ––– 180 ––– RG = 6.2
tfFall Time ––– 58 ––– VGS = 7.0V
Ciss Input Capacitance ––– 3520 ––– VGS = 0V
Coss Output Capacitance ––– 660 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 76 ––– ƒ = 1.0MHz
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
IGSS
µA
IDSS Drain-to-Source Leakage Current
nA
ns
S
D
G
2.3
http://store.iiic.cc/
IRF7484
www.irf.com 3
Fig 3. Typical Transfer Characteristics
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
-60 -40 -20 020 40 60 80 100 120 140 160
0.0
0.5
1.0
1.5
2.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
14A
Fig 4. Normalized On-Resistance
Vs. Temperature
1.0 2.0 3.0 4.0
VGS, Gate-to-Source Voltage (V)
0.10
1.00
10.00
100.00
1000.00
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 150°C
VDS = 15V
20µs PULSE WIDTH
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
10000
100000
ID, Drain-to-Source Current (A)
1.8V
20µs PULSE WIDTH
Tj = 25°C
VGS
TOP 7.5V
7.0V
4.5V
3.0V
2.5V
2.3V
2.0V
BOTTOM 1.8V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
1.8V
20µs PULSE WIDTH
Tj = 150°C
VGS
TOP 7.5V
7.0V
4.5V
3.0V
2.5V
2.3V
2.0V
BOTTOM 1.8V
http://store.iiic.cc/
IRF7484
4www.irf.com
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 8. Maximum Safe Operating Area
010 20 30 40 50 60 70 80
0
1
2
3
4
5
6
7
8
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I =
D14A
V = 8V
DS
V = 20V
DS
V = 32V
DS
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS
= 0V, f = 1 MHZ
Ciss
= C
gs + C
gd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds
+ C
gd
0 1 10 100 1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
0.2 0.4 0.6 0.8 1.0 1.2 1.4
VSD, Source-to-Drain Voltage (V)
0.10
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
http://store.iiic.cc/
IRF7484
www.irf.com 5
Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
Fig 9. Maximum Drain Current Vs.
Case Temperature
25 50 75 100 125 150
0
3
6
9
12
15
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
0.1
1
10
100
0.0001 0.001 0.01 0.1 1 10 100 10
0
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJA A
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJA
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
VGS
+
-
VDD
http://store.iiic.cc/
IRF7484
6www.irf.com
Fig 13. Typical On-Resistance Vs. Drain
Current
Fig 12. Typical On-Resistance Vs. Gate
Voltage
Fig 14. Typical Threshold Voltage Vs.
Junction Temperature
Fig 15. Typical Power Vs. Time
0 20 40 60 80 100 120
ID , Drain Current (A)
8.60
8.70
8.80
8.90
9.00
9.10
9.20
9.30
9.40
RDS (on) , Drain-to-Source On Resistance (m)
VGS = 7.0V
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
VGS(th) Gate threshold Voltage (V)
ID = 250µA
1.00 10.00 100.00 1000.00
Time (sec)
0
10
20
30
40
50
Power (W)
2.0 3.0 4.0 5.0 6.0 7.0 8.0
VGS, Gate -to -Source Voltage (V)
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
RDS(on), Drain-to -Source On Resistance (m)
ID = 14A
http://store.iiic.cc/
IRF7484
www.irf.com 7
25 50 75 100 125 150
0
104
208
312
416
520
Starting Tj, Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
AS
°
ID
TOP
BOTTOM
6.3A
11A
14A
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
VGS
Fig 17. Gate Charge Test Circuit Fig 18. Basic Gate Charge Waveform
Fig 16a. Maximum Avalanche Energy
Vs. Drain Current
Fig 16d. Unclamped Inductive Waveforms
Fig 16c. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
http://store.iiic.cc/
IRF7484
8www.irf.com
Fig 19. Typical Avalanche Current Vs.Pulsewidth
Fig 20. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 19, 20:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 16c, 16d.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 19, 20).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03
tav (sec)
0.01
0.1
1
10
100
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
125 130 135 140 145 150
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
120
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 1.0A
http://store.iiic.cc/
IRF7484
www.irf.com 9
SO-8 Package Details
SO-8 Part Marking
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
.013
.050 BAS IC
.0532
.0040
.2284
.0099
.016
.1968
.1574
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
1.27 BAS IC
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX
MIL L IME T E R SINCHES
MIN MAX
DIM
e
c .0075 .0098 0.19 0.25
.025 BAS IC 0.635 BAS IC
87
5
65
D B
E
A
e
6X
H
0.25 [.010] A
6
7
K x 45°
8X L 8X c
y
0.25 [.010] CAB
e1 A
A1
8X b
C
0.10 [.004]
4312
F OOT P R I NT
8X 0.72 [.028]
6.46 [.255]
3X 1.27 [.050]
4. OUT LINE CONF ORMS T O JEDEC OUT LINE MS -012AA.
NOT E S :
1. DIME NS IONING & T OLERANCING PER AS ME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENS IONS ARE S HOWN IN MILLIMET E RS [INCHES ].
5 DIME NS ION DOE S NOT INCLUDE MOLD PROT RUS IONS .
6 DIME NS ION DOE S NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROT RUSIONS NOT TO EXCEED 0.25 [.010].
7 DIME NS ION IS T HE LE NGT H OF LEAD F OR S OLDERING T O
A S U B S T R AT E .
MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006].
8X 1.78 [.070]
DAT E CODE (YWW)
XXXX
INTERNATIONAL
RECTIFIER
LOGO
F7101
Y = LAS T DIGIT OF T HE YEAR
PART NUMBER
LOT CODE
WW = WE E K
EXAMPLE: T HIS IS AN IRF 7101 (MOS FET )
P = DE S I GNAT E S L E AD- F R E E
PRODUCT (OPTIONAL)
A = ASSEMBLY SITE CODE
http://store.iiic.cc/
IRF7484
10 www.irf.com
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
FEED DIRECTION
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
SO-8 Tape and Reel
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 11/06
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
http://store.iiic.cc/