HEXFET® Power MOSFET
1/13/03
IRF5805
Absolute Maximum Ratings
www.irf.com 1
Thermal Resistance
Parameter Max. Units
VDS Drain-Source Voltage -30 V
ID @ TA = 25°C Continuous Drain Current, VGS @ -10V -3.8
ID @ TA = 70°C Continuous Drain Current, VGS @ -10V -3.0 A
IDM Pulsed Drain Current-15
PD @TA = 25°C Maximum Power Dissipation2W
PD @TA = 70°C Maximum Power Dissipation1.28 W
Linear Derating Factor 0.02 W/°C
VGS Gate-to-Source Voltage ± 20 V
TJ , TSTG Junction and Storage Temperature Range -55 to + 150 °C
Description
VDSS RDS(on) max ID
-30V 0.098@VGS = -10V -3.8A
0.165@VGS = -4.5V -3.0A
Parameter Max. Units
RθJA Maximum Junction-to-Ambient62.5 °C/W
Top View
1
2
D
G
A
D
D
D
S
34
5
6
These P-channel MOSFETs from International Rectifier
utilize advanced processing techniques to achieve the
extremely low on-resistance per silicon area. This
benefit provides the designer with an extremely efficient
device for use in battery and load management
applications.
The TSOP-6 package with its customized leadframe
produces a HEXFET® power MOSFET with RDS(on)
60% less than a similar size SOT-23. This package is
ideal for applications where printed circuit board space
is at a premium. It's unique thermal design and RDS(on)
reduction enables a current-handling increase of nearly
300% compared to the SOT-23.
lUltra Low On-Resistance
lP-Channel MOSFET
lSurface Mount
lAvailable in Tape & Reel
lLow Gate Charge
TSOP-6
PD -94029A
IRF5805
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) showing the
ISM Pulsed Source Current integral reverse
(Body Diode) p-n junction diode.
VSD Diode Forward Voltage ––– ––– -1.2 V TJ = 25°C, IS = -2.0A, VGS = 0V
trr Reverse Recovery Time –– 19 29 ns TJ = 25°C, I F = -2.0A
Qrr Reverse Recovery Charge ––– 16 24 nC di/dt = -100A/µs
Source-Drain Ratings and Characteristics
 
  -15
-2.0
A
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage -30 ––– ––– V VGS = 0V, ID = -250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.02 –– V/°C Reference to 25°C, ID = -1mA
––– ––– 0.098 VGS = -10V, ID = -3.8A
 ––– 0.165 VGS = -4.5V, ID = -3.0A
VGS(th) Gate Threshold Voltage -1.0 ––– -2.5 V VDS = VGS, ID = -250µA
gfs Forward Transconductance 3.5 ––– ––– S VDS = -10V, ID = -3.8A
––– ––– -15 VDS = -24V, VGS = 0V
––– ––– -25 VDS = -24V, VGS = 0V, TJ = 70°C
Gate-to-Source Forward Leakage ––– ––– -100 VGS = -20V
Gate-to-Source Reverse Leakage ––– ––– 100 VGS = 20V
QgTotal Gate Charge –– 11 1 7 ID = -3.8A
Qgs Gate-to-Source Charge ––– 2.3 –– nC VDS = -15V
Qgd Gate-to-Drain ("Miller") Charge ––– 1.5 –– VGS = -10V
td(on) Turn-On Delay Time ––– 11 17 VDD = -15V, VGS = -10V
trRise Time ––– 14 21 ID = -1.0A
td(off) Turn-Off Delay Time ––– 90 135 RG = 6.0
tfFall Time ––– 49 74 RD = 15
Ciss Input Capacitance ––– 511 ––– VGS = 0V
Coss Output Capacitance ––– 79 –– pF VDS = -25V
Crss Reverse Transfer Capacitance ––– 50 –– ƒ = 1.0MHz
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
IGSS
µA
RDS(on) Static Drain-to-Source On-Resistance
IDSS Drain-to-Source Leakage Current
nA
ns
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Pulse width 400µs; duty cycle 2%.
S
D
G
Surface mounted on 1 in square Cu board, t 10sec.
IRF5805
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
2.0 3.0 4.0 5.0 6.0
V = -15V
20µs PULS E WID TH
DS
-V , Gate-to-Source Voltage (V)
-I , Drai n-to- Sour ce C ur rent ( A)
GS
D
T = 25 C
J°
T = 150 C
J°
-60 -40 -20 020 40 60 80 100 120 140 160
0.0
0.5
1.0
1.5
2.0
T , Junction Tem pera t ur e ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
-10V
-3.8A
0.1 110 100
-VDS , Drain-t o-Source Volt age (V)
0.01
0.1
1
10
100
-ID, Drain-to-Source Current (A)
-2.5V
20µs PULSE WI D TH
Tj = 25°C
VGS
TOP -10.0V
-4.5V
-3.7V
-3.5V
-3.3V
-3.0V
-2.7V
BOTTOM -2.5V
0.1 110 100
-VDS , Drain-t o-Source Volt age (V)
0.01
0.1
1
10
100
-ID, Drain-to-Source Current (A)
-2.5V
20µs PULSE WI D TH
Tj = 150°C
VGS
TOP -10.0V
-4.5V
-3.7V
-3.5V
-3.3V
-3.0V
-2.7V
BOTTOM -2.5V
IRF5805
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0246810 12 14
0
4
8
12
16
Q , Total Gate Charge (nC)
-V , Gat e-to-Source Voltage (V)
G
GS
I =
D-3.8A
V =-15V
DS
V =-24V
DS
0.1
1
10
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0
-V ,Sour ce-t o-Drain Voltage (V)
-I , Reverse Dr ain Current (A )
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 150 C
J°
0.1
1
10
100
0.1 1 10 100
OPERATION IN THIS AREA LIMITED
BY RDS(on)
Single Pu lse
T
T = 150 C
= 25 C
°°
J
C
-V , Drai n-to-Source Voltage (V)
-I , Drain Current ( A)I , Drain Curr ent ( A)
DS
D
10us
100us
1ms
10ms
110 100
VDS, Drai n-to-S ource Voltage (V)
0
200
400
600
800
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
IRF5805
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Fig 9. Maximum Drain Current Vs.
Case Temperature
25 50 75 100 125 150
0.0
1.0
2.0
3.0
4.0
T , Case Tempera ture ( C)
-I , Dr ain Current ( A)
°
C
D
VDS
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
VDD
RG
D.U.T.
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
0.1
1
10
100
0.00001 0.0001 0.001 0.01 0.1 1 10
Notes:
1 . Duty f actor D = t / t
2. Peak T =P x Z + T
1 2
JDM thJA A
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response(Z )
1
thJA
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRF5805
6www.irf.com
Fig 13. Typical On-Resistance Vs.
Drain Current
Fig 12. Typical On-Resistance Vs.
Gate Voltage
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
-VGS, Gat e -to -S ource Voltage (V)
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
RDS(on)
, Drain-to -Source On Resistance (
)
ID = -3.8A
0 5 10 15 20
-ID , Drain Current ( A )
0.000
0.100
0.200
0.300
0.400
RDS ( on ) , Drain-to-Source On Resistance (
)
VGS = -4.5V
VGS = -10V
Fig 14b. Gate Charge Test Circuit
Fig 14a. Basic Gate Charge Waveform
QG
QGS QGD
VG
Charge
D.U.T. VDS
ID
IG
-3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
IRF5805
www.irf.com 7
Fig 15. Typical Vgs(th) Vs.
Junction Temperature
-75 -50 -25 025 50 75 100 125 150
TJ , T em perature ( °C )
1.5
1.7
1.9
2.1
2.3
2.5
-VGS(th) ( V )
ID = -250µA
Fig 16. Typical Power Vs. Time
0.001 0.010 0.100 1.000 10.000 100.000
Time (sec)
0
5
10
15
20
25
30
Power (W)
IRF5805
8www.irf.com
TSOP-6 Package Outline
TSOP-6 Tape & Reel Information
IRF5805
www.irf.com 9
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 1/03
TSOP-6 Part Marking Information
WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR Y EAR
01
02
03
04
24
WYEAR Y
A2001 1 B2002 2 C2003 3 D2004 4
X
1999 0
WW = (27- 52) IF PRECEDED BY A LETTER
WEEK
27
28
29
30
50
WYEAR
A2001 A B2002 B C2003 C D2004 D
X
J
2005
1996
1997
1998
1999
2000
E
F
G
H
K
Y
2005
1996
1997
1998
2000 9
8
7
6
5
PART NUMBER
TOP
WORK
WEEK
WORK
3A = SI3443DV
PART NUM BER CODE REFERENCE:
25 Y
51 Y
26 Z
3B = IRF5800
3C = IRF5850
3D = IRF5851
3E = IRF5852
3J = IRF5806
3I = IRF5805
DATE
CODE
DATE CODE EXAMPLES:
YWW = 9603 = 6C
YWW = 9632 = FF
WAFER LOT
NUMBER CODE
BOTTOM
EXAMPLE: THIS IS AN SI3443DV
Notes: This p art markin g inform atio n applies to dev ices produc ed be f ore 02/26/2001
50
51
30
27
28
29
WE E K
WORK
W = (27-52) IF PRECEDED BY A LETTER
25
26
24
03
02
04
WE E K
WORK
01
W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEA R
PART NUMBER CODE REFERENCE:
L = IRF5804
M = IRF5803
N = IRF5820
C = IRF5850
J = IRF5806
K = IRF581 0
E = IRF5852
D = IRF5851
I = I R F5 8 05
B = IRF5 800
A = SI3443DV
H1998
2000
1999 K
J
B2002
2005
1996
1997
2003
2004 E
F
G
C
D
2001
YEAR
A
Y
PART NUMBER
TOP
2001 1
Y = YEAR
CODE
LOT
W = WEEK
71997
2000
1999
1998
0
9
8
2004
2005
1996
2002
2003 4
6
5
2
3
YEAR Y
Y
X
B
C
D
A
W
A
X
Z
Y
D
B
C
W
Notes: This part marking information applies to devices produced after 02/26/2001