1
5336A–HIREL–08/03
Features
PC603e Microprocessor (Embedded PowerPC Core) at 133 - 300 MHz
280 MIPS at 200 MHz (Dhrystone 2.1)
520 MIPS at 300 MHz (Dhrystone 2.1)
High-performance, Superscalar Microprocessor
Disable CPU Mode
Improved Low-power Core
16-Kbyte Data and 16-Kbyte Inst ruction Cache, Four-way Set Associative
Memory Management Unit (MMU)
Floating Point Unit (FPU)
Common On-chip Processor (COP)
Two Bus Architectures: One 64-bit PowerPC and On e 32-bit PCI or Local Bus
System Integration Unit (SIU)
Memory Controller, Including Two Dedicated SDRAM Machines
PCI up to 66 MHz
Hardware Bus Monitor and Software Wa tc hd og Timer
IEEE 1149.1 JTAG Test Access Port
High-performance Communications Processor Module (CPM)
CPM Frequency Up to 200 MHz
PowerPC and CPM May Run at Different Frequencies
Parallel I/O Registers
On-board 32 KBytes of Dual-port RAM
Two Multi-channel Controller s (MCCs) Each Supporting 128 Full-duple x, 64-Kbps,
HDLC Lines
Virtual DMA Functi ona lity
3 FCCs Supporting:
Up to 155 Mbps ATM SAR, Maximum of Two (AAL0, AAL1, AAL2, AAL5)
10/100 Mbps Ethernet, Up to Three (IEEE 802.3X with Flow Control)
45 Mbps HDLC/Transparent (Up to Three)
Two UTOPIA Lev el-2 Master/Sl a ve Por ts, Both with Multi-PHY Support. One Can
Support 8/16 bit Data
Three MII Interfaces
Eight TDM Interfaces (T1/E1), Two TDM Ports Can Be Glueless to T3/E3
Power Consumption: 2.5W at 300 MHz
Description
The PC8265A PowerQUICC II is a versatile communications processor that in te-
grates on one chip, a high-performance PowerPC (PC603e) RISC microprocessor, a
highly flexible system integration unit, and many communications peripheral control-
lers that can be used in a variety of applications, particularly in communications and
networking systems.
The core is an embedded variant of the PC603e microprocessor, specifically referred
to later in this document as the EC603e, with 16 Kbytes of instruction cache and
16 Kbytes of data cache and floating-point unit (FPU). The system interface unit (SIU)
consists of a flexible memory controller that interfaces to almost any user-defined
memory system, a 60x-to-PCI bus bridge and many other peripherals, making this
device a complete system on a chip.
The communications processor module (CPM) includes all the peripherals found in
the PC860, with the addition of three high-performance communication channels that
support new emerging protocols (for example, 155-Mb ps ATM and Fast Ethernet).
Equipped with dedicated hardware, the PC8265A can handle up to 256 full-duplex,
time-division, multiplexed logical channels.
PowerPC-
based
Communications
Processor
PC8265A
PowerQUICC II
Preliminary
Specification
Alpha Site
2PC8265A PowerQUICC II 5336A–HIREL–08/03
Screening Quality
Packaging This product is manufactured in full compliance with:
Upscreening based upon Atmel standards
Military temperature range (TC = -55°C, TC = +125°C)
480-ball Tape Ball Grid Array package (TBGA 37.5 x 37.5 mm)
PC8265A Architecture
General Overview
Figure 1. PC8265A Block Diagram
Features The major features of the PC8265A family are as follows:
Dual-issue integer core
A core version of the EC603e microprocessor
System core microprocessor supporting frequencies of 150 – 300 MHz
Separate 16-Kbyte data and instruction caches:
Four-way set associative
Physically addressed
LRU replacem en t alg ori th m
PowerPC architecture-compliant memory management unit (MMU)
Common on-chip processor (COP) test interface
16 Kbytes
G2 Core
I-Cache
I-MMU
16 Kbytes
D-Cache
D-MMU
Communication Processor Module (CPM)
Timers
Parallel I/O
Baud Rate
Generators
32 Kbytes
32-bit RISC Microcontroller
and Program ROM
Serial
DMAs
4 Virtual
IDMAs
60x-to-PCI
Bridge
Bridge
Memory Controller
Clock Counter
System Functions
System Interface Unit
(SIU)
MCC1 MCC2 FCC1 FCC2 FCC3 SCC1 SCC2 SCC3 SCC4 SMC1 SMC2 SPI I2C
Serial Interface
3 MII 2 UTOPIA
PortsPorts
60x Bus
Dual-Port RAM
Interrupt
Controller
Time Slot Assigner
8 TDM P orts xed
I/O
60x-to-Local
Bus Interface Unit
Local Bus
32 bits, up to 83 MHz
PCI Bus
32 bits, up to 66 MHz
or
Non-Multiple
3
PC8265A PowerQUICC II
5336A–HIREL–08/03
High-performance (6.6 - 7.65 SPEC95 benchmark at 300 MHz; 1.68 MIPs/MHz
without inlining and 1.90 Dhrystones MIPS/MHz with inlining)
Supports bus snoopin g for data cache coherency
Floating-point unit (FPU)
Separate power supply for internal logic and for I/O
Separate PLLs for G2 core and for the CPM
G2 core and CPM can run at different frequencies for power/performance
optimization
Internal core/bus clock multiplier that provides 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1,
6:1 ratios
Internal CPM/bus clock multiplier that provides 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1
ratios
64-bit dat a an d 32 - bit add re ss 60 x bu s
Bus supports multiple master designs
Supports single- and four-beat burst transfers
64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
Supports data parity or ECC and address parity
32-bit data and 18-bit address local bus
Single-master bus, supports external slaves
Eight-beat burst transfers
32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
60x-to- PCI br idg e
Programmable host bridge and agent
32-bit data bus, 66 MHz, 3.3V
Synchronous and asynchronous 60x and PCI clock modes
All internal address space available to external PCI host
DMA for memory block transfers
PCI-to-60x address remapping
System interface unit (SIU)
Clock synthesizer
Reset controller
Real-time clock (RTC) register
Periodic interrupt timer
Hardware bus monitor and software watchdog timer
IEEE 1149.1 JTAG test access port
Twelve-bank memory controller
Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash and other
user-definable peripherals
Byte write enables and selectable parity generation
32-bit address decoder with programmable bank size
Three user programmable machines, general-purpose chip-select machine, and
page-mode pipeline SDRAM machine
Byte selects of 64 bus width (60x) and byte selects for 32 bus width (local)
Dedicated interface logic for SDRAM
4PC8265A PowerQUICC II 5336A–HIREL–08/03
CPU core can be disabled and the device can be used in slave mode to an external
core
Communications processor module (CPM)
Embedded 32-bit communication s processor ( CP) uses a RISC architecture fo r flex-
ible support of communications protocols
Interfaces to G2 core through an on-chip 32-Kbyte dual-port RAM and DMA
controller
Serial DMA channels for receive and transmit on all serial channels
Parallel I/O registers with open-drain and interrupt capability
Virtual DMA functionality executing memory-to-memory and memory-to-I/O
transfers
Three fast communications controllers supporting the following pro toc ols :
10/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through a media
independent interface (MII)
ATM – Full-duplex SAR protocols at 155 Mbps, through UTOPIA interface,
AAL5, AAL1, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up
to 16 K external connections
Transparent
HDLC – Up to T3 rates (clear channel)
Two multichannel controllers (MCCs)
Each MCC handles 128 serial, full-duplex, 64-Kbps data channels. Each
MCC can be split into four subgroups of 32 channels each
Almost any combination of subgroups can be multiplexed to single or
multiple TDM interfaces up to four TD M interfaces per MCC
Four serial communications controllers (SCCs) identical to those on the PC860,
supporting the digital portions of th e following protocols:
Ethernet/IEEE 802.3 CDMA/CS
HDLC/SDLC and HDLC bus
Universal as yn chr o no us rece ive r tra n sm itte r (UART)
Synchronous UART
Binary synchronous (BISYNC) communications
Transparent
Two serial management controllers (SMCs), identical to those of the PC860
Provides management for BRI devices as general circuit interface (GCI)
controllers in time-division-multiplexed (TDM) channels
Transparent
UART (low-speed operation)
One serial peripheral interface identical to the PC860 SPI
One inter-integrated circuit (I2C) controller (identical to the PC860 I2 C controller)
Microwire compatible
Multiple-master, single-master, and slave modes
Up to eight TDM interfaces
Supports two groups of four TDM channels for a total of eight TDMs
2,048 bytes of SI RAM
Bit or byte resolution
5
PC8265A PowerQUICC II
5336A–HIREL–08/03
Independent transmit and receive routing, frame synchronization
Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN
basic rate, ISDN primary rate, Motorola interchip digital link (IDL), general
circuit interface (GCI), and user-defined TDM serial interfaces
Eight independent b aud rate g enerato rs and 20 input clock pins for supplying clocks
to FCCs, SCCs, SMCs, and serial channels
Four independent 16-bit timers that can be interconnected as two 32-bit timers
•CPM
32-Kbyte dual-port RAM
Additional MCC host commands
CPM multiplexing
FCC2 can also be connected to the TC layer
PCI bridge
PCI Specification Revision 2.2 compliant and supports frequencies up to 66 MHz
On-chip arbit ra tio n
Support for PCI to 60x memory and 60x memory to PCI streaming
PCI Host Bridge or Peripheral capabilities
Includes 4 DMA channels for the following transfers:
PCI-to-60 x to 60x- to -PCI
60x-to-PCI to PCI-to-60x
PCI-to-60x to PCI-to-60x
60x-to- PCI to 60x-to-PCI
Includes all of the configuration registers (which are automatically loaded from the
EPROM and used to configure the PC8265A) required by the PCI standard as well
as message and doorbell registers
Supports the I2O standard
Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1
R1.0 August 3, 1998)
Support for 66 MHz, 3.3V specification
60x-PCI bus core log ic which uses a buffer pool to allocate buffers for each port
Makes use of the local b u s signals, so there is no need for additional pins
6PC8265A PowerQUICC II 5336A–HIREL–08/03
Pinout This section provides the pin assignments and pinout list for the PC8265A.
Pin Assignments Figure 2 shows the pinou t of the PC8265A’s 480 TBGA package as viewed from the top
surface.
Figure 2. Pinout of the 480 TBGA Package as Viewed fro m the Top Surface
1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829
Not to Scale
1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
7
PC8265A PowerQUICC II
5336A–HIREL–08/03
Figure 3 show s the side prof ile of the TBGA pa ckage to indi cate the dire ction of the top
surface view .
Figure 3. Side View of the TBGA Package
Table 1 shows the pinout list of the PC8265A. Table 2 on page 31 defines conventions
and acronyms used in Table 1.
Table 1. Pinout List
Pin Name Ball
BR W5
BG F4
ABB
IRQ2 E2
TS E3
A0 G1
A1 H5
A2 H2
A3 H1
A4 J5
A5 J4
A6 J3
A7 J2
A8 J1
A9 K4
A10 K3
A11 K2
A12 K1
A13 L5
A14 L4
A15 L3
A16 L2
Copper Traces
Die
Copper Heat Spreader
(Oxidized for Insulation)
1.27 mm Pitch Glob-Top Dam
Etched Pressure Sensitive
Die
P olymide Tape Cavity Adhesive
Attach
Soldermask Glob-Top Filled Area
View
8PC8265A PowerQUICC II 5336A–HIREL–08/03
A17 L1
A18 M5
A19 N5
A20 N4
A21 N3
A22 N2
A23 N1
A24 P4
A25 P3
A26 P2
A27 P1
A28 R1
A29 R3
A30 R5
A31 R4
TT0 F1
TT1 G4
TT2 G3
TT3 G2
TT4 F2
TBST D3
TSIZ0 C1
TSIZ1 E4
TSIZ2 D2
TSIZ3 F5
AACK F3
ARTRY E1
DBG V1
DBB
IRQ3 V2
D0 B20
D1 A18
D2 A16
D3 A13
D4 E12
D5 D9
Table 1. Pinout List (Continued)
Pin Name Ball
9
PC8265A PowerQUICC II
5336A–HIREL–08/03
D6 A6
D7 B5
D8 A20
D9 E17
D10 B15
D11 B13
D12 A11
D13 E9
D14 B7
D15 B4
D16 D19
D17 D17
D18 D15
D19 C13
D20 B11
D21 A8
D22 A5
D23 C5
D24 C19
D25 C17
D26 C15
D27 D13
D28 C11
D29 B8
D30 A4
D31 E6
D32 E18
D33 B17
D34 A15
D35 A12
D36 D11
D37 C8
D38 E7
D39 A3
D40 D18
D41 A17
Table 1. Pinout List (Continued)
Pin Name Ball
10 PC8265A PowerQUICC II 5336A–HIREL–08/03
D42 A14
D43 B12
D44 A10
D45 D8
D46 B6
D47 C4
D48 C18
D49 E16
D50 B14
D51 C12
D52 B10
D53 A7
D54 C6
D55 D5
D56 B18
D57 B16
D58 E14
D59 D12
D60 C10
D61 E8
D62 D6
D63 C2
DP0
RSRV
EXT_BR2 B22
IRQ1
DP1
EXT_BG2 A22
IRQ2
DP2
TLBISYNC
EXT_DBG2
E21
IRQ3
DP3
CKSTP_OUT
EXT_BR3
D21
Table 1. Pinout List (Continued)
Pin Name Ball
11
PC8265A PowerQUICC II
5336A–HIREL–08/03
IRQ4
DP4
CORE_SRESET
EXT_BG3
C21
IRQ5
DP5
TBEN
EXT_DBG3
B21
IRQ6
DP6
CSE0 A21
IRQ7
DP7
CSE1 E20
PSDVAL V3
TA C22
TEA V5
GBL
IRQ1 W1
CI
BADDR29
IRQ2 U2
WT
BADDR30
IRQ3 U3
L2_HIT
IRQ4 Y4
CPU_BG
BADDR31
IRQ5 U4
CPU_DBG R2
CPU_BR Y3
CS0 F25
CS1 C29
CS2 E27
CS3 E28
CS4 F26
CS5 F27
CS6 F28
CS7 G25
Table 1. Pinout List (Continued)
Pin Name Ball
12 PC8265A PowerQUICC II 5336A–HIREL–08/03
CS8 D29
CS9 E29
CS10
BCTL1 F29
CS11
AP0 G28
BADDR27 T5
BADDR28 U1
ALE T2
BCTL0 A27
PWE0
PSDDQM0
PBS0 C25
PWE1
PSDDQM1
PBS1 E24
PWE2
PSDDQM2
PBS2 D24
PWE3
PSDDQM3
PBS3 C24
PWE4
PSDDQM4
PBS4 B26
PWE5
PSDDQM5
PBS5 A26
PWE6
PSDDQM6
PBS6 B25
PWE7
PSDDQM7
PBS7 A25
PSDA10
PGPL0 E23
PSDWE
PGPL1 B24
POE
PSDRAS
PGPL2 A24
Table 1. Pinout List (Continued)
Pin Name Ball
13
PC8265A PowerQUICC II
5336A–HIREL–08/03
PSDCAS
PGPL3 B23
PGTA
PUPMWAIT
PGPL4
PPBS
A23
PSDAMUX
PGPL5 D22
LWE0
LSDDQM0
LBS0
PCI_CFG0
H28
LWE1
LSDDQM1
LBS1
PCI_CFG1
H27
LWE2
LSDDQM2
LBS2
PCI_CFG2
H26
LWE3
LSDDQM3
LBS3
PCI_CFG3
G29
LSDA10
LGPL0
PCI_MODCKH0 D27
LSDWE
LGPL1
PCI_MODCKH1 C28
LOE
LSDRAS
LGPL2
PCI_MODCKH2
E26
LSDCAS
LGPL3
PCI_MODCKH3 D25
LGTA
LUPMWAIT
LGPL4
LPBS
C26
Table 1. Pinout List (Continued)
Pin Name Ball
14 PC8265A PowerQUICC II 5336A–HIREL–08/03
LGPL5
LSDAMUX
PCI_MODCK B27
LWR D28
L_A14
PAR N27
L_A15
FRAME
SMI T29
L_A16
TRDY R27
L_A17
IRDY
CKSTP_OUT R26
L_A18
STOP R29
L_A19
DEVSEL R28
L_A20
IDSEL W29
L_A21
PERR P28
L_A22
SERR N26
L_A23
REQ0 AA27
L_A24
REQ1
HSEJSW P29
L_A25
GNT0 AA26
L_A26
GNT1
HSLED N25
L_A27
GNT2
HSENUM AA25
L_A28
RST
CORE_SRESET AB29
L_A29
INTA AB28
Table 1. Pinout List (Continued)
Pin Name Ball
15
PC8265A PowerQUICC II
5336A–HIREL–08/03
L_A30
REQ2 P25
L_A31
DLLOUT AB27
LCL_D0
AD0 H29
LCL_D1
AD1 J29
LCL_D2
AD2 J28
LCL_D3
AD3 J27
LCL_D4
AD4 J26
LCL_D5
AD5 J25
LCL_D6
AD6 K25
LCL_D7
AD7 L29
LCL_D8
AD8 L27
LCL_D9
AD9 L26
LCL_D10
AD10 L25
LCL_D11
AD11 M29
LCL_D12
AD12 M28
LCL_D13
AD13 M27
LCL_D14
AD14 M26
LCL_D15
AD15 N29
LCL_D16
AD16 T25
LCL_D17
AD17 U27
Table 1. Pinout List (Continued)
Pin Name Ball
16 PC8265A PowerQUICC II 5336A–HIREL–08/03
LCL_D18
AD18 U26
LCL_D19
AD19 U25
LCL_D20
AD20 V29
LCL_D21
AD21 V28
LCL_D22
AD22 V27
LCL_D23
AD23 V26
LCL_D24
AD24 W27
LCL_D25
AD25 W26
LCL_D26
AD26 W25
LCL_D27
AD27 Y29
LCL_D28
AD28 Y28
LCL_D29
AD29 Y25
LCL_D30
AD30 AA29
LCL_D31
AD31 AA28
LCL_DP0
C0
BE0 L28
LCL_DP1
C1
BE1 N28
LCL_DP2
C2
BE2 T28
LCL_DP3
C3
BE3 W28
Table 1. Pinout List (Continued)
Pin Name Ball
17
PC8265A PowerQUICC II
5336A–HIREL–08/03
IRQ0
NMI_OUT T1
IRQ7
INT_OUT
APE D1
TRST AH3
TCK AG5
TMS AJ3
TDI AE6
TDO AF5
TRIS AB4
PORESET AG6
HRESET AH5
SRESET AF6
QREQ AA3
RSTCONF AJ4
MODCK1
AP1
TC0
BNKSEL0
W2
MODCK2
AP2
TC1
BNKSEL1
W3
MODCK3
AP3
TC2
BNKSEL2
W4
XFC AB2
CLKIN1 AH4
PA0
RESTART1
DREQ3
FCC2_UTM_TXADDR2
AC29
PA1
REJECT1
FCC2_UTM_TXADDR1
DONE3
AC25
Table 1. Pinout List (Continued)
Pin Name Ball
18 PC8265A PowerQUICC II 5336A–HIREL–08/03
PA2
CLK20
FCC2_UTM_TXADDR0
DACK3
AE28
PA3
CLK19
FCC2_UTM_RXADDR0
DACK4
L1RXD1A2
AG29
PA4
REJECT2
FCC2_UTM_RXADDR1
DONE4
AG28
PA5
RESTART2
DREQ4
FCC2_UTM_RXADDR2
AG26
PA6
L1RSYNCA1 AE24
PA7
SMSYN2
L1TSYNCA1
L1GNTA1
AH25
PA8
SMRXD2
L1RXD0A1
L1RXDA1
AF23
PA9
SMTXD2
L1TXD0A1 AH23
PA10
FCC1_UT8_RXD0
FCC1_UT16_RXD8
MSNUM5
AE22
PA11
FCC1_UT8_RXD1
FCC1_UT16_RXD9
MSNUM4
AH22
PA12
FCC1_UT8_RXD2
FCC1_UT16_RXD10
MSNUM3
AJ21
Table 1. Pinout List (Continued)
Pin Name Ball
19
PC8265A PowerQUICC II
5336A–HIREL–08/03
PA13
FCC1_UT8_RXD3
FCC1_UT16_RXD11
MSNUM2
AH20
PA14
FCC1_UT8_RXD4
FCC1_UT16_RXD12
FCC1_RXD3
AG19
PA15
FCC1_UT8_RXD5
FCC1_UT16_RXD13
FCC1_RXD2
AF18
PA16
FCC1_UT8_RXD6
FCC1_UT16_RXD14
FCC1_RXD1
AF17
PA17
FCC1_UT8_RXD7
FCC1_UT16_RXD15
FCC1_RXD0
FCC1_RXD
AE16
PA18
FCC1_UT8_TXD7
FCC1_UT16_TXD15
FCC1_TXD0
FCC1_TXD
AJ16
PA19
FCC1_UT8_TXD6
FCC1_UT16_TXD14
FCC1_TXD1
AG15
PA20
FCC1_UT8_TXD5
FCC1_UT16_TXD13
FCC1_TXD2
AJ13
PA21
FCC1_UT8_TXD4
FCC1_UT16_TXD12
FCC1_TXD3
AE13
PA22
FCC1_UT8_TXD3
FCC1_UT16_TXD11 AF12
PA23
FCC1_UT8_TXD2
FCC1_UT16_TXD10 AG11
Table 1. Pinout List (Continued)
Pin Name Ball
20 PC8265A PowerQUICC II 5336A–HIREL–08/03
PA24
FCC1_UT8_TXD1
FCC1_UT16_TXD9
MSNUM1
AH9
PA25
FCC1_UT8_TXD0
FCC1_UT16_TXD8
MSNUM0
AJ8
PA26
FCC1_UTM_RXCLAV
FCC1_UTS_RXCLAV
FCC1_MII_RX_ER
AH7
PA27
FCC1_UT_RXSOC
FCC1_MII_RX_DV AF7
PA28
FCC1_UTM_RXENB
FCC1_UTS_RXENB
FCC1_MII_TX_EN
AD5
PA29
FCC1_UT_TXSOC
FCC1_MII_TX_ER AF1
PA30
FCC1_UTM_TXCLAV
FCC1_UTS_TXCLAV
FCC1_MII_CRS
FCC1_RTS
AD3
PA31
FCC1_UTM_TXENB
FCC1_UTS_TXENB
FCC1_MII_COL
AB5
PB4
FCC3_TXD3
FCC2_UT8_RXD0
L1RSYNCA2
FCC3_RTS
AD28
PB5
FCC3_TXD2
FCC2_UT8_RXD1
L1TSYNCA2
L1GNTA2
AD26
Table 1. Pinout List (Continued)
Pin Name Ball
21
PC8265A PowerQUICC II
5336A–HIREL–08/03
PB6
FCC3_TXD1
FCC2_UT8_RXD2
L1RXDA2
L1RXD0A2
AD25
PB7
FCC3_TXD0
FCC3_TXD
FCC2_UT8_RXD3
L1TXDA2
L1TXD0A2
AE26
PB8
FCC2_UT8_TXD3
FCC3_RXD0
FCC3_RXD
TXD3
L1RSYNCD1
AH27
PB9
FCC2_UT8_TXD2
FCC3_RXD1
L1TXD2A2
L1TSYNCD1
L1GNTD1
AG24
PB10
FCC2_UT8_TXD1
FCC3_RXD2
L1RXDD1
AH24
PB11
FCC3_RXD3
FCC2_UT8_TXD0
L1TXDD1
AJ24
PB12
FCC3_MII_CRS
L1CLKOB1
L1RSYNCC1
TXD2
AG22
PB13
FCC3_MII_COL
L1RQB1
L1TSYNCC1
L1GNTC1
L1TXD1A2
AH21
Table 1. Pinout List (Continued)
Pin Name Ball
22 PC8265A PowerQUICC II 5336A–HIREL–08/03
PB14
FCC3_MII_TX_EN
RXD3
L1RXDC1
AG20
PB15
FCC3_MII_TX_ER
RXD2
L1TXDC1
AF19
PB16
FCC3_MII_RX_ER
L1CLKOA1
CLK18
AJ18
PB17
FCC3_MII_RX_DV
L1RQA1
CLK17
AJ17
PB18
FCC2_UT8_RXD4
FCC2_RXD3
L1CLKOD2
L1RXD2A2
AE14
PB19
FCC2_UT8_RXD5
FCC2_RXD2
L1RQD2
L1RXD3A2
AF13
PB20
FCC2_UT8_RXD6
FCC2_RXD1
L1RSYNCD2
L1TXD1A1
AG12
PB21
FCC2_UT8_RXD7
FCC2_RXD0
FCC2_RXD
L1TSYNCD2
L1GNTD2
L1TXD2A1
AH11
PB22
FCC2_UT8_TXD7
FCC2_TXD0
FCC2_TXD
L1RXD1A1
L1RXDD2
AH16
Table 1. Pinout List (Continued)
Pin Name Ball
23
PC8265A PowerQUICC II
5336A–HIREL–08/03
PB23
FCC2_UT8_TXD6
FCC2_TXD1
L1RXD2A1
L1TXDD2
AE15
PB24
FCC2_UT8_TXD5
FCC2_TXD2
L1RXD3A1
L1RSYNCC2
AJ9
PB25
FCC2_UT8_TXD4
FCC2_TXD3
L1TSYNCC2
L1GNTC2
L1TXD3A1
AE9
PB26
FCC2_MII_CRS
FCC2_UT8_TXD1
L1RXDC2
AJ7
PB27
FCC2_MII_COL
FCC2_UT8_TXD0
L1TXDC2
AH6
PB28
FCC2_MII_RX_ER
FCC2_RTS
L1TSYNCB2
L1GNTB2
TXD1
AE3
PB29
FCC2_UTM_RXCLAV
FCC2_UTS_RXCLAV
L1RSYNCB2
FCC2_MII_TX_EN
AE2
PB30
FCC2_MII_RX_DV
FCC2_UT_TXSOC
L1RXDB2
AC5
PB31
FCC2_MII_TX_ER
FCC2_UT_RXSOC
L1TXDB2
AC4
Table 1. Pinout List (Continued)
Pin Name Ball
24 PC8265A PowerQUICC II 5336A–HIREL–08/03
PC0
DREQ1
BRGO7
SMSYN2
L1CLKOA2
AB26
PC1
DREQ2
BRGO6
L1RQA2
AD29
PC2
FCC3_CD
FCC2_UT8_TXD3
DONE2
AE29
PC3
FCC3_CTS
FCC2_UT8_TXD2
DACK2
CTS4
AE27
PC4
FCC2_UTM_RXENB
FCC2_UTS_RXENB
SI2_L1ST4
FCC2_CD
AF27
PC5
FCC2_UTM_TXCLAV
FCC2_UTS_TXCLAV
SI2_L1ST3
FCC2_CTS
AF24
PC6
FCC1_CD
L1CLKOC1
FCC1_UTM_RXADDR2
FCC1_UTS_RXADDR2
FCC1_UTM_RXCLAV1
AJ26
PC7
FCC1_CTS
L1RQC1
FCC1_UTM_TXADDR2
FCC1_UTS_TXADDR2
FCC1_UTM_TXCLAV1
AJ25
Table 1. Pinout List (Continued)
Pin Name Ball
25
PC8265A PowerQUICC II
5336A–HIREL–08/03
PC8
CD4
RENA4
FCC1_UT16_TXD0
SI2_L1ST2
CTS3
AF22
PC9
CTS4
CLSN4
FCC1_UT16_TXD1
SI2_L1ST1
L1TSYNCA2
L1GNTA2
AE21
PC10
CD3
RENA3
FCC1_UT16_TXD2
SI1_L1ST4
FCC2_UT8_RXD3
AF20
PC11
CTS3
CLSN3
L1CLKOD1
L1TXD3A2
FCC2_UT8_RXD2
AE19
PC12
CD2
RENA2
SI1_L1ST3
FCC1_UTM_RXADDR1
FCC1_UTS_RXADDR1
AE18
PC13
CTS2
CLSN2
L1RQD1
FCC1_UTM_TXADDR1
FCC1_UTS_TXADDR1
AH18
PC14
CD1
RENA1
FCC1_UTM_RXADDR0
FCC1_UTS_RXADDR0
AH17
Table 1. Pinout List (Continued)
Pin Name Ball
26 PC8265A PowerQUICC II 5336A–HIREL–08/03
PC15
CTS1
CLSN1
SMTXD2
FCC1_UTM_TXADDR0
FCC1_UTS_TXADDR0
AG16
PC16
CLK16
TIN4 AF15
PC17
CLK15
TIN3
BRGO8
AJ15
PC18
CLK14
TGATE2 AH14
PC19
CLK13
BRGO7 AG13
PC20
CLK12
TGATE1 AH12
PC21
CLK11
BRGO6 AJ11
PC22
CLK10
DONE1 AG10
PC23
CLK9
BRGO5
DACK1
AE10
PC24
FCC2_UT8_TXD3
CLK8
TOUT4
AF9
PC25
FCC2_UT8_TXD2
CLK7
BRGO4
AE8
Table 1. Pinout List (Continued)
Pin Name Ball
27
PC8265A PowerQUICC II
5336A–HIREL–08/03
PC26
CLK6
TOUT3
TMCLK
AJ6
PC27
FCC3_TXD
FCC3_TXD0
CLK5
BRGO3
AG2
PC28
CLK4
TIN1
TOUT2
CTS2
CLSN2
AF3
PC29
CLK3
TIN2
BRGO2
CTS1
CLSN1
AF2
PC30
FCC2_UT8_TXD3
CLK2
TOUT1
AE1
PC31
CLK1
BRGO1 AD1
PD4
BRGO8
L1TSYNCD1
L1GNTD1
FCC3_RTS
SMRXD2
AC28
PD5
FCC1_UT16_TXD3
DONE1 AD27
PD6
FCC1_UT16_TXD4
DACK1 AF29
Table 1. Pinout List (Continued)
Pin Name Ball
28 PC8265A PowerQUICC II 5336A–HIREL–08/03
PD7
SMSYN1
FCC1_UTM_TXADDR3
FCC1_UTS_TXADDR3
FCC1_TXCLAV2
AF28
PD8
SMRXD1
FCC2_UT_TXPRTY
BRGO5
AG25
PD9
SMTXD1
FCC2_UT_RXPRTY
BRGO3
AH26
PD10
L1CLKOB2
FCC2_UT8_RXD1
L1RSYNCB1
BRGO4
AJ27
PD11
L1RQB2
FCC2_UT8_RXD0
L1TSYNCB1
L1GNTB1
AJ23
PD12
SI1_L1ST2
L1RXDB1 AG23
PD13
SI1_L1ST1
L1TXDB1 AJ22
PD14
FCC1_UT16_RXD0
L1CLKOC2
I2CSCL
AE20
PD15
FCC1_UT16_RXD1
L1RQC2
I2CSDA
AJ20
PD16
FCC1_UT_TXPRTY
L1TSYNCC1
L1GNTC1
SPIMISO
AG18
Table 1. Pinout List (Continued)
Pin Name Ball
29
PC8265A PowerQUICC II
5336A–HIREL–08/03
PD17
FCC1_UT_RXPRTY
BRGO2
SPIMOSI
AG17
PD18
FCC1_UTM_RXADDR4
FCC1_UTS_RXADDR4
FCC1_UTM_RXCLAV3
SPICLK
AF16
PD19
FCC1_UTM_TXADDR4
FCC1_UTS_TXADDR4
FCC1_UTM_TXCLAV3
SPISEL
BRGO1
AH15
PD20
RTS4
TENA4
FCC1_UT16_RXD2
L1RSYNCA2
AJ14
PD21
TXD4
FCC1_UT16_RXD3
L1RXD0A2
L1RXDA2
AH13
PD22
RXD4
FCC1_UT16_TXD5
L1TXD0A2
L1TXDA2
AJ12
PD23
RTS3
TENA3
FCC1_UT16_RXD4
L1RSYNCD1
AE12
PD24
TXD3
FCC1_UT16_RXD5
L1RXDD1
AF10
PD25
RXD3
FCC1_UT16_TXD6
L1TXDD1
AG9
Table 1. Pinout List (Continued)
Pin Name Ball
30 PC8265A PowerQUICC II 5336A–HIREL–08/03
PD26
RTS2
TENA2
FCC1_UT16_RXD6
L1RSYNCC1
AH8
PD27
TXD2
FCC1_UT16_RXD7
L1RXDC1
AG7
PD28
RXD2
FCC1_UT16_TXD7
L1TXDC1
AE4
PD29
RTS1
TENA1
FCC1_UTM_RXADDR3
FCC1_UTS_RXADDR3
FCC1_UTM_RXCLAV2
AG1
PD30
FCC2_UTM_TXENB
FCC2_UTS_TXENB
TXD1
AD4
PD31
RXD1 AD2
SYN AB3
SYN1 B9
GNDSYN AB1
CLKIN2(1) AE11
SPARE4(2) U5
PCI_MODE(3) AF25
SPARE6(2) V4
THERMAL0(4) AA1
THERMAL1(4) AG4
Table 1. Pinout List (Continued)
Pin Name Ball
31
PC8265A PowerQUICC II
5336A–HIREL–08/03
Notes: 1. This pin should be used as CLKIN2
2. Must be pulled down or left floating
3. This pin should be asserted if the PCI function is desired or pulled up or left floating if
PCI is not desired
4. For information on how to use this pin, refer to MPC8260 PowerQUICC II Thermal
Resistor Guide available at www.motorola.com/semiconductors
Symbols used in Table 1 are described in Table 2.
I/O Power AG21, AG14, AG8, AJ1, AJ2, AH1, AH2,
AG3, AF4, AE5, AC27, Y27, T27, P27, K26,
G27, AE25, AF26, AG27, AH28, AH29, AJ28,
AJ29, C7, C14, C16, C20, C23, E10, A28,
A29, B28, B29, C27, D26, E25, H3, M4, T3,
AA4, A1, A2, B1, B2, C3, D4, E5
Core Power U28, U29, K28, K29, A9, A19, B19, M1, M2,
Y1, Y2, AC1, AC2, AH19, AJ19, AH10, AJ10,
AJ5
Ground AA5, AF21, AF14, AF8, AE7, AF11, AE17,
AE23, AC26, AB25, Y26, V25, T26, R25,
P26, M25, K27, H25, G26, D7, D10, D14,
D16, D20, D23, C9, E11, E13, E15, E19, E22,
B3, G5, H4, K5, M3, P5, T4, Y5, AA2, AC3
Table 2. Symbol Legend
Symbol Meaning
OVERBAR Signals with overbars, such as TA, are active low
UTM Indicates that a signal is part of the UTOPIA master interface
UTS Indicates that a signal is part of the UTOPIA slave interface
UT8 Indicates that a signal is part of the 8-bit UTOPIA interface
UT16 Indicates that a signal is part of the 16-bit UTOPIA interface
MII Indicates that a signal is part of the media independent interface
Table 1. Pinout List (Continued)
Pin Name Ball
32 PC8265A PowerQUICC II 5336A–HIREL–08/03
Electrical and Thermal
Characteristics This section provides AC and DC electrical specifications and thermal characteristics for
the PC8265A.
DC Electrical Characteristics This section describes the DC electrical characteristics for the PC8265A. Table 3 shows
the maximum electrical ratings.
Notes: 1. Absolute maximum ratings are stress ratings only; functi onal ope ration (see Table 4)
at the maximums is not guaranteed. Stress beyond those listed may affect device
reliability or cause permanent damage.
2. Caution: VDD/SYN must not exceed VDDH by more than 0.4V at any time, including
during power-on reset.
3. Caution : VDDH can excee d VDD/SYN by 3.3V d uring power on reset by no more than
100 ms. VDDH should not exceed VDD/SYN by more than 2.5V during normal
operation.
4. Caution: VIN must not exceed VDDH by more than 2.5V at any time, includi ng during
power-on reset.
Table 4 lists recommended operational voltage conditions.
Notes: 1. Caution: These are the recommended and tested operating conditions. Proper device
operation outside of these conditions is not guaranteed
2. CPU frequency less than or equal to 200 MHz
3. CPU frequency greater than 200 MHz but less than or equal 233 MHz
4. CPU frequency greater than 233 MHz
Note: VDDH and VDD must track each other and both must vary in the same direction – in the
positive direction (+5% and +0.1 VDC) or in the negative direction (-5% and -0.1 VDC).
Table 3. Absolute Maximum Ratings(1)
Rating Symbol Value Unit
Core supply voltage(2) VDD -0.3 – +2.5 V
PLL supply voltage(2) SYN -0.3 – +2.5 V
I/O supply voltage(3) VDDH -0.3 – +4.0 V
Input voltage(4) VIN GND(-0.3) – +3.6 V
Storage temperature range TSTG -55+150 °C
Table 4. Recommended Operating Conditions(1)
Rating Symbol Value Unit
Core supply voltage VDD 1.7 – 1.9(2) 1.7 – 2.1(3) 1.9 – 2.2(4) V
PLL supply voltag e SYN 1.7 – 1.9(2) 1.7 – 2.1(3) 1.9 – 2.2(4) V
CPU minimum frequency Fmin 150 190 190 MHz
I/O supply voltage VDDH 3.135 – 3.465 V
Input voltage VIN GND (-0.3) – 3.465 V
Tcase TC-55 – +125 °C
33
PC8265A PowerQUICC II
5336A–HIREL–08/03
This device contains circuitry protection against damage due to high static voltage or
electrical fields; however, it is advised that normal precautio ns be taken to avoid applica-
tion of any voltages higher than maximum-rated voltages. Reliability of operation is
enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or
VCC).
Table 5 shows DC Electrical Characteristics
Table 5. DC Electrical Characteristics
Characteristic Symbol Min Max Unit
Input high voltage, all inputs except CLKIN VIH 2.0 3.465 V
Input low voltage VIL GND 0.8 V
CLKIN input high voltage VIHC 2.4 3.465 V
CLKIN input low voltage VILC GND 0.4 V
Input leakage current, VIN = VDDH IIN –10µA
Hi-Z (off state) leakage current, VIN = VDDH IOZ –10µA
Signal low input current, VIL = 0.8V IL–1µA
Signal high input current, VIH = 2.0V IH–1µA
Output high voltage, IOH = -2 mA
except XFC, UTOPIA mode, and open drain pins
In UTOPIA mode: IOH = -8.0 mA
PA[0-31]
PB[4-31]
PC[0-31]
PD[4-31]
VOH 2.4 V
In UTOPIA mode: IOL = 8.0 mA
PA[0-31]
PB[4-31]
PC[0-31]
PD[4-31]
VOL –0.5V
IOL = 7.0 mA
BR
BG
ABB/IRQ2
TS
A[0-31]
TT[0-4]
TBST
TSIZE[0–3]
AACK
ARTRY
DBG
VOL –0.4V
34 PC8265A PowerQUICC II 5336A–HIREL–08/03
DBB/IRQ3
D[0-63]
DP(0)/RSRV/EXT_BR2
DP(1)/IRQ1/EXT_BG2
DP(2)/TLBISYNC/IRQ2/EXT_DBG2
DP(3)/IRQ3/EXT_BR3/CKSTP_OUT
DP(4)/IRQ4/EXT_BG3/CORE_SREST
DP(5)/TBEN/IRQ5/EXT_DBG3
DP(6)/CSE(0)/IRQ6
DP(7)/CSE(1)/IRQ7
PSDVAL
TA
TEA
GBL/IRQ1
CI/BADDR29/IRQ2
WT/BADDR30/IRQ3
L2_HIT/IRQ4
CPU_BG/BADDR31/IRQ5
CPU_DBG
CPU_BR
IRQ0/NMI_OUT
IRQ7/INT_OUT/APE
PORESET
HRESET
SRESET
RSTCONF
QREQ
IOL = 5.3 mA
CS[0-9]
CS(10)/BCTL1
CS(11)/AP(0)
BADDR[27–28]
ALE
BCTL0
PWE(0:7)/PSDDQM(0:7)/PBS(0:7)
PSDA10/PGPL0
PSDWE/PGPL1
POE/PSDRAS/PGPL2
PSDCAS/PGPL3
PGTA/PUPMWAIT/PGPL4/PPBS
PSDAMUX/PGPL5
LWE[0–3]LSDDQM[0–3]/LBS[0–3]/PCI_CFG[0–3(1)
LSDA10/LGPL0/PCI_MODCKH0(1)
LSDWE/LGPL1/PCI_MODCKH1(1)
VOL –0.4V
Table 5. DC Electrical Characteristics (Continued)
Characteristic Symbol Min Max Unit
35
PC8265A PowerQUICC II
5336A–HIREL–08/03
Note: 1. The leakage current is measured for nominal VDDH and VDD or both VDDH and VDD
must vary in the same direction; that is, V DDH and VDD either b oth vary in th e posit ive
direction (+5% and +0.1 VDC) or both vary in the negative direction
(-5% and -0.1 VDC)
LOE/LSDRAS/LGPL2/PCI_MODCKH2(1)
LSDCAS/LGPL3/PCI_MODCKH3(1)
LGTA/LUPMWAIT/LGPL4/LPBS
LSDAMUX/LGPL5/PCI_MODCK(1)
LWR
MODCK1/AP(1)/TC(0)/BNKSEL(0)
MODCK2/AP(2)/TC(1)/BNKSEL(1)
MODCK3/AP(3)/TC(2)/BNKSEL(2)
IOL = 3.2 mA
L_A14/PAR(1)
L_A15/FRAME(1)/SMI
L_A16/TRDY(1)
L_A17/IRDY(1)/CKSTP_OUT
L_A18/STOP(1)
L_A19/DEVSEL(1)
L_A20/IDSEL(1)
L_A21/PERR(1)
L_A22/SERR(1)
L_A23/REQ0(1)
L_A24/REQ1(1)/HSEJSW(1)
L_A25/GNT0(1)
L_A26/GNT1(1)/HSLED(1)
L_A27/GNT2(1)/HSENUM(1)
L_A28/RST(1)/CORE_SRESET
L_A29/INTA(1)
L_A30/REQ2(1)
L_A31
LCL_D(0-31)/AD(0-31)(1)
LCL_DP(0-3)/C/BE(0-3)(1)
PA[0–31]
PB[4–31]
PC[0–31]
PD[4–31]
TDO
Table 5. DC Electrical Characteristics (Continued)
Characteristic Symbol Min Max Unit
36 PC8265A PowerQUICC II 5336A–HIREL–08/03
Thermal Characteristics Table 6 describes thermal characteristics.
Notes: 1. Assumes a single layer board with no thermal vias
2. Natu ral convection
3. Assumes a four layer board
4. Thermal resistance between the die and the printed circuit board per JEDEC
JESD51-8. Board temperature is measured on the top surface of the board near the
package
5. Thermal resistance between the die and the case top surface as measured by the
cold plate method (MIL SPEC-883 Method 1012 .1)
Power Considerations The average chip-junction temp erature, TJ, in °C can be obtained from the following:
TJ = TA + (PD x ΘJA) (1)
where
TA = ambient temperature °C
ΘJA = package thermal resistance, junction to ambient, °C/W
PD = PINT + PI/O
PINT = IDD x VDD Watts (chip internal power)
PI/O = power dissipation on input and output pins (determined by user)
For most applications PI/O < 0.3 x PINT. If PI/O is neglected, an approximate relationship
between PD and TJ is as follows:
PD = K/(TJ + 273°C) (2)
Solving equations (1) and (2) for K gives:
K = PD x (TA + 273°C) + ΘJA x PD2(3)
where K is a constant pertaining to the particular part. K can be determined from equa-
tion (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the
values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any
value of TA.
Table 6. Thermal Character istics for the 480 TBGA Package
Characteristics Symbol Value Unit Air Flow
Junction to ambient
ΘJA 13.07(1) °C/W NC(2)
ΘJA 9.55(1) °C/W 1 m/s
ΘJA 10.48(3) °C/W NC
ΘJA 7.78(3) °C/W 1 m/s
Junction to board(4) ΘJB 6°C/W
Junction to case(5) ΘJC 2°C/W
37
PC8265A PowerQUICC II
5336A–HIREL–08/03
Layout Practices Each pin should be provided with a low-impedance path to the board’s power supply.
Each ground pin should likewise be provided with a low-impedance path to ground. The
power supply p ins dr ive distinct gr oup s of lo gic on the chip. The power supply should be
bypassed to ground using at least four 0.1 µF by-pass cap acitors located as close as
possible to the four sides of the package. The capacitor leads and associated printe d
circuit trace s conne cting to the chip and ground should be kept to less than half an inch
per capacitor lead. A four-layer board is recommended, employing two inner layers as
GND planes.
All output pins on the PC8265A have fast rise and fall times. Printed circui t (PC) trace
interconnection length should be mini mized in order to minim ize over dam ped co nd itio ns
and reflections caused by these fast output switching times. This recommendation par-
ticularly applies to the address and data buses.
Maximum PC trace lengths of six inches are recommended. Capacitance calculations
should consider all device loads as well as parasitic capacitances due to the PC traces.
Attention to proper PCB layout and bypassing becomes especially critical in systems
with higher capacitive loads because these loads create higher transient currents in the
GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special
care should be taken to minimize the noise levels on the PLL supply pins.
Table 7 provides preliminary, estimated po wer dissipation for various configurations.
Note that suitable thermal ma nagement is required fo r conditions above PD = 3W (when
the ambient temperature is 70°C or greater) to ensure the junction temperature does not
exceed the maximum specified value. Also note that the I/O power should be included
when determining whether to use a heat sink.
Notes: 1. Test temperature = room temperature (25°C)
2. PINT = IDD x VDD Watts (chip internal power)
Table 7. Estimated Power Dissipation for Vari ous Configurations(1)
Bus (MHz) CPM
Multiplier Core CPU
Multiplier CPM (MHz) CPU (MHz)
PINT(W)(2)
Vddl 1.8 Volts Vddl 2.0 Volts
Nominal Maximum Nominal Maximum
66.66 2 3 133 200 1.2 2 1.8 2.3
66.66 2.5 3 166 200 1.3 2.1 1.9 2.3
66.66 3 4 200 266 2.3 2.9
66.66 3 4.5 200 300 2.4 3.1
83.33 2 3 166 250 2.2 2.8
83.33 2 3 166 250 2.2 2.8
83.33 2.5 3.5 208 291 2.4 3.1
38 PC8265A PowerQUICC II 5336A–HIREL–08/03
AC Electrical
Characteristics The following sections include illustrations and tables of clock diagrams, signals, and
CPM outputs and inputs for the 66 MHz PC8265A device. Note that AC timings are
based on a 50-pf load. Typical output buffer impedances are shown in Table 8.
Note: 1. These are typical values at 65°C. The impedance may vary by ±25% with process
and temperature.
Table 9 lists CPM output characteristics.
Note: 1. Output specifications are measured from the 5 0% level of the rising edge of CLKIN to the 50% level of the signal. T imings
are measured at the pin.
Table 10 lists CPM input characteristics.
Note: 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are
measured at the pin.
Note that although the specificatio ns generally refe rence the risin g edge of the clock, th e following AC timing diagra ms also
apply when the falling edge is the active edge.
Table 8. Output Buffer Impedances(1)
Output Buffers Typical Impedance (Ω)
60x bus 40
Local bu s 40
Memory Controller 40
Parallel I/O 46
PCI 25
Table 9. AC Characteristics for CPM Outputs(1)
Spec_num Max/Min Characteristic
Max Delay (ns) Min Delay (ns)
66 MHz 83 MHz 66 MHz 83 MHz
sp36a/sp37a FCC outputs – internal clock (NMSI) 6 5.5 1 1
sp36b/sp37b FCC outputs – external clock (NMSI) 14 12 2 1
sp38a/sp39a SCC/SMC/SPI/I2C outputs – internal clock (NMSI) 19 16 1 0.5
sp38b/sp39b Ex_SCC/SMC/SPI/I2C outputs – externa l clock (NMSI) 19 16 2 1
sp42/sp43 TIMER/IDMA outputs 14 11 1 0.5
sp42a/sp43a PIO outputs 14 11 0.5 0.5
Table 10. AC Characteristics for CPM Inputs(1)
Spec_num Characteristic
Setup (ns) Hold (ns)
66 MHz 83 MHz 66 MHz 83 MHz
sp16a/sp17a FCC inputs – internal clock (NMSI) 10 8 0 0
sp16b/sp17b FCC inputs – external clock (NMSI) 3 2.5 3 2
sp20/sp21 TDM inputs/SI 15 12 12 10
sp18a/sp19a SCC/SMC/SPI/I2C inputs – internal clock (NMSI) 20 16 0 0
sp18b/sp19b SCC/SMC/SPI/I2C inputs external clock (NMSI) 5454
sp22/sp23 PIO/TIMER/IDMA inputs 10 8 3 3
39
PC8265A PowerQUICC II
5336A–HIREL–08/03
Figure 4 shows the FCC external clock.
Figure 4. FCC External Clock Diagram
Figure 5 shows the FCC internal clock.
Figure 5. FCC Internal Clock Diagram
Serial ClKin
FCC input signals
FCC output signals
when GFMR[TCI] = 1
when GFMR[TCI] = 0
sp16b sp17b
sp36b/sp37b
sp36b/sp37b
FCC output signals
BRG_OUT
FCC input signals
FCC output signals
when GFMR.TCI = 1
when GFMR.TCI = 0
sp16a sp17a
sp36a/sp37a
sp36a/sp37a
FCC output signals
40 PC8265A PowerQUICC II 5336A–HIREL–08/03
Figure 6 shows the SCC/SMC/SPI/I2C external clock.
Figure 6. SCC/SMC/SPI/I2C External Clock Diagram
Note: The clock edge is selectable on SCC and SPI.
Figure 7 shows the SCC/SMC/SPI/I2C internal clock.
Figure 7. SCC/SMC/SPI/I2C Internal Clock Diagram
Note: The clock edge is selectable on SCC and SPI
Figure 8 shows TDM input and output signals.
Figure 8. TDM Signals Diagram
There are four possible TDM timing conditions:
1. Input sampled on the rising edge and output driven on the rising edge (shown)
2. Input sampled on the rising edge and output driven on the falling edge
3. Input sampled on the falling edge and output driven on the falling edge
4. Input sampled on the falling edge and output driven on the rising edge
sp19b
sp18b
sp38b/sp39b
Serial CLKin
SCC/SMC/SPI/I2C input signals
(See note.)
SCC/SMC/SPI/I2C output signals
(See note.)
sp19a
sp18a
sp38a/sp39a
BRG_OUT
SCC/SMC/SPI/I2C output signals
(See note.)
SCC/SMC/SPI/I2C input signals
(See note.)
sp20
sp40/sp41
Serial CLKin
TDM input signals
TDM output signals
sp21
41
PC8265A PowerQUICC II
5336A–HIREL–08/03
Figure 9 shows PIO, timer, and DMA signals.
Figure 9. PIO, Timer, and DMA Signal Diagram
Table 11 lists SIU input characteristics.
Note: 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are
measured at the pin.
Table 11. AC Characteristics for SIU Inputs(1)
Spec_num Characteristic
Setup (ns) Hold (ns)
66 MHz 83 MHz 66 MHz 83 MHz
sp11/sp10 AACK/ARTRY/TA/TS/TEA/DBG/BG/BR 6511
sp12/sp10 Data bus in normal mode 5 4 1 1
sp13/sp10 Data bus in ECC and PARITY modes 8 6 1 1
sp14/sp10 DP pins 7 6 1 1
sp15/sp10 All other pins 5 4 1 1
sp22
sp42/sp43
sp23
sp42a/sp43a
PIO output signals
CLKin
PIO/TIMER/IDMA input signals
TIMER/IDMA output signals
42 PC8265A PowerQUICC II 5336A–HIREL–08/03
Table 12 lists SIU output characteristics.
Note: 1. Output specifications are measured from the 5 0% level of the rising edge of CLKIN to the 50% level of the signal. T imings
are measured at the pin.
Table 12. AC Characteristics for SIU Outputs(1)
Spec_num Max/Min Characteristic
Setup (ns) Hold (ns)
66 MHz 83 MHz 66 MHz 83 MHz
sp31/sp30 PSDVAL/TEA/TA 760.50.5
sp32/sp30 ADD/ADD_atr./BADDR/CI/GBL/WT 8 6.5 0.5 0.5
sp33a/sp30 Data bus 6.5 6.5 0.5 0.5
sp33b/sp30 DP 8 7 0.5 0.5
sp34/sp30 Memory controller signals/ALE 6 5 0.5 0.5
sp35/sp30 All other signals 6 5.5 0.5 0.5
43
PC8265A PowerQUICC II
5336A–HIREL–08/03
Figure 10 shows the interaction of several bus signals.
Figure 10. Bus Signals
Note: Activating data pipelining (setting BR x [DR] in the memory controller) improves the AC timing. When data pipelining is acti-
vated, sp12 can be used for data bus setup even when ECC or PARITY are used. Also, sp33a can be used as the AC
specification for DP signals.
sp11 sp10
sp10
sp10
sp30
sp30
sp30
sp30
sp12
SP15
SP31
SP32
SP33a
SP35
CLKin
AACK/ARTRY/TA/TS/TEA/
DBG/BG/BR input signals
DATA bus normal mode
input signal
All other input signals
PSDVAL/TEA/TA output signals
ADD/ADD_atr/BADDR/CI/
GBL/WT output signals
DATA bus output signals
All other output signals
44 PC8265A PowerQUICC II 5336A–HIREL–08/03
Figure 11 shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity).
Figure 11. Parity Mode Diagram
Figure 12 shows signal behavior in MEMC mode.
Figure 12. MEMC Mode Diagram
Note: Generally, all PC8265A bus and system output signals are driven fro m the risi ng edge of
the input clock (CLKin). Memory controller signals, however, trigger on four points w ithin
a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, a nd T4. T1 always
occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of
T2 and T4 depends on the PLL clock ratio selected, as shown in T able 13.
sp13
sp33b/sp10
sp10
sp10
sp14
CLKin
DATA bus, ECC, and PARITY mode input signals
DP mode input signal
DP mode output signal
Table 13. Tick Spacing for Memory Controller Signals
PLL Clock Ratio
Tick Spacing (T1 Occurs at the Rising Edge of CLKin)
T2 T3 T4
1:2, 1:3, 1:4, 1:5, 1:6 1/4 CLKin 1/2 CLKin 3/4 CLKin
1:2.5 3/10 CLKin 1/2 CLKin 8/10 CLKin
1:3.5 4/14 CLKin 1/2 CLKin 11/14 CLKin
sp34/sp30
CLKin
V_CLK
Memory controller signals
45
PC8265A PowerQUICC II
5336A–HIREL–08/03
Figure 13 is a graphical representation of Table 13.
Figure 13. Internal Tick Spacing for Memory Controller Signals
Note: The UPM machine outputs change on the internal tick determined by the memory con-
troller programming; the AC specifications are relative to the internal tick. Note that
SDRAM and GPCM machine outputs change on CLKin’s rising edge.
T1 T2 T3 T4
T1 T2 T3 T4
T1 T2 T3 T4
for 1:2, 1:3, 1:4, 1:5, 1:6CLKin
for 1:2.5CLKin
for 1:3.5
CLKin
46 PC8265A PowerQUICC II 5336A–HIREL–08/03
Clock Configuration
Modes To configure the main PLL multiplication factor and the core, the CPM, and 60x bus fre-
quencies, the MODCK[1:3] pins are sampled while HRESET is asserted. Table 14
shows the eight basic config uration modes. Another 49 modes are available by using
the configuration pin (RSTCONF) and driving four pins on the data bus.
Local Bus Mode Table 14 describes default clock modes for the PC8265A.
Table 15 describes all possible clock configurations when using the hard res et co nf igu ra tio n sequ e nce .
Note that the clock config uration changes only afte r POR is asserted. Note also that basic modes are shown in boldface
type.
Table 14. Clock Default Modes
MODCK[1–3]
Input Clock
Frequency
(MH)z
CPM
Multiplication
Factor CPM Frequency
(MHz)
Core
Multiplication
Factor Core Frequency
(MHz)
000 33 3 100 4 133
001 33 3 100 5 166
010 33 4 133 4 133
011 33 4 133 5 166
100 66 2 133 2.5 166
101 66 2 133 3 200
110 66 2.5 166 2.5 166
111 66 2.5 166 3 200
Table 15. Clock Configuration Modes(1)
MODCK_H–MODCK[1–3]
Input Clock
Frequency(2)(3)
(MHz)
CPM
Multiplication
Factor(2)
CPM
Frequency(2)
(MHz)
Core
Multiplication
Factor(2)
Core
Frequency(2)
(MHz)
0001_000 33 2 66 4 133
0001_001 33 2 66 5 166
0001_010 33 2 66 6 200
0001_011 33 2 66 7 233
0001_100 33 2 66 8 266
0001_101 33 3 100 4 133
0001_110 33 3 100 5 166
0001_111 33 3 100 6 200
0010_000 33 3 100 7 233
0010_001 33 3 100 8 266
0010_010 33 4 133 4 133
0010_011 33 4 133 5 166
47
PC8265A PowerQUICC II
5336A–HIREL–08/03
0010_100 33 4 133 6 200
0010_101 33 4 133 7 233
0010_110 33 4 133 8 266
0010_111 33 5 166 4 133
0011_000 33 5 166 5 166
0011_001 33 5 166 6 200
0011_010 33 5 166 7 233
0011_011 33 5 166 8 266
0011_100 33 6 200 4 133
0011_101 33 6 200 5 166
0011_110 33 6 200 6 200
0011_111 33 6 200 7 233
0100_000 33 6 200 8 266
0100_001
Reserved
0100_010
0100_011
0100_100
0100_101
0100_110
0100_111
Reserved
0101_000
0101_001
0101_010
0101_011
0101_100
0101_101 66 2 133 2 133
0101_110 66 2 133 2.5 166
0101_111 66 2 133 3 200
0110_000 66 2 133 3.5 233
0110_001 66 2 133 4 266
0110_010 66 2 133 4.5 300
Table 15. Clock Configuration Modes(1) (Continued)
MODCK_H–MODCK[1–3]
Input Clock
Frequency(2)(3)
(MHz)
CPM
Multiplication
Factor(2)
CPM
Frequency(2)
(MHz)
Core
Multiplication
Factor(2)
Core
Frequency(2)
(MHz)
48 PC8265A PowerQUICC II 5336A–HIREL–08/03
Notes: 1. Because of speed dependencies, not all of th e possible configurations in Table 15 are applicable.
2. The user should choose the input clock frequency and the multiplication factors such that the frequency of the CPU is equal
to or greater than150 MHz and the CPM ranges between 66 – 233 MHz.
3. Input clock freq uency is given only for the purpose of reference. MODCK_H– MODCK_L should be set so that the resulting
configuration does not exceed the frequency rating of the user’s part.
Example. If a part is rated at 266 MHz CPU, 200 MHz CPM, and 66 MHz bus, any of the following are possible (note
that the three input clock frequencies are only three of many possible input clock frequencies):
1. 66 MHz input clock and MODCK_H–MODCK_L[0111–101] (with a core multiplication factor of 4 and a CPM
multiplication factor of 3). The resulting configuration equals the part’s maximum possible frequencies of 266
MHz CPU, 200 MHz CPM, and 66 MHz bus.
2. 50 MHz input clock and MODCK_H–MODCK_L[0111–101] to achieve a configuration of 200 MHz CPU, 150
MHz CPM, and 50 MHz bus.
3. 40 MHz input clock and MODCK_H–MODCK_L[0010–011] to achieve a configuration of 200 MHz CPU, 160
MHz CPM, and 40 MHz bus.
Note that with each example, any one of several values for MODCK_H–MODCK_L could possibly be used as long as
the resulting configuration does not exceed the part’s rating.
0110_011 66 2.5 166 2 133
0110_100 66 2.5 166 2.5 166
0110_101 66 2.5 166 3 200
0110_110 66 2.5 166 3.5 233
0110_111 66 2.5 166 4 266
0111_000 66 2.5 166 4.5 300
0111_001 66 3 200 2 133
0111_010 66 3 200 2.5 166
0111_011 66 3 200 3 200
0111_100 66 3 200 3.5 233
0111_101 66 3 200 4 266
0111_110 66 3 200 4.5 300
0111_111 66 3.5 233 2 133
1000_000 66 3.5 233 2.5 166
1000_001 66 3.5 233 3 200
1000_010 66 3.5 233 3.5 233
1000_011 66 3.5 233 4 266
1000_100 66 3.5 233 4.5 300
Table 15. Clock Configuration Modes(1) (Continued)
MODCK_H–MODCK[1–3]
Input Clock
Frequency(2)(3)
(MHz)
CPM
Multiplication
Factor(2)
CPM
Frequency(2)
(MHz)
Core
Multiplication
Factor(2)
Core
Frequency(2)
(MHz)
49
PC8265A PowerQUICC II
5336A–HIREL–08/03
PCI Mode This section pertains to the PC8265A and the PC8266A only.
In PCI mode only, MODCK_HI[0:3] and PCI_MODCK come from the following external
pins:
PCI_MODCK = LGPL5
MODCK_HI[0:3] = {LGPL0,LGPL1,LGPL2,LGPL3}
Note: The minimum Tval = 2 when PCI_MODCK = 1 and minimum Tval = 1 when
PCI_MODCK = 0; therefore, board desi gners should use clock config urations tha t fit this
condition to achieve PCI-compliant AC timing.
Notes: 1. Assumes MODCK_HI = 0000.
2. The frequ ency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic ‘1 ’), the PCI frequency is divided by 2
(33 instead of 66 MHz, etc.)
Table 17 describes all possible clock configurations wh en using th e PC82 65A or th e PC82 66A’s in tern al PCI br idge in host
mode.
Table 16. Clock Default Configurations in PCI Host Mode (MODCK_HI = 0000)
MODCK[1–
3](1) Input Clock
Frequency CPM
Multiplication CPM
Frequency Core
Multiplication Core
Frequency PCI Division
Factor(2) PCI
Frequency(2)
000 66 MHz 2 133 MHz 2.5 166 MHz 2/4 66/33 MHz
001 66 MHz 2 133 MHz 3 200 MHz 2/4 66/33 MHz
010 66 MHz 2.5 166 MHz 3 200 MHz 3/6 55/28 MHz
011 66 MHz 2.5 166 MHz 3.5 233 MHz 3/6 55/28 MHz
100 66 MHz 2.5 166 MHz 4 266 MHz 3/6 55/28 MHz
101 66 MHz 3 200 MHz 3 200 MHz 3/6 66/33 MHz
110 66 MHz 3 200 MHz 3.5 233 MHz 3/6 66/33 MHz
111 66 MHz 3 200 MHz 4 266 MHz 3/6 66/33 MHz
Table 17. Clock Configuration Modes in PCI Host Mode
MODCK_H –
MODCK[1–3]
Input Clock
Frequency(1)
(Bus)
CPM
Multiplication
Factor CPM
Frequency
Core
Multiplication
Factor Core
Frequency PCI Division
Factor(2) PCI
Frequency(2)
0001_000 33 MHz 3 100 MHz 5 166 MHz 3/6 33/16 MHz
0001_001 33 MHz 3 100 MHz 6 200 MHz 3/6 33/16 MHz
0001_010 33 MHz 3 100 MHz 7 233 MHz 3/6 33/16 MHz
0001_011 33 MHz 3 100 MHz 8 266 MHz 3/6 33/16 MHz
0010_000 33 MHz 4 133 MHz 5 166 MHz 4/8 33/16 MHz
0010_001 33 MHz 4 133 MHz 6 200 MHz 4/8 33/16 MHz
0010_010 33 MHz 4 133 MHz 7 233 MHz 4/8 33/16 MHz
0010_011 33 MHz 4 133 MHz 8 266 MHz 4/8 33/16 MHz
0011_000(3) 33 MHz 5 166 MHz 5 166 MHz 5 33 MHz
0011_001(3) 33 MHz 5 166 MHz 6 200 MHz 5 33 MHz
50 PC8265A PowerQUICC II 5336A–HIREL–08/03
MODCK_H –
MODCK[1–3]
Input Clock
Frequency(1)
(Bus)
CPM
Multiplication
Factor CPM
Frequency
Core
Multiplication
Factor Core
Frequency PCI Division
Factor(2) PCI
Frequency(2)
0011_010(3) 33 MHz 5 166 MHz 7 233 MHz 5 33 MHz
0011_011(3) 33 MHz 5 166 MHz 8 266 MHz 5 33 MHz
0100_000333 MHz 6 200 MHz 5 166 MHz 6 33 MHz
0100_001333 MHz 6 200 MHz 6 200 MHz 6 33 MHz
0100_010333 MHz 6 200 MHz 7 233 MHz 6 33 MHz
0100_011333 MHz 6 200 MHz 8 266 MHz 6 33 MHz
0101_000 66 MHz 2 133 MHz 2.5 166 MHz 2/4 66/33 MH z
0101_001 66 MHz 2 133 MHz 3 200 MHz 2/4 66/33 MHz
0101_010 66 MHz 2 133 MHz 3.5 233 MHz 2/4 66/33 MH z
0101_011 66 MHz 2 133 MHz 4 266 MHz 2/4 66/33 MHz
0101_100 66 MHz 2 133 MHz 4.5 300 MHz 2/4 66/33 MH z
0110_000 66 MHz 2.5 166 MHz 2.5 166 MHz 3/6 55/2 8 MHz
0110_001 66 MHz 2.5 166 MHz 3 200 MHz 3/6 55/28 MH z
0110_010 66 MHz 2.5 166 MHz 3.5 233 MHz 3/6 55/2 8 MHz
0110_011 66 MHz 2.5 166 MHz 4 266 MHz 3/6 55/28 MH z
0110_100 66 MHz 2.5 166 MHz 4.5 300 MHz 3/6 55/2 8 MHz
0111_000 66 MHz 3 200 MHz 2.5 166 MHz 3/6 66/33 MH z
0111_001 66 MHz 3 200 MHz 3 200 MHz 3/6 66/33 MHz
0111_010 66 MHz 3 200 MHz 3.5 233 MHz 3/6 66/33 MH z
0111_011 66 MHz 3 200 MHz 4 266 MHz 3/6 66/33 MHz
0111_100 66 MHz 3 200 MHz 4.5 300 MHz 3/6 66/33 MH z
1000_000 66 MHz 3 200 MHz 2.5 166 MHz 4/8 50/25 MH z
1000_001 66 MHz 3 200 MHz 3 200 MHz 4/8 50/25 MHz
1000_010 66 MHz 3 200 MHz 3.5 233 MHz 4/8 50/25 MH z
1000_011 66 MHz 3 200 MHz 4 266 MHz 4/8 50/25 MHz
1000_100 66 MHz 3 200 MHz 4.5 300 MHz 4/8 50/25 MH z
1001_000 66 MHz 3.5 233 MHz 2.5 166 MHz 4/8 58/2 9 MHz
1001_001 66 MHz 3.5 233 MHz 3 200 MHz 4/8 58/29 MH z
1001_010 66 MHz 3.5 233 MHz 3.5 233 MHz 4/8 58/2 9 MHz
Table 17. Clock Configuration Modes in PCI Host Mode (Continued)
51
PC8265A PowerQUICC II
5336A–HIREL–08/03
Notes: 1. Input clock frequency is given only for the purpose of reference. User should set MODCK_H–MODCK_L so that the result-
ing configuration does not exceed the frequency rating of the user’s part.
Example. If a part is rated at 266 MHz CPU, 200 MHz CPM, and 66 MHz bus, any of the following are possible (note
that the three input clock frequencies are only three of many possible input clock frequencies):
1. 66 MHz input clock, MODCK_H–MODCK_L[0111–011] (with a core multiplication factor of 4 and a CPM multi-
plication factor of 3), and PCI_MODCK = 0 (see note 2 below). The resulting configuration equals the part’s
maximum possible frequencies of 266 MHz CPU, 200 MHz CPM, 66 MHz 60x bus, and a PCI frequency of 66
MHz.
2. 50 MHz input clock, MODCK_H–MODCK_L[0111–011], and PCI_MODCK = 0 (see note 2below) to achieve a
configuration of 200 MHz CPU, 150 MHz CPM, 50 MHz 60x bus, and a PCI freq uency of 50 MHz.
3. 40 MHz input clock, MODCK_H–MODCK_L[0010–000], and PCI_MODCK = 0 (see note 2 below) to achieve a
configuration of 200 MHz CPU, 160 MHz CPM, 40 MHz 60x bus, and a PCI freq uency of 40 MHz.
Note that with each of the examples, any one of several values for MODCK_H–MODCK_L could possibly be used as
long as the resulting config uration does not exceed the part’s rating.
2. The frequency depends on the value of PCI_MODCK. If PCI_MODCK is hi gh (logic “1“), the PCI frequency i s divided by 2
(33 instead of 66 MHz, etc.).
3. In this mode, PCI_MODCK must be “0”
MODCK_H –
MODCK[1–3]
Input Clock
Frequency(1)
(Bus)
CPM
Multiplication
Factor CPM
Frequency
Core
Multiplication
Factor Core
Frequency PCI Division
Factor(2) PCI
Frequency(2)
1001_011 66 MHz 3.5 233 MHz 4 266 MHz 4/8 58/29 MH z
1001_100 66 MHz 3.5 233 MHz 4.5 300 MHz 4/8 58/2 9 MHz
1010_000 100 MHz 2 200 MHz 2 200 MHz 3/6 66/33 MH z
1010_001 100 MHz 2 200 MHz 2.5 250 MHz 3 /6 66/33 MHz
1010_010 100 MHz 2 200 MHz 3 300 MHz 3/6 66/33 MH z
1010_011 100 MHz 2 200 MHz 3.5 350 MHz 3 /6 66/33 MHz
1010_100 100 MHz 2 200 MHz 4 400 MHz 3/6 66/33 MH z
1011_000 100 MHz 2.5 250 MHz 2 200 MHz 4/8 62/31 MHz
1011_001 100 MHz 2.5 250 MHz 2.5 250 MHz 4/8 62/31MHz
1011_010 100 MHz 2.5 250 MHz 3 300 MHz 4/8 62/31 MHz
1011_011 100 MHz 2.5 250 MHz 3.5 350 MHz 4/8 62/31 MHz
1011_100 100 MHz 2.5 250 MHz 4 400 MHz 4/8 62/31 MHz
Table 17. Clock Configuration Modes in PCI Host Mode (Continued)
52 PC8265A PowerQUICC II 5336A–HIREL–08/03
.
Notes: 1. The user should verify that all buses and functions run frequencies that are within the supported ranges
2. Assumes MODCK_HI = 0000
3. The frequ ency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic ‘1 ’), the PCI frequency is divided by 2
(33 instead of 66 MHz, etc.) and the CPM multiplication factor is multiplied by 2
4. Core freq uency = (60x bus frequency)(core multiplication factor)
5. Bus frequency = CPM frequency/bus division factor
Table 19 describes all possible clock configurations when using the PC8265A or the PC8266A’s internal PCI bridge in
agent mode.
Table 18. Clock Default Configurations in PCI Agent Mode (MODCK_HI = 0000)(1)
MODCK[1–3](2)
Input Clock
Frequency
(PCI)(3)
CPM
Multiplication
Factor(3) CPM
Frequency
Core
Multiplication
Factor Core(4)
Frequency
Bus
Division
Factor 60x Bus(5)
Frequency
000 66/33 MHz 2/4 133 MHz 2.5 166 MHz 2 66 MHz
001 66/33 MH z 2/4 133 MHz 3 200 MHz 2 66 MHz
010 66/33 MH z 3/6 200 MHz 3 200 MHz 3 66 MHz
011 66/33 MH z 3/6 200 MHz 4 266 MHz 3 66 MHz
100 66/33 MHz 3/6 200 MHz 3 240 MHz 2.5 80 MHz
101 66/33 MH z 3/6 200 MHz 3.5 280 MHz 2.5 80 MHz
110 66/33 MHz 4/8 266 MHz 3.5 300 MHz 3 88 MHz
111 66/33 MHz 4/8 266 MHz 3 300 MHz 2.5 100 MHz
Table 19. Clock Configuration Modes in PCI Agent Mode(1)
MODCK_H –
MODCK[1–3]
Input Clock
Frequency
(PCI)(2)(3)
CPM
Multiplication
Factor(2) CPM
Frequency
Core
Multiplication
Factor Core(4)
Frequency
Bus
Division
Factor 60x Bus(5)
Frequency
0001_001 66/33 MHz 2/4 133 MHz 5 166 MHz 4 33 MHz
0001_010 66/33 MHz 2/4 133 MHz 6 200 MHz 4 33 MHz
0001_011 66/33 MHz 2/4 133 MHz 7 233 MHz 4 33 MHz
0001_100 66/33 MHz 2/4 133 MHz 8 266 MHz 4 33 MHz
0010_001 50/25 MHz 3/6 150 MHz 3 180 MHz 2.5 60 MHz
0010_010 50/25 MHz 3/6 150 MHz 3.5 210 MHz 2.5 60 MHz
0010_011 50/25 MHz 3/6 150 MHz 4 240 MHz 2.5 60 MHz
0010_100 50/25 MHz 3/6 150 MHz 4.5 270 MHz 2.5 60 MHz
0011_000 66/33 MHz 2/4 133 MHz 2.5 110MHz 3 44 MHz
0011_001 66/33 MHz 2/4 133 MHz 3 132 MHz 3 44 MHz
0011_010 66/33 MHz 2/4 133 MHz 3.5 154 MHz 3 44 MHz
0011_011 66/33 MHz 2/4 133 MHz 4 176 MHz 3 44 MHz
0011_100 66/33 MHz 2/4 133 MHz 4.5 198 MHz 3 44 MHz
53
PC8265A PowerQUICC II
5336A–HIREL–08/03
MODCK_H –
MODCK[1–3]
Input Clock
Frequency
(PCI)(2)(3)
CPM
Multiplication
Factor(2) CPM
Frequency
Core
Multiplication
Factor
Core
Frequency(
4)
Bus
Division
Factor
60x Bus
Frequency(
5)
0100_000 66/33 MHz 3/6 200 MHz 2.5 166 MHz 3 66 MHz
0100_001 66/33 MHz 3/6 200 MHz 3 200 MHz 3 66 MHz
0100_010 66/33 MHz 3/6 200 MHz 3.5 233 MHz 3 66 MHz
0100_011 66/33 MHz 3/6 200 MHz 4 266 MHz 3 66 MHz
0100_100 66/33 MHz 3/6 200 MHz 4.5 300 MHz 3 66 MHz
0101_000633 MH z 5 166 MHz 2.5 166 MHz 2.5 66 MHz
0101_001633 MHz 5 166 MHz 3 200 MHz 2.5 66 MHz
0101_010633 MH z 5 166 MHz 3.5 233 MHz 2.5 66 MHz
0101_011633 MHz 5 166 MHz 4 266 MHz 2.5 66 MHz
0101_100633 MH z 5 166 MHz 4.5 300 MHz 2.5 66 MHz
0110_000 50/25 MHz 4/8 200 MHz 2.5 166 MHz 3 66 MHz
0110_001 50/25 MHz 4/8 200 MHz 3 200 MHz 3 66 MHz
0110_010 50/25 MHz 4/8 200 MHz 3.5 233 MHz 3 66 MHz
0110_011 50/25 MHz 4/8 200 MHz 4 266 MHz 3 66 MHz
0110_100 50/25 MHz 4/8 200 MHz 4.5 300 MHz 3 66 MHz
0111_000 66/33 MHz 3/6 200 MHz 2 200 MHz 2 100 MHz
0111_001 66/33 MHz 3/6 200 MHz 2.5 25 0 MHz 2 100 MHz
0111_010 66/33 MHz 3/6 200 MHz 3 300 MHz 2 100 MHz
0111_011 66/33 MHz 3/6 200 MHz 3.5 35 0 MHz 2 100 MHz
1000_000 66/33 MHz 3/6 200 MHz 2 160 MHz 2.5 80 MHz
1000_001 66/33 MHz 3/6 200 MHz 2.5 200 MHz 2.5 80 MHz
1000_010 66/33 MHz 3/6 200 MHz 3 240 MHz 2.5 80 MHz
1000_011 66/33 MHz 3/6 200 MHz 3.5 280 MHz 2.5 80 MHz
1000_100 66/33 MHz 3/6 200 MHz 4 320 MHz 2.5 80 MHz
1000_101 66/33 MHz 3/6 200 MHz 4.5 360 MHz 2.5 80 MHz
1001_000 66/33 MHz 4/8 266 MHz 2.5 166 MHz 4 66 MHz
1001_001 66/33 MHz 4/8 266 MHz 3 200 MHz 4 66 MHz
1001_010 66/33 MHz 4/8 266 MHz 3.5 233 MHz 4 66 MHz
1001_011 66/33 MHz 4/8 266 MHz 4 266 MHz 4 66 MHz
1001_100 66/33 MHz 4/8 266 MHz 4.5 300 MHz 4 66 MHz
Table 19. Clock Configuration Modes in PCI Agent Mode(1) (Continued)
54 PC8265A PowerQUICC II 5336A–HIREL–08/03
Notes: 1. The user should verify that all buses and functions run frequencies that are within the supported ranges.
2. The frequ ency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic ‘1 ’), the PCI frequency is divided by 2
(33 instead of 66 MHz, etc.) and the CPM multiplication factor is multiplied by 2.
3. Input clock freq uency is given only for the purpose of reference. MODCK_H– MODCK_L should be set so that the resulting
configuration does not exceed the frequency rating of the user’s part.
Example. If a part is rated at 266 MHz CPU, 200 MHz CPM, and 66 MHz bus, any of the following are possible
(note that the three input clock frequencies are only three of many possible input clock frequencies):
1. 50 MHz input clock, MODCK_H–MODCK_L[0110–011] (with a core multiplication factor of 4, a CPM multiplica-
tion factor of 4, and a bus division factor of 3), and PCI_MODCK = 0 (see note 2 above). The PCI frequency is
50 MHz and the resulting configuration equals the part’s maximum possible frequencies of 266 MHz CPU,
200 MHz CPM, and 66 MHz 60x bus.
2. 66 MHz input clock, MODCK_H–MODCK_L[0100–001], and PCI_MODCK = 1 (see note 2 above) to achieve a
PCI frequency of 33 MHz and a configuration of 200MHz CPU, 200 MHz CPM, and 66 MHz 60x bus.
3. 40 MHz input clock, MODCK_H–MODCK_L[1001–011], and PCI_MODCK = 0 (see note 2 above) to achieve a
PCI frequency of 40 MHz and a configuration of 160 MHz CPU, 160 MHz CPM, and 40 MHz 60x bus.
Note that with each of the examples, any one of several values for MODCK_H–MODCK_L could possibly be used
as long as the resulting configuration does not exceed the part’s rating.
4. Core freq uency = (60x bus frequency) (core multiplication factor)
5. Bus frequency = CPM frequency/bus division factor
6. In this mode, PCI_MODCK must be “1”.
MODCK_H –
MODCK[1–3]
Input Clock
Frequency
(PCI)(2)(3)
CPM
Multiplication
Factor(2) CPM
Frequency
Core
Multiplication
Factor
Core
Frequency(
4)
Bus
Division
Factor
60x Bus
Frequency(
5)
1010_000 66/33 MHz 4/8 266 MHz 2.5 222 MHz 3 88 MHz
1010_001 66/33 MHz 4/8 266 MHz 3 266 MHz 3 88 MHz
1010_010 66/33 MHz 4/8 266 MHz 3.5 300 MHz 3 88 MHz
1010_011 66/33 MHz 4/8 266 MHz 4 350 MHz 3 88 MHz
1010_100 66/33 MHz 4/8 266 MHz 4.5 400 MHz 3 88 MHz
1011_000 66/33 MHz 4/8 266 MHz 2 212MHz 2.5 106 MHz
1011_001 66/33 MHz 4/8 266 MHz 2.5 26 5 MHz 2.5 106 MHz
1011_010 66/33 MHz 4/8 266 MHz 3 318 MHz 2.5 106 MHz
1011_011 66/33 MHz 4/8 266 MHz 3.5 37 1 MHz 2.5 106 MHz
1011_100 66/33 MHz 4/8 266 MHz 4 424 MHz 2.5 106 MHz
Table 19. Clock Configuration Modes in PCI Agent Mode(1) (Continued)
55
PC8265A PowerQUICC II
5336A–HIREL–08/03
Package Description The following sections provide the package parameters and mechanical dimensions for
the PC8265A.
Package Parameters Package parameters are provided in Table 20. The package type is a 37.5 x 37.5 mm,
480-lead TBGA.
Table 20. Package Parameters
Parameter Value
Package Outline 37.5 x 37.5 mm
Interconnects 480 (29 x 29 ball array)
Pitch 1.27 mm
Nominal unmounted package height 1.55 mm
56 PC8265A PowerQUICC II 5336A–HIREL–08/03
Status
Limiting Values Limiting values given are in accordance with the Absolute Maximum Rating System
(IEC 134). Stress above one or more of the limiting values may cause permanent dam-
age to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specifi-
cation is not implied. Exposure to limiting values for extended period s m ay af fect device
reliability.
Application Information Where application information is given, it is advisory and does not form part of the
specification.
Life Support Applications These products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal
injury. Atmel customers using or selling these products for use in such applications do
so at their own risk and agree to fully indemnify Atmel for any damages resulting from
such improper use or sale.
Table 21. Datasheet Status
Datasheet Status Validity
Objective Specification This datasheet contains target and goal specification for
discussion with customer and application validation. Valid before design phase
Target Specification This datasheet contains target or goal specifications for
product development. Valid during the design phase
Preliminary Specification Site This datasheet contains preliminary data. Additional data
may be published later. This could include simulation
results.
Valid before the characterization
phase
Preliminary Specification β Site This datasheet also contains characterization results. Valid before the industrialization
phase.
Product Specification This datasheet contains final prod uct specifications. Valid for production purposes
57
PC8265A PowerQUICC II
5336A–HIREL–08/03
Mechanical Dimensions Figure 14 provides the mechanical dimensions and bottom surface nomenclature of the
480 TBGA package.
Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature
Dim Millimeters
Min Max
A 1.45 1.65
A1 0.60 0.70
A2 0.85 0.95
A3 0.25 _
b 0.65 0.85
D 37.50 BSC
D1 35.56 REF
e 1.27 BSC
E 37.50 BSC
E1 35.56 REF
Notes:
1. Dimensions and Tolerancing per
ASME Y14.5M-1994
2. Dimensions in millimeters
3. Dimension b is measured at the
maximum solder ball diameter,
parallel to primary data A
4. Primary data A and the seating
plane are defined by the spherical
crowns of the solder balls
DB
E
C
A
A
TOP VIEW
A1
BOTTOM VIEW
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1234567891011121314151617181920212223242526272829
3480X b
ABC
A
3
15
M
M
(E1)
28X e
28X e
(D1)
SEATING
PLANE
A3
4X 0.2
A1
A
A2
0.15 A
480X
0.15 A
58 PC8265A PowerQUICC II 5336A–HIREL–08/03
Ordering Information
Prefix(1)
Temperature Range: Tj
Screening Level(2)
Package
PC 8265A M TP MHB
M: -55, +125°C
V: -40, +110°C
U
TP: TBGA
CPU/CPM/Bus Speed (MHz)
M = 266 MHz
H = 166 MHz
B = 66 MHz
(1) Atmel
(2)
U: Upscreening
(X)
Type
Prototype
B
Revision Level
For availability of the different versions, contact your sales office.
Printed on recycled paper.
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Cond itions loca te d on the Company’s we b site. The Compan y assumes no responsib ility fo r an y
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any t ime without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel pr oducts, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.
Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Memory
2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-1 9-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-6 0-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR , Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-2 42-743
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-3 4-80
e-mail
literature@atmel.com
Web Site
http://www.atmel.com
5336A–HIREL–08/03 0M
© Atmel Corporation 2003. All rights reserved. Atmel® and combinations thereof, are the registered
trademarks of Atmel Corporation or its subsidiaries. The PowerPC names and the PowerPC logotype are
trademarks of International Business Machines Corporation, used under license therefrom.
Motorola is the registered trademark of Motorola, Inc. Other terms and product names may be the trademar ks
of others.