Data Sheet 100054E
June 2000
CX28394/28395/28398
Quad/x16/Octal—T1/E1/J1 Framers
The CX28394/28395/28398 is a family of multiple framers for T1/E1/J1 and Integrated
Service Digital Netw ork (ISDN) primary r ate interfaces operating at 1.544 Mbps o r 2.048
Mbps. All framers are totally independent, and each combines a sophisticated framing
synchronizer and transmit/receive slip buffers. Operations are controlled through a
series of memory-mapped registers accessible via a parallel microprocessor port.
Extensive register support is provided for alarm and error monitoring, signaling
supervision (including ISDN D-channel/SS7 process), per-channel trunk conditioning,
and Facility Data Link (FDL) maintenance. A flexible serial Time Division Multiplexed
(TDM) system interface that supports bus rates from 1.536 to 8.192 MHz is featured.
Extensive test and diagnostic functions include a full set of loopbacks, Pseudo Random
Bit Sequence (PRBS) test pattern generation, Bit Error Rate (BER) meter, and forced
error insertion.
Functional Block Diagram
Distinguishing Features
Up to 16 T1/ E1/J1 Framers in one
package
Extensive support of various
protocols
T1: SF , ESF, SL C®9 6, T1 DM ,
TTC JT(J1)
E1: PCM-30, G.704, G.706, G.732,
ISDN primary rate (ETS300 011,
INS 500)
Extracts and inserts signalin g bits
Dual HDLC contro llers pe r framer for
data link and LAPD/SS7 signaling
T wo-fram e tran smit an d recei ve PCM
slip buffers
Separate or multiplexed system bus
interfaces
Paralle l 8-bit microprocessor port
supports Intel or Motorola buses
BERT generation and c ounting
B8ZS/ HDB3/B it 7 zero suppression
(CX28394 and CX28398 only)
Operates from a single + 3. 3 Vdc
± 5% power supply
Low -p ow e r CM OS t ech nology
Applications
Multiline T1/E1 Channel Service
Unit/Data Service Unit (CSU/DSU)
Digital Access Cr oss-Connect
System (DACS)
T1/E 1 Mu ltiplexe r (MUX )
PBXs and PC M channel bank
ISDN Primary Rate Access (PRA)
Frame Relay Switches and Access
Devices (FRADS)
SONET/ SD H add/drop multipl exers
T3/E3 channelized access
concentrators
ZCS*
Decode
Receive
Dual Rail or
NRZ
Receive
Dual Rail or
NRZ
TX
Slip
Buffer
RX
Slip
Buffer
T1/E1
Receive
Framer
ZCS*
Encode
T1/E1
Transmit
Framer
Overhead
Insertion
Control/Status
Registers
JTAG
Data Link Controllers
DL1+DL2
Motorola/Intel
Processor Bus
Test Por t
External Data Link
DL3*
Receive
System
Bus
Transmit
System
Bus
Framer #1
Framer #N
8394-8-5_019
F r amer #N
CX28394 - 4 F r ames
CX28398 - 8 F r ames
CX28395 - 16 F r ames
.
.
.
* CX28394 and CX28398 only.
100054E Conexant
© 1999, 2000, Conexant Systems, Inc.
All Rights Reserved.
Information in this document is provided in connection with Conexant Systems, Inc. (“Conexant”) products. These materials are
provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no
responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at
any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to its specifications and product descriptions.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as
provided in Conexant’s Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.
THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING
TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER DOES NOT WARRANT THE
ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE
MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE
OF THESE MATERIALS.
Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling
Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages
resulting from such improper use or sale.
The following are trademarks of Conexant Systems, Inc.: Conexant™, the Conexant C symbol, and “What’s Next in Communications
Technologies”™. Product names or services listed in this publication are for identification purposes only, and may be trademarks of
third parties. Third-party brands and names are the property of their respective owners.
For additional disclaimer information, please consult Conexant’s Legal Information posted at www.conexant.com,whichis
incorporated by reference.
Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and
suggestions to tech.pubs@conexant.com. For technical questions, contact your local Conexant sales office or field applications
engineer.
CX28398EVM—Evaluation Module, Octal T1/E1 ISDN PRI Board
Local PCM Highway (i.e., 2 @ 8192 kbps)
Address
Data 12
8
Microprocessor
Bus
T1 or E1 Connection at DSX Levels
CX28398 (Octal T1/E1 Framer)
Bus
Quad T1/E1 LIU (CX28380) Quad T1/E1 LIU (CX28380)
8394-8-5_012
100054E Conexant
Typ ical Quad T1/E1 Application
Typ ical x16 T1/E1 Application
Ordering Information
Local PCM Highway (8192 kbps)
Address
Data
12
8
Microprocessor
Bus
T1 or E1 Connection at DSX Levels
CX28394 (Octal T1/E1 Framer)
Bus
CX28380 (Quad LIU)
8394-8-5_015
Local PCM Highways 32 at 1536 kbps to 8 at 8192 kbps)
Address
Data 12
8
Microprocessor
Bus
T1 or E1 Line Interfaces, SONET/SDH Mapper or M13/E13 Mux
CX28395 ( x16 T1/E1 Framer)
Bus CX28395 ( x16 T1/E1 Framer)
2
2
Chip
Selects
8394-8-5_014
Model Number Number of Framers Package Operating Temperature
CX28394-22 4 128-pin TQFP –40 to 85 °C
CX28398-22 8 208-pin PQFP –40 to 85 °C
CX28 398-23 8 272-pin BGA –40 to 85 °C
CX28395-19 16 318-pin BGA –40 to 85 °C
CX28395-18 16 318-pin BGA 0 to 70 °C
CX28398-24 8 208-pin CABGA –40 to 85 °C
BT00 -D 66 0- 001 CX28398/CX2 83 80 Ev a lu a t io n Mod ule
100054E Conexant
Detailed Feature Summary
Frame Alignment
Framed formats:
Indepen dent transmit and recei ve
framing modes
T1: FT/SF/ESF/SLC/T1DM/TTC-JT(J1)
E1: FAS/MFAS/FAS+CAS/MFAS+CAS
Maximum Average Reframe Time
(MART) less than 50 ms
Transmitter alignment modes:
Align to system bus data
Align to system bus sync
Alig n to bu ffe r data (emb edd ed
framing)
Unframed mode
Signaling
T1: 2-, 4-, or 16-stat e robbed bit
ABCD signaling
E1: Chan nel Associated Sig naling
(CAS)
Com m on Ch a nnel Signalin g (CCS) in
any time slot
Per-channel receiv e signaling stack
Signaling st ate change int errupt
Automatic and manual signaling
freeze
Deboun ce signaling (2-bit
integration)
UNICODE detection
Signaling reinsertion on PCM system
bus
S epa rat e I /O fo r sys te m bu s s ign al in g
Per-c hannel t ransparent
Loopbacks
Rem ote loop ba c k toward line
Retains BPV transparency
(CX28394 and CX28398 only)
Payload loopback
Per- c hannel DS0 remote loopback
Local loopback towards system
Framer digital loopback
Per- channel DS0 local loopback
Inba nd loop ba c k code detec tio n/
generation
Simultaneous local and remote line
loopbacks
Processor Interface
Paral lel 8-bit bus
Data strob es (Motorola) or add r ess
latch enable (Intel)
Multiplexed or non-multiplexed
address /data bus
Synchronous or asynchronous
data transfers
Ope n dra in inte rr u pt ou tpu t w ith
maskable sources
Out-of -Service Testing
and Ma intenance
Pseudo-Random Bit Sequence
(PRBS):
Independent transmit an d receive
–2
11; 215; 220; 223 patterns
Framed or unframed mode
Optional 7/14 zero limit
Bit Error Counter (BERR)
Single error insertion:
PRBS er ror
Framing error
CRC error
BPV/ LCV error (CX28394 and
CX28398 onl y )
COFA error
Syste m Bus Int erfa c e (SBI)
Sys tem b u s data rates:
1536 kbps ( T1 without F-b i t s)
1544 kbps (T1)
2048 kbps (E1)
4096 kbps (2E1)
8192 kbps (4E1)
Clock operation at 1x or 2x data rate
Select able I/O clock edges
Master, slave, or mixed bu s t iming
Bit and time slot frame sync offsets
DS0 drop/insert indicators for
external mux
Embedded T1 framing transpor t
per G. 802
Receive and transmit slip buffers
Bypass, 2- frame, or 64-bit depth
Slip detection with directional
status
Slip buffer phase status
Per-c hannel idle code insertion
Processor accessible d a t a buffers
Direct connection to upper layer
devices:
Lin k la y er: Bt84 74
ATM layer: CN8228
Direct connection to physical line
interface
CX28380
Supported system bus formats:
ATT Concen tration Highway
Interface (CHI)
Multi-Vendor Integration Protocol
(MVIP)
–Mitel ST-bus
Separate or internally multiplexed
bus modes
In-Service
Perfor mance Monitoring
One-seco nd t imer I/O to synchronize
reporting
Receive error det ectors with
accumulators:
Bipolar/Line Cod e Violations
(LCV ) (CX283 94 and CX28398
only)
Excessive Zeros (EXZ)
Loss of Frame (RLOF)
Framing Errors (FERR)
CRC Errors (CERR)
Far End Block Errors (FEBE)
Severely Errored Fra mes (S EF)
Change of Fra me Al ignment
(COFA)
Transmit error detectors:
Loss of Frame (TLOF)
Framing Errors (TFERR)
Multiframe Errors (TMERR)
CRC Errors (TCERR)
Loss of Tra nsmit Clock (TLOC)
Receive alarm detectors:
Alarm Indication Signal (AIS)
Loss of Sig nal (RLOS)
RAI/Ye l low Al arm (YEL )
Multiframe Yellow (MYEL)
Lost Frame Al ignment (FRED)
Lost Multiframe Alignment
(MRED)
Carrier Failure Alarm (CFA) with
8:1 dual slope integration
Controlled Frame Slip (R FSLIP)
Uncontrol led Frame Slip (RUS LIP)
Automatic and on-demand tr ansmit
alarms:
AIS following RLOS and/or TLOC
Automatic AIS clock switching
YEL followi ng FRED
YEL fol lowing 100ms reframe
timeout
MYE L fol lowing MRE D
FEB E followin g CERR
100054E Conexant
Data Links
Two full-featured data link controllers
(DL1 and DL2):
64-octet transmit and receive
FIFOs
HD LC Message Oriented P r otocol
(MOP)
Unformatted data tran sfer
Unformatted circular buffer
End of message/buffer interrupt
Near full/empty interrupts at
selecte d depth
Access any bit combinat ion in any
time slot:
ISDN D-channels at 16, 32, or 64
kbps
National/spare bit s (SA-bits) in 4
kbps increm ents
CCS/SS7
T1DM R-bits
Access T1 F-b it s in even, odd, or all
frames:
Automatic Performance Report
Message (PRM) generator
ESF Facility Data Link (FDL)
Unformatted SLC-96 over head
Bit-Oriented Protocol (BOP)
priority codeword gener ation and
detection
Separate I/O for external data link
(DL3) on CX28394 and CX28398
devices
100054E Conexant
100054E Conexant vii
Table of Contents
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1.0 Product Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1.1 External Datalink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1.2 RINDO/TINDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1. 3 LIU S erial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.1.4 Transmit/Receive Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.2 Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
2.0 Circuit Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1 Functional Blo ck Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.2.1 ZCS Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.2.2 In-Band Loopback Code Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.2.3 Error Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.2.3.1 Frame Bit Error Count er. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2.2.3.2 CRC Erro r Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2.2.3.3 LCV Error Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2.2.3.4 FEB E Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2.2.4 Error Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2.2. 4.1 Frame Bit Err or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2.2.4.2 MFAS Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2.2. 4.3 CAS Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2.2.4.4 CRC Erro r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2.2.4.5 Pulse Density Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Table of Cont ents CX28394/28395/28398
Quad/x16/Octal—T1/E1/J1 Framers
viii Conexant 100054E
2.2.5 Alarm Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2.2.5.1 Loss of Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.2.5.2 Loss of Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.2.5.3 Receive Analog Loss of Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.2.5.4 Alarm Indication Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.2. 5.5 Yellow Alar m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.2. 5.6 Multiframe YEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.2.5.7 Severely Errored Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.2.5.8 Change of Frame Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.2.5.9 Receive Multiframe AIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.2.6 Test Pattern Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.2.7 Receive Framing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2.2.8 External Receive Data Link (CX28394 and CX28398 Only) . . . . . . . . . . . . . . . . . . . . . . . 2-15
2.2.9 Sa-Byte Receive Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
2.2.10 Receive Data Link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
2.2.10.1 Data Link Controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
2.2.10.2 RBOP Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
2.3 System Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
2.3.1 Non-Multiplexed Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
2.3.2 Externally Multiplexed Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
2.3.3 Internally Multiplexed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
2.3.4 Receive System Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
2.3.4.1 Timebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
2.3. 4.2 Slip Buf f er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
2.3. 4.3 Signaling Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
2.3. 4.4 Signaling Stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
2.3.4.5 Embedded Framing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
2.3.5 Transmit System Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
2.3.5.1 Timebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
2.3. 5.2 Slip Buf f er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
2.3. 5.3 Signaling Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
2.3.5.4 Transmi t Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
2.3.5.5 Embedded Framing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
2.4 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40
2.4.1 External Transmit Data Link (CX28394 and CX28398 Only) . . . . . . . . . . . . . . . . . . . . . . 2-41
2.4.2 Transmit Data Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
2.4.2.1 Data Link Controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
2.4.2.2 Circular Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42
2.4.2.3 Time Slot and Bit Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
2.4.2.4 Transmit Data Link FIFO Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
2.4.2.5 End of Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
2.4.2.6 Pro gramming th e Data Link Co ntroller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
2.4.2.7 PRM Gener ator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
2.4.2.8 TBOP Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
CX28394/28395/28398 Table of Contents
Quad/x16/Octal—T1/E1/J1 Framers
100054E Conexant ix
2.4.3 Sa-Byte Overwrite Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
2.4.4 Overhead Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47
2.4.4.1 Framing Pat tern Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47
2.4.4.2 Alarm Ge neration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47
2.4.4.3 CRC Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49
2.4.4.4 Far-End Bloc k Error Gen eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49
2.4.5 Test Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
2.4.6 Transmit Error Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
2.4.7 In-Band Loopback Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
2.4.8 ZCS Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
2.5 Microprocessor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55
2.5.1 Address/Data Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-56
2.5. 2 Bus Co nt rol Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-56
2.5.3 Interrupt Request s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-56
2.5.4 Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-58
2.6 Loopbacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 9
2.6.1 Remote Line Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59
2.6.2 Remote Payload Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59
2.6.3 Remote Per-Channel Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59
2.6.4 Local Framer Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-60
2.6.5 Local Per-Channel Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-60
2.7 Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61
2.8 Joint Test Access Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62
2.8.1 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62
2.8.2 Device Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
3.0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1 Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.2 Global Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
000—Device Identification (DID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
080—Framer Control Register (FCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
081—Master Interrupt Request (MIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
082—Master Interrupt Enable (MIE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
083—Te st Co nfiguration (TE ST ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
3.3 Primary Control and Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
001—Primary Control Register (CR0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
3.4 Interrupt Co ntrol R egis t er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
003—Interrupt Request Register (IRR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Table of Cont ents CX28394/28395/28398
Quad/x16/Octal—T1/E1/J1 Framers
xConexant 100054E
3.5 Interrupt Status R egiste rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
004—Alarm 1 Interrupt Status (ISR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
005—Alarm 2 Interrupt Status (ISR6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
006—Error Interrupt Status (ISR5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
007—Counter Overflow Interrupt Status (I SR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
008—Timer Interrupt Status (ISR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
009—Data Link 1 Interrupt Status (ISR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
00A—Data Link 2 I nterrupt St atus (I SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
00B—Patter n Interrupt Status (ISR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
3.6 Interrupt Enable Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
00C—Alarm 1 Interrupt Enable Register (IER7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
00D—Alarm 2 Interrupt Enable Register (IER6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
00E—Error Interrupt Enable Register (IER5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
00F—Count Overflow Interrupt Enable Register (IER4) . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
010—Timer Interrupt Enable Register (IER3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
011—Data Link 1 Interrupt Enable Register (IER2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
012—Data Link 2 Interrupt Enable Register (IER1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
013—Pattern Interrupt Enable Register (IER0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
3.7 Primary Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
014—Loopback Configuration Register (LOOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
015—External Data Link Time Slot (DL3_TS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
016—External Data Link Bit (DL3_BIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29
017—Offline Framer Status (FSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29
018—Programm abl e Inpu t/Output (PIO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31
019—Programmable Output Enable (POE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33
01A—Clock Input Mux (CMUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34
020—Receive Alarm Configuration (RAC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34
021—Receive Line Code Status (RSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35
3.8 Serial Interface Registe rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36
022—Serial Control (SER_CTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36
023—Serial Data (SER_DAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36
024—Serial Status (SER_STAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36
025—Serial Config uration (SER_C ONFIG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37
026—RAM Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37
3.9 Receiver Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38
040—Receiver Configuration (RCR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38
041—Receive Test Pattern Configuration (RPATT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39
042—Receive Loopback Code Detector Configuration (RLB) . . . . . . . . . . . . . . . . . . . . . 3-40
043—Loopback Activate Code Pattern (LBA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41
044—Loopback Deactivate Code Pattern (LBD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41
045—Receive Alarm Signal Configuration (RALM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42
046—Alarm/Error/C oun ter Latch Config urat i on (LATCH). . . . . . . . . . . . . . . . . . . . . . . . 3-44
047—Alarm 1 Status (ALM1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45
048—Alarm 2 Status (ALM2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47
049—Alarm 3 Status (ALM3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48
CX28394/28395/28398 Table of Contents
Quad/x16/Octal—T1/E1/J1 Framers
100054E Conexant xi
3.10 Performance Monitoring Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-49
050—Framing Bit Error Counter LSB (FERR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-49
051—Framing Bit Error Counter MSB (FERR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-49
052—CRC Error Counter LSB (CERR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-49
053—CR C Error Counter MSB (CERR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-49
054—L ine Code Viol ation Counter LSB (LCV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-50
055—L in e Code Violati on Counter MSB ( LCV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-50
056— Far En d Block Error Counte r LSB (FEBE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-50
057— Far End Block Error Counter MSB (FEBE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-50
058—PRBS Bit Error Counter LSB (BERR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-50
059—PRBS Bit Err or Counter MSB (BERR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51
05A—SEF/FRED/CO FA Alarm Counter (AERR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51
3.11 Receive Sa-Byte Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52
05B—Receive Sa4 Byte Buffer (RSA4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52
05C—Receive Sa5 Byte Buffer (RSA5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52
05D—Receive Sa6 Byte Buffer (RSA6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53
05E—Receive Sa7 Byte Buffer (RSA7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53
05F—Receive Sa8 Byte Buffer (RSA8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-54
3.12 Transmitter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-55
070—Transmit Framer Configuration (TCR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-55
071—Transmitter Configuration (TCR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-59
072—Transmit Frame Format (TFRM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-61
073—Transmit Error Insert (TERROR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-62
074—Transmit Manual Sa-Byte/FEBE Configuration (TMAN) . . . . . . . . . . . . . . . . . . . . . 3-63
076—Transmit Test Pattern Configuration (TPATT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-65
077—Transmit Inband Loopback Code Configuration (TLB). . . . . . . . . . . . . . . . . . . . . . 3-66
078—Transmit Inband Loopback Code Pattern (LBP) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-67
3.13 Transmit Sa-Byte Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-68
07B—Transmit Sa4 Byte Buffer (TSA 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-68
07C—Transmit Sa5 Byte Buffer (TSA 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-68
07D—Transmit Sa6 Byte Buffer (TSA6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-69
07E—Transmit Sa7 Byte Buffer (TSA7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-69
07F—Transmit Sa8 Byte Buffer (TSA8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-70
3.14 Bit-Orien t ed Pro t ocol R egist er s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-71
0A0—Bit Oriented Protocol Transceiver (BOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-71
0A1— Tr ansmit BOP Code word (TBOP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-73
0A2—Receive BOP Codeword (RBOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-73
0A3— BOP Status (BOP_STAT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-74
Table of Cont ents CX28394/28395/28398
Quad/x16/Octal—T1/E1/J1 Framers
xii Conexant 100054E
3.15 Data Link Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-75
0A4—DL1 Time Slot Enable (DL1_TS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-75
0A5—DL1 Bit Enable (DL1_BIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-76
0A6—DL1 Control (DL1_CTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-76
0A7—RDL #1 FIFO Fill Control (RDL1_FFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-77
0A8—Receive Data Link FIFO #1 (RDL1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-79
0A9—RDL #1 Status ( RDL1_ STAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-80
0AA—Performance Report Message (PRM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-81
0AB—TDL #1 FIFO Empty Co ntrol (TDL1_FEC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-82
0AC—TDL #1 End Of Message Control (TDL1_EOM). . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83
0AD—Transmit Data Link FIFO #1 (TDL1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83
0AE—TDL #1 Status (TDL1_STAT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83
0AF—DL2 Time Slot Enable (DL2_TS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-84
0B0—DL2 Bit Enable (DL2_BIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-85
0B1—DL2 Control (DL2_CTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-85
0B2—RDL #2 FIFO Fill Control (RDL2_FFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-87
0B3—Receive Data Link FIFO #2 (RDL2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-88
0B4—RDL #2 Status ( RDL2_ STAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-89
0B6—TDL #2 FIFO Empty Contro l (TDL2_FEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-90
0B7—TDL #2 End Of Message Control (TDL2_EOM). . . . . . . . . . . . . . . . . . . . . . . . . . . 3-90
0B8—Transmi t Data Link FI FO #2 (TDL 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-91
0B9—TDL #2 Status (TDL2_STAT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-91
0BA—DLINK Test Configuration (DL_TEST1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-92
0BB—DLIN K Test Status (DL_TEST2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-92
0BC—DLIN K Test Status (DL_TEST3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-92
0BD— DLINK Te st Cont rol #1 or Configurati on #2 (DL_TEST4) . . . . . . . . . . . . . . . . . . . 3-92
0BE—DLINK Test Control #2 or Confi gurat ion #2 (DL_TEST5). . . . . . . . . . . . . . . . . . . . 3-93
3.16 System Bus Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-94
0D0—System Bus Interface Configuration (SBI_CR). . . . . . . . . . . . . . . . . . . . . . . . . . . 3-94
0D1—Receive System Bus Configuration (RSB_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-96
0D2—RSB Sync Bit Offset (RSYNC_BIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-97
0D3—RSB Sync Time Slot Offset (R SYNC_TS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-98
0D4—Transmit System Bus Configuration (TSB_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-99
0D5—TSB Sync Bit Offset (TSYNC_BIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-100
0D6—TSB Sync Time Slot Offset (TSYNC_TS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-101
0D7—Receive Signaling Configuration (RSIG_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-102
0D8—Signaling Reinsertion Frame Offset (RSYNC_FRM) . . . . . . . . . . . . . . . . . . . . . . 3-104
0D9—Slip Buffer Status (SSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-105
0DA—Receive Signaling Stack (STACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-107
0DB—RSLIP Phase Status (RPHASE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-108
0DC—TSLIP Phase Status (TPHASE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-108
0DD—RAM Parity Status (PERR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-109
0E0–0FF—System Bus Per-Channel Control (SBCn; n = 0 to 31) . . . . . . . . . . . . . . . . . 3-109
100–11F—Transmit Per-Channel Control (TPCn; n = 0 to 31) . . . . . . . . . . . . . . . . . . . 3-110
120–13F—Transmit Signaling Buffer (TSIGn; n = 0 to 31) . . . . . . . . . . . . . . . . . . . . . . 3-112
CX28394/28395/28398 Table of Contents
Quad/x16/Octal—T1/E1/J1 Framers
100054E Conexant xiii
140–15F—Transmit PCM Slip Buffer (TSLIP_LOn; n = 0 to 31) . . . . . . . . . . . . . . . . . . 3-112
160–17F—Trans m it PCM Slip Buffer (TSLIP_HIn; n = 0 to 31). . . . . . . . . . . . . . . . . . . 3-113
180–19F—Receive Per-Channel Control (RPCn; n = 0 to 31) . . . . . . . . . . . . . . . . . . . . 3-113
1A0–1BF—Receive Signaling Buffer (RSIGn; n = 0 to 31) . . . . . . . . . . . . . . . . . . . . . . 3-115
1C0–1DF—Receive PCM Slip Buffer (RSLIP_LOn; n = 0 to 31) . . . . . . . . . . . . . . . . . . 3-115
1E0–1FF—Receive PCM Slip Buffer (RSLIP_HIn; n = 0 to 31) . . . . . . . . . . . . . . . . . . . 3-116
3.17 Register Su mmary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-117
4.0 Electrical/Mechanical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1 Absolute Maximum Rating s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.2 Recomm ende d Operating Condition s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
4.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
4.4 AC Char acteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
4.5 MPU Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
4.6 System Bus Interface (SBI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
4.7 JTAG Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
4.8 Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
A.1 Superframe Format (SF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
A.2 T1DM Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
A.3 SLC 96 Format (SLC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4
A.4 Extended Superframe Format (ESF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
A.5 E1 Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8
A.6 IRSM CEPT Frame Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-10
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
B.1 Applicable Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
C.1 System Bus Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
C.1.1 AT&T Concentration Highway Interface (CHI):. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
C.1.2 CHI Programming Options:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1
D.1 Notation and Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1
D.1.1 Arithmetic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1
D.2 Acronyms and A bbreviati ons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-2
Appendix E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-1
E.1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-1
Table of Cont ents CX28394/28395/28398
Quad/x16/Octal—T1/E1/J1 Framers
xiv Conexant 100054E
CX28394/28395/28398 List of Figures
Quad/x16/Octal—T1/E1/J1 Framers
100054E Conexant xv
List of Figures
Figure 1-1. CX28395 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Figure 1-2. CX28394 128-pin TQFP Pinout Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Figure 1-3. CX28395 318-pin BGA Pinout Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Figure 1-4. CX28398 208-pin PQFP Pinout Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Figure 1-5. CX28398 208-pin CABGA Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Figure 1-6. CX28398 272-pin BGA Pinout Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Figure 1-7. CX28394 Logic Diagram (Non-Multiplexed System Bus Mode) . . . . . . . . . . . . . . . . . . . . 1-25
Figure 1-8. CX28394 Logic Diagram (Multiplexed System Bus Mode) . . . . . . . . . . . . . . . . . . . . . . . . 1-26
Figure 1-9. CX28398 Logic Diagram (Non-Multiplexed System Bus Mode) . . . . . . . . . . . . . . . . . . . . 1-27
Figure 1-10. CX28398 Logic Diagram (Multiplexed System Bus Mode) . . . . . . . . . . . . . . . . . . . . . . . . 1 -28
Figure 1-11. CX28395 Logic Diagram (Non-Multiplexed System Bus Mode) . . . . . . . . . . . . . . . . . . . . 1-29
Figure 1-12. CX28395 Logic Diagram (Multiplexed System Bus Mode) . . . . . . . . . . . . . . . . . . . . . . . . 1 -30
Figure 2-1. Detailed Framer Block Diagram (Multiplexed System Bus Mode) . . . . . . . . . . . . . . . . . . . . 2-2
Figure 2-2. Detailed Framer Block Diagram (Non-multiplexed System Bus Mode) . . . . . . . . . . . . . . . . 2-3
Figure 2-3. RCVR Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Figure 2-4. Receive External Data Link Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Figure 2-5. Polled Receive Data Link Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Figure 2-6. Interrupt-Driven Receive Data Link Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Figure 2-7. Externally Multiplexed Configuration Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Figure 2-8. Internally Multiplexed Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Figure 2-9. RSB Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Figure 2-10. RSB 4096K Bus Mode Time Slot Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Figure 2-11. RSB 8192K Bus Mode Time Slot Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Figure 2-12. RSB Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Figure 2-13. T1 Line to E1 System Bus Time Slot Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29
Figure 2-14. G.802 Embedded Framing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
Figure 2-15. TSB Interface Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
Figure 2-16. Transmit System Bus Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
Figure 2-17. TSB 4096K Bus Mode Time Slot Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Figure 2-18. TSB 8192K Bus Mode Time Slot Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Figure 2-19. Transmit Framing and Timebase Alignment Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 -37
Figure 2-20. XMTR Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 -40
Figure 2-21. Transmit External Data Link Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
Figure 2-22. Pol led Transmit Data Link Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
Figure 2-23. Interrupt-Driven Transmit Data Link Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45
Figure 2-24. Zero Code Substitution Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 -52
Figure 2-25. Transmit Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53
Figure 2-26. NRZ Mode Transmit Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-54
Figure 2-27. Microprocessor Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55
List of Figures CX28394/28395/28398
Quad/x16/Octal—T1/E1/J1 Framers
xvi Conexant 100054E
Figure 2-28. Interrupt Generation Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-57
Figure 2-29. Seri al Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61
Figure 2-30. Test Access Port (TAP) Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-62
Figure 4-1. Minimum Clock Pulse Widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Figure 4-2. Input Data Setup/Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Figure 4-3. Output Data Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Figure 4-4. One-Second Input/Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7
Figure 4-5. Motorola Asynchronous Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Figure 4-6. Motorola Asynchronous Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Figure 4-7. Intel Asynchronous Read Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-10
Figure 4-8. Intel Asynchronous Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-11
Figure 4-9. Motorola Synchronous Read Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
Figure 4-10. Motorola Synchronous Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
Figure 4-11. Intel Synchronous Read Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
Figure 4-12. Intel Synchronous Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 -15
Figure 4-13. Serial Control Port Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
Figure 4-14. Serial Control Port Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
Figure 4-15. Serial Control Port Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
Figure 4-16. SBI Timing—1536K Mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-18
Figure 4-17. SBI Timing—1544K Mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-19
Figure 4-18. SBI Timing—2048K Mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-20
Figure 4-19. SBI Timing—4096K Mode(1),(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 -21
Figure 4-20. SBI Timing—8192K Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-22
Figure 4-21. SBI Timing—Eight Clock Edge Combinations (Applicable to Any SBI Mode) . . . . . . . . . . 4-23
Figure 4-22. JTAG Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Figure 4-23. 318-Pin Ball Grid Array (BGA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 -25
Figure 4-24. 272-Pin Ball Grid Array (BGA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 -26
Figure 4-25. 208-Pin Ball Grid Array (CABGA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
Figure 4-26. 208-Pin Plastic Quad Flat Pack (PQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
Figure 4-27. 128-Pin (TQFP) Mechanical Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
Figure A-1. T1 Superframe PCM Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Figure A-2. T1 Extended Superframe Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-5
Figure A-3. E1 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8
CX28394/28395/28398 List of Tables
Quad/x16/Octal—T1/E1/J1 Framers
100054E Conexant xvii
List of Tables
Table 1-1. Pin Assignments (SBI1, SBI2, SBI3, SBI4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 -9
Table 1-2. Pin Assignments (SBI5, SBI6, SBI7, SBI8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 -11
Table 1-3. Pin Assignments (SBI9, SBI10, SBI11, SBI12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Table 1-4. Pin Assignments (SBI13, SBI14, SBI15, SBI16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Table 1-5. Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Table 1-6. Hardware Signal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31
Table 2-1. Receive Framer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Table 2-2. Criteria for Loss/Recover y of Receive Framer Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Table 2-3. Commonly Used Data Link Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Table 2-4. RSB Interface Time Slot Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-27
Table 2-5. Commonly Used Data Link Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
Table 2-6. Yellow Alarm Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48
Table 2-7. Microprocessor Interface Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-56
Table 2-8. JTAG Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62
Table 2-9. CX28394 Device Identification JTAG Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
Table 2-10. CX28395 Device Identification JTAG Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
Table 2-11. CX28398 Device Identification JTAG Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
Table 3-1. Address Offset Map (CX28394). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Table 3-2. Address Offset Map (CX28398). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Table 3-3. Address Offset Map (CX28395). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Table 3-4. Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Table 3-5. Receive Framer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Table 3-6. Interrupt Status Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-15
Table 3-7. Counter Overflow Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
Table 3-8. Maximum Average Reframe Time (MART) and Framer Timeout. . . . . . . . . . . . . . . . . . . . . 3-30
Table 3-9. System Bus Sync Mode Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
Table 3-10. Common TFSYNC and TMSYNC Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
Table 3-11. Common RFSYNC and RMSYNC Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33
Table 3-12. Receive PRBS Test Pattern Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39
Table 3-13. Receive Yellow Alarm Set/Clear Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-42
Table 3-14. Recei ve Yellow Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45
Table 3-15. E1 Transmit Framer Modes (T1/E1N = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-56
Table 3-16. T1 Transmit Framer Modes (T1/E1N = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-57
Table 3-17. Criteria for E1 Loss/Recovery of Transmit Frame Alignment. . . . . . . . . . . . . . . . . . . . . . . . 3-57
Table 3-18. Criteria for T1 Loss/Recovery of Transmit Frame Alignment. . . . . . . . . . . . . . . . . . . . . . . . 3-58
Table 3-19. Transmit Framer Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-59
Table 3-20. Transmit Zero Code Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-60
Table 3-21. Transmit PRBS Test Pattern Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-66
Table 3-22. DLI Configuration for T1-ESF, FDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 -71
List of Tables CX28394/28395/28398
Quad/x16/Octal—T1/E1/J1 Framers
xviii Conexant 100054E
Table 3-23. Remote DS0 Channel Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-111
Table 3-24. Signaling Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-111
Table 3-25. Global Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-117
Table 3-26. Primary Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-117
Table 3-27. Interrupt Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-117
Table 3-28. Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-118
Table 3-29. Interrupt Enable Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-118
Table 3-30. Primary Control and Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-119
Table 3-31. Serial Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-119
Table 3-32. Receiver Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-120
Table 3-33. Performance Monitoring Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-121
Table 3-34. Receive Sa-Byte Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-121
Table 3-35. Transmitter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-122
Table 3-36. Transmit Sa-Byte Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-122
Table 3-37. Bit-Oriented Protocol Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-123
Table 3-38. Data Link Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-123
Table 3-39. System Bus Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-124
Table 4-1. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Table 4-2. Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 -2
Table 4-3. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Table 4-4. Input Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Table 4-5. Input Data Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 -5
Table 4-6. Output Data Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Table 4-7. One-Second Input/Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Table 4-8. Motorola Asynchronous Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Table 4-9. Motorola Asynchronous Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-9
Table 4-10. Intel Asynchronous Read Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Table 4-11. Intel Asynchronous Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Table 4-12. Motorola Synchronous Read Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
Table 4-13. Motorola Synchronous Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-13
Table 4-14. Intel Synchronous Read Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
Table 4-15. Intel Synchronous Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
Table 4-16. Host Serial Port Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
Table 4-17. Test and Diagnostic Interface Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Table 4-18. Test and Diagnostic Interface Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Table A-1. Superframe Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
Table A-2. T1DM Frame Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
Table A-3. SLC-96 Fs Bit Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4
Table A-4. Extended Superframe Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6
Table A-5. Performance Report Message Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
Table A-6. ITU–T CEPT Frame Format Time Slot 0 Bit Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9
Table A-7. IRSM CEPT Frame Format Time Slot 0 Bit Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-10
Table A-8. CEPT (ITU–T and IRSM) Frame Format Time Slot 16 Bit Allocations . . . . . . . . . . . . . . . . . A-11
Table B-1. Applicable Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Table E-1. Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-1
100054E Conexant 1-1
1
1.0 Product Description
1.1 Overview
The CX2839x devices each contain multiple T1/E1 framers which provide the
data access and framing portion of T1 and E1 physical layer interfaces:
While the framers are identical , there are minor dif ferences among the devices
due to the pins provided. These differences are summarized below.
1.1.1 External Datalink
The CX28394 and CX28398 devices include an External Datalink (DL3) which
provides signal access to any bit(s) in any time slot of all frames, odd frames, or
even frames, including T1 framing bits. Refer to Section 2.2.8, External Receive
Data Link (CX28394 and CX28398 Only), and 2.4.1, External Transmit Data
Link (CX28394 and CX28398 Only). The DL3 signals are not available on the
CX28395 device.
1.1.2 RINDO/TINDO
Receive and Transmit Time Slot Indicator signals are provided by each framer to
mark selected (pro grammabl e) recei ve an d transmit system bus time slots. On the
CX28394 and CX28398 de vices, these sig nals appear on d iff erent pins d epending
on w hether Mu ltiplexed System Bus mode o r Non-Multip lex ed Syst em Bus mode
is selected. On the CX28395, they are available only in Multiplexed Bus mode.
Device Number of Framers
CX28394 4
CX28398 8
CX28395 16
1.0 Product Description CX28394/28395/28398
1.1 Overv iew Quad/x16/Octal—T1/E1/J1 Framers
1-2 Conexant 100054E
1.1.3 LIU Serial Port
The CX28394 and CX28398 devices include a serial interface which allows a
microprocessor to indirectly communicate with a line interface unit such as the
CX28380 Quad T1/E1 LIU. This interface allows the microprocessor to control
and query the LIU status. This serial interface is not available on the CX28395.
1.1.4 Transmit/Receive Line Interface
The CX28394 and CX2839 8 devices inc lu de li ne in terfac es which can operat e in
either of two modes: bipolar NRZ or unipolar NRZ. In bipolar NRZ mode,
receiver signals RPOSI, RNEGI, and RCKI are used; and transmitter signals
TPOSO, TNEGO, and TCKO are used. In unipolar NRZ mode, receiver signals
RNRZ and RCKI are used, and transmitter signals TNRZO and TCKO are used.
The CX28395 device provides only unipolar NRZ operation and signals.
Figure 1-1 illustrates the CX28395 Functional Block Diagram (single framer).
Figure 1-1. CX28395 Functional Block Diagram
8394-8-5_011
Receive NRZ Clock
Transmit NRZ Clock
Receive NRZ Data
Transmit NRZ Data
T1/E1
Receive
Framer
T1/E1
Transmit
Framer
Overhead
Insertion
RX
Slip
Buffer
TX
Slip
Buffer
Data Link Controllers
DL1 + DL2
Receive
System
Bus
Transmit
System
Bus
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-3
1.2 Pin Assignme nts
The CX28394 is packaged in a 128-pi n Quad Flat P ac k (TQFP). The CX 28395 is
packaged in a 318-pin Ball Grid Array (BGA) multi-chip module (MCM). The
CX28398 has two package alternatives: a 208-pin Quad Flat Pack (MQFP) and a
272-pin BGA. Pinout diagrams are provided in Figures 1-2 through 1-6 and
Tables 1-1 through 1-4 summari ze pin assignments for syste m bus pins. Table 1-5
lists all other pin assignments.
Fi gures 1- 7 through 1-12 illustrate the devices’ logic, and Table 1-6 defines
the hardware signals.
The foll owing input pi ns co nt ain an i nt ernal pul lu p r esi sto r (>5 0 k ) and may
remain unconnected if the active high input state is desired:
A[7:0] Address lines unused in INTEL bus mode.
MOTO* Pullup selects INTEL bus mode if unconnected.
SYNCMD Pullup selects synchronous processor interface.
TDI (CX28394/28398) JTAG unused if not connected.
TDI1, TDI2 (CX28395) JTAG unused if not connected.
TMS JTAG unused if not connected.
TCK Disables JTAG if not conne ct e d.
TRST* Disables JTAG reset if no t c onnected.
RST* Disables hardware reset if not connected.
SERDI May be left unconnected if not used.
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-4 Conexant 100054E
Figure 1-2. CX 2839 4 128-pin TQFP Pinout Diagram
1
CX28394
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
43
42
41
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
VSS
VDD
VSS
TINDO[2] / TDLCKO[2]
TSIGI[2] / TDLI[2]
TSBCKI[2] / TPCMI
TPCMI[2] / TSIGI[2]
RINDO[2] / RDLCKO[2]
RSIGO[2] / RDLO[2]
SIGFRZ[2]
RPCMO[2] / RSIGO[2]
TFSYNC[2] / TMSYNC[2]
RSBCKI[2] / RPCMO
RFSYNC[2] / RMSYNC[2]
AD[0]
AD[1]
AD[2]
AD[3]
AD[4]
TINDO[1] / TDLCKO[1]
TSIGI[1] / TDLI[1]
TSBCKI[1] / TSBCKI
TFSYNC[1] / TMSYNC[1]
TPCMI[1] / TSIGI[1]
RINDO[1] / RDLCKO[1]
RSIGO[1] / RDLO[1]
SIGFRZ[1]
RSBCKI[1] / RSBCKI
RFSYNC[1] / RMSYNC[1]
RPCMO[1] / RSIGO[1]
XMTR4 / RCVR4
XMTR3 / RCVR3 XMTR1 / RCVR1
JTAG MPU
TSB4 / RSB4TSB3 / RSB3
CLKs
SERIO
TSB2 / RSB2 TSB1 / RSB1
VSS
VSS
VGG
TRST*
ONESEC
RST*
MOTO*
SYNCMD
MCLK
AS* / ALE
CS*
DS* / RD*
R/W* / WR*
DTACK*
INTR*
VDD
AD[5]
AD[6]
AD[7]
VDD
SERDI
SERCKO
SERDO
SERCS1*
TCK0[1]
TPOSO[1] / TNRZO[1]
TNEGO[1] / MSYNCO[1]
TCKI[1]
RCKI[1]
RPOSI[1]
RNEGI[1]
TCK0[2]
TCKI[2]
RCKI[2]
RPOSI[2]
RNEGI[2]
TPOSO[2] / TNRZO[2]
TNEGO[2] / MSYNCO[2]
TCK0[3]
TCKI[3]
RCKI[3]
RPOSI[3]
RNEGI[3]
TPOSO[3] / TNRZO[3]
TNEGO[3] / MSYNCO[3]
TCK0[4]
TCKI[4]
RCKI[4]
RPOSI[4]
RNEGI[4]
TPOSO[4] / TNRZO[4]
TNEGO[4] / MSYNCO[4]
VDD
T1ACKI
66
67
68
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
128
127
124
125
126
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
VSS
VSS
VDD
SYSCKI
EIACKI
VSS
VDD
TINDO[3] / TDLCKO[3]
TSIGI[3] / TDLI[3]
TSBCKI[3] / TINDO
TPCMI[3] / TSIGI[3]
RINDO[3] / RDLCKO[3]
RSIGO[3] / RDLO[3]
SIGFRZ[3]
RPCMO[3]/RSIGO[3]
TFSYNC[3] / TMSYNC[3]
RSBCKI[3] / RINDO
RFSYNC[3] / RMSYNC[3]
TCK
TMS
TDI
TDO
A[0]
A[1]
A[2]
A[3]
A[4]
A[5]
A[6]
A[7]
A[8]
A[9]
A[10]
TINDO[4] / TDLCKO[4]
TSIGI[4] / TDLI[4]
TSBCKI[4] / TFSYNC
TPCMI[4] / TSIGI[4]
RINDO[4] / RDLCKO[4]
RSIGO[4] / RDLO[4]
SIGFRZ[4]
RPCMO[4] / RSIGO[4]
TFSYNC[4] / TMSYNC[4]
RSBCKI[4] / RFSYNC
RFSYNC[4] / RMSYNC[4]
XMTR2 / RCVR2
8394-8-5_016
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-5
Figure 1-3. CX 2839 5 318-pin BGA Pinout Diagram
A
1 2 3 4 5 6 7 8 9 10111213141516 171819 20
B
C
D
E
F
G
H
J
K
L
M
N
P
R
Y
T
U
V
W
1 2 3 4 5 6 7 8 9 10111213141516 171819 20
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
Y
T
U
V
W
8394-8-5_013
Top View
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-6 Conexant 100054E
Figure 1-4. CX28398 208-pin PQFP Pinout Diagram
208
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
207
VSS
VDD
VSS
TINDO[5] / TDLCKO[5]
TSIGI[5] / TDLI[5]
TSBCKI[5] / TSBCKI[B]
TPCMI[5] / TSIGI[5]
RINDO[5] / RDLCKO[5]
RSIGO[5] / RDLO[5]
SIGFRZ[5]
RPCMO[5] / RSIGO[5]
TFSYNC[5] / TMSYNC[5]
RSBCKI[5] / RSBCKI[B]
RFSYNC[5] / RMSYNC[5]
TINDO[2] / TDLCKO[2]
TSIGI[2] / TDLI[2]
TSBCKI[2] / TPCMI[A]
TPCMI[2] / TSIGI[2]
RINDO[2] / RDLCKO[2]
RSIGO[2] / RDLO[2]
SIGFRZ[2]
RPCMO[2] / RSIGO[2]
TFSYNC[2] / TMSYNC[2]
RSBCKI[2] / RPCMO[A]
RFSYNC[2] / RMSYNC[2]
TINDO[6] / TDLCKO[6]
TSIGI[6] / TDLI[6]
TSBCKI[6] / TPCMI[B]
TFSYNC[6] / TMSYNC[6]
TPCMI[6] / TSIGI[6]
RINDO[6] / RDLCKO[6]
RSIGO[6] / RDLO[6]
SIGFRZ[6]
RSBCKI[6] / RPCMO[B]
RFSYNC[6] / RMSYNC[6]
RPCMO[6] / RSIGO[6]
AD[0]
AD[1]
AD[2]
AD[3]
AD[4]
TINDO[1] / TDLCKO[1]
TSIGI[1] / TDLI[1]
TSBCKI[1] / TSBCKI[A]
TFSYNC[1] / TMSYNC[1]
TPCMI[1] / TSIGI[1]
RINDO[1] / RDLCKO[1]
RSIGO[1] / RDLO[1]
SIGFRZ[1]
RSBCKI[1] / RSBCKI[A]
RFSYNC[1] / RMSYNC[1]
RPCMO[1] / RSIGO[1]
MPU
XMTR4 / RCVR4
XMTR5 / RCVR5
XMTR6 / RCVR6
XMTR3 / RCVR3
XMTR2 / RCVR2
XMTR1 / RCVR1
JTAG
TSB8 / RSB8
TSB7 / RSB7
MPU
TSB8 / RSB8 TSB4 / RSB4TSB3 / RSB3 CLKsXMTR8 / RCVR8 XMTR7 / RCVR7
SERIO
TSB6 / RSB6 TSB5 / RSB5TSB2 / RSB2 TSB1 / RSB1
VSS
VSS
VSS
VDD
VGG
TCK
TMS
TRST*
TDI
TDO
TINDO[7] / TDLCKO[7]
TSIGI[7] / TDLI[7]
TSBCKI[7] / TINDO[B]
FSYNC[7] / TMSYNC[7]
TPCMI[7] / TSIGI[7]
RINDO[7] / RDLCKO[7]
RSIGO[7] / RDLO[7]
SIGFRZ[7]
RSBCKI[7] / RINDO[B]
FSYNC[7] / RMSYNC[7]
RPCMO[7] / RSIGO[7]
TINDO[8] / TDLCKO[8]
TSIGI[8] / TDLI[8]
TSBCKI[8] / TFSYNC[B]
FSYNC[8] / TMSYNC[8]
ONESEC
RST*
MOTO*
SYNCMD
MCLK
AS* / ALE
CS*
DS* / RD*
R/W* / WR*
DTACK*
INTR*
VDD
A[0]
A[1]
A[2]
A[3]
A[4]
A[5]
A[6]
A[7]
A[8]
A[9]
A[10]
A[11]
AD[5]
AD[6]
AD[7]
VDD
VSS
VDD
SERDI
SERCKO
SERDO
SERCS1*
SERCS2*
TCK0[1]
TPOSO[1] / TNRZO[1]
TNEGO[1] / MSYNCO
TCKI[1]
RCKI[1]
RPOSI[1]
RNEGI[1]
TCK0[2]
TCKI[2]
RCKI[2]
RPOSI[2]
RNEGI[2]
TPOSO[2] / TNRZO[2]
TNEGO[2] / MSYNCO
TCK0[3]
TCKI[3]
RCKI[3]
RPOSI[3]
RNEGI[3]
TPOSO[3] / TNRZO[3]
TNEGO[3] / MSYNCO
TCK0[4]
TCKI[4]
RCKI[4]
RPOSI[4]
RNEGI[4]
TPOSO[4] / TNRZO[4]
TNEGO[4] / MSYNCO
TCK0[5]
TCKI[5]
RCKI[5]
RPOSI[5]
RNEGI[5]
TPOSO[5] / TNRZO[5]
TNEGO[5] / MSYNCO
TCK0[6]
TCKI[6]
RCKI[6]
RPOSI[6]
RNEGI[6]
TPOSO[6] / TNRZO[6]
TNEGO[6] / MSYNCO
VDD
VSS
VSS
VSS
VDD
VDD
SYSCKI
T1ACKI
EIACKI
VSS
VSS
TCK0[7]
TCKI[7]
RCKI[7]
RPOSI[7]
RNEGI[7]
TPOSO[7] / TNRZO[7]
TNEGO[7] / MSYNCO[7]
TCK0[8]
TCKI[8]
RCKI[8]
RPOSI[8]
RNEGI[8]
TPOSO[8] / TNRZO[8]
TNEGO[8] / MSYNCO[8]
TINDO[4] / TDLCKO[4]
TSIGI[4] / TDLI[4]
TSBCKI[4] / TFSYNC[A]
TPCMI[4] / TSIGI[4]
RINDO[4] / RDLCKO[4]
RSIGO[4] / RDLO[4]
SIGFRZ[4]
RPCMO[4] / RSIGO[4]
TFSYNC[4] / TMSYNC[4]
RSBCKI[4] / RFSYNC[A]
RFSYNC[4] / RMSYNC[4
TINDO[3] / TDLCKO[3]
TSIGI[3] / TDLI[3]
TSBCKI[3] / TINDO[A]
TPCMI[3] / TSIGI[3]
RINDO[3] / RDLCKO[3]
RSIGO[3] / RDLO[3]
SIGFRZ[3]
RPCMO[3]/RSIGO[3]
TFSYNC[3] / TMSYNC[3]
RSBCKI[3] / RINDO[A]
RFSYNC[3] / RMSYNC[3
TPCMI[8] / TSIGI[8]
RINDO[8] / RDLCKO[8]
RSIGO[8] / RDLO[8]
SIGFRZ[8]
RSBCKI[8] / RFSYNC[B]
RFSYNC[8] / RMSYNC[8
RPCMO[8] / RSIGO[8]
CX28398
8394-8-5_023
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-7
Figure 1-5. CX28398 208-pin CABGA Pinout Diagram
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
Top View
2345678910111213141516117
2345678910111213141516117
100054_001
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-8 Conexant 100054E
Figure 1-6. CX 2839 8 272-pin BGA Pinout Diagram
A
1 2 3 4 5 6 7 8 9 10111213141516 171819 20
B
C
D
E
F
G
H
J
K
L
M
N
P
R
Y
T
U
V
W
1 2 3 4 5 6 7 8 9 10111213141516 171819 20
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
Y
T
U
V
W
8394-8-5_005
Top View
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-9
Table 1-1. Pin Assignments (SBI1, SBI2, SBI3, SBI4) (1 of 2)
Pin Number System Bus Interface Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208-pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
Non-Multiplexed Mode
SBIMODE[0] = 0 [FCR; addr 080] Multiplexed Mode
SBIMODE[0] = 1 [FCR; addr 080]
89 94 R12 V15 J3 RPCMO[1] RSIGO[1]
90 95 P11 W16 J4 RFSYNC[1]/RMSYNC[1] RMSYNC[1]
91 96 U14 Y17 J2 RSBCKI[1] RSBCKI[A]
92 97 T14 V16 SIGFRZ[1] SIGFRZ[1]
93 98 R13 W17 RSIG O[1] / RDLO[1 ] RDLO [1]
————J1RSIGO[1] TSTO[1]
94 99 P12 Y18 RINDO[1] / RDLCK O[1 ] RDLC KO[1 ]
95 100 U15 V17 K4 TPCMI[1] TSIGI[1]
96 101 U16 W18 K1 TFSYNC[1]/TMSYNC[1] TMSYNC[1]
97 102 R14 Y19 K3 TSBCKI[1] TSBCKI[A]
98 103 P13 V18 TSIG I[1] / TDLI[1] TDLI[ 1]
K2 TSIGI[1] TSTI[1]
99 104 T15 W19 TIN DO [1] / TDLCKO[1] TDLCKO[1]
————K5TINDO[1]
75 69 R6 W8 E4 RPCMO[2] RSIGO[2]
76 70 T6 Y8 E3 RFSYNC[2]/RMSYNC[2] RMSYNC[2]
77 71 U7 V9 E2 RSBCKI[2] RPCMO[A]
78 72 P7 W9 SIGFRZ[2] SIGFRZ[2]
79 73 R7 Y9 RSIGO[2] / RDLO[ 2 ] RDLO[ 2]
————F4RSIGO[2] TSTO[2]
80 74 T7 W10 RINDO [2] / RDLCK O[2 ] RDLC KO[2 ]
81 75 U8 V10 F3 TPCMI[2] TSIGI[2]
82 76 P8 Y10 F2 TFSYNC[2]/TMSYNC[2] TMSYNC[2]
83 77 R8 Y11 E1 TSBCKI[2] TPCMI[A]
84 78 T8 W11 TSIGI[2] / TDLI[2] TDLI[2]
F1 TSIGI[2] TSTI[2]
85 79 U9 V11 TINDO[2] / TDLCKO[2] TDLCKO[2]
H5 TINDO[2]
25 198 C6 C6 U9 RPCMO[3] RSIGO[3]
26 199 D6 B5 Y9 RFSYNC[3]/RMSYNC[3] RMSYNC[3]
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-10 Conexant 100054E
27 200 C5 A4 U10 RSBCKI[3] RINDO[A]
28 201 D5 C5 SIGFRZ[3] SIGFRZ[3]
29 202 B5 B4 RSIGO[3] / RDLO[3 ] RDLO [3]
————Y10RSIGO[3] TSTO[3]
30 203 A4 A3 RINDO[3] / RDLCKO[3 ] RDLC KO[3 ]
31204A3C4V9TPCMI[3] TSIGI[3]
32 205 B3 B3 W10 TFSYNC[3]/TMSYNC[3] TMSYNC[3]
33 206 C4 B2 V10 TSBCKI[3] TINDO[A]
34 207 A2 A2 TSIGI[3] / TDLI[3] TDLI[ 3]
W9 TSIGI[3] TSTI[3]
35 208 B4 C 3 TINDO[3] / TDLCKO[3] TDLCKO[3]
————T10TINDO[3]
13 178 A11 B11 U5 RPCMO[4] RSIGO[4]
14 179 B10 C11 W5 RFSYNC[4]/RMSYNC[4] RMSYNC[4]
15 180 C10 A11 V6 RSBCKI[4] RFSYNC[A]
16 181 D10 A10 SIGFRZ[4] SIGFRZ[4]
17 182 A10 B10 RSIGO[4] / RD LO[4 ] RDLO [4]
————Y5RSIGO[4] TSTO[4]
18 183 A9 C10 RINDO[4] / RDLCK O[4 ] RDLCKO[4 ]
19 184 B9 A9 W6 TPCMI[4] TSIGI[4]
20 185 C9 B9 V5 TFSYNC[4]/TMSYNC[4] TMSYNC[4]
21 186 D9 C9 U6 TSBCKI[4] TFSYNC[A]
22 187 A8 A8 TSIGI[4] / TDLI[4] TDLI[ 4]
Y6 TSIGI[4] TSTI[4]
23 188 C8 B 8 TINDO[4] / TDLCKO[4] TDLCKO[4]
————T8TINDO[4]
Table 1-1. Pin Assignments (SBI1, SBI2, SBI3, SBI4) (2 of 2)
Pin Number System Bus Interface Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
Non-Multiplexed Mode
SBIMODE[0] = 0 [FCR; addr 080] Multiplexed Mode
SBIMODE[0] = 1 [FCR; addr 080]
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-11
Table 1-2. Pin Assignments (SBI5, SBI6, SBI7, SBI8) (1 of 2)
Pin Number System Bus Interface Pin Functions Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208-pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
Non-Multiplexed Mode
SBIMODE[0] = 0 [FCR; addr 080] Multiplexed Mode
SBIMODE[0] = 1 [FCR; addr 080]
81 U10 Y12 G4 RPCMO[5] RSIGO[5]
82 R9 W12 G2 RFSYNC[5] / RMS YNC[ 5] RMSYNC [5]
83 P9 V12 G3 RSBCKI[5] RSBCKI[B]
84 T10 Y13 SIGFRZ[5] SIGFRZ[5]
85 R10 W13 RSIGO[ 5] / RD LO[5 ] RDLO[ 5]
————G1RSIGO[5] TSTO[5]
86 U11 V13 RINDO[5] / RDLCK O[5 ] RDLCKO[5 ]
87 T11 Y14 H3 TPCMI[5] TSIGI[5]
88 R11 W14 H4 TFSYNC[5] / TMSYNC[5] TMSYNC[5]
89 T12 Y15 H1 TSBCKI[5] TSBCKI[B]
90 U12 V14 TSIG I[5] / TDLI[5] TDLI[ 5]
H2 TSIGI[5] TSTI[5]
91 P10 W 15 TINDO[5] / TDLCKO[ 5] TD LCKO[5]
————J5TINDO[5]
58P4Y4C2RPCMO[6] RSIGO[6]
59 U3 V5 C4 RFSYNC[6] / RMSYNC[6] RMSYNC[6]
60 U4 W5 C1 RSBCKI[6] RPCMO[B]
61 R4 Y5 SIGFRZ[6] SIGFRZ[6]
62 T4 V6 RSIGO[6] / RDLO[6 ] RDLO[6]
————D4RSIGO[6] TSTO[6]
63 U5 W6 RINDO[6] / RDLCKO[6] RDLC KO[6]
64 P5 Y6 D2 TPCMI[6] TSIGI[6]
65 R5 V7 D3 TFSYNC[6] / TMSYNC[6] TMSYNC[6]
66 T5 W7 D1 TSBCKI[6] TPCMI[B]
67 U6 Y7 TSIGI[ 6] / TDLI[6] TDLI[6]
C3 TSIGI[6] TSTI[6]
68 P6 V8 TINDO[6] / TDLCKO[ 6] TDLCKO[6 ]
G5 TINDO[6]
25 J4 L1 U12 RPCMO[7] RSIGO[7]
26 H2 L2 Y11 RFSYNC [7] / RMS YNC[ 7] RMSYNC[7]
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-12 Conexant 100054E
27 H1 L3 Y12 RSBCKI[7] RINDO[B]
28J1M1—SIGFRZ[7] SIGFRZ[7]
29 J3 M2 RSIG O[7] / RDLO[7 ] RDLO[7]
————W11RSIGO[7] TSTO[7]
30 J2 M3 RINDO[7] / RDLCK O[7 ] RDLC KO[7 ]
31 K4 N1 W12 TPCMI[7] TSIGI[7]
32 K1 N2 V11 TFSYNC[7] / TMSYNC[7] TMSYNC[7]
33 K2 N3 V12 TSBCKI[7] TINDO[B]
34 L1 P1 TSIGI[7] / TDLI[7] TDLI [7]
————U11TSIGI[7] TSTI[7]
35 K3 P2 TINDO[7] / TDLCKO[ 7] TDLCKO[7 ]
————T11TINDO[7]
189 D8 C8 W7 RPCMO[8] RSIGO[8]
190 B8 A7 V7 RFSYNC [8] / RMSYNC[8] RMSYNC[ 8]
191 C7 B7 Y7 RSBCKI[8] RFSYNC[B]
192 A7 A6 SIGFRZ[8] SIGFRZ[8]
193 D7 C7 RSIGO[8] / RDLO[8] RDLO[8]
————V8RSIGO[8] TSTO[8]
194 B7 B6 RINDO[8] / RDLCKO[8 ] RDLC KO[8 ]
195 A6 A5 Y8 TPCMI[8] TSIGI[8]
9 E4 E1 W8 TFSYNC[8] / TMSYNC[8] TMSYNC[8]
10 E3 F3 U8 TSBCKI[8] TFSYNC[B]
11 D2 F2 TSIGI[8] / TDLI[8 ] TDLI [8]
U7 TSIGI[8] TSTI[8]
12 D1 F 1 TINDO[8] / TDLCKO[8] TDLCKO[8]
————T9TINDO[8]
Table 1-2. Pin Assignments (SBI5, SBI6, SBI7, SBI8) (2 of 2)
Pin Number System Bus Interface Pin Functions Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
Non-Multiplexed Mode
SBIMODE[0] = 0 [FCR; addr 080] Multiplexed Mode
SBIMODE[0] = 1 [FCR; addr 080]
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-13
Table 1-3. Pin Assignments (SBI9, SBI10, SBI11, SBI12) (1 of 2)
Pin Number System Bus Interface Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208-pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
Non-Multiplexed Mode
SBIMO D E[ 0] = [FCR; ad dr 001] Multiplexed Mode
SBIMODE[0] = 1 [FCR; addr 001]
F20 RPCMO[9] RSIGO[9]
F18 RFSYNC[9]/RMSYNC[9] RMSYNC[9]
F19 RSBCKI[9] RSBCKI[C]
————F17RSIGO[9] TSTO[9]
————E20TPCMI[9] TSIGI[9]
E18 TFSYNC[9]/TMSYNC[9] TMSYNC[9]
E19 TSBCKI[9] TSBCKI[C]
————E17TSIGI[9] TSTI[9]
————F16TINDO[9]
K17 RPCMO[10] RSIGO[10]
K19 RFSYNC[10]/RMSYNC[10] RMSYNC[10]
K18 RSBCKI[10] RPCMO[C]
————K20RSIGO[10] TSTO[10]
————J17TPCMI[10] TSIGI[10]
J20 TFSYNC[10]/TMSYNC[10] TMSYNC[10]
J18 TSBCKI[10] TPCMI[C]
J19 TSIGI[10] TSTI[10]
————H16TINDO[10]
A4 RPCMO[11] RSIGO[11]
A3 RFSYNC[11]/RMSYNC[11] RMSYNC[11]
B4 RSBCKI[11] RINDO[C]
————B3RSIGO[11] TSTO[11]
————A2TPCMI[11] TSIGI[11]
A1 TFSYNC[11]/TMSYNC[11] TMSYNC[11]
B2 TSBCKI[11] TINDO[C]
B1 TSIGI[11] TSTI[11]
————E5TINDO[11]
A10 RPCMO[12] RSIGO[12]
D10 RFSYNC[12]/RMSYNC[12] RMSYNC[12]
B10 RSBCKI[12] RFSYNC[C]
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-14 Conexant 100054E
D9 RSIGO[12] TSTO[12]
————A9TPCMI[12] TSIGI[12]
C9 TFSYNC[12]/TMSYNC[12] TMSYNC[12]
B9 TSBCKI[12] TFSYNC[C]
C10 TSIGI[12] TSTI[12]
————E7TINDO[12]
Table 1-3. Pin Assignments (SBI9, SBI10, SBI11, SBI12) (2 of 2)
Pin Number System Bus Interface Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
Non-Multiplexed Mode
SBIMO D E[ 0] = [FCR; ad dr 001] Multiplexed Mode
SBIMODE[0] = 1 [FCR; addr 001]
Table 1-4. Pin Assignments (SBI13, SBI14, SBI15, SBI16) (1 of 2)
Pin Number System Bus Interface Pin Functions
CX28394
128- pin TQFP
CX28398
208-pi n PQF P
CX28398
208-pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
Non-Multiplexed Mode
SBIMO D E[ 0] = [FCR; ad dr 001] Multiplexed Mode
SBIMODE[0] = 1 [FCR; addr 001]
H18 RPCMO[13] RSIGO[13]
H19 RFSYNC[13]/RMSYNC[13] RMSYNC[13]
H17 RSBCKI[13] RSBCKI[D]
————H20RSIGO[13] TSTO[13]
————G17TPCMI[13] TSIGI[13]
G20 TFSYNC[13]/TMSYNC[13] TMSYNC[13]
G18 TSBCKI[13] TSBCKI[D]
G19 TSIGI[13] TSTI[13]
————G16TINDO[13]
M18 RPCMO[14] RSIGO[14]
M17 RFSYNC[14]/RMSYNC[14] RMSYNC[14]
M19 RSBCKI[14] RPCMO[D]
L19 RSIGO[14] TSTO[14]
L20 TPCMI[14] TSIGI[14]
L17 TFSYNC[14]/TMSYNC[14] TMSYNC[14]
M20 TSBCKI[14] TPCMI[D]
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-15
L18 TSIGI[14] TSTI[14]
————K16TINDO[14]
B7 RPCMO[15] RSIGO[15]
B8 RFSYNC[15]/RMSYNC[15] RMSYNC[15]
D7 RSBCKI[15] RINDO[D]
————C8RSIGO[15] TSTO[15]
————A7TPCMI[15] TSIGI[15]
A8 TFSYNC[15]/TMSYNC[15] TMSYNC[15]
C7 TSBCKI[15] TINDO[D]
D8 TSIGI[15] TSTI[15]
————M16TINDO[15]
A6 RPCMO[16] RSIGO[16]
A5 RFSYNC[16]/RMSYNC[16] RMSYNC[16]
B6 RSBCKI[16] RFSYNC[D]
D6 RSIGO[16] TSTO[16]
————C6TPCMI[16] TSIGI[16]
B5 TFSYNC[16]/TMSYNC[16] TMSYNC[16]
C5 TSBCKI[16] TFSYNC[D]
D5 TSIGI[16] TSTI[16]
————J16TINDO[16]
Table 1-4. Pin Assignments (SBI13, SBI14, SBI15, SBI16) (2 of 2)
Pin Number System Bus Interface Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
Non-Multiplexed Mode
SBIMO D E[ 0] = [FCR; ad dr 001] Multiplexed Mode
SBIMODE[0] = 1 [FCR; addr 001]
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-16 Conexant 100054E
Tab le 1-5. Pi n Assi gnments (1 of 9)
Pin Number
Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208-pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
7 117 B2 A1 N6 VSS (GND)
9 140 G1 D4 N7 VSS (GND)
11 158 P3 D8 N8 VSS (GND)
37 160 T9 D13 P6 VSS (GND)
66 162 T13 D17 P7 VSS (GND)
86 196 N17 H4 P8 VSS (GND)
2 F17 H17 R6 VSS (GND)
24 B16 J9 R7 VSS (GND)
49 A16 J10 R8 VSS (GND)
80 D14 J11 F13 VSS (GND)
93 B6 J12 F14 VSS (GND)
K9 F15 VSS (GND)
K10 G13 VS S (GND)
K11 G14 VS S (GND)
K12 G15 VS S (GND)
———L9H13VSS (GND)
L10 H14 VSS (GND)
L11 H15 VSS (GND)
L12 T13 VSS (GND)
———M9T14VSS (GND)
M1 0 VSS (GND)
M1 1 VSS (GND)
M1 2 VSS (GND)
N4 VSS (GND)
N17 VSS (GN D)
U4 VSS (GND)
U8 VSS (GND)
U13 VSS (GN D)
U17 VSS (GN D)
111 118 C1 D6 E6 VDD
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-17
119 141 P2 D11 F5 VDD
12 149 U13 D15 N20 VDD
24 163 M15 F4 R16 VDD
43 197 G15 F17 T15 VDD
87 8 F14 K4 Y20 VDD
—48C14L17VDD
92A5R4—VDD
———R17VDD
U6 VDD
———U10VDD
———U15VDD
36 1 A1 B1 Y14 VGG
38 3 C3 D2 Y16 TRST*
39 4 B1 D3 W20 TMS
40 5 D4 C1 TDI
————Y15TDI1
————T20TDI2
41 6 D3 D1 TD0
————Y19TDO1
————P19TDO2
42 7 C2 E3 W17 TCK
6 157 A17 A19 P20 E1ACKI
8 159 B15 B17 N19 T1ACKI
10 161 C15 A18 U13 SYSCKI
44 13 F4 G3 ONESEC
————V13ONESEC1
————Y13ONESEC2
45 14 F3 G2 INTR*
————Y18INTR1*
————N17INTR2*
Tab le 1-5. Pi n Assi gnments (2 of 9)
Pin Number
Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-18 Conexant 100054E
46 15 E2 G1 DTACK*
————W13DTACK1*
————T18DTACK2*
47 16 E1 H3 Y17 R/W*/WR*
48 17 G4 H2 W14 DS*/RD*
49 18 G3 H1 CS*
————W19CSI*
————N18CS2*
50 19 F2 J3 V14 AS*/ALE
51 20 F1 J2 U14 MCLK
52 21 H4 J1 W15 SYNCMD
53 22 H3 K2 W18 MOTO*
54 23 G2 K3 W16 RST*
36 L3 R1 V15 A[11]
55 37 M2 P3 V18 A[10]
56 38 M1 R2 U15 A[9]
57 39 L4 T1 V16 A[8]
58 40 N2 R3 V20 A[7]
59 41 L2 T2 V19 A[6]
60 42 N1 U1 U20 A[5]
61 43 M4 T3 V17 A[4]
62 44 M3 U2 U16 A[3]
63 45 N4 V1 U19 A[2]
64 46 P1 U3 U17 A[1]
65 47 N3 V2 T17 A[0]
67 50 R2 V3 R17 AD[7]
68 51 R1 W2 U18 AD[6]
69 52 T1 Y1 R18 AD[5]
70 53 U1 W3 R20 AD[4]
71 54 T2 Y2 P18 AD[3]
Tab le 1-5. Pi n Assi gnments (3 of 9)
Pin Number
Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-19
72 55 U2 W4 R19 AD2]
73 56 T3 V4 P17 AD[1]
74 57 R3 Y3 T19 AD[0]
100 105 U17 W20 SERCLKO
101 106 T16 V19 SERDO
102 107 T17 U19 SERDI
103 108 R16 U18 SERCS1 * ( SE R CS *)
109 R17 V20 SERCS2*
104 110 R15 U20 L3 TCKO[1]
107 113 P16 T20 M3 TCKI[1]
105 111 N15 T18 L4 TPOSO[1]/TNRZO[1]
106 112 P17 T19 L5 TNEGO[1]/MSYNCO[1]
108 114 P15 R18 L1 RCKI[1]
109 115 P14 R19 L2 RPOSI[1]/RNRZI[1]
110 116 N16 R20 RNEGI[1]
112 126 K15 L19 N1 TCKO[2]
115 129 K16 K20 P3 TCKI[2]
113 127 K17 L18 N2 TPOSO[2]/TNRZO[2]
114 128 L14 L20 N5 TNEGO[2]/MSYNCO[2]
116 130 J16 K19 P1 RCKI[2]
117 131 J17 K18 P2 RPOSI[2]/RNRZI[2]
118 132 J15 J20 RNEGI[2]
120 142 H14 F19 T1 TCKO[3]
123 145 G14 E19 T4 TCKI[3]
121 143 F16 E20 T3 TPOSO[3]/TNRZO[3]
122 144 E17 F18 R5 TNEGO[3]/MSYNCO[3]
124 146 F15 D20 T2 RCKI[3]
125 147 E16 E18 U1 RPOSI[3]/RNRZI[3]
126 148 D17 D19 RNEGI[3]
127 150 E15 C20 U2 TCKO[4]
Tab le 1-5. Pi n Assi gnments (4 of 9)
Pin Number
Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-20 Conexant 100054E
2 153 E14 B20 U3 TCKI[4]
128 151 D16 D18 U4 TPOSO[4]/TNRZO[4]
1 152 C17 C19 T5 TNEGO[4]/MSYNCO[4]
3 154 D15 C18 V1 RCKI[4]
4 155 C16 B19 V2 RPOSI[4]/RNRZI[4]
5 156 B17 A20 RNEGI[4]
119 N14 P20 M4 TCKO[5]
122 L15 N20 M2 TCKI[5]
120 M16 N18 M1 TPOSO[5]/TNRZO[5]
121 M17 N19 M5 TNEGO[5]/MSYNCO[5]
123 M14 M18 N3 RCKI[5]
124 L16 M19 N4 RPOSI[5]/RNRZI[5]
125 L17 M20 RNEGI[5]
133 H17 J19 P4 TCKO[6]
136 H15 H19 R2 TCKI[6]
134 K14 J18 R1 TPOSO[6]/TNRZO[6]
135 H16 H20 P5 TNEGO[6]/MSYNCO[6]
137 G17 H18 R3 RCKI[6]
138 J14 G20 R4 RPOSI[6] /RNR ZI[6 ]
139 G16 G19 RNEGI[6]
164 B14 B16 V3 TCKO[7]
167 C13 B15 Y1 TCKI[7]
165 A15 A16 W1 TPOSO[7]/TNRZO[7]
166 D13 C15 T6 TNEGO[7]/MSYNCO[7]
168 A14 A15 W2 RCKI[7]
169 B13 C14 Y2 RPOS I[7] /RNR ZI[7]
170 D12 B14 RNEGI[7]
171 C12 A14 Y3 TCKO[8]
174 A12 A13 W3 TCKI[8]
172 A13 C13 V4 TPOSO[8]/TNRZO[8]
Tab le 1-5. Pi n Assi gnments (5 of 9)
Pin Number
Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-21
173 B12 B13 T7 TNEGO[8]/MSYNCO[8]
175 C11 C12 W4 RCKI[8]
176 B11 B12 Y4 RPOS I[8] /RNR ZI[8]
177 D11 A12 RNEGI[8]
————D20TCKO[9]
————B20TCKI[9]
————C20TPOSO[9]/TNRZO[9]
————E16TNEGO[9]/MSYNCO[9]
————D19RCKI[9]
————C19RPOSI[9]/RNRZI[9]
————B18TCKO[10]
————D17TCKI[10]
————C17TPOSO[10]/TNRZO[10]
————E14TNEGO[10]/MSYNCO[10]
————A18RCKI[10]
————A17RPOSI[10]/RNRZI[10]
————A15TCKO[11]
————D15TCKI[11]
————C15TPOSO[11]/TNRZO[11]
————E12TNEGO[11]/MSYNCO[11]
————B15RCKI[11]
————A14RPOSI[11]/RNRZI[11]
————B14TCKO[12]
————D14TCKI[12]
————C14TPOSO[12]/TNRZO[12]
————E11TNEGO[12]/MSYNCO[12]
————A13RCKI[12]
————B13RPOSI[12]/RNRZI[12]
————B19TCKO[13]
————A19TCKI[13]
Tab le 1-5. Pi n Assi gnments (6 of 9)
Pin Number
Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-22 Conexant 100054E
————A20TPOSO[13]/TNRZO[13]
————E15TNEGO[13]/MSYNCO[13]
————C18RCKI[13]
————D18RPOSI[13]/RNRZI[13]
————B17TCKO[14]
————B16TCKI[14]
————A16TPOSO[14]/TNRZO[14]
————E13TNEGO[14]/MSYNCO[14]
————C16RCKI[14]
————D16RPOSI[14] /RNRZI[14]
————C12TCKO[15]
————A12TCKI[15]
————B12TPOSO[15]/TNRZO[15]
————E10TNEGO[15]/MSYNCO[15]
————C13RCKI[15]
————D13RPOSI[15] /RNRZI[15]
————B11TCKO[16]
————C11TCKI[16]
————D12TPOSO[16]/TNRZO[16]
————E8TNEGO[16]/MSYNCO[16]
————A11RCKI[16]
————D11RPOSI[16] /RNRZI[16]
———E2E9NC
———G4T12NC
———E4L16NC
———J4N16NC
———C2P16NC
———K1T16NC
———L4—NC
———M4NC
Tab le 1-5. Pi n Assi gnments (7 of 9)
Pin Number
Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-23
———T4—NC
———P4—NC
———W1NC
———U5NC
———U7NC
———U9NC
U11 NC
U12 NC
———Y16NC
U14 NC
U16 NC
———Y20NC
———T17NC
———P17NC
———P18NC
———P19NC
———M17NC
———F20NC
———E17NC
G17 NC
G18 NC
———B18NC
———C17NC
D16 NC
———A17NC
———C16NC
D14 NC
———K17NC
———J17NC
D12 NC
Tab le 1-5. Pi n Assi gnments (8 of 9)
Pin Number
Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-24 Conexant 100054E
D10 NC
———D9NC
———D7NC
———D5NC
Tab le 1-5. Pi n Assi gnments (9 of 9)
Pin Number
Pin Functions
CX28394
128-pin TQFP
CX28398
208-pin PQFP
CX28398
208- pin CABGA
CX28398
272-pin BGA
CX28395
318-pin BGA
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-25
Figure 1-7. CX28394 Logic Diagram (Non-Multiplexed System Bus Mode)
I
Te st Data Out
O
PIO
PIO
O
Bused RSB PCM Data Out
Bused Time Slot Indicator
Bused RSB Frame Sync
O
O
O
Transmit Clock Out
Tr a nsm it Positive/Trans mi t NRZ Out
Transmit Negative/Transmit
O
PIO Bused Time Slot Indicator
Bused TSB Frame Sync
O
PIO
O
O
O
O
I
I
I
I
I
I
I
I
Receive Positi ve In
Receive Negative In
I
I
Bused TSB Cl oc k In
Bused TSB PCM Data In
I
I
I
I
I
I
I
I
I
I/O
Hardw ar e Reset
System Clock
Processor C lock
Synchronous Bus mode
Moto rol a Bu s mode
Address Strobe
Chip Select
Data or Read Strobe
Read/Write or Write Strobe
Address Bus
Serial Data In
Transmit Clock In
1544 KHz All Ones Clock
Receiv e Clock In
ITSB Signalling In
I
Bused RSB Cl ock In
2048 KHz All Ones Clock
I
I
I
I
RST*
SYSCKI
MCLK
SYNCMD
MOTO*
AS*(ALE*)
CS*
DS*(RD*)
R/W*(W*)
AD[7:0]
A[10:0]
SERDI
TCKI[4:1]
T1ACKI
E1ACKI
RCKI[4:1]
RPOSI[4:1]
RNEGI[4:1]
TSBCKI
TPCMI
TSIGI[4:1]
RSBCKI
TCK
TMS
TDI
TRST*
DTACK*
INTR*
ONESEC
SERCKO
SERDO
SERCS*
TCKO{4:1]
TPOSO[4:1]/TNRZO[4:1]
TNEGO[4:1]/MSYNCO[4:1]
TINDO
TFSYNC
RPCMO
RINDO
RFSYNC
RMSYNC
RSIGO
TDO
Boundary Scan
(JTAG)
Receiv e Sys t e m Bu s
(RSB)
Transmit System Bus
(TSB)
Receiver
(RCVR)
Transmitter
(XMTR)
LIU Serial
Port Interface
(SERIO)
Microprocessor Interface
and Control
(MPU)
Data or M ul tiplexed
Test Clock In
Test mode Select
Test Data In
Test Reset In
Data Transfer Acknowledge
Interru pt Request
One-Second Timer
Serial Clock Out
Serial Data Out
Serial Port Chip Select
Transmit Datalink Data In
PIO RSB Multiframe Sync
RSB Signalling
Multiframe Sync Out
Address/Data Bus
I= Input, O= Outp ut
PIO = Programmable I/O; controls located at PIO (address 018)
TDLI[4:1] PIO
OTSB Multiframe Sync
Transmi t D atalink Clock Out
TMSYNC[4:1]
TDLCKO[4:1]
Rece ive Dat al i nk Clock Out
RDLCKO
RDLO
SIGFRZ O
O
O
O
Receive Datalink Data Out
Signal li ng Fre eze
8394-8-5_017
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-26 Conexant 100054E
Figure 1-8. CX28394 Logic Diagram (Multiplexed System Bus Mode)
Test Data Out
O
O
O
PIO
Bused RSB PCM Data Out
Bused Time Slot Indicator
Bused RSB Frame Sync
O
O
OTransmit Clock Out
Tr a nsmi t Positive/Transmit NRZ Out
Transmit Negative/Transmit
PIO
OBused Time Slot Indicator
Bused TSB Frame Sync
PIO
OTSB MUltiframe Sync
Transmit Datalink Clock Out
O
PIO
O
O
O
O
I
I
I
I
I
I
I
I
Receive Positive In
Receive Negative In
I
I
Bused TSB Cloc k In
Bused TSB PCM Data In
I
I
I
I
I
I
I
I
I
I/O
Hard war e Reset
System Clock
Pro c esso r Clock
Synchro nous Bus mode
Moto rol a Bus mode
Address Strobe
Chip Select
Data or Re ad Strobe
Read/ Write or Write Strobe
Address Bus
Serial Data In
Transmit Cloc k In
1544 KHz All Ones Clock
Recei ve Clock In
I
I
TSB Sig na lling In/
I
Bused RSB C loc k In
2048 KHz All Ones Clock
I
I
I
I
RST*
SYSCKI
MCLK
SYNCMD
MOTO*
AS*(ALE*)
CS*
DS*(RD*)
R/W*(W*)
AD[7:0]
A[10:0]
SERDI
TCKI[4:1]
T1ACKI
E1ACKI
RCKI[4:1]
RPOSI[4:1]
RNEGI[4:1]
TSBCKI[A]
TPCMI[A]
TSIGI[4:1]
TDLI[4:1]
RSBCKI[8:1]
TCK
TMS
TDI
TRST*
DTACK*
INTR*
ONESEC
SERCKO
SERDO
SERCS*
TCKO[4:1]
TPOSO[8:1]/TNRZO[4:1]
TNEGO[8:1]/MSYNCO[4:1]
TINDO[A]
TFSYNC[A]
TMSYNC[4:1]
TDLCKO[4:1]
RPCMO[A]
RINDO[A]
RFSYNC[A] PIO RSB Multiframe Sync
RMSYNC[4:1] PIO RSB Signalling
RSIGO[4:1] OReceive Datalink Clock Out
RDLCKO[4:1] OReceive Datalink Data Out
RDLO[4:1] OSignalling Freeze
SIGFRZ[4:1]
TDO
Boundary Scan
(JTAG)
Receive System Bus
(RSB)
Transm it System Bus
(TSB)
Receiver
(RCVR)
Transmitter
(XMTR)
LIU Serial
Port Interface
(SERIO)
Microprocessor Interface
and Control
(MPU)
Data or Multiplexed
Te st Clock In
Test mode Select
Test Data In
Test Reset In
Data Transfer Acknowle dge
Interrupt Request
One-Second Timer
Seri al Clock Out
Serial Data Out
Serial Port Chip Select
Tr an smi t Datalink Data In
Mult iframe Sync Out
Address/Da t a Bu s
I= Input, O= Output
PIO = Programmable I/O; controls located at PIO (address 018)
8394-8-5_018a
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-27
Figure 1-9. CX28398 Logic Diagram (Non-Multiplexed System Bus Mode)
Test Data Out
O
O
O
O
PIO RSB PCM Data Out
RSB Frame/Multiframe Sync
Time Slot Indicator/Receive
O
O
OTransmit Clock Out
Tr ansmit Positi v e/Transmit NRZ Out
Transmit Negative/Transmit
PIO
OTSB Frame/Multiframe Sync
Time Slot Indicator/Transmit
O
PIO
O
O
O
O
I
I
I
I
I
I
I
I
Receive Positive In
Receive Negative In
I
I
TSB Cloc k In
TSB PCM Data In
I
I
I
I
I
I
I
I
I
I/O
Hard war e Reset
System Clock
Pro c esso r Clock
Synchro nous Bus mode
Moto rol a Bus mode
Address Strobe
Chip Select
Data or Re ad Strobe
Read/ Write or Write Strobe
Address Bus
Serial Data In
Transmit Cloc k In
1544 KHz All Ones Clock
Recei ve Clock In
I
TSB Sig nalling In/
I
RSB C loc k In
2048 KHz All Ones Clock
I
I
I
I
RST*
SYSCKI
MCLK
SYNCMD
MOTO*
AS*(ALE*)
CS*
DS*(RD*)
R/W*(W*)
AD[7:0]
A[11:0]
SERDI
TCKI[8:1]
T1ACKI
E1ACKI
RCKI[8:1]
RPOSI[8:1]
RNEGI[8:1]
TSBCKI[8:1]
TPCMI[8:1]
TSIGI[8:1]/TDLI[8:1]
RSBCKI[8:1]
TCK
TMS
TDI
TRST*
DTACK*
INTR*
ONESEC
SERCKO
SERDO
SERCS*[2:1]
TCKO[8:1]
TPOSO[8:1]/TNRZO[8:1]
TNEGO[8:1]/MSYNCO[8:1]
TFSYNC[8:1]/TMSYNC[8:1]
TINDO[8:1]/TDLCKO[8:1]
RPCMO[8:1]
RFSYNC[8:1]/RMSYNC[8:1]
RINDO[8:1]/RDLCKO[8:1]
RSIGO[8:1]/RDLO[8:1]
SIGFRZ[8:1]
TDO
Boundary Scan
(JTAG)
Receive System Bus
(RSB)
Transmit System Bus
(TSB)
Receiver
(RCVR)
Transmitter
(XMTR)
LIU Serial
Port Interface
(SERIO)
Microprocessor Interface
and Control
(MPU)
Data or Multiplexed
Te st Clock In
Test mode Select
Test Data In
Test Reset In
Data Transfer Acknowle dge
Interrupt Requ est
One-Second Timer
Seri al Clock Out
Serial Data Out
Serial Port Chip Select
Tr an smi t Datalink Data In Datalink Cl ock Out
PIO
RSB Signa ll ing/Rec e ive
Signal li ng Freeze
Mult iframe Sync Out
Address/Da t a Bu s
I= Input, O= Output
PIO = Programmable I/O; controls located at PIO (address 018)
Datalink Da ta Out
Datalink Cl ock Out
8394-8-5_020
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-28 Conexant 100054E
Figure 1-10. CX28398 Logic Diagram (Multiplexed System Bus Mode)
Test Data Out
O
O
O
PIO
Bused RSB PCM Data Out
Bused Time Slot Indicator
Bused RSB Frame Sync
O
O
OTransmit Clock Out
Tr a nsmi t Positive/Transmit NRZ Out
Transmit Negative/Transmit
PIO
OBused Time Slot Indicator
Bused TSB Frame Sync
PIO
OTSB MUltiframe Sync
Transmit Datalink Clock Out
O
PIO
O
O
O
O
I
I
I
I
I
I
I
I
Receive Positive In
Receive Negative In
I
I
Bused TSB Cloc k In
Bused TSB PCM Data In
I
I
I
I
I
I
I
I
I
I/O
Hard war e Reset
System Clock
Pro c esso r Clock
Synchro nous Bus mode
Moto rol a Bus mode
Address Strobe
Chip Select
Data or Re ad Strobe
Read/ Write or Write Strobe
Address Bus
Serial Data In
Transmit Cloc k In
1544 KHz All Ones Clock
Recei ve Clock In
I
I
TSB Sig na lling In/
I
Bused RSB C loc k In
2048 KHz All Ones Clock
I
I
I
I
RST*
SYSCKI
MCLK
SYNCMD
MOTO*
AS*(ALE*)
CS*
DS*(RD*)
R/W*(W*)
AD[7:0]
A[11:0]
SERDI
TCKI[8:1]
T1ACKI
E1ACKI
RCKI[8:1]
RPOSI[8:1]
RNEGI[8:1]
TSBCKI[A:B]
TPCMI[A:B]
TSIGI[8:1]
TDLI[8:1]
RSBCKI[A:B]
TCK
TMS
TDI
TRST*
DTACK*
INTR*
ONESEC
SERCKO
SERDO
SERCS*[2:1]
TCKO[8:1]
TPOSO[8:1]/TNRZO[8:1]
TNEGO[8:1]/MSYNCO[8:1]
TINDO[A:B]
TFSYNC[A:B]
TMSYNC[8:1]
TDLCKO[8:1]
RPCMO[A:B]
RINDO[A:B]
RFSYNC[A:B] PIO RSB Multiframe Sync
RMSYNC[8:1] PIO RSB Signalling
RSIGO[8:1] OReceive Datalink Clock Out
RDLCKO[8:1] OReceive Datalink Data Out
RDLO[8:1] OSignalling Freeze
SIGFRZ[8:1]
TDO
Boundary Scan
(JTAG)
Receive System Bus
(RSB)
Transm it System Bus
(TSB)
Receiver
(RCVR)
Transmitter
(XMTR)
LIU Serial
Port Interface
(SERIO)
Microprocessor Interface
and Control
(MPU)
Data or Multiplexed
Te st Clock In
Test mode Select
Test Data In
Test Reset In
Data Transfer Acknowle dge
Interrupt Request
One-Second Timer
Seri al Clock Out
Serial Data Out
Serial Port 1 and 2
Chip Selects
Tr an smi t Datalink Data In
Mult iframe Sync Out
Address/Da t a Bu s
I= Input, O= Output
PIO = Programmable I/O; controls located at PIO (address 018)
8394-8-5_021
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-29
Figure 1-11. CX28395 Logic Diagram (Non-Multiplexed System Bus M ode)
Test Data Out 1
O
O
O
PIO RSB Frame/Multiframe Sync
RSB PCM Data Out
O
OTransmit Clock Out
Tr a nsmi t Transmit NRZ Out
PIO TSB Frame/Multiframe Sync
O
PIO
O
I
I
I
I
I
I
I
Receive NRZ In
Receive Negative In
I
I
TSB Cloc k In
TSB PCM Data In
I
I
I
I
I
I
I
I
I
I/O
Hard war e Reset
System Clock
Pro c esso r Clock
Synchro nous Bus mode
Moto rol a Bus mode
Address Strobe
Chip Select 1
Data or Re ad Strobe
Read/ Write or Write Strobe
Address Bus
Transmit Cloc k In
1544 KHz All Ones Clock
Recei ve Clock In
I
TSB Sig na lling In/
I
RSB C loc k In
2048 KHz All Ones Clock
I
I
I
I
RST*
SYSCKI
MCLK
SYNCMD
MOTO*
AS*(ALE*)
CS1*
I
Chip Select 2 CS2*
R/W*(W*)
AD[7:0]
A[11:0]
TCKI[16:1]
T1ACKI
E1ACKI
RCKI[16:1]
RNRZ[16:1]
RNEGI[16:1]
TSBCKI[16:1]
TPCMI[16:1]
TSIGI[16:1]
RSBCKI[16:1]
TCK
TMS
TDI1
TRST*
DTACK*
INTR*
ONESEC
TCKO[16:1]
TNRZO[16:1]
TFSYNC[16:1]/TMSYNC[16:1]
RPCMO[16:1]
RFSYNC[16:1]/RMSYNC[16:1] RSB Signalling
RSIGO[16:1]
TDO1 Test Data Out 2
O
TDO2
Boundary Scan
(JTAG)
Receive System Bus
(RSB)
Transm it System Bus
(TSB)
Receiver
(RCVR)
Transmitter
(XMTR)
Microprocessor Interface
and Control
(MPU)
Data or Multiplexed
Te st Clock In
Test mode Select
Test Data In 1 ITDI2
Test Data In 2
Test Reset In
Data Transfer Acknowle dge
Interrupt Request
One-Second Timer
Address/Da t a Bu s
I= Input, O= Output
PIO = Programmable I/O; controls located at PIO (address 018)
8394-8-5_006
DS*(RD*)
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-30 Conexant 100054E
Figure 1-12. CX28395 Logic Diagram (Multiplexed System Bus Mode)
MCLK
SYNCMD
AS* (ALE*)
MOTO*
Processor Clock
Synchronous Bus Mode
Motorola Bus Mode
Address Strobe
RST* Hardware Reset
SYSCKI System Clock
Microprocessor
Interface and
Control
(MPU)
TCKI[16:1]
T1ACKI
TPCMI[A:D]
E1ACKI
RCKI[16:1]
RNRZ[16:1]
TSBCKI[A:D]
Transmit Clock In
1544 KHz All Ones Clock
2048 KHz All Ones Clock
Bused TSB PCM Data In
Receive Clock In
Receive NRZ In
Bused TSB Clock In
TCKO[16:1] Transmit Clock Out
TNRZO[16:1] Transmit Positive / Transmit NRZ Out
Transmitter
(XMTR)
Receiver
(RCVR)
Transmit System Bus
(TSB)
TSIGI[16:1]
RSBCKI[A:D]
TMSYNC[16:1]
TINDO[A:D]
TSB Multiframe Sync
Bused Timeslot Indicator
TSB Signalling In
Receive System Bus
(RSB)
Bused RSB Clock In RPCMO[A:D] Bused RSB PCM Data Out
RMSYNC[16:1] RSB Multiframe Sync
RINDO[A:D] Bused Timeslot Indicator
TDO1 Test Data Out 1
Boundary Scan
(JTAG)
TRST* Test Reset In
I = Input, O = Output
PIO = Programmable I/O; controls located at PIO (address 018)
RFSYNC[A:D] Bused RSB Frame Sync
RSIGO[16:1] RSB Signalling
TFSYNC[A:D] Bused TSB Frame Sync
CS1* Chip Select 1
TCK Test Clock In
TMS Test Mode Select
TDI2 Test Data In 2
TDI1 Test Data In 1
DS* (RD*)
R/W* (W*)
AD[7:0]
Data or Read Strobe
Read/Write or Write Strobe
Data or Multiplexed
Address/Data Bus
CS2* Chip Select 2
A[11:0] Address Bus
DTACK* Data Transfer Acknowledge
ONESEC1 One-Second Timer 1
INTR1* Interrupt Request 1
INTR2* Interrupt Request 2
ONESEC2 One-Second Timer 2
Test Data Out 2 TDO2
8394-8-5_022
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I/O
O
O
O
O
O
O
O
O
O
O
O
PIO
PIO
PIO
PIO
PIO
PIO
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-31
Table 1-6. Hardware Signal Definitions (1 of 9)
Pin Label Signal Name Device(1) I/O Definition
Microprocessor Interface (MPU)
RST* Hardware Reset 4, 5, 8 I High-to-low-to-high cyc le forces registers to their
power-up state and all PIO pins to the input state. RST*
is not mandatory since power-on reset circuit perf orms
an identical fun ction. RST* must remain asserted for a
minimum of 2 processor clock cycles (MCLK or SYSCKI,
dep e nding on SYNCM D select ion).
SYSCKI System Clock 4, 5, 8 I Required 32.768 MHz clock for internal use. Supplied
from ext ernal source.
MCLK Processor Clock 4, 5, 8 I System applies MCLK in the ran ge of 8–36 MHz for use
with synchronous MPU applications. MC LK is used
when SYNCMD = 1 an d ignored when SYNC MD = 0.
SYNCMD Sync mode 4, 5, 8 I Selects synchronous or asynchronous read/ write ti ming
with respect to MCLK. Supports Intel- or Motorola-style
buses:
0 = Asynchronous Bus; read and write latches are
asyn chronously controlled by CS*, DS*, and R/W*
signals.
1 = Sy nchronous Bus; MCLK rising edge samples
CS*, DS*, and R/W* to determine valid read/write cycle
timing.
MOTO* Motorola Bus
Mode 4, 5, 8 I Selects Intel- or Motorola-sty le microprocessor
interface. DS*, R/W*, A[11:0], and AD[7:0] functions are
affected.
0 = Motorola; AD[7:0] i s data, A[11:0] is address,
DS* i s data strobe, and R/W* indicat es read (hi gh) or
write (low) data direction.
1 = Intel; AD[7:0] is multiplexed address/data, A[7:0]
is ignored, A[11:8] is address, DS* is read strobe (RD*),
and R/W* is writ e strobe ( WR*).
A[10:0] Address Bus 4 I Address used to identif y a re gister for subsequent
read/write data transfer cycle. In Motorola bus mode, all
eleven address bits (A[10:0]) are valid. In In tel bus
mode, only upper three bits (A[10:8]) are used.
A[11:0] Address Bus 5, 8 I Address used to identi fy a register for subsequent
read/wri te data transf er cycle. In Motorola bus mode, all
twelve address bits (A[1 1:0]) are valid. In Intel bus
mode, only upper four bits (A[11:8]) are used.
AD[7:0] Data Bus or
Address Data 4, 5, 8 I/O Multiplexed address/data (Intel) or data on ly(Motor ola).
Refer to MOTO* signal definition.
AS*(ALE) Address St robe 4, 5, 8 I For all processor bus modes, AS* falling edge
asynchronously l atches address from A[11:0]
(Motorola) or A[11:8], AD[7:0] (Intel) to identify one
register f or subsequent read/w rite data transf er cycle.
CS1*, CS2* Chip Select 5 I Active-low enables read/write decoder . Active high ends
current read or write cycle and places data bus output in
high impedance. CS1* is the chip select pin fo r framers
1 to 8, CS2* is the chip select for framers 9 to 16.
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-32 Conexant 100054E
Microprocessor Interface (MPU) (Continued)
CS* Chip Select 4, 8 I Active-low enables read/write decoder. Active high ends
current read or write cycle and places data bus output in
high impedance.
DS*(RD*) Data Strobe or
Read Strobe 4, 5, 8 I Active-low read data str obe (RD* ) for MOTO* = 1, or
data strobe (DS*) for MOTO* = 0.
R/W*(WR*) Read/Write
Direction or
Write Str o be
4, 5, 8 I Active-low write data strobe (WR*) for MOTO* = 1, or
data select (R/W*) for MOTO* = 0.
ONESEC One Second
Timer 4, 8 PIO Cont rols or marks one-second interval used for statu s
reporting . When input, the t imer is a ligned to ONESEC
rising e dge. When output, rising edge indicates start of
each one-second interval.
ONESEC1
ONESEC2 One Second
Timer 5 PIO Controls or marks one-second interval used for status
reporting . When input, the t imer is a ligned to ONESEC
rising edge. When output, rising edge indicates start of
each one-second int erval . ONESEC1 is the one second
timer for framers 1 to 8, ONESEC2 is the one second
timer for framers 9 to 16.
INTR* Interrupt
Request 4, 8 O Open drain active low output signifies one or more
pending interrupt requests. INTR* goes to
high-impedance state with weak (>50 k) internal pullup
resistance after processor has serviced all pending
interrupt requests.
INTR1*
INTR2* Interrupt
Request 5 O Open drain active lo w out put signifies one or more
pendin g in te rr up t req ue s ts . INTRn* goes to
high -im ped an ce st at e wi th we ak ( >50 k ) interna l pullu p
resistance after processor has serviced all pending
interrupt requests. INTR1* is the interrupt request for
framers 1 to 8, INTR2* is the interrupt request for
framers 9 t o 16.
DTACK* Data Transfer
Acknowledge 4, 8 O Op en drain active low output signifies in-progress data
transfer cycle. DTACK* remains assert ed (low) for as
long as AS * and CS* are both ac tive-low.
DTACK1*
DTACK2* Data Transfer
Acknowledge 5 O Open drain active lo w out put signifies in-progress data
transfer cycle. DTACKn* remains asserted (low) for as
long as AS * and CSn* are both active-low.
Table 1-6. Hardware Signal Definitions (2 of 9)
Pin Label Signal Name Device(1) I/O Definition
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-33
LIU Serial Interface
SERDI Serial Data Input 4, 8 I Serial data input from an LIU is sampled on rising edge
of SERCKO and written into Serial Dat a Register; addr
023.
SERCK O Serial Clock 4, 8 O Serial bit clock pro vided for transmitting and receiving
serial LIU data on SERDI and SERDO. SERCKO
freq uency is 1.024 MHz or 8 .192 MHz selectable.
SERDO Serial Data
Output 4, 8 O Address and da ta is output to an LIU ser ially on SERDO.
Data changes on fal ling edge of SERCKO.
SERCS* Serial Chip
Select 4 O Chip select li ne used to select an LIU’s serial port for
communication. SERCS is controlled in Serial
Configuration Register; addr 025.
SERCS1*
SERCS2* Serial Chip
Selects 8 O Chip select lines used to select an LIU’s serial port for
communication. SERCS1* and SERCS2* are
independently cont rolled in Serial Configuration
Register; addr 025.
Transmitter (XMTR)
TCKI[4:1]
TCKI[8:1]
TCKI[16:1]
TX Clock Input 4
8
5
I Primary TX line rate cloc ks for transmitter si gnals:
TPOSO, TNEGO, TNRZO, MSYNCO, TDLI, and TDLCKO.
If TSLIP is bypassed, TCKI a lso clocks TSB signals.
T1ACKI T1 All Ones
Clock 4, 5, 8 I Syste m option ally applies T1ACKI to use for T1 AIS
transmission in case the selected primary transmit clock
source f a ils . T1ACK I i s ei t h er ma nuall y or au t o ma t ical ly
switched to replace TCKI (see [AISCLK; ad dr 075]).
Systems withou t a T 1 AI S clock should tie T1ACKI to
ground.
E1ACKI E1 All Ones
Clock 4, 5, 8 I Syste m option ally applies E1ACKI to use for E1 AIS
transmission in case the selected primary transmit clock
source f a ils . E1ACK I i s ei t h er ma nuall y or au t o ma t ical ly
switched to replace TCKI (see [AISCLK; ad dr 075]).
Systems without an E1 AIS cloc k should tie E1A CKI to
ground.
TPOSO[4:1]
TPOSO[8:1] TX Positive Rail
Output 4
8O Line rate data output from ZCS encoder changes on
rising edge of TCKO. Act ive-high ma rks transmis sion of
a positive AMI pulse.
TNEGO[4:1]
TNEGO[8:1] TX Negative Rai l
Output 4
8O Line- rate data output from ZCS encode r changes on
rising edge of TCKO. Active high marks transmission of a
negative AMI pulse.
TDLI[4:1]
TDLI[8:1] TX Data Link
Input 4
8I Selected tim e sl ot bits are sam pled on TDLCKO fallin g
edge for in sertio n into th e transm it outpu t stream d uring
external data link appl ications.
TDLCKO[4:1]
TDLCKO[8:1] TX Data Link
Clock 4
8O Gapped version of TCKI for external data link
appli cations. TD LCKO high clock pulse co incides wit h
low TCKI pulse interval during sel ected time slot b its,
else TD LCKO low (see [DL3_TS; addr 015]).
Table 1-6. Hardware Signal Definitions (3 of 9)
Pin Label Signal Name Device(1) I/O Definition
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-34 Conexant 100054E
Transm itter (XMTR) (Continu ed )
TCKO[4:1]
TCKO[8:1]
TCKO[16:1]
TX Clock Output 4
8
5
O Line rate clock. TCKO equals selected TCKI or T1 ACKI
(E1ACKI).
TNRZO[4:1]
TNRZO[8:1]
TNRZO[16:1]
TX Non Return
to Zero Data 4
8
5
O Line-rate data output from transmitter on rising edge of
TCKO. TNR ZO do e s no t inclu de ZCS enc od ed bipolar
violations.
MSYNCO[4:1]
MSYNCO[8:1]
MSYNCO[16:1]
TX Multifra m e
Sync 4
8
5
O Active high for one TCKI clock cycle to mark the first bit
of TX mult ifra m e co in c id en t with TNRZO. Outp ut on
risi ng edge of TCKO.
Receiver (RCVR)
RCKI[4:1]
RCKI[8:1]
RCKI[16:1]
RX Clock In put 4
8
5
I L ine rate clock samples RPOSI and RNEGI or RNRZ.
RNRZI[4:1]
RNRZI[8:1]
RNRZI[16:1]
RX Posi tive Rail
Input 4
8
5
I Line r a te data input on rising edge of RCKI. Non -return
to zero (NRZ) receive data.
RPOSI[4:1]
RPOSI[8:1] RX Positive Rail
Input 4
8I Line r a te data input on rising edge of RCKI. RPOSI and
RNEGI levels are interpreted as received AMI pulses,
encoded as follow s:
Unipolar. Non-return to zero (NRZ) data may be
connected to RPOSI or RNEGI in which case the other
input should be connected to ground. In this
conf ig ur a tio n RAM I [RCR0; addr 040] should b e s e t to 1
(receive AMI li ne f ormat) and DIS_LCV
[RALM; addr 045] sho uld be set to 1 (disable LCV
counting and reporting).
RNEGI[4:1]
RNEGI[8:1] RX N egativ e Rail
Input 4
8I Line ra te data input on rising edge of RCKI. See RPO SI
sig nal defi nition.
RDLO[4:1]
RDLO[8:1] RX Data Link
Output 4
8O Line rate NRZ data outpu t from receiver on falling ed ge
of RCKI. Al l receive data is represented at the RDLO pin.
However, selective RDLO bit positions are also marked
by RDLCKO for external data link applications.
RDLCKO[4:1]
RDLCKO[8:1] RX Data Link
Clock Output 4
8O Gapped versi on of RCKI for external data li nk
appli cations. RDLCKO high clock pulse coincides wit h
low RCKO pulse inte rval du ring selecte d time slot bits,
otherwise RDLCKO is lo w (see Figure 2-4, Receive
Extern al Data Link Wavefor ms).
Table 1-6. Hardware Signal Definitions (4 of 9)
Pin Label Signal Name Device(1) I/O Definition
RPOSI RNEGI RX Pulse Polarity
00 No pulse
0 1 Negative AMI pulse
1 0 Positive AMI pulse
1 1 In va lid (de c oded as a pul se)
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-35
Transmit System Bus (TSB)
TSBCKI[4:1]
TSBCKI[8:1]
TSBCKI[16:1]
TSBCKI[A]
TSBCKI[B]
TSBCKI[C]
TSBCKI[D}
TSB Clock Input
Bused TSB Clock
Inputs
4
8
5
4,5,8
5,8
5
5
I Bit clock and I/O signal t iming for TSB according to
system bus mode (see [SBI_C R; addr 0D0]). System
chooses from one of two differe nt clocks to act as TSB
clock so urce (see [CMUX; addr 01A]). Rising or falling
edge clocks are independently configurable for data
signa ls TPCM I, TSIGI, TINDO an d sy n c si gn a ls TFS YNC
and TMSYNC (see [TPCM_N EG and TSYN_NEG;
addr 0D4]). When configured to operate at twice the data
rate, TSB clock is in ternally divided by 2 before clocking
TSB data signals.
TPCMI[4:1]
TPCMI[8:1]
TPCMI[16:1]
TPCMI[A]
TPCMI[B]
TPCMI[C]
TPCMI[D]
TSB Data Input
Bused TS B Data
Input
4
8
5
4,5,8
5,8
5
5
I Serial data formatted into TSB frames consisting of DS0
chan nel time slots and optional F-bits . One grou p of 24
T1 time slots or 32 E1 ti me slots is selected from up to
four available groups; data from the group is sampled by
TSBCKI, then sent towards transmitter output. Time
slots are routed through transmit slip buffer (see
[TSLIPn; addr 140–17F]) according to TSLIP mode (see
[TSBI; addr 0D4]). F-bits are taken from the start of each
TSB frame or from within an embedded time slot (see
[EMBED; addr 0D0]) and optionally inserted into the
transmitter output (see [TFRM; addr 072] regis ter).
TSIGI[4:1]
TSIGI[8:1]
TSIGI[16:1]
TSB Signaling
Input 4
8
5
I Serial dat a formatted into TSB frames contai ning ABCD
signaling bits for each system bus time slot. Four bits of
TSIGI time slot carry signal ing state for eac h
accompanying TPCMI time sl ot. Signaling state of every
time slot is sampled during first frame of the TSB
multiframe and then transferred into transmit signaling
buffer [TSIGn; addr 120–13F].
TINDO[4:1]
TINDO[8:1]
TINDO[16:1]
TINDO[A]
TINDO[B]
TINDO[C]
TINDO[D]
TSB Time Slot
Indicator
Bused TS B Time
Slot Indicator
4
8
5
4,5,8
5,8
5
5
O Active-hig h output pulse marks selective transmit
system bus time slots as p r ogrammed by SBCn [addr
0E0-0FF], TINDO occurs on TSBCKI rising or falling
edges as selected by TPCM_NEG (see [TSBI; addr 0D4]).
TFSYNC[4:1]
TFSYNC[8:1]
TFSYNC[16:1]
TFSYNC[A]
TFSYNC[B]
TFSYNC[C]
TFSYNC[D]
TSB Frame Sync
Bused TS B
Frame Sync
4
8
5
4,5,8
5,8
5
5
PIO Input or output TSB frame sync (see [TFSYNC_IO; addr
018]). TFSYNC output is active high for one TSB clock
cycle at programmed offset bit location (see
[TSY NC_BIT; addr 0D 5]), marking offset bit position
within each TSB frame and repeating once every 125 µs.
When transmit framer is also enabled, TSB timebase and
TFSYNC output frame alig nment are established by
transmi t framer's exa mination of TPCMI serial data
input. When TFSYNC is programmed as an input, the
low-to-high signal transition is detected and is used to
align TSB timeb a se to program m e d offs e t bit value. TSB
timebase flywheels at 125 µs frame interval after the last
TFSYNC is applied.
Table 1-6. Hardware Signal Definitions (5 of 9)
Pin Label Signal Name Device(1) I/O Definition
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-36 Conexant 100054E
Transmit System Bus (TSB) (Continued)
TMSYNC[4:1]
TMSYNC[8:1]
TMSYNC[16:1]
TSB Multif rame
Sync 4
8
5
PIO Input or ou tp ut T SB m ul t ifr am e syn c ( s e e [T MS YNC _IO;
addr 018]). TMSYNC output is active high for one TSB
clock cycle at programmed offset bit locat ion (see
[TSY NC_BIT; addr 0D 5]), marking offset bit position
within each TSB multiframe and repeating once every 6
ms coincident with TFSYNC. Whe n t ransmit framer is
also enabled, TSB timebase and TMSYNC output
multiframe alignment are established by transmit
framer's examination of TPCMI serial data input . When
TMSYNC is programmed as an input, the low-to-high
signal transit ion is detected and is used to align TSB
timebase to programmed offset bi t value and first frame
of the multiframe. TSB timebase flywheels at 6 ms
multiframe intervals after t he last TMSYNC i s applied. If
system bus appli es TMSYNC input, TFSYNC input is not
needed.
Receive Sy stetm Bus (RSB)
RSBCKI[4:1]
RSBCKI[8:1]
RSBCKI[16:1]
RSBCKI[A]
RSBCKI[B]}
RSBCKI[C]}
RSBCKI[D]}
RSB Clock Inpu t
Bused RSB Data
Input
4
8
5
4,5,8
5,8
5
5
I Bit clock and I/O signal timing for RSB accordin g to
system bus mode (see [SBI_C R; addr 0D0]). System
chooses from one of two differe nt clocks to act as RSB
clock so urce (see [CMUX; addr 01A]). Rising or falling
edge clocks are independently configurable for data
signals RPCMO, RSIGO, RINDO and sync signals
RFSYNC, RMSYNC (see [RPCM_NEG and RSYN_NEG;
addr 0D1]) . Wh en con figu red t o ope rate at tw ice t he da ta
rate, RSB clock is inte rnally div ided by 2 b efore cl oc k in g
RSB data signals.
RPCMO[4:1]
RPCMO[8:1]
RPCMO[16:1]
RPCMO[A]
RPCMO[B]
RPCMO[C]
RPCMO[D]
RSB Data Output
Bused RSB Data
Output
4
8
5
4,5,8
5,8
5
5
O Serial data formatted in to RSB frames c ons is tin g of D S0
chann el time sl ots , op tio na l F-bits an d op tio nal ABCD
signal ing. Time slots are rout ed through receive slip
buffer (see [RSLIPn; addr 1C0–1FF]) according to RSLIP
mode (see [RSBI ; addr 0D1]). Data for each output time
slot is assigned sequentially from received time slot data
according to system bus channel programming (see
[ASSIGN; addr 0E0–0FF]). F-bits are output at the start
of each RSB frame or at the embedded time slot location
(see [ EMBED; ad dr 0D0]). ABCD signaling is optionally
inserted on a per-channel basi s (see [INSERT;
addr 0E0–0FF]) from the local signaling buffer (see
[RLOCAL; addr 1 80–19F]) or from the receive signaling
buffer [RSI Gn; addr 1A0–1BF]. When enabled, robbed
bit signaling or CAS reinsertion is performed accordin g
to T1/E1 mode: The eighth time slot bit of every sixth T1
frame is replaced, or th e 4-bit signa li ng value in the E1
time slot 16 is replaced.
RINDO[4:1]
RINDO[8:1]
RINDO[A]
RINDO[B]
RINDO[C]
RINDO[D]
RSB Tim e Sl ot
Indicator
Bused RSB Time
Slot Indicator
4
8
4,5,8
5,8
5
5
O Active high output pulse marks selective receive system
bus time sl ots as programmed by SB Cn [addr 0E0-0FF].
RINDO occurs on RSBCKI rising or falling edges as
selected by RPCM_NEG (see [RSBI; addr 0D 1]). Only
available in Multiplexed System Bus mode on CX28395
(see [FCR; addr 080]).
Table 1-6. Hardware Signal Definitions (6 of 9)
Pin Label Signal Name Device(1) I/O Definition
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-37
Receive Systetm Bus (RSB) (Continued)
RSIGO[4:1]
RSIGO[8:1]
RSIGO[16:1]
RSB Signal ing
Output 4
8
5
O Serial data formatted into RSB frames consisting of
ABCD si gnaling bits for each system bus time slot . Four
bits of RS IGO time slot carry signaling state f or each
accompanying RPCMO time slot. Local or through
signaling bits are output in every frame for each time slot
and updated once per RSB multiframe, regardless of
per-channel RPCMO signaling reinsertion.
RFSYNC[4:1]
RFSYNC[8:1]
RFSYNC[16:1]
RFSYNC[A]
RFSYNC[B]
RFSYNC[C]
RFSYNC[D]
RSB Frame Sync
Bused RSB
Frame Sync
4
8
5
4,8,5
5,8
5
5
PIO Input or outp ut RSB frame syn c (se e [RF S YNC_IO;
addr 018]). RFSYNC output is active high for one RSB
clock cycle at programmed offset bit locat ion (see
[RSYN C_BIT; addr 0D2 ]), marking offset bit within each
RSB frame and repeating once every 125 µs. RSB
timebase and RFSYNC output frame alignment begins at
an arbi trary position and changes alig nment according to
RSLIP mode (see [RSBI; addr 0D1]). When RFSYNC is
prog rammed as an input, the low-to-high signal
transition is detected and used to align RSB time base to
the programmed offset . RSB t imebase flywheels at
125 µs frame inter val after the last RFSYNC is applie d.
RMSYNC[4:1]
RMSYNC[8:1]
RMSYNC[16:1]
RSB Multifra m e
Sync 4
8
5
PIO Input or output R SB multifr ame syn c (see [R MSYNC_IO ;
addr 018]). RMSYNC output is active high for one RSB
clock cycle at programmed offset bit locat ion (see
[RSYN C_BIT; addr 0D2]), mar king offset bit within each
RSB multiframe and repeating once every 6 ms
coinci dent with RFS YNC. RSB timebase and RMSYN C
outp ut multiframe alignment begins at an arbitrary
position and changes align m ent according to RSLIP
mode (see [RSB I ; addr 0D1]). When RMSYNC is
prog rammed as an input, the low-to-high signal
transition is det ected and is used to align the RSB
timebase to programmed offset and first frame of the
multiframe. RSB timebase flywheels at 6 ms multiframe
interval aft er th e last RMSYNC is applied.
SIGFRZ[4:1]
SIGFRZ[8:1] Si gnaling Freeze 4
8O Active high indicat es that signaling bit up dates are
suspended for both receive signaling buffer [RSIGn;
addr 1A0–1BF ] and stack [STACK; addr 0DA] register.
SIGFRZ is clocked by RSB clock, goes hig h coincident
with receive loss of frame alignment (see RLOF;
addr 047) and returns low 6–9 ms after recovery of
frame alignment.
Table 1-6. Hardware Signal Definitions (7 of 9)
Pin Label Signal Name Device(1) I/O Definition
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-38 Conexant 100054E
Joint Test Access Group (JTAG)
TCK JT AG Clock 4, 5, 8 I Clock input samples TDI on rising edge and outputs TDO
on falling edge.
TDI1, TDI2 JTAG Test Data
Input 5 I Test data input pe r IEE E Std 11 49 .1 - 19 90 . Us ed for
loadin g all serial in structions and data into inte rn al tes t
logic. Sampled on the rising edge of TCK. TDI can be left
unconnected if it is not being used because it is pulled up
internally. TDI1 is the test data input for framers 1 to 8,
TDI2 is the test data inp ut for framers 9 to 16.
TDI JTAG Test Data
Input 4, 8 I Test data input per IEEE Std 1149.1-1990. Used for
loadin g all serial in structions and data into inte rn al tes t
logic. Sampled on the rising edge of TCK. TDI can be left
unconnected if it is not being used because it is pulled up
internally.
TMS JTAG Test mode
Select 4, 5, 8 I Active low test mode select input per I EEE Std
1149.1-1990. Int e rnally pulled-up input signal used to
control the test-logic state machine. Sampled on the
risi ng edge of TCK. TMS can be left unconnected if it is
not being us ed because it is pulled up internally.
TDO JTAG Test Data
Output 4, 8 O Test data output per IEEE Std 1149.1 -1990. TDO is a
three-state output used for reading all serial
confi guration and test da ta from int e rnal test logic.
Updat e d on the falling edge of TCK.
TDO1, TDO2 JTAG Test Data
Output 5 O Test data output per IEEE Std, 1149. 1-1990. TDO is a
three-state output used for reading all serial
confi guration and test da ta from int e rnal test logic.
Updated on the falling edge of TCK. TDO1 is the test data
output for fra mers1 to 8, TDO2 is the test data output for
framers 9 t o 16.
TRST* JTAG Reset 4, 5, 8 I Active low input to initialize Tap Controller.
Power Supply
VDD Power 4, 5, 8 I +3.3 Vdc ±5%.
VSS Ground 4, 5, 8 I 0 Vdc.
VGG High V o lta g e
Power 4, 5, 8 I +3.3 Vdc ±5%. Connect to +5 Vdc ±5% to ensure 5 V
toleran c e in ap p lic a tio ns whic h inc lude 5 V logic dri vi ng
signals.
Table 1-6. Hardware Signal Definitions (8 of 9)
Pin Label Signal Name Device(1) I/O Definition
CX28394/28395/28398 1.0 Product Description
Quad/x16/Octal—T1/E1/J1 Framers 1.2 P in Assignments
100054E Conexant 1-39
Test
TSTO[16:1] Test Output 5 O Test output. Leave disconnected for normal operation.
TSTI[16:1] Test Input 5 I Test input. Connect through 50k ohm pull-up resistor to
VDD for normal operation.
NOTE(S):
(1) 4 = CX28394
5 = CX28395
8 = CX28398
1. All RSB and TSB out puts can be pl aced in high-impeda nce state (see S BI _OE; addr 0D0).
2. I = Input, O = Output
3. PIO = Pro grammable I/O ; controls located at address 018.
4. Mult iple signal names show mut ually exclusive pin fu nctions.
Table 1-6. Hardware Signal Definitions (9 of 9)
Pin Label Signal Name Device(1) I/O Definition
1.0 Product Description CX28394/28395/28398
1.2 Pin Assignments Quad/x16/Octal—T1/E1/J1 Framers
1-40 Conexant 100054E
100054E Conexant 2-1
2
2.0 Circuit Description
2.1 Functional Block Diagram
Figures 2-1 and 2-2 i llustrate det aile d framer b lock di agrams for non-mult iple x ed
and multiplexed system bus mo des. To show the details of th ese circuits,
indi vidu al b lock diagrams of the functions listed bel o w have been created and are
placed, along with descriptions, throughout this section:
Receiver (RCVR)
Receive System Bus (RSB)
Transmit System Bus (TSB)
Transmitter (XMTR)
Microprocessor Interface (MPU)
Joint Test Access Group Por t (JTAG)
Serial Port (SERIO)
2.0 Circuit Descrip tion CX28394/28395/28398
2.1 Func tional Block D iag ram Quad/x16/Octal—T1/E1/J1 Framers
2-2 Conexant 100054E
Figure 2-1. Detailed Framer Block Diagram (Multiplexed System Bus Mode)
NOTE(S):
(1) Not available on CX28395.
MCLK
SYNCMD
AS*
DS*
R/W*
AD[7:0]
A[11:0]
INTR*
ONESEC
RST*
CS*
SYSCKI
MOTO*
DTACK*
TCK
TMS
TDI
TDO
SERCS[1:0]
SERCLK
SERDO
SERI
RSIG
Stack
RSIG
Buffer
RZCS
Decoder
Clock
Monitor
TZCS
Encoder
External DLINK
PRBS/Inband LB
DLINK2 Buffer
DLINK1 Buffer
Sa-Byte/BOP
PDV Monito r
Error Counters
Alar m Monito r
Receiver Framer
Transmitter
Timebase
T1/E1 Frame Insert
External Dlink
DLINK1 Buffer
DLINK2 Buffer
Sa-Byte/BOP
PRBS Inband LB
Alarm/Error Insert
PDV Enforcer
TSIGI[1]
TPCMI[A]
RSIGO[1]
RPCMO[A]
SIGFRZ[1]
RINDO[A]
RFSYNC[A]
TCKI
TIACKI
TSBCKI[A]
TINDO[A]
RPHASE
TPHASE
TSLIP
Buffer
TSIG
Buffer
TSIG
Buffer
RMSYNC[1]
RSBCKI[A]
RSB
Timebase
TSB
Timebase
Transmit
Framer
AIS
RSIG
Local
RSLIP
Buffer
FRAMER 1
TPOSO[1]
RPOSI[1]
RNRZI[1]
RNEGI[1]
RCKI[1]
TCKO[1]
TNEGO[1]
TNRZO[1]
MSYNCO [1]
TDLCKO[1]
TDLI[1]
RDLCKO[1]RDLO[1]
Receive
Timebase
FRAMER 2
TMSYNC[1]
TFSYNC[A]
E1ACKI
Per-Channel
Local Loopback
Per-Channel
Remot e Loopbac k
Line Loopback
F ramer Loopback
8394-8-5_001
Microprocessor Port JTAG Port
TRST*
Serial Port
(1) (1)
(1)
(1)
(1)
(1)
(1) (1)
(1)
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.1 Functional Block Diagram
100054E Conexant 2-3
Figure 2-2. Detailed Framer Block Diagram (Non-multiplexed System Bus Mode)
NOTE(S):
(1) Not available on CX28395.
MCLK
SYNCMD
AS*
DS*
R/W*
AD[7:0]
A[11:0]
INTR*
ONESEC
RST*
CS*
SYSCKI
MOTO*
DTACK*
TCK
TMS
TDI
TDO
SERCS[1:0]
SERCLK
SERDO
SERI
RSIG
Stack
RSIG
Buffer
RZCS
Decoder
Clock
Monitor
TZCS
Encoder
External DLINK
PRBS/Inband LB
DLINK2 Buffer
DLINK1 Buffer
Sa-Byte/BOP
PDV Monito r
Error Counters
Alar m Monito r
Receiver Framer
Transmitter
Timebase
T1/E1 Frame Insert
External Dlink
DLINK1 Buffer
DLINK2 Buffer
Sa-Byte/BOP
PRBS Inband LB
Alarm/Error Insert
PDV Enforcer
TSIGI[1]
TPCMI[1]
RSIGO[1]
RPCMO[1]
SIGFRZ[1]
RINDO[1]
RFSYNC[1]
TCKI[1]
TIACKI
TSBCKI[1]
TINDO[1]
RPHASE
TPHASE
TSLIP
Buffer
TSIG
Buffer
TSIG
Buffer
RMSYNC[1]
RSBCKI[1]
RSB
Timebase
TSB
Timebase
Transmit
Framer
AIS
RSIG
Local
RSLIP
Buffer
FRAMER 1
TPOSO[1]
RPOSI[1]
RNEGI[1]
RCKI[1]
TCKO[1]
TNEGO[1]
TNRZO[1]
MSYNCO [1]
RDLCKO[1]RDLO[1]
Receive
Timebase
FRAMER N
TMSYNC[1]
TFSYNC[1]
E1ACKI
Per-Channel
Local Loopback
Per-Channel
Remot e Loopbac k
Line Loopback
F ramer Loopback
8394-8-5_001a
Microprocessor Port JTAG Port
TRST*
Serial Port
RNRZI[1]
(1)
(1)
(1)
(1)
(1)
(1)
(1)
TDLCKO[1]
TDLI[1]
(1) (1)
2.0 Circuit Descrip tion CX28394/28395/28398
2.2 Rece iv er Quad/x16/Octal—T1/E1/J1 Framers
2-4 Conexant 100054E
2.2 Receiver
The Receiver (RCVR) inputs single rail NRZ data or decodes positive and
negative rail NRZ data into single rail NRZ data. The RCVR, illustrat ed in
Figure 2-3, consists of the following elements: Receive Zero Code Suppression
(RZCS) Decoder, In-Band Loopback Code Detector, Error Counters, Error
Monitor, Alar m Monitor, Test Pattern Receiver, Receive Framer, External
Receive Data Link, and Receive Data Links.
2.2.1 ZCS Decoder
The Receive Zero Code Suppression (RZCS) decoder is applicable only to the
CX28394 and CX28398. The decoder decodes the dual rail data (bipolar) into
single rail data (unipolar). The Receive AMI bit (RAMI) in the Receiver
Configuration register [RCR0; addr 040] controls whether the received signal is
B8ZS/HDB3 decoded, depending on T1/E1N [addr 001] line rate selection, or if
the RZCS decoder is bypassed. If the line code is unknown, the ZCSUB bit in
Receive Line Code Status [RSTAT; addr 021] indicates the RPOSI/RNEGI input
received one or more B8ZS/HDB3 substitution patterns. If the line code is
B8ZS/HDB3-encoded, the RZCS bit in RCR0 should be set to keep the LCV
counter from counting BPVs that are part of the B8ZS/HDB3 code.
Figure 2-3. RCVR Diagram
External DLINK
PRBS/Inband LB
Sa-Byte
RPDV Monitor
Error Monitor
Error Counters
Alarm Monitor
Receive Framer
Receiver Timebase
RCKI
RZCS
Decoder
Line
Loopback Framer
Loopback
RPOSI
RNEGI RNRZ
RDLO
RDLCKO
DLINK1
MOP/BOP
DLINK2
MOP
MPU
Registers
To RSB
RNRZI
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.2 R eceiver
100054E Conexant 2-5
2.2.2 In-Band Loopback Code Detection
The in-band loopback code detector circuitry detects receive data with in-band
codes of configurable value and length. These codes can be used to request
loopback of terminal equipment signals or other user specified applications. The
two codes are refer red to as loopback-activate and loopback-deactivate, although
the detectors need not be used only for loopback codes. Generally, any repeating
1–7 bit pattern can be selected. The loopback application is described in Section
9.3.1 of ANSI T1.403-1995. The loopback activate code is set in the Loopback
Acti v ate Code P att ern [LB A; addr 043]. The l oopback de activate code is set in the
Loopback Deactivate Code Pattern [LBD; addr 044].
The sequence length for the loopback activate and deactivate codes can be
prog rammed for 4, 5, 6, or 7 bits by setting the code length bits of the Receive
Loopback Code Detector Configuration register [RLB; addr 042]. Shorter codes
can be programmed by repeating the expected pattern (e.g. 3+3 bit code
programmed as 6-bit code).
T1 In-Band Loopback Codes
Activate 00001
Deactivate 001
When a loopback code is detected, the LOOPUP or LOOPDN status bit is set
in Alarm 2 register [ALM2; addr 048], and the corresponding LOOPUP or
LOOPDN bit in Alarm 2 Interrupt Status register (ISR6; addr 005] is set. The
loopback detection interrupt can be enabled using the Alarm 2 Interrupt Enable
re gist er [ I ER6; add r 00D] . Whe n enabled, a loop-up or loop-down code detect ion
causes the Alar m 2 Inter rupt bit [ALARM2] to be set in the Interrupt Request
register [IRR; addr 003] and generates an interrupt. Since loopbacks are not
automatically initiated, the processor must intercept and interpret th e interrupt
status con dit i on to determine w h en i t must en able or di sable the loopback con trol
mechanism (e.g., LLOOP; addr 014).
2.2.3 Error Counters
The following P erformance Monitorin g (PM) counters are availa b le in the RCVR:
F raming Bit Errors (FERR)
CRC Errors (CERR)
Line Code Violations (LCV)
Far End Block Errors (FEBE)
All PM count registers are reset on read unless LATCH_CNT is set in the
Alarm/Error/Counter Latch Configuration register [LATCH; addr 046].
LATCH_CNT enables the one-second latching of counts coincident with the
one-second timer interrupt [ISR6; addr 005]. One-second latching of PM counts
is required if AUTO_PRM responses are enabled. All PM counters can be
disabled during RLOF, RLOS, and RAIS, using the STOP_CNT bit in the
LATCH register.
Note that if STOP_ CNT is neg ated, error monitoring dur ing RLOF con ditions
will detect FERR, CERR, and FEBE according to the last known frame
alignment.
2.0 Circuit Descrip tion CX28394/28395/28398
2.2 Rece iv er Quad/x16/Octal—T1/E1/J1 Framers
2-6 Conexant 100054E
2.2.3.1 Frame Bit Error
Counter The 12-bit Framing Bit Error Counter [FERR; addr 050 and 051] increments
every time a receive Ft, Fs, T1DM, FPS, or FAS error is detected. Fs (T1) and
NFAS (E1) errors can be included in the FERR count by setting FS_NFAS in
Recei ve Al arm Signal Configuration [RALM; addr 0 45]. An interrupt is avai lable
to indicate that the FERR counter overflowed in the Counter Overflow Interrupt
Status register [ISR4; addr 007].
2.2.3.2 CRC Error
Counter The 10-bit Cyclic Redundancy Check Error Counter [CERR; addr 052 and 053]
increments each time a receive CRC4 (E1) or CRC6 (T1) error is detected. An
interrupt is available to indicate that CERR counter overflowed in ISR4.
2.2.3.3 LCV Error
Counter The 16-bit Line Code Violation Error Counter [LCV; addr 054 and 055]
increments each time a receive Bipolar Violation (BPV)—not including line
coding—is detected. The LCV count can include EXZ if EXZ_LCV in the
Receive Alarm Signal Configuration register [RALM; addr 045] is set. EXZ can
be configured [RZCS; addr 040] to be 8 or 16 successive zeros, following a one.
An interr upt is available to indicate that the LCV counter overflowed in ISR4.
2.2.3.4 FEBE Counter The 10-bit Far End Block Error (FEBE) counter [FEBE; addr 056 and 057]
increments every time the RCVR encounters an E1 far-end block error. An
interrupt is available to indicate that the FEBE counter overflowed in ISR4.
2.2.4 Error Monitor
The follow ing signal errors are detected in the RCVR:
F rame Bit Error (FERR)
MFAS Error (MERR)
CAS Erro r (SERR)
CRC Error (CERR)
Pulse Density Violation (PDV)
Each error type has an interrupt enable bit that enables an inter rupt to occur
marking the e ven t, and an interrupt register bi t that is read b y the interrupt service
routine to deter mine which event caused the interr upt. All error status registers
are reset on read unless the LATCH_ERR bit is set in the Alarm/Err or/Counter
Latch Configuration register [LATCH; addr 046]. LATCH_ERR enables the
one-second latching of alarms coincident with the one-second timer interrupt
[ISR6; addr 005]. With LATCH_ERR enabled, any error detected during the one
second interval is latched and held during the following one-second interval.
LATCH_ERR allows the processor to gather er ror statistics based on the
one-second interval.
2.2.4.1 Frame Bit Error FERR is reported for the receive d irection in the Error Interrupt Status register
[ISR5; addr 006] and for the transmi t di recti on i n P at tern Interrupt Status
[ISR0; addr 00B]. FERR indicates t hat o ne or more Ft/ Fs/F PS fr ame-bit errors or
FAS-pattern errors occurred since the last time the interrupt status was read. The
FERR type is det ermined b y the receive framer’s configuration [CR0; address 001].
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.2 R eceiver
100054E Conexant 2-7
2.2.4.2 MFAS Error When CRC4 framing is enab led , MERR is reported for the receiv e direction in the
Error Interrupt Status register [ISR5; addr 006] and for the transmit direction in
Pattern Interrupt Status [ISR0; addr 00B]. MERR is applicable only in E1 mode,
and indicates that one or more MFAS pattern errors occurred since the interrupt
status was last read.
2.2.4.3 CAS Error When CAS framing is enabled, SERR is reported for the receive direction in the
Error Interrupt Status register [ISR5; addr 006] and for the transmit direction in
Pattern Interrupt Status [ISR0; addr 00B]. SERR is only applicable in E1 mode,
and indicates that one or more errors were received in the TS16 Multiframe
Alignment Signal (MAS) since the interrupt status was last read.
2.2.4.4 CRC Error CERR is reported for the receive direction in the Error Interr upt Status register
[ISR5; addr 006] and for the transmit direction in Pattern Interrupt Status
[ISR0; addr 00B]. CERR is only appli cable in T1 ES F and E 1 MFAS modes, and
indicates t hat one or more bit errors were found in the CRC4/CRC6 patt ern block
since the interrupt status was last read.
2.2.4.5 Pulse Densit y
Violation PDV is reported when the receive signal does not meet the pulse density
requireme nts of ANSI T1.4 03- 19 95 (Sect i on 5.6). A PDV is declared when more
than 15 consecuti v e zeros or the a ver age ones density falls belo w 12.5 %. RPDV is
reported for the receive direction in the Alarm 1 Inter rupt Status register
[ISR7; addr 004].
2.2.5 Alarm Monitor
The follow ing signal alarms are detected in the RCVR:
Loss Of Frame (LOF)
Loss Of Signal (LOS)
Receive Analog Loss Of Signal (RALOS)
Alarm Indication Signal (AIS)
Remote Alarm Indication (RAI) or Yellow Alarm (YEL)
Multiframe Yellow Alarm (MYEL)
Severely Errored Frame (SEF)
Change Of Frame Alignment (COFA)
Multiframe AIS (MAIS)
Each alarm has the following: a status register bit that reports the real-time
status of the event; an interrupt enable bit that enables an interrupt to mark the
even t; a nd an in terrupt regi st er bi t re a d by the int errupt service routi ne t o identif y
the event that caused the interrupt. All alarm st atus registers are reset on read
unless the LATCH_ALM bit is set in the Alarm/Error/Counter Latch
Configuration register [LATCH; addr 046]. LATCH_ALM enables the
one-second latching of alarms coincident with the one-second timer interrupt
[ISR6; addr 005]. With LATCH_ALM enabled, any alarm detected during the
one-second interval is latched and held during the following one-second interval.
2.0 Circuit Descrip tion CX28394/28395/28398
2.2 Rece iv er Quad/x16/Octal—T1/E1/J1 Framers
2-8 Conexant 100054E
2.2.5.1 Loss of Frame Receiv e Loss Of F rame (RLOF) is d eclared w hen the recei ve data stream does not
meet the framing criteria specifi ed in the Receiver Configuration register
[RCR0; addr 040].
If the line rate is E1 [T1/E1N; addr 001], RLOF is the logically OR'ed status
of FAS, MFAS, and CAS alignment. These alignments, FRED, MRED and
SRED, respectively, are available separately in the Alarm 3 Status register
[ALM3; addr 049]. Once RLOF is declared t he LOF[1: 0] bits in ALM3 report the
reason for E1 loss of frame alignment. In T1 mode, RLOF is equal to FRED.
The RLOF real-time status is available in Alarm 1 Status register
[ALM1; addr 047], and the interrupt status is set in th e Alarm 1 Interrupt Status
register [ISR7; addr 004]. The RLOF inter rupt is enabled by setting RLOF in the
Alarm 1 Interrupt Enable register [IER7; addr 00C].
An FRED count [FRED[3:0]; addr 05A] is also available in the
SEF/LOF/COFA Alarm Counter [AERR; addr 05A]. An inter rupt in Counter
Overflow Interrupt Status [ISR4; addr 007] indicates that the FRED counter
overflowed.
While T1 framing mode is enabled, the RLOF status and RLOF interrupt
status are integrated over 2.0 to 2.5 seconds if the RLOF_INTEG bit is set in the
Receive Alarm Signal Configuration register [RALM; addr 045]. The FRED
count is unaffected by RLOF_INTEG.
2.2.5.2 Loss of Signal If the line ra te is T1, the criteria for Receive Loss Of Si gnal (RLOS) is 100
contiguous zeros (consistent with the standard requirement of 175 ±75 zeros). If
the line rate is E1, the criteria for RLOS is 32 con tiguous zeros. RLOS is c le a re d
upon detecting an average pulse density of at least 12.5% (occurring during a
period of 175 ± 75 bits starting with the receipt of a pulse, and where no
occurrences of 100/32 cont iguous zer os are detect ed). The RLOS rea l-time status
is availa ble in ALM1 , and the interrupt is available in ISR7. The X MTR can be
configured to automatically generate an Alarm Indication Signal (AIS) in the
transmit direction when RLOS is declared (see AUTO_AIS [TALM; addr 075]).
2.2.5.3 Receive Analog
Loss of Signal RALOS [ALM1; addr 047] can be configured to report loss of receive clock
(RCKI) or loss of receive signal [RLOS; addr 047] for 1 msec depending on the
RALOS configuration bit [RAL_CON; addr 020]. RALOS status is provided for
compatib ili ty with ANSI T1. 431 loss of signa l det ection r equir ements; and works
in conjunction with LIUs which detect loss of signal if the received signal level
falls below a cer tain threshold and which have a signal ‘squelch’ feature. If
RAL_CON is set for loss of signal, RALOS indicates that all zeros have been
received for at least 1 msec (RLOS is active for 1 msec). If RAL_CON is set for
loss of clock, RALOS becomes active (1) if the receive clock on the RCKI pin is
not present, and inactive (0) if the clock is present.
2.2.5.4 Alarm
Indication Signal If the line rate is T 1 [T1/E1N; addr 001], th e criteria for Recei ve Al arm Indic ation
Signal (RAIS) is the reception of four or fewer zeros in a period of 3 ms (4632
bits) and assertion of RLOF. If the line rate is E1, RAIS is set if two consecutive
double frames e ach contain t wo or fewer zeros out of 512 bi t s and FAS ali gn ment
is lost [FRED; addr 049]. The RAIS real-time status is available in ALM1. The
RAIS interrupt is available in ISR7.
2.2.5.5 Yellow Alarm The criteria for Yel low Alarm (YEL) is describe d in Table 3-13, Recei ve Yellow
Alarm Set/Clear Criteria. YEL real-time status is available in ALM1; YEL
interrupt is available i n ISR7.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.2 R eceiver
100054E Conexant 2-9
2.2.5.6 Multiframe YEL The criteria for Mu ltiframe Yellow Alarm is described in Table 3-13, Receive
Yellow Alarm Set/Clear Criteria. The MYEL real-time status is available in
ALM1, and the interrupt is available in IS R7.
2.2.5.7 Severely Errored
Frame A SEF is reported when the receive signal does not meet the requirements of
ANSI T1.231. SEF real-time status is available in ALM3. A 2-bit counter is also
available [SEF; addr 05A]. An interrupt is available in ISR4 to indicate that the
SEF counter overflowed .
2.2.5.8 Change of
Frame
Alignment
Each COFA increments a 2-bit counter [COFA; addr 05A]. An interrupt is
available in ISR4 to indicate that the COFA counter overflowed.
2.2.5.9 Receive
Multiframe AIS Receive Multiframe AIS (RMA IS) is reported when the receive TS16 signal
contains three or fewer zeros out of 128 bits in each multiframe over two
consecutive multiframes, according to the requirements of ITU–T
Recommendation G.775. RMAIS is only checked in E1 CAS mode. RMAIS
real-time status is available in ALM3 [addr 049].
2.2.6 Test Pattern Receiver
The test pattern recei ver circuitry can sync on framed or unframed PRBS patterns
and count bit errors. This feature is particularly useful for system diagnostics,
producti on test ing, and test equipment appl icat ions. The PRBS patterns a vaila ble
include 2E11-1, 2E15- 1, 2E20-1, and 2E23 -1. Each pattern can opti onall y include
Zero Code Suppression (ZCS).
The Receive Test Pattern Configuration register [RPATT; addr 041] controls
the test patter n receiver circuit. The BSTART control bit (in RPATT) m ust be
active to enable the test pattern receiver and to begin counting bit errors. RPATT
control s the PRBS pattern, ZCS setting (ZLIMIT), and T1/E1 framing
(FRAMED). RPATT selects which PRBS pattern the receiver should hunt for
pattern sync. ZLIMIT selects the maximum number of consecutive zeros the
pattern is all owed to contain. FRAME D mode i nf orms the PRBS patt ern receiver
not to search for the pattern in the frame bit in T1 mode or search for the pattern
in time slot 0 (and time slot 16 if CAS framing is selected) in E1 mode. CAS
framing is selected by setting RFRAME[3] to 1 in the Primary Control register
[CR0; addr 001]. If FRAMED is disabled, the PRBS pattern receiver searches all
time slots for the test pat tern.
The RESEED bit in RPATT infor ms the receive PRBS sync circuit to begin a
PRBS pattern search. Once the search begins, any additional writes to RESEED
restarts the pattern sync search at a d if feren t point in th e pattern. The time to sy nc
depends on the pattern and number of bit errors in the pattern.
Pattern sync is reported (when found) in PSYNC status of the Pattern
Interrupt Status register [ISR0; addr 00B]. Next, the PRBS Pattern Error counter
[BERR; addr 058 and 059] counts bit errors detected on the incoming pattern,
provided that BSTART remains active. Error counting stops if th e BSTART bit is
cleared. The BERR counter is reset to zero after every read, or latched on every
ONESEC in terrupt as selected by LATCH_CNT [addr 046]. An in terrupt is
available to indicate the BERR counter overflowed in ISR4.
2.0 Circuit Descrip tion CX28394/28395/28398
2.2 Rece iv er Quad/x16/Octal—T1/E1/J1 Framers
2-10 Conexant 100054E
2.2.7 Receive Framing
Two framers are in the receive data stream: an offline framer and an online frame
status monitor. The offline framer recovers receive frame alignment; the online
framer monitors frame alignment patterns and recovers multiframe alignment in
E1 modes. Table 2-1 lists suppor ted RCVR framing modes. Frame and
multiframe synchronizat ion criteria used b y the framers, as w ell as the monitoring
criteria of the online framer, are selected in RFRAME[3:0] of the Primary
Control register [CR0; addr 001]. Table 2-2 details framing loss/recovery c riteria.
Recei ve frame synchronizati on is initiat ed by the online framer’s acti vation of
the Receive Loss Of Frame (RLOF) status bit in the Alarm 1 Status register
[ALM1; add r 04 7]. The RLOF criteria is set in the RLOFA, RLOFB, RLOFC,
and RLOFD bits of the Receiver Configuration register [RCR01; addr 040]. The
online framer suppor t s the following LOF criteria for T1: 2 out of 4, 2 out of 5,
and 2 out of 6. For E1, the online framer supports 3 out of 3, with or without 915
out of 1000 CRC errors.
When RLOF is asserted, the offline framer automatically starts searching the
receive data stream for a new frame alignment, provided that receive framing is
enabled [RABORT; addr 040]. If receive framing is disabled, the offline framer
doe s not automatic ally se arch for t he frame alignment, but waits for a r eframe
command [RFORCE; addr 040] to star t a frame alignment search. If RLOF
integration is enabled [RLOF_INTEG; addr 045] the RLOF status [ALM1; addr
047] and RLOF interrupt status [ISR7; addr 004] is integrated for 2.0 to 2.5
seconds.
The online framer continuously monitors for loss of frame (RLOF) condition
[ALM1; addr 047] and searches for E1 multiframe alignment after basic frame
alignment is recovered by the offline framer. Receive multiframe alignment is
declared when multiframe alignment criteria are met. The receive online framer
reports multiframe errors, as well as frame errors and CRC errors in the Error
Interrupt Status [ISR5; addr 006].
The offline framer is shared between the RCVR and XMTR and can search
only in one direction at any time. Consequently, the processor arbitrates wh ich
direction is searched by enabling the reframe request (RLOF and TLOF) for that
direction.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.2 R eceiver
100054E Conexant 2-11
Tab le 2-1. R eceive Frame r Modes
T1/E1N RFRAME[3:0] Rec eiv e Fr am er Mode
0000XFAS Only
0 001X FAS Only + BSLIP
0010XFAS + CRC
0 011X FAS + CRC + BSLIP
0100XFAS + CAS
0 101X FAS + CAS + BSLIP
0 110X FAS + CRC + CAS
0 111X FAS + CRC + CAS + BSLIP
10000FT Only
1 0001 ESF + No CRC (FPS only)
10100SF
1 0101 SF + JYEL
1 0110 SF + T1 DM
1 1000 SLC + FSLOF
11001SLC
1 1100 ESF + Mimi c CRC
1 1101 ESF + Force CRC
2.0 Circuit Descrip tion CX28394/28395/28398
2.2 Rece iv er Quad/x16/Octal—T1/E1/J1 Framers
2-12 Conexant 100054E
Tab le 2-2. Criteria for Loss/Recovery of Receive Fram er Alignment
Mode Description
FAS Basic Frame Al ignment (BFA) is recovered when the following search criteria are sat isfied:
FAS pattern (0011011) is found in frame N.
Frame N+1 co ntains bit 2 equal to 1.
Frame N+2 al so contains FAS pa ttern (0011011).
During FAS-only modes, BFA is recovered when the following search criteria are sat isfied:
FAS pattern (0011011) is found in frame N.
No mimics of the FAS pattern are present in frame N+ 1.
FAS pattern (0011011) is found in frame N+2.
NOTE(S): If FAS pattern is not found in frame N+2, or if FAS mimic is found in frame N+1, the search restarts in
frame N+2.
Loss of FAS frame alig nment (FRED) is declared when o ne of the following criteri a is met:
Three consecutive F AS pattern errors are detected when the FAS pattern consists of a 7-bit (x0011011)
pattern in FAS frames and—if FS_NFAS is also active [addr 045]—the FAS pattern includes bit 2 of
NFAS frames.
Loss of MFAS (MR ED) is due to 915 or more CRC errors out of 100 0.
Failure to locate two valid MFAS patterns within 8 ms after BFA.
NOTE(S): In all cases, FRED causes next search for FAS alignment to begi n 1 bit after the current FAS location.
BSLIP FAS Bit Sli p Enable. A pplicable only for Dutc h PTT national applications. If BSLIP is enabled, the online fr amer
is allowed to change RX timebase by ±1 bit when a 1-bit F AS pa ttern slip is de tected. BSL IP doe s not affect the
offline framer's search criteria.
MFAS CRC4 Multiframe Alignment is recovered when the following search criteria are satisfied :
BFA is recovered, identifying FAS and NFA S frames.
Wit hin 8 ms after BFA, bit 1 of NFAS frames contains two MFAS patte rn s (001011xx). The second
MFAS must be aligned with respect to first MFAS, but the second MFAS pattern is not nec essarily
receive d in consecutive frames.
Within 8 ms after BF A, bit 1 of NF A S frames contains the second MFAS pattern (001011xx), aligned to
first MFAS.
Loss of MFAS alignment (MRED) decl ared when one of the follow ing criteria is met:
915 or more CRC4 errors out of 1000 (submultifr ame) blocks.
Loss of FAS (FRED).
NOTE(S): If Disable 915 CRC Reframe is set [RLOFD; a ddr 040], then MRED is activated only by FRED.
CAS CAS Multifram e Al ignment is recovered when the followi ng search criteria are satisfied:
BFA is recovered, identifying TS0 through TS31.
MAS ( 0000xxxx) multiframe alignment signa l pattern is found in the fi rst 4 bits of TS16, and 8 bits of
TS16 in preceding f rame contains nonzero value.
Loss of CAS alignment (SRED) is declared when one of the following crite ria is met:
Two consecutive MA S pattern errors are det ected.
TS16 contains all zeros in two multiframes (32 consecutive frames).
Loss of FAS (FRED).
FT Only Terminal frame ali gnment is recovered when:
The first valid Ft pattern (1010) is found in 12 alternate F-bit locations (3 ms), where F-bits are separated by
193 bits.
During Ft-o nly mode, lo ss of frame alignment (FRED) is declared when:
Number of Ft bit errors detected meets selected los s of frame criteria [RLOFA–RLOFC ; ad dr 040].
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.2 R eceiver
100054E Conexant 2-13
SF Superframe alignment is recovered when:
Terminal frame al ignment is recovered, ident ify ing Ft bits.
Depends on SF submode:
If JYEL, onl y Ft bits are used, Fs bits are ignored.
If no JYEL, SF pattern (001110) f ound in Fs bits.
During any SF mode, loss of frame alignment (FRED) is declared when:
Number of frame errors detected—ei t her Ft or Fs bit errors—meets selected loss of frame criteri a
[RLOFA–RLOFC; addr 040]. FS _NFAS [addr 045] det ermines wheth er Fs bits are included in error count.
SLC Superframe alignment is recovered when:
Terminal frame alignment is recovered, identifying Ft bits.
SLC pattern (refer to Table A-3, SLC-96 Fs Bit Contents) is found in 16 of 36 Fs bits, according to Bellcore
TR-TSY-000008.
During SLC modes without FSLOF, lo ss of frame alignment (FRED) is declared when:
Number of Ft bi t erro rs detected meets selected refra me criteria [RLOFA–RLOFC; addr 040].
FSLOF FSLOF inst ructs the online framer to monitor 16 of 36 F s bits (SLC multiframe patte rn) for loss of fr ame
alignment criter ia. FS_NFAS [addr 045] must also be set to include Fs bits in loss of frame. FSLOF does not
affect the of fline fr amer's search criteria.
ESF Extended Superframe a lignment is recovere d w hen:
A valid FPS candidate is located (001011). Candidate bits are each separated by 772 digits and are received
without pattern errors.
If ther e is only one valid FPS can didate and the mode is one of the following :
No CRC mode—align to FPS, regardless of CRC6 comparison.
Mimic CRC mode—align to FPS, regardless of CRC6 comparison.
Force CRC mode—align to FPS, only if CRC6 is correct.
If there are two or more valid FPS candidates and the mode is one of the fo llowing:
No CRC mode—do not align (INVALID status).
Mimic CRC mode—align to first FPS with correct CRC6.
Force CRC mode—align to first FPS with correct CRC6.
During any ESF mode, loss of frame alignment (FRED) is declared when:
Number of FP S pattern errors det ected meets selected loss of fr ame criteria [R LOFA–RLOFC; addr 040].
T1DM During T1DM mode, frame alignment is recovered in two steps:
1. A 6-bit T1DM pa ttern (10111xx0) is fou nd.
2. A valid F-bit pa ttern (Ft, Fs, or FPS) is found in the first six consecutive frames of the 12-frame cycle
aligned to th e T1DM pattern.
During T1DM mode, loss of frame alignment (FRED) is declared when:
Number of frame errors detected, either Ft, Fs, or T1DM errors, meets selected lo ss of frame criteria
[RLOFA–RLOFC; addr 040]. FS_NFAS [addr 046] does not af fect T1DM mode.
NOTE(S): To be compatible with Bellcore TA-TSY-000278, the processor must select SF + T1 DM framer mode
and reframe criteria = 2 out of 6 F- bit errors [ RLOFA–RLOFC; addr 040].
Tab le 2-2. Criteria for Loss/Recovery of Receive Fram er Alignment
Mode Description
2.0 Circuit Descrip tion CX28394/28395/28398
2.2 Rece iv er Quad/x16/Octal—T1/E1/J1 Framers
2-14 Conexant 100054E
The offline framer waits until the current search is complete (see [FSTAT;
addr 017]) before checking for pending LOF reframe requests. If both online
framers have pending reframe requests, the offline framer aligns to the direction
opposite from that which was most recently searched. For example, if TLOF is
pending at the conclusion of a receive search which timed out without finding
alignme nt, the offline framer switches to searc h in the tran sm it direction. The
TLOF switchover is prevented in the preceding example if the processor asserts
TABORT to mask the transmit reframe request. TABORT does not affect TLOF
status reporting. For applications that frame in only one direction, the opposite
direction sho uld be masked . If, at the concl usion of a recei v e search, TLOF status
is asserted but masked by TABORT, the offline framer continues to search in the
recei v e di recti on. For applic ation s that frame in both di recti ons, the processor c an
allow the offline framer to automatically arbitrate among pending reframe
requests, or may elect to manually control reframe precedence. An example of
manual c ontrol follows:
The status of the offline framer can be monitored for diagnostic purposes
using the Offline Framer Status register [FSTAT; addr 017]. The register reports
the following: whether the offli ne framer is looking at th e recei v e or transmit dat a
streams (RX/TXN); whether the framer is actively searching for a frame
alignment (ACTIVE); whether the framer found multiple framing candidates
(TIMEOUT); whether the framer found frame sync (FOUND); and whether the
framer found no frame alignment candidates (INVALID). Note that these status
bits are update d in real time and might be acti ve for onl y very short (1-b it) periods
of time. Table 2-1 lists the receive framer modes.
1 Initialize RABORT = 1 and TABORT = 1
2 Enable RLOF and TLOF interrupts
3 Read clear pending ISR interrupts
4 Release RABORT = 0
5 Cal l LOF Ser vice Routine if either RLOF or TL OF interrupt;
{(ch e ck cu rr e nt LOF sta tus [ALM1 , 2; ad dr 047, 048 ]
If RLOF recovered and TLOF lost
—Assert RABORT = 1
—Release TABORT = 0
If RLOF lost or TLOF recovered
—Assert T ABOR T = 1
—Release RAB O RT = 0
}
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.2 R eceiver
100054E Conexant 2-15
2.2.8 External Receive Data Link (CX28394 and CX28398 Only)
The External Data Link ( DL3) provides signal access to any b it(s) in a ny ti me slot
of all fr ames, odd frames, o r ev en frames, i ncludin g T1 framin g bits. Pin ac cess to
the DL3 recei v er is provided through RDLCKO and RDLO. These two pins serve
as the DL3 clock outpu t (RDLCK O) and data outpu t (RDLO). The data link mode
of the pins is selected using the RDL_IO bit in the Programmable Input/Output
register [PIO; addr 018].
Control of DL3 is provided in two registers: External Data Link Channel
[DL3_TS; add 015] and External Data Link Bit [DL3_BIT; addr 016]. RDL3 is
set up by selecting the bit(s) (DL3_BIT) and time slot [TS[4:0]; addr 015] to be
monitored, and then enablin g th e data link [DL3EN; add r 015], which starts the
RDLCKO and TDLCKO gapped clock outputs that mark the selected bits, as
shown in Figure 2-4.
NOTE: DL3 signals are not provided on the CX28395. Therefore, DL3_TS must
be written to 00 to disable the DL3 transmitter and prevent transmit data
corruption.
2.2.9 Sa-Byte Receive Buffers
The Sa-Byte buffers give read access to the odd frame Sa bits in E1 mode. Five
receive Sa-Byte buffers [RSA4 to RSA8; addr 05B to 05F] are available. As a
group, the buffers are updated every multiframe from Sa-bits received in TS0.
This gives the processor up to 2 ms after the receive multiframe interrupt [RMF;
addr 008] occurs to read any Sa-Byte buffer before the buffer content changes.
Figure 2-4. Receive External Data Link Waveforms
NOTE(S): This waveform represents ESF FDL extraction; any combi nat ion of bits can alternatively be selected.
F
24 F12 2324 1 2F
Frame 1
24 F 1 2 23 24 12
23 F23 24 1FF12 23 2
Frame 2 Frame 3 Frame 4 Frame 5
TS24 TS1
RCKi
RDLO
RDLCKO
RDLO
RDLCKO
(T1: ESF)
8394-8-5_074
2.0 Circuit Descrip tion CX28394/28395/28398
2.2 Rece iv er Quad/x16/Octal—T1/E1/J1 Framers
2-16 Conexant 100054E
2.2.10 Receive Data Link
The RCVR contains two independent data link controllers (DL1 and DL2) and a
Bit-Oriented Protocol (BOP) transceiver. DL1 and DL2 can be programmed to
send and receive HDLC formatted messages in the Message-Oriented Protocol
(MOP) mode. Alternativ el y, unformatted serial data can be sent and receiv ed over
any combination of bits within a selected time slot or F-bit channel. The BOP
transceiver can preemptively receive and transmit BOP messages, such as ESF
Yellow Alarm.
2.2.10.1 Data Link
Controllers DL1 an d DL2 con trol two serial data channels operat ing at multi ples of 4 kbps up
to the full 64 kbps time slot rate by selecting a combination of bits from odd,
even, or all frames. Both DL1 and DL2 support ESF Facilities Data Link (FDL),
SLC-96 Data Link, Sa Data Link, Common Channel Signaling (CCS), Signaling
System #7 (SS7), ISDN LAPD channels, Digital Multiplexed Interface (DMI)
Signaling in TS24, as well as the latest ETSI V.51 and V.52 signaling channels.
DL1 and DL2 each contain a 64-byte receive FIFO buffer.
Both data link controllers are configured identically, except for their offset in
the register map. The DL1 address range is 0A4 to 0AE, and the DL2 address
range i s 0AF to 0B9. F r om thi s p oin t on, DL 1 i s used t o desc ri be th e operation of
both data link controllers.
DL1 is enabled using the DL1 Control register [DL1_CTL; addr 0A6]. DL1
will not function unt il it is enabled. DL1_CTL also controls the format of the
data. The following data formats [DL1[1:0]; addr 0A6] are supported on the data
link: Frame Check Sequence (FCS), non-FCS, Pack8, or Pack6. FCS and
non-FCS are HDLC formatted messages. Pack8 and Pack6 are unformatted
messages with 8 bits per FIFO access, or 6 bi ts per FIFO access, respective l y (see
Table 2-3).
The time slot and bit selection are performed through the DL1 Time Slot
Enabl e re gi ster [DL1_TS; add r 0A4] and t he DL1 Bit Enab l e re g ister [DL1_BIT;
addr 0A5]. The DL1 Time Slot Enable regi ster sele cts the frames and time slot to
extract the data link. The frame select tells the receiver to extract the time slot in
all frames, odd frames, or even frames. The time slot enable is a value between 0
and 31 that selects which time slot t o extract. The DL1 Bit E nable reg ister sel ects
which bits will be extracted in the selected tim e slot. Refer to Table 2-3 for the
common frame, time slot, time slot bits, and modes used.
Table 2-3. Commonly Used Data Link Settings
Data Link Frame Time Slot Time Slot Bits Mode
ESF FDL Odd 0 (F-bits) Don’t Care FCS
T1DM R Bit All 24 00000010 FCS
SLC-9 6 Even 0 (F-bits) Don’t Care Pac k6
ISD N LAPD All N 11111111 F CS
Sa4 Odd 1 00001000 FCS
NOTE(S): N represen ts any T1/E1 time slot.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.2 R eceiver
100054E Conexant 2-17
The Receive Data Link FIFO #1 [RDL1; addr 0A8] is 64 bytes. The Receive
FIFO buffer is formatted differently than the transmit FIFO buffer. The Receive
buffer contains not only received messages, but also a status by te preceding each
message that specifies the size of the received message and the status of that
message. The message status reports if the message was aborted, received with a
correct or incorrect FCS, or continued. A continued message means the byte
count represents a partial message. When all message bytes are read, the buffer
contains another status byte. Message bytes can be differentiated from status
bytes i n th e buffer by readin g the RSTAT1 bit in th e RDL #1 Statu s regis te r
[RDL1_STAT; addr 0A9]. RSTAT1 reports whether the next by te read from the
buffer will be a status byte or some number of message bytes.
The receive data link controller has a versatile microprocessor interface that
can be tu ned to the system’s CPU ban dwidth. For system s with one dedicated
CPU, the data link status can be polled. For systems where a single CPU controls
multiple devices, the data link can be interrupt-driven. See Figures 2-5 and 2-6
for a high-level description of polling and interrupt driven Receive Data Link
Controller software.
Using the Receive FIFO buffer, an entire block of data can be received with
very little microprocesso r interrupt o verhead. Block tran sfers from the buffer can
be controlled by the Near Full Threshold in the FIFO Fill Control register
[RDL1_FFC; addr 0A7]. The Near Full Threshold is a user programmable value
between 0 and 63. This value represents the maximum number of bytes that can
be placed in the Receive buffer without the near full being declared. Once the
threshold is set, the Near Full S tatus (RNEAR1) in RDL #1 Status [RDL1_S TAT;
addr 0A9] is asserted when the Near Full Threshold is reached. An interrupt,
RNEAR, in Data Link 1 Interrupt Status [ISR2; addr 009], is also available to
mark thi s event.
The de v ice uses a hierarchical in terrupt structure, with one top-lev el int errupt
request register directing software to the lower levels (see Master Interrupt
Request register; addr 081 and Interr upt Request register; addr 003). Of all the
interrupt sources, the two most significant bandwidth requirements are signaling
and data link interrupts. Each data link controller has a top-level interrupt status
register that reports data link operations (see Data Link 1 and 2 Interrupt Status
registers [ISR2, ISR1; addr 009 and 00A). The processor uses a three-step
interrupt scheme for the data link:
1. Read the Master Interrupt Request register to determine which framer
interrupted.
2. Read the Interrupt Request register for that framer.
3. Use that register value to read the corr esponding Data Link Interrupt
Status register.
2.0 Circuit Descrip tion CX28394/28395/28398
2.2 Rece iv er Quad/x16/Octal—T1/E1/J1 Framers
2-18 Conexant 100054E
Figure 2-5. Polled Receive Data Link Processing
NOTE(S): Message status contains num ber of message bytes (X) in FIFO.
Receive Message
Read Data Link Status
If
FIFO EMPTY
If
Message Status
on FIFO
Read Message Status from FIFO
No
No
Yes
Read X Message Bytes from FIFO
If
Message Status
is Continue
No
Yes
If
Message Status
is Good
No
Yes
Error Receiving Message
Return
Read Message Byte from FIFO
Wait N Milliseconds
Yes
Wait N Milliseconds
Return
and Discard
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.2 R eceiver
100054E Conexant 2-19
Figure 2-6. Interrupt-Driven Receive Data Link Processing
NOTE(S): Message status contains num ber of message bytes (X) in FIFO.
Interrupt Occurred
Read Interrupt Status
Read Message Status from FIFO
No
Read X Message Bytes from FIFO
If
Message Status
is Good or
No
Yes
Error Receiving Message
Return
Process Other Interrupt
Yes
Return
Read Data Link Status
If
Message Status
on FIFO
No
Yes
Read Message Byte from FIFO
Return
Continue
Interrupt Service Routine
Complete MSG
or Near Full
Interrupt
and Discard
2.0 Circuit Descrip tion CX28394/28395/28398
2.2 Rece iv er Quad/x16/Octal—T1/E1/J1 Framers
2-20 Conexant 100054E
2.2.10.2 RBOP Receiver The Receive Bit-Oriented Protocol (RBOP) receiver receives BOP messages,
including the ESF Yellow Alarm, which consists of repeated 16-bit patterns with
an embedded 6-bit codeword as shown in this example:
0xxxxxx0 11111111 (received right to left)
[543210] RBOP = 6-bit codeword
The BOP message channel is configured to operate over the same channel
selected by Data Link #1 [DL1_TS; addr 0A4]. It must be configured to operate
over the FDL channel so RBOP can detect priority, command, and response
codewo rd messages according to ANSI T1.403, Section 9.4.1.
RBOP i s enabled using the RBOP_START bit in Bit Oriented Protocol
Transceiver register [BOP; address 0A0]. BOP codewords are received in the
Receive BOP Codeword register [RBOP; addr 0A2], which contains the 6-bit
code w ord, a v alid flag (RBOP_VALID), and a lost flag (RBOP_LOST). The val id
flag is set each time a new code word is put in RBOP, and is cleared on reading the
codewo rd. The lost flag indicates a new codeword overwrote a valid codeword
before being read by the processor.
The BOP receiver can be configured to update RBOP using a message length
filter and integration filter. The receive BOP message length filter [RBOP_LEN;
addr 0A40] sets the number of successive identical messages required before
RBOP is updated. RBOP_LEN can be set to 1, 10, or 25 messages. When
enabled, the RBOP integration filter [RBOP_INTEG; add 0A0] requires receipt
of two identical consecutive 16-bit patterns, without gaps or errors between
patterns, to validate the first codeword. RBOP integration is needed to meet the
codeword detection criteria while receiving 1/1000 bit error ratio.
The real-time status of the codeword reception can be monitored using the
RBOP_ACTIVE bit in the BOP Status register [BOP_STAT; addr 0A3]. Each
time a message is put in RBOP register, an interrupt is generated, and the RBOP
bit is set in the Data Link 2 Interrupt Statu s regi ster [ISR1; addr 00A].
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.3 System Bus
100054E Conexant 2-21
2.3 System Bus
Each framer provides high-speed, transmit and receive serial TDM interfaces.
These interfaces can be configured as non-multiplexed, individual system buses,
or they can be multiplexed internally or externally to provide 2xE1 (4096 Mbps)
and 4xE1 (8192 Mbps) buses. The system bus is compatible with the Mitel
ST-Bus, the Siemens PEB Bus, and the AT&T CHI Bus and directly connects to
other Conexant serial TDM bus devices without the need for any external
circuitry. The following five bus rates are supported:
1.536 MHz—T1 rate, 24 time slots, without framing bit
1.544 MHz—T1 rate with framing bit
2.048 MHz—E1 rate, 32 time slots
4.096 MHz—twice the E1 rate, 64 time slots
8.192 MHz—four times the E1 rate, 128 time slots
2.3.1 Non-Multiplexed Mode
In Non-Multiplexed mode, each framer has a separate system bus interface
consisting of the following pin functions:
The signal available on dual function pins is controlled using register PIO
[addr 018].
To use Non-Multiplexed mode, SBIMODE[0] and/or SBIMODE[1] in the
Framer Control register [FCR; addr 080] must be zero to disable Internally
Multiplexed mode. The system bus rate is indep endent of the line rate and must
be selected using SBI[3:0] in the System Bus Interface Configuration register
[SBI_CR; addr 0D0]. Register bit SBI_OE [SBI_CR; addr 0D0] must also be set
to 1 to enable system bus outputs.
Receive System Bus (RSB) Transmit S y stem Bus (TSB)
RSBCKI TSBCKI
RPCMO TPCMI
RFSYNC/RMSYNC TFSYNC/TMSYNC
RINDO/RDLCKO TINDO/TDLCKO
RSIGO/RDLO TSIGI/TDLI
SIGFRZ
2.0 Circuit Descrip tion CX28394/28395/28398
2.3 Sys t em Bus Quad/x16/Octal—T1/E1/J1 Framers
2-22 Conexant 100054E
2.3.2 Externally Multiplexed Mode
Externally Multiplexed mode allows any two, three, or four framers (in the same
or different devices) to share a common high speed system bus (see Figure 2-7).
The 4.096 and 8.192 MHz bus modes contain multiple bus members (bus g roups
A, B, C, D) which allow multiple T1/E1 si gnals to share the same system bus .
This is done by interleaving the time slots from up to four framers (see
Figures 2-10 and 2-11).
To use Externally Multiplexed mode, SBIMODE[0] and/or SBIMODE [1 ] in
the Framer Control register [FCR; addr 080] must be zero to disable Internally
Multiplexed mode. The system bus rate is indep endent of the line rate and must
be selected using SBI[3:0] in the System Bus Interface Configuration register
[SBI_CR; addr 0D0]. SBI[3:0] is also used to assign each framer to a different
bus group. Register bits SBI_OE [SBI_CR; addr 0D0], BUS_RSB [RSB_CR;
addr 0D1], and B US_ TS B [TS B_CR; addr 0D4] must be set to 1 t o allow system
bus outputs to share common connections.
Figure 2-7. Externally Multiplexed Configuration Examples
Possible Externally Multiplexed
Configurations
4.096 Mbps
8.192 Mbps
CX28398
Framer 1
Framer 2
Framer 3
Framer 4
Framer 5
Framer 6
Framer 7
Framer 8
4.096 Mbps
4.096 Mbps
8.192 Mbps
CX28398
Framer 1
Framer 2
8394-8-5_003
Framer 3
Framer 4
Framer 5
Framer 6
Framer 7
Framer 8
2.048 Mbps
1.544 Mbps
Any 2, 3, or 4 framers from a
device (or from different
devices) can be externally
multiplexed with no additional
circuitry.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.3 System Bus
100054E Conexant 2-23
2.3.3 Internally Multiplexed Mode
Internally Multiplexed mode operation is very sim ilar to Exte rnal ly Multiplexed
mode. The framers in each device are internally grouped into four-framer groups
to allow an internally multiplexed mode (see Figure 2-8). In the CX28398,
framers 1 through 4 form a group (l o w er group or group A) and framers 5 through
8 form another (up per group or group B). The CX28 395 supports fou r groups: A,
B , C, and D. The CX28394’s four framer s are also grouped in th e same manner. In
this mode, system bus signals from all four framers are internally connected and
the interface pin functions are redefined. The advantage of this mode is that all
system bus signals which are normally available on dual function pins, are now
available on separate pins. In Internally Multiplexed mode, the following signals
are available for each four-framer group (lower group shown):
To use Internally Multiplexed mode, SBIMODE[0] and/or SBIMODE[1] in
the F ramer Control re gister [FCR; ad dr 080] must b e set to 1. The system bus rate
is independent of the line rate and must be selected using SBI[3:0] in the System
Bus Interface Configuration register [SBI_CR; addr 0D0]. SBI[3:0] is also used
to assign each framer to a different bus group. Register bits SBI_OE [SBI_CR;
addr 0D0], BUS_RSB [RSB_CR; addr 0D1], and BUS_TSB [TSB_CR; addr
0D4] must be set to 1 to allow system bus outputs to share common connections.
Because RFSYNC (and TFSYNC) signals are bused, all four framers’ RFSYNC
(and TFSYNC) signals must be configured as inputs and driven externally or,
alternatively, three framers’ sync signals can be configured as inputs and one as
an output [PIO; addr 018].
Receive System Bus (RSB) Transmit System Bus (TSB)
RSBCKI[A] TSBCKI[A] Common, internally
connected to all four
framers.
RPCMO[A] TPCMI[A]
RFSYNC[A] TFSYNC[A]
RINDO[A] TINDO[A]
RSIGO[1:4] TSIGI[1:4]
Separate sign al s.
RMSYNC[1:4] TMSYNC[1:4]
RDLCKO[1:4](1) TDLCKO[1:4](1)
RDLO[1:4](1) TDLI[1:4](1)
SIGFRZ[1:4]
NOTE(S):
(1) These signals are not provide d on the CX28395.
2.0 Circuit Descrip tion CX28394/28395/28398
2.3 Sys t em Bus Quad/x16/Octal—T1/E1/J1 Framers
2-24 Conexant 100054E
2.3.4 Receive System Bus
The Receive System Bus (RSB) provides a high-speed, serial interface between
the RCVR and the system bus. The RSB has the following pins:
Figure 2-8. Internally Multiplexed Configuration Examples
Framer 1
Framer 2
Framer 3
Framer 4
Framer 5
Framer 6
Framer 7
Framer 8
CX28398
Possible Internally Multiplexed
Configurations
8.192 Mbps
8.192 Mbps
Two separte 8.192
Mbps buses is the
typical application for
Internally Multiplexed
mode.
Framer 1
Framer 2
Framer 3
Framer 4
Framer 5
Framer 6
Framer 7
Framer 8
CX28398
4.096 Mbps
In this application, Framers 3 and 4
are used as back-up line interfaces
and are connected to the system bus;
but are disabled.
8.192 Mbps
In this application, Framer 8 is used as
a back-up line interface and is
connected to the system bus; but is
disabled.
8394-8-5_004
Pin Name Function
RSBCKI Receive System Bus Cloc k
RPCMO Receive PCM Data
RFSYNC/RMSYNC Receive Frame Sync or
Receive Multiframe Sync
RINDO/RDLCKO Receive Time Slot Indicator or
Receive Datalink Clock
RSIGO/RD LO Rece iv e Signa li ng Da ta or
Receive Datalink Data
SIGFRZ Signaling Freeze
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.3 System Bus
100054E Conexant 2-25
Figure 2-9 illu strates the rela tionship betw een these signals. Signal definitions
are provid ed in Table 1-6, Hardw a re Signal Definiti ons. R SB dat a out put s can be
configured to output on the rising or falling edge of RSBCKI (see the Receive
System Bus Configuration register [RSB_CR; addr 0D1]).
The RSB supports five different system bus rates (MHz):
1.536 MHz—T1 rate, 24 time slots, without framing bit
1.544 MHz—T1 rate with framing bit
2.048 MHz—E1 rate, 32 time slots
4.096 MHz—twice the E1 rate, 64 time slots
8.192 MHz—four times the E1 rate, 128 time slots
Figure 2-9. RSB Waveforms
NOTE(S): The R eceive Multiframe Sync (RMSYNC) occurs every 6 ms, 48 T1 or 48 E1 frames.
RSBCKI
123456781234567812
ABCDABCDABCDABCDAB
12345678F123456781
ABCDABCDXABCDABCDA
RPCMO
RINDO
RSIGO
RPCMO
RINDO
RSIGO
SIGFRZ
RFSYNC
RMSYNC
Frame48TS31 Frame1TS0
Frame48TS24 Frame1TS1
E1
T1
2.0 Circuit Descrip tion CX28394/28395/28398
2.3 Sys t em Bus Quad/x16/Octal—T1/E1/J1 Framers
2-26 Conexant 100054E
The 4.096 and 8.192 MHz bus modes contain multiple bus members (A, B,
C, D) which allow multiple T1 /E1 signals to share the same syste m bus. This is
done by interleaving the time slots from up to four framers, without external
circuitry (see Figures 2-10 and 2-11). The system bus rate is independent of the
line rate and must be selected using the System Bus Interface Configuration
register [SBI_CR; addr 0D0].
Figure 2-10. RSB 4096K Bus Mode Time Slot Interleaving
NOTE(S): A and B time s lot comes from different f ramers. Output dat a on rising edge clock, RCPM_ NEG = 0 [add r 0D1].
Output sync on rising edge clock, RSY N_ NEG = 0 [addr 0D1]. RSBCKI operat es at 1 times the data rate.
RSBCKI
TS31A TS31B TS0A TS0B
RPCMO
RFSYNC
SIG31A SIG31B SIG0A SIG0B
RSIGO
Figure 2-11. RSB 8192K Bus Mode Time Slot Interleaving
NOTE(S): A, B , C, and D data comes fro m different framers. Outpu t data on rising edge clock, RCP M_NEG = 0 [addr 0D1].
Output sync on rising ed ge clock, RSYN_NEG = 0 [addr 0D1]. RSBCKI oper ates at 1 times the data rate. RSB.O FFSET equal s
zero.
SIG31A SIG31B SIG31C SIG31D SIG0A SIG0B SIG0C SIG0D
RSBCKI
RSIGO
RFSYNC
TS31A TS31B TS31C TS31D TS0A TS0B TS0C TS0D
RPCMO
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.3 System Bus
100054E Conexant 2-27
The RSB maps line rate tim e slots to system bus time s lots. The 24 (DS1 ) or
32 (CEPT) line rate time slots can be mapped to 24, 32, 64, or 128 system bus
time slots as listed in Table 2-4. The system bus rate must be greater than or equ al
to the line rate, except for 1536K bus mode.
The RSB, Figure 2-12, consists of a timebase, slip buffer, a signaling buffer,
and a signaling stack.
Tab le 2-4. R SB Interface Time Slot Mappin g
Line Rate (MHz) Source
Channels System Bus Rate
(MHz) Destination Time
Slots
1.544 24 1.536 24
24 1.544 24
24 2.048 32
24 4.096 64
24 8.192 128
2.048 32 2.048 32
32 4.096 64
32 8.192 128
Figure 2-12. RSB Diagram
RSIGO
RPCMO
SIGFRZ
RINDO
RFSYNC
RMSYNC
RSBCKI
TSBCKI
RSIG
STACK
RSLIP
Buffer
RSIG
Local
RSIG
Buffer
RPHASE
I/O From Pins
RSB
Timebase
Remote
Channel
Loopback
Local
Channel
Loopback
From
Receive
RNRZ AIS
Timebase
}
RSBCK
2.0 Circuit Descrip tion CX28394/28395/28398
2.3 Sys t em Bus Quad/x16/Octal—T1/E1/J1 Framers
2-28 Conexant 100054E
2.3.4.1 Timebase The RSB timebase synchronizes RFSYNC, RMSYNC, and RINDO with the
Receive System Bus Clock (RSBCKI). The RSBCK can be slaved to two
dif f erent c lo ck so urces: Receive System Bus Clock Inp ut (RSBCKI), or Transmit
System B us Clock In put (TSBCKI). The RSB clo ck selection is made thro ugh the
Clock Input Mux register [CMUX; addr 01A]. The system bus clock can also be
configured to run a t twice the data rate by setting the X2CLK bit in the System
Bus Interface Configuration register [SBI_CR; addr 0D0].
In Non-Multiplexed mode, the RFSYNC/RMSYNC dual function pin is
configured for either RFSYNC or RMSYNC usi ng the RMSYNC_EN regi ster bit
[PIO; addr 018]. RFSYNC and RMSYNC can be con figured as inputs or out pu ts
[PIO; addr 018]. RFSYNC and RMSYNC should be configured as inputs when
the RSB timebase i s slaved to the system bus [SBI_OE; addr 0D 0]. RFSYNC an d
RMSYNC should be configured as outputs when the RSB timebase is master of
the system bus. RFSYNC and RMSYNC can be also configured as rising or
falling edge outputs [RSB_CR; addr 0D1]. In addition to having RFSYNC and
RMSYNC active on the frame boundary, a programmable offset is available to
select the time slot and bit offset in the frame. See the Receive System Bus Sync
Time Slot Offset [RSYNC_TS; addr 0D3] and the Receive System Bus Sync Bit
Offset [RSYNC_BIT; addr 0D2].
2.3.4.2 Slip Buffer The 64-byte Receive PCM Slip Buffer [RSLIP; addr 1C0 to 1FF] resynchronizes
the Receiver Clock (RCKI) and data (RNRZ), to the Receive System Bus Clock
(RSBCK) and data (RPCMO). RSLIP acts lik e an elastic store by clo cking RNRZ
data in with RCKI and clocking PCM data out on RPCMO with RSBCK.
If the system bus rate is g reater than the line rate (i.e., T1 line rate and E1
system bu s ra te), there will be a mismatched num ber of time slots. Th e m apping
of line rate time slots to system bus time slots is done by time slot assignments
with the ASSIGN bit in the System Bus Per-Channel Control register [SBC0 to
SBC31; addr 0E0 to 0FF]. ASSIGN selects which system bus time slots are used
to transport line rate time slots. Time slot mapping is done by mapping the first
line rate time slot to the first assigned system bus time slot. F or example, T1 to E1
mapping might make every fourth time slot unassigned (i.e., 3, 7, 11, 15, 19, 23,
27, 31); see Figure 2-13. This distribution of unassigned time slots averages out
the idle tim e slots and optimizes the use of th e slip buffer.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.3 System Bus
100054E Conexant 2-29
RSLIP has four modes of operation: Two Frame Normal, 64-bit Elastic,
Two-Frame Short, and Bypass. RSLIP mode is set in the Receive System Bus
Configuration register [RSB_CR; addr 0D1]. RSLIP is organized as a two-frame
buffer. This allows MPU access to frame data, regardless of the RSLIP mode
selected. Each byte offset into the frame buffer is a different time slot: offset 0 in
RSLIP is always time slot 0 (TS0), offset 1 is always TS1, and so on. The slip
buffer has processor read/write access.
Two- Frame Nor mal In Normal mode, the slip buffer total depth is two 193-bit frames (T1) or two
256-bit frames (E1). Data is written to the slip buffer using RXCLK, and read
from the slip buffer using RSBCK. If a slight rate difference between the clocks
occurs, the slip buffer changes from its initial condition—approximately half
full—by either adding or re moving frames. If RXCLK write s to the slip buffer
faster than RSBCK reads the data, the buffer will fill up. When the slip buffer in
Normal mode is full, an entire frame of data is deleted. Conversely, if RSBCK
reads the slip buffer faster than RXCLK writes the data, the buffer will become
empty. When the slip buffer in Normal mode is empty, an entire frame of data is
duplicated. When an entire frame is deleted or duplicated it is known as a Frame
Slip (FS LIP), w hich is al w a ys one f ull frame of data. The FSLIP stat us is reported
in the Slip Buffer Status register [SSTAT; addr 0D9]. In T1 mo de, the F-bit is
treated as par t of the frame and can slip accordingly.
Figure 2-13 . T1 Line to E1 System Bus Time Slot Mapping
NOTE(S):
(1) u = unassigned time slots
(2) FA = T1 frame bit, frame A
(3) FB = T1 fram e bi t, fr am e B
FA2 3 4 5 24 FB1 2 41233
0 2 3 4 516 28 30 31 0 129 2
RNRZ
RPCMO
Frame A Frame B
u
7
u27
u
6
u
22
2.0 Circuit Descrip tion CX28394/28395/28398
2.3 Sys t em Bus Quad/x16/Octal—T1/E1/J1 Framers
2-30 Conexant 100054E
64-Bit Elastic In 64-bit Elastic mode, the slip buffer total depth is 64 bits, and the initial
throughput delay is 32 bits, one-half of the total depth. Similar to Normal mode,
Elastic mode allows the system bus to operate at any of the programmable rates,
independe nt of t he li ne rate. T he adv a ntage of thi s mode over t he Normal mode is
that throughput delay is reduced from one frame to an average of 32 bits, and the
output multiframe always retains its alignment with respect to the ou tput data.
The disadv antage of th is mode is handling t he full and empty buf fer conditions. In
Elastic mode, an empty or full buffer condition causes an Uncontrolled Slip
(USLIP). Unlike an FSLIP, a USLIP is of unknown size within the range of 1 to
256 bits of data. The USLIP status is reported in SSTAT.
Two- Frame Short The Two- Frame Short mode c ombi nes t he dep th of t he Normal mode wit h th e
throughput delay of the Elastic mode. The Two-Frame Short mode begins in the
Elastic mode with a 32-bit initial throughput delay, and switches to the Normal
mode wh en the buf fer becomes empty or full; th ereafter the Tw o-Frame Sh ort and
normal mode perform identically. If the slip buffer is full (two frames) in the
Two-Frame Short mode, an FSLIP is reported, after which the slip buffer and
Two-Frame mode perform identically.
Bypass In Bypass mode, d ata is immediat ely clocked through RSLIP from t he R CVR
to RSB, and RCKI internally replaces the system bus clock.
2.3.4.3 Signaling Buffer The 32-byte Receive Signaling Buffer [RSIG; addr 1A0 to 1BF] stores a single
multiframe of signaling data. Each byte offset into RSIG contains signaling data
for a different time slot: offset 0 stores TS0 signaling data, offset 1 stores TS1
signaling data an d so on. The signali ng data is stored in th e least si gnificant 4 bit s
of RSIG. The output signaling data is stored in the most significant 4 bits of
RSIG. Similar to RSLIP, the RSIG buffer has read/write processor access to read
or overwrite signaling information. RMSYNC extracts robbed-bit signaling from
RSIG onto RPCMO; RFSYNC extracts ABCD signaling from RSIG onto
RSIGO.
The RSIG buffer has the following confi gurable features: transparent,
robbed-bit signaling; signaling freeze; debounce signaling; and unicode
detection. Each feature is available in the Receive Signaling Configuration
register [RSIG; addr 0D7]. See the registers section for more details.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.3 System Bus
100054E Conexant 2-31
2.3.4.4 Signaling Stack The Receive Signaling Stack (RSTACK) allows the processor to quickly extract
signaling changes without polling every channel. RSTACK is activated on a
per -channel basis by set ting the Receiv ed Si gnal ing St ack (SIG_STK) control bit
in the Receive Per-Channel Control register [RPC0 to RPC31; addr 180 to 19F].
The signaling stack stores the channel and the A, B, C , and D signaling bits that
changed in the last multiframe. The stack has the capacity to store signaling
changes for all 24 (T1) or 30 (E1) PCM channels.
At the end of any mul tiframe where one or more ABCD sign aling values have
changed, an interr upt occurs with RSIG set in the Timer Interrupt Status register
[ISR3; addr 008]. The processo r then reads the Recei ve Si gnaling Stack [STACK;
addr 0DA] twi ce to retrieve the chan nel number (WORD = 0) and the ne w ABCD
value (WORD = 1), and continues to read from STACK until the MORE bit in
STACK is cleared, indicating the RSIG stack is empty.
Optionally, the processo r can select RSIG interrupt (SET_RSI G; addr 0D7) t o
occur at each multiframe boundary in T1 modes, regardless of signaling change.
This mode provides an interrup t a ligned to the m ultiframe to read the RSIG
buffer, rather than to read RSTACK.
2.3.4.5 Embedded
Framing Embedded framing mode bit (EMBED; addr 0D0) instructs the RSB to embed
framing bits in RPCMO while in T1 mode.
The Embedded mode supports ITU-T Recommendation G.802, which
describes how 24 T1 time slots and one framing bit (193 bits) are mapped to 32
E1 time slots (256 bits). This mapping is done by leaving TS0 and TS16
unassigned; by storing the 24 T1 time slots in TS1 to TS15, and TS17 to TS25;
and by storing the frame bit in bit 1 of TS26 (see Figure 2-14). TS26 through
TS31 are also unassigned.
Figure 2-14. G.802 Embedded Framing
NOTE(S):
(1) X = unuse d bit s
(2) u = unassi gned time slot (see ASSIGN bi t [addr 0E0 to 0FF])
(3) FA = T1 frame bit, frame A
(4) FB = T1 fram e bi t, fr am e B
(5) FC = T1 fram e bi t, fr am e C
FA214 24 FB1 2 23 24 1 2123F
C
0 2 14115 24 26 27 3125 0
RNRZ
Frame A
uu uuu
15 16 17
16 17 18 1 2
Frame B
E1 Framing E1 Multiframe/Signalling
Time Slot
X X X X X XX
FB
Time Slot
RPCMO
2.0 Circuit Descrip tion CX28394/28395/28398
2.3 Sys t em Bus Quad/x16/Octal—T1/E1/J1 Framers
2-32 Conexant 100054E
2.3.5 Transmit System Bus
The Transmit System Bus (TSB) consists of a timebase, slip buffer, signaling
buffer, and transmit framer (Figure 2-15). It provides a high-spe ed serial inte rface
between the XMTR and the system bus.
The TSB contain s the fo llowing five pins:
Figur e 2-15. TSB Interface Bl ock Dia gram
8394-8-5_035
TINDO
TFSYNC
TMSYNC
RSBCKI
TSBCKI
TSIG
Local
TSIG
Local
TSLIP
Buffer
TPHASE
Transmit
Framer
TSB
Timebase
TPCMI
TSIGI
Remote
Channel
Loopback
Local
Channel
Loopback
TNRZ
From
Transmit
TXDATA
Timebase
Pin Name Function
TSBCKI Transmit S y stem Bus Clock
TPCMI Trans m it PCM Data
TFSYNC/TMSYNC Transmit Frame Sync or
Tran sm it Multiframe Sync
TINDO/TDLCKO Transmit Time Slot Indicator or
Transmit Datalink Clock
TSIGI/TDLI Transmit Signaling Data or
Transmit Datalink Data
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.3 System Bus
100054E Conexant 2-33
Refer to Figure 2-16 for the relationship between these signals. Signal
definitions are provided in Table 1-6, Hardware Signal Definitions. TSB data
outputs can be configured to input data on the rising or falling edge of TSBCKI
(see the Transmit System Bus Configuration register [TSB_CR; addr 0D4].
The TSB supports five different system bus rates (MHz):
1.536 MHz—T1 rate, 24 time slots, without framing bits
1.544 MHz—T1 rate with framing bits
2.048 MHz—E1 rate, 32 time slots
4.096 MHz—twice the E1 rate, 64 time slots
8.192 MHz—four times the E1 rate, 128 time slots.
Figure 2-16. Transmit System Bus Waveforms
TSBCKI
123456781234567812
XXXXABCDXXXXABCDXX
12345678F123456781
XXXXABCDXXXXXABCDX
TPCMO
TINDO
TSIGI
TPCMI
TINDO
TSIGI
TFSYNC
TMSYNC
Frame48TS31 Frame1TS0
Frame48TS24 Frame0TS1
E1
T1
2.0 Circuit Descrip tion CX28394/28395/28398
2.3 Sys t em Bus Quad/x16/Octal—T1/E1/J1 Framers
2-34 Conexant 100054E
The 4.096 an d 8.192 MHz bus mo des contain mu lti ple bus members (A, B, C,
and D) of which one bus member is selected by the SBI [3:0] bits in the System
Bus Interface Configuration register [SBI_CR; 0D0] (see Figures 2-17 and 2-18).
The system bus r at e i s in dependent of th e l in e rat e and must be selected using the
System Bus Interface Configuration register.
Figure 2-17. TSB 4096K Bus Mode Time Slot Interleaving
NOTE(S): A and B ti me slot data comes from different framers. TSBCKI can be operat ed at 1 or 2 times t he data rate.
TSBCKI
TS31A TS31B TS0A TS0B
TPCMI
TFSYNC
SIG31A SIG31B SIG0A SIG0B
TSIGI
Figure 2-18. TSB 8192K Bus Mode Time Slot Interleaving
NOTE(S): A, B, C, and D time slot d ata comes from d if ferent framers. TSBCKI can be o perat ed at 1 or 2 times t he data rate.
SIG31A SIG31B SIG31C SIG31D SIG0A SIG0B SIG0C SIG0D
TSBCKI
TSIGI
TFSYNC
TS31A TS31B TS31C TS31D TS0A TS0B TS0C TS0D
TPCMI
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.3 System Bus
100054E Conexant 2-35
2.3.5.1 Timebase The TSB timebase sync hronizes TPCMI, TFSYNC, TMSYNC, and T INDO with
the Transmit System Bus Clock (TSBCK). The TSBCK can be slaved to three
different clock sources: Transmit Clock Input (TCKI), Transmit System Bus
Clock Input (TSBCKI), and Receive System Bus Clock Input (RSBCKI). The
TSB clock selection is ma de t hrou gh t he C l ock In put Mu x register [ C MUX; a ddr
01A]. TCKI is autom a tically selected when the tra nsmit slip buffer is bypassed.
The system bus clock can also be configured to run at twice the data rate by
setting the X2CLK bit in the System Bus Interface Configuration register
[SBI_CR; addr 0D0] when TSLIP is not in Bypass mode.
In Non-Multiplexed mode, the TFSYNC/TMSYNC dual function pin is
configu red for either TFSYNC or TMSYNC using t he TMSYNC_EN reg ister bit
[PIO; addr 018]. TFSYNC and TMSYNC can be individually configured as
inputs or outputs, [PIO; addr 018]. TFSYNC and TMSYNC should b e configured
as inputs when the TSB timebase is slaved to the system bus, the transmit framer
is disabled [TABORT; addr 071], or TSB carries embedded T1 framing.
TFSYNC and TMS YNC should be c onfigur ed as outputs w hen the T SB timebase
is master of the system bus, or the transmit framer is enabled. TFSYNC and
TMSYNC can be also configured as rising or falling edge outputs [TSB_CR;
addr 0D4]. In addition to having TFSYNC and TMSYNC active on the frame
boundary, a prog rammable offset is available to select the time slot and bit offset
in the frame (see Transmit System Bus Sync Time Slot Of fset [TSYNC_TS; ad dr
0D6] and Transmit System Bus Sync Bit Offset [TSYNC_BIT; addr 0D5]).
2.3.5.2 Slip Buffer The 64-byte T ra nsmit PCM S li p Buffer [TSLIP; addr 140 to 17F] resync hroni zes
the Transm it System Bus Clock (TSBCK) and data (TPCMI) to the Transmit
Clock (TXCLK) and data (TNRZ). TSLIP acts like an elastic store by clocking
PCM data in on T PCMI wi th TS BCK and cl ocking TNRZ dat a out with T XCLK.
TPCMI ca n be con figure d to sa mple on the r ising or fall ing ed ge of TSBCKI (see
the Transmit System Bus Configuration register [TSB_CR; addr 0D4]).
TSLIP has four modes of operation: Two Frame Normal, 64-bit Elastic, Two
Frame Short, and Bypass. TSLIP mode is set in the Transmit System Bus
Configuration register [TSB_CR; addr 0D4]. It is organized as a two-frame
buffer, with high frame and low frame buffers. This allows MPU access to frame
data, regardless of the TSLIP mode selected. Each byte offset into the frame
buf fer is a different t i me sl ot, offset 0 in TSLIP i s always ti me slot 0 ( TS0) ; offset
1 is always TS1, and so on. The slip buffer has processor read/write access.
Two- Frame Nor mal In Normal mode, the slip buffer total depth is two 193-bit frames (T1), or two
256-bi t frames (E 1). Data is written t o the sl ip buf fer u sing TSB CK and read from
the slip buffer using TXCLK. If there is a slight rate difference between the two
clocks, the slip buffer changes from its initial condition—approximately half
full—by either ad ding or removing frames. If TSBCK writes to the slip buffer
faster than TXCLK reads the data, the buffer becomes full. When the slip buffer
in Normal mode is full, an entire frame of data is deleted. Conversely, if TXCLK
is reading the slip buffer at a faster rate than TSBCK is writing the data, the buffer
will eventually empty, and an entire frame of data is duplicated. When an entire
frame is deleted or duplicated, it is known as a Frame Slip (FSLIP). An FSLIP is
always one full frame of data. The FSLIP status is reported in the Slip Buffer
Status register [SSTAT; addr 0D9].
2.0 Circuit Descrip tion CX28394/28395/28398
2.3 Sys t em Bus Quad/x16/Octal—T1/E1/J1 Framers
2-36 Conexant 100054E
64-Bit Elastic In 64-bit Elastic mode, the slip buffer total depth is 64 bits and the initial
throughput delay is 32 bits, or one-half of the total depth. Similar to Normal
mode, Elastic mode allow s the system bus to operate at any of the programmable
bus rate s, independent of the line rate. The advantage of th is mode over the
tw o-frame mod e is that t hroughput del a y is reduced from on e frame to an average
of 32 bits, and the transmit multiframe can retain its alignment with respect to the
transmit data. The di sadva ntage of t his mode is handling the full an d empty buf fer
conditions. In 64-bit Elastic mode, an empty or full buffer condition causes an
Uncontrolled Slip (USLIP). Unlike an FSLIP, a USLIP is of unknown size,
ranging from 1 to 256 bits of data. The USLIP status is reported in SSTAT.
Two- Frame Short The Two- Frame Short mode c ombi nes t he dep th of t he Normal mode wit h th e
throughput delay of the Elastic mode. This mode begins in Elastic mode with a
32-bit initial throughput delay, and switches to Normal modes when the buffer is
empty or full; thereafter, the Two-Frame Short and Normal modes perform
identically. If the slip buffer is full (two frames) in the Two-Frame Short and
normal modes, an FSLIP is repor ted; thereafter, the slip buffer performs exactly
like Normal mode.
Bypass In Bypass mode, data is clocked through TSLIP from the TSB to the XMTR
using TXCLK as selected by the TXCLK input clock mux.
2.3.5.3 Signaling Buffer The 32-byte Transmit Signaling Buffer [TSIG; addr 120–13F] stores a single
multiframe of signaling data input from TSIGI pin and is updated as each time
slot is recei v ed in e v ery TSB frame. Each b yte of fset into TSIG is a dif ferent time
slot’s signaling data: offs et 0 stores TS0 signaling data, offset 1 stores TS1
signaling d ata, etc. T he signaling d ata is stor ed in the least sign ificant 4 bits of the
signaling buffer. Similar to TSLIP, TSIG has read/write processor access for
accessing or overwriting signal ing information. T FSYNC is us ed b y the sign aling
buffer to identify the frame boundaries in the TSIGI data stream.
2.3.5.4 Transmi t
Framing A transmit framin g option is provided to allow the transmitter to autom a tically
align to the transmit P CM data on TPCMI. In this mode, the Transmit Framer
searches transmit data for a valid E1 or T1 framing pattern. The transmit data
stream has tw o framing functions: offline framer and an onl ine framer . The of fline
framer recovers the transmit frame alignment (TFSYNC). The online framer
monitors the frame alignment found by the offline framer and recovers
multiframe alignment (TMSYNC).
Transmit Fr a m e Alig nm en t Transmit frame resynchronizati on is initiated by activating the Transmit Loss
Of Frame (TLOF) status bit in the Alarm 2 status [ALM2; addr 048] register by
the online framer. The TLOF criteria is set in the TLOFA, TLOFB, and TLOFC
bits of the Transmitter Configuration register [TCR1; addr 071]. The online
framer suppor ts the following LOF criteria for T1: 2 frame bit e rrors out of 4, 2
out of 5, or 2 out of 6; for E1, it supports 3 out of 3. Figure 2-19 illustrates
transmit framing and timebase alignment options.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.3 System Bus
100054E Conexant 2-37
When TLOF is asserted, the offline framer searches the transmit data stream
for a new frame alignment, provided that transmit framing is enabled [TABORT;
addr 071]. If embedded framing is enabled [EMBED; addr 0D0], the offline
framer examines the TSLIP buffer output—TNRZ—for transmit frame
alignment. If embedded framing is disabled, the offline framer examines the slip
buffer input (TPCMI) for transmit frame alignment. This case (EMBED = 0) is
only applicable if TPCMI is configured to operate at the line rate—2,048 kbps
E1, or 1,544 kbps T1. If transmit framing is disabled, the offline framer waits for
a reframe command [TFORCE; addr 071] before beginning a frame alignment
search.
Transmit Multiframe
Alignment After the offline framer recovers frame alignment, the online framer monitors
TLOF and searches for m ul tiframe al ignment using criteria defined by the
Transmit Frame mode [TFRAME; addr 070]. The online framer conducts a
multiframe alignme nt search each time the of flin e framer recovers transmit frame
alignment—as reported by high-to-low transition of transmit loss of frame status
[TLOF; a ddr 0 48]. After TLOF recovery, the online fr amer searc hes cont inuou sl y
for multiframe alignment until the correct pattern seq uence is located, or u ntil
basic fram e alignment is lost (TLOF goes active-high). After m ultiframe
alignment recovery, the online framer checks subsequent multiframes for errored
alignment patterns, but does not use those errors as part of the criteria for loss of
basic frame alignment.
Figure 2-19. Transmit Framing and Timebase Alignment Options
NOTE(S):
(1) EMBE D locate d in SBI_CR (addr 0D0).
(2) TSB_ALIGN a nd TX_AL IGN locat ed in TSB_CR (a ddr 0D4) .
TPCMI
Off-Line
Framer
Pass
MF
Pass
MF
TSLIP
Buffer
A01 C
D
FSYNC MSYNC
TSB Timebase
TFSYNCI
TMSYNCI
TMSYNCO
TFSYNCO
ATSB Aligns to TPCMI (EMBED = 0)
BTSBAlignstoTX(TSB_ALIGN=1)
CTSB Aligns to TNRZ (EMBED = 1)
DTX Aligns to TSB (TX_ALIGN = 1)
TPHASE
Recenter
(TUSLIP)
CAS
On-Line MFAS
On-Line
TNRZ
TX Timebase
FSYNC MSYNCFAS CAS
TSB
Offset B
2.0 Circuit Descrip tion CX28394/28395/28398
2.3 Sys t em Bus Quad/x16/Octal—T1/E1/J1 Framers
2-38 Conexant 100054E
Note that th e online frame r' s m ultiframe se arch status is not directly reporte d
to the processor , but instead is monitored by e xamination of transmit error status:
TMERR, TSERR, and TCERR [addr 00B]. If the system incorporates a certain
number of m ultiframe pattern e rrors (or a certain error ra tio) into th e loss of
transmit frame alignment criteria, the processor must count multiframe pattern
errors to determine when to force a transmit reframe [TFORCE ; addr 071].
Transmit Fr a m e Alig nm en t
Criteria The frame synchronization criteria used by the offline framer is set in the
TFRAME[3:0] of the Transmit Framer Configuration register [TCR0; addr 070].
(Tables 3-15 and 3-16 illustrate supported transmit framing formats. Also, see
Tables 3-17 and 3-18, Criteria for Loss/Recovery of Transmit Frame Alignment.)
Transmit/Receive Framer
Arbitration The offline framer is shared between the RCVR and XMTR and can only
search in one direction at a time. Consequently, the host processor can manually
arbitrate between RCVR and XMTR reframe requests by manipulating the
ABORT and FORCE controls, or by allowing the framer to automatically
arbitrate LOF requests.
The offline framer waits until the current search is complete [FSTAT;
addr 017] before checking for pending LOF reframe requests. If both online
framers have pending reframe requests, the offline framer aligns to the opposite
direction of that most recently searched. For example, if TLOF is pending at the
conclusion of a receive search which timed out without finding alignment, the
offline framer switches to search in the transmit direction. The TLOF switchover
is prevented in the preceding example if the processor asserts TABORT to mask
the transmit reframe request. TABOR T does not affect TLOF status reporting. F or
applications that frame in only one direction, framing in the opposite direction
must be masked. If, at the conclusion of a receive search timeout, TLOF status is
asserted but masked by TABORT, the offli ne framer continues to search in the
receive direction.
For applications that frame in both directions, the processor can manually
arbitrate among pending reframe requests by controlling the reframe precedence.
An example of manual control follows:
1 Initialize RABORT = 1 and TABORT = 1.
2 Enable RL OF and TLOF interrupts.
3 Read clear pending ISR interrupts.
4 Release RABORT = 0.
5 Cal l LOF Ser vice Routine if either RLOF or TL OF interrupt;
{(check current LOF status (A LMI, 2; addr 047, 048)
If RLOF recovered and TLOF lost
—Assert RABORT = 1
—Release TABORT = 0
If RLOF lost or TLOF recovered
—Assert T ABOR T = 1
—Release RAB O RT = 0
}
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.3 System Bus
100054E Conexant 2-39
The status of the offline framer can be monitored using the Offline Framer
Status re gi ster [F STAT; ad dr 017]. The re gi ster re ports the following: w hether the
offline framer is looking at the receive or transmit data streams (RX/TXN);
w hether the frame r is a ctiv ely searching for frame a lignme nt (ACTIVE); whether
the framer found multiple framing candi dates (T IMEOUT); whether the framer
found frame sync (FOUND); and whether the framer found no frame alignment
candidates (INVALID).
2.3.5.5 Embedded
Framing Embedded framing mode [EMBED; addr 0D0] instructs the transmit framer to
search TSLIP buffer output (TNRZ) for framing bits while in T1 mode, or for
MFAS and CAS in E1 mode. Embedded framing allows the transmit timebase to
align with the transmit framer mul tiframe alignment of th e PCM signa l
transported across the system bus.
The Embedded mode supports ITU-T Recommendation G.802, which
describes how 24 T1 time slo ts and framing bit (193 bits) are mapped to the 32 E1
time slots (256 bits): by leaving TS0 and TS16 unassigned; by storing the 24 T1
time slots in TS1 t o TS15, and in TS17 to TS25; and by storing the frame bit in
Bit 1 of TS26 (see Figure 2-14, G.802 Embedded Framing).
2.0 Circuit Descrip tion CX28394/28395/28398
2.4 Tran s mi tter Quad/x16/Octal—T1/E1/J1 Framers
2-40 Conexant 100054E
2.4 Transmitter
The Transmitter (XMTR) inserts T1/E1 overhea d data and ou tputs single ra il
NRZ data from the TSB or ZCS-encoded P and N rail NRZ data. The CX28395
only provi des single rail NRZ transmit signals.
The XMTR, Figure 2-20, consists of the followi ng elements: two Transmit
Data Links, Test Pa ttern Generat or , In-Band Loop back Code Generator , Overhead
Pattern Generator, Alarm Generator, Zero Code Suppression (ZCS) Encoder,
External Transmit Data Link (CX28394 and CX28398 only), CRC Generation,
Framing Pattern Insert ion, an d Far End Blo ck Error Gener ator.
Figure 2-20. XMTR Diagram
TPDV Enforcer
Alarm/Error Insert
PRBS/Inband LB
Sa-Byte/BOP
Data Link 1 Buffer
Data Link 2 Buffer
External DL3
T1/E1 Frame Insert
Transmitter
Timebase
TXCLK
To TSBI
TNRZ
ZCS
Encoder
AIS
Generator
Line
Loopback Framer
Loopback
TPOSO/TNRZO
TNEGO/MSYNCO
TDLI
TDLCKO
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.4 Transmitter
100054E Conexant 2-41
2.4.1 External Transmit Data Link (CX28394 and CX28398 Only)
The Exte rnal Data Link (DL3) all o ws the system to e xternall y suppl y an y bit (s) in
an y t i me sl ot in all frame s, odd frames or even frames, including T1 framin g bit s.
Pin access to the DL3 transmitter is provided through TDLCKO and TDLI. These
two pins serve as the TDL3 clock output (TDLCKO) and data input (TDLI). The
mode of the pins is sel ected using the TDL_IO bit in the Program m able
Input/Output register [PIO; addr 018].
Control of DL3 format is prov ided in two registers: External Data Link
Channel [DL3_TS; add 015] and External Data Link Bit [DL3_BIT; addr 016].
Transmit DL3 is set up by selecting the bit(s) [DL3_BIT], time slot [TS[4:0];
addr 015], and frames [EVEN/ODD; addr 015] to be overwritten, then enabling
the data link [DL3EN; addr 015]. Enabling the data link will start TDLCKO
gating the NR Z dat a provided on TDLI (see Figure 2-21).
NOTE: DL3 signals are not provided on the CX28395. Therefore, DL3_TS must
be written to 00 to disable the DL3 transmitter and prevent transmit data
corruption.
2.4.2 Transmit Data Links
The XMTR contains two independent data link controllers (DL1, DL2), a
Performance Report Message (PRM) generator, and a Bit-Oriented Protocol
(BOP) transceiver. DL1 and DL2 can be programmed to send and receive HDLC
formatted messages in the Message Oriented Protocol (MOP) mode or
unformatted serial data over an y combina tion of bi ts with in a selected time slot or
F-bit channel. The PRM message generator can immediately or automatically
send one-second performance reports. The BOP transceiver can preemptively
transmit BOP messages, such as ESF Yellow Alarm.
2.4.2.1 Data Link
Controllers DL1 and DL2 control serial data channels operating at multiples of 4 kbps up to
the full 64 kbps time slot rate by selecting a combination of bits from odd, even,
or all frames. Both data link controllers support ESF Facilities Data Link (FDL),
SLC-96 data link, Sa data link, Common Channel Signaling (CCS), Signaling
System #7 (SS7), ISDN LAPD channels, Digital Multiplexed Interface (DMI)
signaling in TS24, as well as the latest ETSI V.51 and V.52 signaling channels.
DL1 and DL2 each contain a 64-byte transmit buffer which function either as
prog rammable length circular buffers in transparent (unformatted) mode, or as
full-length data FIF O s in formatted (HDL C) mode.
Figure 2-21. Transmit External Data Link Waveforms
NOTE(S): This example shows bits 1, 2, 7, and 8 of TS9 selected. A ny combination of time slot bits can be select ed.
TDLI
TDLCKO
1 2 7 8
TS8 TS9 TS10
2.0 Circuit Descrip tion CX28394/28395/28398
2.4 Tran s mi tter Quad/x16/Octal—T1/E1/J1 Framers
2-42 Conexant 100054E
DL1 and DL2 are configured identically, except for their offset in the register
map. The DL1 address range is 0A4 to 0AE, and the DL2 address ra nge is 0AF to
0B9. From this point on, the DL1 is used to describe the operation of both data
link controllers. Transmit Data Link 1 (TDL1) can be viewed as having a higher
priority than Transmit Data Link 2 (TDL2) because TDL1 overwrites the primary
rate channel after TDL2. Thus, any data tha t TDL2 writes t o the primary rate
channel can be overwritten by TDL1, if TDL1 is configure d to transmit in the
same time slot as TDL2.
The TDL1 is enabled using the DL1 Control register [DL1_CTL; addr 0A6].
TDL1 will not o verwrite time slot data until it is enabled. DL1_CTL also controls
the data format and the circular buffer/FIFO mode.
The following data formats [DL1[1,0]; addr 0A6] are supported on the data
link: Frame Check Sequence (FCS), non-FCS, Pack8, or Pack6. FCS and
non-FCS are HDLC-formatted messages. Pack8 and Pack6 are unformatted
messages with 8 bits per FIFO access, and 6 bits per FIFO access, respectively.
2.4.2.2 Circular Buffer The Circular Buffer/ FIFO cont rol bit [TDL1_RPT; addr 0A6] al lows the FIFO to
act as a circular buffer; in this mode, a message can be transmitted repeatedly.
This feature i s available only for unformatted transmit da ta link applications . The
processor can repeatedly send fixed patterns on the selected channel by writing a
1- to 64-byte message into the circular buffer. The programmed message length
repeats until the processor writes a new message. The first byte of each
unformatted message is output automatically, aligned to the first frame of a
24-, or 16-frame transmit multiframe (SF/ESF/MFAS). This allows the processor
to source overhead or data elements aligned to the TX timebase. In both SF and
ESF T1 modes, unformatted messages are aligned on 24-frame boundaries.
Therefore, i n SF applica tions the repeat ing message must be desi gned to span two
SF multiframes.
Each unformatted message written is output-aligned only after the preceding
message complet es transmission. T herefore, data continui ty is reta ined during t he
linkage of consecutive messages, provided that the contents of each message
consists o f a mu ltiple of th e mu ltiframe len gth.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.4 Transmitter
100054E Conexant 2-43
2.4.2.3 Time Slot and
Bit Selection Time slot and bit selection is done through the DL1 Time Slot Enable [DL1_TS;
addr 0A4] and DL1 Bit Enable [DL1_BIT; addr 0A5] registers. DL1_TS selects
which frames and which time slot will be overwritten. The fram e select allows
TDL1 to overwrite the time slot in either all frames, odd frames, even frames, or
in a special 2 kbps mode. The time slot word enable is a value between 0 and 31
that selec ts which time slot will be filled wit h data from the transmit data link
buffer. DL1_BIT selects which bits will be overwritten in the time slot selected.
Table 2-5 lists commonly used data link settings.
2.4.2.4 Transmit Data
Link FIFO Buffer The T ransmit Dat a Link F IFO #1 [T DL1; addr 0AD] is a v e rsatile, 64- b yt e buf fer
that can be used as a single-byte transmit buffer or for any number of bytes up to
64. As a single-byte FIFO, the Transmit FIFO Empty Status (TMPTY1) in TDL
#1 Status [TDL1_STAT; addr 0AE] and Transmit FIFO Empty Interrupt
(TEMPTY) in Data Link 1 Interrupt Status (ISR2; addr 009] can be used to do
byte-by-byte transmissions.
Using the Transmit Data FIFO , an entire block of data can be transmitted with
very lit tle microprocesso r interrupt overhead. Block tran sfers to the FIFO can be
controlled by the Near Empty Threshold in the FIFO Empty Control register
[TDL1_FEC; addr 0AB]. The Near Empty Threshold is a user-programmable
value between 0 and 64 that represents the minimum number of bytes that can be
left in the transmit FIF O before near empty is de cla red. Once t he threshol d is set,
the Near Empty Status (TNEAR1) in TDL #1 Status [TDL1_STAT; addr 0AE]
will be asserted whenever the Near Empty Threshold is reached. An interrupt,
TNEAR in the Data Link 1 Interr upt Status register [ISR2; addr 009], is also
available to mark this event.
2.4.2.5 End of Message Once an entire message is written to the tran sm it FIFO or circular buffer, the
processor must indicate the end of message by writing any value to the TDL #1
End Of Message (EOM) Control [TDL1_EOM; addr 0AC]. In FCS mode, the
EOM indicates that the FCS is to be calculated and transmitted following the last
byte in the FIFO. In the circular buffer mode, the EOM indicates the end of the
transmit circular buf fe r.
Table 2-5. Commonly Used Data Link Settings
Data Link Frame Time Slot Time Slot Bits Mode
ESF F DL Odd 0 (F-bi ts) Don’t Care FCS
T1DM R Bit All 24 00000010 FCS
SLC-96 Even 0 (F-bits) D on’t Care Pack6
ISD N LAPD All N 111 11111 FCS
CEPT Sa4 Odd 1 0000100 0 FCS
NOTE(S): N represen ts any T1/E1 time slot.
2.0 Circuit Descrip tion CX28394/28395/28398
2.4 Tran s mi tter Quad/x16/Octal—T1/E1/J1 Framers
2-44 Conexant 100054E
2.4.2.6 Programming
the Data Link Controller The Transmit Data Link Controller can be prog rammed according to the system
CPU bandwidth. For systems with sufficient CPU bandwidth, the data l i nk stat us
can be polled, and the 64-byte transmit FIFO buffer can be used as a single-byte
transmit buffer. For systems with limited CPU ban dwidth, the data link can be
interrupt-dri ven, and the entire 64-b y te transmit FIFO buf fe r can be used to store
entire messages. See Figures 2-22 and 2-23 for a hi gh l ev el description o f pol l in g
and interrupt-driven Transmit Data Link Controller software.
The de v ice uses a hierarchical in terrupt structure, with one top-lev el int errupt
request register directing software to the lower levels (see Master Interrupt
Request register; addr 081 and Interr upt Request register; addr 003). Of all the
interrupt sources, the two most significant bandwidth requirements are signaling
and data link interrupts. Each data link controller has a top-level interrupt status
register that reports data link operations (see Data Link 1 and 2 Interrupt Status
registers [ISR2; addr 009, and ISR1; 00A]). The processor uses a three-step
interrupt scheme for the data link:
1. Read the Master Interrupt Request register to determine which framer is
interrupted.
2. Read the Interrupt Request register for that framer.
3. Use that register value to read the corr esponding Data Link Interrupt
Status register.
Figure 2-22. Polled Transmit Data Link Processing
Transmit Message
WriteBlock/BytetoFIFO
Yes
Read FIFO Status
No
Write End of Message Register
Yes
Return
Wait N Milliseconds
If
End of
Message
No
If
FIFO Empty
Message
Block 1
Block 2
Block 3
0x00
0x20
0x40
or Near
Empty
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.4 Transmitter
100054E Conexant 2-45
Figure 2-23. Interrupt-Driven Transmit Data Link Processing
Transmit Message
WriteBlock/BytetoFIFO
No
Process Other Interrupt
Yes
Return
WriteBlock/BytetoFIFO
If
End of
Message
Yes
Message
Block 1
Block 2
Block 3
0x00
0x20
0x40
Main Line Code
Return
Interrupt Service Routine
Interrupt Occurred
Read Interrupt Status
If
Transmit Data
Link Near Empty
Interrupt
No
Return
Write End of Message Register
Return
Block 4
0x60
2.0 Circuit Descrip tion CX28394/28395/28398
2.4 Tran s mi tter Quad/x16/Octal—T1/E1/J1 Framers
2-46 Conexant 100054E
2.4.2.7 PRM Generator In T1 applications, Performance Report Messages (PRMs) are HDLC messages
containing path identification and performance monitoring information. If
automatic perfor mance repor t insertion is selected [AUTO_PRM; addr 0AA], a
performance report is generated each second and begins transmitting coincident
with the one-second timer interrupt [ONESEC; addr 005]. The PRM is sent
immediately if the processor sets SEND_PRM bit in the Performance Report
Message register [PRM; addr 0AA]. All performance monitoring fields of the
message are automatically filled in when a PRM is generated. The remaining
PRM bit fields are application-specific and can be configured using the
Performance Report Message register.
For limited systems, the automatic PRM generation off-loads a signific ant
portion of CPU bandwidth.
2.4.2.8 TBOP
Transceiver The Transmit Bit-Oriented Protocol (TBOP) transceiver sends BOP messages in
T1 applicati ons, inc lu di ng ESF Yell ow Alarm. These messages consist of
repeated 16-bit patterns with an embedded 6-bit codeword, as shown in this
example:
0xxxxxx0 11111111 (transmitted right to left)
[543210] TBOP = 6-bit codeword
The TBOP is configured to operate over the same channel selected by Data
Link #1 [DL1_TS; addr 0A4]. The TBOP channel must be configured to operate
over the FDL channel in order for TBOP to convey Priorit y, Command, and
Response codeword messages according to ANSI T1.403, Section 9.4.1. The
precedence of transmitted BOP messages with respect to current DL1 transmit
activity is configurable using the Transmit BOP mode bits [TBOP_MODE[1 ,0];
addr 0A0]. BOP messages can also be transmitted during E1 mode, although the
16-bit codeword pattern has not currently been adopted as an E1 standard. The
length of the BOP message [TBOP_LEN[1,0]; addr 0A0] can be set to a single
pattern, 10 patterns, 25 patterns, or continuous.
BOP codewords are tran smitted by writing to the Transm it BOP Codeword
[TBOP; addr 0A1]. The real-time status of the codeword transmission can be
monitored using TBOP_ACTIVE in the BOP Status register [BOP_STAT;
addr 0A3]. A TBOP Transmit interrupt is available in the Data Link 1 Interr upt
Status register [ISR2; addr 009] to indicate that a codeword has begun
transmission and the next codeword may be written to TBOP.
2.4.3 Sa-Byte Overwrite Buffer
There are five transmit Sa-Byte buffers [TSA4 to TSA8; addr 07B to 07F]. The
Sa-Byte buffers insert Sa-bits into the odd frames of TS0. The entire group of 40
bits is sampled every 1 6 frames coincide nt with the Transmi t Multiframe bit
interrupt boundar y [TMF; addr 008]. Bit 0 from each TSA register is then
inserted during fra me 1, bit 1 is i nserted during frame 3, bi t 2 duri ng frame 5, and
so on, which gives the processor up to 2 ms after TMF interrupt to write new
Sa-By te buffer values . Transmit Sa-bits maintain a fixed relationship to the
transmit CRC multiframe. Each of the 5 Sa-Byte transmit buffers can be
individually enabled using the Manual Sa-Byte Transmit Enable in Transmit
Manual Sa-Byte/FEBE Configuration register [TMAN; addr 074].
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.4 Transmitter
100054E Conexant 2-47
2.4.4 Overhead Pattern Generation
The transmit overhead generation circuitry provides the ability to insert all of the
overhead associated with the Primary Rate Channel. The following types of
overhead pattern generation are supported: Framing patter n s, Alarm patterns,
Cyclic Redundancy Check (CRC), and Far-End Block Error (FEBE).
2.4.4.1 F raming Pattern
Generation The framing pattern generation circuitry inserts the 2-bit terminal framing (Ft)
pattern, the 6-bit signaling frame (Fs) pattern, the 6-bit FPS pattern, the 8-bit
FAS/NFAS pattern, and the 6-bit MFAS pattern into the transmit data stream.
The Ft pattern in SF, SLC-96, and T1DM is in serted into the tra nsmit data
stream b y enab li ng the INS_FBIT in the T ra nsmit F rame Format regi ster [TFRM;
addr 072]. The Fs pattern in SF is inserted by enabling the INS_MF bit. The FPS
pattern in T1-ESF and the FAS/NFAS pattern in E1 mode are inserted b y enab ling
the INS_FBIT bit. The M FAS pattern is inserted by enabling the INS_MF bit.
2.4.4.2 Alarm
Generation The Transmit Alarm Generation circuitry generates Alarm Indication Signal
(AIS) and Remote Alarm Indication (RAI/Yellow Alarm).
AIS Generation AIS is an unframed all-ones pattern and is nor mally transmitted when the data
source is lost. AIS transmission can be enabled:
1. manually,
2. automatically upon detection of transmit loss of clock, and
3. automatically upon loss of received signal.
Typical applications require transmission of AIS toward the line when DTE
transmit dat a or clock is not p resent. In most applicat ions, DTE data and cl ock are
isolated from the transmitter requiring manual AIS transmission under software
control. Manual insertion of AIS is controlled by the TAIS bit in T ransmit Alarm
Signal Configuration register [TALM; addr 075]. Set ting this bit overwrites the
currentl y transmitted data with the AIS pattern. If AISC LK [TLIU_CR; addr 068]
is also set, AIS is tra nsmitted usi ng an alternate transmit line rate clock supplied
on E1ACKI (for E1 ) or T1ACKI (for T1) pins.
Automatic transmi ssion of AIS can be control led b y detect ion of tran smit loss
of clock [TLOC; addr 048]. This mode is enabled by setting AISCLK and
providing an alternate transmit line rate clock on the E1ACKI or T1ACKI pin. If
no transitions are detected on the TCKI pin for eight cycles of E1ACKI or
T1ACKI, TLOC is set a nd AIS is transmitte d. AIS is ter minated and TLOC
cleared when TCKI returns.
By setting AUTO_AIS in the TALM register, automatic transmission of AIS
can also be c ontrolled b y detection of Recei v er Loss Of Signal [RLOS; addr 047].
This mod e is typically used to tra nsmit AIS (keep-alive) during line lo opback if
the received signal is lost . Setting AUTO_AIS sim ultaneously with setting
LLOOP [LOOP; addr 014] enables this operation.
2.0 Circuit Descrip tion CX28394/28395/28398
2.4 Tran s mi tter Quad/x16/Octal—T1/E1/J1 Framers
2-48 Conexant 100054E
Yellow Alarm Generation Yello w Alarm, also referred to as RAI (Remote Alarm Indication), is a bit patt ern
inserted into the transmit stream to alert far-end equ ipment that the local receiver
cannot recover data. Yellow Alarm/RAI is typically transmitted during receive
loss of frame and is defined dif ferentl y depending upon t he transmit frame f ormat
configured [TFRAME; addr 070]. Table 2-6 describes the Yellow Alarm/RAI
transmitted for each frame format.
Transmission of Yellow Alar m/R AI is controlled by these register bits:
Insertion of Yellow Alarm/RAI into the transmit stream is controlled by
INS_YEL. Yellow Alarm/RAI is inserted only when INS_YEL is set, otherwise
these bit positions are supplied by data from TPCMI. Yellow Alarm/RAI
generation can be done manually or automatically.
Manual generation of Yellow Alarm/RAI is cont rolled by TYEL. Setti ng this
bit will immediately and unconditionally overwrite the Yellow Alarm/RAI signal
bit(s) in the transmitted data stream with the appropriate pattern.
Automatic generation of Yellow Alarm/RAI is controlled by AUTO_YEL ,
RLOF, and RLOF_INTEG. If AUT O_YEL is set, Yellow Alarm/RAI is generated
during a receive loss of frame alignment (RLOF = 1). Optionally, RLOF
integra tion can be enabled by setting RLOF_ I NTEG. In this ca s e , both RLOF
indication and Yellow Alarm/RAI generation are delayed for approximately 2.5
seconds if a continuous out-of-frame condition exists. Yellow Alarm/RAI
generation continues for at least 1 second after RLOF clears.
Table 2-6. Yellow Alarm Generation
Frame For m at Yellow Alarm Transmitted Mode
SF Bit 2 of every time slot set to zero YB2
ESF(1) Bit 2 of every time slot set to zero YB2
SLC-96 Bit 2 of every time slot set to zero YB2
SF/JYEL F-bit 12 of ev ery superf r a me set t o one Y J
T1DM Y bit of the sync byte set to zero Y24
E1 The A bit of TS0 set to one Y0
NOTE(S):
(1) Yellow Alarm/RAI for T1-ESF framing is defined as a BOP priority codeword in the FDL
channel. T1-ESF Yell ow Alarm/RA I is not tran smitted using the procedur e described
below. Instead, T1- ESF Yellow Alarm/RAI is generated by configuring DL1 to
continuously tr ansmit an all zeros BOP prio rit y codeword. Refer to Section 2.4.2,
Transmit Data Links.
Bit Name Register
INS_YEL TFRM; addr 072]
TYEL TALM; addr 075]
AUTO_YEL TALM; addr 075]
RLOF ALM1; addr 047]
RLOF_INTEG RALM; addr 045]
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.4 Transmitter
100054E Conexant 2-49
Multiframe Yellow Alarm
Generation In E1 CAS framing modes, Multiframe Yellow Alarm is inserted into the transmit
stream to alert far-end equipment that local received multiframe alignment is not
reco vered. E1 Multiframe Yello w Alarm is transmitted by setting the Y bit in time
slot 16, frame 0.
Transmission of Multiframe Yellow Alarm is controlled by these register bits:
Insertion of E1 Mu ltiframe Yellow Alarm is c ontrolled by INS_MYEL a nd
inserted only when INS_MYEL is set. Multiframe Yellow Alarm generation can
be initiated manually or automatically.
Manual in se rtion of Multifra m e Yellow Alarm is controlled by TMYEL.
Setting this bit will uncond itionally overwrite the Mul tiframe Yell ow Alarm
signal bit in the transmitted data stream.
Automatic inser tion of Multifra me Yellow Alarm is controlled by
AUTO_MYEL in the TALM register. When set, the AUTO_MYEL m ode will
send y ellow alarm for the duration of a receive loss of CAS multiframe al ignment
[SRED; addr 049]
2.4.4.3 CRC Generation The CRC generation circuitr y computes the value of the CRC6 code in T1 mode
or the CRC4 code in E1 mode. Once computed, it is inser ted into the appropriate
position of the transmitted dat a stream. CRC overwrite is enabled by INS_CRC
[TFRM; addr 072]. In T1 mode, CRC6 may be computed on only the payload
data or on all data including the F-bit. Setting TINCF [TCR0; addr 070] selects
CRC6 computation on all data.
If the transmit frame format is configured as ESF and INS_CRC is active, the
2 kbps CRC sequence is inserted. The position of the CRC-6 bits is shown in
Table A-4, Extended Superframe Format.
If the transmit frame format is configured as E1, and INS_CRC is active, the
4 kbps CRC sequence is inserted. The position of the CRC-4 bits is shown in
Table A-6, ITU–T CEPT Frame Format Time Slot 0 Bit Allocations.
2.4.4.4 Far-End Block
Error
Generation
The register bits that control FEBE are INS_FE [TFRM; addr 072], TFEBE
[TMAN; addr 074], FEBE_I [TMAN; addr 074], and FEBE_II [TMAN; addr
074]. The Far-End Block Error (FEBE) generation circuitry inserts FEBE bits
automa ti cally or manuall y. Automatic FE BE generation i s enabled by INS_F E. I f
the transmit frame format is configured as E1 and INS_FE bit is set, a FEBE is
generated in response to an incoming CRC-4 error by setting an E-bit of TS0 to
zero. Refer to Table A-6, ITU– T CEPT Fr ame Format T ime Sl ot 0 Bit Allocati ons,
for the location of the E-bits within the E1 frame.
Manual FEBE gene ration is en abled by TFEBE. If the tran sm it frame format
is configured as E1 and TFEBE is set, the FEBE bits are supplied by the
processor in FEBE_I and FEBE_II.
Bit Name Register
INS_MYEL [TFRM; addr 072]
TMYEL [TALM; addr 075]
AUTO_MYEL [TALM; addr 075]
SRED [ ALM3; addr 049]
2.0 Circuit Descrip tion CX28394/28395/28398
2.4 Tran s mi tter Quad/x16/Octal—T1/E1/J1 Framers
2-50 Conexant 100054E
2.4.5 Test Pattern Generation
The transmit test pattern generation circuitry overwrites the transmit data with
various test patterns and permits logical and frame-bit er ror insertion. This
feature is particularly useful for system diagnostics, production testing, and test
equipment applications. The test pattern can be a framed or unframed PRBS
pattern. The PRBS patterns available include 2E11-1, 2E15-1, 2E20-1, and
2E23-1 . Each pattern can optionall y incl ude Zero Code Suppr ession (ZCS). Error
insertion includes LCV, BPV, Ft, CRC4, CRC6, COFA, PRBS, Fs, MFAS, and
CAS.
The Transmit Test Patter n Configuration register [TPATT; addr 076] controls
the test patter n insertion circuit. TPATT controls the P RBS pattern (TPATT[1:0])
bits), ZCS se tting (ZLIM I T bit), T1/E1 fra ming (FRA MED bit), and starti ng and
stopping transmission (TPSTART bit).
Patterns are generated in accordance with ITU–T O.150 (10/92), O.151
(10/92), and O.152 (10/92). Enabling ZLIMIT modifies the inserted pattern by
limiting the number of consecutive zeros. For the 2E11-1 or 2E15-1 PRBS
patterns, eigh t or more zeros will not occur with ZLIMIT enab led. F or the 2E 20-1
or 2E23-1 PRBS patterns, 15 or more zeros will not occur with ZLIMIT enabled.
Note that the QRSS patt ern is a 2E20-1 PRBS with ZLIMIT enabled. This
function is performed according to ANSI T1.403 and ITU–T O.151 (10/92).
Frame bit positions can be preserved in the output pattern by enabling
FRAMED. In T1 mode, this p r events the test patte rn fro m overwriting the frame
bit which occurs every 193 bits. In E1 mode with FRAMED enabled, the test
pattern does not overwrite time slot 0 data (FAS and NFAS words) and time slot
16 (CAS signalling word) if CAS framing is also selected. CAS framing is
selected by setting TF RAME[3] to 1 in the Transmit Configura tion register
[TCR0; addr 070]. The test pattern is stopped during these bit periods according
to ITU-T O .151, ( 10/92). If FRAMED is disab led , the te st pattern is transmitted in
all time slots.
2.4.6 Transmit Error Insertion
The Transmit Error Insert register [TERROR; addr 073] controls error insertion
during pattern generation. Writing one to a TERROR bit injects a single
occurrence of the respective error on TPOSO/TNEGO and XTIP/XRING
outputs; writing a zero has no effect. Multiple transmit errors can be generated
simultaneously. Periodic or random bit error rates can also be emulated by
software control of the error control bit. Note that injected errors affect the data
sent during a Framer or Analog Loopback [FLOOP or ALOOP; addr 014].
Line Code Violations (LCV) are inser t ed via the TVERR bit of the TERROR
register. In T1 mode, if TVERR is set, a BPV is inse rted betw een two consecu ti v e
ones. TVERR is latche d until the BPV is inserted into the transmit data stream,
and then cleared. In E1 mode with HDB3 selected, two consecutive BPVs of the
same polarity are inserted. This is registered as a single LCV for the receiving E1
equipment.
Ft, FPS, and FAS bit errors are inserted using the TFERR bit in the TERROR
register. TFERR com mands a logical inversion of th e next frame bit transmitted .
CRC4 (E1) and CRC6 (T1) bit errors are inserted using the TCERR bit in the
TERROR register. TCERR c ommands a logical inversion of the next CRC bit
transmitted.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.4 Transmitter
100054E Conexant 2-51
Change Of Frame Alignments (COFAs) are controlled by the TCOFA and
BSLIP bits in the TERROR register. TCOFA command s a 1-bit shift in the
location of t he tr ansmit f rame align ment b y delet ing (o r in serting) a 1-bit posit ion
from the tra nsmit frame. During E1 mode s, BSLIP dete rmin es which direction
the bit slip occurs. In T1 modes, only 1-bit deletion is pro vided. Note that TCOFA
alters extraction rate of data from transmit slip buffer; thus, repeated TCOFAs
eventually cause a controlled frame slip where one frame of data is repeated
(T1/BSLIP = 0), or where one frame of data is deleted (BSLIP = 1).
PRBS test pattern errors are inserted by TBERR in the TERROR register.
TBERR commands a single PRBS error by logically inverting the next PRBS
generator output bit.
Fs and MFAS errors are controlled by the TMERR bit in the TERROR
register. TMERR commands a single Fs bit error in T1, or MFAS bit error in E1
by logically inverting the next multifram e bit transmitted.
CAS Multiframe (MAS ) errors are controlled by the TSERR bit in the
TERROR register. TSERR commands a single MAS pattern error by logically
inver ting the first MAS bit transmitted.
2.4.7 In-Band Loopback Code Generation
The in-band loopback code generator circuitry overwrites the transmit data with
in-band codes of configurable value and length. These codes are sequences with
periods of 1 to 7 bits and may, in some applications, overwrite the framing bit.
The Transmit Inband Loopback Code Configuration register [TLB; addr 077]
controls the functions required for this operation.
A loopback code is gene ra ted in the tra nsmit data strea m by writing the
loopback co de to the T ransmit Inban d Loopback Code Patte rn registe r [LBP; addr
078], and then setting the Start Inband Loopback (LBSTART) and Loopback
Length (LB_LEN) bits in the Transmit Inband Loopback Code Configuration
register [TLB; addr 077]. The TLB register optionally allows the loopback code
to overwrite framing bits using the UNFRAMED bit. The LB_LEN provides
loopback code patt ern lengths of 4 t o 7 bits. Patt erns of 2 or 3 bits can b e achie ve d
b y repeating t he pattern in 4- or 6-bi t modes, respect i vel y. Framed or unframed all
ones or all zeros can also be ach ie ved b y setti ng the pattern to all zeros or all ones.
2.4.8 ZCS Encoder
The ZCS encoder encodes the single rail clock and data (unipolar) into dual rail
data (bipolar). The Transmit Zero Code Suppression Bits (TZCS[1,0]) in the
Transmitter Configuration register [TCR1; addr 071] selects ZCS and Pulse
Density Violation (PDV) enforcement options for TPOSO/TNEGO output pins.
TZCS supports the following: Alternate Mark Inversion (AMI); High Density
Bipolar of order 3 (HDB3); Bipolar with 8 Zero Suppression (B8ZS); Pulse
Density Violation (PDV); Unassigned Mux Code (UMC); and Bipolar with 7
Zero Suppression (B7ZS). Note that ZCS encoding, which alters data content, is
performed prior to the CRC calculation so the outgoing CRC is always correct.
The AMI line code requires at least 12.5 percent average ones density and no
more than 15 consecutive zeros. A one is encoded as either a positive or negative
pulse; a zero is the absence of a pulse. Two consecutive pulses of the same
polarity are referred to as a Bipolar Violation (BPV).
2.0 Circuit Descrip tion CX28394/28395/28398
2.4 Tran s mi tter Quad/x16/Octal—T1/E1/J1 Framers
2-52 Conexant 100054E
The HDB3 line code replaces four consecutive zeros by 000V or B00V code,
where B is an AMI pulse and V is a bipolar violation (see Figure 2-24). ZCS
encoder selects the code that will force the BPV output polarity opposite to the
prior BPV.
UMC forces DS0 channels containing 8 zeros to be replaced with the
10011000 code, per Bellcore TA-TSY-000278. Note that RCVR's ZCS decoder
cannot recover original data content from a UMC or B7ZS encoded signal, or
from a PDV-enforced one.
Figure 2-24. Zero Code Substitution Formats
BPV
BPV BPV
110000000011
Octet
AMI
B8ZS
HDB3
B7ZS
UMC
Zero Code Substitution Formats
BPV
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.4 Transmitter
100054E Conexant 2-53
The outpu t on TP OSO/TNEGO can b e chang ed from dual rail b ipola r to NRZ
unipolar data (TNRZO) and to multiframe sync clock (MSYNCO), using the
Transmit NRZ Data (TNRZ) bit in TCR1[addr 071]. Figures 2-25 and 2-26
illustrate transmit signal timing for both bipolar and unipolar operation.
Figure 2-25. Transmit Signals
11 11 1000
TCKO
TPOSO
(Bipolar)
TNEGO
(Bipolar)
TNRZO
(Unipolar)
8394-8-5_077
2.0 Circuit Descrip tion CX28394/28395/28398
2.4 Tran s mi tter Quad/x16/Octal—T1/E1/J1 Framers
2-54 Conexant 100054E
Figure 2-26. NRZ Mode Transmit Signals
8394-8-5_078
In E1 mode, MSYNCO is output during bit 7 of
time slot 31 in frame 15 of the multiframe.
Bit 8 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6F-bit
Bit 6 Bit 8 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5Bit 7
Time Slot 24,
Frame 12 (SF) or
Frame 24 (ESF)
Time Slot 1,
Frame 1
Time Slot 0,
Frame 0
Time Slot 31,
Frame 15
MSYNCO
TCKO
TNRZO
MSYNCO
TCKO
TNRZO
T1 Mode
E1 Mode
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.5 Mi croproc essor Interface
100054E Conexant 2-55
2.5 Microprocessor Interface
The Microprocessor Interface (MPU) provides the capability to configure the
device, read status registers and counters, and respond to interrupts (see
Figure 2-27). The in terface supports both the Int el 8051 and Motorola 680 00-type
processors. In the Intel mode , the address and d ata are multip lexed; in the
Motorola mode, the address and data are separate pins. Both synchronous and
asynchronous Read and Write modes are supported. The synchronous mode is
optimized for Motorola 68000-type processors with a maximum clock rate of 36
MHz. The asynchronous mode runs intern ally at 32 MHz, which limits the
processor speed to 30 MHz for 68302 processors, and 16 MHz for 8051
processors.
The microprocessor interface is made up of the following pins: MCLK,
MOTO*, SYNCMD, CS*, AS*/ALE, DS*/RD*, R/W*/W R*, DTACK*,
AD[7:0], A[11:0], INTR*, ONESEC, RST*. A detailed description of the MPU
signals is provided in Table 1-6, Hardware Signal Definitions.
Figure 2-27. Micropro c essor In terface Block D iagram
Microprocessor Interface
MCLK
MOTO*
SYNCMD
CS*
AS*/ALE
DS*/RD*
R/W*(WR*)
DTACK*
AD[7:0]
A[11:0]
INTR*
ONESEC
RST*
2.0 Circuit Descrip tion CX28394/28395/28398
2.5 Microprocessor Interface Quad/x16/Octal—T1/E1/J1 Framers
2-56 Conexant 100054E
2.5.1 Address/Data Bus
In Non-Multi ple x ed Address Mode, A[11: 0] (A[10: 0] for CX283 94) provides the
address for the register access. In Multiplexed Address Mode, A[11:8] (A[10:8]
for CX28394) and AD[7:0] provide the address. In both modes, the data bytes
flow over the shared bidirectional, byte-wide bus, AD[7:0].
2.5.2 Bus Control Signals
Four signals control operation of the interface por t . The control signals are
AS*/ALE, CS *, DS*/RD*, an d R/W*(WR*). An addit ional pi n, MOT O*, selects
whether the interface signals are of a Motorola or Intel style.
When MOT O* is lo w, indicating a Motorola-style interface, CS*, AS*, R/W*,
and DS* signals are expected. When MOTO* is high, indicating an Intel-style
interface, CS*, ALE, RD*, and WR* signals are expected.
When MOTO * is high, the a ddress lines are multiplexed with the data . This
pin should usually be tied high for Intel devices and tied low for Motorola
devices. SYNCMD puts the interface into the Synchronous Processor Interface
Mode. Motorol a 68000 processor s typical ly ha v e SYNCMD tied high if MC LK is
connected to the MPU clock source; Intel 8051 processors have SYNCMD tied
low (see Table 2-7).
2.5.3 Interrupt Requests
Figure 2-28, In terrupt Generation Blo ck Diagram, details t he interrupt gener ation
process. The INTR* output pin is an active low, open-drain type output which
provides a common interrupt request for all eight framers and the LIU serial
interface.
Each framer includes interr upt status registers (ISR[7:0]), interr upt enable
registers (IER[7:0]), an d an interrupt request re gister (IRR). Ev ents such as alarm
status changes and sync signals are latched in ISR registers until read by the
microprocessor. Each ISR bit has a corresponding IER bit used to enable or
disable interrupt gen eration. If enabled, an ISR event is reported in the
appropriate IRR bit.
Table 2-7. Microprocessor Interface Operating Modes
MOTO* SYNCMD Description
0 0 Asynchronous Motorola, internal clock
0 1 Synchronous Motorola, external clock
1 0 Asynchronous Intel, internal clock
1 1 Synchronous Intel, external cl ock
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.5 Mi croproc essor Interface
100054E Conexant 2-57
The IRR bits from each framer are gated with the corresponding enable bit in
the master interrupt enable register [MIE; addr 01E] and are routed to the master
interrupt register [MIR; addr 01D]. MIE provides a convenient location t o enable
or disable inter rupts for an entire framer. The serial done bit [SER_STAT;
addr 024] is gated with the serial inter rupt enable bit [SER_CONFIG; addr 025]
to prod uce an additional interr upt reque st. Finally, MIR bits and the LIU serial
interface interr upt request are combined to generate a single interrupt request
signal on th e INT R * pin.
Using these registers, the microprocessor can process interrupts as follows:
Interrupt se rv ice routine
1. Read MIR and SER_STAT registers to determine which framer or framers
caused the interrupt or whether LIU serial operation occurred.
2. For each interrupting framer, read IRR to determine which ISR contains
the inte rrupt event or events.
3. Read the ISR and mask t he interrupt e v ent bit using the corresponding IER
to determine which event or events caused the interrupt.
4. Enter the appropriate service routine.
Figure 2-28. Interrupt Generation Block Diagram
NOTE(S):
(1) In CX2 8395, IN TR1* is pro v ided for Framers 1-8, and INTR2* is provided for Framers 9-16.
SER_DONE Framer 8
IER
Registers
ISR
Latches
Framer 7
Framer 6
Framer 5
Framer 4
Framer 3
Framer 2
Framer 1
Events
MIE
Register
INTR*
IRR
Register
SER_IER
MIR
Register
2.0 Circuit Descrip tion CX28394/28395/28398
2.5 Microprocessor Interface Quad/x16/Octal—T1/E1/J1 Framers
2-58 Conexant 100054E
2.5.4 Device Reset
The device contains four reset methods:
1. Inter nal Power-On Reset (POR),
2. Hardware Reset which uses the RST* pin,
3. Global Software Reset which uses the GRESET bit in register FCR [addr
080], and
4. Software Reset which uses the RESET bit in register CR0 [addr 001].
All four methods resul t in de vice outputs plac ed in a high- impedance st ate and
configuration registers set to default values as shown in Table 3-4, A d dress Map.
In all reset met hod s, SYSC KI must be present during th e reset process for proper
operat ion . M CL K ( i nternal or external) per f orms the actual r egister initi ali zat i on.
Therefore, if the SYNCMD pin is connected high to enable external MCLK, the
external MCLK must be applied during reset, and if the SYNCMD pin is low
during reset, the internal clock (33 MHz) is used and external MCLK is not
required. After hardware reset, software reset, or internal power-on reset, the
microprocessor must initialize the configuration registers to the desired state.
An internal POR process is initiated during power-up. When V DD has
reached approximately 2.0 V, the internal reset process begins and continues for
100 SYSCKI cycles if SYSCKI is applied. If SYSCKI is not present, the device
remains in the reset state and does not terminate until detecting 100 SYSCKI
cycles. GRESET or RESET can be monitored to determi ne when POR is
complete. MCLK (internal or external) must be present during the POR
concurr ent with SYSCKI to allow register initial iz ation.
Hardware reset is initiated by bringing the RST* pin active (low ) for a
minimum of 4 µs. If SYNCMD is high (using external MCLK), external MCLK
must be prese nt while RST* is low to allow register initialization. After RST* is
deactivated, the internal reset process continues for 5 µs and register access
should be avoided. GRESET can be monitored to determine when the reset
process is complete.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.6 Loopbacks
100054E Conexant 2-59
2.6 Loopbacks
The device provides a complete set of loopbacks for diagnostics, maintenance,
and troubleshooting for each framer. All loopbacks perform clock and data
switching, if necessary.
2.6.1 Remote Line Loopback
The line loopback loops the RCVR inputs to the XMTR outputs. The loopback
provides BPV transparency and the ability to override the lo oped data with AIS.
The RCVR data path is not affected by the activation of this loopback. Remote
line loopback is activated by setting the Remote Line Loopback (LLOOP) bit in
the Loopback Configuration register [LOOP; addr 014]. It is possible to operate
the remote line loopback simultaneously with the local framer loopback.
2.6.2 Remote Payload Loopback
The pa yl oad loo pback loop s all DS0 c hannels f rom the RCVR i nput t o the XMT R
output. Payload loopback retains time slot integrity, so that numbered time slots
from each receive frame are transferred to the same numbered time slots in the
transmit frame. Transmit overhead bitsF-bits in T1 mode or TS0 in E1
modeare supplied by transmit frame formatter or by TSB according to TFRM
[addr 072] settings. Existing transmit frame alignment and clock timing are not
altered by [PLOOP; addr 014] activation or deactivation, allowing system
operation with independent receive and transmit timing. Controlled frame slips
are perfor med in the payload loopback path if receive and transmit clocks are
asynchronous, alt hough t hese slips are not reported to the proce ssor as slip buf fer
errors. Multiframe integrity is not maintained during PLOOP; therefore, DS0 and
signaling channel loopbacks [TPCn; addr 100–11F] must be used to implement
payload loopback if transparent or forced signaling is desired. PLOOP overrides
transmit per-channel remote loopback selection (TLOOP bit in TPCn).
2.6.3 Remote Per-Channel Loopback
The remote per-channel loopback loops the RCVR input DS0 channel to the
XMTR output DS0 channel. The remote per-channel loopback is activated by
setting TLOOP in the Transmit Per-Channel Control register [TPC0 to TPC31;
addr 100 to 11F].
2.0 Circuit Descrip tion CX28394/28395/28398
2.6 Lo op backs Quad/x16/Octal—T1/E1/J1 Framers
2-60 Conexant 100054E
2.6.4 Local Framer Loopback
The local framer loopback loops the transmit line encoder outputs to the receive
line decoder inputs. Transmitter output is not affected by the activation of this
loopback. The local framer loopback is activated by setting the Local Framer
Loopback (FLOOP) bit in the Loopback Configuration register [LOOP;
addr 014]. It is possible t o operate the local f ramer loo pback simultaneo usly with
the remote line loopback.
2.6.5 Local Per-Channel Loopback
The local per-channel loopback loops the TSB PCM and signaling inputs to the
RSB PCM and signaling outputs on a per-channel basis. The local per-channel
PCM loopback is activated by setting RL OOP in the System Bus Per-Channel
Control registers [SBC0 to SBC31; addr 0E0 to 0FF]. The local per-channel
signaling loopback is a ctivated by setti ng SIG_LP in System Bus Per-Channel
Control registers.
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.7 Seri al Interface
100054E Conexant 2-61
2.7 Serial Interface
The device provides a serial interface that allows the microprocessor to indirectly
communicate with an at tac hed LI U (such as t he Con e xan t CX283 80 Quad T1/E 1
LIU). This interface allows the microprocessor to control and query the LIU
status. One 8-bit register in the LIU can be written via the SERDO pin or read
from the SERDI pin at the clock rate determined by the SERCKO clock output.
The serial interface suppor ts a glueless interface to two quad LIUs by supplying
two independently controlled external chip select lines on the CX28398:
SERCS1* and SERCS2*. The CX28394 provides a single SERCS* chip select
line. On the CX28395, the serial interface is not accessable.
The serial interface uses a 16-bit process for each write or read operation.
During a write operation, a 16-bit wordconsisting of [SER_CTRL; addr 022]
and [SER_DAT; addr 023]is transmitted to the LIU. The SER_ CTL register
contains the LIU register address for the current operation and a read/write
contro l bi t. Du rin g a r ead operat ion , SER _C TL i s t ra nsmitt e d a nd 8 -b it d ata from
the LIU is received and placed in SER_DAT register. Writing to SER_CTL
initiates a serial interface read or write operation.
The Data regist er contains either write or read da ta. F or the write operat ion, its
content is written to the SERDO serial port on the eight SERCKO cycles
immediately following the Address/Command byte. Likewise, for the read
operation, data on the SERDI serial port is input immediately on the eight
SERCKO clock cycles following the Address/Command byte.
Figure 2-29 illustrates serial interface timing.
Figure 2-29. Serial Interface Timing Diagram
Read Timing
SERCS*
SERCLK
SERDO
SERDI
;
;;
;;
;;;
;;;
R/W A0 A1 A2 A3 A4 A5 A6
D0 D1 D2 D3 D4 D5 D6 D7
Write Timing
;;;;;;
SERCS*
SERCLK
SERDO
SERDI
;
;;
R/W A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7
2.0 Circuit Descrip tion CX28394/28395/28398
2.8 Joint Test Access Group Quad/x16/Octal—T1/E1/J1 Framers
2-62 Conexant 100054E
2.8 Joint Test Access Group
The device incorporates printed circuit board testability circuits in compliance
with IEEE Std. P1149.1a–1993, IEEE Standard Test Access Port and
Boundary–Scan Architecture, commonly known as JTAG (Joint Test Action
Group).
The JTAG includes a Test Access Port (TAP) and several data registers. The
TAP provides a standard interface through which instructions and test data are
communicated (see Figure 2-30). A Boundary Scan Description Language
(BSDL) file is available from Conexant upon request.
The test access port consists of TDI, TCK, TMS, TDO and TRST* pins.
2.8.1 Instructions
In addition to the required BYPASS, SAMPLE/PRELOAD, and EXTEST
instructions, IDCODE instruction is supported. There is also one private
instruction. Table 2-8 lists the JTAG instructions along with their codes.
Figure 2-30. Test Access Port (TAP) Diagram
100054_003
TCK
TMS
TRST*
TDI
(CX28394, CX28398) TDO
JTAG Port
TDO1 (CX28395)
TDO2
Tab le 2-8. JTAG Instr uctions
Instruction Code
BYPASS 111
SAMPLE/PRELOAD 001
EXTEST 000
IDCODE 010
Private xxx
CX28394/28395/28398 2.0 Circuit Description
Quad/x16/Octal—T1/E1/J1 Framers 2.8 Join t Test Access Group
100054E Conexant 2-63
2.8.2 Device Identification Register
JTAG ID register consists of a 4-bit version, 16-bit part number, and 11-bit
manufacturer number (see Tables 2-11 and 2-9).
Table 2-9. CX28394 Device Identification JTAG Register
Version(1) Part Number Manufacturer ID
00001000001110010100000000100 1 1 1
0x0 0x8394 0X013
4 bits 16 bits 11 bi ts
NOTE(S):
(1) Consult factory for current version number.
TDO
Table 2-10. CX28395 Device Identification JTAG Register
Version(1) Part Number Manufacturer ID
00001000001110010101000000100 1 1 1
0x0 0x8395 0X013
4 bits 16 bits 11 bi ts
NOTE(S):
(1) Consult factory for current version number.
TDO1
TDO2
Table 2-11. CX28398 Device Identification JTAG Register
Version(1) Part Number Manufacturer ID
00001000001110011000000000100 1 1 1
0x0 0x8398 0X013
4 bits 16 bits 11 bi ts
NOTE(S):
(1) Consult factory for current version number.
TDO
2.0 Circuit Descrip tion CX28394/28395/28398
2.8 Joint Test Access Group Quad/x16/Octal—T1/E1/J1 Framers
2-64 Conexant 100054E
100054E Conexant 3-1
3
3.0 Registers
3.1 Address Map
Registers shown with a default setting are reset to the indicated value following power up, software RESET
(CRO; addr 001), GRESET (FCR; addr 080), or hardware reset (RST* pin).
Addresses 000 (hex) to 1FF (hex) are offset by the upper 3 bits of address lines A[11:0] and chip selects as
listed in Tables 3-1 through 3-3.
Tab le 3-1. Address Of fset Map (CX28394)
Framer Chip Select
CS*
Offset
Address A[10:0]
(hex)
10000
20200
30400
40600
NOTE(S):
1. Global registers at 000 and 080–083 may be accessed at any offsets.
Tab le 3-2. Address Of fset Map (CX28398)
Framer Chip Select
CS*
Offset
Address A[11:0]
(hex)
10000
20200
30400
40600
50800
60A00
70C00
80E00
NOTE(S):
1. Global registers at 000 and 080–083 may be accessed at any offsets.
3.0 Registers CX28394/28395/28398
3.1 Ad dress Map Quad/x16/Octal—T1/E1/J1 Framers
3-2 Conexant 100054E
Tab le 3-3. Address Of fset Map (CX28395)
Framer Chip Select Offset
Address A[11:0]
(hex)
CS1* CS2*
101000
201200
301400
401600
501800
601A00
701C00
801E00
910000
10 1 0 200
11 1 0 400
12 1 0 600
13 1 0 800
14 1 0 A00
15 1 0 C00
16 1 0 E00
NOTE(S):
1. Global registers at 000 and 080–083 for framers 1–8 may be accessed at any of th e fi rst 8 off sets.
2. Global registers at 000 and 080–083 for framers 9–16 may be accessed at any of the second 8 offsets.
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.1 Address Map
100054E Conexant 3-3
Tab le 3-4. Address Map (1 of 5)
Block Address
(Hex) Acronym R/W Description Default
Register
Setting (Hex)
Global
000 DID R Device Identification 28
080 FCR R/W Framer Control Register 00
081 MIR R Master Interrupt Request 00
082 MIE R/W Master Interrupt Enable 00
083 TEST R/W Test Configuration 00
Primary
Control
001 CR0 R/W Primary Control Register 00
003 IRR R Interrupt R equest Regi ster
Interrupt Status
004 ISR7 R Alarm 1 Interrupt Status
005 ISR6 R Alarm 2 Interrupt Status
006 ISR5 R Error Interrupt Status
007 ISR4 R Counter Overflow Interrupt Status
008 ISR3 R Timer Interrupt Status
009 ISR2 R Data Link 1 Interrupt Status
00A IS R1 R Data Li nk 2 Int e rrupt Status
00B ISR0 R Pattern Interrupt Status 00
Interrupt Enable
00C IER7 R/W Alarm 1 Interrupt Enable Register 00
00D IER6 R/W Alarm 2 Interrupt Enable Register 00
00E IER5 R/W Error Interru pt Enable Regis te r 0 0
00F IER4 R/W Count Overflow Int e rrupt Enable Register 00
010 IER3 R/W Timer Interr upt Enable Register 00
011 IER2 R/W Data Lin k 1 Inter ru pt Enable Reg ist e r 00
012 IER1 R/W Data Lin k 2 Inter ru pt Enable Reg ist e r 00
013 IER0 R/W Pattern Interrupt Enable Register 00
Primary
014 LOOP R/W Loopback Confi guratio n Register
015 DL3_TS R/W External Data Link Channel
016 DL3_BIT R/W External Data Link Bit
017 FSTAT R Of fline Framer Status
018 PIO R/W Programmable Input/Output 00
019 POE R/W Programmable Output Enable 3C
01A CMUX R/W Clock Input Mux 00
020 RAC R/W Receive Alarm Configurat ion
021 RSTAT R/W Receive Line Code Status
3.0 Registers CX28394/28395/28398
3.1 Ad dress Map Quad/x16/Octal—T1/E1/J1 Framers
3-4 Conexant 100054E
Serial Interface
022 SER_CTL R/W Serial Control
023 SER_DAT R/W Serial Data
024 SER_STAT R/W Serial Status
025 SER_CONFIG R/W Serial Configuration 00
026 RAM TEST R/W Ram Test
Digital Receiver (RCVR)
040 RCR0 R/W Receiver Configuration
041 RPATT R/W Receive Test Pattern Configuration
042 RLB R/W Receive Loopback Cod e Detector Con fi guration
043 LBA R/W Loopba ck Activate Code Pattern
044 LBD R/W Loopback D eactivate Cod e Pattern
045 RALM R/W Receive Alarm Signal Co nfigurat ion
046 LATCH R/W Alarm/Error/Counter Latch Configuration
047 ALM1 R Alarm 1 Status
048 ALM2 R Alarm 2 Status
049 ALM3 R Alarm 3 Status
Error/Alarm Counters
050 FERR R Framing Bit Error Counter LSB
051 FERR R Framing Bit Error Counter MSB
052 CERR R CRC Error Counter LSB
053 CERR R CRC Error Counter MSB
054 LCV R Line Code Viola tion Counter LSB
055 LCV R Line Code Viola tion Counter MSB
056 FEBE R Far End Block Error Counter LSB
057 FEBE R Far End Block Error Counter MSB
058 BERR R PRBS Bit Error Counter LSB
059 BERR R PRBS Bit Error Counter MSB
05A AERR R SEF/LOF/COFA Alarm Count
Receive Sa-B yte
05B RSA4 R Receive Sa4 Byte Buf fer
05C RSA5 R Receive Sa5 Byte Buf fer
05D RSA6 R Receive Sa6 Byte Buf fer
05E RSA7 R Rece ive Sa7 Byte Buffer
05F RSA8 R Receive Sa8 Byte Buf fer
Tab le 3-4. Address Map (2 of 5)
Block Address
(Hex) Acronym R/W Description Default
Register
Setting (Hex)
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.1 Address Map
100054E Conexant 3-5
Digital Transmitter (XMTR)
070 TCR0 R/W Transmit Framer Configuration
071 TCR1 R/W Transmitter Configuration
072 TFRM R/W Transmit Frame Format
073 TERROR R/W Transm it Erro r Insert 00
074 TMAN R/W Transmit Manual Sa-Byte/FEBE Configuration
075 TALM R/W Transmit Alarm Signal Conf iguratio n
076 TP ATT R/W Trans m it Test Patte r n Configuratio n
077 TLB R/W Transmit Inband Loopbac k Code Configuration
078 LBP R/W Transmit In-Band Loopback Code Pattern
Transmit Sa-Byte
07B TSA4 R/W Transmit Sa 4 By te Buffer
07C TSA5 R/W Transmit Sa 5 By te Buffer
07D TSA6 R/W Trans mit Sa 6 By te Buffer
07E TSA7 R/W Transm it Sa 7 By te Buffer
07F TSA 8 R/W Tra nsm it Sa 8 By te Buffe r
BOP
0A0 BOP R /W Bit Oriented Protocol Tr ansceiver 00
0A1 TBOP R/W Transmit BOP Code Word 00
0A2 RBOP R Receive BOP Code Word
0A3 BOP_STAT R BOP Status
Data Link #1
0A4 DL 1_TS R/W DL1 Time Slot Enable 00
0A5 DL1_BIT R/W DL1 Bit Enable 00
0A6 DL1_CTL R/W DL1 Control 00
0A7 RDL1_FFC R/W RDL #1 FIFO Fi ll Control 00
0A8 RDL1 R Receive Data Lin k FIFO #1
0A9 RDL1_STAT R RDL #1 Status
0AA PRM R/W Performance Repo rt Message 00
0AB TD L1_FEC R/W TDL #1 FIFO Empty Control 00
0AC TDL1_EOM W TDL #1 End Of Message Con trol
0AD T DL1 R/W Transmit Data Link FIFO #1
0AE TDL1_STAT R TDL #1 Stat us
Tab le 3-4. Address Map (3 of 5)
Block Address
(Hex) Acronym R/W Description Default
Register
Setting (Hex)
3.0 Registers CX28394/28395/28398
3.1 Ad dress Map Quad/x16/Octal—T1/E1/J1 Framers
3-6 Conexant 100054E
Data Link #2
0AF DL2_TS R/W DL2 Time-Slot Enable 00
0B0 DL2_BIT R/W DL2 Bit Enable 00
0B1 DL2_CTL R/W DL2 Control 00
0B2 RDL2_FFC R/W RDL #2 FIFO Fi ll Control 00
0B3 RDL2 R Receive Data Lin k FIFO #2
0B4 RDL2_STAT R RDL #2 Status
0B6 TD L2_FEC R/W TDL #2 FIFO Empty Control 00
0B7 TDL2_EOM W TDL #2 End Of Message Con trol
0B8 TDL2 R/W Transmi t Data Link FI FO #2
0B9 TDL2_STAT R TDL #2 S tatus
Test
0BA DL_TEST1 R/W DL I NK Test Co nfigurat io n 00
0BB DL_TEST2 R/W DLINK Test Status 00
0BC DL_TEST3 R/W DLINK Test Status 00
0BD DL_TEST4 R/W DL INK Test Control #1 or Conf igu r a tio n #2 00
0BE DL_TEST 5 R/W DLINK Test Control #2 or Configu ra t io n #2 00
System Bus Int erfa ce (SBI)
0D0 SBI_CR R/W System Bus Interface Configuration 00
0D1 RSB_CR R/W Receive Sys tem Bus Configuration 00
0D2 RSYNC_BIT R/W Receive System Bus Sync Bit Offset
0D3 RSYNC_TS R/W Receive System Bus Sync Time Slot Offset
0D4 TS B_CR R/W Transmit System Bus Configuration 00
0D5 TSYNC_BIT R/W Transmit System Bus Sync Bit Offset
0D6 TSYN C_TS R/W Tran smit System Bus Sync Time Slot Off set
0D7 RSIG_CR R/W Receiv e Signaling Configuratio n
0D8 RSYNC_FRM R/W Sig naling Reinsert ion Frame Offset
0D9 SSTAT R Slip Buffer Status
0DA S TACK R R eceive Si gnaling St ack
0DB RPHASE R RSLIP Phase Statu s
0DC TPHASE R TSLIP Phase Status
0DD PERR R RAM Pa rity Status
0E0–0FF SBCn:
n = 0 to 31 R/W System Bus Per-Channel Contro l
Tab le 3-4. Address Map (4 of 5)
Block Address
(Hex) Acronym R/W Description Default
Register
Setting (Hex)
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.1 Address Map
100054E Conexant 3-7
Buffer Me m ory
100–11F TPCn:
n = 0 to 31 R/W Transmit Per-Ch anne l Co ntro l
120–13F TSIGn:
n = 0 to 31 R/W Transmit Signa l in g Buffer
140–15F TSLIP_LOn:
n = 0 to 31 R/W Transmit PCM Slip Buffer
160–17F TSLIP_HIn:
n = 0 to 31 R/W Transmit PCM Slip Buffer
180–19F RPCn:
n = 0 to 31 R/W Receive Per-Channel Control
1A0–1BF RSIGn:
n = 0 to 31 R/W Receive Signaling Buffer
1C0–1DF RSLIP_LOn:
n = 0 to 31 R/W Receive PC M Sl ip Buffer
1E0–1FF RSLIP_HIn:
n = 0 to 31 R/W Receive PC M Sl ip Buffer
Tab le 3-4. Address Map (5 of 5)
Block Address
(Hex) Acronym R/W Description Default
Register
Setting (Hex)
3.0 Registers CX28394/28395/28398
3.2 Global Control and Stat us Registers Quad/x16/Octal—T1/E1/J1 Framers
3-8 Conexant 100054E
3.2 Global Control and Status Registers
Global registers are applicable to all framers in the CX28394 and CX28398. There are two sets of global
registers for the CX28395, one for each 8-framer group.
000—Device Identification (DID)
Read only v al ue.
DID[7:4] Device Revision—A value of 0x4 indicates the current revision.
DID[3:0] Device ID—A value of 0x8 indicates the CX28398 or CX28395. A value of 0x4 indicates the
CX28394.
080—Framer Control Register (FCR)
Unused bits are reser ved and should be written to 0.
GRESET Global Reset —When written to 1 by the microprocessor, GRESET initiates an internal global
reset process which initializes all global control registers and certain control registers for all
framers to their default settings (see Table 3-4). The internal reset proc ess tak es a maxi mum of
15 µsec.
The processor must not write to the control registers until the reset process is complete.
GRESET remains active (1) during the reset process to allow the microprocessor to detect
reset completion. GRESET also indicates a reset operation triggered by power-up or by an
active low RST* pin. After GRESET initializatio n, the following is true:
System bus outputs (RSIGO, RPCMO, and SIGFRZ) for all framers are three-stated.
Programmable I/O pins are configured as inputs.
Global control and framer control registers are set to their default values.
ONESEC_I O Bidirectional ONESEC Input/Output Mode—Selects input or output mode for ONESEC
signal pi n and controls the internal timer int erv al used for one-second stat us latching [L ATCH;
addr 046]. When ONESEC is an output, SYSCLK is used to develop the one-second timer
interval output with an arbitrarily defined initial starting location. When ONESEC is an input,
the timer/latch interval is aligned to rising edge of ONESEC input. The system can apply
ONESEC input to define any length timer/latch inter val up to 1 second, but not greater than 1
second.
0 = ONESEC input
1 = ONESEC output
7 6 5 4 3 2 1 0
DID[7] DID[6] DID[5] DID[4] DID[3] DID[2] DID[1] DID[0]
7 6 5 4 3 2 1 0
GRESET ONESEC_IO SBIMODE[1] SBIMODE[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.2 Global Control and Status Registers
100054E Conexant 3-9
SBIMODE[1:0] The processor writes FCR at power-up to configure the system bus interface mode. Each
group of four framers can be configured as separate system bus interfaces or as an internally
multiplexed group. The group consisting of framers 1 through 4 (9 through 12) can be
configured to share a common system bus interface, SBI Bus A. The group consisting of
framers 5 through 8 (13 through 16) can also be configured to share a common system bus
interface, SBI Bus B .
081—Master Interrupt Request (MIR)
CX28394
CX28398 and CX28395
MIR[7:0] An active MIR bit indica te s which fram er has active interrupt s . An MIR bit is latched active
(high) whenever any bit in the Interrupt Request Register (IRR[7:0]; addr 003–0B) is set to
report an interrupt event.
SBIMODE[1]: 0 = Separate system bus interface mode for framer group 58 (1316).
1 = Common, multiplexed system bus interface mode.
SBIMODE[0]: 0 = Separate system bus interface mode for framer group 14 (912).
1 = Common, multiplexed system bus interface mode.
7 6 5 4 3 2 1 0
MIR[3] MIR[2] MIR[1] MIR[0]
7 6 5 4 3 2 1 0
MIR[7] MIR[6] MIR[5] MIR[4] MIR[3] MIR[2] MIR[1] MIR[0]
MIR0: 0 = no interrupt event in framer 0
1 = active interrup t event in framer 0
MIR1: 0 = no interrupt event in framer 1
1 = active interrup t event in framer 1
MIR2: 0 = no interrupt event in framer 2
1 = active interrup t event in framer 2
MIR3: 0 = no interrupt event in framer 3
1 = active interrup t event in framer 3
MIR4: 0 = no interrupt event in framer 4
1 = active interrup t event in framer 4
MIR5: 0 = no interrupt event in framer 5
1 = active interrup t event in framer 5
MIR6: 0 = no interrupt event in framer 6
1 = active interrup t event in framer 6
MIR7: 0 = no interrupt event in framer 7
1 = active interrup t event in framer 7
3.0 Registers CX28394/28395/28398
3.2 Global Control and Stat us Registers Quad/x16/Octal—T1/E1/J1 Framers
3-10 Conexant 100054E
082—Master Interrupt Enable (MIE)
CX28394
CX28398 and CX28395
MIE[7:0] MIE is a global interrupt enable for each framer. Writing a one to an MIE bit enables the
corresponding framer’s IRR bit to be latched in MIR (addr 081) and to activate the INTR*
output.
083—Test Configuration (TEST)
Unused bits are reser ved and should be written to 0.
TEST Global Test Enable—Reserved for Conexant production test.
7 6 5 4 3 2 1 0
MIE[3] MIE[2] MIE[1] MIE[0]
7 6 5 4 3 2 1 0
MIE[7] MIE[6] MIE[5] MIE[4] MIE[3] MIE[2] MIE[1] MIE[0]
MIE0: 0 = Disable framer 0 IRR int errupt
1 = Enable framer 0 IRR in terrupt
MIE1: 0 = Disable framer 1 IRR int errupt
1 = Enable framer 1 IRR in terrupt
MIE2: 0 = Disable framer 2 IRR int errupt
1 = Enable framer 2 IRR in terrupt
MIE3: 0 = Disable framer 3 IRR int errupt
1 = Enable framer 3 IRR in terrupt
MIE4: 0 = Disable framer 4 IRR int errupt
1 = Enable framer 4 IRR in terrupt
MIE5: 0 = Disable framer 5 IRR int errupt
1 = Enable framer 5 IRR in terrupt
MIE6: 0 = Disable framer 6 IRR int errupt
1 = Enable framer 6 IRR in terrupt
MIE7: 0 = Disable framer 7 IRR int errupt
1 = Enable framer 7 IRR in terrupt
7 6 5 4 3 2 1 0
——————TEST
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.3 Primar y Control and Stat us Register
100054E Conexant 3-11
3.3 Primary Control and Status Register
001—Primary Control Register (CR0)
Unused bits are reser ved and should be written to 0.
RESET Framer Reset—Whe n wr itten to 1 by the microprocessor, RESET initiates an inter nal reset
process which initializes certain control registers to their default settin gs (see Table 3-4). The
internal reset process ta kes a maximum of 15 µsec.
The processor must not write to the control registers until the reset process is complete.
RESET remains active (1) during the reset process to allow the microprocessor to detect reset
completion. RESET also indicates a reset operation triggered by power-up, GRESET [FCR;
addr 080], or by an active low RST* pin. After RESE T initialization, the following is true:
System bus outputs (RSIGO, RPCMO, and SIGFRZ) are three-stated.
Programmable I/O pins are configured as inputs.
Framer control registers are set to their default values.
RINCF Receiver Framer CRC6 include F-bit—Deter mines if the F-bit is included in the CRC6
remaind er calcul ati on in T1 mo de (T1 /E 1N = 1) . T his b it i s ig nor ed in E 1 mod e (T1 /E 1N = 0).
7 6 5 4 3 2 1 0
RESET RINCF RFRAME[3] RFRAME[2] RFRAME[1] RFRAME[0] T1/E1N
0 = T1 ESF CRC6 calculation is performed on the
receive data including a 1 in place of the F-bit.
1 = TI ESF CRC6 tran sm it calculati on is performed on
receive data including the F-bit.
3.0 Registers CX28394/28395/28398
3.3 Primary Control and St atus Register Quad/x16/Octal—T1/E1/J1 Framers
3-12 Conexant 100054E
RFRAME[3:0] Receiver Framer Mode—Establishes the offline framer's search criteria for recovery of frame
alignment (reframe). Also works in conjunction with the RLOFA–RLOFD bits [addr 040] to
establish the online fram er's criteria fo r loss of frame al ignment. R efer to Tables A-1 through
A-6 to find which frame bits are monitored and Table 2-2, Criteria for Loss/Recovery of
Receive Framer A lignment, for frame alignment loss/recovery criteria during the selected
mode. Mode descriptions are given in Table 3-5. Online framer’s SF, SLC, CAS and MFAS
criteria for loss/recovery of multiframe alignment are also selected by RFRAME[3:0].
T1/E1N Global T1/E1 Select—Af fects all functions b y ena bling recei ve and t ransmit circuits to o perate
at either the T1 or E1 line rate. The pro cessor should reinitializ e all control regi ste r settings
after ch anging the T1/E1N control bit. T1/E1N selec ts the nomina l line rate (s hown below)
while the exact receive and transmit line rate frequencies are independently determined by
their respective input clock or input data references. The actual receive and transmit line
frequency can vary within defined tolerances.
0 = 2.048 MHz line rate (E1)
1 = 1.544 MHz line rate (T1)
Tab le 3-5. R eceive Frame r Modes
RFRAME[3:0] T1/E1N Receive Fram er Mode
000X 0 FAS Only
001X 0 FAS Only + BSLIP
010X 0 FAS + CRC
011X 0 FAS + CRC + BSLIP
100X 0 FAS + CAS
101X 0 FAS + CAS + BSLIP
110X 0 FAS + CRC + CAS
111X 0 FAS + CRC + CAS + BSLIP
0000 1 FT Only
0001 1 ESF + No CRC (FPS only)
0100 1 SF
0101 1 SF + JYEL
0110 1 SF + T1D M
1000 1 SLC + FSLOF
1001 1 SLC
1100 1 ESF + Mimic CRC
1101 1 ESF + Force C RC
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.4 Interrupt Control Regi ster
100054E Conexant 3-13
3.4 Interrupt Control Register
003—Interrupt Request Register (IRR)
An IRR bit is latched active (high) whenever an enabled interrupt source reports an interrupt event in the
corresponding Interrupt Status Register [ISR7–ISR0; addr 004–00B]. IRR is latched until the corresponding
ISR register is read by the processor. Reading ISR clears the respective IRR bit, independent of clearing ISR
bits. Therefore, persis tent ly active ISR bits won't affect INTR* deactivation. All IRR bits are l ogically OR'ed to
activate a corresponding MIR bit and INTR*, so the processor must read IRR = 00 before exiting its interrupt
service routine in order to confirm the MIR bit has been deasserted.
ALARM1 Alarm 1 Interrupt Request—Indicates one or more rece iv er errors. Processor reads ISR7 [addr
004] to locate specific source.
0 = no event
1 = active interrupt request
ALARM2 Alarm 2 Interrupt Request—Indicates one-second timer expiry, or detection of one or more
transmitter errors, or det ection of inb and lo opback co de word. Processor rea ds ISR6 [a ddr 00 5]
to locate specific source.
0 = no event
1 = active interrupt request
ERROR Error Interrupt—Indicates one or more errors detected by receive framer, RSLIP, or TSLIP
circuits. Processor reads ISR5 [addr 006] to locate specific source.
0 = no event
1 = active interrupt request
COUNT Counter Overflow Interrupt—Indicates one or more error counts [addr 050–05A] have issued
an overflow interrupt. Processor reads ISR4 [addr 007] to locate specific source.
0 = no event
1 = active interrupt request
TIMER Timer Interrupt Request—Indicates that the transmit, receive, or system bus timebase has
reached a frame count terminus or that the receive signaling stack [STACK; addr 0DA] has
been updated with ne w signaling during t he prior multiframe. Pr ocessor reads ISR3 [addr 008]
to locate specific source.
0 = no event
1 = active interrupt request
DL1 Data Link Controller 1 or BOP Transmit—Indicates that a transmit or receive interrupt issued
by DL1 or BOP transceiver has begun transmitting a priority codeword from TBOP
[addr 0A1]. Processor reads ISR2 [addr 009] to locate specific source.
0 = no event
1 = active interrupt request
7 6 5 4 3 2 1 0
ALARM1 ALARM2 ERROR COUNT TIMER DL1 DL2 PATT
3.0 Registers CX28394/28395/28398
3.4 Interrupt Control Register Quad/x16/Octal—T1/E1/J1 Framers
3-14 Conexant 100054E
DL2 Data Link Controller 2 or BOP Receive—Indicates that a transmit or receive interrupt issued
by DL2 or BOP transceiver has received a valid priority codeword and updated RBOP
[addr 0A2]. Processor reads ISR1 [addr 00A] to locate specific source.
0 = no event
1 = active interrupt request
PATT PRBS Pattern or Transmit Framer Error—Indicates detection of PRBS test patter n sync or
detection of one or more transmit frame alignment pattern errors. Processor reads ISR0
[addr 00B] to locate specific source.
0 = no event
1 = active interrupt request
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.5 Interrupt Status Registers
100054E Conexant 3-15
3.5 Interrupt Status Registers
An Interrupt Status Register (ISR) bit is latched active (high) whenever its corresponding interrupt source
reports an interrupt event. The processor reads ISR to clear all latched ISR bits. If the corresponding interrupt
enab le is acti v e (high), each interrupt e vent forces the associ ated IRR bit acti v e (high). Interrupt sources fall into
tw o categories:
Rising-edge source reports an interr upt event when status changes from inactive to active state. Unless
specifically noted otherwise, all ISR bits are rising-edge sources.
Dual-edge source repor ts an interrupt event when status changes from inactive to active (rising edge), or
from acti ve to inact i ve (falling ed ge). The pro cessor must read t he associated real -time status to d etermine
which edge occurred.
Interrupt events are rep orted in re al t im e in t he MIR r e gi st er a nd on t he IN TR* output pin if in terrupt enabl e
is active (high) . Otherwise, the interrupt status is la tched and re porte d according to the selected la tching mo de
[LATCH; addr 046] without asserting the MI R bit or th e INTR* out put pi n. Table 3-6 summarizes t he interrupt
status registers.
Tab le 3-6. Interrupt Status Regi s ter Summary
Bit 004
ISR7
ALARM1
005
ISR6
ALARM2
006
ISR5
ERROR
007
ISR4
COUNT
008
ISR3
TIMER
009
ISR2
DL1
00A
ISR1
DL2
00B
ISR0
PATT
0 SIGFRZ ONESEC FERR FERR[12] RFRAME TMSG TMSG TFERR
1 RLOF TLOF MERR CRC[10] RMF TNEAR TNEAR TMERR
2 RLOS SERR LCV[16] RMSYNC TEMPTY TEMPTY TSERR
3 RALOS TLOC CERR FEBE[10] RSIG TDLERR TDLERR TCERR
4 RAIS BERR[12] TFRAME RMSG RMSG PSYNC
5 RPDV TPDV SEF[2] TMF RNEAR RNEAR BSLIP
6 RYEL LOOPUP RSLIP COFA[2] TMSYNC RFULL RFULL
7 RMYEL LOOPDN TSLIP FRED[4] TSIG TBOP RBOP
3.0 Registers CX28394/28395/28398
3.5 Interrupt Status Registers Quad/x16/Octal—T1/E1/J1 Framers
3-16 Conexant 100054E
004—Alarm 1 Interrupt Status (ISR7)
All events reported in ISR7 are from dual-edge sources, except Receive Pulse Density Violation [RPDV]. Any
transit ion of real-time sta tus in Alarm 1 Status Re gister [ALM1; addr 047] forces the corresponding ISR7 sta tus
bit active (high). Active high status is latched and held according to the LATCH_ALM bit [addr 046]. Each
event triggers an interrupt if the corresponding IER7 bit is enabled [addr 00C].
RMYEL Loss/Recovery of Multiframe Yellow Alar m—Reports any change in real-time status of
Multiframe Yellow (E1) or ESF Yellow (T1) alarm detector.
0 = no event
1 = multiframe yellow alarm transition
RYEL Loss/Recovery of Yellow Alar m—Reports any change in real-time status of Remote Alarm
Indication (RAI), also referred to as yellow alarm.
0 = no event
1 = yellow alarm transition
RPDV Receive Pulse Density Violation—Reports each occurrence of a receive pulse density
violation according to ANSI T1.403 sliding window criteria. RPDV is latched active upon
detec tion of an y window of 8 (N+1) bits w hic h does not contai n at least N pul ses. F or exampl e,
RPDV reports each occur rence of 16 consecutive zeros.
0 = no error
1 = receive pulse density violation
RAIS Loss/Rec overy of Alarm Indication Signal—Reports any chang e in real-time status of the AIS
detector.
0 = no event
1 = AIS transition
RALOS Loss/Recovery of Receive Signal or Clock—Reports any change in RALOS [ALM1;
addr 047] status. RALOS can be configur ed to report recei ve loss of cl ock or a continuou s loss
of signal for 1 msec.
RLOS Loss/Recovery of Receive Signal—Reports any change in real-time status of digital receive
signal detector.
0 = no event
1 = receive signal transition
RLOF Loss/Recovery of Frame Alignment—Reports any change in real-time or integr ated status of
receive onli ne frame status monitor.
0 = no event
1 = receive frame status transition
SIGFRZ Loss/Recovery of Signaling Freeze—Reports any change in real-time status of the SIGFRZ
receiver status, which is also available on the SIGFRZ output pin.
0 = no event
1 = SIGFRZ transition
7 6 5 4 3 2 1 0
RMYEL RYEL RPDV RAIS RALOS RLOS RLOF SIGFRZ
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.5 Interrupt Status Registers
100054E Conexant 3-17
005—Alarm 2 Interrupt Status (ISR6)
All events reported in ISR6 are from dual-edge sources, except the one-second timer [ONESEC] and Transmit
Pulse Density Violation [TPDV]. Any transition of real-time status in the Alarm 2 Status Register [ALM2;
addr 048] forces the corresponding ISR6 status bit active (high). Active-high status is latched and held
accordi ng t o the LATCH_ALM bit [addr 046]. Each e vent tri gger s an interrupt if th e corresponding IER6 bi t i s
enabled [addr 00D].
LOOPDN Loss/Recovery of Inband Loopback Deactivate Code—Reports any change in real-time status
of inband loopback deactivate code detector.
0 = no event
1 = LOOPDN code transition
LOOPUP Loss/Recovery of Inband Loop back Acti vate Code —Reports any chan ge in real-time status of
inband loopback activate code detector.
0 = no event
1 = LOOPUP code transition
TPDV Transmit PDV Monitor/Enforcer—Applicable only if TZCS [addr 071] enables PDV
enforcement. When enabled, TPDV is latched active if one or more PDV-enforced ones were
output in order to meet ANSI T1.403 minimum pulse density requirements.
0 = no error
1 = PDV-enforced one
TLOC Loss/Recovery of Transmit Clock—Reports any change in real-time status of TCKI clock
monitor.
0 = No alarm
1 = cloc k monitor transition
TLOF Loss/Recovery of Transmit Frame Alignment—Reports any change in real-time status of
transmit framer's basic alignment.
0 = no alarm
1 = transmit framer transition
ONESEC One Second Ti mer Event—ONESEC is derived from the internal 1-second timer or the rising
edge of ONESEC input signal according to the selected I/O mode [PIO; addr 018].
0 = no timer event
1 = ONESEC timer expired or rising edge of ONESEC input
7 6 5 4 3 2 1 0
LOOPDN LOOPUP TPDV TLOC TLOF ONESEC
3.0 Registers CX28394/28395/28398
3.5 Interrupt Status Registers Quad/x16/Octal—T1/E1/J1 Framers
3-18 Conexant 100054E
006—Error Interrupt Status (ISR5)
All events in ISR5 are from rising edge sources. Each event is latched active high and held according to the
LATCH_ERR bit [addr 046] and triggers an interrupt if the corresponding IER5 bit is enabled [addr 00E].
TSLIP Transmit Slip Error—Two types of TSLIP buffer errors are reported: TFSLIP or TUSLIP.
Error type is reported separately in slip status [SSTAT; 0D9].
0 = no error
1 = TSLIP error
RSLIP Recei v e Slip Error—Two typ es of RSLIP buffer errors are reported: RFSLIP or R USLIP. Error
type is reported separately in slip status [SSTAT; 0D9].
0 = no error
1 = RSLIP error
CERR CRC6/CRC4 Block Error—Applicable to ESF and MFAS modes only, read zero in other
modes. CERR indicates one or more bit errors found in received CRC-6 or CRC-4 checksum
block pattern.
0 = no error
1 = CRC error
SERR CAS Patter n Error—Applicable only in E1 mode, read zero in T1 mode. SERR indicates one
or more bit errors in received TS16 Multiframe Alignment Signal (MAS).
0 = no error
1 = CAS error
MERR MFAS Pattern Error—Applicable only in E1 mode (read zero in T1 mode)—Indicates one or
more bit errors in received MFAS alignment patter n .
0 = no error
1 = MFAS error
FERR Frame Error—Ft/Fs/T1DM/FPS/FAS Pattern Error—Indicates one or more Ft/Fs/F PS frame
bit errors or FAS p attern errors. Refer to Tables A-1 through A-6 for a description of which
frame bits are monitored according to the selected receive framer mode.
0 = no error
1 = frame er ro r
7 6 5 4 3 2 1 0
TSLIP RSLIP CERR SERR MERR FERR
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.5 Interrupt Status Registers
100054E Conexant 3-19
007—Counter Overflow Interrupt Status (ISR4)
All count overflow events in ISR4 are from rising edge sources. Each event is latched active high when the
respective err or counte r [addr 050–05A] reaches its maximum count value, but only while the respective IER4
[addr 00F] interrupt enable bit is active. If the corresponding interrupt is masked, then no overflow status is
reported. Active overflow status bits are held until the processor read clears ISR4. Each event triggers an
interrupt if the corr esponding IER4 bit is enabled.
FRED[4] Out of Frame Error Count Overflow
COFA[2] Change of Alignment Count Overflow
SEF[2] Severely Errored Frame Count Overflow
BERR[12 ] Test Pattern Bit Error Count Overflow
FEBE[10] FEBE Error Cou nt O verflow
LCV[16] LCV (BPV+EXZ) Error Count Overflow
CRC[10] CRC6/CRC4 Error Count O verflow
FERR[12] Ft/Fs/FPS/FAS Error Count Overflow
008—Timer Interrupt Status (ISR3)
All events in ISR3 are from rising edge sources. Each event is latched active high and held until the processor
read clears ISR3. Each event triggers an interrupt if corresponding IER3 bit is enabled [addr 010].
TSIG Transmit Signaling Multiframe—Activated every 1.5 ms (SF/SLC), 3 ms (ESF), or 2 ms
(CAS) coincident w ith the first bi t of a transmit signaling multiframe.
0 = no timer event
1 = transm it signaling multifra me
TMSYNC TX System Bus MF Sync—Activated every 1.5 ms (SF/SLC), 3 ms (ESF), or 2 ms (CAS)
coincident with the first bit of transmit system bus multiframe input on TPCMI.
0 = no timer event
1 = TSB multiframe
TMF T ransmi t Multif rame—TMF is act ivated ev ery 1.5 ms (SF/SLC), 3 ms (ESF), or 2 ms (MFAS)
coincident with the first bit of a transmit multiframe.
0 = no timer event
1 = transmit multiframe
TFRAME Transmit Frame—Activated every 193 bits (T1) or 256 bits (E1) coincident with first bit of a
transmit frame. Processor may read TPHASE [addr ODC] to determine which TSLIP buffer
half can be accessed.
0 = no timer event
1 = transmit frame
7 6 5 4 3 2 1 0
FRED[4] COFA[2] SEF[2] BERR[12] FEBE[10] LCV[16] CRC[10] FERR[12]
7 6 5 4 3 2 1 0
TSIG TMSYNC TMF TFRAME RSIG RMSYNC RMF RFRAME
3.0 Registers CX28394/28395/28398
3.5 Interrupt Status Registers Quad/x16/Octal—T1/E1/J1 Framers
3-20 Conexant 100054E
RSIG Receive Signaling Stack—Indicates that one or more signaling bit changes were detected
during the prior receive multiframe, and that new ABCD (robbed bit or CAS) signaling is
available on the Receive Signaling Stack Register [addr 0DA]. RSIG is cleared by processor
read of ISR3, independent of STACK contents.
0 = no stack update
1 = new ABCD signaling
RMSYNC Receive System Bus MF Sync—Activated every 3 ms (SF/SLC/ESF), or 2 ms (CAS)
coincident with the first bit of receive system bus multiframe output on RPCMO.
0 = no timer event
1 = RSB mult iframe
RMF Receive Multiframe Boundary—RMF is activated every 1.5 ms (SF/SLC), 3 ms (ESF), or
2 ms (MFAS ) coincident with the first bit of a received mu ltiframe. If MAS is not included in
the receive framer criteria, then RMF is activated at 2 ms interval.
0 = no timer event
1 = receive multiframe
RFRAME Receive Frame Boundary—Activated every 193 bits (T1) or 256 bits (E1) coincident with the
first bit of a received frame. Processor m ay read RPHASE [addr 0DB] to determine which
RSLIP buffer half can be accessed.
0 = no timer event
1 = receive frame
009—Data Link 1 Interru pt Status (ISR2 )
All events in ISR2 are from rising edge sources. Each event is latched active high and held until the processor
read clears ISR2. Each event triggers an interrupt if the corresponding IER2 bit is enabled [addr 011].
TBOP BOP Codeword TransmittedSet when a valid Bit Oriented Codeword has been tra nsmitted
and a new TBOP value can be written [TBOP; addr 0A1].
RFULL1 Receive FIFO FullIn HDLC mo d es, RFULL is set when the data lin k receiver attempts to
write received data to a full FIFO causing the receive data link FIFO to overrun. In
unformatted modes (Pack6 and Pack8), RFULL is set when the receive FIFO is filled to the
MSG_FILL Limit selected in register RDL1_FFC [addr 0A7].
RNEAR1 Receive FIFO Near FullSet when the receive FIFO fill level reaches the near full threshold
selected in re gi st er RDL1_F FC [addr 0A7].
RMSG1 Message ReceivedSet when a complete message or a partial message is received and
available in the receiver FIFO.
TDLERR 1 T rans mi t FIFO ErrorSet when the FIFO underr u ns as a result of the inter nal logic emptying
the FIFO without encountering an end of message [TDL1_EOM; addr 0AC]. The underrun
condition also forces transmission of an HDLC abort code.
TEMPTY1 Transmit FIFO EmptySet when the FIFO overflo ws as a result of the processor at tempting to
write to a full FIFO. Overflow data is ignored by the transmit FIF O.
TNEAR1 Transmit FIFO Near Empty Set when the transm it FIFO level falls below the threshold
selected in re gi st er TDL1_FE C [addr 0AB].
TMSG1 Message T ransmittedSet wh en a complete message ha s been transmit ted and the closin g flag
is just beginn ing transmission.
7 6 5 4 3 2 1 0
TBOP RFULL1 RNEAR1 RMSG1 TDLERR1 TEMPTY1 TNEAR1 TMSG1
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.5 Interrupt Status Registers
100054E Conexant 3-21
00A—Data Link 2 Interrupt Status (ISR1)
All events in ISR1 are from rising edge sources. Each event is latched active high and held until the processor
read clears ISR1. Each event triggers an interrupt if the corresponding IER1 bit is enabled [addr 012].
RBOP BOP Codeword ReceivedSet when a valid Bit Oriented Codeword is received and available
in the RBOP regi ste r [addr 0 A2].
RFULL2 Receive FIFO FullIn HDLC mo d es, RFULL is set when the data lin k receiver attempts to
write received data to a full FIFO causing the receive data link FIFO to overrun. In
unformatted modes (Pack6 and Pack8), RFULL is set when the receive FIFO is filled to the
MSG_FILL limit selected in register RDL2_FFC [addr 0B2].
RNEAR2 Receive FIFO Near FullSet when the receive FIFO fill level reaches the near full threshold
selected in re gi st er RDL2_FFC [addr 0B2].
RMSG2 Message ReceivedSet when a complete message or a partial message is received and
available in the receiver FIFO.
TDLERR 2 T rans mi t FIFO ErrorSet when the FIFO underr u ns as a result of the inter nal logic emptying
the FIFO without encountering an end of message [TDL2_EOM; addr 0B7]. The underrun
condition also forces transmission of an HDLC abort code.
TEMPTY2 Transmit FIFO EmptySet when the FIFO overflo ws as a result of the processor at tempting to
write to a full FIFO. Overflow data is ignored by the transmit FIF O.
TNEAR2 Transmit FIFO Near EmptySet when the transmit FI FO level falls below the threshold
selected in re gi st er TDL2_FE C [addr 0B6].
TMSG2 Message T ransmittedSet wh en a complete message ha s been transmit ted and the closin g flag
is just beginn ing transmission.
7 6 5 4 3 2 1 0
RBOP RFULL2 RNEAR2 RMSG2 TDLERR2 TEMPTY2 TNEAR2 TMSG2
3.0 Registers CX28394/28395/28398
3.5 Interrupt Status Registers Quad/x16/Octal—T1/E1/J1 Framers
3-22 Conexant 100054E
00B—Patt ern Inter ru pt Statu s (ISR0 )
All events in ISR0 are from rising edge sources. Each event is latched active high and held until the processor
read clears ISR0. Each event triggers an interrupt if the corresponding IER0 bit is enabled [addr 013].
BSLIP Online Framer Bit Slip—Active high, indicates receive online framer adjusted receive frame
sync by ±1 bit. When BSLIP occurs, the apparent FAS error is not reported elsewhere (not to
FERR count, RLOF circuit, or SEF circuit). Applicable only to receive framer modes with
BSLIP enabled (see Table 3-5).
0 = no error
1 = frame bit slip
PSYNC Recei ve PRBS Test Pattern Sync—Forced to inactive (low) status when the processor request s
RESEED [addr 041] of the PRBS sync detector and remains low while the detector searches
for test pat te rn sync. PRBS bi t errors [BERR; addr 058, 059] are not cou nt ed while P SYNC is
low. PSYNC remai ns low for a minimum of 1 28 bits foll o wi ng RESE ED and for as lo ng a s the
received bit error ratio (BER) exceeds 10E-2. PSYNC is latched active (high) and the PRBS
sync detector stops searching when no bit errors are found for a period of 96 bits. The sync
detector remains disabled until the processor requests another RESEED. Therefore, any range
of BER can be measured after initial pattern sync. The processor must determine criteria for
loss of pattern sync based on its accumulation of bit errors over the desired time interval.
0 = no sync
1 = PRBS test pattern sync
TCERR Transmit CRC Er ror—Reports occurrences of CRC-6 or CRC-4 errors detected on TPCMI
data according to the selected T1/E1 mode.
0 = no error
1 = CRC error
TSERR Transmit CAS Error—Reports occurrences of MAS pattern errors detected on TPCMI data if
CAS transmit framer mode is selected.
0 = no error
1 = CAS error
TMERR Transmit Multiframe Error—Reports occurrences of Fs or MFAS errors detected on TPCMI
data according to the selected transmit framer mode.
0 = no error
1 = transmit multiframe e rror
TFERR Transmit Frame Error—Reports occurrences of Ft, FPS, or FAS errors detected on TPCMI
data according to the selected transmit framer mode.
0 = no error
1 = transmit frame error
7 6 5 4 3 2 1 0
BSLIP PSYNC TCERR TSERR TMERR TFERR
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.6 Interrupt Enable Registers
100054E Conexant 3-23
3.6 Interrupt Enable Registers
Writing a one to an IER bit all ows that specific interrupt source to activ a te it s respectiv e ISR bit, t he associat ed
MIR bit. While cleared, each IER bit al l ows that source to acti vate its respective ISR bit , but prevents acti vation
of the MIR bit.
00C—Alarm 1 Interrupt Enable Register (IER7)
RMYEL Enable RMYEL In terrupt
RYEL Enable RYEL Interrupt
RPDV Enable RPDV In terr upt
RAIS Enable RAIS Interrupt
RALOS Enable RALOS Interrupt
RLOS Enable RLOS Interrupt
RLOF Enable RLOF Interr upt
SIGFRZ Enable SIGFRZ Interrupt
00D—Alarm 2 Interrupt Enable Register (IER6)
Unused bits are reser ved and should be written to 0.
LOOPDN Enable LOOPDN Interru pt
LOOPUP Enable LOOPUP Interrupt
TPDV Enable TPDV Interrupt
TLOC Enable TLOC Interrupt
TLOF Enable TLOF Inte rrupt
ONESEC Ena ble ONESEC Interrupt
7 6 5 4 3 2 1 0
RMYEL RYEL RPDV RAIS RALOS RLOS RLOF SIGFRZ
7 6 5 4 3 2 1 0
LOOPDN LOOPUP TPDV TLOC TLOF ONESEC
3.0 Registers CX28394/28395/28398
3.6 Interrupt Enable Registers Quad/x16/Octal—T1/E1/J1 Framers
3-24 Conexant 100054E
00E—Error Interrupt Enable Register (IER5)
Unused bits are reser ved and should be written to 0.
TSLIP Enable TSLI P Interrupt
RSLIP Enable RSLIP Interrupt
CERR Enable CERR Interru pt
SERR Enable SERR Interrupt
MERR Enable MERR Interrupt
FERR Enable FERR Interrupt
00F—Count Overflow Interrupt Enable Register (IER4)
LOF Enable LOF Count Overflow Interrupt
COF A Enable COFA Count Overflow Interrupt
SEF Enable SEF Count Overflow Interrupt
BERR Enable BERR Count Overflow Interrupt
FEBE Enable FEBE Count Overflow In terrupt
LCV Enable LCV Count Overflow Interrupt
CRC Enable CRC Cou nt Overflow Interrupt
FERR Ena ble FERR Count Overflow Interrupt
7 6 5 4 3 2 1 0
TSLIP RSLIP CERR SERR MERR FERR
7 6 5 4 3 2 1 0
LOF COFA SEF BERR FEBE LCV CRC FERR
Tab le 3-7. Counter Overf low Behavior
IER4 LATCH_CNT Count (addr 050–05A) MIR*
Addr 00F Addr 046 Saturate Latch Clear Active
0 0 Hold al l One s hi @ rd_ LSB hi @rd_M SB None
1 0 Rollover hi @rd_LS B hi @rd_MSB @rollove r
0 1 Hold all Ones onesec None None
1 1 Rollover onesec none @rollover
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.6 Interrupt Enable Registers
100054E Conexant 3-25
010—Timer Interrupt Enable Register (IER3)
TSIG Enable TSIG Interrupt
TMSYNC Enable TMSYNC Interru pt
TMF Enable TMF Interr upt
TFRAME En able TFRAME Interrup t
RSIG Enable RSIG Interr upt
RMSYNC En able RMSYNC Interrupt
RMF Enable RMF Interrupt
RFRAME En able RFRAME Int e rrupt
011—Data Link 1 Interrupt Enable Register (IER2)
TBOP Ena ble TBOP Interrupt
RFULL1 Enable RFULL Interrupt
RNEAR1 Enable RNEAR Interru pt
RMSG1 Enable RMSG Inter rupt
TDLERR 1 Enable TDLERR Interrupt
TEMPTY1 Enable TEMPTY In terrup t
TNEAR1 Enable TNEAR In terrupt
TMSG1 Enable TMSG Interru pt
7 6 5 4 3 2 1 0
TSIG TMSYNC TMF TFRAME RSIG RMSYNC RMF RFRAME
7 6 5 4 3 2 1 0
TBOP RFULL1 RNEAR1 RMSG1 TDLERR1 TEMPTY1 TNEAR1 TMSG1
3.0 Registers CX28394/28395/28398
3.6 Interrupt Enable Registers Quad/x16/Octal—T1/E1/J1 Framers
3-26 Conexant 100054E
012—Data Link 2 Interrupt Enable Register (IER1)
RBOP Enable RBOP Interrupt
RFULL2 Enable RFULL Interrupt
RNEAR2 Enable RNEAR Interru pt
RMSG2 Enable RMSG Interrupt
TDLERR2 Enable TDLERR Interrupt
TEMPTY2 Enable TEMPTY In terrup t
TNEAR2 Ena ble TNEA R Interrupt
TMSG2 Enable TMSG Interrupt
013—Pattern Interrupt Enable Register (IER0)
Unused bits are reser ved and should be written to 0.
BSLIP Ena ble BSLIP Interrupt
PSYNC Enable PSYNC Interrupt
TCERR En able TCERR Interrupt
TSERR En able TSERR Interrupt
TMERR Enable TMERR Interrupt
TFERR Enable TFERR In terr upt
7 6 5 4 3 2 1 0
RBOP RFULL2 RNEAR2 RMSG2 TDLERR2 TEMPTY2 TNEAR2 TMSG2
7 6 5 4 3 2 1 0
BSLIP PSYNC TCERR TSERR TMERR TFERR
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.7 Pr imary Cont rol and St atus Registers
100054E Conexant 3-27
3.7 Primary Control and Status Registers
014—Loopback Configuration Register (LOOP)
Unused bits are reser ved and should be written to 0.
PLOOP Enable Remote Payload Loopback—Payload from receiver replaces payload on transmitter
output. Loopback payload retains time slot and frame integrity, such that numbered time slots
from each recei v e frame are t ransferred to the same numbered time slots in the transmit frame.
Transmit overhead bits, Fbits in T1 mode or TS0 in E1 mode, are supplied by transmit frame
formatter or by tran smit system bus according to TFR M [addr 072] set ting s. Existi ng transmi t
frame alignment and clock timing is not altered by PLOOP activation or deactivation, thus
allowing system operation with independent receive and transmit timing. Controlled frame
slips are performed in the payload loopback path if receive and transmit clocks are
asynchronous, although these slips are not reported to the processor as slip buffer errors.
Multiframe integrity is not maintained during PLOOP. This means that DS0 channel loopbacks
[TPCn; addr 100–11F] must be used to implement payload loopbacks when transparent or
forced signaling is desired. Note that TIDLE (in TPCn) overrides PLOOP.
0 = no loopback
1 = payload loopback
LLOOP Enable Remote Line Loopback—Received dual-rail unipolar data (RPOSI, RNEGI) is
internally connected to transmit dual-rail unipolar data (TPOSO, TNEGO). The receive clock
must also be looped when LLOP is selected in CMUX [addr 01A]; TXCLK must be set to 01
to select RCKI as the transmit clock. Loopback data retains BPV transparency. Data input
from transmit system bus continues to pass through the transmitter, but is ignored at ZCS
encoder out puts. Received da ta to RSB bloc k i s u naffected. LLOOP and FLOOP can be act ive
simultaneously to support both line and network loopbacks at the same time.
0 = no loopback
1 = line loopback
FLOOP Enable Local Framer Loopback—Dual-rail unipolar data from transmit ZCS encoder is
internally connected to receive ZCS decoder inputs. Clock switching is automatic during
FLOOP loopback mode.
0 = no loopback
1 = framer loopback
7 6 5 4 3 2 1 0
————PLOOPLLOOPFLOOP
3.0 Registers CX28394/28395/28398
3.7 Primary Control and St atus Registers Quad/x16/Octal—T1/E1/J1 F ramers
3-28 Conexant 100054E
015—External Data Link Time Slot (DL3_TS)
DL3_TS works in conjunct ion with t he DL3_BIT R egister [addr 016] to determine w hich tr ansmit time slots are
supplied from the TDLI pins and which receive and transmit time slots are accompanied by a gated RDLCKO
and TDLCKO output. Refer to Figure 2-21, Transmit External Data Link Waveforms. Note that RDLO outputs
the entire receive data bit stream, and only selective time slots are marked by RDLCKO. DL3 is not accessible
on the CX28395 device, therefore, DL3_TS must be written to 00.
CX28394, CX28398
CX28395
DL3EN Enable External Data Link—Active high enables data inser tion from TDLI and clock gating
on TDLCKO and RDLCKO outputs according to the selected external data link mode. PIO
[addr 018] must select TDL_IO and/or RDL_IO to enable external data link signals.
0 = external data link pins inactive
1 = TDLI/TDLC KO and RDLO/RDLCKO active
ODD/EVEN Odd/Even Frame Select—The external data link is prog rammed to source and sink data bits
during all frames or odd or even frames only. ODD/EVEN also controls gating of RDLCKO
and TDLC KO external dat a link c locks. F rames are counted f rom 0 thr ough 15 in E1 mode and
1 through 24 in T1 mode, where frames 1, 3, 5 etc., are always considered ODD frames.
ODD/EVEN is ignored if T1 Fbits are selected in DL3_TS.
TS[4:0] External Data Link Time Slot Select—Picks one 8-bit time slot for input and output over the
external data link pins. Any time slot can be chosen from TS0 to TS31 in E1 mode, or TS1 to
TS24 in T1 mode. In T1 mode, TS0 selects Fbits instead of a channel time slot.
7 6 5 4 3 2 1 0
DL3EN ODD EVEN TS[4] TS[3] TS[2] TS[1] TS[0]
7 6 5 4 3 2 1 0
00000000
ODD EVEN Frame Select
0 0 None. Equivalent to disabling external data link.
0 1 Ev en frames only. Frame 0, 2, 4, 6, etc.
1 0 Odd frames on ly. Frame 1, 3, 5, 7, etc.
1 1 All f ram es
00000 T1 Fbits or E1 Time Slot 0
00001 Time Slot 1
| |
11110 Time Slot 30
11111 Time Slot 31
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.7 Pr imary Cont rol and St atus Registers
100054E Conexant 3-29
016—External Data Link Bit (DL3_BIT)
DL3_BIT[7:0] External Data Link Bit Select—Enables receive (RDLCKO) and transmit (TDLCKO) clock
pulse outp uts during the sel ected time slot bit s. DL3_BIT and the DL3_TS Register [addr 015]
select any combination of bits fo r input and out put on the e xternal data link pins b y writ ing the
corresponding DL3_BIT active (high). LSB enables clock pulses coincident with the first bit
transmitted or recei ved. Ful l T1/E 1 dat a st ream is output on RDLO as long as t he R DL_IO bi t
[addr 018] is active and regardless of which bits are accompanied by RDLCKO clock pulses.
The selected transmit data link bits are sampled from the TDLI pin on the falling edge of
TDLCKO to replace normal transmitted data. DL3_BIT has no effect when DL3_TS selects
T1 Fbits or when the DL3EN bit is inactive. DL3 is not accessible on the CX28395 device.
0 = disable DL3 bit
1 = enable DL3 bit
017—Offline Framer Status (FSTAT)
Each framer contains a single offline framer that acts as a shared resource for both receive and transmit
channels. Current alignment status for receive and transmit channels are reported separately in Alarm Status
Registers (ALM1, ALM2; addr 047, 048). FSTAT is thus used primarily for diagnostic purposes to monitor the
prog ress of an alignment search or to verify acknowledgment of a processor-generated forced reframe request.
These status bits may only be repor ted for a very short period of time (i.e., 1 clock cycle) since the RLOF and
TLOF reframe requests may immediately request another offline framer search.
INVALID No Candidate—Active high at the conclusion of a search during which no frame alignment
candidates were located.
0 = search active, aborted, timed out, or found
1 = alignment not found (no candidate)
FOUND Frame Search Successful—Active high indicates the offline framer located frame alignment
according to the selected receive or transmit framer mode. Refer to Table 3-8 for Maximum
Average Reframe Time. Upon detection of frame alignment, the following occurs: FOUND
goes active high, RLOF or TLOF is cleared by the online framer (depending on RX/TX
direction), offline framer goes inactive (if no pending reframe requests), and RX, TX, or TSB
timebase is realigned (depending on RX/TX direction and the embedd ed framing mode). If the
reframe pulse causes the receive timebase to align to a position that differs from its existing
alignment, the change of frame alignment error counter [COFA; addr 05A] will increment.
Changes of the transmit frame alignment are not detected.
0 = no candidate: search active, aborted, or timed out
1 = frame alignment found (one and only one candidate)
NOTE: In E1 receive framer modes, th e offline f ra mer also reports interme diate FRED,
MRED, and SRED status [ALM3; addr 049] while searching for FAS/MFAS/CAS
alignment, respectively.
7 6 5 4 3 2 1 0
DL3_BIT[7] DL3_BIT[6] DL3_BIT[5] DL3_BIT[4] DL3_BIT[3] DL3_BIT[2] DL3_BIT[1] DL3_BIT[0]
7 6 5 4 3 2 1 0
INVALID FOUND TIMEOUT ACTIVE RX/TXN
3.0 Registers CX28394/28395/28398
3.7 Primary Control and St atus Registers Quad/x16/Octal—T1/E1/J1 F ramers
3-30 Conexant 100054E
TIMEO UT Framer Search Timeout—Cleared when the offline framer transitions to its ACTIVE state. If
multiple frame candidates exist over the entire mode-dependent timeout interval (refer to
Table 3-8), TIME OUT is lat ched act i v e hi gh. Processo r -gener ated refr ame re quests (RFOR CE
or TFORC E) in itiate a singl e s earc h that extends for up to 24 ms before TIMEOUT. After
reporting TIMEOUT, the offline framer starts another search if the reframe request (RLOF or
TLOF) is active.
0 = no candidate; search active, abor ted, or found
1 = framer search timeout (multiple candidates)
ACTIVE Framer Active—Offline framer transitions to its ACTIVE state in response to RFORCE or
TFORCE reframe request from the processor or in response to RLOF or TLOF reframe
request from an online framer. Offline framer remains ACTIVE until alignment is found
(FOUND), search is aborted [see RABORT, addr 040; or TABORT, addr 071], search reaches
its timeout interval (TIMEOUT), or all possible frame cand idates are eliminated (INVALID).
0 = offline framer inactive; search completed, aborted or timed out
1 = offline framer actively searching for alignment
NOTE: RFORCE or TFORCE don’t change current RLOF or TLOF status. RFORCE or
TFORCE is cleared by framer transition to ACTIVE.
RX/TXN RX/TX Reframe Operation—Indicates which direct ion the of fline framer is acti v ely searching
or most recentl y sea rched for frame alignment. RX/TXN status i s updated w hen of fline framer
transitions to its ACTIVE state in response to a reframe request.
0 = search data from Transmit System Bus PCM Input (TPCMI)
1 = search data from receive line interface unit
Table 3-8. Maximum Average Reframe Time (MART) and Framer Timeout
Framer Mode MART TIMEOUT (addr 017)
Ft 3.5 ms 12 ms ±1 bit
Ft + T1DM 1.0 ms 12 ms ±1 bit
SF 3.5 ms 12 ms ±1 bit
SF + JYEL 4.5 ms 12 ms ±1 bit
SF + TIDM 2.0 ms 12 ms ±1 bit
SLC 15.0 ms 24 ms ±1 bit
ESF 10.0 ms 24 ms ±1 bit
ESF + CRC 15.0 ms 24 ms ±1 bit
ESF + MI MIC 15.0 ms 24 ms ±1 bit
FAS 0.5 ms 8 ms ±125 µs
CAS 2.0 ms 8 ms ±125 µs
MFAS 10.0 ms 8 ms ±125 µs
NOTE(S): MART is defin e d (per Bel lcore TA-0278) as the diffe rence be tween the time that
known good pseudo-random DS1 input is applied and the time that a valid DS0 signal is
observed at the output.
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.7 Pr imary Cont rol and St atus Registers
100054E Conexant 3-31
018—Programmable Input/Output (PIO)
RMSYNC_EN Enable RMSYNC—Select which signal is present on bimodal pin, RFSYNC/RMSYNC.
When acti ve, recei v er multiframe sync (RMSYNC) is enabled. Otherwise, recei ver frame sync
RFSYNC is enabled.
RDL_IO Enable Receiver Data Link—Select which signals are present on bimodal RDLCKO and
RDLO. When active Receiver Data Link Clock Out (RDLCKO) and Receive Data Link Data
Out (RDLO) are enabled. Otherwise RINDO and RSIGO are as follows:
0 = select RINDO and RSIGO
1 = select Receive Data Link
TMSYNC _EN Enable TMSYNC—Select which si gnal is present on bimodal pin, TFSYNC/TMS YNC. When
active, transmit multiframe sync (TMSYNC) is enabled. Otherwise, receiver frame sync
TFSYNC is enabled.
TDL_IO Enable Transmit Data Link—Select which signals are present on bimodal TDLCKO and
TDLI. When active Transmit Data Link Clock Out (TDLCKO) and Transmit Data Link Data
Out (TDLO) are enab led. On the CX28395 de v ice, TDL3 is not a v ailab le and TDL_IO must b e
written to 0.
0 = select TINDO and TSIGI
1 = select Transmit Data Link
RFSYNC_IO Bidirectional RFSYNC Input/Output Mode—Refer to the system bus sync mode summary in
Tables 3-9 and 3-11. When RFSY NC is an input, i ts low to high transition aligns the RS B
timebase to the programmed RSB.OFFS ET. Refer to RSYNC_BIT, RSYNC_TS, and
RSYNC_FRM offset registers [addr 0D2, 0D3, and 0D8] for a complete description of the
RSB Sync Bits Tim e Slot and Frame Offset. Once aligned, the RSB timebase internally
flywheels at a 125 µs interval (8 kHz) until a new RFSYNC pulse is applied. When RFSYNC
is programmed as an output, it operates continuously at a 8 kHz frame rate, marking the RSB
sync bits and time slot offset position of each fram e. Initial RFSYNC align ment and
subsequent realignment depends upon RSB Mode [RSBI; addr 0D1] and RSB manual center
[RSB_CTR ; addr 0D1]. RFSYNC must be programmed as an output when RSLIP i s in bypass
mode. RFSYNC and RMSYNC are supplied either by the RSB timebase (output) or receive
system bus (input) at a programmable RSB sync bit offset, time slot location and frame offset
location.
0 = RFSYNC input
1 = RFSYNC output
RMSYNC_IO Bidir ec tion al RMSYNC Inpu t/ Output M ode— Refe r to t he syst em bus sync mode su mmary in
Table 3-9. When RMSYNC is an input, its low-to-high transition aligns the RSB timebase to
the pro grammed RSB .OFFSET. Once aligned , the RSB timebase internall y fl ywheel s at a 3 ms
(T1) or 2 ms (E1) interval until a new RMSYNC pulse is applied. Note that RMSYNC input
signal must always coincide with RFSYNC. When RMSYNC is an output, it operates
continuously at the 6 ms multiframe rate, marking the RSB.OFFSET position of ever y second
multifra me (T1) or every thir d multiframe (E1). Initia l RMSYNC alignment and subsequent
realignment depends upon RSB mode [RSBI; addr 0D1] and RSB manual center [RSB_CTR;
addr 0D1]. RMSYNC must be programmed as an output when RSLIP is in bypass mode or
transparent signaling mode [THRU; addr 0D7].
0 = RMSYNC input
1 = RMSYNC output
7 6 5 4 3 2 1 0
RMSYNC_EN RDL_IO TMSYNC_EN TDL_IO RFSYNC_IO RMSYNC_IO TFSYNC_IO TMSYNC_IO
3.0 Registers CX28394/28395/28398
3.7 Primary Control and St atus Registers Quad/x16/Octal—T1/E1/J1 F ramers
3-32 Conexant 100054E
TFSYN C_I O Bidirectional TFSYNC Input/Output Mode—TFSYNC_IO programming is dependent on
transmit framer and system bus modes as shown in Tables 3-9 and 3-10.
0 = TFSYNC input
1 = TFSYNC output
TMSYNC _I O Bidirectional TMSYNC Input/Output mode—TMSYNC_IO programming is dependent on
transmit framer and system bus modes as shown in Tables 3-9 and 3-10.
0 = TMSYNC input
1 = TMSYNC output
Tab le 3-9. System Bus Sync Mode Summary
FSYNC MSYNC SBI Alignment Mode
IN IN SBI supplies multiframe and 8 kHz frame alignment. FSYNC must be aligned with
MSYNC if both are provided .
IN IN-GND SBI supplies 8 kHz frame alignment. Multiframe alignment is arbitrary and MSYNC is
unused.
IN OUT SBI supplies 8 kHz frame alignment. Multiframe alignment is supplied by the framer.
IN-GND OUT Framer supplies multiframe ali gnment. FSYNC is unused.
OUT IN SBI supplies multiframe and frame alignment.
OUT OUT Framer supplies frame and multiframe alignment.
Table 3-10. Common TFSYNC and TMSYNC Configurations
Conditions TFSYNC TMSYNC Explanation
Transmit framer disable d.
(TABORT = 1) IN IN TSB timebase slaved to system bus TFSYN C or TMSYNC.
IN-GND IN TSB time base slaved to system bus TMSYNC. TFSYNC i s unused.
IN IN-GND TSB ti mebase slaved to system b us TFSYNC. TMSY NC is unuse d
and mult iframe alignment is arbit r ary.
IN OUT SB timebase slaved to system bus TFSYNC. TMSYNC alignment is
arbitrary.
OUT OUT TSB ti mebase alignment is arb itrary.
OUT IN TSB timebase slaved to s ystem bus TMSYN C. TFSYNC aligns to
TMSYNC in pu t.
T ransmit framer enabled to
search TPCMI for
embedded framing.
(EMBED = 0, TABORT = 0)
OUT OUT TSB timebase is aligne d to embed ded framing on TP CMI. TPCMI
must be configured to l ine rate for this case .
T ransmit framer enabled to
search TNRZ (after TSLIP
buffer) for embedded
fram ing. (EMB ED = 1,
TABORT = 0)
OUT IN-GND T SB time base is aligned to embedded framing on TNRZ data.
TMSYNC is unus e d. TPCMI m ay b e co nfigure d for 1 ,544 kbp s or a
multi ple of 2,048 kbps .
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.7 Pr imary Cont rol and St atus Registers
100054E Conexant 3-33
019—Programmable Output Enable (POE)
Unused bits are reser ved and should be written to 0.
TDL_OE TDLCKO Output Buffer Control—When enabled, TDLCKO is output according to DL3_TS
and DL3_BIT [addr 015, 016]. TDL_OE should be written to 1 on the CX28395 device.
0 = TDLCKO output enabled
1 = TDLCKO output three-stated
RDL_OE RDLCKO and RDLO Out put B uffer Co nt rol— When enabled, bo th bi modal signal s a re output
by their respective internal circuits. Otherwise, both outputs are placed in high impedance
state. RDL_OE should be written to 1 on the CX28395 device.
0 = RDLCKO and RDLO outputs enabled
1 = RDLCKO and RDLO outputs three-stated
INDY_OE RINDO and TINDO Output Buffer Control—When enabled, both bimodal signals are output by
their respective internal circuits. Otherwise, both outputs are forced into high impedance state.
0 = RINDO outputs enabled
1 = RINDO outputs three-stated
TCKO_O E TCKO Output Buffer Control—Allows the system to connect multiple devices to a comm on
clock bus by providing programmable three-state control over the TCKO output buffer.
0 = TCKO output enabled
1 = TCKO output three-stated
Table 3-11. Common RFSYNC and RMSYNC Configurations
Conditions RFSYNC RMSYNC Explanation
Thru = 0 [RSIG_CR;
addr 0D7] IN IN RSB timebase slave d to system bus RFS YNC or RMSYNC .
IN OUT RSB timebase slaved t o system bus RFS YNC. RMSYNC alignment
is arbitr ary.
OUT IN RSB timebase slaved t o syst em bus RMSYNC. RFSYN C aligns to
TMSYNC in pu t.
OUT OUT RFSYNC and RMSYNC alignment is arbitrary.
Thru = 1 [RSIG_CR;
addr 0D7] IN OUT RSB timebase slaved t o system bus RFS YNC. RMSYNC is aligned
with the RX ti mebase and can follow a change of RX multiframe
align ment without generating an alarm indi cation.
OUT OUT RMSYNC is aligned with the RX timebase and can follo w a change
of RX mult ifra m e al ig nm e nt w ith ou t ge ne ra tin g an alarm
indication. RFSYNC is aligned to RMSYNC.
7 6 5 4 3 2 1 0
TDL_OE RDL_OE INDY_OE TCKO_OE
3.0 Registers CX28394/28395/28398
3.7 Primary Control and St atus Registers Quad/x16/Octal—T1/E1/J1 F ramers
3-34 Conexant 100054E
01A—Clock Input Mux (CMUX)
Unused bits are reser ved and should be written to 0.
RSBCK RSBCK Source Select—Internal clock mux selects from one of two clock signals for
application to the RSB timebase. The RSBCKI input pin is ignored if TSBCKI is selected.
TSBCK TSBCK Source Select—Internal clock mux selects from one of three clock signals for
applica tion to t he TSB time base. If TSL IP is b ypasse d [TSB_CR; addr 0D4], TCKI is select ed.
The TSBCKI input pin is ignored if TCKI or RSBCKI is selected.
TXCLK[1:0] TXCLK Source Select—Internal transmit clock mux selects from one of three clock signals.
The selected clock signal is applied to tr ansmit clock moni tor , acts as a timing reference for the
transmitter block, and must operate at the T1/E1 line rate. The selected clock signal also
appears on TCKO pin. The TCKI input pin is ignored whenever a clock source other than
TCKI is selected.
020—Receive Alarm Configuration (RAC)
Unused bits are reser ved and should be written to 0.
RAL_CON RALOS Alarm Configuration – Determines whether RALOS [ALM1; addr 047] reports loss
of receive clock (RCKI) or loss of receive signal for 1 msec.
0 = RALOS reports that RLOS [ALM1; addr 047] has been active for 1 msec
1 = RALOS reports loss of clock on RCKI pin
7 6 5 4 3 2 1 0
RSBCK TSBCK TXCLK[1] TXCLK[0]
RSBCK RSBCK Source Notes
0 RSBCKI pin Normal RSB timebase
1 TSBCKI pin RSB slaved to TSB
TSBCK TSBCK Source Notes
0 TSBCKI pin Normal TSB timebase
1 RSBCKI pin TSB slaved to RSB
x TCKI pin TSLIP is bypassed
TXCLK[1:0] TXCLK Source Notes
00 TCKI Normal transmit (With TSLIP)
01 RCKI Transmit slaved to receiver (Loop Timed)
10 RSBCKI Transmit slaved to RSB
7 6 5 4 3 2 1 0
———RAL_CON————
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.7 Pr imary Cont rol and St atus Registers
100054E Conexant 3-35
021—Receive Line Code Status (RSTAT)
ZCSUB Zero Code Substitution—Indicates one or more B8ZS/HDB3 substitution patterns have been
detected on receiver input data, depending on T1/E1N line rate selection. ZCSUB is reported
regardless of whether ZCS decoding is enabled [RAMI; addr 040]. ZCSUB is latched active
high upon detection of the first ZCS pattern. The active high hold interval is defined by
LATCH_ERR [addr 046].
EXZ Excessive Zeros—Reports one or more long strings of zeros detected on the receiver data
inputs. Depending on bits RZCS [addr 040] and T1/E1N [addr 001], occurrences of 8, 10, or
16 consecutive zeros are detected. EXZ is latched active high upon detection of the first error.
The active high ho ld in terval is defined b y LATCH_ERR [addr 046] . I f EXZ _L CV [add r 0 45]
is enabled, EXZ errors are also accumulated in LCV count [addr 054, 055].
BPV Bipolar Violation—Repor t s one or more bipolar violations detected on the receiver data
inputs. Depending on RZCS [addr 040], BPV may or may not include bipolar violations
received as part of a B8ZS or HDB3 zero code substitu tion. Detectio n of BPV or LCV erro rs
can be selected regardless of whether receive ZCS decoding is enabled [RAMI; addr 040].
BPV is latched active high upon detection of the first error. The active high hold interval is
defined by LATCH_ERR [addr 046]. BPV er rors are also accumulated in LCV count [addr
054, 055].
7 6 5 4 3 2 1 0
ZCSUB EXZ BPV
ZCSUB T1/E1N ZCSUB Status
0XNo ZCS patterns detected
10HDB3 pattern detected
11B8ZS pattern detected
EXZ T1/E1N. RZCS EXZ Status
0X XNo error
10X10 consecutive zeros
11 016 consecutive zeros
11 18 consecutive zeros
BPV T1/E1N RZCS BPV Status
0XXNo error
100All BPVs, including HDB3 coded BPV
101Code violation per ITU 0.162 (two consecutive BPVs of
same polarity)
110All BPVs, including B8ZS coded BPV
111Only BPVs that are not part of B8ZS
3.0 Registers CX28394/28395/28398
3.8 Se rial Interfac e Reg i s te r s Quad/x16/Octal—T1/E1/J1 Framers
3-36 Conexant 100054E
3.8 Serial Interface Registers
These registers are not used on the CX28395 device.
022—Serial Control (SER_CTL)
Writing to SER_CTL initiates a seria l interface read or write operation. During a write operation, a 16-bit word,
consisting of SER_CTL and SER_DAT, is transmitted to the LIU. During a read operation, SER_CTL is
transmitted and 8-bit data from the LIU is received and placed in SER_DAT register. SER_RW is transmitted
fir st and SER_DAT[0] is transmitted or received first.
SER_RW Serial Read/Write – Selects the current serial interface operation type.
0 = Write
1 = Read
SER_A[6:0] Serial Interface Register Address – Identifies the LIU register address for the current read or
write operati on.
023—Serial Data (SER_DAT)
SER_DAT[7:0] Serial Interface Data
024—Serial Status (SER_STAT)
SER_DONE Serial Interface Done–During a read or write serial interface operati on, SER_ DONE is cleared
indicati ng tha t an op erat ion i s in progress. After t he operat ion is comple te, this bi t is se t a nd an
interrupt request is generated if enabled by SER_IER [addr 025]. SER_DONE is also cleared
if read by the MPU. When the SER_DONE is cleared, the inter rupt request is deactivated to
allow the INTR* pin to also be deactivated if all other interrupt sources have been serviced.
7 6 5 4 3 2 1 0
SER_A[6] SER_A[5] SER_A[4] SER_A[3] SER_A[2] SER_A[1] SER_A[0] SER_RW
7 6 5 4 3 2 1 0
SER_DAT[7] SER_DAT[6] SER_DAT[5] SER_DAT[4] SER_DAT[3] SER_DAT[2] SER_DAT[1] SER_DAT[0]
7 6 5 4 3 2 1 0
——————SER_DONE
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.8 Serial Interface Registers
100054E Conexant 3-37
025—Serial Configuration (SER_CONFIG)
Unused bits are reser ved and should be written to 0.
SER_CS Serial Interface Chip Select 1
0 = sets external SERCS1* signal low
1 = sets external SERCS2* signal low
SER_CLK Serial Interf ace Cloc k
0 =1.024 MHz
1 = 8.192 MHz
SER_IER Serial Interface Interrupt Enable
0 = interrupt disabled
1 = interrup t enabled
026—RAM Test
Reserved for Conexant Production test.
7 6 5 4 3 2 1 0
SER_CS SER_CLK SER_IER
7 6 5 4 3 2 1 0
RT[7] RT[6] RT[5] RT[4] RT[3] RT[2] RT[1] RT[0]
3.0 Registers CX28394/28395/28398
3.9 Receiver Registers Quad/x16/Octal—T1/E1/J1 Framers
3-38 Conexant 100054E
3.9 Receiver Registers
040—Receiver Configuration (RCR0)
RAMI Receive AMI Encoded Inputs—Disables B8ZS/HDB3 decoding for AMI formatted receive
signals. Otherwise, ZCS decoder replaces 000VB0VB code (B8ZS) with 8 zeros in T1 mode
or replaces X00V code (HDB3) with 4 zeros in E1 mode : wh ere B is a normal AMI pulse, V i s
a bipolar violation, and X is a “don't- care.” Regardless of RAMI setting, receipt of a ZCS
signature is always detected and reported in ZCSUB status [RSTAT; addr 021].
0 = receive B8ZS/HDB3 line format
1 = receive AMI line format
RABORT Abort/Disable RX Offline Framer—When set, the offline framer ignores reframe requests
from the online framer (RLOF) and aborts any in-progress RLOF reframe request. Loss of
frame status [RLOF; addr 047] is not affected. While RABORT remains set, offline framer
responds only to pr oce ssor forced reframes (R FORCE) . Thi s al lows the processo r t o man ual ly
control reframe criteria and prevent changes i n the cu rrent receive frame a lignmen t. RABORT
is typically set only during unframed operation.
0 = normal framer operation
1 = framer disabled
RFORCE Force RX Reframe—Forces the offline framer to perform a single reframe according to
selected receive framer mode. RFORCE is automatically cleared when offline framer
acknowledges the request [FSTAT; addr 017]. The processor does not typically need to force
reframe since the online framer reframe request (RLOF) is active whenever reframe criteria
(RLOFD–A) is met. However, the processor may force reframe if frame or CRC error ratios
indicate that the framer might have aligned to a duplicated frame alignment pattern.
0 = no effect
1 = force RX reframe
RLOFD– RLOFA RX R eframe Criteria—Determines the number of frame errors that the online framer must
detect before declaring loss of frame alignment [ALM1; addr 047]. Refer to receive framer
mode [RFRAME; addr 001] Table 2-1, Receive Framer Modes, to find which frame bits are
monitored.
7 6 5 4 3 2 1 0
RAMI RABORT RFORCE RLOFD RLOFC RLOFB RLOFA RZCS
T1/E1N RLOFD–A Reframe Criteria
0 0100 3 consecutive FAS or 915 CRC errors
0 110 0 3 consecutive FAS errors
1 0001 2 out of 4 F-bit errors
1 0010 2 out of 5 F-bit errors
1 0100 2 out of 6 F-bit errors
NOTE(S): Other RL OFD–RLOFA combinations are invalid. RA IS and RLOF st atus is disabled if
RLOFD–RLOF A equa l s all zeros.
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.9 Receiver Registers
100054E Conexant 3-39
RZCS Receiv e B8ZS/HDB3 Zero Code Substitut ion (af fects onl y BPV/LCV/EXZ counting)—When
set, the ZCS decoder does not include bipolar violations received as part of a B8ZS/HDB3
code in the LCV er ror count [addr 054, 055]. Otherwise, all bipolar violations are counted.
EXZ detection criteria is either 8 or 16 consecutive zeros, depending on RZCS configuration.
0 = ZCS decoder reports all occurrences of BPV; also selects EXZ = 16 zeros
1 = ZCS decoder does not report BPVs received as part of ZCS; also selects EXZ = 8 zeros
041—Receive Test Pattern Configuration (RPATT)
RESEED Reseed PRBS Sync Detector (auto clear)—If BSTART is active high, writing a one to
RESEED forces the PRBS sync detector to reseed and search for test pattern sync [PSYNC;
addr 00B]. The reseed and search algorithm remains active until test pattern sync is found.
0 = no effect
1 = reseed and search for test pattern sync
BSTART Enab le PRBS Detecto r and St art Counting PR BS Bit Errors— BERR [add r 058, 059 ] counti ng
is enabled when BSTART is active high, and pattern sync is found [PSYNC=1; addr 00B].
Otherwise, BERR counter holds its present value until cleared by a processor read.
0 = PRBS detector disabled and BERR stops counting
1 = enable PRBS detector and BERR counter
FRAMED PRBS Framed—When set, PRBS test pattern bits are not checked during F-bit locations in T1
mode or TS0 locations in E1 mode. Otherwise, test patterns are checked in all T1/E1 bit
locations. FRAMED, ZLIMIT, and RPATT establish the test pattern measurement type as
listed in Table 3-12.
7 6 5 4 3 2 1 0
RESEED BSTART FRAMED ZLIMIT RPATT[1] RPATT[0]
Table 3-12. Receive PRBS Test Pattern Measurements (1 of 2)
FRAMED ZLIMIT RPATT T es t Pattern Measurements Inversion
0000
Unframed 211 No
0001
Unframed 215 Yes
0010
Unframed 220 No
0011
Unframed 223 Yes
0100
Unframed 211 with 7 zero limit No
0101
Unframed 215 with 7 zero limit (non-std) No
0110
Unframed 220 with 14 zero limit (QRSS/QRS/QRTS) No
0111
Unframed 223 with 14 zero limit (non-std) No
1000
Framed 211 No
1001
Framed 215 Yes
3.0 Registers CX28394/28395/28398
3.9 Receiver Registers Quad/x16/Octal—T1/E1/J1 Framers
3-40 Conexant 100054E
ZLIMIT PRBS Zero Limit—Deter mines the number of consecutive zeros allowed within the selected
PRBS te st pattern. Refer to Table 3-12 for test pattern measurement options.
RPATT[1: 0] P RBS Test Pat tern—Selects one o f four PR BS test pa ttern lengths used to measur e recei ved bit
err or ratio during out of ser vice testing. Refer to Table 3-12 for test pattern measurement
options. PRBS test patterns used by RPATT [addr 041] and TPATT [addr 076] are defined in
the ITU standards O.151 and O.152 to use either inverted or non-inverted data. Standard data
inversion is used for selected PRBS test patterns unless ZLIMIT is enabled, in which case the
test patter n always uses non-inverted data.
042—Receive Loopback Code Detector Configuration (RLB)
Unused bits are reser ved and should be written to 0.
DN_LEN[1:0] Loopback Deactivate Code Length—Selects the number of loopback pattern bits from LBD
[addr 044] that are compared to received data. This is done in order to deter mine whether a
Loopback Deact ivate Code [LOOPDN; addr 04 8] has been detected. LOOPDN i s recovered if
the received data pattern contains fewer than 63 bit errors in a 24 ms period, or lost if 64 or
more bit errors are detected in a subsequent 24 ms period. F-bits that overwrite or are inserted
into the loopback pattern are not counted as bit errors. Accurate code detection is provided on
lines wit h up to 1E-3 BER.
1010
Framed 220 No
1011
Framed 223 Yes
1100
Framed 211 with 7 zero limit No
1101
Framed 215 with 7 zero limit (non-std) No
1110
Framed 220 with 14 zero limit (QRSS/QRS/QRTS) No
1111
Framed 223 with 14 zero limit (non-std) No
Table 3-12. Receive PRBS Test Pattern Measurements (2 of 2)
FRAMED ZLIMIT RPATT T es t Pattern Measurements Inversion
7 6 5 4 3 2 1 0
DN_LEN[1] DN_LEN[0] UP_LEN[1] UP_LEN[0]
DN_LEN LBD Le ngth
00 4 bits
01 5 bits
10 6 bits
11 7 bits
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.9 Receiver Registers
100054E Conexant 3-41
UP_LEN[1:0] Loopback Activate Code Length—Selects the number of loopback pattern bits from LBA
[addr 043] that are compared to received data. This is done in order to deter mine whether a
Loopback Acti v ate Code [LOOPUP; addr 048 ] has been detected. LOOPUP is reco v ered if the
received data patter n contains fewer than 63 bit errors in a 24 ms period, or lost if 64 or more
bit errors are detected in a subsequent 24 ms period. F-bits that overwrite or are inserted into
the loopback pattern are not coun ted as bit errors. Accurate code det ection is provided on lines
with up to 1E-3 BER.
043—Loopback Activate Code Pattern (LBA)
Unused bits are reser ved and should be written to 0.
LBA[1] First bit expected of LOOPUP pattern
LBA[2] Second bit expected of LOOPUP pattern
LBA[3] Third bit expected of LOOPUP pattern
LBA[4] Fourth bit expected—Last bit if UP_LEN selects a 4-bit pattern
LBA[5] Fifth bit expected—Las t bit if UP_L EN selects a 5-b it pattern
LBA[6] Sixth bit expected—Last bit if UP_LEN selects a 6-bit pattern
LBA[7] Seventh bit expe cted—Last bit if UP_LEN selects a 7-bit pattern
044—Loopback Deactivate Code Pattern (LBD)
Unused bits are reser ved and should be written to 0.
LBD[1 ] First bit expected of LOOPDN pattern
LBD[2 ] Second bit expected of LOOPDN pattern
LBD[3] Third bit expected of LOOPDN pattern
LBD[4 ] Fourth bit expected—Last bit if DN_LEN selects a 4-bit pattern
LBD[5] Fifth bit expected—Last bit if DN_LEN selects a 5-bit pattern
LBD[6 ] Sixth bit expected—Last bit if DN_LEN selects a 6-bit pattern
LBD[7 ] Seventh bit expected—Last bit if DN_LEN selects a 7-bit pattern
UP_LEN LBA Length
00 4 bits
01 5 bits
10 6 bits
11 7 bits
7 6 5 4 3 2 1 0
LBA[1] LBA[2] LBA[3] LBA[4] LBA[5] LBA[6] LBA[7]
7 6 5 4 3 2 1 0
LBD[1] LBD[2] LBD[3] LBD[4] LBD[5] LBD[6] LBD[7]
3.0 Registers CX28394/28395/28398
3.9 Receiver Registers Quad/x16/Octal—T1/E1/J1 Framers
3-42 Conexant 100054E
045—Receive Alarm Signal Configuration (RALM)
Unused bits are reser ved and should be written to 0.
DIS_LCV Disable LCV indication and counting. Primarily used in configurations where receive data is
unipolar NRZ. If AUTO_PRM is enabled (PRM; addr 0AA) LV is transmitted with a default
value of 0 .
0 = LCV counting and indication enabled
1 = LCV counting and indication disabled
FS_NFAS Include FS/NFAS in FERR and FRED—Selects whether Fs bit err ors (T1) or NFAS Bit2
errors ( E 1) ar e co unt ed as frame errors [FERR; a ddr 050, 051]. Further select s whether loss of
frame alignment [FRED; addr 049] includes Fs or NFAS bit errors as part of the detection
criteria. Note that t he nu mber of Fs bi t locat ions checked also dep ends o n JYEL framer mo de.
0 = FERR and FRED do not include FS/NFAS
1 = FERR and FRED include FS/NFAS
EXZ_LCV Excess Zeros Included in LCV—Whether line code violation error count [LCV; addr 054,
055] includes EXZ errors depends on the EXZ_LCV control setting. Depending on RZCS bit
setting [addr 040], each EXZ is equal to either 8 or 16 consecutive zeros.
0 = LCV does not include EXZ
1 = LCV includes EXZ
YEL_INT EG Enable Yellow Alarm Integration—When set, both the receive frame and multiframe yellow
alarms [RYEL and RMYEL; addr 047] are integrated, as described in Table 3-13 (per t he
selected framer mode). RYEL and RMYEL interrupt status [ISR7; addr 004] are similarly
affected.
0 = normal RYEL and RMYEL status
1 = integ r ated RYEL and RMYEL status
7 6 5 4 3 2 1 0
DIS_LCV FS_NFAS EXZ_LCV YEL_INTEG RLOF_INTEG RPCM_YEL RPCM_AIS
Table 3-13. Receive Yellow Alarm Set/Clear Criteria (1 of 2)
Mode Set/Clear Criteria
Y0 Set for 4 frames (50 0 µs) if 2 consecutive NF AS frames each contain TS0 bit 3 = 1. Cleared for 4 frames if 2
consecutive NFAS frames each contain TS0 bit 3 = 0.
Y0_INT Set for 16 multiframes (24 ms) if every NFAS frame contains TS0 bit 3 = 1. Cleared for 16 multiframes if 1 or
more N FAS frames contain TS0 bit 3 = 0.
Y16 Set for 2 multiframes (4 ms) if frame 0 in 2 consecutive mul ti frames contains TS16 bi t 6 = 1. Cleared for 2
mult iframes if fr ame 0 in 2 consecutive multiframes con tains TS1 6 bit 6 = 0.
Y16_INT Set for 16 mul tiframes (24 ms ) if every frame 0 contai ns TS16 bit 6 = 1. Cleared for 16 mul tiframes if at
lea s t 1 frame 0 contains TS16 bit 6 = 0.
YB2 Set for 1 frame (125 µs) if all 24 time slots contain bit 2 = 0. Cleared for 1 frame if 1 or more time slots
cont ain bit 2 = 1.
YB2_INT Set for 192 frames (24 ms) if less than 15 time slots contain bit 2 = 0. Cleared for 192 frames if 15 or more
time slots contain bit 2 = 1.
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.9 Receiver Registers
100054E Conexant 3-43
RLOF_INTEG Enable RLOF Integration—When set, the receive loss of frame status [RLOF; addr 047] is
inte grated for 2.0 to 2.5 seco nds during T1 fra me r modes ( not ap pl ica ble t o E 1 mo des). R LOF
inter rupt status [ISR7; addr 004] is also integrated. However, receive framer status in ALM3
[addr 049], loss of frame count [FRED[3:0]; addr 05A], and RLOF counter overflow [ISR4;
addr 007] are unaffected.
0 = normal RLOF status
1 = integrated RLOF [addr 047] status
RPCM_YEL Send Bit2 Yellow Alarm on RPCMO Output Pin—Similar to RPCM_AIS, exce pt all RPCMO
time slot Bit2 locations are replaced by all zeros. Bit2 yellow alarms are applicable only to T1
mode. E1 modes do not require yellow alarm forwarding.
0 = normal RPCMO data
1 = RPCMO includes Bit2 yellow alarm
RPCM_AIS Send AIS on RPCMO Output Pin—Replaces RPCMO data with a continuous series of all
ones. RPCM_AIS is useful in CSU or digital section applications, where the local interface
must be able to forward an AIS to the opposing interface. RPCM_AIS has a higher priority
than RPCM_YEL.
0 = normal RPCMO data
1 = RPCMO replaced with all ones
YJ Set for 1 multiframe (1. 5 ms) if frame 12 contains Fs bit = 1. Clea red for 1 multif rame if frame 12 cont ains
Fs bit = 0.
YJ_INT Set for 16 multiframes (24 ms) if every frame 12 contains Fs bit = 1. Cleared for 16 multiframes (24 ms) if at
least 1 frame 12 contains Fs bit = 0.
Y24 Set for 1 frame (125 µs) if TS24 contains bit 6 = 0. Clear ed for 1 frame if TS24 cont ains bit 6 = 1.
Y24_INT Set for 192 fr ames (24 ms) if every TS24 b it 6 = 0. Cle ared for 1 92 frames if at least 1 TS24 bit 6 = 1.
YF Set for 32 frames (4 ms) if 16 FDL bits contain ye llow alarm priority codeword pattern (00F Fh). Cleared for
32 frames if 16 FDL bits do not contain a yellow alarm priority codeword pattern.
YF_INT Set upon recep ti on of 16 FDL bi ts matching yel low alarm pri ority codeword and remains set as long as the
codeword patt ern is not interrupted for greater than 100 ms. Cleared when the yellow alarm priority
code word is not present for more than 100 ms (26 missing codewords = 104 ms).
Table 3-13. Receive Yellow Alarm Set/Clear Criteria (2 of 2)
Mode Set/Clear Criteria
3.0 Registers CX28394/28395/28398
3.9 Receiver Registers Quad/x16/Octal—T1/E1/J1 Framers
3-44 Conexant 100054E
046—Alarm/Error/Counter Latch Configuration (LATCH)
Unused bits are reser ved and should be written to 0.
STOP_CNT Stop Error Count du ring RLOF/RLOS/RAI S—If enabl ed , error count regi sters [addr 050–057]
are suspended at their present values during any receive loss of frame (RLOF), loss of signal
(RLOS), or all ones (RAIS) alarm condition. STOP_CNT does not affect counting of test
pattern errors [BERR; addr 058, 059] or alarm ev ent s [AERR; addr 05A]. The occurrence of a
red or AIS CGA will inhibit further processi ng of all other performance parameters (i.e., BER ,
errored seconds, SLIPS, etc.). However, a CGA caused by a yellow alarm will not inhibit
further alarm or performance monitoring
0 = continue error count during alar ms
1 = stop error count during alarms
LATCH_C NT Enable ONESEC Latching o f Counters—Deter m ines interval for which error counts re main
held i n al l co unt re gisters [addr 05 0–05 7] . L ATCH_CNT must be act ive in T1 mode whenev er
automatic one-second performance repor t messaging [AUTO_PRM; addr 0AA] is enabled.
Note that LATCH_CNT active during E1 mode prevents the processor from using RLOF
counter overflow [addr 007] as a 128 ms MFAS timeout.
When LATCH_CNT is inactive, the processor read of the LSB register reports current LSB
error coun t, it lat ches c urrent MSB error count to MSB register, and clears LSB . Subsequen tly,
reading MSB register reports current latched MSB error count and then clears MSB.
LATCH_ERR Enable ONESEC Latching of Errors—D etermines the interval for which latched active errors
are held in error inter rupt [ISR5; addr 006] and patter n interrupt [ISR0; addr 00B] status.
LATCH_A LM Enable ONESEC Latching of Alarms—Determines interval for which latched active alarms
remain held in alarm interrupt status [ISR7, ISR6; addr 004, 005].
7 6 5 4 3 2 1 0
STOP_CNT LATCH_CNT LATCH_ERR LATCH_ALM
LATCH_CNT Count Latched Count Hold Time
0 Never Until read clear
1 ONESEC interval ONESEC interval
IER LATCH_ERR ISR Latched ISR Hold Time
0 0 Rising edge event Until read clear
0 1 Rising edge event ONESEC interval
1 X Rising edge ev ent Until read clear
IER LATCH_ALM ISR Latch e d ISR Hold Time
0 0 Rising edge or transition Until read clear
0 1 Rising edge or transition ONESEC interval
1 X Rising edge or transition Until read clear
NOTE(S): Interrupt t ype determines rising edge or t ransition event.
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.9 Receiver Registers
100054E Conexant 3-45
047—Alarm 1 Status (ALM1)
ALM1 reports current status of receive alar ms. Any change in the current status activates the corresponding
interrupt status bit [ISR7; addr 004].
RMYEL Receive Multiframe Yellow Alarm—Real-time or integrated RMYEL status depends on the
selected framer mode and the yellow alarm integration mode [YEL_INTEG; addr 045]. Refer
to Table 2-1, Receive Framer Modes, for mode summary and Table 3-13 for set/c le ar criteria.
0 = no alarm
1 = receive multiframe yellow alarm
RYEL Receive Yellow Alarm—Real-time or integrated RYEL status depends on selected receive
framer mode and yellow alarm integration mode [YEL_INTEG; addr 045]. Refer to
Table 3-14 for mode summary and Table 3-13 for set/clear criteria.
0 = no alarm
1 = receive Yellow Alarm
7 6 5 4 3 2 1 0
RMYEL RYEL RAIS RALOS RLOS RLOF SIGFRZ
Table 3-14. Receive Yell ow Alarm
Recei v e Fr am er
Mode
YEL_I N TE G = 0 YEL_INTE G = 1
RYEL RMYEL RYEL RMYEL
FT/SF/SLC YB2 YB2_INT
JYEL YJ YJ_INT
T1DM Y24 Y24_INT
ESF YB2 YF YB2_INT YF_INT
FAS Y0 Y0_INT
CAS Y0 Y16 Y0_INT Y16_INT
NOTE(S): Last known frame alignment is used to locate and monitor yell ow alarms.
Therefore, RYEL and RMYEL will not accurately rep ort alarms during receive loss of frame
alignment [RL OF; addr 047].
3.0 Registers CX28394/28395/28398
3.9 Receiver Registers Quad/x16/Octal—T1/E1/J1 Framers
3-46 Conexant 100054E
RAIS Recei v e Alarm Indication Signa l—Criteria for detection and clearan ce of RAIS per ITU G.775
and ANSI T1.231.
RALOS Receive Loss of Signal or Receive Clock—Reports loss of receive clock (RCKI) or loss of
receive signal [RLOS; addr 047] for 1 msec depending on the RALOS configuration bit
[RAL_CON; addr 020].
When set for loss of clock, RALOS beco mes activ e (1) i f the receive clock on the RCKI pin
is not present, and inactive (0) if the clock is present.
When set for loss of signal, RALOS indicates that all zeros have been recei v ed for at least 1
msec (RLOS is active for 1 msec). This status is provided for compatibility with ITU-I.431
loss of signal det ect io n requi r ement s; an d works in conjunction wit h LIUs which det ect loss of
signal if the received signal level falls below a certain threshold and which have a signal
‘squelch’ feature. Operation is as follows:
The LIU detects receive loss of signal if the receive level falls below:
30 dB below nominal for T1.
20 dB below nominal for E1
The LIU squelches (turns off) the signal to the framer so all zeros are received.
RLOS is reported after 100 continuous zeros are detected.
RALOS is report ed after RLOS is active for 1 msec.
RLOS Receive Loss of Signal—Criteria for detection and clearance of RLOS per ITU G.775 and
ANSI T1.231.
Mode RAIS Set/Clear Criteria
E1 0 Cleared if 2 consecutive double frames (500 µs) each
contain 3 or more zeros out of 512 bits or FAS
alignment is recovered [FRED = 0; addr 049].
E1 1 Set if 2 consecutive double frames each contain 2 or
fewer zeros out of 512 bits and FAS alignment is lost
[FRED = 1; addr 049].
T1 0 Cleared if data received for a period of 3 ms contains
5 or more zeros out of 4632 bits or frame alignment is
recovered [FRED = 0; addr 049].
T1 1 Set if data received for a period of 3 ms contains 4 or
fewer zeros out of 4632 bits and frame alignment is
lost [FRED = 1; addr 049].
Mode RLOS Set/Clear Criteria
T1 0 Cleared if received data sustains an average pulse
density of 12.5% over a period of 114 bits starting
with the receipt of a pulse, and no occurrence of 100
consecutive zeros.
T1 1 Set if 100 consecutive zeros received.
E1 0 Cleared upon reception of 193 bits in which no
interval of 32 consecutive zeros appear, where the
193-bit window begins with receipt of a pulse.
E1 1 Set upon reception of 32 consecutive zeros.
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.9 Receiver Registers
100054E Conexant 3-47
RLOF Receive Loss of Frame Alignment—Real-ti me or integrated RLOF status depends on select ed
recei v e fra mer mode, out of f rame criter ia [RLOFA–RLOFD; addr 040], and int egration mode
[RLOF_INTEG; addr 045]. Refer to Tables A-1 through A-6 in Appendix A to find which
frame bits are monitored. Refer to Table 2-2, Criteria for Loss/Recovery of Receive Framer
Alignment, for the loss/recovery criteria. During E1 mode, RLOF indicates logically OR'ed
status of FAS/MFAS/CAS alignment machines from which individual alignment status is
reported separately in FRED/MRED/SRED [addr 049].
0 = no alarm
1 = receive loss of frame alignment
SIGFRZ Signaling Fr eeze—Real-time SIGFRZ status indicates w hen input ABCD signaling bi t updates
are no longer being written to the receive signaling buffer [RSIGn; addr IA0–IBF].
Consequentl y, ABCD signali ng on RPCMO (i f signalin g insertion enab led) and RSIGO output
pins are fixed to their existing buffered values. SIGFRZ remains active for 6 to 12 ms longer
after COFA or RLOF clears. SIGFRZ statu s is also af fected by manual SIGFRZ on/of f cont rols
[RSIG_CR; addr 0D7].
0 = no alar m (or FRZ_OFF)
1 = signaling freeze (or FRZ_ON)
048—Alarm 2 Status (ALM2)
Reports real-t i me st atu s of t ransmi t alarms and inband lo opback codeword detectors. Any change in the cu rrent
status activates the corresponding interrupt status bit [ISR6; addr 005].
Unused bits are reser ved and should be written to 0.
LOOPDN Inband Loopback Deactivate—Repor ts detection or loss of an inband loopback code which
matches the programmed LOOPDN code [LBD; addr 044].
0 = no inband code (or lost)
1 = LOOPDN code detected
LOOPUP Inband Loopback Activate—Reports detection or loss of an inband loopback code which
matches the programmed LOOPUP code [LBA; addr 043].
0 = no inband code (or lost)
1 = LOOPUP code detected
TLOC Transmit Loss of Clock— Clock mo nitor circu it reports TCKI lost if no signal transitions a r e
detected on TCKI pin for eight clock cycles of T1ACKI(T1) or EIACKI(E1). TCKI is
reported as present if four or more signal transitions are detected on TCKI pin during eight
clock c y cl es of T 1/E1 ACKI. When use d in co nj unct i on wi th AI SCLK [ ad dr 068], TLOC al so
identifies which transmit li ne rate clock (TCKI or T1/E1A CKI) is presentl y in use and w hether
AIS data transmission is enforced. Note that TLOC status is indeterminate if the T1/E1ACKI
input signal is not present.
0 = TCKI present
1 = TCKI lost
TLOF Transmit Loss of Frame Alignment—Report s transmit framer status per selected mode
[TFRAME; addr 070] and loss criteria [TLOFA–TLOFC; addr 071].
0 = recovered
1 = lost
7 6 5 4 3 2 1 0
LOOPDN LOOPUP TLOC TLOF
3.0 Registers CX28394/28395/28398
3.9 Receiver Registers Quad/x16/Octal—T1/E1/J1 Framers
3-48 Conexant 100054E
049—Alarm 3 Status (ALM3)
Reports real-time status of the re cei ve framer (not af fected b y ONESEC l atch mode), a nd miscell aneous lat ched
err or status (SEF and RMAIS). Any change of the logical OR of (FRED or MRED or SRED) status activates
RLOF interrupt [ISR7; a ddr 004]. Refer t o Table 2-2, Criteria for Loss/Recovery of Receive Fr a mer Ali gnment ,
[RFRAME; addr 001] to find the criteria for loss/recovery of frame alignment.
RMAIS Receive TS16 Alarm Indication Signal (CAS mode only)—RMAIS is latched active high and
cleared by a processor read. Criteria for detection and clearance of RMAIS is per ITU G.775.
SEF Severely E rrored Frame—SEF is latched active high and cleared by a processor read. Criteria
for detection and clearance of SEF is per ANSI T1.231.
SRED Loss of CAS Alignment—Real-time status of CAS alignment machine. SRED is applicable if
CAS is enabled, otherwise SRED is zero.
0 = recovery of CAS alignment
1 = loss of CAS alignment
MRED Loss of MFAS Alignment—Real-time status of MFAS alignment machine. MRED is
applicable if MFAS is enabled, otherwise MRED is zero.
0 = recovery of MFAS alignment
1 = loss of MFAS alignment
FRED Loss of T1/FAS Alignment —Real-time statu s of basi c frame alig nment machi ne. FRED ala rm
counter [AERR; addr 05A] increments for each low-to-high FRED transition.
0 = recovery of frame alignment
1 = loss of frame alignment
LOF[1:0] Reason for Loss of F rame Alignment—LOF sta tus is latched w hene ver FRED reports a loss of
frame alignment and remains he ld at the latc hed value until th e next loss of frame alignment.
7 6 5 4 3 2 1 0
RMAIS SEF SRED MRED FRED LOF[1] LOF[0]
Mode RMAIS Criteria
CAS Set if TS16 contains three or fewer zeros out of 128 bits in
each mutiframe ov er two consecutive multiframes (4 ms).
Other Not applicable (read zero).
Mode SEF Criteria
E1 Set if two or more (FAS or NFAS) error s detected out of six frames.
(FAS + NFAS, or 2 FAS, or 2 NFAS erro rs, etc.).
FT/SF/SLC Set if two or more Ft errors are detected out of 3 Ft bits.
ESF Set if two or more FPS errors detected out of six FPS bits.
LOF[1:0] LOF Criteria
00 Three consecutive FAS pattern errors
01 Three consecuti ve NFAS pattern errors
10 915 or more CRC4 errors out of 1000 blocks checked
11 Eight ms timeout while searching for MFAS
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.10 Per f orm ance Mon itoring Register s
100054E Conexant 3-49
3.10 Performance Monitoring Registers
If the counter overflow interrupt [IER4; addr 00F] is enabled for the respective Performance Monitoring
counter, the count er is allowed to roll over after reaching its maximum c ount value. If the overflow inter rupt is
disabled, the counter will hold its maximum value upon saturation. Refer also to LATCH [addr 046] for a
description of one-second latched counter operation. Processor must read LSB before reading MSB of each
multi -byte counter.
050—Framing Bit Error Counter LSB (FERR)
FERR[7:0] Ft/Fs/T1D M/F PS/FAS Error Count
051—Framing Bit Error Counter MSB (FERR)
If LATCH_CNT [addr 046] is inactive, reading FERR [addr 051] clears the entire FERR[11:0] count value.
FERR[11:8] Ft/Fs/T1DM/F PS/FAS Error Count
052—CRC Error Counter LSB (CERR)
CERR[7:0] CRC6/CRC4 Error Count
053—CRC Error Counter MSB (CERR)
If LATCH_CNT [addr 046] is inactive, reading CERR [addr 053] clears the entire CERR[9:0] count value.
CERR[9:8] CRC6/CRC4 Error Count
7 6 5 4 3 2 1 0
FERR[7] FERR[6] FERR[5] FERR[4] FERR[3] FERR[2] FERR[1] FERR[0]
15 14 13 12 11 10 9 8
0 0 0 0 FERR[11] FERR[10] FERR[9] FERR[8]
7 6 5 4 3 2 1 0
CERR[7] CERR[6] CERR[5] CERR[4] CERR[3] CERR[2] CERR[1] CERR[0]
15 14 13 12 11 10 9 8
000000CERR[9]CERR[8]
3.0 Registers CX28394/28395/28398
3.10 Performance Monitori ng Regist ers Quad/x16/Octal—T1/E1/J1 Framers
3-50 Conexant 100054E
054—Line Code Violation Counter LSB (LCV)
LCV[7:0] BPV and EXZ (if EXZ_LCV enabled) Error Count
055—Line Code Violation Counter MSB (LCV)
If LATCH_CNT [addr 046] is inactive, reading LCV [addr 055] clears the entire LCV[15:0] count value.
LCV[15:8] BPV and EXZ (if EXZ_LCV enabled) Er ror Count
056—Far End Block Error Counter LSB (FEBE)
FEBE[7:0] FEBE Count (applicable only in E1 mode)
057—Far End Block Error Counter MSB (FEBE)
If LATCH_CNT [addr 046] is inactive, reading FEBE [addr 056, 057] clears the entire FEBE[9:0] count value.
FEBE[9:8] FEBE Count (applicable only in E1 mode)
058—PRBS Bit Error Counter LSB (BERR)
Reading BERR transfers the most recent 12-bit count from the intern al PRBS error counter to BERR[11:0],
then clears the internal error counter without affecting the reported BERR[11:0] value. Subsequent reads of
BERR MSB [addr 059] repor t the BERR [11:8] count value latched when BERR LSB was last read.
BERR[7:0] BERR Count (applicable only for test pattern)
7 6 5 4 3 2 1 0
LCV[7] LCV[6] LCV[5] LCV[4] LCV[3] LCV[2] LCV[1] LCV[0]
15 14 13 12 11 10 9 8
LCV[15] LCV[14] LCV[13] LCV[12] LCV[11] LCV[10] LCV[9] LCV[8]
7 6 5 4 3 2 1 0
FEBE[7] FEBE[6] FEBE[5] FEBE[4] FEBE[3] FEBE[2] FEBE[1] FEBE[0]
15 14 13 12 11 10 9 8
000000FEBE[9]FEBE[8]
7 6 5 4 3 2 1 0
BERR[7] BERR[6] BERR[5] BERR[4] BERR[3] BERR[2] BERR[1] BERR[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.10 Per f orm ance Mon itoring Register s
100054E Conexant 3-51
059—PRBS Bit Error Counter MSB (BERR)
BERR[11:8] BERR Count (suspended if BSTART = 0)
05A—SEF/FRED/COFA Alarm Counter (AERR)
Reading AERR clears the SEF[1:0], COFA[1:0] and FRED[3:0] count values.
FRED[3:0] Receive loss of basic frame alignment count—Increments for each occurrence of FRED
[ALM3; addr 049]. The four bit count is large enough to count more than 100 ms worth of
MFAS timeout intervals (8 ms each) during E1 modes. Processor may therefore use FRED
counter overflow interrupt to indicate that a receive MFAS alignment search has timed out.
COFA[1 :0] Change of Frame Alignment Count—Increments each time the offline framer generates a
reframe pulse that aligns the receiver timebase to a new bit position.
SEF[1:0] Severely Errored Frame Count—Increments for each occurrence of SEF [ALM3; addr 049].
15 14 13 12 11 10 9 8
0 0 0 0 BERR[11] BERR[10] BERR[9] BERR[8]
7 6 5 4 3 2 1 0
FRED[3] FRED[2] FRED[1] FRED[0] COFA[1] COFA[0] SEF[1] SEF[0]
3.0 Registers CX28394/28395/28398
3.11 Receive Sa-Byte Buff er s Quad/x16/Octal—T1/E1/J1 Framers
3-52 Conexant 100054E
3.11 Receive Sa-Byte Buffers
Five receive S a- Byte buffers [RSA4 –RSA8] are double-buffered. All five re gi ste r s are upd ated wit h th e Sa- bits
received in TS0 of odd frames at each receive multiframe interrupt [RMF; addr 008]. Bit 0 of all RSA registers
contains data from frame 1, Bit 1 contains data from frame 3, Bit 2 contains data from frame 5, etc. This gives
the processor a full 2 ms after RMF interrupt to read any Sa-Byte buffer before the buffer content changes.
Processor shou ld ign ore RSA buf fer contents at all times dur ing T1 mode and a lso w hen rec ei v er repo rts loss of
FAS alignment [FRED=1; addr 049] in E1 mode.
05B—Receive Sa4 Byte Buffer (RSA4)
RSA4[7] Sa4 bit received in frame 15
RSA4[6] Sa4 bit received in frame 13
RSA4[5] Sa4 bit received in frame 11
RSA4[4] Sa4 bit received in frame 9
RSA4[3] Sa4 bit received in frame 7
RSA4[2] Sa4 bit received in frame 5
RSA4[1] Sa4 bit received in frame 3
RSA4[0] Sa4 bit received in frame 1
05C—Receive Sa5 Byte Buffer (RSA5)
RSA5[7] Sa5 bit received in frame 15
RSA5[6] Sa5 bit received in frame 13
RSA5[5] Sa5 bit received in frame 11
RSA5[4] Sa5 bit received in frame 9
RSA5[3] Sa5 bit received in frame 7
RSA5[2] Sa5 bit received in frame 5
RSA5[1] Sa5 bit received in frame 3
RSA5[0] Sa5 bit received in frame 1
7 6 5 4 3 2 1 0
RSA4[7] RSA4[6] RSA4[5] RSA4[4] RSA4[3] RSA4[2] RSA4[1] RSA4[0]
7 6 5 4 3 2 1 0
RSA5[7] RSA5[6] RSA5[5] RSA5[4] RSA5[3] RSA5[2] RSA5[1] RSA5[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.11 Receive Sa-B yte Buffers
100054E Conexant 3-53
05D—Receive Sa6 Byte Buffer (RSA6)
RSA6[7] Sa6 bit received in frame 15
RSA6[6] Sa6 bit received in frame 13
RSA6[5] Sa6 bit received in frame 11
RSA6[4] Sa6 bit received in frame 9
RSA6[3] Sa6 bit received in frame 7
RSA6[2] Sa6 bit received in frame 5
RSA6[1] Sa6 bit received in frame 3
RSA6[0] Sa6 bit received in frame 1
05E—Receive Sa7 Byte Buffer (RSA7)
RSA7[7] Sa7 bit received in frame 15
RSA7[6] Sa7 bit received in frame 13
RSA7[5] Sa7 bit received in frame 11
RSA7[4] Sa7 bit received in frame 9
RSA7[3] Sa7 bit received in frame 7
RSA7[2] Sa7 bit received in frame 5
RSA7[1] Sa7 bit received in frame 3
RSA7[0] Sa7 bit received in frame
7 6 5 4 3 2 1 0
RSA6[7] RSA6[6] RSA6[5] RSA6[4] RSA6[3] RSA6[2] RSA6[1] RSA6[0]
7 6 5 4 3 2 1 0
RSA7[7] RSA7[6] RSA7[5] RSA7[4] RSA7[3] RSA7[2] RSA7[1] RSA7[0]
3.0 Registers CX28394/28395/28398
3.11 Receive Sa-Byte Buff er s Quad/x16/Octal—T1/E1/J1 Framers
3-54 Conexant 100054E
05F—Receive Sa8 Byte Buffer (RSA8)
RSA8[7] Sa8 bit received in frame 15
RSA8[6] Sa8 bit received in frame 13
RSA8[5] Sa8 bit received in frame 11
RSA8[4] Sa8 bit received in frame 9
RSA8[3] Sa8 bit received in frame 7
RSA8[2] Sa8 bit received in frame 5
RSA8[1] Sa8 bit received in frame 3
RSA8[0] Sa8 bit received in frame 1
7 6 5 4 3 2 1 0
RSA8[7] RSA8[6] RSA8[5] RSA8[4] RSA8[3] RSA8[2] RSA8[1] RSA8[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.12 Transmitter Registers
100054E Conexant 3-55
3.12 Transmitter Registers
070—Transmit Framer Configuration (TCR0)
TCR0 selects the of fline framer's criteria for recovery of transmit frame alignment and determines the output of
transmit frame and alarm for matters overhead bits. In addition, TCR0 works in conjunction with TCR1
[addr 071] and TFRM [addr 072] to select the transmit online frame monitor's criteria for loss of frame
alignment and to select which overhead bits are supplied by the transmit frame and alarm formatters.
Unused bits are reser ved and should be written to 0.
TINCF Transmit CRC6 includes F-bit—Determines if the F-b it is included in the CR6 remain der
calculation in T1 mode (T1/E1N = 1). This bit is ignored in E1 mode (T1/E1N = 0).
7 6 5 4 3 2 1 0
TINCF TFRAME[3] TFRAME[2] TFRAME[1] TFRAME[0]
0 = T1 ESF CRC6 calculation is performed on the
transmit data including a 1 in place of the F-bit.
1 = T1 ESF CRC6 calculation i s p er fo rmed on transmit
data including the F-bit.
3.0 Registers CX28394/28395/28398
3.12 Transmitter Registers Quad/x16/Octal—T1/E1/J1 F ramers
3-56 Conexant 100054E
TFRAME[3:0] Frame formatter gener at es Ft , Fs , FP S, FAS, MFAS, and CRC bits . Alarm formatter generates
YB2, YJ, Y0, and Y16 bits. Frame a nd alarm overhead formats are selected by TFRAME[3:0]
and T1/E1N settings as given in Tables 3-15 through 3-18. Each yellow alarm is capable of
being generated manually, automatically [TALM; addr 075], or bypassed [INS_MYEL; addr
072].
Frame formatter does not generate CAS or Sa-bit overhead. These bits are either supplied
by TPCMI in bypass mode [TFRM; addr 072] or by programming TSIGn [addr 120–13F] or
TSA4–TSA8 [addr 07B–07F] buffer contents. To insert CAS, the processor selects TLOCAL
output signaling for time slot 0 and time slot 16 by programming transmit per-channel control
registers TPC0 [addr 100] and TPC16 [addr 110]. The processor then fills ABCD local
signaling value for TPC0 with MAS pattern (ABCD = 0000) and TPC16 with XYXX pattern
(ABCD = 1011).
Frame formatter does not generate SLC, T1DM, or FDL overhead. These bits are either
supplied by TPCMI in bypass mode [TFRM; addr 072] or by programming TSLIP
[addr 140–17F], TDL1 [addr 0AD], or TDL2 [addr 0B8] buffer contents.
To insert SLC concentrator, maintenance, alarm, and switch field values, the processor
selects any SLC framer format and prog rams either TDL1 or TDL2. This is done in order to
operate in unformatted Pack6 mode over the F-bit channel during even frames, thus
overwriting all Fs bits inserted by frame formatter. The data pattern to be sent in 36 Fs bit
multiframe is then written as six 6-bit words to TDL1 or TDL2 circular buffer. For real-time
overhead manipulation, the processor can rewrite the circular buffer with a new 36-bit pattern
as desired.
To insert T1DM, the processor enables TIDLE insertion on time slot 24 by programming
the system bus per-channel control [SBC24; addr 0F8], then filling TSLIP buffer locations for
TS24 [addr 138, 158] with the T1DM framing pattern (TS24 = 10111YR0). If specific T1DM
elements need to be inserted and others bypassed, the processor conf igures TDL1 or TDL2 to
selectively insert only the desired bits. T1DM sync pattern, R-bits, and/or Y-bits. The
processor accomplishes this by programming data link bit enables [DL1_BIT; addr 0A5 or
DL2_BIT; addr 0B0].
To insert FDL, the processor configures TDL1 to operate over the F-bit channel during odd
frames [DL1_TS; addr 0A4] and Automatic Performance Report Messages [AUTO_PRM;
addr 0AA] or manually programs TDL1 to send each message.
Table 3-15. E1 Transmit Fr amer Mo des (T1/E1N = 0)
TFRAME Fram er Mode TS0 Overhead Insertion Yellow Alarms
MFAS FEBE CRC4 FAS YEL MYEL
00XX FAS Only One s Ones Ones Yes Y0
01XX FAS + CRC Yes Yes Yes Yes Y0
10XX FAS + CAS Ones Ones Ones Yes Y0 Y16
11XX FAS + CRC + CAS Y e s Yes Yes Yes Y0 Y16
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.12 Transmitter Registers
100054E Conexant 3-57
Table 3-16. T1 Transmit Fr amer Mo des (T1/E1N = 1)
TFRAME Framer Mode F-bit Overhead Insertion Yellow Alarms
Fs FPS CRC6 Ft YEL MYEL
0000 FT Only Ones Y es Y B2
0100 SF Yes Yes YB2
0101 SF + JYEL Yes Yes YJ
100X SLC Yes Yes YB2
0001 ESF + No CRC Yes Ones YB2 YF
1100 ESF + Mimic CRC Yes Y es YB2 YF
1101 ESF + Force CRC Yes Yes YB2 YF
Table 3-17. Criteri a for E1 Loss/Recovery of Transmit Frame A lignm ent
Mode Description
FAS Basic Frame Alignment (BFA) is recovered when the following search criteria are satisfied:
FAS patte rn (0011011) is f o und in frame N.
Frame N+1 contains bit 2 equal to 1.
Frame N +2 also contains FAS pattern (0 011011).
During FAS only modes, BFA is recovered when the following search criteria are satisfied:
FAS patte rn (0011011) is f o und in frame N.
No mimics of the FAS pattern present in frame N+1 .
FAS patte rn (0011011) is f o und in frame N+2.
NOTE(S): If FAS pattern is not found in frame N+2 or FAS mimic is found in frame N +1, then the search
restarts in frame N+2.
Transmit Loss of Frame (TLOF) al ignment i s declared when:
Three consecutive FAS pattern errors are detected, where FAS pattern consists of a 7-bit (x0011011)
pattern in FAS frame s as well as bit 2 eq ualling one in NFAS frames.
MFAS MFAS—CRC Multiframe Alignment is recovered when the following search criteria are satisfied:
BFA is recovered, identifying FAS and NFAS frames.
Within 6 ms after BFA, bit 1 of NFAS frames contains the first MFAS pattern (001011xx).
With in 8ms after BFA, bit 1 of NFAS frames contains the second MFAS pattern (001011x x), aligne d
to first MFAS.
MF AS errors do not cause Transmit Loss of Frame (TLOF) alignment.
CAS CAS Multiframe Alignment is recovered when the following search criteria are satisfied:
BFA is recovered, iden tifying TS0 through TS31.
MAS (0000xxxx) Multiframe Alignment Signal pattern is found in the first 4 bits of TS16, and 8 bits
of TS16 in preceding frame contains nonzero value.
CAS errors do not cause Transmit Loss of Frame (TLO F) alignment.
3.0 Registers CX28394/28395/28398
3.12 Transmitter Registers Quad/x16/Octal—T1/E1/J1 F ramers
3-58 Conexant 100054E
Table 3-18. Criteri a for T1 Loss/Recovery of Transmit Frame A lignm ent
Mode Description
FT Only Terminal Frame Alignment is recovered when:
One and only one valid Ft pattern (1010) is found in 12 alternate F-bit locations (3 ms), where F-bits
are sep arated by 193 bi ts.
Transmit Loss of Frame (TLOF) al ignment i s declared when:
Number of Ft bit errors detected meets se lected loss of frame criteria [TLOFA–TLOFC ; addr 071].
SF S uperframe alig nment is recovered when:
Te rminal frame alignment is recovered, identifying Ft bits.
Depends on SF submode:
If JYEL:
If SF patte rn (00111x) found in F s bits
If no JYEL:
SF patt ern (0011 10) found in Fs bits. Fs errors do not c ause Transmit Loss of Frame (TLOF) a lign-
ment.
Transmit loss of frame ali gnment (TLOF) declared whe n:
Number of Ft bit errors detected meets se lected reframe criteria [TLOFA–TLOFC ; addr 071]. Notice
that Fs bit multiframe errors are reported in TMER R [ISR0; addr 00B], but do not cause a loss of
transmit frame al ignment.
SLC Superfra me alignment is recovered when:
Te rminal frame alignment is recovered, identifying Ft bits.
SLC pattern (refer to Table A-3, SLC - 96 Fs Bit Cont ents) found in 16 of 32 Fs bits accordin g to
Bellcore TR-TSY-000008.
Fs errors do not cause Transmit Loss of Frame (TLOF) alignment .
Transmit loss of frame ali gnment (TLOF) declared whe n:
Number of Ft bit errors detected meets se lected reframe criteria [TLOFA–TLOFC ; addr 071]. Notice
that Fs bit multiframe errors are reported in TMER R [ISR0; addr 00B], but do not cause a loss of
transmit frame al ignment.
ESF Extended superframe alignment is recovered when:
Valid FPC candidate located (001011). Candidate bits are each separated by 772 digits and received
without pattern errors:
If on ly one vali d FPS candidate and:
No CRC mode: align to FPS regardless of CRC6 comparison.
Mimic CRC mode: align to FPS regardless of CRC6 comparison.
Force CRC mod e : align to FPS only if CRC6 is correct.
If two or more valid FPS candidates and:
No CRC mode: do not align (INVALID status)
Mimic CRC mo de: align to first FPS with correct CRC6.
Force CRC mode: ali gn to first FPS with corre ct CRC6 .
Transmit loss of frame ali gnment (TLOF) declared whe n:
Number of FPS pattern e r ro rs detected me ets selected loss of frame crit eria [TLOFA–TLOFC;
addr 071].
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.12 Transmitter Registers
100054E Conexant 3-59
071—Transmitter Configuration (TCR1)
TNRZ Transmit NRZ Data—Transmit dual-rail unipolar outputs TPOSO/TNEGO are replaced by
non-retur n to zero unipolar data (TNRZO) and transmit multiframe sync (MSYNCO). Both
outputs are clocked on the rising edge of transmitter clock (TCKI). TNRZ must be written to 1
on the CX28395 device.
0 = TPOSO/TNEGO encoded per TZCS[1:0]
1 = TPOSO/TNEGO replaced by TNRZO/MSYNCO
NOTE: MS YNCO activ e (high) al w a ys marks the first bit of transmit multiframe according to
the selected transmit framer mode.
TABORT Abort/Disable TX Offline Framer—Offline framer ignores reframe requests from the online
framer (TLOF) and aborts any in progress TLOF reframe requests. Loss of frame status
[TLOF; addr 048 ] is not af fe cted. While TABOR T r emains acti v e, of fli ne framer r esponds onl y
to the processor force reframe request (TFORCE), which allows the processor to manually
control reframe criteria or lock out changes in the current transmit frame alignment.
0 = normal framer operation
1 = framer disabled
TABORT also interacts with EMBED [addr 0D0] to select which data stream is examined
by online and offline transmit framer during embedded framing modes. If EMBED is active,
TXDATA output from TSLIP is examined and used to align the TX timebase. Otherwise,
TPCMI data stream is examined and used to align the TSB timebase as given in Table 3-19.
TFORCE Force TX Reframe (auto clear)—Forces the offline framer to perform a single reframe
according to the selected transmit framer mode. TFORCE is automatically cleared when the
framer ack nowledges a requ est [ ACTIVE; addr 017] . The pr ocessor does not typi cal ly need to
force reframe since online framer reframe request (TLOF) is active when reframe criteria
TLOFC–A is met. Ho w ev er , the processo r may wish to force reframe if frame or CRC bit error
ratio indicates the framer has aligned to a mimic pattern.
0 = no effect
1 = force TX reframe
7 6 5 4 3 2 1 0
TNRZ TABORT TFORCE TLOFC TLOFB TLOFA TZCS[1] TZCS[0]
Table 3-19. Transmit Framer Position
TABORT EMBED TSB Alignment Tx Alignment Tx Framing Mode Notes
0 0 TPCMI Flywheel Transmit Framing (1–5)
0 1 TFSYNC/TMSYNC TXDATA Embedded Framing (6–8)
1 X TFSYNC/TMSYN C Flywheel Normal (5, 6)
NOTE(S):
1. TFSYNC and TMSYNC must be programmed as outputs.
2. Offline framer examines TPCMI to supply TSB frame alignment.
3. Onli ne framer exam ines TPCMI to s upply TSB multiframe alignment.
4. SBI mode must mat ch 2048k or 1544k line rate.
5. TX timebase flywheels at ini tial alignment un til TSB_CTR or TX_ALIGN [addr 0D4 ].
6. TSB tim ebase flywheel s if TFSYNC/TMSYNC programmed as outputs.
7. Offline framer exa mines TXDATA to supply TX frame alig nment.
8. Onli ne framer examines TXDATA to supply TX multiframe alignment.
3.0 Registers CX28394/28395/28398
3.12 Transmitter Registers Quad/x16/Octal—T1/E1/J1 F ramers
3-60 Conexant 100054E
TLOFC–TLOFA Transmit Loss Of Frame Criteria—Deter mines the number of frame errors that the online
framer must detect before declaring loss of frame alignment [TLOF; addr 048]. Refer to
TFRAME [addr 070] to find which frame bits are monitored during the selected framer mode.
TZCS[1: 0] Transmit Zero Code Suppression—Selects ZCS and Pulse Density Violation (PDV)
enforcement options for TPOSO/TNEGO outputs. B8ZS and HDB3 replace transmitted
sequences of 8 zeros or 4 zeros with a recoverable code and are standard T1 and E1 line code
options, respectively (see Table 3-20).
T1/E1N TLOFC–A Reframe Criteria
0 100 Three consecutive FAS errors
1 001 Two out of four frame bit errors
1 010 Two out of five frame bit errors
1 100 Two out of six frame bit errors
NOTE(S): All other TLOFC–A combina tions are invalid.
Tab le 3-20. Transmit Zero Code Su ppression
TZCS T1/E1N T1DM ZCS PDV Zero Code Substitution
(Sent left to right)
00 X X AMI None None
01 0 X HDB3 None 00 0V or B0 0V
01 1 X B8ZS None 000VB0VB
10 1 1 UMC None 10011000
11 1 X AMI Enforced on PDV errors
AMI Altern ate Mark Inversion. Bipolar li ne code forces suc cessive ones to alternate t heir output pu lse polarity. Analog and
digital dual-rail outputs are always AMI encod ed, although certain AMI codes are modified to include zero
suppression.
HDB3 Prior to tran smission, 4 consecutive zeros are subst it uted by 000 V or B 00V code, whe r e B is an AMI pulse an d V is a
bipolar violation. ZCS encoder selects the code which will force the BPV output polarity opposite that of the prior BPV.
B8ZS P rior to transmi ssion, 8 con secutive zeros a r e substitute d by 000VB0VB code, where B is an AMI encoded pulse and
V is a bipolar violation.
PDV Enforcer overwrites transmit zeros that would otherwise cause output data to fail to meet the minimum required pulse
density per ANSI T1.403 sliding window. Note that the enforcer will never overwrite a framing bit and is not applicable
during E1 mode. Note that each PDV enforced one causes a nonrecoverable transmitted bit error.
UMC Unassigned Mux Code. DS0 channels that contain 8 zer os are substituted w ith the 10011000 code, per Bel lcore
TA-TSY-000278. Note that the recei ver's ZCS decoder cannot recover original data content from UMC encoded sig nal .
NOTE(S): PRBS, inband loo pback, and YB2 a larm insertion occur after PDV enf orcement. Therefore, output data might violate
minimum pulse density requirements while these functions are active.
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.12 Transmitter Registers
100054E Conexant 3-61
072—Transmit Frame Format (TFRM)
TFRM controls the insertion of overhead bits generated by transmit frame and alarm formatters. Bypassed
overhead bits flow transparently from TPCMI system bus input through TSLIP buffer.
Unused bits are reser ved and should be written to 0.
INS_M YEL In sert Mu ltiframe Yellow Alar m Applic able to E1 modes on ly. Enables the alarm formatter
to output Y16 Multiframe Yellow Alarm. Once enabled, TMYEL and AUTO_MYEL [addr
075] control the alarm output state. This bit must be set to 0 in T1 modes.
0 = bypass
1 = insert multiframe yellow ala rm
INS_YEL Insert Yellow Alarm—The alarm formatter outputs yellow alarms YB2 or YJ during T1
modes; or Y0 dur i ng E1 mod e s. In E SF f ra med T 1 mode, th e YF Yellow Alarm is tr ansmi t ted
by programming the DL1 data link controller and by transmitting the appropriate bit oriented
code message (BOP message). Once enabled, TYEL and AUTO_YEL [addr 075] control the
yel lo w alarm output state. If the sy stem wa nts to b ypass JYEL (Fs bit in frame 12), t hen it must
bypass all Fs bits with INS_MF [addr 072].
0 = bypass
1 = insert yellow alarm.
INS _MF In sert Multiframe Alignmen t—The frame for matter ou tputs 6-bit SF alignm ent pattern in T1
mode, o r 6-bit M FAS alignment pattern in E1 mode. INS _MF should be set while T FRAME
(addr 070) selects Fs (T1) or MFAS (E1) alignment.
0 = bypass
1 = insert multiframe alignment
INS_FE Insert FEBE— During E1 mode, the alarm formatter aut omatically outpu ts TS0 bit 1 o f fr ame
13 (FEBE13) and frame 15 (FEBE15) in response to received CRC4 err ors. FEBE13 is active
low for each received CRC4 err or detected in SMF I. FEBE15 is active low for each received
CRC4 error detected in SMF II. INS_FE should be set while TFRAME (addr 070) selects
FEBE (E1) alignment.
0 = bypass
1 = insert FEBE
INS_CRC Insert Cyclic Redundancy Check—The frame formatter outputs the calculated CRC6 bits in
T1 mode or CRC4 bits in E1 mode.
0 = bypass
1 = insert cyclic redundancy check
INS_FBI T Insert Terminal Frami ng—The frame formatter outputs a 2-bit Ft alignmen t pattern in F-bi ts of
odd frames (SF framing) or FPS framing pattern (ESF framing) during T1 modes—or 8-bit
FAS/NFAS alignment pattern during E1 modes. INS_FBIT should be set while TFRAME
(addr: 070) selects Ft (T1, SF), FPS (T1, ESF), or FAS (E1) alignment.
0 = bypass
1 = insert termina l fra ming
If F-bits are bypassed while TSLIP is enabled, the system must either use embedded T1
framing or apply at least a double frame (250 µs) multiframe sync pulse (TMSYNC) to
provide odd/even frame alignment.
7 6 5 4 3 2 1 0
INS_MYEL INS_YEL INS_MF INS_FE INS_CRC INS_FBIT
3.0 Registers CX28394/28395/28398
3.12 Transmitter Registers Quad/x16/Octal—T1/E1/J1 F ramers
3-62 Conexant 100054E
073—Transmit Error Insert (TERROR)
Transmit error inser tion capabilities are provided for system diagnostic, production test, and test equipment
applications. Writing a one to any TERROR bit injects a single occurrence of the respective error on
TPOSO/TNEGO or TNRZO outputs. Writing a zero has no effect. Multiple transmit errors can be generated
simultaneously. Injected errors also affect data sent during a Framer Loopback [FLOOP; addr 014].
TSERR Inject CAS Multiframe (MAS) Error—Injects a single MAS pattern error. TSERR performs a
logical inversion of the first M AS bit transmitted.
0 = no effect
1 = inject MAS error
TMERR Inject Multiframe Error—Injects a single Fs bit (T1) or MFAS (E1) bit error. TMERR
performs a logical in version of the next multiframe bit transmitted. Processor can pace writing
to TMERR to control which MFA S bit is errored.
0 = no effect
1 = inject m ultiframe e rror
TBERR In je ct PRBS Test Pattern Error—Injects a si ngle PRBS error by logically inverting the next
PRBS generator output bit. Processor can pace writing to TBERR to create the desired bit
err or ratio (up to 5E-3 if TBERR asserted 1/192 bits at every frame interrupt).
0 = no effect
1 = inject PRBS error
BSLIP/TCOFA Inject Transmit COFA—Forces a 1-bit shif t in the locatio n of tra nsmit frame al ignment by
deleting (or inserting) one bit position from the transmit frame. During E1 modes, BSLIP
determines in which directi on the bit slip will occu r. In T1 modes, only one bit deletion is
provided. TCOFA alters the extraction rat e o f dat a from t he transmit sl ip buffer; t hus, repea ted
TCOFAs eventually cause a controlled frame slip where one frame of data is repeated
(T1/BSLIP = 0) or one frame of data is deleted (BSLIP = 1).
TCERR Inject CRC Error—Inje ct s a single CRC6 (T1) or CR C4 (E1) bit error. TCERR performs a
log ical inv ersion of the ne xt CRC bit transmitted. The processor can pace writing to TCERR to
control which CRC bit is errored.
0 = no effect
1 = inject CRC er ror
TFERR Inject Frame Bit Error—Injects a single Ft, FPS, or FAS bit error depending on the selected
transmit framer mode. TFERR performs a logical inversion of the next frame bit transmitted.
The processor can pace writing to TFERR, to control which frame bit is errored.
0 = no effect
1 = inject frame error
7 6 5 4 3 2 1 0
TSERR TMERR TBERR BSLIP TCOFA TCERR TFERR TVERR
TCOFA T1/E1N BSLIP Transmit COFA
0XXNo effect
100Inhibit output of TS0 bit 1 for one frame
101Insert 1 prior to FAS pattern for one frame
11XInhibit output of F-bit for one frame
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.12 Transmitter Registers
100054E Conexant 3-63
TVERR Inject Line Code Violation—Injects a single LCV error, depending on line mode and ZCS
selected. In T1 mod e, the L CV injector w aits for transmission of two c onsecuti v e p ulses on t he
data output before performing BPV error insertion and clearing the TVERR bit. Therefore, a
BPV error cannot be injected i nto a transmit data stre am that does not contain t wo cons ecuti v e
ones. TVERR is latche d until an opportunity to in ject a BPV error is presen ted. This prevents
the receiving end from de tecting: frame or multiframe bit errors, CRC errors, multiple BPV
err ors (due to ZCS pattern corr uption), or PRBS test pattern bit errors as a consequence of
error insertion. In E1 mode with HDB3 selected, the LCV injector sends two consecutive
BPVs of the same polarity, which causes the receiving end to detect a single LCV error.
0 = no effect
1 = inject line code violation
074—Transmit Manual Sa-Byte/FEBE Configuration (TMAN)
INS_SA[ 8] Manual Sa8-Byte Transmit (0-bypass)
INS_SA[ 7] Manual Sa7-Byte Transmit (0-bypass)
INS_SA[ 6] Manual Sa6-Byte Transmit (0-bypass)
INS_SA[ 5] Manual Sa5-Byte Transmit (0-bypass)
INS_SA[ 4] Manual Sa4-Byte Transmit (0-bypass)
FEBE_II Transmit FEBE Frame 15.
FEBE_I Transmit FEBE Frame 13.
TFEBE Manual Transmit FEBE (Overrides INS_FE; addr 072)—Prov ides a manual override for
FEBE bits that are normally sent by the alarm formatter [INS_FE; addr 072]. When active,
FEBE_I control s the data o utput in TS0 bi t 1 of fr ame 13 ( FEB E13) an d, FEBE _II co ntro ls th e
data output in TS0 bit 1 of frame 15 (FEBE15).
7 6 5 4 3 2 1 0
INS_SA[8] INS_SA[7] INS_SA[6] INS_SA[5] INS_SA[4] FEBE_II FEBE_I TFEBE
INS_FE TFEBE FEBE[13] FEBE[15] Description
0 X TPCMI TPCMI Bypass FEBE
1 0 SMF I SMF II Automatic FEBE
1 1 FEBE_I FEBE_II Manual FEBE
NOTE(S): Automatic FEBE insertio n uses two separate CRC4 error signals from t he receiver to
indicate SMF I and SMF II errors. Each error signal is latched and held for one full multiframe to
compensate for phase differences b etween receive and transmit multiframe t iming.
3.0 Registers CX28394/28395/28398
3.12 Transmitter Registers Quad/x16/Octal—T1/E1/J1 F ramers
3-64 Conexant 100054E
075—Transmit Alarm Signal Configuration (TALM)
Unused bits are reser ved and should be written to 0.
AISCLK Enab le Automatic ACKI Switching—When AISCLK is acti v e and the clock monit or reports a
loss of tran smit clock [TLOC; addr 04 8], the transmitter clock is automa tically switche d to
reference TIACKI or EIACKI instead of TCKI. The transmitte r is also forced to send AIS (all
ones) data. If both AISCLK and TAIS [addr 075] are active, AIS is transmitted using TIACKI
or EIACKI clock regardless of the clock monitor status. AISCLK should be set only if the
system supplies an alternate line rate clock on TIACKI for TI or EIACKI for EI applications.
AUTO_MYEL/TMYEL Manual/ A utomatic Transmit Multiframe Ye llow Alarm—Man ual mode se nds alarm for as
long as TMYEL is active. Automatic mode sends alarm for the duration of a receive loss of
multiframe alignment [SRED; addr 049].
AUTO _YEL /TY EL Manual/Automatic Transmit Yellow Alar m—Manual mode sends the alarm for as long as
TYEL is active and yellow alarm insertion [INS_YEL; addr 072] is enabled. Automatic mode
sends yellow alarm for the duration of a receive loss of frame alignment [FRED; addr 049].
7 6 5 4 3 2 1 0
AISCLK AUTO_MYEL AUTO_YEL AUTO_AIS TMYEL TYEL TAIS
Inputs Status Transmit
TAIS AUTO_AIS AISCLK RLOS TLOC CLOCK DATA
00 X X 0TCKI Normal
00 1 X 0TCKI Normal
0X 1 X 1TI/EIACKIAIS
01 X 0 0TCKI Normal
01 0 0 1TCKI Normal
01 0 1 XTCKI AIS
1X 1 X XTI/EIACKIAIS
1X 0 X XTCKI AIS
00 0 X 1TCKI Normal
01 1 1 0TI/E1ACKIAIS
INS_MYEL TMYEL AUTO_MYEL Transmit Multiframe Yellow
0 X X Supp li e d by TPC MI
10 0Inactive
1 0 1 Follows SRED status
11 XActive
NOTE(S): To transmit T1DM yellow alarm (Y24), the processor must program TDL1,
TDL2, or TSL IP buffer to transmit Y-bit outp ut in time slot 24.
INS_YEL TYEL AUTO_YEL Transmit Yellow Alarm
0 X X Supplied by TPCMI
1 0 0 Inactive
1 0 1 Follows FRED status
11 XActive
NOTE(S): To transmi t T 1D M yellow alarm (Y24), proc essor must program TDL1,
TDL2 or TSLIP buffer to transmit Y-bit output in time slot 24.
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.12 Transmitter Registers
100054E Conexant 3-65
AUTO_AI S /TAIS Manual/Automatic Transmit Alarm Indication Signal—When activated manually (TAIS) or
automatically (AUTO_AIS), the alarm formatter replaces all data output on
TPOSO/TNEGO/T NRZO with an unframed al l ones signal (AIS). This includes rep lacing data
from the rec ei ver d uring line loopb ack [LLOOP; add r 014]. Auto matic mode send s AIS for the
duration of receive loss of signal [RLOS; addr 047]. If AISCLK [addr 075] is enabled, then
TAIS also pro vides manual s w itch control over A C KI clock input. AUTO_AIS does not af fect
ACKI switching.
AIS transmission [TAIS, AUTO_AIS; addr 075, or AISCLK; addr 075] does not affect
transmit data that is looped back to the receiver during framer loopback [FLOOP; addr 014].
This allows both FLOOP and LLOOP to be active simultaneously, during a loss of signal,
without disrupting data in the framer loopback path.
076—Transmit Test Pattern Configuration (TPATT)
Unused bits are reser ved and should be written to 0.
TPSTART Enable Test Pattern Transmission.
FRAMED PRBS Framed—When set, the PRBS pattern does not overwrite framing bit positions and is
stopped during these bit periods. In T1 mode, the frame bit (ev ery 193rd bit) is not o verwritten.
In E1 mode, the PRBS test pattern is not written to time slot 0 (FAS and NFAS words) and
time slot 16 (CAS sign a lling word) if CAS framing is also sele ct e d. CAS framing is selected
by setting TFRAME[3] to 1 in the Transmit Configuration register [TCR0; addr 070]. If
FRAMED is disabled, the test pattern is transmitted in all tim e slots.
ZLIMIT Enable Zero Limit; 7/14 depending on pattern.
TPATT[1:0] PRBS test patterns used by RPATT [addr 041] and TPATT [addr 076] are defined in the ITU
standards O.151 and O .152 to use ei ther inverted or non-in verted data. Standard dat a inversion
is used for the selected PRBS test pattern unless ZLIMIT is enabled, in which case the test
pattern uses non-inverted data (see Table 3-12).
TAIS AUTO_AIS AISCLK Transmit Data Transmit Clock (TCKO)
00 0
Normal, No AIS TCKI
00 1
AIS during TLOC TI/EIACKI w hile TLOC
01 0
AIS During RLOS TCKI
01 1
AIS During TLOC or RLOS TI/EIA CKI while TLOC
1X 0
Manua l AIS TCKI
1X 1
Manual AIS and ACKI ACKI
NOTE(S): Systems that transm it framed all ones can utilize inband loopback code generator
[TLB ; addr 0 77] to send all ones in payloa d only.
7 6 5 4 3 2 1 0
TPSTART FRAMED ZLIMIT TPATT[1] TPATT[0]
3.0 Registers CX28394/28395/28398
3.12 Transmitter Registers Quad/x16/Octal—T1/E1/J1 F ramers
3-66 Conexant 100054E
077—Transmit Inband Loopback Code Configuration (TLB)
Unused bits are reser ved and should be written to 0.
LB_LEN[1:0] Inband Loopback Code Len gth (from LBP):
00 = 4 bits
01 = 5 bits
10 = 6 bits
11 = 7 bits
UNFRAM ED Loopback Code Overwrites Framing.
LBSTART Start Inband Loopback Code Transmission.
Tab le 3-21. Transmit PRBS Test Pattern Meas urements
FRAMED ZLIMIT TPATT Tes t Pattern Measurements Inversion
0 0 00 Unframed 2^11 No
0 0 01 Unframed 2^15 Yes
0010
Unframed 2^20 No
0011
Unframed 2^23 Yes
0 1 00 Unframed 2^11 wi th 7 zero limit No
0 1 01 Unframed 2^15 wi th 7 zero limit No
0 1 10 Unframed 2^20 with 14 zero limit (QRSS/QRS/QRTS) No
0 1 11 Unfr amed 2^23 with 14 z e ro limit (non-st d) No
1 0 00 Framed 2^11 No
1 0 01 Framed 2^15 Yes
1 0 10 Framed 2^20 No
1 0 11 Framed 2^23 Yes
1 1 00 Framed 2^11 with 7 zero limit No
1 1 01 Framed 2^15 with 7 zero limit (non std) No
1 1 10 Framed 2^20 with 14 zero limit (QRS S/QRS/QRTS)) No
1 1 11 Framed 2^23 with 14 zero limit (non-std) No
7 6 5 4 3 2 1 0
LB_LEN[1] LB_LEN[0] UNFRAMED LBSTART
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.12 Transmitter Registers
100054E Conexant 3-67
078—Transmit Inband Loopback Code Pattern (LBP)
Unused bits are reser ved and should be written to 0.
LBP[1] First bit transmitted
LBP[2] Second bit transmitted
LBP[3] Th ird bit transmitted
LBP[4] Fourth bit transmit ted
LBP[5] Fifth bit transmitted
LBP[6] Sixth bit transmitted
LBP[7] Seventh bit transmitted
7 6 5 4 3 2 1 0
LBP[1] LBP[2] LBP[3] LBP[4] LBP[5] LBP[6] LBP[7]
3.0 Registers CX28394/28395/28398
3.13 Trans m it Sa- By te Buffers Quad/x16/Octal—T1/E1/J1 Framers
3-68 Conexant 100054E
3.13 Transmit Sa-Byte Buffers
Five transm it Sa-Byte buffers (TSA4–TSA8) are used to inser t Sa-bits in TS0. The entire group of 40 bits is
sampled e very 16 frames, coincide nt with the TMF interrupt bound ary [addr 008]. Bit 0 from each TSA regi ster
is then i nserted during frame 1, Bit 1 during frame 3, Bi t 2 during fr ame 5 and so on. This gi v es the processor up
to 2 ms after TMF i nter rupt to write new Sa-Byt e buffer values. Transmit Sa-bits maintai n a fixed relatio nsh ip
to the transmit CRC mu ltiframe.
07B—Transmit Sa4 Byte Buffer (TSA4)
TSA4[7] Sa4 bit transmitted in frame 15
TSA4[6] Sa4 bit transmitted in frame 13
TSA4[5] Sa4 bit transmitted in frame 11
TSA4[4] Sa4 bit tr ansmitted in frame 9
TSA4[3] Sa4 bit tr ansmitted in frame 7
TSA4[2] Sa4 bit tr ansmitted in frame 5
TSA4[1] Sa4 bit tr ansmitted in frame 3
TSA4[0] Sa4 bit tr ansmitted in frame 1
07C—Transmit Sa5 Byte Buffer (TSA5)
TSA5[7] Sa5 bit transmitted in frame 15
TSA5[6] Sa5 bit transmitted in frame 13
TSA5[5] Sa5 bit transmitted in frame 11
TSA5[4] Sa5 bit tr ansmitted in frame 9
TSA5[3] Sa5 bit tr ansmitted in frame 7
TSA5[2] Sa5 bit tr ansmitted in frame 5
TSA5[1] Sa5 bit tr ansmitted in frame 3
TSA5[0] Sa5 bit tr ansmitted in frame 1
7 6 5 4 3 2 1 0
TSA4[7] TSA4[6] TSA4[5] TSA4[4] TSA4[3] TSA4[2] TSA4[1] TSA4[0]
7 6 5 4 3 2 1 0
TSA5[7] TSA5[6] TSA5[5] TSA5[4] TSA5[3] TSA5[2] TSA5[1] TSA5[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.13 Transmit Sa-Byte Buffers
100054E Conexant 3-69
07D—Transmit Sa6 Byte Buffer (TSA6)
TSA6[7] Sa6 bit transmitted in frame 15
TSA6[6] Sa6 bit transmitted in frame 13
TSA6[5] Sa6 bit transmitted in frame 11
TSA6[4] Sa6 bit tr ansmitted in frame 9
TSA6[3] Sa6 bit tr ansmitted in frame 7
TSA6[2] Sa6 bit tr ansmitted in frame 5
TSA6[1] Sa6 bit tr ansmitted in frame 3
TSA6[0] Sa6 bit tr ansmitted in frame 1
07E—Transmit Sa7 Byte Buffer (TSA7)
TSA7[7] Sa7 bit transmitted in frame 15
TSA7[6] Sa7 bit transmitted in frame 13
TSA7[5] Sa7 bit transmitted in frame 11
TSA7[4] Sa7 bit tr ansmitted in frame 9
TSA7[3] Sa7 bit tr ansmitted in frame 7
TSA7[2] Sa7 bit tr ansmitted in frame 5
TSA7[1] Sa7 bit tr ansmitted in frame 3
TSA7[0] Sa7 bit tr ansmitted in frame 1
7 6 5 4 3 2 1 0
TSA6[7] TSA6[6] TSA6[5] TSA6[4] TSA6[3] TSA6[2] TSA6[1] TSA6[0]
7 6 5 4 3 2 1 0
TSA7[7] TSA7[6] TSA7[5] TSA7[4] TSA7[3] TSA7[2] TSA7[1] TSA7[0]
3.0 Registers CX28394/28395/28398
3.13 Trans m it Sa- By te Buffers Quad/x16/Octal—T1/E1/J1 Framers
3-70 Conexant 100054E
07F—Transmit Sa8 Byte Buffer (TSA8)
TSA8[7] Sa8 bit transmitted in frame 15
TSA8[6] Sa8 bit transmitted in frame 13
TSA8[5] Sa8 bit transmitted in frame 11
TSA8[4] Sa8 bit tr ansmitted in frame 9
TSA8[3] Sa8 bit tr ansmitted in frame 7
TSA8[2] Sa8 bit tr ansmitted in frame 5
TSA8[1] Sa8 bit tr ansmitted in frame 3
TSA8[0] Sa8 bit tr ansmitted in frame 1
7 6 5 4 3 2 1 0
TSA8[7] TSA8[6] TSA8[5] TSA8[4] TSA8[3] TSA8[2] TSA8[1] TSA8[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.14 Bit-O r ie nte d Pro t ocol Regist er s
100054E Conexant 3-71
3.14 Bit-Oriented Protocol Registers
The Bit Oriented Protocol (BOP) transceiver sends and receives BOP messages, including ESF Yellow Alarm.
These messages consist of repeated 16-bit patterns with an embedded 6-bit codeword. The BOP message
channel is configured to operate over the same channel selected by the DL1 Time Slot Enable Register
[DL1_TS; addr 0A4]. The channel must be configured to operate over the FDL channel in order for BOP
messages to convey Priority, Command, and Response codeword messages according to ANSI T1.403,
Section 9.4.1. Therefore, DL1 must be configured and enabled to allow BOP operation, as described in
Table 3-22.
The pr ece dence of tran smitted BO P messages with respect to curr e nt DL1 transm it activity is configurable
[TBOP_MODE; addr 0A0]. BOP messages can also be transmitted during E1 mode, although the 16-bit
codeword patter n has not currently been adopted as an E1 standard. BOP message format:
0xxxxxx0 11111111 (transmitted right to left)
[543210] 6-bit codeword
0A0—Bit Oriented Protocol Transceiver (BOP)
RBOP_START BOP Receiver Enable—When active, BOP receiver searches FDL channel for data that
matches a 16-bit pattern in the form of 0xxxxxx011111111, where xxxxxx equals a 6-bit
codeword. Otherwise, BOP receiver is disabled.
0 = disabled
1 = BOP receiver enable
RBOP_INTEG RBOP Integration—Requires receipt of two identical consecutive 16-bit patterns (without
errors or gaps between patterns) to validate a single codeword. In this case, an er rored
codewo rd does not increment the pattern count. RBOP integration must be enabled to meet
codeword detection criteria while receiving 1E-3 bit error ratio. RBOP_INTEG adds at least
one to the numb er of successi ve 16-b it patterns needed to qualify receipt of BOP messa ge (2 in
a row counts as 1 pattern, 11 in a row counts as 10, and 26 in a row counts as 25).
0 = no integration
1 = RBOP integration
Table 3-22. DLI Configuration for T1 -ESF, FDL
Datalink Configuration Registers Value Description
DL1_TS [addr 0A4] 0 × 40 Enabling odd frames, Fbit (T1)
DL1_BIT [addr 0A5] 0 × 00 Select bits to use in time slot.
DL1-CT L [ad d r 0A6] 0 × 03 Select normal FI FO mode, FCS, Tx enabled, Rx enabled.
RDL1 _FFC [addr 0A7] 0 0###### ##### # is the threshold for rec eiver FIFO near full.
TDL1_FEC [ad dr 0AB] 00###### ###### is the thre shold FIFO near empty.
7 6 5 4 3 2 1 0
RBOP_START RBOP_INTEG RBOP_LEN[1] RBOP_LEN[0] TBOP_LEN[1] TBOP_LEN[0] TBOP_MODE[1] TBOP_MODE[0]
3.0 Registers CX28394/28395/28398
3.14 Bi t-Ori ented Pro tocol Re gisters Quad/x16/Octal—T1/E1/J1 Framers
3-72 Conexant 100054E
RBO P_LEN[1:0] RBOP Message Length—Selects the number of successive identical 16-bit patterns that are
needed to qualify receipt of a single BOP message and to update RBOP [addr 0A2] with the
recei ved code w ord. At t his time RBOP interrupt [ISR1; addr 00A] is also acti v ated. Successi v e
patterns can be se par at ed by any number of bits as l on g as th ey do n ot contain a d ifferent valid
codeword.
TBOP_LEN[1:0] TBOP Message Length—Selects the number of repeated 16-bit patterns sent as a single
message when a TBOP [addr 0A1] codeword is written. Another message, with the same or
different codeword value, can be written to TBOP as soon as prior message start is
acknowledged via activation of TBOP inter rupt [ISR2; addr 009]. If no new message is
written, the FDL channel returns to TDL1 output control upon completion of message
transmission. Processor changes TBOP_LEN to end transmission of a continuously repeating
message.
TBO P_M ODE[1:0] Transmit BOP Mode—Enables BOP transmitter and establishes priority of TBOP [addr 0A1]
output in relation to TDL1 [addr 0AD] output. When TBOP messages are given output
priority, any write to TBOP aborts T D L1 output with in the next eight FDL bit times and then
suspends TDL1 data output unt il TB OP ha s compl eted transmissi on. The processor can check
TMSG1 status [addr 0AE] before writing TBOP to determine if TDL1 output is idle. TDL1
buffer can be written while TBOP is granted priority.
When TDL1 messages are given output pr i ority, TBOP output is su spended w hen the TDL1
buffer becomes non-empty. Furthermore, TBOP is forced to wait until the TDL1 buffer is
empty and the TDL1 output is in the idle state. If TBOP_LEN is continuous and TDL1/PRM
message output is pending, then TBOP will be suspended at the next 16-bit pattern boundary.
TDL1 priority is used to transmit PRM, DS1 Idle (ISID), or optional path maintenance (PID,
TSID) messages separated by ESF Yellow Alarm codewords as def ined in Annex D of ANSI
T1.403.
RBOP_LEN Succe ssive Patterns N otes
00 1 Single 16-bit pattern updates RBOP
01 10 Minimum command, response length
10 25 Preferred command, response length
11 Change RBOP updates on receipt of each new pattern
TBOP_LEN Repeated
Patterns Message
Length (ms) Notes
00 1 4 Single message sends 16 FDL bits
01 10 40 Minimum command, response length
10 25 100 Preferred command
11 Continuous Continuous Required for ESF yellow alarm
TBOP_MODE Mode Description
0X Disabled: TBOP writes are ignored
10 TBOP output priority
11 TDL1 output priority
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.14 Bit-O r ie nte d Pro t ocol Regist er s
100054E Conexant 3-73
0A1—Transmit BOP Codeword (TBOP)
TBOP[5] 6th bit transmitted
TBOP[4] 5th bit transmitted
TBOP[3] 4th bit transmitted
TBOP[2] 3r d bit transmitted
TBOP[1] 2nd bit transmitted
TBOP[0] Transmit BOP codeword, 1st bit tra nsmitted
0A2—Receive BOP Codeword (RBOP)
RBOP_LOST Previous Message Overwritten—Activated when RBOP is updated and RBOP_VALID is
already set, indicating that the previous codeword was never read by the processor.
0 = no error
1 = prior codeword lost
RBOP_VALID RBOP Message Valid—Set each time RBOP[5:0] is updated with a codeword value. Reading
from RBOP clears RBOP_VALID.
0 = no message or message read
1 = new RBOP message received
RBOP[5] 6th bit rece iv ed
RBOP[4] 5th bit rece iv ed
RBOP[3] 4th bit rece iv ed
RBOP[2] 3rd bit received
RBOP[1] 2nd bit received
RBOP[0] Receive BOP codeword, 1st bit received
7 6 5 4 3 2 1 0
TBOP[5] TBOP[4] TBOP[3] TBOP[2] TBOP[1] TBOP[0]
7 6 5 4 3 2 1 0
RBOP_LOST RBOP_VALID RBOP[5] RBOP[4] RBOP[3] RBOP[2] RBOP[1] RBOP[0]
3.0 Registers CX28394/28395/28398
3.14 Bi t-Ori ented Pro tocol Re gisters Quad/x16/Octal—T1/E1/J1 Framers
3-74 Conexant 100054E
0A3—BOP Status (BOP_STAT)
Real-time status of the BOP transmitter and receiver is reported primarily for diagnostic purposes.
TBOP_ACTIVE TBOP Active—Remains set for th e en tire lengt h of a message as de fined by T BOP_LEN[1:0]
[addr 0A0].
RBOP_ACTIVE RBOP Active—Is set as soon as eight ones are detected and remains set if subsequent 1st and
8th bits are zero. For pattern length 1, RBOP_ACTIVE is a short pulse reported at the end of a
received 16-bit pattern. For longer lengths, the signal goes high at the end of the first pattern
and is held a ct ive until the desired number (or change) of patterns is d etected. At this p oint
RBOP interrupt is generated. Consequently, this signal is usually high.
7 6 5 4 3 2 1 0
TBOP_ACTIVE RBOP_ACTIVE
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.15 Data Link Registers
100054E Conexant 3-75
3.15 Data Link Registers
Each framer contains two independent Data Link Controllers (DL1, DL2), which are programmed to send and
recei ve HDLC fo rmatted or unfo rmatted serial data o v er an y combination of bi ts within a select ed time slot. The
serial data channels operate at a multiple of 4 kbps up to the full 64 kbps time slot rate by selecting a
combination of time slot bits from odd, even, or all frames. DL1 and DL2 each contain a 64-byte receive and
64-byte transmit buffer which, function either as programmable length circular buffers or full-length data
FIFOs.
0A4—DL1 Time Slot Enable (DL1_TS)
DL1_ TS[7] Unchannelized—Test mode only; all time slots selected. Zero for normal operation.
DL1_ TS[6, 5] Frame Select—Transmit and receive data link 1 operates on data only during the specified
T1/E1 frames. Frame select options give the processor access to different types of data link
channels as well as overhead channels. Note that overhead bit insertion is performed after
TDL1, so internal transmitter overhead insertion must be bypassed [TFRM; addr 072] before
processor supplied overhead can be output from TDL1.
00 = all frames
01 = even frames only
10 = odd frames only
11 = no t valid
DL1_TS[4:0] Time Slot Word Enable—Transmit and receive data link 1 operates on data only during the
specified time slo t. During T1 mode, selecting ti me slot zero ena b les data link operation o n the
F-bit positions.
7 6 5 4 3 2 1 0
DL1_TS[7] DL1_TS[6] DL1_TS[5] DL1_TS[4] DL1_TS[3] DL1_TS[2] DL1_TS[1] DL1_TS[0]
DL1_TS[4:0] T im e Slot Enable
00000 F-bit (T1) or TS0 (E1)
00001 TS1
||
11110 TS30
11111 TS31
3.0 Registers CX28394/28395/28398
3.15 D ata Link Registers Quad/x16/Octal—T1/E1/J1 Framers
3-76 Conexant 100054E
0A5—DL1 Bit Enable (DL1_BIT)
DL1_BIT[7:0] DL1 Bit Select—Works in conjunction with DL1_TS [addr 0A4] to select one or more time
slot bits f or data l ink input and output. Any combinati on of bi ts may be enabled by writ i ng t he
corresponding DL1_BIT active (high). The LSB enables first bit transmitted or received, and
MSB enables eig hth bi t t ransmi tted or recei ved. DL1 _BIT ha s no ef fect when DL1_ TS sel ects
T1 F-bits.
0 = disable data link bit
1 = enable data link bit
0A6—DL1 Control (DL1_CTL)
Unused bits are reser ved and should be written to 0.
TDL1_RPT Circular Transmit Buffer Enable—Processor can fill the transmit FIFO [T DL1; addr 0AD]
with up to 64 b yte s (P ack6 or P ack8 bits /b yt e) of unformatted data to be sent repeatedly. Whil e
TDL1_RPT is active high, data written to TDL1 is held until the processor writes an end of
message [TDL1_EOM; addr 0AC]. Af te r TDL1_EOM is written, th e t r a nsmitter waits for the
be ginni ng of the ne x t ou tput multif r ame (based on the select ed t ransmi t fr ami ng mod e) befor e
sending the first byte of the circular buffer. Subsequent bytes are output in the selected time
slot/overhead bits and will continue to wrap around (recirculate) from the buffer until the
processor writes new buffer data and another TDL1_EOM. This allows the processor to send
multiframe aligned data patterns in ESF, SF, SLC, FAS, MFAS or CAS overhead bits.
0 = normal transmit FIFO
1 = enable circular transmit buffer
DL1[1: 0] Data Link 1 Mode—Selects either HDLC-formatted (FCS or Non-FCS) transmit and receive
data link message mode or unformatted (Pack8 or Pack6) message mode. During HDLC
modes, the transmit/rec eive circuits perform zero insertion/removal afte r each occurrence of 5
consecutive ones contained in the message bits, FLAG (0x7E) charac ter insertion/r emov al
during idle channel conditions, and ABORT (0xFF) code inser tion/detection upon errored
channel cond itions. Refe r to ITU-T Recommendatio n Q .921 for comp lete detail s of the HDLC
link-layer protocol. FCS mode automatically generates, inserts, and checks the 16-bit Frame
Check Sequence (FCS) without passing FCS bits through transmit and receive FIFOs.
7 6 5 4 3 2 1 0
DL1_BIT[7] DL1_BIT[6] DL1_BIT[5] DL1_BIT[4] DL1_BIT[3] DL1_BIT[2] DL1_BIT[1] DL1_BIT[0]
7 6 5 4 3 2 1 0
TDL1_RPT DL1[1] DL1[0] TDL1_EN RDL1_EN
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.15 Data Link Registers
100054E Conexant 3-77
Non-FCS mode passes all message bits that exist between the opening and closing FLAG
character s through the F IFOs, with out gen erating or ch ecking FCS bits . Non-FC S mode al lows
the processor to generate and check the entire contents of each HDLC frame. Unformatted
data link modes provide transparent channel access in which every data link bit transmitted is
supplied by the processor through TDL1 and each bit received is passed to the processor
through RDL1 [addr 0A8]. Pack8 and Pack6 unformatted mode options select the number of
bits per byte that are stored in transmit/receive FIFOs, eight or six bits, respectively. The only
data processing performed during unformatted mode is the alignment of transmitted and
recei ved data bits with respect to the transmit/recei v e multiframe.
00 = FCS
01 = No FCS
10 = Pack8
11 = Pack6
TDL1_EN Transmit Data Link 1 Enable—When enabled, transmitter begins to empty and to format the
contents of the transmit data link FIFO for output during the selected time slot bits according
to the sele cted DL1[1:0] mode. Also enables generation of transmitter d ata link inte rrupt
events.
0 = disabled
1 = enable transmit data link
RDL1_EN Receive Data Link 1 Enable—When enabled, receiver begins to format data from the selected
time slot bits and to fill the receive data link FIFO according to the selected DL1[1:0] mode.
Also enables generation of receiver data link interrupt events.
0 = disabled
1 = enable receive data link
0A7—RDL #1 FIFO Fill Control (RDL1_FFC)
MSG_FILL[1:0] Unformatted Message Fill Limit—Applicable only for Pack8 and Pack6 modes, the message
fill limit selects how many receive FIFO loc ations [RDL1; addr 0A8] are filled before the
receive data link generates an RFULL interr upt [ISR2; addr 009] and generates a
corresponding RDL1 Partial message status word entry. Fill limit thus determines how many
bytes co nstitute an un form atted message. Fill limits give the processor an alternative to using
RNEAR inter rupts to signal the end of a received unformatted message. Note the number of
bits per unformatted message must divide evenly by the number of bits monitored per
multiframe.
7 6 5 4 3 2 1 0
MSG_FILL[1] MSG_FILL[0] FFC[5] FFC[4] FFC[3] FFC[2] FFC[1] FFC[0]
3.0 Registers CX28394/28395/28398
3.15 D ata Link Registers Quad/x16/Octal—T1/E1/J1 Framers
3-78 Conexant 100054E
For example, SLC applications monitor Fs bits during even frames for a total of 36 bits
monitored out of 72 frames. Using Pack6 mode, that group of 36 Fs bits from each SLC
multiframe can be chosen to constitute one unformatted message by selecting a message f ill
limit which equals 6 bytes (of 6 bits/byte). In the SLC example, an RFULL interrupt would
then be generated every 9 ms on each SLC multiframe boundary. Fill limits provided for T1
cases are multiples of 6 bytes (i.e. 6, 12 or 18 FIFO locations) to hold 1 or more multiframes
worth of monitored data. In E1 mode, fill limits are multiples of 8 bytes to correspond with the
16 frame multiframe lengths (i.e. monitoring CRC4 in MFAS framing mode or TS16 in CAS
framing mode).
FFC[5:0] Near Full FIFO Thre shold—Sel ects FIFO dep th of near full i nterrupt [RNEAR; addr 00 9] and
near full l eve l status [RNEAR1; addr 0A9]. The RNEAR interrupt and RNEAR1 indi cat or are
both activated when the number of empty FIFO locations equals the selected threshold. The
threshold controls how many data and/or status bytes (64 minus threshold value) that the
processor must read from RDL1 after RNEAR interr upt. This is done to clear the RNEAR1
indicator as well as to determine how much time remains (in bytes) for the processor to read
RDL1 before the receive FIFO is full. If a receive message is in progress when the near full
threshold is reached, the receiver issues a message interr upt [RMSG; addr 009] and places a
Partial message in th e receive FIFO.
T1/E1N MSG_FILL[1:0] Message Fill Limit
X 00 Disabled
001 8 bytes
010 16 bytes
011 24 bytes
101 6 bytes
110 12 bytes
111 18 bytes
FFC[5:0] Empty @ RNEAR Filled @ RNEAR
00 0000 none 64 = RFULL
00 0001 1 empty FIFO location 63 filled
00 0010 2 empty FIFO locations 62 filled
|||
11 1110 62 empty FIFO locations 1 filled
11 1111 63 empty FIFO locations 0 filled = empty
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.15 Data Link Registers
100054E Conexant 3-79
0A8—Receive Data Link FIFO #1 (RDL1)
Two different re ad byte values are supplied: WORD0 equals message stat us, and WORD1 equals message dat a.
The processor determines which byte value is located in the FIFO by fi rst reading the receiver data link status
[RDL1_STAT; addr 0A9]. In some cases, multiple consecutive status bytes may be placed in the FIFO, so the
processor must always read RDL1_STAT before reading RDL1 to distinguish between WORD0 and WORD1
byte values. However, each time a non-zero byte count [RDL1_CNT] status is read, the processor is guaranteed
the next RDL1_CNT reads from RDL1 will equal message data [WORD1] and not message status. Note that a
status byte occupies 1 byte of FIFO space, just the same as a message data byte occupies 1 byte of FIFO space.
WORD0: Message Status
EOM[1, 0] End of Message—Recei v e data link reports an End of Message statu s for each occurrence of a
complete (Good), a continued (Partial), an errored (FCS/Non-integer), or an aborted (Abort)
message. Note that properly received unformatted messages are reported with a Partial end of
message status. The processor responds to Good or Partial status by reading the indicated
number of data bytes [RDL1_CNT] from RDL1. For abort or error cases, RDL1_CNT equals
zero to indica te that all recei ved data from that message w as discarded. Note that a Good status
with RDL1_CNT=0 is reported if the processor reads RDL1 while the receiver is in progress
of filling the FIFO (in which case RDL1_STAT contains RSTAT1=1 and RMSG1=1). If an
abort or error status with zero byte coun t is reported after the processor has already buf fered a
prior HDLC Partial message, that partial buffered processor data should be discarded. Abort
status is reported if the recei v er detects a string of 7 o r more consecuti v e ones during an HDLC
message. FCS error status is reported if FCS mode is enabled, and the checksum calculated
over the received HDLC message does not match the received 16-bit FCS. Non-integer error
status is reported if the receiver detects a closing FLAG character that yields an HDLC
message length which is not an integer number of 8-bit octets.
00 = Good
01 = FCS/Non-integer
10 = Abort
11 = Partial
RDL1_CNT[5:0] Byte Count [5:0]—Indicates the number of Message Data [WORD1] bytes that are stored in
subsequent consecutive FIFO locations, constituting one received message. The reported byte
count is the actual number of by tes, in the range of 0 to 63 bytes, where 0 indicates zero bytes
for the processor to read. The processor can either read the specified number of message data
bytes consecutively from RDL1 or can poll RDL1_STAT after reading each data byte until
RDL1_STAT reports an end of message (i.e. RMPTY1=1 or RSTAT1=1).
7 6 5 4 3 2 1 0
EOM[1] EOM[0] RDL1_CNT[5] RDL1_CNT[4] RDL1_CNT[3] RDL1_CNT[2] RDL1_CNT[1] RDL1_CNT[0]
3.0 Registers CX28394/28395/28398
3.15 D ata Link Registers Quad/x16/Octal—T1/E1/J1 Framers
3-80 Conexant 100054E
WORD1: Message Data
RDL1[7:0] Receiv e Message Data—F ill ed b y the recei v er data link, from LSB to MSB , with bits from the
selected channel. Processor reads 8-bit FIFO data during HDLC and Pack8 modes. During
Pack6 mode, only the six least significant bits RDL1[5:0] are filled.
0A9—RDL #1 Status (RDL1_STAT)
RMSG1 In Progress Receive Message—Real time status of receive message sequencer is prov ided
mostly for processor polled applications. During HDLC modes, RMSG1 is high for the
interval between opening and closing FLAG characters to indicate the receiver is actively
fi lling FIFO locations (in which case RSTAT1 is also held high). RMSG1 is low while the
channel receives FLAG or Abort characters. During unformatted modes, RMSG1 is high
continuously.
0 = channel idle
1 = channel actively filling FIFO
RSTAT1 Next FIFO Read Equals Message Status—For non-empty FIFO conditions (RMPTY1=0),
RSTAT1 indicates th e next byte rea d f rom RDL1 returns WORD0 mes sage status or WORD1
message data. Note that RSTAT1 equals zero i f the FIFO is empty a nd there is no messag e in
progress. The pro c essor polls RSTAT1 before reading RDL1 to determine how to interpre t
RDL1 read byte value or t he p rocessor check s RSTAT1 in resp onse to RMSG int errupt [ISR2;
addr 009].
0 = RDL1 byte equals Message Data (or empty FIFO, if RMTPY1=1)
1 = RDL1 byte equals Message Status (if RMPTY1=0)
RMPTY1 Receive FIFO Empty—Indicates no data or status bytes are present in the receive data link
FIFO.
0 = FIFO contains data or status as indicated by RSTAT1
1 = FIFO empty
RNEAR1 Recei ve FIFO Near Full—Ind icates da ta li nk has filled recei ve FIFO to the near full threshol d
le vel specified in FFC[5:0]. Upon reaching the near full le vel , the recei v er updates t he message
status byte [WORD0] placed on top of the FIFO and repor ts the current in progress message
with a Par tial end of message status. The processor must read those filled FIFO locations to
clear RNEAR1 status indicator and to enable the next RNEAR interrupt.
0 = FIFO depth is below the near full level
1 = FIFO h as been filled to the near fu ll level
7 6 5 4 3 2 1 0
RDL1[7] RDL1[6] RDL1[5] RDL1[4] RDL1[3] RDL1[2] RDL1[1] RDL1[0]
7 6 5 4 3 2 1 0
RMSG1 RSTAT1 RMPTY1 RNEAR1 RFULL1
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.15 Data Link Registers
100054E Conexant 3-81
RFULL1 Receive FIFO Full—Indicates data link has completely filled 64 byte locations in the receive
FIFO. In all cases, RFULL1 is an error, indicating the processor didn’t keep pace with the
receiver and indicates one or more received messages were discarded after the FIFO became
full. The FIFO may still contain one or more Good received messages, and the processor may
still process all receive FIFO contents as usual. However, any message that was in progress
when FIFO reached full is discarded and is also reported with Partial end of message status
and a zer o byte coun t ( which d isti ngui shes a f ul l end of message status f rom a normal abort or
error message status).
0 = FIFO is less than full
1 = FIFO has been completely filled
0AA—Performance Report Message (PRM)
AUTO_PRM Automatic PRM Insertion—A UT O_PRM instructs the data link transmitter to format and send
a Performance Report Message on the selected transmit channel after each occurrence of the
ONESEC interr upt. To meet PRM requirements specified in ANSI T1.403-1995, FCS mode
[DL1_CTL; addr 0A6] and one second error count latching [LATCH_CNT; addr 046] must
both be enabled. In addition, the data link channel must be selected to output on Facility Data
Link (FDL) framing bits [DL1_TS=0x40; addr 0A4]. Octets 1-14 of the transmit PRM
message contents are automatically encoded as shown in Table A-5, Performance Report
Message Structure. The encodings are based on the number of received CRC, FPS, LCV, SEF
and FRED errors [addr 050-05A]. RFSLIP errors [SSTAT; addr 0D9] are also automatically
encoded if AUTO_SL (described below) is enabled. The remaining PRM message contents
typicall y remain fix ed and are suppl ied by the processor from oth er bits that follow in the PRM
register. Note that BOP priority codeword transmissions are interrupted by AUTO_PRM if
TDL1 is granted output priority [TBOP_MODE=11; addr 0A0]. Note also that AUTO_PRM
messages take up no space in the transmit data link FIFO, but are inserted on the transmit
channel onl y after the FIFO i s empty. Therefo re, if the processor nee ds to tran smit anot her type
of FDL message between PRM messages, the processor must write that message after
AUTO_PRM has begun sending (i.e. after ONESEC interrupt).
0 = no auto matic PRM
1 = send PRM automatically every ONESEC
PRM_CR Transmit CR Message Bit—The processor writes the selected C/R bit val ue to send in each
PRM.
PRM_R Transmit R Message Bit—The processor writes the selected R bit val ue to send in each PRM.
PRM_U1 Transmit U1 Message Bit—The processor writes the selected U1 bit value to send in each
PRM.
PRM_U2 Transmit U2 Message Bit—The processor writes the selected U2 bit value to send in each
PRM.
PRM_SL Transmit SL Message Bit—The processor writes the selected SL bit value to send in each
PRM.
7 6 5 4 3 2 1 0
AUTO_PRM PRM_CR PRM_R PRM_U1 PRM_U2 PRM_SL AUTO_SL SEND_PRM
3.0 Registers CX28394/28395/28398
3.15 D ata Link Registers Quad/x16/Octal—T1/E1/J1 Framers
3-82 Conexant 100054E
AUTO_SL Auto m atic SL Bit Insertio n—RFSLIP e rr or status is encod e d into the tran sm it PRM co ntents.
Or, the PRM_SL bit value supplied by the processor is sent.
0 = send PRM_SL value in SL bit
1 = send RFSLIP err or status in SL bit
SEND_PRM Immediately Generate an d Sen d PR M— Simil ar t o AUTO_PRM mode, S END_P RM instructs
the data l ink tr ansmitter to format and send a P e rformance Report Message according to ANSI
T1.403-1995. But SEND_PRM executes immediately rather than waiting for ONESEC
interrupt. Thus SEND_PRM g ives processor control over PRM tra nsmit timing . Th is is easier
for the processor to manage if other FDL message types must also be transmitted.
0AB—TDL #1 FIFO Empty Control (TDL1_FEC)
Unused bits are reser ved and should be written to 0.
FEC[5:0] Near Empty T ransmit FIFO Thresh old—Selects FIFO dep th of near e mpty interrupt [TNEAR;
addr 009] and near empty level status [TNEAR1; addr 0AE]. The TNEAR interrupt is
activ ated when the number of data bytes remaining to be transmitted from the FIFO falls below
the selected threshold. The TNEAR1 indicator is active as long as the number of processor
filled FIFO locations is below the selected threshold. Thus TN EAR1 is active high when the
transmit FIFO is completely empty and remains active until the processor writes the selected
threshold number of bytes to TDL1 [addr 0AD]. Assuming the processor writes 64 bytes to
completely fill an empty FIFO, then a TNEAR inter rupt occurs after the transmitter has sent
the number of bytes required to bring the FIFO level back down below the selected threshold.
Hence, the processor can consecutively write 64 - FEC[5:0] number of bytes to the transmit
FIFO in response to a TNEAR interrupt. The interrupt also signifies how much time remains
(in bytes) for the processor to wri te TDL1 before transm it FIFO is emptied . Typically,
FEC[5:0] is set to a small value (bel ow 10 byte thresh ol d) to mini mize the numb er of TNEAR
interrupts and maximize the time between TN EAR interrupts.
7 6 5 4 3 2 1 0
FEC[5] FEC[4] FEC[3] FEC[2] FEC[1] FEC[0]
FEC[5:0] Byte threshold @ TNEAR Empty @ TNEAR
00 0000 Disa bled Disable d
00 0001 1 byte threshold 63 empty
00 0010 2 byte threshold 62 empty
|| |
11 1110 62 by t e thr eshold 2 empty
11 1111 63 by t e thr eshold 1 empty
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.15 Data Link Registers
100054E Conexant 3-83
0AC—TDL #1 End Of Message Control (TDL1_EOM)
Unused bits are reser ved and should be written to 0.
TDL1_EOM End of Transmit Message. Writing any data value to TDL1_EOM marks the last byte of data
written into the transmit FIFO as the end of an HDLC message (FCS or Non-FCS mode) or
marks the end of a transmit circular buffer. Processor must write TDL1_EOM after writing a
complete message or the last byte of a circular buffer into TDL1 [addr 0AD]. The written data
value is ignored and cannot be read back. Multiple HDLC messages are allowed to be queued
in the transmit FIFO sim ultaneously. In addition, the transition from one c ircular buffer to
another occurs only after the end of message byte of the current circular buffer has been sent.
0AD—Transmit Data Link FIFO #1 (TDL1)
TDL1[7:0] Transmit Message Data—Output by the transmitter data link, from LSB to MSB, and sent on
the selected time slot bits. Processor writes 8-bit FIFO data during HDLC and Pack8 modes.
During Pack6 mode, only the six least significant bits TDL1[5:0] are used.
0AE—TDL #1 Status (TDL1_STAT)
TMSG1 In Progress Transmit Message—The real time status of the transmit message sequencer is
provided mostly for diagnostic purposes. During HDLC modes, TMSG1 is high for the
interval between opening and closing FLAG characters. This indicates that transmitter is
actively pulling dat a bytes from transmit FIF O locations. TMSG1 is low while the channel
transmits FLAG or Abor t characters. During unformatted and circular buffer modes, TMSG1
is high continuously.
0 = channel idle
1 = channel actively emptying FIFO
7 6 5 4 3 2 1 0
EOM[7] EOM[6] EOM[5] EOM[4] EOM[3] EOM[2] EOM[1] EOM[0]
7 6 5 4 3 2 1 0
TDL1[7] TDL1[6] TDL1[5] TDL1[4] TDL1[3] TDL1[2] TDL1[1] TDL1[0]
7 6 5 4 3 2 1 0
TMSG1 TMPTY1 TNEAR1 TFULL1
3.0 Registers CX28394/28395/28398
3.15 D ata Link Registers Quad/x16/Octal—T1/E1/J1 Framers
3-84 Conexant 100054E
TMPTY1 Transmit FIFO Empty—Indicates no message data is pres ent in transm it data link FIFO. This
is typically checked by the processor in response to a TMSG or TNEAR interrupt. If this is a
TMSG interrupt, the processo r c hecks TMPTY1 to determine that al l queued message s were
sent (TMPTY1=1) or more queued messages remain to be sent (TMPTY1=0). If this is a
TNEAR int errup t, th e processor confirms TMPTY1=0 to verify the part ia l transmit me ssa ge
was not aborted by a FIFO underrun.
0 = FIFO contains data to be transmitted
1 = FIFO empty
TNEAR1 Transmit FIFO Near Empty—Indicates data link has emptied transmit FIFO to below the near
empty threshold specified in FEC[5:0]. After sending the byte that occupied the near empty
FIFO threshold level, TNEAR1 goes active high, which generates a TNEAR interrupt. The
processor must write data to TDL1 to fill the transmit FIFO beyond the near empty threshold
in order to clear TNEAR1 status and enable the next TNEAR inter rupt event.
0 = FIFO depth is below the near empty level
1 = FIFO has been emptied pa st the near empt y level
TFULL1 Transmit FIFO Full—Indic ates proce ssor has complet ely filled 64 byte locatio ns in transmit
FIFO . While TFULL1 remains ac tiv e, a ny subsequent pro cessor writes t o TDL1 are ignored. I f
the proc essor shoul d i nad v ertently write to TDL1 wh il e T FULL1 i s a ctive, the proces sor must
allow FIFO to become completely empty witho ut writing to TDL1_EOM in order to force the
transmit ter to send an Abor t c haracter.
0 = FIFO is less than full
1 = FIFO has been completely filled
0AF—DL2 Time Slot Enable (DL2_TS)
DL2_ TS[7] Unchannelized—Test mode only; all time slots selected. Zero for normal operation.
DL2_ TS[6, 5] Frame Select—Transmit and receive data link 2 operates on data only during the specified
T1/E1 frames. Frame select options give the processor access to different types of data link
channels, as well as overhead channels. Overhead bit insertion is performed after TDL2, so
internal transmitter overhead insertion must be bypassed [TFRM; addr 072] before the
processor supplied overhead can be output from TDL2.
00 = all frames
01 = even frames only
10 = odd frames only
11 = Not valid
7 6 5 4 3 2 1 0
DL2_TS[7] DL2_TS[6] DL2_TS[5] DL2_TS[4] DL2_TS[3] DL2_TS[2] DL2_TS[1] DL2_TS[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.15 Data Link Registers
100054E Conexant 3-85
DL2_TS[4:0] Time Slot Word Enable—Transmit and receive data link 2 operates on data only during the
specified time slo t. During T1 mode, selecting ti me slot zero ena b les data link operation o n the
F-bit positions.
0B0—DL2 Bit Enable (DL2_BIT)
DL2_BIT[7:0] DL2 Bit Select—Works in conjunction with DL2_TS [addr 0AF] to select one or more time
slot bits f or data l ink input and output. Any combinati on of bi ts may be enabled by writ i ng t he
corresponding DL2_BIT active (high). The LSB enables the first bit transmitted or received,
and MSB enables eighth bit transmitted or received. DL2_BIT has no effect when DL2_TS
selects T1 F-bits.
0 = disable data link bit
1 = enable data link bit
0B1—DL2 Control (DL2_CTL)
Unused bits are reser ved and should be written to 0.
TDL2_RPT Circula r Transmi t Buffer Enable— Proce ssor can fill transmi t FIFO [TDL2 ; addr 0B 8] with up
to 64 bytes (Pack6 or Pack8 bits/byte) of unformatted data to be sent repeatedly. While
TDL2_RPT is active high, data written to TDL2 is held until the processor writes an end of
message [TDL2_EOM; addr 0B7]. A fter TDL2_EOM is written , the transmitter waits for th e
be ginni ng of the ne x t ou tput multif r ame (based on the select ed t ransmi t fr ami ng mod e) befor e
sending the first byte of the circular buffer. Subsequent bytes are output in the selected time
slot/overhead bits and will continue to wrap around (recirculate) from the buffer until the
processor writes new buffer data and another TDL2_EOM. This allows the processor to send
multiframe aligned data patterns in ESF, SF, SLC, FAS, MFAS, or CAS overhead bits.
0 = normal transmit FIFO
1 = enable circular transmit buffer
DL2_TS[4:0] T im e Slot Enable
00000 F-bit (T1) or TS0 (E1)
00001 TS1
||
11110 TS30
11111 TS31
7 6 5 4 3 2 1 0
DL2_BIT[7] DL2_BIT[6] DL2_BIT[5] DL2_BIT[4] DL2_BIT[3] DL2_BIT[2] DL2_BIT[1] DL2_BIT[0]
7 6 5 4 3 2 1 0
TDL2_RPT DL2[1] DL2[0] TDL2_EN RDL2_EN
3.0 Registers CX28394/28395/28398
3.15 D ata Link Registers Quad/x16/Octal—T1/E1/J1 Framers
3-86 Conexant 100054E
DL2[1: 0] Data Link 2 Mode—Selects either HDLC formatted (FCS or Non-FCS) transmit and receive
data link message mode or unformatted (Pack8 or Pack6) message mode. During HDLC
modes, the transmit/rec eive circuits perform zero insertion/removal afte r each occurrence of 5
consecutive ones contained in the message bits. These include FLAG (0x7E ) character
insertion/remov al du r ing idl e cha nnel cond it i ons and ABORT (0xF F) code insertion/detection
upon errored channel con diti ons. Refer to IT U-T Recommen dation Q.921 for comple te d etail s
of the HDLC link-layer protocol. FCS mode automatically generates, inserts, and checks the
16-bit Frame Check Sequence (FCS) without passing FCS bits through transmit and receive
FIFOs. While Non-FCS mode passes all message bits that exist between the opening and
closing FLAG characters through the FIFOs, without generating or checking FCS bits.
Non-FCS mode allows the processor to generate and check the entire contents of each HDLC
frame. Unformatted data link modes provide transparent channel access in which every data
link bit t ransmitted i s supplied by the proc essor through T DL1, and each bit received is passed
to the processor thr ough RDL2 [add r 0B3]. P ack8 and Pack6 unformatted mode opt ions sele ct
the number of bits per byte that are stored in transmit/receive FIFOs, eight or six bits,
respecti v el y. The only data pr ocessing perfo rmed during unformatted mode i s the alignment of
transmitted and received data bits with respect to the transmit/receive multiframe.
00 = FCS
01 = No FCS
10 = Pack8
11 = Pack6
TDL2_EN Transmit Data Link 2 Enable—When enabled, the transmitter begins to empty and to format
the contents of the transmit data link FIFO for o utput duri ng the selec te d time slot bit s
according to the select ed DL2[1:0] mode. Also ena bles gene ration of tran sm itter data link
interrupt events.
0 = disabled
1 = enable transmit data link
RDL2_EN Receive Data Link 2 Enable—When enabled, the receiver begins to format data from the
selected time slot bit s and to fill the recei v e data link FIFO accord ing to the selected DL2[1:0]
mode. Also ena bles gener ation of rece iver da ta lin k interrupt events.
0 = disabled
1 = enable receive data link
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.15 Data Link Registers
100054E Conexant 3-87
0B2—RDL #2 FIFO Fill Control (RDL2_FFC)
MSG_FILL[1:0] Unformatted Message Fill Limit—This is applicable only for Pack8 and Pack6 modes. The
message fill limit selects how many recei v e FIFO locations [RDL2; a ddr 0B3] are filled before
the receive data link generates an RFULL interrupt [ISR1; addr 00A] and a corresponding
RDL2 Partial message status word entry. Fill limit thus determines how m any bytes constitute
an unformatted message. The fill limits give the processor an alternative to using RNEAR
interrupts to signal the end of a received unformatted message. The number of bits per
unformatted message must divide evenly by the number of bits monitored per multiframe. For
example, SLC ap plications monitor Fs bits during even frames for a total of 36 bits mo nitored
out of 72 frames. Using P ack6 mode, the group of 36 Fs bits from each SLC multi frame can be
chosen to constitute one unformatted message. This is accomplished by selecting a message
fill limit which equals 6 bytes (of 6 bits/byte). In the SLC example, an RFULL interrupt would
then be generated every 9 ms on each SLC multiframe boundary. Fill limits provided for T1
cases are mu lti ples of 6 b ytes (i.e . 6, 12 or 18 FI FO loc ation s) to hol d one or more multi frames
w orth of monitored data. In E1 mode, fill limits are multiples of 8 bytes to correspond with the
16-frame multiframe lengths (i.e. monitoring CRC4 in MFAS framing mode or TS16 in CAS
framing mode).
FFC[5:0] Near Full FIFO Threshol d—Selects F IFO depth of nea r full int errupt [RNEAR; addr 00A] an d
near full l evel status [R NEAR 2; addr 0 B4]. T he R NEAR i nte rrupt and R NEAR 2 i ndi cat or ar e
both activated when the number of empty FIFO locations equals the selected threshold. The
threshold con trols how many data and /or st atu s bytes (64 min us t hre sh ol d value) the proce ssor
must read from RDL2 after RNEAR interrupt to clear the RNEAR2 indicator as well as how
much time remains (in bytes) for the processor to read RDL2 before receive FIFO is full. If a
receive message is in progress when the near full threshold is reached, the receiver issues a
message interrupt [RMSG; addr 00A] and places a Partial message in the receive FIFO.
7 6 5 4 3 2 1 0
MSG_FILL[1] MSG_FILL[0] FFC[5] FFC[4] FFC[3] FFC[2] FFC[1] FFC[0]
T1/E1N MSG_FILL[1:0] Message Fill Limit
X 00 Disabled
001 8 bytes
010 16 bytes
011 24 bytes
101 6 bytes
110 12 bytes
111 18 bytes
FFC[5:0] Empty @ RNEAR Filled @ RNEAR
00 0000 None 64 = RFULL
00 0001 1 empty FIFO location 63 filled
00 0010 2 empt y FIFO locatio ns 62 filled
|| |
11 1110 62 empty FIFO locations 1 filled
11 1111 63 empty FIFO locations 0 filled = empty
3.0 Registers CX28394/28395/28398
3.15 D ata Link Registers Quad/x16/Octal—T1/E1/J1 Framers
3-88 Conexant 100054E
0B3—Receive Data Link FIFO #2 (RDL2)
Two different re ad byte values are supplied: WORD0 equals message stat us, and WORD1 equals message dat a.
The processor determines which byte value is located in the FIFO by fi rst reading the receiver data link status
[RDL2_STAT; addr 0B4]. In so me cases, multiple conse cutiv e status b yte s ma y be placed in the FIFO . Thus, t he
processor must always read RDL2_STAT before reading RDL2 to distinguish between WORD0 and WORD1
byte values. However, each time a non-zero byte count [RDL2_CNT] status is read, the processor is guaranteed
the next RDL2_CNT reads from RDL2 will equal message data [WORD1] and not message status. A status
byte occupies 1 byte of FIFO space, just the same as a message data byte occupies 1 byte of FIFO space.
WORD0: Message Status
EOM[1, 0] End of Message—The receive data link reports an End of Message status for each occurrence
of a complete (Good), a continued (Partial), an errored (FCS/Non-integer), or an aborted
(Abort) message. Note t hat properl y re cei ved unformatted me ssages are reported with a Partial
end of message status. The processor responds to Good or Partial status by reading the
indicated number of data bytes [RDL2_CNT] from RDL2. For abort or error cases,
RDL2_CNT equals zero to indicate all received data from that message was discarded. Note
that a Good sta tus with RDL2_CNT=0 is reporte d if the processor reads RDL2 while the
receiver is in progress of filling the FIFO (in which case RDL2_STAT contains RSTAT2=1
and RMSG2=1). If an abort or error status with zero byte count is reported after the processor
has already buf fered a prior HDLC Partial message, that partial buf fered processo r data should
be discarded. Abort status is reported if the receiver detects a string of 7 or more consecutive
ones during an HDLC message. FCS error status is reported if FCS mode is enabled, and the
checksum calculated over the received HDLC message does not match the received 16-bit
FCS. Non-integer error status is reported if the receiver detects a closing FLAG character
yielding an HDLC message length which is not an integer number of 8-bit octets.
00 = Good
01 = FCS/Non-integer
10 = Abort
11 = Partial
RDL2_CNT[5:0] Byte Count [5:0]—Indicates the number of Message Data [WORD1] bytes that are stored in
subsequent consecutive FIFO locations, constituting one received message. The reported byte
count is the actual number of bytes in the range of 0 to 63 bytes, where 0 indicates for the
processor to read. The processor can either read the specified number of message data bytes
consecutively from RDL2 or can poll RDL2_STAT after reading each data byte until
RDL2_STAT reports an end of message (i.e. RMPTY2=1 or RSTAT2=1).
WORD1: Message Data
RDL2[7:0] Receiv e Message Data—F ill ed b y the recei v er data link, from LSB to MSB , with bits from the
selected channel. The processor re ads 8-bit FIF O data during HDLC and Pack 8 modes. Durin g
Pack6 mode, only the six least significant bits RDL2[5:0] are filled.
7 6 5 4 3 2 1 0
EOM[1] EOM[0] RDL2_CNT[5] RDL2_CNT[4] RDL2_CNT[3] RDL2_CNT[2] RDL2_CNT[1] RDL2_CNT[0]
7 6 5 4 3 2 1 0
RDL2[7] RDL2[6] RDL2[5] RDL2[4] RDL2[3] RDL2[2] RDL2[1] RDL2[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.15 Data Link Registers
100054E Conexant 3-89
0B4—RDL #2 Status (RDL2_STAT)
RMSG2 In Progress Receive Message—The real-time status of the receive message sequencer is
provided mostly for processor polled applications. During HDLC modes, RMSG2 is high for
the interval between opening and closing FLAG characters to indicate the receiver is actively
fi lling FIFO locations (in which case RSTAT2 is also held high). RMSG2 is low while the
channel receives FLAG or Abort characters. During unformatted modes, RMSG2 is high
continuously.
0 = channel idle
1 = channel actively filling FIFO
RSTAT2 Next FIFO Read Equals Message Status—For non-empty FIFO conditions (RMPTY2=0),
RSTAT2 indicates that the next byte rea d from RDL2 will b e WORD0 m essage status or
WOR D1 message data. Notice that RSTAT 2 equals zero if the FIFO is empty, and there is no
message in progress. Processor polls RSTAT2 before reading RDL2 to deter mine how t o
interpret RDL2 read byte value, or checks RSTAT2 in response to RMSG interrupt [ISR1; addr
00A].
0 = RDL2 byte equals Message Data (or empty FIFO, if RMTPY2=1)
1 = RDL2 byte equals Message Status (if RMPTY2=0)
RMPTY2 Receive FIFO Empty—Indicates no data or status bytes are present in receive data link FIFO.
0 = FIFO contains data or status as indicated by RSTAT2
1 = FIFO empty
RNEAR2 Receive FIFO Near Full—Indicates the data link has filled receive FIFO to the near full
threshold level specified in FFC[5:0]. Upon reaching the near full level, the receiver updates
the message status byte [WORD0] placed on top of the FIFO and reports the current in
progress message with a Partial end of message stat us. The processor must re a d those filled
FIFO locations to clear RNEAR2 status indicator, and to enable the next RNEAR interrupt.
0 = FIFO depth is below the near full level
1 = FIFO h as been filled to the near fu ll level
RFULL2 Receive FIFO Full—Indicates data link has completely filled 64 byte locations in the receive
FIFO. In all cases, RFULL2 is an error, indicating the processor didn’t keep pace with the
receiver and indicates one or more received messages were discarded after the FIFO became
full. The FIFO may still contain one or more Good received messages, and the processor may
still process all receive FIFO contents as usual. However, any message that was in progress
when FIFO reached full is discarded and is also reported with Partial end of message status
and a zer o byte coun t ( which d isti ngui shes a f ul l end of message status f rom a normal abort or
error message status).
0 = FIFO is less than full
1 = FIFO has been completely filled
7 6 5 4 3 2 1 0
RMSG2 RSTAT2 RMPTY2 RNEAR2 RFULL2
3.0 Registers CX28394/28395/28398
3.15 D ata Link Registers Quad/x16/Octal—T1/E1/J1 Framers
3-90 Conexant 100054E
0B6—TDL #2 FIFO Empty Control (TDL2_FEC)
FEC[5:0] Near Empty Transmit FIFO Threshold—Selects a FIFO depth of near empty interr upt
[TNEAR; addr 00A] and near empty level status [TNEAR2; addr 0B9]. The TNEAR interrupt
is activated when the number of data bytes remaining to be transmitted from the FIFO falls
below the selected threshold. The TNEAR2 indicator is active as long as the number of
processor filled FIFO locations is below the selected threshold. Thus, TNEAR2 is active high
when the transmit FIFO is completely empty and remains active until the processor writes the
selected threshold number of bytes to TDL2 [addr 0B8]. Assuming the processor writes 64
b ytes to completel y fill an empty FIFO, TNEAR interrupt occurs after the transmitter has sent
the number of bytes required to bring the FIFO level back down below the selected threshold.
Hence, the processor is guaranteed to be able to consecutively write 64 FEC[5:0] number of
b ytes to the transmit FIFO in response to a TNEAR interrupt. The interrupt also signifies how
much time remains (in bytes) for the processor to write TDL2 before transmit FIFO is emptied.
Typically, FEC[5:0] is set to a small value (approximately 510 b yte thresho ld) to minimize th e
number of TNEAR interrupts and maximize the time between TNEAR interrupts.
0B7—TDL #2 End Of Message Control (TDL2_EOM)
TDL2_EOM End of Transmit Message. Writing any data value to TDL2_EOM marks the last byte of data
written into the transmit FIFO as the end of an HDLC message (FCS or Non-FCS mode) or the
end of a transmit circular buffer. The processor must write TDL2_EOM after writing a
complete message or the last byte of a circular buffer into TDL2 [addr 0B8]. The written data
value is ignored and cannot be read back. Multiple HDLC messages are allowed to be queued
in the transmit FIFO sim ultaneously. In addition, the transition from one c ircular buffer to
another occurs only after the end of message byte of the current circular buffer has been sent.
7 6 5 4 3 2 1 0
FEC[5] FEC[4] FEC[3] FEC[2] FEC[1] FEC[0]
FEC[5:0] Byte Threshold @ TNEAR Empty @ TNEAR
00 0000 Disa bled Disable d
00 0001 1 byte threshold 63 empty
00 0010 2 byte threshold 62 empty
|| |
11 1110 62 by t e thr eshold 2 empty
11 1111 63 by t e thr eshold 1 empty
7 6 5 4 3 2 1 0
EOM[7] EOM[6] EOM[5] EOM[4] EOM[3] EOM[2] EOM[1] EOM[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.15 Data Link Registers
100054E Conexant 3-91
0B8—Transmit Data Link FIFO #2 (TDL2)
TDL2[7:0] Transmit Message Data—Output by the transmitter data link from LSB to MSB and sent on
the selected time slot bits. Processor writes 8-bit FIFO data during HDLC and Pack8 modes.
During Pack6 mode, only the six leas t significan t bits, TDL2[5:0], are used .
0B9—TDL #2 Status (TDL2_STAT)
TMSG2 In Progress Transmit Message—The real time status of the transmit message sequencer is
provided mostly for diagnostic purposes. During HDLC modes, TMSG2 is high for the
interval between the ope ning and closing FLAG characters to indi cate the transmitter is
actively pulling dat a bytes from transmit FIF O locations. TMSG2 is low while the channel
transmits FLAG or Abor t characters. During unformatted and circular buffer modes, TMSG2
is co ntinuously high.
0 = channel idle
1 = channel actively emptying FIFO
TMPTY2 Transmit FIFO Empty—Indicate s that no message data is prese nt in the transmit data link
FIFO. This is typically checked by processor in respo nse to a TMSG or TNEAR interr upt. If
this is a TMSG interrupt, the processor ch ecks TMPTY2 to determine th at all queue d
messages were sent (TMPTY2=1) or more queued messages remain to be sent (TMPTY2=0).
If this is a TNEAR interrupt, the processor confirms TMPTY2=0 to verify the partial transmit
message was not aborted by a FIFO underrun.
0 = FIFO contains data to be transmitted
1 = FIFO empty
TNEAR2 Transmit FIFO Near Empty—Indicates data link has emptied transmit FIFO to below the near
empty threshold specified in FEC[5:0]. After sending the byte that occupied the near empty
FIFO threshold level, TNEAR2 goes active high, which generates a TNEAR interrupt. The
processor must write data to TDL2 to fill the transmit FIFO beyond the near empty threshold.
This is done in order to clear TNEAR2 status and enable the next TNEAR interr upt event.
0 = FIFO depth is below the near empty level
1 = FIFO has been emptied pa st the near empt y level
TFULL2 Transmit FIFO Full—Indic ates proce ssor has complet ely filled 64 byte locatio ns in transmit
FIFO . While TFULL2 remains ac tiv e, a ny subsequent pro cessor writes t o TDL2 are ignored. I f
the proc essor shoul d i nad v ertantly write to TDL2 wh il e T FULL2 i s a ctive, the proces sor must
allow FIFO to become complete l y empty without writ ing to T DL2_EOM, in or der to force the
transmit ter to send an Abor t c haracter.
0 = FIFO is less than full
1 = FIFO has been completely filled
7 6 5 4 3 2 1 0
TDL2[7] TDL2[6] TDL2[5] TDL2[4] TDL2[3] TDL2[2] TDL2[1] TDL2[0]
7 6 5 4 3 2 1 0
TMSG2 TMPTY2 TNEAR2 TFULL2
3.0 Registers CX28394/28395/28398
3.15 D ata Link Registers Quad/x16/Octal—T1/E1/J1 Framers
3-92 Conexant 100054E
0BA—DLINK Test Configuration (DL_TEST1)
Data link test registers [addr 0BA-0BE] are for Conexant production test. Set to zero for normal operation.
Unused bits are reser ved and should be written to 0.
DL_TEST1[3] Clock Test—Zero for normal operati on , w here clocks cont ro ll ed by DL1_CTL and DL2_CTL
[addr 0A6, 0B1]. When active high, clocks are always enabled.
DL_TEST1[2] Shadow Select—Report shadow pointers instead of normal read/write pointers.
DL_T EST1[1, 0] FIFO S elect: 00 = RDL1; 01 = RDL2; 10 = TDL1; 11 = TD L2
0BB—DLINK Test Status (DL_TEST2)
Unused bits are reser ved and should be written to 0.
DL_TEST2[5:0] Read or Shadow Read Pointer—Reports selected FIFO read pointer current address.
0BC—DLINK Test Status (DL_TEST3)
Unused bits are reser ved and should be written to 0.
DL_TEST3[5:0] Write or Shadow Wr ite Pointer—Specifies selected FIFO write pointer address.
0BD—DLINK Test Control #1 or Configuration #2 (DL_TEST4)
DL_TEST4[6] TFIFO1 Read Clear—Force transmit FIFO read pointer to empty.
DL_TEST4[5] TFIFO1 Write Clear—Force transmit FIFO write pointer to empty.
DL_TEST4[4] TFIFO1 Write—MPU data goes to specified write pointer address.
DL_TEST4[3] RFIFO1 Read Clear—Force receive FIFO read pointer to empty state (flush).
DL_TEST4[2] RFIFO1 Write Clear—Force receive FIFO write pointer to empty state (flush).
DL_TEST4[1] RFIFO1 Write—MPU data goes to specified write pointer address.
DL_TEST4[0] RFIFO1 Bypass—Pipe receive data.
7 6 5 4 3 2 1 0
DL_TEST1[3] DL_TEST1[2] DL_TEST1[1] DL_TEST1[0]
7 6 5 4 3 2 1 0
DL_TEST2[5] DL_TEST2[4] DL_TEST2[3] DL_TEST2[2] DL_TEST2[1] DL_TEST2[0]
7 6 5 4 3 2 1 0
DL_TEST3[5] DL_TEST3[4] DL_TEST3[3] DL_TEST3[2] DL_TEST3[1] DL_TEST3[0]
7 6 5 4 3 2 1 0
DL_TEST4[6] DL_TEST4[5] DL_TEST4[4] DL_TEST4[3] DL_TEST4[2] DL_TEST4[1] DL_TEST4[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.15 Data Link Registers
100054E Conexant 3-93
0BE—DLINK Test Control #2 or Configuration #2 (DL_TEST5)
Unused bits are reser ved and should be written to 0.
DL_TEST5[6] TFIFO2 Read Clear—Force transmit FIFO read pointer to empty.
DL_TEST5[5] TFIFO2 Write Clear—Force transmit FIFO write pointer to empty.
DL_TEST5[4] TFIFO2 Write—MPU data goes to specified write pointer address.
DL_TEST5[3] RFIFO2 Read Clear—Force receive FIFO read pointer to empty state (flush).
DL_TEST5[2] RFIFO2 Write Clear—Force receive FIFO write pointer to empty state (flush).
DL_TEST5[1] RFIFO2 Write—MPU data goes to specified write pointer address.
DL_TEST5[0] RFIFO2 Bypass—Pipe receive data.
7 6 5 4 3 2 1 0
DL_TEST5[6] DL_TEST5[5] DL_TEST5[4] DL_TEST5[3] DL_TEST5[2] DL_TEST5[1] DL_TEST5[0]
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-94 Conexant 100054E
3.16 System Bus Registers
0D0—System Bus Interface Configuration (SBI_CR)
X2CLK Enable Times 2 Clocks—X2CLK modifies the number of RSB/TSB clock cycles used to
clock a single data bit onto RSB and TSB. When X2CLK is active, two RSBCKI/TSBCKI
clock cycles occur for each RPCMO, RSIGO, SIGFRZ, TPCMI, and TSIGI bit. But the
FSYNC and MSYNC signals remain at the full 1x RSBCKI/TSBCKI clock rate.
0 = RSB/TSB signals at RSBCKI/TSBCKI
1 = Two SBCKI clock cycles per SBI bit (except FSYNC and MSYNC).
SBI_OE Enable System Bus Outputs—Places RPCMO, RSIGO, RINDO, and SIGFRZ output buffers
under the control of the RSB timebase. SBI_OE also places the TINDO output buffer under
the control of TSB timebase. Inactive (low) forces SBI output buffers to a high-impedance
state. Power on and RESET [addr 001] force SBI_OE to an inactive state to avoid bus
contention on devices sharing system bus connections.
0 = SBI outputs forced to high-impedance state
1 = SBI outputs controlled by respective RSB or TSB timebase
EMF Embedded Framing—During T1 mode, EMF controls placement of T1 framing bits on
RPCMO and sampling of T1 framing bits from TPCMI according to the selected embedded
framing format. EMF supports system buses that carry T1 frames but operate above T1 line
rate. EMF allo ws the system bus to transport and maintain 193-bit frame integrity as T1 data is
passed through RSLIP and/or TSLIP buffers.
0 = G.802 embedded format
1 = Reserved embedded for mat
EMBED EMBED instructs the transmit framer (refer to [TABOR T; addr 071]) t o align the TX timebase
with respect to the frame and multif rame alignme nt embedd ed in the tra nsmit line rate data
output from TSLIP (TXDATA). EMBED is required during applications that bypass frame
formatter [TFRM; addr 072] or Sa-bits [TMAN; addr 074]. If TSLIP is enabled, EMBED is
inactive, and overhead is bypassed, TX timebase is not guaranteed to align to TXDATA, and
b ypassed o v erhead cann ot reliabl y pass through TSLIP. EMBED is applicab le to all system bus
modes.
7 6 5 4 3 2 1 0
X2CLK SBI_OE EMF EMBED SBI[3] SBI[2] SBI[1] SBI[0]
EMBED T1/E1N Embedded Framing Mode
0 X Transmit framer searches TPCMI
1 0 TS0 embedded; search TXDATA
1 1 G.802 embedded; search TXDATA
NOTE(S): Embedded F-bits reach TX output only if frame formatter [TFRM; addr 072]
is in bypass or transparent mode.
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-95
SBI[3:0] System Bus Interface Mode—Defines transmit and receive system bus data format. System
buses operate in one of nine basic formats which differ in the number of total available data
time slots and the associat ed system bus clo ck ra te. If the total time slots are a mul tiple of 32,
SBI also defines which bus group of 32 byte-interleaved time slots are assigned to the
respective device.
TS0 Embedd ed Th e offline fr amer examines TXDATA to align TX timebase to the
embedded FAS pattern. If MFAS is also enabled [TFRAME; addr
070], transmit onlin e framer ex amin es TXD ATA to align TX timebase
to the embedded MFAS pattern. While EMBED is active, TXDATA
output is monitored, and transmit frame errors are reported in ISR0
[addr 00B]. Embedded TS0 supports E1 overhead bypass options for
applications where TSLIP buffer is enabled.
G.802 Embedded Automatically supports ITU–T Recommendation G.802, which
defines frame format conversion betw een T1 and E1 line rates. This is
accomplished by locating T1 F-bits in Bit 1 of Time Slot 26 of each
system bus frame. G.802 embedded mode is applicable for system
buses that are 1x, 2x, or 4x multiples of E1 line rate. Full
implementation of G.802 also requires the processor to program TS0,
TS16, and TS26–TS31 as unassigned system bus time slots [SBCn;
addr 0E0–0FF].
SBI[3:0] Mode Clock ( K bps) Total Time Slots Bus Group
0000 128A 8192 128 Group 0
0001 128B 8192 128 Group 1
0010 128C 8192 128 Group 2
0011 128D 8192 128 Group 3
0100 64A 4096 64 Group 0
0101 64B 4096 64 Group 1
0110 32 2048 32
0111 24+F 1544 24 + F- bit
1000 24 1536 24
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-96 Conexant 100054E
0D1—Receive System Bus Configuration (RSB_CR)
BUS_RSB Enab le Bussed RSB Outputs—Appli cable onl y if the system bus outputs are contro lled b y SBI
timebases [SBI_OE = 1; addr 0D0]. When BUS_RSB is active, RPCMO , RSIGO , and RINDO
outputs from multiple devices are allowed to share common receive system bus connections.
Unused time slots are three-stated during those bus groups that are not selected by SBI mode
[addr 0D0]. Otherwise, unused time slots repeat their output data value for all bus groups.
0 = RSB time slot value repeated for all bus groups
1 = three-state RSB outputs during unused bus groups
SIG_OFF Inhibit RPCMO Signaling Reinsertion—Disables insertion of ABCD signaling for all time
slots on the receive system bus PCM output (RPCMO). Otherwise, ABCD signaling is
reinserted on RPCMO as controlled by System Bus Per-Channel [SBCn; addr 0E0–0FF] and
RX Per-Channel [RPCn; addr 180–19F] controls.
0 = enable insertion of signaling onto RPCMO
1 = inhibit RPCMO signaling
RPCM_NEG Output Data on Falling Edge Clock—Selects RSBCKI rising or falling edge clock signal to
output RPCMO, RSIGO, RINDO, and SIGFRZ.
0 = RSB rising edge outputs
1 = RS B falling edge outputs
RSYN_NEG Output Sync on Falling Edge Clock—Selects RSBCKI rising or falling edge clock signal for
RFSYNC or RMSYNC outputs. Opposite RSBCKI edge is used if RFSYNC or RMSYNC is
prog rammed as an input.
0 = RFSYNC or RMSYNC rising edge output (falling edge input)
1 = RFSYNC or RMSYNC falling edge output (rising edge input)
BUS_FRZ Enable Bused SIGFRZ Output—Enables SIGFRZ fro m multiple devices to share a common
receive syst em bus connection. When act ive, SIGFRZ three-stat es dur ing bus group time slots
that are unused by the selected SBI mode [addr 0D0].
0 = SIGFRZ repeats for all bus groups
1 = three-state SIGFRZ during unused bus groups
RSB_CTR Force RSLIP to Center—Writing a one to RSB_CTR forces RSLIP read buffer pointer to its
initial delay condition. If RFSYNC or RMSYNC is programmed as an output, RSB_CTR
consequently forces a change of system bus sync alignment. The processor must assert
RSB_CTR after configuration of the receive slip buffer. Centering RSLIP does not effect
RSLIP status reported in ISR.5 [addr 006].
0 = no effect
1 = force RSLIP to center
7 6 5 4 3 2 1 0
BUS_RSB SIG_OFF RPCM_NEG RSYN_NEG BUS_FRZ RSB_CTR RSBI[1] RSBI[0]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-97
RSBI[1:0] Recei v e Slip Buf fer Interface Mod e—Selects configuration of RSLIP buf fer . RSBI determines
the total buffer depth and initial delay conditions. While RSLIP is bypassed, RSB outputs and
RSBCKI is ignored. RFSYNC and RMSYNC are also ignored in bypass mode if they are
programmed as inputs.
0D2—RSB Sync Bit Offset (RSYNC_BIT)
Unused bits are reser ved and should be written to 0.
OFFSET[2:0] RSB Sync Bit Of fset—Selec ts which RSB bi t number coincid es with RFSYNC and RMSYNC
sync pulses. Sync pulses are prog rammed to align to one bit in relation to RPCMO, RSIGO,
RINDO, and SIGFRZ time sl ots. If th e sync pul ses are desir ed to coinci de wi th locati on of T1
F-bit or time slot z ero Bit 1, then OFF SET is programmed to equal zer o. Sync bit offset is
added to time slot offset [RSYNC_TS; addr 0D3] to form a 10-bit OFFSET value. This value
applies to RFSYNC location, which is then added to frame offset [RSYNC_FRM; addr 0D8]
to for m a 15-bit OFFSET value that app lies to RMSYNC location. Both RFSYNC an d
RMSYNC offsets are expressed as RSB.OFFSET, allowing the system to generate or accept
sync pu lse s at any bit location wit hin the RSB multiframe.
RSBI Mode Total
Depth Initial Delay Conditions
00 Normal 2 Frame 1 Frame When RFSYNC is output
0.5 to 1.5 Frames When RFSYNC is input
01 Short 2 Frame 32 bits Reverts to normal upon slip
10 Elastic 674 bits 32 bits Recenters automatically upon slip
11 Bypass 0 bits 0 bits R SBCKI ignored
7 6 5 4 3 2 1 0
OFFSET[2] OFFSET[1] OFFSET[0]
OFFSET[2:0] RSYNC Location
000 Bit 1 or F-bit
001 B it 2
||
110 B it 7
111 B it 8
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-98 Conexant 100054E
0D3—RSB Sync Time Slot Offset (RSYNC_TS)
Unused bits are reser ved and should be written to 0.
OFFS ET[9:3] RSB Sync Time Slot Offset—Selects which RSB time slot number coincides with RFSYNC
and RMSYNC sync pulses, in the range of Time Slots 0–127. If the sync pulses coincide with
location of T1 F-bit or TS0, then OFFSET is programmed to equal zero. Refer also to
RSYNC_BIT and RSYNC_FRM [addr 0D2, 0D8].
7 6 5 4 3 2 1 0
OFFSET[9] OFFSET[8] OFFSET[7] OFFSET[6] OFFSET[5] OFFSET[4] OFFSET[3]
2048, 1544, and 1536 Kbps/sec SBI Mo de
OFFSET[9:3] RSYNC Time Slot
0000000 0 or F-bit
0000001 1
||
0011110 30
0011111 31
4096 Kbps/sec SBI Mode
OFFSET[9:4] OFFSET[3] RSYNC Time Slot Group
000000 0 0 A
000000 1 0 B
000001 0 1 A
000001 1 1 B
|| | |
011110 0 30 A
011110 1 30 B
011111 0 31 A
011111 1 31 B
8192 Kbps/sec SBI Mode
OFFSET[9:5] OFFSET[4:3] RSYNC Time Slot Grou p
00000 00 0 A
00000 01 0 B
00000 10 0 C
00000 11 0 D
00001 00 1 A
00001 01 1 B
00001 10 1 C
00001 11 1 D
|| | |
11110 00 30 A
11110 01 30 B
11110 10 30 C
11110 11 30 D
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-99
0D4—Transmit System Bus Configuration (TSB_CR)
BUS_TSB Enable Bused TSB Output—Applicable only if system bus outputs are controlled by SBI
timebases [SBI_OE = 1; addr 0D0]. When BUS_TSB is active, TINDO outputs from multiple
devices are allowed t o share a common t r ansmit system bus connection. Unused time slo ts are
three-stated during those bus groups that are not selected b y SBI mode [add r 0D0]. Otherwise,
unused time slots repeat their TINDO value for all bus groups.
0 = TINDO repeated for all bus groups
1 = three-state TINDO during unused time slots
TX_ALIGN Transmitter Output Multiframe Alig ns to TSB Timeba se —Allows multiframe alignment
located at TSB (from TMSYNC or TFRAMER to pass across TSLIP b uffer and force the
corresponding multiframe alignment onto the transmitter timebase. Used primarily to pass
TMSYNC from system bus.
0 = Transmitter multi fra me does not follow TSB
1 = Transmitter multiframe follows TSB multiframe
TPCM_NEG Output Data on Falling Edge Clock—Selects TSBCKI rising or falling edge clock signal to
output TINDO and the opposite TSBCKI edge to sample TPCMI and TSIGI inputs.
0 = TINDO rising edge output (TPCMI and TSIGI falling edge inputs)
1 = TINDO falling edge outputs (TPCMI and TSIGI rising edge inputs)
TSYN_NEG Output Sync on Falling Edge Clock—Selects TSBCKI rising or falling edge clock signal for
TFSYNC or TMS YNC outputs. The opposi t e TS BCKI ed g e is used if TFSYNC or TMSYNC
is programmed as input.
0 = TFSYNC or TMSYNC rising edge output (falling edge input)
1 = TFSYNC or TMSYNC falling edge output (rising edge input)
TSB_ALIGN Transmit Syste m Bus Multifra me Aligns to Transmit Timebase—Allows multiframe
alignment located at TX timebase to pass across TSLIP and force the corresponding
multiframe al ignment onto the T SB timebase. Used primaril y to pass CAS or MFAS alignment
located by the transmit online framer onto the TMSYNC output.
0 = TSB multiframe does not follow XMTR
1 = TSB multiframe aligned by XMTR
11111 00 31 A
11111 01 31 B
11111 10 31 C
11111 11 31 D
NOTE(S): Offsets which are outside the RSB timebase range result in no pulses on
RFSYNC and RMSYNC outputs.
7 6 5 4 3 2 1 0
BUS_TSB TX_ALIGN TPCM_NEG TSYN_NEG TSB_ALIGN TSB_CTR TSBI[1] TSBI[0]
8192 Kbps/sec SBI Mode
OFFSET[9:5] OFFSET[4:3] RSYNC Time Slot Grou p
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-100 Conexant 100054E
TSB_CTR Force TSLIP to Center—Writing a one to TSB_CTR forces TSLIP read buffer pointer to its
initial delay condition. This can possibly force a change of transmit frame alignment if TSLIP
is configured in Elastic or Bypass modes. Writing a zero has no eff ect. The processor must
assert TSB_CTR after configuration of the transmit slip buffer. Afterwards, CX28398
automatically recenters TSLIP buffer according to the configured mode. Centering TSLIP
does not effect TSLIP status reported in ISR5[addr 006].
0 = no effect
1 = force TSLIP to center
TSBI [1:0] Transmit Slip Buffer Interface Mode—Selects the configuration of the TSLIP buffer. The
TSBI dete rmines the total buffer depth and initial de lay conditi ons. While TS LIP is bypassed,
TCKI cloc ks TSB input/out put, and TSBCKI is igno red.
0D5—TSB Sync Bit Offset (TSYNC_BIT)
Unused bits are reser ved and should be written to 0.
OFFS ET[2:0] TSB Sync Bit Of fset—Select s which T SB bit number coincide s with TFSYNC and TMSYNC
sync pulses. Sync pulses are programmed to align to one bit in relation to TPCMI, TSIGI and
TINDO time slots. If the syn c pulses are desired to coincide with location of T1 F-bit or time
slot zero Bit 1, then OFFSET is pro grammed to equal zer o. Sync bit of fs et is added to time slot
offset [TSYNC_TS; addr 0D6] to form a 10-bit OFFSET value. This value applies to
TFSYNC and TMSYNC location. Both TFSYNC and TMSYNC offsets are expressed as
TSB.OFFSET, allowing the system to generate or accept sync pulses at any bit location within
the TSB frame.
TSBI Mode Total
Depth Initial Delay Conditions
00 Normal 2 Frame 0.5 to 1.5 Frames Dependent on present depth, no
change of output frame.
01 Short 2 Frame 3 2 Bits Reverts to normal upon slip
10 Elastic 64 Bits 32 Bits Recenters automatically upon slip
11 Bypass 0 Bits 0 Bits TSBCKI ignored
NOTE(S):
1. Bypass req uires system bus equal to line rate.
2. Idle code and local signal ing inserti on apply to all modes.
7 6 5 4 3 2 1 0
OFFSET[2] OFFSET[1] OFFSET[0]
OFFSET[2:0] TSYNC Location
000 Bit 1 or F-bit
001 Bit 2
||
110 Bit 7
111 Bit 8
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-101
0D6—TSB Sync Time Slot Offset (TSYNC_TS)
Unused bits are reser ved and should be written to 0.
OFFSET[9:3] TSB Sync Ti me Slot Offset—Selects which TSB time slot number coincides with TFSYNC
and TMSYNC sync pulses, in the range of Time Slots 0 through 127. If the sync pulses
coincide with location of T1 F-bit or TS0, then OFFSET is programmed to equal zero. Refer
also to TSYNC_TS [addr 0D6].
7 6 5 4 3 2 1 0
OFFSET[9] OFFSET[8] OFFSET[7] OFFSET[6] OFFSET[5] OFFSET[4] OFFSET[3]
2048, 154 4, an d 15 36 K bps / se c SBI Mod e
OFFSET[9:3] TSYNC Time Slot
0000000 0 or F-bit
0000001 1
||
0011110 30
0011111 31
4096 K bps/sec S BI Mode
OFFSET[9:4] OFFSET [3 ] TSYNC Time
Slot Group
000000 0 0 A
000000 1 0 B
000001 0 1 A
000001 1 1 B
||||
011110 0 30 A
011110 1 30 B
011111 0 31 A
011111 1 31 B
8192 K bps/sec S BI Mode
OFFSET[9:5] OFFSET[4: 3] TSYNC Time
Slot Group
00000 00 0 A
00000 01 0 B
00000 10 0 C
00000 11 0 D
00001 00 1 A
00001 01 1 B
00001 10 1 C
00001 11 1 D
||||
11110 00 30 A
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-102 Conexant 100054E
0D7—Receive Signaling Configuration (RSIG_CR)
SET_RSIG Force 2 ms RSIG Interrupt—Allows t he processor to receive an interrupt on RSIG [addr 008]
at e v ery CAS multi frame boun dary. Appli cab le only to E1 mode with CAS enab l ed. Ov errides
STACK interrupt.
0 = RSIG interrupt on signaling STACK change
1 = RSIG interrupts every 2 ms at CAS multiframe
SET_SIG Overwrite Robbed-Bit Signaling—Applicable only during T1 mode and function dependent
on RIDLE. When RIDLE is inactive, SET_SIG forces received robbed-bit signaling to one
before updating RSLIP time slot value. Therefore, bit 8 of each time slot received during
signaling frames 6, 1 2, 18, an d 24 i s replaced with a one. This function i s particularl y u seful in
cross-connect and exchange systems that strip robbed-bit signaling or use different signaling
frame alignment on inbound and outbound ports.
0 = no change to receive signaling
1 = replace robbed-bit signaling
UNICODE Inband Signaling Freeze (applicable to T1 modes only)—If UNICODE is enabled, received
ABCD signaling on all channels is searched on a per-channel basis for the 4-bit UNICODE
pattern. UNICODE p attern detect ion i nhibit s STACK. R SIG buf f er update s f or that chan nel as
long as UNICODE is present, but does not affect SIGFRZ output and is not reported to the
processor. This function is described in Bellcore TR-TSY-000303, Section 4.4.9, Revision 2,
July 1989.
0 = no effect
1 = enable UNICODE detection and per-channel signaling freeze
11110 01 30 B
11110 10 30 C
11110 11 30 D
11111 00 31 A
11111 01 31 B
11111 10 31 C
11111 11 31 D
NOTE(S): Offsets whi ch are outside the TSB timebase range result in no pulses on
TFSYNC an d TM SYNC outpu ts .
7 6 5 4 3 2 1 0
SET_RSIG SET_SIG UNICODE DEBOUNCE FRZ_OFF FRZ_ON THRU
8192 K bps/sec S BI Mode
OFFSET[9:5] OFFSET[4: 3] TSYNC Time
Slot Group
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-103
DEBOUNCE Debounce Receive ABCD Signaling—Applicable only to those channels where signaling
stack is enabled (SIG_STK; addr 180–19F). Output signaling buffer (RSIG) updates for these
channels are e v aluated aft er D-bit signaling is recei v ed. Ne w signaling is place d into RSIG and
STA CK buffers onl y if the RSIG input and output values dif fer. DEBOUNCE filters single bit
errors on ABCD signaling. This is accomplished by comparing incoming ABCD bits on a
bit-by-bit basis with current buffered input and output ABCD bits and inverting the update
signaling bit value when incoming and output bits are equal. However, these differ from the
buffered input value below. At the end of each multiframe, the entire input ABCD value is
copied to the output ABCD value.
0 = no effect
1 = debounce receive ABCD signaling
FRZ_OFF/FRZ_ON Manual Sig na ling Update and SIGFRZ Output—Allows the processor to manually control
updates of the receive signaling buffer [RSIGn; addr 1A0–1BF], the signaling stack [addr
0DA], and the SIGFRZ output pin. FRZ_ON and FRZ_OFF control the SIGFRZ pin’s output
state, but do not affect normal operations of the SIGFRZ interrupt [ISR7; addr 004]. Receive
ABCD input signaling is pla ced int o S TACK and RSIG buffers according t o t he modes shown
below. Stack updates are individually enabled on a per-channel basis according to SIG_STK
[addr 180–19F].
Sig Input Current Bit I/O Update Bit I/O Notes
000 00
0 01 00 Change output
0 10 00 Debounce
011 01
100 10
1 01 11 Debounce
1 10 11 Change output
111 11
NOTE(S): Normal (non -debounced) signaling always transfers ABCD input to ABC D output
buffer space coincident with the D-bit update.
SIGFRZ
FRZ_ON FRZ_OFF SIG_STK Interrupt Pin STACK RSIGn
0 0 0 0 0 No update All ABCD
0 0 X 1 1 No update No update
0 0 1 0 0 ABCD Changes All ABCD
X 0 X 0 No Update All ABCD
X 1 1 X 0 ABCD Changes All ABCD
1 0 X X 1 No update No Update
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-104 Conexant 100054E
THRU Enable Transparent Robbed-Bit Signaling—RMSYNC is forced to align with respect to RX
timebase and to follow each change of receiver’s multiframe alignment, plus any frame offset
caused by RSLIP buffer delay. In this m a nner, RMSYNC is able to reta in its signaling
multifra m e alignment with respect t o RPCMO outpu t data frames. THRU mode is require d
when RSLIP is configured in bypass mode. It is also useful for ADPCM transcoder systems
that utilize robbed-bit signaling during frames other than the normal (modulo 6) signaling
frames and therefo re cann ot utili ze RPCMO si gn aling reinsertion in ADPCM c oded chan nel s.
During THRU mode, RMSYNC must be programmed as an output [PIO; addr 018].
RMSYNC can follow a change of RX multiframe alignment without generating an alarm
indication (e.g., receiver change of SF alignment without accompanying loss of basic frame
alignment).
0 = no effect
1 = transparent robbed-bit signaling
0D8—Signaling Reinsertion Frame Offset (RSYNC_FRM)
Unused bits are reser ved and should be written to 0.
OFFSET[14:10] RSB Sync Frame Offset—Selects which RSB frame number coincides with RMSYNC pulse
in the range of frame 0–23. OFFSET specifies the frame in which RMSYNC is applied as an
input or in which RMSYNC appears as an output, consequently locating RPCMO signaling
frames used for T1 robbed-bit (frames 6,12,18, and 24) or E1 CAS signaling reinsertion. The
only RPCMO channels affected are those with signaling insertion enabled [INSERT; addr
0E0–0FF].
7 6 5 4 3 2 1 0
OFFSET[14] OFFSET[13] OFFSET[12] OFFSET[11] OFFSET[10]
T1/E1N OFFSET[14:10] RMSYNC Pulse
0 X0000 RS B frame 0
0 X0001 RS B frame 1
|| |
0 X1110 RSB frame 14
0 X1111 RSB frame 15
1 00000 RSB frame 1
1 00001 RSB frame 2
|| |
1 10110 RSB fr ame 23
1 10111 RSB fr ame 24
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-105
0D9—Slip Buffer Status (SSTAT)
SSTAT[7:0] are updated at the start of each respective receive/transmit internal frame boundary (i.e. 125 µs
interval). Each bit in SSTAT is latched upon event detection and held until read cleared by the processor.
TSDIR Transmi t Sli p Direction—TSDIR is updated each t ime a TSLIP error is latched in TFSLIP and
TSDIR indicates which direction the slip occurred.
0 = TSLIP error deleted 1 frame on TX data output
1 = TSLIP error repeated 1 frame on TX data output
TFSLIP Controlled TSLIP Event—TUSLIP and TFSLIP event status are latched active high when
transmit slip error is detected. Either event reports a TSLIP error in ISR5 [addr 006]. Active
high hold interval is defined by LATCH_ERR [addr 046].
Two types of errors are detected:
1. FSLIP = Controlled ± frame slip on T X data o utput . FSLIP af f ects tra nsmit
time slot data, but does not change transmit timebase or frame alignment.
2. USLIP = Uncontrolled ± 1 t o ± 256 bi t sli p on TX data. USLI P affects both
time slot data and frame alignment. TUSLIP and TFSLIP status depends
on transmit system bus configuration [TSB_CR; addr 0D4].
TUSLIP Uncontrolled TSLIP Event—See TFSLIP description.
TDLY Transmit Slip Buffer Delay > One Frame—Indicates that real-time phase difference between
TSLIP read and write pointers is more than 192 bits (T1) or 256 bits (E1). TDLY provides a
coarse phase indicator and toggles (low) if transmit system bus clock phase advances with
respect to the transmit line rate clock. A finer granularity of TSLIP phase is reported in
TPHASE [ad dr 0DC].
0 = TSLIP delay less than or equal to 1 frame
1 = TSLIP delay greater than 1 frame
7 6 5 4 3 2 1 0
TSDIR TFSLIP TUSLIP TDLY RSDIR RFSLIP RUSLIP RDLY
TSBI Mode TUSLIP TFSLIP TSLIP Event
Normal 0 0 None
0 1 FSLIP
10 USLIP
11(1) Both FSLIP and USLIP
Short 0 0 None
0 1 FSLIP
10 USLIP
Elastic 0 n/a None
1n/a USLIP
Bypass n/a n/a
NOTE(S):
(1) Most rece nt slip error direct ion is reported in TSDIR.
2. TFSLIP not applicable (read zero value) if TSLIP is bypassed or configured as elastic store.
TUSLIP not applicable if TSLIP bypassed. In short delay mode, if the bus clock is faster than the
receive cl ock, the system bus will resynchronize and USLIP i s reported. If the receive clock is
faster, RSLIP reverts to normal mode and subsequently reports FSLIP errors.
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-106 Conexant 100054E
RSDIR Receiv e Slip Direction —RSDIR is updated each time an RSLIP error is latched in RFSLIP or
RUSLIP and indicates which direction the slip occurred.
0 = RSLIP error deleted one frame on RPCMO or SBI resync detected
1 = RSLIP error repeated one frame on RPCMO or SBI time slot reassigned
RFSLIP Controlled RSLIP Event—RUSLIP and RFSLIP event status are latched active high when
recei v e slip error is detect ed. Either ev ent rep orts RSLIP error in ISR5 [addr 006]. Active high
hold interval is defined by LATCH_ERR [addr 046]. Two types of errors are detected:
1. FSLI P = Control led ± 1 frame slip on RPCMO data output. FSLIP affects
RPCMO, but does not change alignment of system bus RFSYNC or
RMSYNC signals.
2. USLIP = Uncontrolled ± 1 to ± 256 bit slip on RPCMO. USLIP affects
both system bus data and sync outputs. RUSLIP and RFSLIP status
depends on receive system bus configuration [RSB_CR; addr 0D1].
RUSLIP Uncontrolled RSLIP Event—See RFSLIP description.
RDLY Receive Slip Buffer Delay > 1 Frame—Indicates that real-time phase difference between
RSLIP read and write pointers is more than 192 bits (T1) or 256 bits (E1). RDLY provides a
coarse phase indicator and toggles (low) if receive clock phase advances with respect to
receive system bus clock. A finer granularity of RSLIP phase is reported in RPHASE [addr
0DB].
0 = RSLIP delay less than or equal to 1 frame
1 = RSLIP delay greater than 1 frame
RSBI Mode RUSLIP RFSLIP RSLIP
Event Notes
Normal 0 0 None
0 1 FSLIP Most recent slip error direction is reported
in RSDIR.
10USLIPAn uncontrolled slip can occur in Normal
mode due to a resync of the SBI, or in T1
rate converted applications, the active
time slots are reassigned. The former sets
RSDIR = 0, the latter RSDIR = 1.
Short 0 0 None
0 1 FSLIP
10USLIPIn short delay mode, if bus clock is faster
than receive clock, system bus will
resynchronize and USLIP is reported. If
receive clock is faster, RSLIP reverts to
Normal mode and subsequently reports
FSLIP errors.
Elastic 0 0 None
10USLIPRFSLIP is not applicable (read zero
value) while RSLIP buffer is bypassed or
configured as elastic store. FSLIP or
USLIP errors reported upon bypass mode
initialization should be ignored.
Bypass
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-107
0DA—Receive Signaling Stack (STACK)
STACK contains new signaling information from those channels with SIG_STK [addr 180–19F] enabled.
STACK allows the processor to conveniently monitor only changed ABCD signaling values from the selected
channels. RSIG interrupt [addr 008] is triggered at the end of any multiframe where one or more ABCD
signaling values have changed. The processor reads the STACK address twice to retrieve the channel number
(WORD = 0) and to retrieve the new ABCD value (WORD = 1). The processor continues to read from STACK
until the la st new value is retrieved (MORE = 0).
Internal STACK read/write pointers are initialized by RESET [addr 001]. STACK contents are updated for
each channel in which the stack is enabled [SIG_STK; addr 180–19F]. STACK contents are updated with new
output signaling if the buf fered RSIGn input and output ABCD signaling va lues dif fer. STA CK is e v aluated on a
channel-by-channel basis after the D-bit is updated. The processor must poll the RSIG interrupt to determine
w hen STAC K has ne w info rmation.
Word 0: Channel Number (first read)
WORD Stack Word ID (always 0 in Word 0)
MORE More Stack Content s (alway s 1 in Word 0)
CH[4:0] Channel Number (E1 range 0–31; T1 range 1–24)
Word 1: New Signaling Value (second read)
WORD Stack Word ID (always 1 in Word 1)
MORE More Stack Contents equal 1 if more available.
SIG_BITA–D Signaling Bit A–D–Processor reads the new ABCD signaling value from this location. The
ABCD v alue i s also p reset in RSI Gn (addr 1A0–1BF) output signali ng buf f er, so the proc essor
does not need to store a local copy of each channel’s signaling status.
7 6 5 4 3 2 1 0
WORD MORE CH[4] CH[3] CH[2] CH[1] CH[0]
7 6 5 4 3 2 1 0
WORD MORE SIG_BITA SIG_BITB SIG_BITC SIG_BITD
WORD MORE MPU Resp onse
0 0 First word, get channel
01Never used
1 0 No change or last change, stop
1 1 New signaling, keep reading
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-108 Conexant 100054E
0DB—RSLIP Phase Status (RPHASE)
RDELAY[5:0] RSLIP Buffer Delay—Difference between RX and RSB timebase in time slot intervals.
Reported once per frame coincident with RFRAME interrupt [ISR3; addr 008]. Actual delay
may vary significantly, depending on which time slots are assigned.
000000 = RX to RSB delay in the range of 0–7 bits
|
111111 = RX to RSB delay in the range of 504–511 bits
RSLIP_WR Active RSB Slip Buffer Half—Th is bit indicates which half of the receive slip buffer is
currently supplying data to the Receive System Bus (0 = RLIP_LO, 1 = RSLIP_HI). The
processor can write data to the opposite buffer half.
RSLIP_R D Active Receiver Slip Buffer Half—This bit indica te s which h a lf of the receive slip buffer is
currently rece iving data from the receiver (0 = RSLIP_LO, 1 = RSLIP_HI). The proc essor can
read data from the opposite buffer half.
0DC—TSLIP Phase Status (TPHASE)
TDELAY[5:0] TSLIP Buffer Delay—Difference between TSB and TX timebase in time slot intervals.
Reported once per frame coincident with TFRAME interrupt [ISR3; addr 008]. The actual
delay may vary significantly, depending on which time slots are assigned.
000000 = TSB to TX delay in the range of 0–7 bits
|
111111 = TSB to TX delay in the range of 496–503 bits
TSLIP_WR Active T ransmitter Slip Buffer Half—This bit indicates which half of the transmit slip buffer is
currentl y suppl y ing dat a to t he transmi tter ( 0 = TS LIP_LO, 1 = TSLI P_HI). Th e proce ssor can
write data to the opposite buffer half.
TSLIP_RD Active TSB Slip Buffer Half—This bit indic ates which half of the transmit slip buffer is
currently receiving data from the Transmit System Bus (0 = TSLIP_LO, 1 = TSLIP_HI). The
processor can read data from the opposite buffer half.
7 6 5 4 3 2 1 0
RDELAY[5] RDELAY[4] RDELAY[3] RDELAY[2] RDELAY[1] RDELAY[0] RSLIP_WR RSLIP_RD
7 6 5 4 3 2 1 0
TDELAY[5] TDELAY[4] TDELAY[3] TDELAY[2] TDELAY[1] TDELAY[0] TSLIP_WR TSLIP_RD
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-109
0DD—RAM Parity Status (PERR)
All system bus data, si gnaling, and cont rols are tran sferred through a set of internal RAMs tha t ha ve pa rity error
detection capabilities. Any parity error that is detected during a RAM access is reported in PERR. Each error
e ven t is latched active high and held until the processor read clears PERR. Parity errors are indicative of system
clock glitches (REFCKI, TSBCKI, or RSBCKI), a failing or excessively noisy power supply, or general circuit
failure.
PERR_TPC TPC (Transmit) RAM Parity Error
PERR_RPC RPC (Receive) RAM Parity Err or
PERR_SBC SBC (Control) RAM Parity Error
0E0–0FF—System Bus Per-Channel Control (SBCn; n = 0 to 31)
INS ERT Insert RX Signal ing on RPCMO—En abl es per- channel signal ing insertion on RPCMO o utput,
where ABCD signaling is supplied by RLOCAL signaling (RPCn; addr 180–19F) or buffered
signaling [RSIGn; addr 1A0–IBF]. INSERT is a lower priority than no signaling (SIG_OFF;
addr 0D1). RSB signaling frame locations are specified by RMSYNC signal in conjunction
with programmed frame offset [OFFSET; addr 0D8].
SIG_LP Local Signaling Loopback—RSIGO output signaling supplied from TSIGn buffer contents.
0 = normal
1 = local signaling loopback
RLOOP Local Loopback—RPCMO output data supplied from TSLIP buffer contents.
0 = normal
1 = local loopback
RINDO Activate RINDO Time Slot Indicator—Receive system bus time slots are individually marked
(active high for 8 bits) by RINDO. Note that SBI_OE (addr 0D0) over rides RINDO.
0 = RINDO signal inactive (low)
1 = RINDO signal active (high)
TINDO Activ ate TINDO Time Slot Indicator—T ransmit system bus time slots are indi viduall y marked
(active high for 8 bits) by TINDO.
0 = TINDO inactive
1 = TINDO active
7 6 5 4 3 2 1 0
PERR_TPC PERR_RPC PERR_SBC
7 6 5 4 3 2 1 0
INSERT SIG_LP RLOOP RINDO TINDO TSIG_AB ASSIGN
SIG_OFF INSERT RLOCAL RPCMO Inserte d Signal
1XXNone
0 1 0 A BCD from RSIG n output buffer
0 1 1 ABCD from RPCn local buffer
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-110 Conexant 100054E
TSIG_AB TSIG_AB—AB Signaling. In T1 mode, only AB signaling bit s are up dat ed f r om TSI GI to t he
TSIGn buffer. If SIGFRZ active, outpu t CD sign ali ng bits are copi ed f rom t he buffered output
AB bits r espect ivel y. In E1 mode, setting TSI G_AB for ces C = 0 an d D = 1 when updati ng the
TSIGn buffer.
0 = ABCD signaling
1= AB signaling
ASSIGN Assign System Bus Time Slot—During T1 line applications where the system bus g roup
consis ts of 32 tim e slots, ASSIGN selects which 24 of 32 time slots are use d to transport li ne
time slot s. The numb er of assigned system bu s time sl ots must a l ways equal the numb er of line
time slots, therefore ASSIGN must be active in all 32 SBCn locations during E1 modes.
Unassigned time slots are not updated by the receiver as it fills the RSLIP buffer. T1 time slots
are filled sequentially from RSLIP 1 to 24. Time slots 0 and 25 to 31 are reserved for
unassigned values. Values are read from either the assigned or unassigned locations in a
sequential fashion based upon the ASSIGN bit. System bus output data for unassigned time
slots is taken from RSLIP buffer, which the processor can fill with any desired 16-bit fixed
value (8 bits in RSLIP_LO, plus 8 bits in RSLIP_HI).
0 = unassigned system bus time slot
1 = assigned system bus time slot
100–11F—Transmit Per-Channel Control (TPCn; n = 0 to 31)
TB7ZS /E M F- BI T Bit7 Zero Code Substitution/Embedded F-bit Value (Applicable in T1 mode only)—For
assigned system bus time slots [ASSIGN; addr 0E0-0FF], TB7ZS replaces Bit 7 of the time
slot with a 1, if examination of 8-bit output detects all zeros. F or an unassigned time slot w here
TIDLE is active, EMF-BIT replaces all embedded F-bit outputs with the programmed
EMF-BIT value.
0 = no effect or force embedded F-bit (low)
1 = enable B7ZS or force embedded F-bit (high)
7 6 5 4 3 2 1 0
TB7ZS/EMF-BIT TLOOP TIDLE TLOCAL TSIGA/TSIGO TSIGB/RSIGO TSIGC TSIGD
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-111
TLOOP Remote DS0 Channel Loopback—Transmit data supplied from RSLIP buffer contents.
TLOOP works in conjunction with other TPCn control bits to select the sour c e of transmitt ed
data and signaling (see Table 3-23).
TIDLE Transmit Idl e—Transmit data supplie d from TSL IP_L O buffer conten ts. T he processo r wri tes
an 8-bit idle pattern to TSLIP_LO for output on the selected time slot or optionally writes
real-time data output to TSLIP_LO after each TFRAME interrupt [ISR3; addr 008]. Only the
TSLIP_HI buffer is updated from TPCMI to allow continued local DS0 channel loopback.
0 = normal data output
1 = transmit idle data output
TLOCAL T ransmi t Local Signaling—When act iv e, TLOCAL transmit s TSIGA–TSIGD values in out put
ABCD signaling bits.
0 = TSIGO or RSIGO control output signaling
1 = transmit signaling from TSIGA–TSIGD
TSIGA–T SIGD Transmit Local Signaling—Holds the 4-bit ABCD signaling value, which is output when
TLOCAL is active. In AB onl y app licat ions, such as T1/SF frami ng, TSIGC and TSIGD must
also be written with the same data as TSIGA and TSIGB. In E1 modes, TS0 and TS16 local
signaling value determines CAS multiframe alignment signal (MAS) and XYXX output.
TSIGO Transmit Signaling Output—Applicable only if TLOCAL is inactive. ABCD signaling from
TSIGn bu ffer is transmitted.
0 = no effect
1 = transmit signaling from TSIGn buffer
RSIGO Receive Signaling Output—Applicable only if TLOCAL is inactive. Forces transmit ABCD
signaling to be supplied from RSIGn buffer, affecting a remote signaling loopback.
0 = no effect
1 = transmit signaling from RSIGn buffer
Table 3-23. Remote DS0 Channel Loopback
TLOOP TIDLE Data Source Channel Mode
00TPCMINormal
0 1 TSLIP_LO Transmit Idle
1 0 RXDATA Remote Loop
1 1 TSLIP_LO Transmit Idle
NOTE(S): If RX Signaling, then RSIGn output buffer supplies transmit signaling.
Tab le 3-24. S ignaling Loopback
TLOCAL TSIGO RSIGO Sig So urce Signaling Mode
0 0 0 None No Transmit Signaling
0 0 1 RSIGn Remote Signaling Lo opback
0 1 0 TSIGn TX Signaling Loopback
1 X X TSIGA–D Local Signaling
NOTE(S): If RX Signaling, then RSIGn output buffer supplies transmit signaling.
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-112 Conexant 100054E
120–13F—Transmit Signaling Buffer (TSIGn; n = 0 to 31)
T r ansmit signal ing fr om the TSI GI pin is aut omatic all y p laced in to the TSIGn buf f er. Processor control s TSIGn
insertion into the transmitter output b y selecting TSIGO[inTPCn]. The processor can read monitor TSIGn from
system supplied signaling or can use TSIGn for inter-processor communication. During E1 modes, TSIG0 and
TSIG16 buffer locations hold the CAS multiframe alignment signal (MAS.1 through MAS.4), Extra bits (X.1
through X.4), and multiframe yellow alarm (MYEL) bits supplied from TSIGI.
Unused bits are reser ved and should be written to 0.
140–15F—Transmit PCM Slip Buffer (TSLIP_LOn; n = 0 to 31)
TPCM[1] First bit
TPCM[2] Second bit
TPCM[3] Third bit
TPCM[4] Fourth bit
TPCM[5] Fifth bit
TPCM[6] Sixth bit
TPCM[7] Seventh bit
TPCM[8] Eighth bit received on TPCMI
7 6 5 4 3 2 1 0
TSIGn[3] TSIGn[2] TSIGn[1] TSIGn[0]
TSIG0 (E1) TSIG16 (E1)
TSIGn.3. Input Signaling A Bit MAS.1 X.1
TSIGn.2. Input Signaling B Bit MAS.2 MYEL
TSIGn.1. Input Signaling C Bit MAS.3 X.3
TSIGn.0. Input Signaling D Bit MAS.4 X.4
7 6 5 4 3 2 1 0
TPCM[1] TPCM[2] TPCM[3] TPCM[4] TPCM[5] TPCM[6] TPCM[7] TPCM[8]
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-113
160–17F—Transmit PCM Slip Buffer (TSLIP_HIn; n = 0 to 31)
TPCM[1] First bit
TPCM[2] Second bit
TPCM[3] Third bit
TPCM[4] Fourth bit
TPCM[5] Fifth bit
TPCM[6] Sixth bit
TPCM[7] Seventh bit
TPCM[8] Eighth bit received on TPCMI
180–19F—Receive Per-Channel Control (RPCn; n = 0 to 31)
RSIG_AB/EMF-BIT AB Signaling (Per-Channel RSIG_AB [without DEBOUNCE])—In E1 mode, received
signaling is placed into RSIGn as usual. However, RSIGO output duplicates the buffered AB
bit value in the CD output bits, thu s sendi ng ABAB on RSIGO instead of ABCD. In T1 mod e,
RSIG_AB instructs the receiver to use available RSIGn buffer space to meet PUB43801 and
TR-170. PUB43801 and TR-170 require three SF multiframes of receive signaling buffer
storage before outpu t. Ev ery 24 frames, t he recei ved ABCD signali ng v alue i s transferred from
the RSIGn i nput buffer space to RSIGn ou tp ut buffer space, regard le ss of whether the receiver
operates in SF, SLC, or ESF mode. Therefore, in SF mode, the ABCD value contains AB =
AB(N-1) and CD = AB(N) fro m two multiframes. Since multiframe N-1 is the older sample,
AB(N-1) replaces AB(N) in the event of signaling freeze. RSIGO and RPCMO signaling bit
output values are always taken from the RSIGn output buffer, according to the RSB frame
number.
7 6 5 4 3 2 1 0
TPCM[1] TPCM[2] TPCM[3] TPCM[4] TPCM[5] TPCM[6] TPCM[7] TPCM[8]
7 6 5 4 3 2 1 0
RSIG_AB/
EMF-BIT RIDLE SIG_STK RLOCAL RSIGA RSIGB RSIGC RSIGD
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-114 Conexant 100054E
AB Signaling (Per-Channel RSIG_AB [with DEB OUNCE])— Debounce is applicable only
for T1 modes and affects the RSIGn input buffer update mechanism. This is accomplished by
comparing, on a bit-by-bit basis, the present received input signaling bit value with the current
buffered signaling bit values from two prior multiframes. If signaling from prior multiframe
(N) differs from input, and input equals buffered value from 2 multiframes prior (N-1),
signaling bit value from multiframe N is inverted when the input buffer is updated.
When RIDLE is active in an unassigned time slot defined to carry embedded F-bits,
EMFBIT replaces all embedded F-bit outputs on RPCMO with the programmed value.
0 = normal ABCD and embedded F-bit throughput
1 = AB signaling and embedded F-bit replacement
RIDLE Time Slot Idle—When RIDLE is active, the incoming RX time slot data is only updated in the
RSLIP_HIn buffer, and the RSB time slot data output is only extracted from RSLIP_LOn
buffer. Thus, the processor can write an 8-bit idle code pattern in RSLIP_LOn buffer for
output during the RSB time slot.
0 = no effect
1 = RSB time slot replaced by contents of RSLIP_LOn
SIG_STK Receive Signaling Stack—Selects whether changes detected in the ABCD signaling value are
reported in signaling stack [addr 0DA]. Note that signaling for all time slots is continuously
updated in RSIGn buffer, regardless of the SIG_STK setting.
0 = no effect
1 = signaling stack
RLOCAL Enable Local Signaling Output—Determines whether the RSIGO output signaling and
RPCMO inserted signaling [INSERT; addr 0E0-0FF] are supplied from RSIGn output buffer
or processor supplied local signaling from RSIGA–RSIGD.
0 = RSIGn buffer signaling
1 = RSIGA-RSIGD local signaling
RSIGA–RSIGD Local Receive Signaling—When RLOCAL is active, these 4 bits are inserted into RSIGO
instead of the buffered signaling from RSIG n. If bot h RLOCAL and INS ERT are active, these
4 bits are also inserted into RPCMO during system bus signaling frames.
0 = output signaling bit equals zero
1 = output signaling bit equals one
Sig Input Buffer N, N-1 Update N, N-1 Notes
00000
0 01 00 Change update
0 10 00 Debounce
01101
10010
1 01 11 Debounce
1 10 11 Change update
11111
CX28394/28395/28398 3.0 Registers
Quad/x16/Octal—T1/E1/J1 Framers 3.16 System Bus Registers
100054E Conexant 3-115
1A0–1BF—Receive Signaling Buffer (RSIGn; n = 0 to 31)
The Receive Signaling Buffer (RSIGn) contains all ABCD signaling inputs from all channels, regardless of
whether signaling is active [SIG_STK; addr 180–19F]. RSIGn is not updated during signaling freeze
conditions, or when the receive framer is configured in a non-signaling mode. Normal signaling buffer
operation transfers ABCD input to ABCD output coincident with the D-bit update (in T1 mode) or coincident
with receipt of respective channel's ABCD signaling during TS16 (in E1 mode). When DEBOUNCE is active,
output sig naling for act i v e chann els is updat ed coin cident with t he sampling of each input signali ng bit and may
cause the buffered output value to transition in the middle of the received multiframe.
RSIGn[7] Output Signaling A Bit
RSIGn[6] Output Signaling B Bit
RSIGn[5] Output Signaling C Bit
RSIGn[4] Output Signaling D Bit
1C0–1DF—Receive PCM Slip Buffer (RSLIP_LOn; n = 0 to 31)
RPCM[1] First bit
RPCM[2] Second bit
RPCM[3] Third bit
RPCM[4] Fourth bit
RPCM[5] Fifth bit
RPCM[6] Sixth bit
RPCM[7] Seventh bit
RPCM[8] Eighth bit received from receiver
7 6 5 4 3 2 1 0
RSIGn[7] RSIGn[6] RSIGn[5] RSIGn[4] RSIGn[3] RSIGn[2] RSIGn[1] RSIGn[0]
RSIG0 (E1) RSIG16 (E1)
RSIGn[3]. Input Signaling A Bit MAS.1 X.1
RSIGn[2]. Input Signaling B Bit MAS.2 MYEL
RSIGn[1]. Input Signaling C Bit M AS.3 X.3
RSIGn[0]. Input Signaling D Bit MAS.4 X.4
7 6 5 4 3 2 1 0
RPCM[1] RPCM[2] RPCM[3] RPCM[4] RPCM[5] RPCM[6] RPCM[7] RPCM[8]
3.0 Registers CX28394/28395/28398
3.16 System Bus Registers Quad/x16/Octal—T1/E1/J1 Framers
3-116 Conexant 100054E
1E0–1FF—Receive PCM Slip Buffer (RSLIP_HIn; n = 0 to 31)
RPCM[1] First bit
RPCM[2] Second bit
RPCM[3] Third bit
RPCM[4] Fourth bit
RPCM[5] Fifth bit
RPCM[6] Sixth bit
RPCM[7] Seventh bit
RPCM[8] Eighth bit received from receiver
7 6 5 4 3 2 1 0
RPCM[1] RPCM[2] RPCM[3] RPCM[4] RPCM[5] RPCM[6] RPCM[7] RPCM[8]
CX28394/28395/28398
3.0 Register
Quad/x16/Octal—T1/E1/J1 Framers
3.17 Register Summary
100054E
Conexant
3-117
3
3.17 Register Summar y
Table 3-25. Global Control and Status Registers
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
000 DID R DID[7] DID[6] DID[5] DID[4] DID[3] DID[2] DID[1] DID[0]
080FCRR/WGRESET————ONESEC_IOSBIMODE[1]SBIMODE[0]
081 MIR R MIR[7] MIR[6] MIR[5] MIR[4] MIR[3] MIR[2] MIR[1] MIR[0]
082 MIE R/W MIE[7] MIE[6] MIE[5] MIE[4] MIE[3] MIE[2] MIE[1] MIE[0]
083TESTR/W——————TEST
Table 3-26. Primary Control Register
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
001 CR0 R/W RESET RFRAME[3] RFRAME[2] RFRAME[1] RFRAME[0] TI/EIN
Table 3-27. Interrupt Control Register
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
003 IRR R ALARM1 ALARM2 ERROR COUNT TIMER DL1 DL2 PATT
2.0 Register
CX28394/28395/28398
3.17 Register Summary
Quad/x16/Octal—T1/E1/J1 Framers
3-118
Conexant
100054E
Table 3-28. Interrupt Status Registers
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
004 ISR7 R RMYEL RYEL RPDV RAIS RALOS RLOS RLOF SIGFRZ
005 ISR6 R LOOPDN LOOPUP TPDV TLOC TLOF ONESEC
006 ISR5 R TSLIP RSLIP CERR SERR MERR FERR
007 ISR4 R RLOF[4] COFA[2] SEF[2] BERR[12] FEBE[10] LCV[16] CRC[10] FERR[12]
008 ISR3 R TSIG TMSYNC TMF TFRAME RSIG RMSYNC RMF RFRAME
009 ISR2 R TBOP RFULL1 RNEAR1 RMSG1 TDLERR1 TEMPTY1 TNEAR1 TMSG1
00A ISR1 R RBOP RFULL2 RNEAR2 RMSG2 TDLERR2 TEMPTY2 TNEAR2 TMSG2
00B ISR0 R BSLIP PSYNC TCERR TSERR TMERR TFERR
Table 3-29. Interrupt Enable Registers
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
00C IER7 R/W RMYEL RYEL RPDV RAIS RALOS RLOS RLOF SIGFRZ
00D IER6 R/W LOOPDN LOOPUP TPDV TLOC TLOF ONESEC
00E IER5 R/W TSLIP RSLIP CERR SERR MERR FERR
00F IER4 R/W LOF COFA SEF BERR FEBE LCV CRC FERR
010 IER3 R/W TSIG TMSYNC TMF TFRAME RSIG RMSYNC RMF RFRAME
011 IER2 R/W TBOP RFULL1 RNEAR1 RMSG1 TDLERR1 TEMPTY1 TNEAR1 TMSG1
012 IER1 R/W RBOP RFULL2 RNEAR2 RMSG2 RDLERR2 TEMPTY2 TNEAR2 TMSG2
013 IER0 R/W BSLIP PSYNC TCERR TSERR TMERR TFERR
CX28394/28395/28398
3.0 Register
Quad/x16/Octal—T1/E1/J1 Framers
3.17 Register Summary
100054E
Conexant
3-119
Table 3-30. P r i mary Control and St atus Registers
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
014 LOOP R/W PLOOP LLOOP FLOOP
015 DL3_TS R/W DL3EN ODD EVEN TS[4] TS[3] TS[2] TS[1] TS[0]
016 DL3_BIT R/W DL3_BIT[7] DL3_BIT[6] DL3_BIT[5] DL3_BIT[4] DL3_BIT[3] DL3_BIT[2] DL3_BIT[1] DL3_BIT[0]
017 FSTAT R INVALID FOUND TIMEOUT ACTIVE RX/TXN
018 PIO R/W RMSYNC_EN RDL_IO TMSYNC_EN TDL_IO RFSYNC_IO RMSYNC_IO TFSYNC_IO TMSYNC_IO
019 POE R/W TDL_OE RDL_OE INDY_OE TCKO_OE
01A CMUX R/W RSBCK TSBCK TXCLKI[1] TXCLKI[0]
020 RAC R/W RAL_CON
021 RSTAT R ZCSUB EXZ BPV
Table 3-31. Serial I nterfac e Regis ters
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
022 SER_CTL R/W SER_A[6] SER_A[5] SER_A[4] SER_A[3] SER_A[2] SER_A[1] SER_A[0] SER_RW
023 SER_DAT R/W SER_DAT[7] SER_DAT[6] SER_DAT[5] SER_DAT[4] SER_DAT[3] SER_DAT[2] SER_DAT[1] SER_DAT[0]
024SER_STATR/W———————SER_DONE
025 SER_CONFIG R/W SER_CS SER_CLK SER_IER
026 RAM Test R/W RT[7] RT[6] RT[5] RT[4] R T[3] RT[2] R T[1] RT[0]
2.0 Register
CX28394/28395/28398
3.17 Register Summary
Quad/x16/Octal—T1/E1/J1 Framers
3-120
Conexant
100054E
Table 3-32. Receiver Regist ers
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
040 RCR0 R/W RAMI RABORT RFORCE RLOFD RLOFC RLOFB RLOFA RZCS
041 RPATT R/W RESEED BSTART FRAMED ZLIMIT RPATT[1] RPATT[0]
042 RLB R/W DN_LEN[1] DN_LEN[0] UP_LEN[1] UP_LEN[0]
043 LBA R/W LBA[1] LBA[2] LBA[3] LBA[4] LBA[5] LBA[6] LBA[7]
044 LBD R/W LBD[1] LBD[2] LBD[3] LBD[4] LBD[5] LBD[6] LBD[7]
045 RALM R/W FS_NFAS EXZ_LCV YEL_INTEG RLOF_INTEG RPCM_YEL RPCM_AIS
046 LATCH R/W STOP_CNT LATCH_CNT LATCH_ERR LATCH_ALM
047 ALM1 R RMYEL RYEL RAIS RALOS RLOS RLOF SIGFRZ
048 ALM2 R LOOPDN LOOPUP TLOC TLOF
049 ALM3 R RMAIS SEF SRED MRED FRED LOF[1] LOF[0]
CX28394/28395/28398
3.0 Register
Quad/x16/Octal—T1/E1/J1 Framers
3.17 Register Summary
100054E
Conexant
3-121
Table 3-33. P erformance Mo nitoring Registers
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
050 FERR R FERR[7] FERR[6] FERR[5] FERR[4] FERR[3] FERR[2] FERR[1] FERR[0]
051FERRR0000FERR[11]FERR[10]FERR[9]FERR[8]
052 CERR R CERR[7] CERR[6] CERR[5] CERR[4] CERR[3] CERR[2] CERR[1] CERR[0]
053CERRR000000CERR[9]CERR[8]
054 LCV R LCV[7] LCV[6] LCV[5] LCV[4] LCV[3] LCV[2] LCV[1] LCV[0]
055 LCV R LCV[15] LCV[14] LCV[13] LCV[12] LCV[11] LCV[10] LCV[9] LCV[8]
056 FEBE R FEBE[7] FEBE[6] FEBE[5] FEBE[4] FEBE[3] FEBE[2] FEBE[1] FEBE[0]
057FEBER000000FEBE[9]FEBE[8]
058 BERR R BERR[7] BERR[6] BERR[5] BERR[4] BERR[3] BERR[2] BERR[1] BERR[0]
059BERRR0000BERR[11]BERR[10]BERR[9]BERR[8]
05A AERR R FRED[3] FRED[2] FRED[1] FRED[0] COFA[1] COFA[0] SEF[1] SEF[0]
Table 3-34. Receive S a-Byte Buffers
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
05B RSA4 R RSA4[7] RSA4[6] RSA4[5] RSA4[4] RSA4[3] RSA4[2] RSA4[1] RSA4[0]
05C RSA5 R RSA5[7] RSA5[6] RSA5[5] RSA5[4] RSA5[3] RSA5[2] RSA5[1] RSA5[0]
05D RSA6 R RSA6[7] RSA6[6] RSA6[5] RSA6[4] RSA6[3] RSA6[2] RSA6[1] RSA6[0]
05E RSA7 R RSA7[7] RSA7[6] RSA7[5] RSA7[4] RSA7[3] RSA7[2] RSA7[1] RSA7[0]
05F RSA8 R RSA8[7] RSA8[6] RSA8[5] RSA8[4] RSA8[3] RSA8[2] RSA8[1] RSA8[0]
2.0 Register
CX28394/28395/28398
3.17 Register Summary
Quad/x16/Octal—T1/E1/J1 Framers
3-122
Conexant
100054E
Table 3-35. Transmitter Re gisters
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
070 TCR0 R/W TFRAME[3] TFRAME[2] TFRAME[1] TFRAME[0]
071 TCR1 R/W TNRZ TABORT TFORCE TLOFC TLOFB TLOFA TZCS[1] TZCS[0]
072 TFRM R/W INS_MYEL INS_YEL INS_MF INS_FE INS_CRC INS_FBIT
073 TERROR R/W TSERR TMERR TBERR BSLIP TCOFA TCERR TFERR TVERR
074 TMAN R/W INS_SA[8] INS_SA[7] INS_SA[6] INS_SA[5] INS_SA[4] FEBE_II FEBE_I TFEBE
075 TALM R/W AISCLK AUTO_MYEL AUTO_YEL AUTO_AIS TMYEL TYEL TAIS
076 TPATT R/W TPSTART FRAMED ZLIMIT TPATT[1] TPATT[0]
077 TLB R/W LB_LEN[1] LB_LEN[0] UNFRAMED LBSTART
078 LBP R/W LBP[1] LBP[2] LBP[3] LBP[4] LBP[5] LBP[6] LBP[7]
Table 3-36. Transmit Sa-Byt e Buffers
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
07B TSA4 R/W TSA4[7] TSA4[6] TSA4[5] TSA4[4] TSA4[3] TSA4[2] TSA4[1] TSA4[0]
07C TSA5 R/W TSA5[7] TSA5[6] TSA5[5] TSA5[4] TSA5[3] TSA5[2] TSA5[1] TSA5[0]
07D TSA6 R/W TSA6[7] TSA6[6] TSA6[5] TSA6[4] TSA6[3] TSA6[2] TSA6[1] TSA6[0]
07E TSA7 R/W TSA7[7] TSA7[6] TSA7[5] TSA7[4] TSA7[3] TSA7[2] TSA7[1] TSA7[0]
07F TSA8 R/W TSA8[7] TSA8[6] TSA8[5] TSA8[4] TSA8[3] TSA8[2] TSA8[1] TSA8[0]
CX28394/28395/28398
3.0 Register
Quad/x16/Octal—T1/E1/J1 Framers
3.17 Register Summary
100054E
Conexant
3-123
Table 3-37. Bit-Oriented Protocol Registers
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
0A0 BOP R/W RBOP_START RBOP_INTEG RBOP_LEN[1] RBOP_LEN[0] TBOP_LEN[1] TBOP_LEN[0] TBOP_MODE[1] TBOP_MODE[0]
0A1 TBOP R/W TBOP[5] TBOP[4] TBOP[3] TBOP[2] TBOP[1] TBOP[0]
0A2 RBOP R RBOP_LOST RBOP_VALID RBOP[5] RBOP[4] RBOP[3] RBOP[2] RBOP[1] RBOP[0]
0A3 BOP_STAT R TBOP_ACTIVE RBOP_ACTIVE
Table 3-38. Data Link Registers (1 of 2)
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
0A4 DL1_TS R/W DL1_TS[7] DL1_TS[6] DL1_TS[5] DL1_TS[4] DL1_TS[3] DL1_TS[2] DL1_TS[1] DL1_TS[0]
0A5 DL1_BIT R/W DL1_BIT[7] DL1_BIT[6] DL1_BIT[5] DL1_BIT[4] DL1_BIT[3] DL1_BIT[2] DL1_BIT[1] DL1_BIT[0]
0A6 DL1_CTL R/W TDL1_RPT DL1[1] DL1[0] TDL1_EN RDL1_EN
0A7 RDL1_FFC R/W MSG_FILL[1] MSG_FILL[0] FFC[5] FFC[4] FFC[3] FFC[2] FFC[1] FFC[0]
0A8 RDL1 R EOM[1] EOM[0] RDL1_CNT[5] RDL1_CNT[4] RDL1_CNT[3] RDL1_CNT[2] RDL1_CNT[1] RDL1_CNT[0]
RDL1[7] RDL1[6] RDL1[5] RDL1[4] RDL1[3] RDL1[2] RDL1[1] RDL1[0]
0A9 RDL1_STAT R RMSG1 RSTAT1 RMPTY1 RNEAR1 RFULL1
0AA PRM R/W AUTO_PRM PRM_CR PRM_R PRM_U1 PRM_U2 PRM_SL AUTO_SL SEND_PRM
0AB TDL1_FEC R/W FEC[5] FEC[4] FEC[3] FEC[2] FEC[1] FEC[0]
0ACTDL1_EOMW————————
0AD TDL1 W TDL1[7] TDL1[6] TDL1[5] TDL1[4] TDL1[3] TDL1[2] TDL1[1] TDL1[0]
0AE TDL1_STAT R TMSG1 TMPTY1 TNEAR1 TFULL1
0AF DL2_TS R/W DL2_TS[7] DL2_TS[6] DL2_TS[5] DL2_TS[4] DL2_TS[3] DL2_TS[2] DL2_TS[1] DL2_TS[0]
0B0 DL2_BIT R/W DL2_BIT[7] DL2_BIT[6] DL2_BIT[5] DL2_BIT[4] DL2_BIT[3] DL2_BIT[2] DL2_BIT[1] DL2_BIT[0]
0B1 DL2_CTL R/W TDL2_RPT DL2[1] DL2[0] TDL2_EN RDL2_EN
0B2 RDL2_FFC R/W MSG_FILL[1] MSG_FILL[0] FFC[5] FFC[4] FFC[3] FFC[2] FFC[1] FFC[0]
2.0 Register
CX28394/28395/28398
3.17 Register Summary
Quad/x16/Octal—T1/E1/J1 Framers
3-124
Conexant
100054E
0B3 RDL2 R EOM[1] EOM[0] RDL2_CNT[5] RDL2_CNT[4] RDL2_CNT[3] RDL2_CNT[2] RDL2_CNT[1] RDL2_CNT[0]
RDL2[7] RDL2[6] RDL2[5] RDL2[4] RDL2[3] RDL2[2] RDL2[1] RDL2[0]
0B4 RDL2_STAT R RMSG2 RSTAT2 RMPTY2 RNEAR2 RFULL2
0B6 TDL2_FEC R/W FEC[5] FEC[4] FEC[3] FEC[2] FEC[1] FEC[0]
0B7TDL2_EOMW————————
0B8 TDL2 R/W TDL2[7] TDL2[6] TDL2[5] TDL2[4] TDL2[3] TDL2[2] TDL2[1] TDL2[0]
0B9 TDL2_STAT R TMSG2 TMPTY2 TNEAR2 TFULL2
0BA DL_TEST1 R/W DL_TEST1[3] DL_TEST1[2] DL_TEST1[1] DL_TEST1[0]
0BB DL_TEST2 R/W DL_TEST2[5] DL_TEST2[4] DL_TEST2[3] DL_TEST2[2] DL_TEST2[1] DL_TEST2[0]
0BC DL_TEST3 R/W DL_TEST3[5] DL_TEST3[4] DL_TEST3[3] DL_TEST3[2] DL_TEST3[1] DL_TEST3[0]
0BD DL_TEST4 R/W DL_TEST4[6] DL_TEST4[5] DL_TEST4[4] DL_TEST4[3] DL_TEST4[2] DL_TEST4[1] DL_TEST4[0]
0BE DL_TEST5 R/W DL_TEST5[6] DL_TEST5[5] DL_TEST5[4] DL_TEST5[3] DL_TEST5[2] DL_TEST5[1] DL_TEST5[0]
Tab le 3-39. S ystem B us Regis ters (1 of 2)
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
0D0 SBI_CR R/W X2CLK SBI_OE EMF EMBED SBI[3] SBI[2] SBI[1] SBI[0]
0D1 RSB_CR R/W BUS_RSB SIG_OFF RPCM_NEG RSYN_NEG BUS_FRZ RSB_CTR RSBI[1] RSBI[0]
0D2 RSYNC_BIT R/W OFFSET[2] OFFSET[1] OFFSET[0]
0D3 RSYNC_TS R/W OFFSET[9] OFFSET[8] OFFSET[7] OFFSET[6] OFFSET[5] OFFSET[4] OFFSET[3]
0D4 TSB_CR R/W BUS_TSB TX_ALIGN TPCM_NEG TSYN_NEG TSB_ALIGN TSB_CTR TSBI[1] TSBI[0]
0D5 TSYNC_BIT R/W OFFSET[2] OFFSET[1] OFFSET[0]
0D6 TSYNC_TS R/W OFFSET[9] OFFSET[8] OFFSET[7] OFFSET[6] OFFSET[5] OFFSET[4] OFFSET[3]
0D7 RSIG_CR R/W SET_RSIG SET_SIG UNICODE DEBOUNCE FRZ_OFF FRZ_ON THRU
Table 3-38. Data Link Registers (2 of 2)
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
CX28394/28395/28398
3.0 Register
Quad/x16/Octal—T1/E1/J1 Framers
3.17 Register Summary
100054E
Conexant
3-125
0D8 RSYNC_FRM R/W OFFSET[14] OFFSET[13] OFFSET[12] OFFSET[11] OFFSET[10]
0D9 SSTAT R TSDIR TFSLIP TUSLIP TDLY RSDIR RFSLIP RUSLIP RDLY
0DA STACK R WORD MORE CH[4] CH[3] CH[2] CH[1] CH[0]
WORD MORE SIG_BITA SIG_BITB SIG_BITC SIG_BITD
0DB RPHASE R RDELAY[5] RDELAY[4] RDELAY[3] RDELAY[2] RDELAY[1] RDELAY[0] RSLIP_WR RSLIP_RD
0DC TPHASE R TDELAY[5] TDELAY[4] TDELAY[3] TDELAY[2] TDELAY[1] TDELAY[0] TSLIP_WR TSLIP_RD
0DD PERR R PERR_TPC PERR_RPC PERR_SBC
0E0–0FF SBCn; n = 0 to 31 R /W IN SERT SIG_LP RLOOP R I ND O TIND O TSIG_AB ASSIGN
100–11F TPCn; n = 0 to 31 R/W TB7ZS/EM FBI T TLOOP TID LE TLOCAL T S IGA/ TSIGO TSIG B/RSIGO TSIGC TSIGD
120–13F TSIGn; n = 00 to 31 R/W TSIGn[3] TSIGn[2] TSIGn[1] TSIGn[0]
140–15F TSLIP_LOn; n = 0 to 31 R/W TPCM[1] TPCM[2] TPCM[3] TPCM[4] TPCM[5] TPCM[6] TPCM[7] TPCM[8]
160–17F TSLIP–HIn; n = 0 to 31 R/W TPCM[1] TPCM[2] TPCM[3] TPCM [4] TPCM[5] TPCM[6] TPCM[7] TPCM[8]
180–19F RPCn; n = 0 to 31 R/W RSIG_AB/ EMFBIT RIDLE SIG_STK RLOCAL RSIGA RSIGB RSIGC RSIGD
1A0–1BF RSIG n; n = 0 to 31 R/W RSIGn[7] RSIGn[6] RSIGn[5] RSIG n[4 ] RSIGn[3] RSIGn[2] RSIGn[1] RSIGn[0]
1C0–1DF RSLIP_LOn; n = 0 to 31 R/W RPCM[1] RPCM[2] RPCM[3] RPCM[4] RPCM[5] RPCM[6] RPCM[7] RPCM[8]
1E0–1FF RSLIP_HIn; n = 0 to 31 R/W RPCM[1] RPCM[2 ] RPCM[3] RPCM[4] RPCM[5] RPCM[6] R PCM [7] RPCM[8]
Tab le 3-39. S ystem B us Regis ters (2 of 2)
ADDR
(hex) Register
Label Read
Write
Bit Number
7 6 5 4 3 2 1 0
2.0 Register
CX28394/28395/28398
3.17 Register Summary
Quad/x16/Octal—T1/E1/J1 Framers
3-126
Conexant
100054E
100054E Conexant 4-1
4
4.0 Electrical/Mechanical Specifications
4.1 Absolute Maximum Ratings
Table 4-1. Absolute Maximum Ratings
Symbol Parameter Minimum Maximum Units
VDD Power Supply (measured to GND) –0.5 5.75 V
VGG High Voltage Reference –0.5 5.75 V
VDD Voltage Differential (between any 2 VDD pins) 0.5 V
ViConstant Voltage on any Sign al Pin –1.0 VGG + 0.5 V
ESD Transient Voltage on any Signal Pin
HBM rating
CDM rat ing
MMM rating
1.5
200
100
kV
V
V
IiConstant Current on a ny Signa l Pin –10 +10 mA
LATCHUP Transient Current on any Signal Pin –200 +200 mA
TsStorag e Temperature –65 150 °C
TjJunction Temperature: (θjA x VDD x IDD) + Tamb –40 125 °C
Tvsol Vapor Phase Soldering Temperature (1 minute) 220 °C
θjA Thermal Resistance (208 PQ FP), Still Ai r 20 °C/W
θjA Thermal Re sistance (128 TQFP), Still Air 36 °C/W
θjA Thermal Re sistance (272 BG A), Still Air 29 °C/W
θjA Thermal Re sistance (318 BG A), Still Air 29 °C/W
θjA Thermal Resistance (208 CABGA), Still Air 44.6 °C/W
NOTE(S): Stresses above those listed as Absolute Maximum Ratings may cause permanent damage to the device. This is a stress
rating only, and functional operation of the device at these or any other conditions beyond those indicated in the other sections of
this document is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.2 Re commended Opera ting Conditi ons Quad/x16/Octal—T1/E1/J1 Framers
4-2 Conexant 100054E
4.2 Recommended Operating Conditions
Table 4-2. Recommended Operating Conditions
Symbol Parameter Minimum Typical Maximum Units
VDD Supply Voltage 3.135 3.3 3.465 V
VGG High Voltage Refere nce (5 V Tolerant Inputs) 4.7 5 5.0 5.25 V
VGG High Voltage Ref e rence (Non-5 V Tolera nt Inputs) 3 .135 3.3 3.465 V
Tamb Ambient Operating Temperature
KPF Suff ix
EPF Suffix 0
–40 25
25 70
85 °C
°C
Vih Input High Voltage 2.0 VGG + 0.5 V
Vil Input Low Voltage –0.5 0.8 V
SYSCL K SYS CLK Frequ e ncy 32.765 32.768 32.771 MH z
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.3 Electri cal Ch aracteristics
100054E Conexant 4-3
4.3 Electrical Characteristics
Tab le 4-3. D C C haract eristi cs
Symbol Parameter Minimum Typical Maximum Units
IDD Supply Current
(All signals and clo cks operating at maximu m
frequency. All outputs load ed: 85 pF + 1 mA)
CX28394
CX28398
CX28395
80
140
280
90
155
310
mA
mA
mA
IGG High Voltage Reference Current 1 mA
Vih Input Hi gh Voltage 2.0 V GG + 0.5 V
Vil Input Low Voltage 0.8 V
Voh Output High Voltage (Ioh = –2 mA) 2.4 V
Vol Outp ut Low Voltage (Iol = 2 mA) 0.4 V
Iod Open Drain Output Current Sink 4 mA
Ipr Resistiv e P u llu p C u r ren t 40 100 500 µA
IlInpu t L eakage Current –10 1 10 µA
Ioz Three-state Leakage Current –10 1 10 µA
Cin Input Cap acitance (f = 1MH z , Vin = 2.4V) 2 5 pF
Cio I/O Capacitance (PIO, AD[7:0] pins) 5 10 pF
Cout Outp ut Capa citance 2 5 pF
Cld Capacitive Loading (Test Condition) 70 85 pF
Iosc Short Circuit Output Current 37 50 160 mA
NOTE(S):
1. All ty pical values are at VDD = 3.3 V and Tamb = 25 °C.
2. Maximum and minimum values are over VDD = 3. 3 V + 5% and T amb = appropriate temperature range: KPF suffix (0 to 70 °C)
or EP F suffix (–40 to 85 °C).
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.4 AC Chara ct eris ti cs Quad/x16/Octal—T1/E1/J1 Framers
4-4 Conexant 100054E
4.4 AC Characteristics
Tab le 4-4. Input Clock Timing
Symbol Parameter Minimum Maximum Units
1 MCLK Freque n cy 8.0 35.7 MHz
SYSCL K Fr equency 32.765 32.771 MHz
RCKI, TCKI, ACKI Frequency 1.5 2.1 MHz
RSBC KI, TS BCK I Fre qu enc y 1.5 8.2 MHz
TCK Frequency 0 5.0 MHz
2 Clock Width High 0.4 x t(1) 0.6 x t(1) ns
3 Clock Width Low 0.4 x t(1) 0.6 x t(1) ns
4Clock Rise Time 20 ns
5 Clock Fall Time 20 ns
Figure 4-1. Minimum Clock Puls e Widths
90%
50%
10%
1
23
45
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.4 AC Characteristics
100054E Conexant 4-5
Tab le 4-5. Input Data Setu p and Hold Timing
Symbol Clock Edge Input Data Minimum Maximum Units
1
(tsetup)MCLK Rising ONESEC 5 ns
RST* 5 ns
RCKI Rising RPOSI 2 ns
RNEGI 2 ns
TDLCKO Falling TDLI 6 ns
RSBCKI RSYN_NEG
(addr 0D1) RMSYNC 5 ns
RFSYNC 5—ns
TSBCKI
TCKI(1) TPCM_NEG
(addr 0D4) TPCMI 5 ns
TSIGI 5 ns
TSYN_NEG
(addr 0D4) TFSYNC 5—ns
TMSYNC 5 ns
2
(thold)MCLK Rising ONESEC 5 ns
RST* 5 ns
RCKI Rising RPOSI 3 ns
RNEGI 3 ns
TDLCKO Falling TDLI 2 ns
RSBCKI RSYN_NEG
(addr 0D1) RMSYNC 5 ns
RFSYNC 5—ns
TSBCKI
TCKI(1) TPCM_NEG
(addr 0D4) TPCMI 2 ns
TSIGI 5 ns
TSYN_NEG
(addr 0D4) TFSYNC(2) 2—ns
TMSYNC 2 ns
NOTE(S):
(1) If the TSLIP bu ffer is bypassed (TSB_CR; addr OD4) , TCKI is used; otherwise, TSBCKI is used.
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.4 AC Chara ct eris ti cs Quad/x16/Octal—T1/E1/J1 Framers
4-6 Conexant 100054E
Table 4-6. Output Da ta Delay Timing
Symbol Clock Edge Output Data Minimum Maximum Units
1
(tdelay)MCLK Rising ONESEC 0 10 ns
INTR 0 10 ns
TCKI or ACKI TCKO 0 15 ns
—TDLCKO020ns
Rising TNRZO 0 28 ns
MSYNCO 0 28 ns
TCKO Rising TPOSO 0 10 ns
TNEGO 0 10 ns
RDLCKO Rising RDLO 0 20 ns
RSBCKI RPCM_NEG
(addr 0D1) RPCMO 0 20 ns
RSIGO 0 10 ns
RINDO 0 20 ns
SIGFRZ 0 20 ns
RSYN_NEG
(addr 0D1) RFSYNC 0 10 ns
RMSYNC 0 10 ns
TSBCKI
TCKI(1) TPCM_NEG
(addr 0D4) TINDO 0 10 ns
TSYN_NEG
(addr 0D4) TFSYNC 0 10 ns
TMSYNC 0 10 ns
NOTE(S):
(1) If the TSLIP bu ffer is bypassed (TSB_CR; addr OD4) , TCKI is used; otherwise, TSBCKI is used.
Table 4-7. One-Second Input/Output Timing
Symbol Parameter Minimum Maximum Units
1 Input Pulse Width 1/MCLK 1 second
–125 µsAs shown
2 Output Pulse Width 125 250 µs
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.4 AC Characteristics
100054E Conexant 4-7
Figure 4-2. Input Data Setup/Hold Timing
Input Data
Rising Edge
Clock
Input Data
Falling Edge
2
1
2
1
Figure 4-3. Output Data Delay Timin g
Output Data
Rising Edge
Clock
1
Output Data
Falling Edge
1
Figure 4-4. One-Second Input/Output Timing
NOTE(S): ONESEC pin can be either an input (ONESECI) or an output (ONESECO).
2
ONESECI
1
ONESECO
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.5 MPU Interface Timing Quad/x16/Octal—T1/E1/J1 Framers
4-8 Conexant 100054E
4.5 MPU Interface Timing
Figure 4-5. Mot orola A s ynchronous Read Cycl e
AS*
Address
Read Data
A[8:0]
AD[7:0]
R/W*
DS*
1
2
3
CS*
5
4
MOTO* = 0, SYNCMD = 0
Table 4-8. Mot orola A s ynchronous Read Cycle
Symbol Parameter Minimum Maximum Units
1 AS* high pulse width 15 ns
2 A[8:0] Address setup to AS* low 5 ns
3 A[8:0] Address hold after AS* low 10 ns
4 CS* low and R/W* high, and DS* low to AD [7:0]
valid —80ns
5 CS* high and DS* high, and R/W* low to AD[7:0]
invalid/three-state 520ns
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.5 MPU Interface Timing
100054E Conexant 4-9
Figure 4-6. Motorol a Asynchronous Write Cycle
AS*
Address
Write Data
A[8:0]
AD[7:0]
R/W*
DS*
1
2
4
3
CS*
7
6
5
9
8
MOTO* = 0, SYNCMD = 0
Table 4-9. Motorola Asynchronous Write Cycle
Symbol Parameter Minimum Maximum Units
1 AS* high pulse width 15 ns
2 A[8:0] Address setup to AS* low 5 ns
3 A[8:0] Address hold after AS* low 2 ns
4 CS* low and R/W* low to DS* low 5 ns
5 AD[7: 0] setu p to DS* low 0 ns
6 AD[7: 0] hold after DS* low 1 5 ns
7 DS* low pulse width 38 ns
8 CS*, R/W* hold af ter DS* low 38 ns
9 DS* low to AS* high 70 ns
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.5 MPU Interface Timing Quad/x16/Octal—T1/E1/J1 Framers
4-10 Conexant 100054E
Figure 4-7. Intel Asynchronous Re ad Cycle
ALE
Address
Address Read Data
A[8]
AD[7:0]
RD*
WR*
CS*
1
2
46
3
7
9
5 8
MOTO* = 1, SYNCMD = 0
Table 4-10. Intel Asynchronous Read Cycle
Symbol Parameter Minimum Maximum Units
1 ALE high pulse width 15 ns
2 A[8], AD[7:0] Address setup to ALE low 2 ns
3 A[8], AD[7:0] Address hold after ALE low 5 ns
4 ALE low to RD* and CS* both low 0 ns
5 WR* high setup to RD* and CS* both low 0 ns
6 RD* and CS* both low to AD[7:0] valid 80 ns
7 RD* or CS* high to AD[7:0] invalid/three-state 0 25 ns
8 WR* high hold after RD* or CS* high 0 ns
9 RD* or CS* high to next ALE 0 ns
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.5 MPU Interface Timing
100054E Conexant 4-11
Figure 4-8. Intel Asynchronous Write Cycle
ALE
Address
Address Write Data
A[8]
AD[7:0]
WR*
RD*
CS*
1
2
4
6
3
7
9
8
5
MOTO* = 1, SYNCMD = 0
Table 4-11. Intel Asynchronous Write Cycle
Symbol Parameter Minimum Maximum Units
1 ALE high pulse width 15 ns
2 A[8], AD[7:0] Address setup to ALE low 2 ns
3 A[8], AD[7:0] Address hold after ALE low 5 ns
4 CS*, RD* setup to WR* low 0 ns
5 WR* pulse width low 20 ns
6 AD[7:0] input data setup to WR* or CS* hi gh 2 ns
7 AD[7:0] input dat a hold aft e r WR* or CS* high 10 ns
8 RD* hol d after WR* or CS* high 0 ns
9 End writ e cycle to next ALE high 55 ns
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.5 MPU Interface Timing Quad/x16/Octal—T1/E1/J1 Framers
4-12 Conexant 100054E
Figure 4-9. Motorol a Synchronous Read Cyc le
MCLK
AS*
Address
Read Data
A[8:0]
AD[7:0]
R/W*
DS*
DTACK*
1
2
5
4
6
3
CS*
8
7
9
MOTO* = 0, SYNCMD = 1
Table 4-12. Motorola Synchronous Read Cycle
Symbol Parameter Minimum Maximum Units
1 AS* high pulse width 15 ns
2 A[8:0] Address setup to AS* low 2 ns
3 A[8:0] Address hold after AS* low 2 ns
4 AS* and CS* low to DTACK* low 0 10 ns
5 AS* or CS* high to DTACK* high 0 10 ns
6 AS*, DS*, CS*, R/W* setup to MCLK high 15 ns
7 DS* sampled low to AD[7:0] valid 0.5/MCLK +20 ns
8 CS* or DS* high to AD [7:0] invalid/t hree-state 0 30 ns
9 MCLK high to AS* high 1/MCLK + 12 ns
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.5 MPU Interface Timing
100054E Conexant 4-13
Figure 4-10. Motorola Synchronous Write Cycle
MCLK
AS*
Address
Write Data
A[8:0]
AD[7:0]
R/W*
DS*
DTACK*
1
2
5
4
10
6
3
CS*
9
8
7
11
12
MOTO* = 0, SYNCMD = 1
Table 4-13. Motorola Synchronous Write Cycle
Symbol Parameter Minimum Maximum Units
1 AS* high pulse width 15 ns
2 A[8:0] Address setup to AS* low 5 ns
3 A[8:0] Address hold after AS* low 2 ns
4 AS* and CS* low to DTACK* low 0 10 ns
5 AS* or CS* high to DTACK* high 0 10 ns
6 CS* and R/W* low to DS* low 2 ns
7 AD[7: 0] setu p to DS* low 2 ns
8 AD[7: 0] hold after DS * low 5 ns
9 DS* setup to MCLK high 2 ns
10 DS* hold after MCLK high 5 ns
11 D S* sampl e d low to d a ta latch (internal) 1/MCLK+15 ns
12 D S* sample d low to AS* high 1/2 MCLK + 15 ns
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.5 MPU Interface Timing Quad/x16/Octal—T1/E1/J1 Framers
4-14 Conexant 100054E
Figure 4-11. Intel Synchronous Read Cycle
MCLK
ALE
Address
Address Read Data
A[8]
AD[7:0]
RD*
WR*
CS*
1
2
7
45 6
3
8
9
MOTO* = 1, SYNCMD = 1
Table 4-14. Intel Synchronous Read Cycle
Symbol Parameter Minimum Maximum Units
1 ALE high pulse width 15 ns
2 A[8], AD[7:0] Address setup to ALE low 2 ns
3 A[8], AD[7:0] Address hold after ALE low 5 ns
4 ALE low to RD* and CS* both low 5 ns
5 RD*, CS*, WR* setup to MCLK high (Start RD cycle) 3 ns
6 RD*, CS*, WR* hold after MCLK high 5 ns
7 Start RD* cycle to AD[7:0] valid (1) ns
8 RD* or CS* high to AD[7:0] invalid/three-state 0 25 ns
9 End RD cycle to next ALE high 0 ns
NOTE(S):
(1) Parameter 7 equals 40 ns or 1/2* MCLK + 17 ns, whiche ver is greater.
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.5 MPU Interface Timing
100054E Conexant 4-15
Figure 4-12. Intel Synchronous Write Cycle
MCLK
ALE
Address
Address Write Data
A[8]
AD[7:0]
WR*
RD*
CS*
1
2
6
4 5
7
3
8
MOTO* = 1, SYNCMD = 1
Table 4-15. Intel Synchronous Write Cycle
Symbol Parameter Minimum Maximum Units
1 ALE high pulse width 15 ns
2 A[8], AD[7:0] Address setup to ALE low 2 ns
3 A[8], AD[7:0] Address hold after ALE low 5 ns
4 WR*,RD*,CS* setup to MCLK high (start WR cycle) 2 ns
5 WR*,RD*,CS* hold after MCLK high 5 ns
6 Start WR* cycle to AD[7:0] input data valid 1/MCLK–10 ns
7 AD[7:0] inp ut data hold aft er Start WR cycle 1/ MCLK+9 ns
8 Start WR cycl e to next ALE high 1/MCLK+10 ns
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.5 MPU Interface Timing Quad/x16/Octal—T1/E1/J1 Framers
4-16 Conexant 100054E
Figure 4-13. Serial Contro l Port Timing
Read Timing
CS\
SCLK
SDI
SDO
R/W A0 A1 A2 A3 A4 A5 A6
D0 D1 D2 D3 D4 D5 D6 D7
Write Timing
CS\
SCLK
SDI
SDO
R/W A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7
Address/Control Byte
Address/Control Byte
Register Data Byte
Register Data Byte
1
0
8394-8-5_071
Figure 4-14. Serial Contro l Port Write Timing
SERCKO
SERCS*
SERDO A0
123
A1
Address/Command
Byte Write Data Byte
D7D6D5
8394-8-5_072
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.5 MPU Interface Timing
100054E Conexant 4-17
Figure 4-15. Serial Contro l Port Read Timing
SERCKO
SERCS*
SERDO
SERDI
A01
123
A1
Address/Command
Byte
Read Data Byte
D7D6D5
54
8394-8-5_073
Table 4-16. Host Serial Por t Timing
Symbol Parameter Minimum Maximum Units
1 SERCKO Falling Edge to SERCS* and SERDO 10 ns
2, 3 SERCKO Duty Cycle 40 60 %
2, 3 SERCKO Freque ncy (Programmable) 1.024 8.19 2 MHz
4 SERDI to SERCKO Ri sing Edge Setup Time 10 ns
5 SERCKO Rising Edge to SERDI Hold Time 5 ns
Ri se/Fall Time (10% to 90%)
SERCKO, SERDI, SERDO 20 ns
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.6 System Bus Interface (SBI) Timing Quad/x16/Octal—T1/E1/J1 Framers
4-18 Conexant 100054E
4.6 System Bus Interface (SBI) Timing
Figure 4-16. SBI Timing—1536K Mode(1)
NOTE(S):
(1) Rising edge outputs and falling edge inputs shown. Refer to Table 4-21 for othe r edge combinations.
(2) RINDO/TINDO pr ogrammed high or low on a per-ti me slot basis (SBCn; a ddr 0E0-0FF).
(3) TSYNC/RSYNC represents frame (TFSYNC/RFSYNC) and multiframe (TMSYNC/RMSYNC) offse t.
(4) Multiple offset values shown for illustration, refer to OFFSE T control s (addr 0D 2-0D3, 0D5-0D6 ).
(5) X2CLK control bit located in SBI_CR (addr 0D0).
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 45 6 7 8
RSBCKI
RPCMO
RSIGO
TS1 TS2 TS3TS24
RSYNCO
RSYNCI
RSYNCO
RSYNCI
RSYNCO
RSYNCI
Offset = 008 (TS1, Bit1)
Offset = 018
Offset = 0C7
RSYNCO
RSYNCI
RSYNCO
RSYNCI
Offset = 008
Offset = 018
RSBCKI
X2CLK = 0X2CLK = 1
ReceiveTransmit
RINDO
SIGFRZ
TSBCKI
TPCMI
TSIGI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSBCKI
TINDO
A B C D A B C D A B C D
SIG24 SIG1 SIG2
SBI Signal Group
(4)
(4)
(5)
(3) (3)
(2) (2)
(5)
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.6 Syst em Bus In terface (SBI) Timing
100054E Conexant 4-19
Figure 4-17. SBI Timing—1544K Mode(1)
NOTE(S):
(1) Rising edge outputs and falling edge inputs shown. Refer to Table 4-21 for othe r edge combinations.
(2) RINDO/TINDO programmed high or low during F-bit (SBC0; addr 0E0).
(3) TSYNC/RSYNC represents frame (TFSYNC/RFSYNC) and multiframe (TMSYNC/RMSYNC) offse t.
(4) Multiple offset values shown for illustration, refer to OFFSE T control s (addr 0D 2-0D3, 0D5-0D6 ).
(5) X2CLK control bit located in SBI_CR (addr 0D0).
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 45 6 7 8
RSBCKI
RPCMO
RSIGO
TS1 TS2 TS3TS24
RSYNCO
RSYNCI
RSYNCO
RSYNCI
RSYNCO
RSYNCI
Offset = 000 (F-bit)
Offset = 00F
Offset = 0C7
RSYNCO
RSYNCI
RSYNCO
RSYNCI
Offset = 000
Offset = 00F
RSBCKI
X2CLK = 0X2CLK = 1
ReceiveTransmit
RINDO
SIGFRZ
TSBCKI
TPCMI
TSIGI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSBCKI
TINDO
A B C D A B C D A B C D
SIG24 SIG1 SIG2
SBI Signal Group
F
F
(4)
(4)
(5)
(3) (3)
(2) (2)
(5)
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.6 System Bus Interface (SBI) Timing Quad/x16/Octal—T1/E1/J1 Framers
4-20 Conexant 100054E
Figure 4-18. SBI Timing—2048K Mode(1)
NOTE(S):
(1) Rising edge outputs and falling edge inputs shown. Refer to Table 4-21 for othe r edge combinations.
(2) RINDO/TINDO pr ogrammed high or low on a per-ti me slot basis (SBCn; a ddr 0E0-0FF).
(3) TSYNC/RSYNC represents frame (TFSYNC/RFSYNC) and multiframe (TMSYNC/RMSYNC) offse t.
(4) Multiple offset values shown for illustration, refer to OFFSE T control s (addr 0D 2-0D3, 0D5-0D6 ).
(5) X2CLK control bit located in SBI_CR (addr 0D0).
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 45 6 7 8
RSBCKI
RPCMO
RSIGO
TS0 TS1 TS2TS31
RSYNCO
RSYNCI
RSYNCO
RSYNCI
RSYNCO
RSYNCI
Offset = 000 (TS0, Bit1)
Offset = 00B
Offset = 0FF
RSYNCO
RSYNCI
RSYNCO
RSYNCI
Offset = 000
Offset = 00B
RSBCKI
X2CLK = 0X2CLK = 1
ReceiveTransmit
RINDO
SIGFRZ
TSBCKI
TPCMI
TSIGI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSYNCO
TSYNCI
TSBCKI
TINDO
A B C D A B C D A B C D
SIG31 SIG0 SIG1
SBI Signal Group
(4)
(4)
(5)
(3) (3)
(2) (2)
(5)
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.6 Syst em Bus In terface (SBI) Timing
100054E Conexant 4-21
Figure 4-19. SBI Timing—4096K Mode(1),(5)
NOTE(S):
1. Rising edge outputs and falling edge inputs shown. Refer to Table 4-21 for other edge c ombinations.
5. BUSSED or NON- BUSSED signal group controls located in BUS_RSB , BUS_FR Z (addr 0D 1) and BUS_TSB (addr 0D4).
GroupA
GroupB
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 45 6 7 8
SBCKI
GroupA
GroupB
TS0A
TS0B
TS1A
TS1BTS31B
SYNCO
SYNCI
SYNCO
SYNCI
SYNCO
SYNCI
Offset = 000
Offset = 008
Offset = 1FF
TS0A
1234567812345678 123456781234
TS0A TS1A TS1A
45678
TS31A
TS0B
1234567812345678 123456781234
TS0B TS1B TS1B
45678
TS31B
BUSSED
4
SYNCO
SYNCI
SYNCO
SYNCI
Offset = 000
Offset = 008
SBCKI
X2CLK = 0NON-BUSSEDX2CLK = 1
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.6 System Bus Interface (SBI) Timing Quad/x16/Octal—T1/E1/J1 Framers
4-22 Conexant 100054E
Figure 4-20. SBI Timing—8192K Mode
GroupA
GroupB
GroupC
GroupD
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 45 6 7 8
SBCKI
GroupA
GroupB
GroupC
GroupD
TS0A
TS0B
TS0C
TS0DTS31D
SYNCO
SYNCI
SYNCO
SYNCI
SYNCO
SYNCI
Offset = 000
Offset = 010
Offset = 3FF
TS0A
1234567812345678 123456781234
TS0A TS0A TS0A
4 5 6 7 8
TS31A
TS0B
1234567812345678 123456781234
TS0B TS0B TS0B
4 5 6 7 8
TS31B
TS0C
1234567812345678 123456781234
TS0C TS0C TS0C
4 5 6 7 8
TS31C
TS0D
1234567812345678 123456781234
TS0D TS0D TS0D
4 5 6 7 8
TS31D
BUSSED
4
SYNCO
SYNCI
SYNCO
SYNCI
Offset = 000
Offset = 010
SBCKI
X2CLK = 0NON-BUSSEDX2CLK = 1
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.6 Syst em Bus In terface (SBI) Timing
100054E Conexant 4-23
Figure 4-21. SBI Timing—Eight Clock Edge Combinations (Applicable to Any SBI Mode)
NOTE(S):
PCM out put/sample points are show n only for the corr espondi ng SYNC ou tput/sample point.
PCM
SYNC
PCM_NEG SYN_NEGX2CLK 001
PCM
SYNC
PCM
SYNC
PCM
SYNC
PCM_NEG SYN_NEGX2CLK 011
PCM_NEG SYN_NEGX2CLK 101
PCM_NEG SYN_NEGX2CLK 111
SBCKI
PCM
SBCKI
SYNC
PCM_NEG SYN_NEGX2CLK 000
PCM
SYNC
PCM
SYNC
PCM
SYNC
PCM_NEG SYN_NEGX2CLK 010
PCM_NEG SYN_NEGX2CLK 100
PCM_NEG SYN_NEGX2CLK 110
LEGEND: Rising Edge Sample Rising Edge Output
Falling Edge Sample Falling Edge Output
100054_004
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.7 JTAG Interface T i m ing Quad/x16/Octal—T1/E1/J1 Framers
4-24 Conexant 100054E
4.7 JTAG Interface T iming
Table 4-17. Test and Diagnostic I nterfa c e Timing Re quirements
Symbol Parameter Minimum Maximum Units
1 TCK pulse width hi gh 80 ns
2 TCK pul se width low 80 ns
3 TMS, TDI setup to TCK rising edg e 5 ns
4 TMS, TDI hold after TCK high 20 ns
Tab le 4-18. Test and Diagnostic Interface Switching Characterist ics
Symbol Parameter Minimum Maximum Units
5 TDO hold after TCK falling edge 0 ns
6 TDO delay after TC K low 20 ns
7 TDO enable (Low Z) after TCK fall ing edge 10 ns
8 TDO di sable (Hig h Z) after TCK low 10 ns
Figure 4-22. JTAG Interface Timing
1
2
34
5
6
7 8
TDO
TCK
TDI
TMS
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.8 Mech an ic al Sp ec ific a tio ns
100054E Conexant 4-25
4.8 Mechanical Specifications
Figure 4-23. 318-Pin Ball Grid Array (BGA)
8394-8-5_010
20
10
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
27.000
24.000
18.000
27.000
24.000
18.000
Triangle
Pin #1
Indicator
2.000 Dia.
TYP 4 PL
(Ejector Pin)
R 1.7 MM
TYP 4 PL
1.414 Chamfer
Optional
R .500
TYP 3 PL
Engraving
Cavity ID
TOP VIEW
BOTTOM VIEW
.520
±
.070
.600
±
.100
2.220
±
.220
1.100
±
.050
15
˚
SIDE VIEW
SEATING
PLANE
24.130
12.065 1.270
24.130
12.065 1.270
Pin #1
Triangle
5 Perimeter Rows
+ 18 Balls (1.27 MM Pitch)
NOTES:
- ALL DIMENSIONS ARE IN MILLIMETERS (MM).
- REFLOW APPLIES TO SOLDERING TO HOST
PC BOARD.
- THERMAL BALLS IN CENTER CONNECTED
TO GROUND.
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.8 Mechanical Specifications Quad/x16/Octal—T1/E1/J1 Framers
4-26 Conexant 100054E
Figure 4-24. 272-Pin Ball Grid Array (BGA)
8394-8-5_009
20
10
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
27.000
24.000
18.000
27.000
24.000
18.000
Triangle
Pin #1
Indicator
2.000 Dia.
TYP 4 PL
(Ejector Pin)
R 1.7 MM
TYP 4 PL
1.414 Chamfer
Optional
R .500
TYP 3 PL
Engraving
Cavity ID
TOP VIEW
BOTTOM VIEW
.520
±
.070
.600
±
.100
2.220
±
.220
1.100
±
.050
15
˚
SIDE VIEW
SEATING
PLANE
24.130
12.065 1.270
24.130
12.065 1.270
Pin #1
Triangle
4 Perimeter Rows
+ 16 Balls (1.27 MM Pitch)
NOTES:
- ALL DIMENSIONS ARE IN MILLIMETERS (MM).
- REFLOW APPLIES TO SOLDERING TO HOST
PC BOARD.
- THERMAL BALLS IN CENTER CONNECTED
TO GROUND.
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.8 Mech an ic al Sp ec ific a tio ns
100054E Conexant 4-27
Figure 4-25. 208-Pin Ball Grid Array (CABGA)
DD1
E
e
e
E1
b
A1
A2
A
c
TOP VIEW
SIDE VIEW
BOTTOM VIEW
(208 Solder Balls)
1234567891011121314151617
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
A
A1
A2
D
D1
E
E1
M
N
e
b
c
Coplanarity
Warpage
Ref: 208-Pin CABGA (GP00-D576-001)
0.31
0.65
0.29
0.12
0.026
0.011
0.016
0.030
0.015
0.41
0.76
0.39
1.50
15.00 REF.
12.80 REF.
15.00 REF.
12.80 REF.
0.80 REF.
0.48 REF.
0.12 MAX.
0.10 MAX.
1.059
0.591 REF.
0.504 REF.
0.591 REF.
0.504 REF.
0.031 REF.
0.018 REF.
0.005 MAX.
0.004 MAX.
17
208
Dim. Min. Max. Min.
Millimeters InchesMax.
100054_002
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.8 Mechanical Specifications Quad/x16/Octal—T1/E1/J1 Framers
4-28 Conexant 100054E
Figure 4-26. 208-Pin Plastic Quad Flat Pack (PQFP)
E
E1
E2
DD1D1
D2
8394-8-5_008
E1
DETAIL A
DETAIL A
eb
c
L
L1
AA2
A1
S
Y
M
B
O
L
A
A1
A2
D
D1
D2
E
E1
E2
L
L1
e
b
c
NOM.
1.00 REF.
0.500
MIN.
3.64
0.25
3.39
30.40
27.90
30.40
27.29
0.50
0.215
MAX
4.09
0.50
3.50
30.80
28.10
30.80
27.99
0.75
0.225
ALL DIMENSIONS
IN MILLIMETERS
PIN 1
REF
CX28394/28395/28398 4.0 Electrical/Mechanical Specifications
Quad/x16/Octal—T1/E1/J1 Framers 4.8 Mech an ic al Sp ec ific a tio ns
100054E Conexant 4-29
Figure 4-27. 128-Pin (TQFP) Mechanical Drawing
eb
E
E1
E1
E2
DD1D1
2.00
2.00
D2
A
L
c
L1
A2
A1
DETAIL A
DETAIL A
PIN 1
REF
PIN 1 REF MARK
S
Y
M
B
O
L
A
A1
A2
D
D1
D2
E
E1
E2
L
L1
e
b
c
1.6 MAX.
1.4 REF
20.0 REF
18.5 REF
14.0 REF
12.5 REF
1.0 REF
0.50 BSC
MIN.
0.10
21.85
15.8
0.4
0.17
0.11
MAX
0.15
22.15
16.15
0.65
0.27
0.17
ALL DIMENSIONS
IN MILLIMETERS
Ref. 128-PIN TQFP (GP00-D268)
8394-8-5_002
4.0 Electrical/M ech anical Specificatio ns CX28394/28395/28398
4.8 Mechanical Specifications Quad/x16/Octal—T1/E1/J1 Framers
4-30 Conexant 100054E
100054E Conexant A-1
A
Appendix A
A.1 Superframe Format (SF)
The Superframe Format (SF), is also referred to as the D4 format. The
requirement for associated signaling in frames 6 and 12 dictates that the frames
be distinguishable. This leads to a multiframe structure consisting of 12 frames
per superframe (SF). See Figure A-1 and Tables A-1 and A-2.
The SF structure consists of a multiframe of 12 frames. Each frame has 24
channels, plus an F-bit, and 8 bits per channel. A channel is equivalent to one
voice circuit or one 64 kbps data circuit.
This structure of frames and multiframes is defined by the F-bit pattern. The
F-bi t is designat ed alternately as an F t bit (terminal framing b it) or Fs b it
(signalling framing bit). The Ft bit carries a pattern of alternating zeros and ones
(101010) in odd frames that defines the frame boundaries so that one channel
may be distinguished from another. The Fs bit carries a pattern of (001110) in
even frames and defines the multiframe boundaries so that one frame may be
distinguished from another.
Figure A-1. T1 Superframe PC M Form at
B
Ft
or
Fs
12345678
A
CH
1CH
2CH
13 CH
24
FR
1FR
2FR
7FR
12
FR
11
Frame 12
Frame 6
Bit 8
During:
24 Channels per Frame
Frame = 193 Bits
Multiframe
SF = 12 Frames
8 Bits per Channel
Signaling Information
Appendix A CX28394/28395/28398
A.1 Superframe Format (SF) Quad/x16/Octal—T1/E1/J1 Framers
A-2 Conexant 100054E
Table A-1. Superframe Format
Frame # Bit #
F-Bits Bit Use in Each Time Slot Signaling
Channel
Terminal
Framing Ft Signaling
Frami n g Fs Traffic Sig
10 1 18——
2193 018——
3386 0 18——
4579 018——
5772 1 18——
6965 1178 A
71158 0 18——
81351 118——
91544 1 18——
10 1737 118——
11 1930 0 18——
12 2123 0178 B
CX28394/28395/28398 Appendix A
Quad/x16/Octal—T1/E1/J1 Framers A.2 T1DM Form at
100054E Conexant A-3
A.2 T1DM Format
Table A-2. T1DM Frame Format
Frame # Bit #
F-Bits Bit Use in Each Time
Slot
Terminal
Fram ing Ft Signaling
Framing Fs Sync Byte Info Ctrl
10 1——178
1185192 ——10111YR0 ——
2193 0178
2378385 ——10111YR0 ——
3386 0 ——178
3571578 ——10111YR0 ——
4579 0178
4764771 ——10111YR0 ——
5772 1 ——178
5957964 ——10111YR0 ——
6965 1178
611501157 ——10111YR0 ——
71158 0 ——178
713431350 ——10111YR0 ——
81351 1178
815361543 ——10111YR0 ——
91544 1 ——178
917291736 ——10111YR0 ——
10 1737 1178
10 19221929 ——10111YR0 ——
11 1930 0 ——178
11 21152122 ——10111YR0 ——
12 2123 0178
Note(s):
1. Y bit is used to indic ate a Yellow Alarm (active low).
2. R bit is used solely by AT&T as an 8Kpbs communications channel to collect pe rformance data on long haul DDS
facilities.
Appendix A CX28394/28395/28398
A.3 SLC 96 Format (SLC) Quad/x16/Octal—T1/E1/J1 Framers
A-4 Conexant 100054E
A.3 SLC 96 Format (SLC)
SLC framing mode allows synchronization to the SLC 96 data link pattern. This
pattern, described in the Bellcore TR-TSY-000008, contains both signaling
information and a framin g pattern that overwrites the Fs bit of the SF framer
pattern. (See Table A-3).
Table A-3. SLC-96 Fs Bit Contents
Frame # Fs Bit Frame # Fs Bit Frame # Fs Bit
2 0 26 C2 50 0
4 0 28 C3 52 M1
6 1 30 C4 54 M2
8 1 32 C5 56 M3
10 1 34C658A1
12 0 36C760A2
14 0 38C862S1
16 0 40C964S2
18142C1066S3
20144C1168S4
221460701
24C1481720
Note(s):
1. The SLC-96 frame format is similar to that of SF as shown in Table A-1 with the
exceptions shown in this table.
2. C1 to C11 are concentrator field bits.
3. M1 to M3 ar e maintenance field bits.
4. A1 and A 2 are alarm field bi ts.
5. S1 to S4 are li ne switch field bits.
6. The Fs bits in frames 46, 48, and 70 are spoiler bits which are used to p rotect against
false multiframing.
CX28394/28395/28398 Appendix A
Quad/x16/Octal—T1/E1/J1 Framers A.4 Extended Superframe Format (ESF)
100054E Conexant A-5
A.4 Extended Superframe Format (ESF)
In Extended Superframe For m at (ESF), as illustrated i n Figure A-2 and
Table A-4, the multiframe structure is extended to 24 frames. The channel
structure is identica l to D4 (SF) format. Robbed-bit signaling is ac commodated in
frame 6 (A-bit), frame 12 (B-bit), frame 1 8 (C-bit), and frame 24 (D-bit).
The F-bit pattern of ESF contains three functions:
1. Fr aming Patt ern Sequence ( FPS) , which defines the fr ame an d mul tifr ame
boundaries.
2. Facility Data Link (FDL), which allows data such as error performance to
be passed w ithin the T1 lin k.
3. Cyclic Redundancy Check (CRC), which allows error performance to be
moni tored and en hances the reliab ility of the receiver's framin g algorit hm.
Figure A-2. T1 Extended Sup erframe Format
B
or
Fs
12345678
A
CH
1CH
2CH
13 CH
24
FR
1FR
2FR
13 FR
24
FR
23
Frame 12
Frame 6
Bit 8
During:
24 Channels per Frame
Frame = 193 Bits
Multiframe
ESF = 24 Frames
8 Bits per Channel
Signaling Information
CD
FDL
CRC
FPS
Frame 18
Frame 24
Appendix A CX28394/28395/28398
A.4 Ext ended Superframe Format (ESF) Quad/x16/Octal—T1/E1/J1 Framers
A-6 Conexant 100054E
Table A-4. Extended Superframe Format
Fram e # Bit # F-Bits Bit Use in Each
Time Slot Signalin g Channel
FPS DL CRC Traffic Sig 16 4 2
10m18——
2193——C1 18——
3386m18——
45790——18——
5772m18——
6965——C2 178AAA
71158m18——
813510 ——18——
91544m18——
10 1737 ——C3 18——
11 1930 m18——
12 2123 1 ——178BBA
13 2316 m18——
14 2509 ——C4 18——
15 2702 m18——
16 2895 0 ——18——
17 3088 m18——
18 3281 ——C5 178CAA
19 3474 m18——
20 3667 1 ——18——
21 3860 m18——
22 4053 ——C6 18——
23 4246 m18——
24 4439 1 ——178DBA
Note(s):
1. FPS indi cates the Framing Pattern Sequence (...0 01011...).
2. DL indicates the 4Kbps Data Link with message bits m.
3. CRC indic ates the cyclic redundancy check with bits C1 to C6.
4. Signaling options include 16 state, 4 state, and 2 state.
CX28394/28395/28398 Appendix A
Quad/x16/Octal—T1/E1/J1 Framers A.4 Extended Superframe Format (ESF)
100054E Conexant A-7
Table A-5. Performance Report Message Structure
Octet No. LSB MSB
1FLAG
2SAPIC/REA
3TEIEA
4 CONTROL
5 G3LVG4U1U2G5SLG6
6 FE SE LB G1 R G2 Nm NI
7 G3LVG4U1U2G5SLG6
8 FE SE LB G1 R G2 Nm NI
9 G3LVG4U1U2G5SLG6
10 FE SE LB G1 R G2 Nm NI
11 G3 LV G4 U1 U2 G5 SL G6
12 FE SE LB G1 R G2 Nm NI
13 FCS (Most Significant Byte)
14 FCS (Lea st Signifi cant Byte)
Note(s):
1. The 1-second repo rt consists of o c tets 512.
2. R, U1, and U2 are reserved for future standard ization an d should be set to 0.
Appendix A CX28394/28395/28398
A.5 E1 Frame Format Quad/x16/Octal—T1/E1/J1 Framers
A-8 Conexant 100054E
A.5 E1 Frame Format
Figure A-3. E1 Format
FR
0FR
1FR
2FR
3FR
4FR
5FR
6FR
7FR
8FR
9FR
10 FR
11 FR
12 FR
13 FR
14 FR
15
I 1ANNNNN ABCDABCD 12345678
TS
0TS
1TS
2TS
3TS
4TS
5TS
6TS
7TS
8TS
9TS
10 TS
11 TS
12 TS
13 TS
14 TS
15 TS
16 TS
17 TS
18 TS
19 TS
20 TS
21 TS
22 TS
23 TS
24 TS
25 TS
26 TS
27 TS
28 TS
29 TS
30 TS
31
I0011011 0000XYXX
a. Even Frames (0, 2, 414)
b. Odd Frames (1, 3, 515)
FAS
Time Slot 0
a. Frame 0
b. Frames 115
MAS
Time Slot 16 Time Slots 115, 1731
Channel Data
32 Time Slots/Frame
16 Frames/Multiframe
8Bits/
Time Slot
CX28394/28395/28398 Appendix A
Quad/x16/Octal—T1/E1/J1 Framers A.5 E1 Frame Format
100054E Conexant A-9
Table A-6. ITUT CEPT Frame Format Time Slot 0 Bit Allocations
SMF Frame # Time Slot 0 Bits 1 to 8 of each frame
1 2 3 4 5 6 7 8
I
0C1/Si0011011
1 0/Si 1 A SA4 SA5 SA6 SA7 SA8
2C2/Si0011011
3 0/Si 1 A SA4 SA5 SA6 SA7 SA8
4C3/Si0011011
5 1/Si 1 A SA4 SA5 SA6 SA7 SA8
6C4/Si0011011
7 0/Si 1 A SA4 SA5 SA6 SA7 SA8
II
8C1/Si0011011
9 1/Si 1 A SA4 SA5 SA6 SA7 SA8
10C2/Si0011011
11 1/Si 1 A SA4 SA5 SA6 SA7 SA8
12C3/Si0011011
13 E/Si 1 A SA4 SA5 SA6 SA7 SA8
14C4/Si0011011
15 E/Si 1 A SA4 SA5 SA6 SA7 SA8
Note(s):
1. SMF indicates the sub- multiframe. This part itioning is us ed in the CR C-4 calculation.
2. Si bits are International Spare Bits.
3. A bit is used to indicate a remote alarm condition (acti ve high).
4. SA4 to SA8 are spare bits that may be recommended by ITUT for use in specific point-to-point applications (e.g., transcoder
equipment conforming to Recommendation G.761).
5. SA4 to SA8 where these are not used should be set to 1 on links crossing an internat ional border.
6. E bit is used to indicate a CRC-4 error. The normal state is both bits set to 1; when a CRC-4 error is detected, one of the E bits
is set to 0.
7. C1 to C4 bits are u sed to carry the CRC-4 co de.
8. Time slot 0 that contains the 0011011 sequence is defined as the FAS word. Time slot 0 that do es not contain the FAS is th e
Not-Word.
Appendix A CX28394/28395/28398
A.6 IRSM CE PT Fra m e Format Quad/x16/Octal—T1/E1/J1 Framers
A-10 Conexant 100054E
A.6 IRSM CEPT Frame Format
Table A-7. IRSM CEPT Frame Format Time Slot 0 Bit Allocations
SMF Frame # Time Slot 0 Bits 1 to 8 of each frame
1 2 3 4 5 6 7 8
I
0C1/Si0011011
1 0/Si 1 A D E0 E1 E16 E17
2C2/Si0011011
3 0/Si 1 A D E2 E3 E18 E19
4C3/Si0011011
5 1/Si 1 A D E4 E5 E20 E21
6C4/Si0011011
7 0/Si 1 A D E6 E7 E22 E23
II
8C1/Si0011011
9 1/Si 1 A D E8 E9 E24 E25
10C2/Si0011011
11 1/Si 1 A D E10 E11 E26 E27
12C3/Si0011011
13 E/Si 1 A D E12 E13 E28 E29
14C4/Si0011011
15 E/Si 1 A D E14 E15 E30 E31
Note(s):
1. SMF indicates the sub- multiframe. This part itioning is us ed in the CR C-4 calculation.
2. Si bits are International Spare Bits.
3. NA bit is used to indicate a remote al arm conditi on (active high).
4. Ei are per ch an ne l control bits.
5. E bit is used to indicate a CRC-4 error. The normal state is both bits set to 1; when a CRC-4 error is detected, one of the E bits
is set to 0.
6. C1 to C4 bits are u sed to carry the CRC-4 co de.
7. Time sl ot 0 that contains the 0011011 sequence is defined as the FAS word. Time slot 0 that does not contain the FAS is the
Not-Word.
8. D bits are a 4 kbps data link.
9. Bit 2 of the Not-Word is defined as the alternate framing bit.
CX28394/28395/28398 Appendix A
Quad/x16/Octal—T1/E1/J1 Framers A.6 IRSM CEPT Frame Format
100054E Conexant A-11
Table A-8. CEPT (ITUT and IRSM) Frame Format Time Slot 16 Bi t A llocat ions
SMF Frame # Time S lot 16 Bits 1 to 8 of each fram e
1 2 3 4 5 6 7 8
I
00000X0YX1X2
1 A1B1C1D1A17B17C17D17
2 A2B2C2D2A18B18C18D18
3 A3B3C3D3A19B19C19D19
4 A4B4C4D4A20B20C20D20
5 A5B5C5D5A21B21C21D21
6 A6B6C6D6A22B22C22D22
7 A7B7C7D7A23B23C23D23
II
8 A8B8C8D8A24B24C24D24
9 A9B9C9D9A25B25C25D25
10 A10 B10 C10 D10 A26 B26 C26 D26
11 A11 B11 C11 D11 A27 B27 C27 D27
12 A12 B12 C12 D12 A28 B28 C28 D28
13 A13 B13 C13 D13 A29 B29 C29 D29
14 A14 B14 C14 D14 A30 B30 C30 D30
15 A15 B15 C15 D15 A31 B31 C31 D31
Note(s):
1. SMF indicate s th e su b - multif ra me.
2. AiDi are the per channel signaling bits.
3. X0X2 are the X spar e bits normally set to 1.
4. Y is the Remote Multi frame Yellow Alarm Indicat ion bit. When Y is set to a 1, this indicates that the alarm is active.
5. The Mul tiframe Alignment Sequ ence (MAS) is defined as the Time S lot 16 word that contains the 0 000XYXX sequence.
Appendix A CX28394/28395/28398
A.6 IRSM CE PT Fra m e Format Quad/x16/Octal—T1/E1/J1 Framers
A-12 Conexant 100054E
100054E Conexant B-1
B
Appendix B
B.1 Applicable Standards
Table B-1. Applicable Standards (1 of 3)
Standard Title
ANSI
T1.101 - 19 87 Digital Hiera rchyTiming Synchronization
T1.102 - 19 93 Digital Hiera rchyElectrical Interfaces
T1.107-1991
(Newer Draft Standard
T1X1.4/93-002R3)
Digital HierarchyFormats Specification
T1.4 03-1995 Network to Customer Installation DS1 Metallic Interface
T1.408-1990 ISDN Primary RateCustomer Installation Metallic Interfaces
T1.231-1993 Layer 1 In-Service Digital Transmission Per f ormance Monitoring
AT&T
TR 414 49-1986 ISDN Primary Rate I nter face Specification
TR 43801( A ) -19 8 5 Digital Channe l Ba nk Requirements and Objectives
TR 54016-1989 Rqts. for Interfacing DTE to Services Employing Extended Superframe Format
TR 624 11-1990 Accunet T1.5 Serv ice Description and I nter face Specification
Bellcore
TR-TSY-000008 Issue 2, 1987 Digital Interf ace Between the SLC 96 Di gital Loop Carrier System and a Local
Digital Swit ch
TR-TS Y-000009 Issue 1, 1986 A synchronous Digital Multiplexer Requirements and Objectives
TR-NPL-000054 Issu e 1, 1989 High-Capacity Digital Service (HCDS) Interfac e Generic Requi rements
TR-NWT-000057 Issue 2, 1993 Functional Criteria for Digital Loop Carrier Systems
TA-TSY-00014 7 Issue 1, 1987 DS1 Rate Digital Service Monitori ng Unit
TR-TSY-00 0170 Issue 2, 1993 Digital Cross-Connect System (DCS) R equirements and Objectives
TR-TSY-000191 Issue 1, 1986 Al arm Indication Signal (AIS) Requirements and O bjectives
Appendix B CX28394/28395/28398
B.1 Applicable Standards Quad/x16/Octal—T1/E1/J1 Framers
B-2 Conexant 100054E
TR-TSY-000194 Issue 1, 1987 The Extended Superframe Format Interface
TA-TSY-000278 Issu e 1, 1985 Digital Data System (DDS)T1 Digit al Multiplexer (T1D M) Requirement s
TR-TSY-000303 Issu e 2, 1992 Integrated Digital Loop Carrier (I DLC) Sy stem Gener ic Requir ements
TR-TSY-000312 Issu e 1, 1988 Functional Cri teria for the DS1 Interface Connect or
TR-NPL-000320 Issue 1, 1988 Fundamental Generic Requirements fo r Met allic Digital Si gnal Cross-connect Systems
TA-TSY-000435 Issue 1, 1987 DS1 Automatic Facility Protection Switching (AFPS) Rqts. an d Objectives
TR-NWT-000499 Issue 5, 1993 Transport Systems Generic Requirements
TR-TS Y-000510 Issue 2, 1987 L SSGR: System Inter faces, Sec ti on 10
TR-NWT-000773 Issue 1, 1991 Local Acce ss System Requirements, Objectives and In terfaces for SMDS
TR-TSY-000776 Issue 2, 1993 Network Interface Description for ISDN Customer Access
GR-820-CORE Issue 1, 1994
(replaced TR-NWT-000820) Generic Digital Tr ansmissio n Sur veillance
TA-NWT-000821 Issue 1, 1991
(replaced TR-TSY-00 0821) Additional Transport and Transport-Based Surveillance Gen eric Rqts.
SR-TSY-000977 Iss ue 1, 1988 ISDN Primary Rate Access Maintenance
TR-NWT-001219 Issue 1, 1992
(Rev 1, 19 93 ) ISDN Primar y Rate Access Testing Req uirements
SR-NWT-002343 Issue 1, 1993 ISDN Primary Rate I nt e rface Guidelines for Custome r Premises Equipment
ETSI
ETS 30 0 011 (4/92) ISDN Primary Rate User-Network Interfac e Specification and Test Principle s
ETS 300 233 Access Digital Section for ISDN Prima ry Rate
ITU-T
Recommendation G .703 (1991) Physical/Electrical Characteristics of Hierarchical Di gital Interfaces
Recommendation G .704 (1991) Synchronous Frame Stru ctures used at Primary Hi erarchic al Levels
Recommendation G.706 (1991) Frame Alignment and CRC Procedures Re latin g to G.704 Frame Structures
Recommendation G.732 Characteristics of Primary PCM Multiplex Equipment at 2048 kbps
Recommendation G.733 Characteristics of Primary PCM Multiplex Equipment at 1544 kbps
Recommendation G.73 4 Characteri s tics of Synchronous Digit al Multiplex Equipment at 1544 kbps
Recommendation G.735 Characteristics of Primar y PCM Multiplex Equipmen t at 2048 kbps; offering
Synchronous Di gital Access at 384 kbp s and/or 64 kbps
Recommendation G.73 6 Characteri s tics of Synchronous Digit al Multiplex Equipment at 2048 kbps
Recommendation G.737 Characteristics of External Ac cess Equipment at 2048 kbp s ; offering S ynchronous
Digital Access at 384 kbps and/or 64 kbps
Recommendation G.738 Characteristics of Primar y PCM Multiplex Equipmen t at 2048 kbps; offering
Synchronous Di gital Access at 320 kbp s and/or 64 kbps
Recommendation G.739
Recommendation G.76 1 Characteristics of External Access Equipment at 2048 kbp s; Offering Sync hronous
Digital Access at 320 kbps and/or 64 kbps
Table B-1. Applicable Standards (2 of 3)
Standard Title
CX28394/28395/28398 Appendix B
Quad/x16/Octal—T1/E1/J1 Framers B.1 Applicable St andards
100054E Conexant B-3
Draft R ecommendati on G.775 Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection
Recommendation G .796 C haracteristics of 64 kbps Cross-Connect E quipment with 2048 kbps Access Ports
Recommendation G.802 (1988) Interwo rking be tween Net works based on Di fferent Digital Hierarchies
Recommendat ion G.821 Error Perfo rmance Mon itorin g on International Connections
Recommendation G.823 (3/93) Cont rol of Jitter and Wander in Digital Networks based on 2048 kbp s
Recommendation G.824 (3/93) Cont rol of Jitter and Wander in Digital Networks based on 1544 kbp s
Recommendati on G.921 Digit al Sections based on 2048 kbps Hierarchy
Recommendation G.962 (3/93) Access Digi tal Section for ISDN Pri mary Rate at 2048 kbps
Recommendation G.963 (3/93) Access Digi tal Section for ISDN Pri mary Rate at 1544 kbps
Recommendation I.411 ISDN User-Network InterfacesReference s Config urations
Recommendation I.412 ISDN User-Network InterfacesStructures and Access Capabilities
Recommenda tio n I.421 Prima ry Rate User-Netw ork Interface
Recommenda tio n I.431 Prima ry Rate User-Netw ork InterfaceLayer 1 Specification
Recommendation K.10 Unbalance ab out Eart h of Telecommunication Installati ons
Recommendati on K.20 Resistibilit y of Switching Equipment to Overvoltages and Ov ercurren ts
Recommendation M.3604 Applicat ion of Maintenance Pr inciples to ISDN Prim ary Ra te Access
Recommendation O.150 Digital Test Patterns for Performance Measurements
Recommendation O .151 Error Performance Measuring Equ ipment Operating at Primary Rate and Above
Recommendation O.152 Error Performance Measuring Equipment for Bit Rates of 64 kbit/s and NX 64 kbit/s
Recommendation O.162 (10/92) Equipment to Perform In-Service Monitoring on 2048 kbps Signals
Recomm endation Q.921 ISD N User-Network Interface - Data Lin k Layer Specific ation
IEEE Std 1149.1a-1993 IEEE Standard Test Access Port and Boundary Scan Architecture (JTAG)
Natural Microsystems Corporation,
Release 1.0, March 1993 Multi-Vendor Integration Pro tocol (MV IP) Refere nce Manual
FCC Pa rt 6 8.302 (d) Environment Simulati on metallic voltage su rge
FCC Part 68.308 Signal Power Limitations
Table B-1. Applicable Standards (3 of 3)
Standard Title
Appendix B CX28394/28395/28398
B.1 Applicable Standards Quad/x16/Octal—T1/E1/J1 Framers
B-4 Conexant 100054E
100054E Conexant C-1
C
Appendix C
C.1 System Bus Compatibility
C.1.1 AT&T Concentration Highway Interface (CHI):
DX = RPCMO
+ output on rising or falling edge of clock
+ out put on every CLKXR or CLKXR/2
+ Tri-stated during inactive time slots
DR = TPCMI
+ sampled on risi ng or falling edge of clock
+ sampled on every CLKXR or CLKXR/2 (see X2CLK mode)
FS = TFSYNC
+ sampled on rising or falling edge of clock ( FE sele ct)
+ rising edge determines frame start
+ 8 kHz ra te
TSC* = RINDO
+ Optional C HI pin is driven low during active DX time sl ots
CLKXR = TSB CLKI = RSBCLKI
+ N x 64 kHz rates, where N = 4, 8, 16, 32, 48 or 64
Appendix C CX28394/28395/28398
C.1 System Bus Compatibility Quad/x16/Octal—T1/E1/J1 Framers
C-2 Conexant 100054E
C.1.2 CHI Programming Options:
CMS = clock mode select
0 = line ra te
1 = 2X line rate
XEN = tran sm itter enable
0 = disable (DX tri-stated)
1 = enable (DX driven during active time slots)
FE = frame edge select
0 = falling edge
1 = rising edge
XCE = CLKXR output edge select for DX
0 = falling edge
1 = rising edge
RCE = CLKXR input edge select for DR
0 = falling edge
1 = rising edge
XBOFF = 3-bit transmit output bit offset
000-1111 = CLKXR (or 2xCLKXR) delay from FS to DX bit0
RBOFF = 3-bit receive input bit offset
000-111 = CLKXR (or 2xCLKXR) delay from FS to DR bit0
XTS = 6-bit transmit output TS offset
00-3F = CLKXR (or 2xCLKXR) TS delay from FS to DX bit0
RTS = 6-bit receive input TS offset
00-3F = CLKXR (or 2xCLKXR) TS delay from FS to DR bit0
The device only supports CHI and GCI buses if N = 24, 32, or 48, although
either bus is defined to operate at N x 64 from N = 4 to N = 48. The device does
not support AT&T's Dual CHI (separate A/B buses) or K2 buses, nor does it
support INTEL's SLD (ping/pong) 3-pin bus.
100054E Conexant D-1
D
Appendix D
D.1 Notation and Acronyms
D.1.1 Arithmetic Notation
Time Slot Bit Numbering associated with time slots in the primary rate channel,
are numbere d 1 to 8, where b it number 1 is t ransmitted first and is speci fied as the
MSB.
Configuration and Status Word Bit Numberi ng , asso ciated with co nfiguration
or status words, 7 to 0, where bit number 7 is specified as the MSB, and bit
number 0 is specified as the LSB.
Appendix D CX28394/28395/28398
D.2 Acronyms and Abbrev iatio ns Quad/x16/Octal—T1/E1/J1 Framers
D-2 Conexant 100054E
D.2 Acronyms and Abbreviations
ADC Analog to Digital Converter
AFPS Auto m atic Facility Pro te ction Switc hing
AGC Automatic Gain Control
AIS Alarm Indication Signal
ALBO Automatic Line Build Out
ALOS Analog Loss of Signal
AMI Alternate Mark Inversion
ANSI America n National Standards Institute
B8ZS Bina ry with 8 Zero Su bstitutio n
BER Bit Error Rate
BERR Bit Error Co unter
BFA Basic Frame Alignment
BOP Bit-Oriented Protocol
BPV Bipolar Violation
BSDL Boundary Scan Description Language
CAS Channel Associated Signaling
ITU–T Inter national Telegraph and Telephone Consultative
Committee
CCS Common Channel Signali ng
CERR CRC Errors
CGA Carrier Group Alarm
CI Customer Installation
CLAD Clock Rate Adapter
CMOS Complementary Metal Oxide Semiconductor
COFA Change of Frame Alignment
CRC Cyclic Redundancy Check
CSU Channel Service Unit
DAC Digital to An al og Converter
DCS Digit al Cross-Connect System
DDS Digital Data System
DMI D igital Mul tiplexed Interface
DPLL Digital Phase Locked Loop
DPM Driver Performance Monitor
DS1 D igital Signal Level 1
DSU Data Service Unit
ESF Extended Superframe
EXZ Excessive Zeros
CX28394/28395/28398 Appendix D
Quad/x16/Octal—T1/E1/J1 Framers D.2 Acr onyms and Abbre viations
100054E Conexant D-3
FAS Frame Alignment Sequence (E1 Format)
FCC Federal Communications Committee
FCS Fr ame Che ck Sequen ce
FDL Facility Data Link
FEBE Far End Block Error
FERR Framing Bit Error
FPS Frame Pattern Sequence (EFS Format)
HCDS High -Capacity Digital Service
HDB3 High-Density Bipolar of Order 3
ICOT Intercit y and Outs tate Tr unk
IDLC Integrated Digital Loop Car rier
ISDN Integrated Service Digital Network
JAT Jitter Attenuator
JCLK Jitter Attenuated Clock
JTAG Joint Test Action Group
LBO Line Build Out
LCV Line Code Violation
LEC Local Exchange Carrier
LIU Line Interface Unit
LOAS Loss of Analog Signal
LOF Loss of Frame
LOS Loss of Signal –DS1
LSB Least Significant Bit
MAIS Multiframe AIS
MART Maximum Average Reframe Time
MAS M ultiframe Al ignment Seq uence (CAS Format)
MAT Metropolitan Area Trunk
MERR MFAS Error
MFAS Multiframe Alignment Sequence (CRC4 format)
MOP Message Oriented Protocol
MOS Message Oriented Signaling
MPU Microprocessor Interface
MQFP Metric Quad Flat Pack
MSB M ost Significant Bit
MUX Multiplexer
MVIP Multi-Vendor Integration Protocol
MYEL Multiframe Yellow Alarm
NCO Numerical Controlled Oscillator
NI Network Interface
NRZ Non-Ret urn to Zero
OOF Out of Frame
Appendix D CX28394/28395/28398
D.2 Acronyms and Abbrev iatio ns Quad/x16/Octal—T1/E1/J1 Framers
D-4 Conexant 100054E
PCM Pulse Code Modulation
PDV Pulse Density Violation
PIC Poly e thylene-Insulated Cable
PLCC Plastic Leaded Chip Carrier
PLL Phase Locked Loop
PM Performance Monitoring
PQFP Plastic Quad Flat Pack
PRBS Pseudo-Random Bit Sequence
PRI Primary Rate Interface
PRM Performance Report Message
RAI Remote Alarm Indication
RBOP Bit-Oriented Protocol Detector
RBS Rob bed Bit Signaling
RCVR Receiver
RDL1 Receive Data Link 1
RDL2 Receive Data Link 2
RDL3 External Receive Data Link
RFRAME Receive Framer
RJAT Receive Jitter Attenuator
RLIU Receive Line Interface Unit
RMAIS Receive Multiframe AIS
RPDV Receive Pulse Density Violation
RPLL Receive Phase Locked Loop
RSB Receive System Bus
RSBI Receive System Bus Interface
RSIG Receive Signaling Buffer
RSLIP Receive Slip Buffer
RXCLK Receive Clock
RZCS AMI/HDB3/B8ZS Line Decoder
QRSS Quasi-Random Signal Source
SEF Severely Errored Framing Event
SERR CAS Erro r
SF Super Frame
SLC Subscriber Loop Carrier
TAP Test Access Port
TBOP Bit Oriented Protocol Formatter
TDL1 Transmit Data Link 1
TDL2 Transmit Data Link 2
TDL3 Exte rna l Transmit Data Lin k
TDM Time D ivision Multiplexed
TSB Transmit System Bus
TSBI Transmit System Bus Interface
TJAT Transmit Jitt er Attenuator
TLIU Transmit Line Interface Unit
CX28394/28395/28398 Appendix D
Quad/x16/Octal—T1/E1/J1 Framers D.2 Acr onyms and Abbre viations
100054E Conexant D-5
TLOS Transmit Loss of Signal
TSB Transmit System Bus
TSIC Time Slot Intercha n ge
TSIG Transmit Signaling Buffer
TSLIP Transmit Slip Buffer
TZCS AMI/HDB3/B8ZS Line Encoder
UI Unit Inter val
UMC Unassigned Mux Code
UNICODE Universal Trunk Out of Service Code
UTP Unshielded Twisted Pair
VCO Voltage Controlled Oscillator
VCXO Voltage Controlled Crystal Oscillator
VGA Variable Gain Amp li fier
XMTR Digital Transmitter
YEL Yellow Alarm
ZCS Zero Code Suppression
Appendix D CX28394/28395/28398
D.2 Acronyms and Abbrev iatio ns Quad/x16/Octal—T1/E1/J1 Framers
D-6 Conexant 100054E
100054E Conexant E-1
E
Appendix E
E.1 Revision History
Table E-1. Document Revision History
Revision Level Date Description
A Advanced July 1998 Cre a ted
B Preliminary April 1999 1. Added two new products to the data sheet: CX28394
(quad framer) and CX28395 (x16 framer).
2. Re-named data sheet .
3. Changed the device part number from RS8398 to
CX28398.
4. Transmitt er, Ove r head Pattern Generator, Alarm
Generator section rewritten for clarity. Removed RLOC
from automatic AIS generati on descrip ti on. Removed
refere nce to RDIGI bit. Added de scription of RLOF
integration to automatic Yellow Alarm/RAI generation
description.
5. Removed 2Kbps datalink mode and ZBTSI support.
6. Added chapter: System Bu s, to describe multiplexed
and non-multiplexed modes.
7. Changed RL OS clearing criteria for T1 to at least
12.5% density over a period of 114 bits.
8. Change d defa ult regi ster setting s for regist ers 0 40, 04 1,
042, and 043. These registers are not reset.
9. Removed 8398 Embedded mode from the System Bus
description and SBI_CR register descript ion.
C Prelim inary May 1999 1. Incorporated edits f rom Errata #N8398ER1A dated
May 13, 1999.
D Final November 199 9 1. Incorporat ed edits from Errata #100354C, formerly
N8398ER1C.
2. Updated timing paramet ers.
E Prelimin ary Ma y 2000 1. Updated marking numbers.
Appendix E CX28394/28395/28398
E.1 Revision History Quad/x16/Octal—T1/E1/J1 Framers
E-2 Conexant 100054E
Further Information
literature@conexant.com
(800) 854-8099 (North America)
(949) 483-6996 (International)
Printed in USA
World Headquarters
Conexant Systems, Inc.
4311 Jamboree Road
Newport Beach, CA
92660-3007
Phone: (949) 483-4600
Fax 1: (949) 483-4078
Fax 2: (949) 483-4391
Americas
U.S. Northwest/
Pacific Northwest Santa Clara
Phone: (408) 249-9696
Fax: (408) 249-7113
U.S. Southwest Los Angeles
Phone: (805) 376-0559
Fax: (805) 376-8180
U.S. Southwest Orange County
Phone: (949) 483-9119
Fax: (949) 483-9090
U.S. Southwest San Diego
Phone: (858) 713-3374
Fax: (858) 713-4001
U.S. North Central Illinois
Phone: (630) 773-3454
Fax: (630) 773-3907
U.S. South Central Texas
Phone: (972) 733-0723
Fax: (972) 407-0639
U.S. Northeast Massachusetts
Phone: (978) 367-3200
Fax: (978) 256-6868
U.S. Southeast North Carolina
Phone: (919) 858-9110
Fax: (919) 858-8669
U.S. Southeast Florida/
South America
Phone: (727) 799-8406
Fax: (727) 799-8306
U.S. Mid-Atlantic Pennsylvania
Phone: (215) 244-6784
Fax: (215) 244-9292
Canada Ontario
Phone: (613) 271-2358
Fax: (613) 271-2359
Europe
Europe Central Germany
Phone: +49 89 829-1320
Fax: +49 89 834-2734
Europe North England
Phone: +44 1344 486444
Fax: +44 1344 486555
Europe Israel/Greece
Phone: +972 9 9524000
Fax: +972 9 9573732
Europe South France
Phone: +33 1 41 44 36 51
Fax: +33141443690
Europe Mediterranean Italy
Phone: +39 02 93179911
Fax: +39 02 93179913
Europe Sweden
Phone: +46 (0) 8 5091 4319
Fax: +46 (0) 8 590 041 10
Europe Finland
Phone: +358 (0) 9 85 666 435
Fax: +358 (0) 9 85 666 220
Asia Pacific
Taiwan
Phone: (886-2) 2-720-0282
Fax: (886-2) 2-757-6760
Australia
Phone: (61-2) 9869 4088
Fax: (61-2) 9869 4077
China–Central
Phone: 86-21-6361-2515
Fax: 86-21-6361-2516
China–South
Phone: (852) 2 827-0181
Fax: (852) 2 827-6488
China South (Satellite)
Phone: (86) 755-5182495
China–North
Phone: (86-10) 8529-9777
Fax: (86-10) 8529-9778
India
Phone: (91-11) 692-4789
Fax: (91-11) 692-4712
Korea
Phone: (82-2) 565-2880
Fax: (82-2) 565-1440
Korea (Satellite)
Phone: (82-53) 745-2880
Fax: (82-53) 745-1440
Singapore
Phone: (65) 737 7355
Fax: (65) 737 9077
Japan
Phone: (81-3) 5371 1520
Fax: (81-3) 5371 1501
www.conexant.com
0
.
0
Sa
l
es
Offi
ces