PD - 94446C IRF7484 Typical Applications HEXFET(R) Power MOSFET Relay replacement Anti-lock Braking System Air Bag l l l VDSS RDS(on) max (mW) Benefits l l l l 40V Advanced Process Technology Ultra Low On-Resistance Fast Switching Repetitive Avalanche Allowed up to Tjmax 14A A A D S 1 8 S 2 7 D S 3 6 D G 4 5 D Description Specifically designed for Automotive applications, this Stripe Planar design of HEXFET(R) Power MOSFETs utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 150C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. 10@VGS = 7.0V ID SO-8 Top View Absolute Maximum Ratings Parameter ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C VGS EAS IAR EAR TJ, TSTG Max. Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Junction and Storage Temperature Range Units 14 11 110 2.5 0.02 8.0 230 See Fig.16c, 16d, 19, 20 -55 to + 150 A W W/C V mJ A mJ C Thermal Resistance Symbol RJL RJA Parameter Junction-to-Drain Lead Junction-to-Ambient www.irf.com Typ. Max. Units --- --- 20 50 C/W 1 11/27/06 http://store.iiic.cc/ IRF7484 Electrical Characteristics @ TJ = 25C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance V(BR)DSS V(BR)DSS/TJ Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Min. 40 --- --- 1.0 40 --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.040 --- --- --- --- --- --- --- 69 9.0 16 9.3 5.0 180 58 3520 660 76 Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 10 m VGS = 7.0V, ID = 14A 2.0 V VDS = VGS, ID = 250A --- S VDS = 10V, ID = 14A 20 VDS = 40V, VGS = 0V A 250 VDS = 32V, VGS = 0V, TJ = 125C 200 VGS = 8.0V nA -200 VGS = -8.0V 100 ID = 14A --- nC VDS = 32V --- VGS = 7.0V --- VDD = 20V --- ID = 1.0A ns --- RG = 6.2 --- VGS = 7.0V --- VGS = 0V --- pF VDS = 25V --- = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units 2.3 110 --- --- --- --- 59 110 1.3 89 170 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25C, IS = 2.3A, VGS = 0V TJ = 25C, IF = 2.3A di/dt = 100A/s D S Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width 400s; duty cycle 2%. Surface mounted on 1 in square Cu board. Starting TJ = 25C, L = 2.3mH, RG = 25, IAS = 14A. (See Figure 12). ISD 14A, di/dt 140A/s, VDD V(BR)DSS, TJ 150C. Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. 2 www.irf.com http://store.iiic.cc/ IRF7484 100000 10000 VGS 7.5V 7.0V 4.5V 3.0V 2.5V 2.3V 2.0V BOTTOM 1.8V VGS 7.5V 7.0V 4.5V 3.0V 2.5V 2.3V 2.0V BOTTOM 1.8V TOP 1000 100 10 1 1.8V 0.1 20s PULSE WIDTH Tj = 25C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 10000 TOP 0.01 1000 100 10 1.8V 1 20s PULSE WIDTH Tj = 150C 0.1 0.1 1 10 100 0.1 1 VDS, Drain-to-Source Voltage (V) 2.0 RDS(on) , Drain-to-Source On Resistance 100.00 T J = 150C T J = 25C VDS = 15V 20s PULSE WIDTH 0.10 1.0 2.0 3.0 4.0 I D = 14A 1.5 (Normalized) ID, Drain-to-Source Current () 1000.00 1.00 1.0 0.5 V GS = 10V 0.0 -60 VGS, Gate-to-Source Voltage (V) -40 -20 0 20 40 60 TJ , Junction Temperature Fig 3. Typical Transfer Characteristics 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 10.00 10 VDS, Drain-to-Source Voltage (V) 80 100 120 140 ( C) Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 http://store.iiic.cc/ 160 IRF7484 100000 VGS , Gate-to-Source Voltage (V) Coss Crss 100 5 4 3 2 1 10 0 1 10 100 0 10 20 Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage ID, Drain-to-Source Current (A) 1000 10 T J = 25C 1 VGS = 0V 0.10 0.4 0.6 50 60 70 80 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 150C 0.2 40 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000 100 30 QG , Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) ISD, Reverse Drain Current (A) VDS = 32V VDS = 20V VDS = 8V 6 Ciss 1000 ID = 14A 7 Coss = Cds + Cgd 10000 C, Capacitance(pF) 8 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 0.8 1.0 1.2 100sec 10 1msec 10msec 1 0.1 1.4 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 Tc = 25C Tj = 150C Single Pulse 0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com http://store.iiic.cc/ IRF7484 15 RD VDS VGS 12 D.U.T. I D , Drain Current (A) RG + -VDD 9 VGS Pulse Width 1 s Duty Factor 0.1 % 6 Fig 10a. Switching Time Test Circuit 3 VDS 90% 0 25 50 75 100 125 150 ( C) TC , Case Temperature 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJA ) 100 D = 0.50 10 0.20 Thermal Response 0.10 0.05 P DM 0.02 1 t1 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T 0.1 0.0001 0.001 0.01 0.1 1 t1/ t 2 J = P DM x Z thJA 10 +TA 100 100 t 1, Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 http://store.iiic.cc/ 16.0 15.0 14.0 13.0 12.0 ID = 14A 11.0 10.0 9.0 8.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 RDS (on) , Drain-to-Source On Resistance ( m ) RDS(on) , Drain-to -Source On Resistance ( m ) IRF7484 9.40 9.30 9.20 9.10 9.00 VGS = 7.0V 8.90 8.80 8.70 8.60 0 VGS, Gate -to -Source Voltage (V) 60 80 100 120 Fig 13. Typical On-Resistance Vs. Drain Current 50 1.8 1.7 40 1.6 1.5 ID = 250A 1.4 Power (W) VGS(th) Gate threshold Voltage (V) 40 ID , Drain Current (A) Fig 12. Typical On-Resistance Vs. Gate Voltage 1.3 1.2 30 20 1.1 10 1.0 0.9 0 0.8 -75 -50 -25 0 25 50 75 100 125 150 175 200 1.00 10.00 100.00 1000.00 Time (sec) T J , Temperature ( C ) 6 20 Fig 14. Typical Threshold Voltage Vs. Junction Temperature http://store.iiic.cc/ Fig 15. Typical Power Vs. Time www.irf.com IRF7484 520 TOP EAS , Single Pulse Avalanche Energy (mJ) 416 BOTTOM ID 6.3A 11A 14A 15V 312 208 D.U.T RG 20V 104 DRIVER L VDS + - VDD IAS tp A 0.01 Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 Starting Tj, Junction Temperature 125 150 ( C) V(BR)DSS Fig 16a. Maximum Avalanche Energy Vs. Drain Current tp I AS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50K 12V VGS .2F .3F D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Charge Current Sampling Resistors Fig 17. Gate Charge Test Circuit Fig 18. Basic Gate Charge Waveform www.irf.com 7 http://store.iiic.cc/ IRF7484 100 Duty Cycle = Single Pulse Avalanche Current (A) 10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 1 0.05 0.10 0.1 0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 120 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 1.0A 100 80 60 40 20 0 125 130 135 140 145 150 Starting TJ , Junction Temperature (C) Notes on Repetitive Avalanche Curves , Figures 19, 20: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16c, 16d. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 19, 20). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see figure 11) Fig 20. Maximum Avalanche Energy Vs. Temperature 8 PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav www.irf.com http://store.iiic.cc/ IRF7484 SO-8 Package Details D 5 A 8 6 7 6 5 H 1 2 3 0.25 [.010] 4 A MAX MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC 1.27 BAS IC e1 6X e e1 A1 8X b 0.25 [.010] A MILLIMETERS MIN A E INCHES DIM B MAX .025 BASIC 0.635 BAS IC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0 8 0 8 K x 45 C y 0.10 [.004] 8X L 8X c 7 C A B FOOT PRINT NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6.46 [.255] 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 7 DIMENS ION IS THE LENGT H OF LEAD F OR S OLDERING T O A S UBS T RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: T HIS IS AN IRF7101 (MOS FET) INT ERNATIONAL RECT IFIER LOGO XXXX F7101 DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) Y = LAS T DIGIT OF T HE YEAR WW = WEEK A = AS S EMBLY S IT E CODE LOT CODE PART NUMBER www.irf.com 9 http://store.iiic.cc/ IRF7484 SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/06 10 www.irf.com http://store.iiic.cc/