DDR4 SDRAM UDIMM
MTA18ASF1G72AZ – 8GB
Features
DDR4 functionality and operations supported as
defined in the component data sheet
288-pin, unbuffered dual in-line memory module
(UDIMM)
Fast data transfer rates: PCB4-2666, PC4-2400
8GB (1 Gig x 72)
VDD = 1.20V (NOM)
VPP = 2.5V (NOM)
VDDSPD = 2.5V (NOM)
Supports ECC error detection and correction
Nominal and dynamic on-die termination (ODT) for
data, strobe, and mask signals
Low-power auto self refresh (LPASR)
Data bus inversion (DBI) for data bus
On-die VREFDQ generation and calibration
Dual-rank
Onboard I2C temperature sensor with integrated
serial presence-detect (SPD) EEPROM
4 internal device bank groups with 4 banks per
group produce 16 device banks
Fixed burst chop (BC) of 4 and burst length (BL) of 8
via the mode register set (MRS)
Selectable BC4 or BL8 on-the-fly (OTF)
Gold edge contacts
Halogen-free
Fly-by topology
Terminated control, command, and address bus
Figure 1: 288-Pin UDIMM (MO-309, R/C-E1)
Module height: 31.25mm (1.23in)
Options Marking
Operating temperature
Commercial
(0°C TOPER 95°C)
None
Package
288-pin DIMM (halogen-free) Z
Frequency/CAS latency
0.75ns @ CL = 19 (DDR4-2666) -2G6
0.83ns @ CL = 17 (DDR4-2400) -2G3
Table 1: Key Timing Parameters
Speed
Grade
Industry
Nomen-
clature
Data Rate (MT/s)
tRCD
(ns)
tRP
(ns)
tRC
(ns)
CL =
20,
CL =
19
CL =
18
CL =
17
CL =
16
CL =
15
CL =
14
CL =
13
CL =
12
CL =
11
CL =
10 CL = 9
-2G6 PC4-2666 2666 2400 2400 2133 2133 1866 1866 1600 1600 1333 14.16 14.16 46.16
-2G4 PC4-2400 2400 2400 2400
2133
2133 1866 1866 1600 1600 1333 1333 13.32 13.32 45.32
-2G3 PC4-2400 2400 2400 2133 2133 1866 1866 1600 1600 1333 14.16 14.16 46.16
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Features
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 1Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Products and specifications discussed herein are subject to change by Micron without notice.
Table 1: Key Timing Parameters (Continued)
Speed
Grade
Industry
Nomen-
clature
Data Rate (MT/s)
tRCD
(ns)
tRP
(ns)
tRC
(ns)
CL =
20,
CL =
19
CL =
18
CL =
17
CL =
16
CL =
15
CL =
14
CL =
13
CL =
12
CL =
11
CL =
10 CL = 9
-2G1 PC4-2133 2133 2133 1866 1866 1600 1600 1333 1333 13.5 13.5 46.5
Table 2: Addressing
Parameter 8GB
Row address 32K A[14:0]
Column address 1K A[9:0]
Device bank group address 4 BG[1:0]
Device bank address per group 4 BA[1:0]
Device configuration 4Gb (512 Meg x 8), 16 banks
Module rank address 2 CS_n[1:0]
Table 3: Part Numbers and Timing Parameters – 8GB Modules
Base device: MT40A512M8,1 4Gb DDR4 SDRAM
Part Number2
Module
Density Configuration
Module
Bandwidth
Memory Clock/
Data Rate
Clock Cycles
(CL-tRCD-tRP)
MTA18ASF1G72AZ-2G6__ 8GB 1 Gig x 72 21.3 GB/s 0.75ns/2400 MT/s 19-19-19
MTA18ASF1G72AZ-2G3__ 8GB 1 Gig x 72 19.2 GB/s 0.83ns/2400 MT/s 17-17-17
Notes: 1. The data sheet for the base device can be found at micron.com.
2. All part numbers end with a two-place code (not shown) that designates component and PCB revisions.
Consult factory for current revision codes. Example: MTA18ASF1G72AZ-2G6B1.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Features
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 2Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Important Notes and Warnings
Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document,
including without limitation specifications and product descriptions. This document supersedes and replaces all
information supplied prior to the publication hereof. You may not rely on any information set forth in this docu-
ment if you obtain the product described herein from any unauthorized distributor or other source not authorized
by Micron.
Automotive Applications. Products are not designed or intended for use in automotive applications unless specifi-
cally designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distrib-
utor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims,
costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of
product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-
automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and con-
ditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron
products are not designed or intended for use in automotive applications unless specifically designated by Micron
as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to in-
demnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys'
fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage
resulting from any use of non-automotive-grade products in automotive applications.
Critical Applications. Products are not authorized for use in applications in which failure of the Micron compo-
nent could result, directly or indirectly in death, personal injury, or severe property or environmental damage
("Critical Applications"). Customer must protect against death, personal injury, and severe property and environ-
mental damage by incorporating safety design measures into customer's applications to ensure that failure of the
Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron
component for any critical application, customer and distributor shall indemnify and hold harmless Micron and
its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims,
costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of
product liability, personal injury, or death arising in any way out of such critical application, whether or not Mi-
cron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the
Micron product.
Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems,
applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAIL-
URE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE
WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR
PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included
in customer's applications and products to eliminate the risk that personal injury, death, or severe property or en-
vironmental damages will result from failure of any semiconductor component.
Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential
damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such damages are based on tort, warranty,
breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly
authorized representative.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Features
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 3Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Pin Assignments
The pin assignment table below is a comprehensive list of all possible pin assignments
for DDR4 UDIMM modules. See Functional Block Diagram for pins specific to this
module.
Table 4: Pin Assignments
288-Pin DDR4 UDIMM Front 288-Pin DDR4 UDIMM Back
Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol
1 NC 37 VSS 73 VDD 109 VSS 145 NC 181 DQ29 217 VDD 253 DQ41
2 VSS 38 DQ24 74 CK0_t 110 DM5_n/
DBI5_n,
NC
146 VREFCA 182 VSS 218 CK1_t 254 VSS
3 DQ4 39 VSS 75 CK0_c 111 NC 147 VSS 183 DQ25 219 CK1_c 255 DQS5_c
4 VSS 40 DM3_n/
DBI3_n,
NC
76 VDD 112 VSS 148 DQ5 184 VSS 220 VDD 256 DQS5_t
5 DQ0 41 NC 77 VTT 113 DQ46 149 VSS 185 DQS3_c 221 VTT 257 VSS
6 VSS 42 VSS 78 EVENT_n,
NF
114 VSS 150 DQ1 186 DQS3_t 222 PARITY 258 DQ47
7 DM0_n/
DBI0_n,
NC
43 DQ30 79 A0 115 DQ42 151 VSS 187 VSS 223 VDD 259 VSS
8 NC 44 VSS 80 VDD 116 VSS 152 DQS0_c 188 DQ31 224 BA1 260 DQ43
9 VSS 45 DQ26 81 BA0 117 DQ52 153 DQS0_t 189 VSS 225 A10_AP 261 VSS
10 DQ6 46 VSS 82 RAS_n/
A16
118 VSS 154 VSS 190 DQ27 226 VDD 262 DQ53
11 VSS 47 CB4/ NC 83 VDD 119 DQ48 155 DQ7 191 VSS 227 NC 263 VSS
12 DQ2 48 VSS 84 CS0_n 120 VSS 156 VSS 192 CB5, NC 228 WE_n/
A14
264 DQ49
13 VSS 49 CB0/ NC 85 VDD 121 DM6_n/
DBI6_n,
NC
157 DQ3 193 VSS 229 VDD 265 VSS
14 DQ12 50 VSS 86 CAS_n/
A15
122 NC 158 VSS 194 CB1, NC 230 NC 266 DQS6_c
15 VSS 51 DM8_n/
DBI8_n,
NC
87 ODT0 123 VSS 159 DQ13 195 VSS 231 VDD 267 DQS6_t
16 DQ8 52 NC 88 VDD 124 DQ54 160 VSS 196 DQS8_c 232 A13 268 VSS
17 VSS 53 VSS 89 CS1_n,
NC
125 VSS 161 DQ9 197 DQS8_t 233 VDD 269 DQ55
18 DMI_n/
DBI1_n,
NC
54 CB6/
DBI8_n,
NC
90 VDD 126 DQ50 162 VSS 198 VSS 234 NC 270 VSS
19 NC 55 VSS 91 ODT1,
NC
127 VSS 163 DQS1_c 199 CB7, NC 235 NC 271 DQ51
20 VSS 56 CB2/ NC 92 VDD 128 DQ60 164 DQS1_t 200 VSS 236 VDD 272 VSS
21 DQ14 57 VSS 93 NC 129 VSS 165 VSS 201 CB3, NC 237 NC 273 DQ61
22 VSS 58 RESET_n 94 VSS 130 DQ56 166 DQ15 202 VSS 238 SA2 274 VSS
23 DQ10 59 VDD 95 DQ36 131 VSS 167 VSS 203 CKE1,
NC
239 VSS 275 DQ57
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Pin Assignments
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 4Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Table 4: Pin Assignments (Continued)
288-Pin DDR4 UDIMM Front 288-Pin DDR4 UDIMM Back
Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol
24 VSS 60 CKE0 96 VSS 132 DM7_n/
DBI7_n,
NC
168 DQ11 204 VDD 240 DQ37 276 VSS
25 DQ20 61 VDD 97 DQ32 133 NC 169 VSS 205 NC 241 VSS 277 DQS7_c
26 VSS 62 ACT_n 98 VSS 134 VSS 170 DQ21 206 VDD 242 DQ33 278 DQS7_t
27 DQ16 63 BG0 99 DM4_n/
DBI4_n,
NC
135 DQ62 171 VSS 207 BG1 243 VSS 279 VSS
28 VSS 64 VDD 100 NC 136 VSS 172 DQ17 208 ALERT_n 244 DQS4_c 280 DQ63
29 DM2_n/
DBI2_n,
NC
65 A12/BC_n 101 VSS 137 DQ58 173 VSS 209 VDD 245 DQS4_t 281 VSS
30 NC 66 A9 102 DQ38 138 VSS 174 DQS2_c 210 A11 246 VSS 282 DQ59
31 VSS 67 VDD 103 VSS 139 SA0 175 DQS2_t 211 A7 247 DQ39 283 VSS
32 DQ22 68 A8 104 DQ34 140 SA1 176 VSS 212 VDD 248 VSS 284 VDDSPD
33 VSS 69 A6 105 VSS 141 SCL 177 DQ23 213 A5 249 DQ35 285 SDA
34 DQ18 70 VDD 106 DQ44 142 VPP 178 VSS 214 A4 250 VSS 286 VPP
35 VSS 71 A3 107 VSS 143 VPP 179 DQ19 215 VDD 251 DQ45 287 VPP
36 DQ28 72 A1 108 DQ40 144 NC 180 VSS 216 A2 252 VSS 288 VPP
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Pin Assignments
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 5Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Pin Descriptions
The pin description table below is a comprehensive list of all possible pins for DDR4
modules. All pins listed may not be supported on this module. See Functional Block Di-
agram for pins specific to this module.
Table 5: Pin Descriptions
Symbol Type Description
Ax Input Address inputs: Provide the row address for ACTIVATE commands and the column address for
READ/WRITE commands in order to select one location out of the memory array in the respec-
tive bank (A10/AP, A12/BC_n, WE_n/A14, CAS_n/A15, and RAS_n/A16 have additional functions;
see individual entries in this table). The address inputs also provide the op-code during the
MODE REGISTER SET command. A17 is only defined for x4 SDRAM.
A10/AP Input Auto precharge: A10 is sampled during READ and WRITE commands to determine whether an
auto precharge should be performed on the accessed bank after a READ or WRITE operation
(HIGH = auto precharge; LOW = no auto precharge). A10 is sampled during a PRECHARGE com-
mand to determine whether the precharge applies to one bank (A10 LOW) or all banks (A10
HIGH). If only one bank is to be precharged, the bank is selected by the bank group and bank
addresses.
A12/BC_n Input Burst chop: A12/BC_n is sampled during READ and WRITE commands to determine if burst
chop (on-the-fly) will be performed (HIGH = no burst chop; LOW = burst chopped). See Com-
mand Truth Table in the DDR4 component data sheet.
ACT_n Input Command input: ACT_n defines the ACTIVATE command being entered along with CS_n. The
input into RAS_n/A16, CAS_n/A15, and WE_n/A14 are considered as row address A16, A15, and
A14. See Command Truth Table.
BAx Input Bank address inputs: Define the bank (with a bank group) to which an ACTIVATE, READ,
WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be
accessed during a MODE REGISTER SET command.
BGx Input Bank group address inputs: Define the bank group to which a REFRESH, ACTIVATE, READ,
WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be
accessed during a MODE REGISTER SET command. BG[1:0] are used in the x4 and x8 configura-
tions. x16-based SDRAM only has BG0.
C0, C1, C2
(RDIMM/LRDIMM on-
ly)
Input Chip ID: These inputs are used only when devices are stacked; that is, 2H, 4H, and 8H stacks for
x4 and x8 configurations using through-silicon vias (TSVs). These pins are not used in the x16
configuration. Some DDR4 modules support a traditional DDP package, which uses CS1_n,
CKE1, and ODT1 to control the second die. All other stack configurations, such as a 4H or 8H,
are assumed to be single-load (master/slave) type configurations where C0, C1, and C2 are used
as chip ID selects in conjunction with a single CS_n, CKE, and ODT. Chip ID is considered part of
the command code.
CKx_t
CKx_c
Input Clock: Differential clock inputs. All address, command, and control input signals are sampled
on the crossing of the positive edge of CK_t and the negative edge of CK_c.
CKEx Input Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, device
input buffers, and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and
SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is
asynchronous for self refresh exit. After VREFCA has become stable during the power-on and ini-
tialization sequence, it must be maintained during all operations (including SELF REFRESH). CKE
must be maintained HIGH throughout read and write accesses. Input buffers (excluding CK_t,
CK_c, ODT, RESET_n, and CKE) are disabled during power-down. Input buffers (excluding CKE
and RESET_n) are disabled during self refresh.
CSx_n Input Chip select: All commands are masked when CS_n is registered HIGH. CS_n provides external
rank selection on systems with multiple ranks. CS_n is considered part of the command code
(CS2_n and CS3_n are not used on UDIMMs).
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Pin Descriptions
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 6Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Table 5: Pin Descriptions (Continued)
Symbol Type Description
ODTx Input On-die termination: ODT (registered HIGH) enables termination resistance internal to the
DDR4 SDRAM. When enabled, ODT (RTT) is applied only to each DQ, DQS_t, DQS_c, DM_n/
DBI_n/TDQS_t, and TDQS_c signal for x4 and x8 configurations (when the TDQS function is ena-
bled via the mode register). For the x16 configuration, RTT is applied to each DQ, DQSU_t,
DQSU_c, DQSL_t, DQSL_c, UDM_n, and LDM_n signal. The ODT pin will be ignored if the mode
registers are programmed to disable RTT.
PARITY Input Parity for command and address: This function can be enabled or disabled via the mode
register. When enabled in MR5, the DRAM calculates parity with ACT_n, RAS_n/A16, CAS_n/A15,
WE_n/A14, BG[1:0], BA[1:0], A[16:0]. Input parity should be maintained at the rising edge of the
clock and at the same time as command and address with CS_n LOW.
RAS_n/A16
CAS_n/A15
WE_n/A14
Input Command inputs: RAS_n/A16, CAS_n/A15, and WE_n/A14 (along with CS_n) define the com-
mand and/or address being entered and have multiple functions. For example, for activation
with ACT_n LOW, these are addresses like A16, A15, and A14, but for a non-activation com-
mand with ACT_n HIGH, these are command pins for READ, WRITE, and other commands de-
fined in Command Truth Table.
RESET_n CMOS Input Active LOW asynchronous reset: Reset is active when RESET_n is LOW and inactive when RE-
SET_n is HIGH. RESET_n must be HIGH during normal operation.
SAx Input Serial address inputs: Used to configure the temperature sensor/SPD EEPROM address range
on the I2C bus.
SCL Input Serial clock for temperature sensor/SPD EEPROM: Used to synchronize communication to
and from the temperature sensor/SPD EEPROM on the I2C bus.
DQx, CBx I/O Data input/output and check bit input/output: Bidirectional data bus. DQ represents
DQ[3:0], DQ[7:0], and DQ[15:0] for the x4, x8, and x16 configurations, respectively. If cyclic re-
dundancy checksum (CRC) is enabled via the mode register, the CRC code is added at the end of
the data burst. Any one or all of DQ0, DQ1, DQ2, or DQ3 may be used for monitoring of inter-
nal VREF level during test via mode register setting MR[4] A[4] = HIGH; training times change
when enabled.
DM_n/DBI_n/
TDQS_t (DMU_n,
DBIU_n), (DML_n/
DBIl_n)
I/O Input data mask and data bus inversion: DM_n is an input mask signal for write data. Input
data is masked when DM_n is sampled LOW coincident with that input data during a write ac-
cess. DM_n is sampled on both edges of DQS. DM is multiplexed with the DBI function by the
mode register A10, A11, and A12 settings in MR5. For a x8 device, the function of DM or TDQS
is enabled by the mode register A11 setting in MR1. DBI_n is an input/output identifying
whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/
output after inversion inside the DDR4 device and not inverted if DBI_n is HIGH. TDQS is only
supported in x8 SDRAM configurations (TDQS is not valid for UDIMMs).
SDA I/O Serial Data: Bidirectional signal used to transfer data in or out of the EEPROM or EEPROM/TS
combo device.
DQS_t
DQS_c
DQSU_t
DQSU_c
DQSL_t
DQSL_c
I/O Data strobe: Output with read data, input with write data. Edge-aligned with read data, cen-
tered-aligned with write data. For x16 configurations, DQSL corresponds to the data on
DQ[7:0], and DQSU corresponds to the data on DQ[15:8]. For the x4 and x8 configurations, DQS
corresponds to the data on DQ[3:0] and DQ[7:0], respectively. DDR4 SDRAM supports a differen-
tial data strobe only and does not support a single-ended data strobe.
ALERT_n Output Alert output: Possesses functions such as CRC error flag and command and address parity error
flag as output signal. If a CRC error occurs, ALERT_n goes LOW for the period time interval and
returns HIGH. If an error occurs during a command address parity check, ALERT_n goes LOW un-
til the on-going DRAM internal recovery transaction is complete. During connectivity test mode,
this pin functions as an input. Use of this signal is system-dependent. If not connected as signal,
ALERT_n pin must be connected to VDD on DIMMs.
EVENT_n Output Temperature event: The EVENT_n pin is asserted by the temperature sensor when critical tem-
perature thresholds have been exceeded. This pin has no function (NF) on modules without
temperature sensors.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Pin Descriptions
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 7Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Table 5: Pin Descriptions (Continued)
Symbol Type Description
TDQS_t
TDQS_c
(x8 DRAM-based
RDIMM only)
Output Termination data strobe: When enabled via the mode register, the DRAM device enables the
same RTT termination resistance on TDQS_t and TDQS_c that is applied to DQS_t and DQS_c.
When the TDQS function is disabled via the mode register, the DM/TDQS_t pin provides the da-
ta mask (DM) function, and the TDQS_c pin is not used. The TDQS function must be disabled in
the mode register for both the x4 and x16 configurations. The DM function is supported only in
x8 and x16 configurations. DM, DBI, and TDQS are a shared pin and are enabled/disabled by
mode register settings. For more information about TDQS, see the DDR4 DRAM component da-
ta sheet (TDQS_t and TDQS_c are not valid for UDIMMs).
VDD Supply Module power supply: 1.2V (TYP).
VPP Supply DRAM activating power supply: 2.5V –0.125V / +0.250V.
VREFCA Supply Reference voltage for control, command, and address pins.
VSS Supply Ground.
VTT Supply Power supply for termination of address, command, and control VDD/2.
VDDSPD Supply Power supply used to power the I2C bus for SPD.
RFU Reserved for future use.
NC No connect: No internal electrical connection is present.
NF No function: May have internal connection present, but has no function.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Pin Descriptions
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 8Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
DQ Map
Table 6: Component-to-Module DQ Map
Component
Reference
Number
Component
DQ Module DQ
Module Pin
Number
Component
Reference
Number
Component
DQ Module DQ
Module Pin
Number
U1 0 3 157 U2 0 10 23
1 0 5 1 9 161
2 2 12 2 11 168
3 1 150 3 8 16
4 7 155 4 14 21
5 4 3 5 13 159
6 6 10 6 15 166
7 5 148 7 12 14
U3 0 18 34 U4 0 26 45
1 17 172 1 24 38
2 19 179 2 27 190
3 16 27 3 25 183
4 22 32 4 31 188
5 21 170 5 28 36
6 23 177 6 30 43
7 20 25 7 29 181
U5 0 CB2 56 U7 0 34 104
1 CB1 194 1 32 97
2 CB3 201 2 35 249
3 CB0 49 3 33 242
4 CB6 54 4 38 102
5 CB5 192 5 37 240
6 CB7 199 6 39 247
7 CB4 47 7 36 95
U8 0 42 115 U9 0 50 126
1 40 108 1 48 119
2 43 260 2 51 271
3 41 253 3 49 264
4 47 258 4 54 124
5 44 106 5 53 262
6 46 113 6 55 269
7 45 251 7 52 117
U10 0 58 137 U11 0 57 257
1 57 275 1 58 137
2 59 282 2 56 130
3 56 130 3 59 282
4 63 280 4 61 273
5 61 273 5 63 280
6 62 135 6 60 128
7 60 128 7 62 135
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
DQ Map
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 9Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Table 6: Component-to-Module DQ Map (Continued)
Component
Reference
Number
Component
DQ Module DQ
Module Pin
Number
Component
Reference
Number
Component
DQ Module DQ
Module Pin
Number
U12 0 48 119 U13 0 40 108
1 50 126 1 42 115
2 49 264 2 41 253
3 51 271 3 43 260
4 53 262 4 44 106
5 54 124 5 47 258
6 52 117 6 45 251
7 55 269 7 46 113
U14 0 32 97 U15 0 CB1 194
1 34 104 1 CB2 56
2 33 242 2 CB0 49
3 35 249 3 CB3 201
4 37 240 4 CB5 192
5 38 102 5 CB6 54
6 36 95 6 CB4 47
7 39 247 7 CB7 199
U16 0 24 38 U17 0 17 172
1 26 45 1 18 34
2 25 183 2 16 27
3 27 190 3 19 179
4 28 36 4 21 170
5 31 188 5 22 32
6 29 181 6 20 25
7 30 43 7 23 177
U18 0 9 161 U19 0 0 5
1 10 23 1 3 157
2 8 16 2 1 150
3 11 168 3 2 12
4 13 159 4 4 3
5 14 21 5 7 155
6 12 14 6 5 148
7 15 166 7 6 10
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
DQ Map
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 10 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Functional Block Diagram
Figure 2: Functional Block Diagram
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U19
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
U7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U14
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
U2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U18
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
U8
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U13
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
U3
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U17
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
U9
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U12
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
U4
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U16
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
U10
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U11
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
U5
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U15
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
CS1_n
CS0_n
Rank 0: U1–U5, U7–10
Rank 1: U11–U19
Rank 0
CK0
CK0#
CK1
CK1#
Vref CA
Vss
DDR4 SDRAM
DDR4 SDRAM
Vdd
Vddspd Temperature sensor/
SPD EEPROM
Vtt
DDR4 SDRAM
DDR4 SDRAM
Vpp
Clock, control, command, and address line terminations:
Rank 1
Vss
Vss
Vss
Vss
Vss
Vss
Vss
Vss
Vss
ZQ
Vss
ZQ
Vss
ZQ
Vss
ZQ
Vss
ZQ
Vss
ZQ
Vss
ZQ
Vss
ZQ
Vss
ZQ
Vss
A0
Temperature
sensor/
SPD EEPROM
A1 A2
SA0 SA1
SDA
SCL
EVT
U6
EVENT#
SA2
Control, command, and
address termination
DDR4
SDRAM
VTT
CK
CK#
DDR4
SDRAM
VDD
DM_n/ CS_n DQS_t DQS_c
DBI_n
DQS0_t
DQS0_c
DBI0_n/DM0_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DM_n/ CS_n DQS_t DQS_c
DBI_n
DQS1_t
DQS1_c
DBI1_n/DM1_n
DQS2_t
DQS2_c
DBI2_n/DM2_n
DQS3_t
DQS3_c
DBI3_n/DM3_n
DQS8_t
DQS8_c
DBI8_n/DM8_n
DQS4_t
DQS4_c
DBI4_n/DM4_n
DQS5_t
DQS5_c
DBI5_n/DM5_n
DQS6_t
DQS6_c
DBI6_n/DM6_n
DQS7_t
DQS7_c
DBI7_n/DM7_n
BA[1:0]
BG[1:0]
ACT_n
A[13:0]
RAS_n/A16
CAS_n/A15
WE_n/A14
CKE0
CKE1
ODT0
ODT1
RESET
PAR_IN
ALERT_CONN
BA[1:0]: DDR4 SDRAM
BG[1:0]: DDR4 SDRAM
ACT_n: DDR4 SDRAM
A[13:0]: DDR4 SDRAM
RAS_n/A16: DDR4 SDRAM
CAS_n/A15: DDR4 SDRAM
WE_n/A14: DDR4 SDRAM
CKE0: Rank 0
CKE1: Rank 1
ODT0: Rank 0
ODT1: Rank 1
RESET_n: DDR4 SDRAM
PAR: DDR4 SDRAM
ALERT_DRAM: DDR4 SDRAM
CS_n[1:0], BA[1:0], BG[1:0],
ACT_n, A[13:0], RAS_n/A16,
CAS_n/A15, WE_n/A14,
CKE[1:0], ODT[1:0]
Note: 1. The ZQ ball on each DDR4 component is connected to an external 240Ω ±1% resistor
that is tied to ground. It is used for the calibration of the component’s ODT and output
driver.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Functional Block Diagram
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 11 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
General Description
High-speed DDR4 SDRAM modules use DDR4 SDRAM devices with two or four internal
memory bank groups. DDR4 SDRAM modules utilizing 4- and 8-bit-wide DDR4 SDRAM
devices have four internal bank groups consisting of four memory banks each, provid-
ing a total of 16 banks. 16-bit-wide DDR4 SDRAM devices have two internal bank
groups consisting of four memory banks each, providing a total of eight banks. DDR4
SDRAM modules benefit from DDR4 SDRAM's use of an 8n-prefetch architecture with
an interface designed to transfer two data words per clock cycle at the I/O pins. A single
READ or WRITE operation for the DDR4 SDRAM effectively consists of a single 8n-bit-
wide, four-clock data transfer at the internal DRAM core and eight corresponding n-bit-
wide, one-half-clock-cycle data transfers at the I/O pins.
DDR4 modules use two sets of differential signals: DQS_t and DQS_c to capture data
and CK_t and CK_c to capture commands, addresses, and control signals. Differential
clocks and data strobes ensure exceptional noise immunity for these signals and pro-
vide precise crossing points to capture input signals.
Fly-By Topology
DDR4 modules use faster clock speeds than earlier DDR technologies, making signal
quality more important than ever. For improved signal quality, the clock, control, com-
mand, and address buses have been routed in a fly-by topology, where each clock, con-
trol, command, and address pin on each DRAM is connected to a single trace and ter-
minated (rather than a tree structure, where the termination is off the module near the
connector). Inherent to fly-by topology, the timing skew between the clock and DQS sig-
nals can be easily accounted for by using the write-leveling feature of DDR4.
Module Manufacturing Location
Micron Technology manufactures modules at sites world-wide. Customers may receive
modules from any of the following manufacturing locations:
Table 7: DRAM Module Manufacturing Locations
Manufacturing Site Location Country of Origin Specified on Label
Boise, USA USA
Aguadilla, Puerto Rico Puerto Rico
Xian, China China
Singapore Singapore
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
General Description
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 12 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Address Mapping to DRAM
Address Mirroring
To achieve optimum routing of the address bus on DDR4 multi rank modules, the ad-
dress bus will be wired as shown in the table below, or mirrored. For quad rank mod-
ules, ranks 1 and 3 are mirrored and ranks 0 and 2 are non-mirrored. Highlighted ad-
dress pins have no secondary functions allowing for normal operation when cross-
wired. Data is still read from the same address it was written. However, Load Mode op-
erations require a specific address. This requires the controller to accommodate for a
rank that is "mirrored." Systems may reference DDR4 SPD to determine if the module
has mirroring implemented or not. See the JEDEC DDR4 SPD specification for more de-
tails.
Table 8: Address Mirroring
Edge Connector Pin DRAM Pin, Non-mirrored DRAM Pin, Mirrored
A0 A0 A0
A1 A1 A1
A2 A2 A2
A3 A3 A4
A4 A4 A3
A5 A5 A6
A6 A6 A5
A7 A7 A8
A8 A8 A7
A9 A9 A9
A10 A10 A10
A11 A11 A13
A13 A13 A11
A12 A12 A12
A14 A14 A14
A15 A15 A15
A16 A16 A16
A17 A17 A17
BA0 BA0 BA1
BA1 BA1 BA0
BG0 BG0 BG1
BG1 BG1 BG0
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Address Mapping to DRAM
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 13 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Temperature Sensor with SPD EEPROM Operation
Thermal Sensor Operations
The integrated thermal sensor continuously monitors the temperature of the module
PCB directly below the device and updates the temperature data register. Temperature
data may be read from the bus host at any time, which provides the host real-time feed-
back of the module's temperature. Multiple programmable and read-only temperature
registers can be used to create a custom temperature-sensing solution based on system
requirements and JEDEC JC-42.2.
EVENT_n Pin
The temperature sensor also adds the EVENT_n pin (open-drain), which requires a pull-
up to VDDSPD. EVENT_n is a temperature sensor output used to flag critical events that
can be set up in the sensor’s configuration registers. EVENT_n is not used by the serial
presence-detect (SPD) EEPROM.
EVENT_n has three defined modes of operation: interrupt, comparator, and TCRIT. In
interrupt mode, the EVENT_n pin remains asserted until it is released by writing a 1 to
the clear event bit in the status register. In comparator mode, the EVENT_n pin clears
itself when the error condition is removed. Comparator mode is always used when the
temperature is compared against the TCRIT limit. In TCRIT only mode, the EVENT_n
pin is only asserted if the measured temperature exceeds the TCRIT limit; it then re-
mains asserted until the temperature drops below the TCRIT limit minus the TCRIT
hysteresis.
SPD EEPROM Operation
DDR4 SDRAM modules incorporate SPD. The SPD data is stored in a 512-byte, JEDEC
JC-42.4-compliant EEPROM that is segregated into four 128-byte, write-protectable
blocks. The SPD content is aligned with these blocks as shown in the table below.
Block Range Description
0 0–127 000h–07Fh Configuration and DRAM parameters
1 128–255 080h–0FFh Module parameters
2 256–319 100h–13Fh Reserved (all bytes coded as 00h)
320–383 140h–17Fh Manufacturing information
3 384–511 180h–1FFh End-user programmable
The first 384 bytes are programmed by Micron to comply with JEDEC standard JC-45,
"Appendix X: Serial Presence Detect (SPD) for DDR4 SDRAM Modules." The remaining
128 bytes of storage are available for use by the customer.
The EEPROM resides on a two-wire I2C serial interface and is not integrated with the
memory bus in any manner. It operates as a slave device in the I2C bus protocol, with all
operations synchronized by the serial clock. Transfer rates of up to 1 MHz are achieva-
ble at 2.5V (NOM).
Micron implements reversible software write protection on DDR4 SDRAM-based mod-
ules. This prevents the lower 384 bytes (bytes 0 to 383) from being inadvertently pro-
grammed or corrupted. The upper 128 bytes remain available for customer use and are
unprotected.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Temperature Sensor with SPD EEPROM Operation
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 14 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Electrical Specifications
Stresses greater than those listed may cause permanent damage to the module. This is a
stress rating only, and functional operation of the module at these or any other condi-
tions outside those indicated in each device's data sheet is not implied. Exposure to ab-
solute maximum rating conditions for extended periods may adversely affect reliability.
Table 9: Absolute Maximum Ratings
Symbol Parameter Min Max Units Notes
VDD VDD supply voltage relative to VSS –0.4 1.5 V 1
VDDQ VDDQ supply voltage relative to VSS –0.4 1.5 V 1
VPP Voltage on VPP pin relative to VSS –0.4 3.0 V 2
VIN, VOUT Voltage on any pin relative to VSS –0.4 1.5 V
Table 10: Operating Conditions
Symbol Parameter Min Nom Max Units Notes
VDD VDD supply voltage 1.14 1.2 1.26 V 1
VPP DRAM activating power supply 2.375 2.5 2.75 V 2
VREFCA(DC) Input reference voltage command/
address bus
0.49 × VDD 0.5 × VDD 0.51 × VDD V 3
IVTT Termination reference current from VTT –750 750 mA
VTT Termination reference voltage (DC) –
command/address bus
0.49 × VDD -
20mV
0.5 × VDD 0.51 × VDD +
20mV
V 4
IIN Input leakage current; any input excluding ZQ;
0V < VIN < 1.1V
–2.0 2.0 µA 5
II/O DQ leakage; 0V < Vin < VDD –4.0 4.0 µA 5
IZQ Input leakage current; ZQ –3.0 3.0 µA 5, 6
IOZpd Output leakage current; VOUT = VDD; DQ is disabled 5.0 µA
IOZpu Output leakage current; VOUT =VSS; DQ and ODT are
disabled; ODT is disabled with ODT input HIGH
5.0 µA
IVREFCA VREFCA leakage; VREFCA = VDD/2 (after DRAM is ini-
tialized)
–2.0 2.0 µA 5
Notes: 1. VDDQ tracks with VDD; VDDQ and VDD are tied together.
2. VPP must be greater than or equal to VDD at all times.
3. VREFCA must not be greater than 0.6 x VDD. When VDD is less than 500mV, VREF may be
less than or equal to 300mV.
4. VTT termination voltages in excess of the specification limit adversely affect the voltage
margins of command and address signals and reduce timing margins.
5. Multiply by the number of DRAM die on the module.
6. Tied to ground. Not connected to edge connector.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Electrical Specifications
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 15 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Table 11: Thermal Characteristics
Symbol Parameter/Condition Value Units Notes
TCCommercial operating case temperature 0 to 85 °C 1, 2, 3
TC>85 to 95 °C 1, 2, 3, 4
TOPER Normal operating temperature range 0 to 85 °C 5, 7
TOPER Extended temperature operating range (optional) >85 to 95 °C 5, 7
TSTG Non-operating storage temperature –55 to 100 °C 6
RHSTG Non-operating Storage Relative Humidity (non-condensing) 5 to 95 %
NA Change Rate of Storage Temperature 20 °C/hour
Notes: 1. Maximum operating case temperature; TC is measured in the center of the package.
2. A thermal solution must be designed to ensure the DRAM device does not exceed the
maximum TC during operation.
3. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC dur-
ing operation.
4. If TC exceeds 85°C, the DRAM must be refreshed externally at 2X refresh, which is a 3.9µs
interval refresh rate.
5. The refresh rate must double when 85°C < TOPER 95°C.
6. Storage temperature is defined as the temperature of the top/center of the DRAM and
does not reflect the storage temperatures of shipping trays.
7. For additional information, refer to technical note TN-00-08: "Thermal Applications"
available at micron.com.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Electrical Specifications
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 16 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
DRAM Operating Conditions
Recommended AC operating conditions are given in the DDR4 component data sheets.
Component specifications are available at micron.com. Module speed grades correlate
with component speed grades, as shown below.
Table 12: Module and Component Speed Grades
DDR4 components may exceed the listed module speed grades; module may not be available in all listed speed grades
Module Speed Grade Component Speed Grade
-3G2 -062E
-2G9 -068
-2G6 -075
-2G3 -083
-2G1 -093E
Design Considerations
Simulations
Micron memory modules are designed to optimize signal integrity through carefully de-
signed terminations, controlled board impedances, routing topologies, trace length
matching, and decoupling. However, good signal integrity starts at the system level. Mi-
cron encourages designers to simulate the signal characteristics of the system's memo-
ry bus to ensure adequate signal integrity of the entire memory system.
Power
Operating voltages are specified at the edge connector of the module, not at the DRAM.
Designers must account for any system voltage drops at anticipated power levels to en-
sure the required supply voltage is maintained.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
DRAM Operating Conditions
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 17 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
IDD Specifications
Table 13: DDR4 IDD Specifications and Conditions – 8GB (Die Revision B)
Values are for the MT40A512M8 DDR4 SDRAM only and are computed from values specified in the 4Gb (512 Meg x 8) com-
ponent data sheet
Parameter Symbol 2666 2400 Units
One bank ACTIVATE-PRECHARGE current IDD01729 702 mA
One bank ACTIVATE-PRECHARGE, Word Line Boost, IPP current IPP0163 63 mA
One bank ACTIVATE-READ-PRECHARGE current IDD11882 855 mA
Precharge standby current IDD2N2756 738 mA
Precharge standby ODT current IDD2NT1684 648 mA
Precharge power-down current IDD2P2396 396 mA
Precharge quite standby current IDD2Q2648 648 mA
Active standby current IDD3N21044 1026 mA
Active standby IPP current IPP3N254 54 mA
Active power-down current IDD3P2594 594 mA
Burst read current IDD4R11719 1611 mA
Burst write current IDD4W11458 1368 mA
Burst refresh current (1x REF) IDD5R1792 783 mA
Burst refresh IPP current (1x REF) IPP5R172 72 mA
Self refresh current: Normal temp range (0–85°C) IDD6N2432 432 mA
Self refresh current: Extended temp range (0–95°C) IDD6E2846 846 mA
Self refresh current: Reduced temp range (0–45°C) IDD6R2450 450 mA
Auto self refresh current (25°C) IDD6A2162 162 mA
Auto self refresh current (45°C) IDD6A2216 216 mA
Auto self refresh current (75°C) IDD6A2846 846 mA
Auto self refresh current IPP current IPP6X254 54 mA
Bank interleave read current IDD712223 2097 mA
Bank interleave read IPP current IPP71153 153 mA
Maximum Power Down Current IDD82342 342 mA
Notes: 1. One module rank in the active IDD/PP, the other rank in IDD2P/PP3N.
2. All ranks in this IDD/PP condition.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
IDD Specifications
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 18 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Temperature Sensor with SPD EEPROM
The temperature sensor continuously monitors the module's temperature and can be
read back at any time over the I2C bus shared with the serial presence-detect (SPD) EE-
PROM. Refer to JEDEC JC-42.4 EE1004 and TSE2004 device specifications for complete
details.
SPD Data
For the latest SPD data, refer to Micron's SPD page: micron.com/SPD.
Table 14: Temperature Sensor with SPD EEPROM Operating Conditions
Parameter/Condition Symbol Min Nom Max Units
Supply voltage VDDSPD 2.5 V
Input low voltage: logic 0; all inputs VIL –0.5 VDDSPD × 0.3 V
Input high voltage: logic 1; all inputs VIH VDDSPD × 0.7 VDDSPD + 0.5 V
Output low voltage: 3mA sink current VDDSPD > 2V VOL 0.4 V
Input leakage current: (SCL, SDA) VIN = VDDSPD or VSSSPD ILI ±5 µA
Output leakage current: VOUT = VDDSPD or VSSSPD, SDA in High-Z ILO ±5 µA
Table 15: Temperature Sensor and EEPROM Serial Interface Timing
Parameter/Condition Symbol Min Max Units
Clock frequency fSCL 10 1000 kHz
Clock pulse width HIGH time tHIGH 260 ns
Clock pulse width LOW time tLOW 500 ns
Detect clock LOW timeout tTIMEOUT 25 35 ms
SDA rise time tR 120 ns
SDA fall time tF 120 ns
Data-in setup time tSU:DAT 50 ns
Data-in hold time tHD:DI 0 ns
Data out hold time tHD:DAT 0 350 ns
Start condition setup time tSU:STA 260 ns
Start condition hold time tHD:STA 260 ns
Stop condition setup time tSU:STO 260 ns
Time the bus must be free before a new transi-
tion can start
tBUF 500 ns
Write time tW 5 ms
Warm power cycle time off tPOFF 1 ms
Time from power-on to first command tINIT 10 ms
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Temperature Sensor with SPD EEPROM
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 19 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.
Module Dimensions
Figure 3: 288-Pin DDR4 UDIMM
31.40 (1.236)
31.10 (1.224)
2.50 (0.098) D
(2X)
0.75 (0.03) R
(8X)
Front view
133.48 (5.255)
133.22 (5.244)
Back view
1.5 (0.059)
1.3 (0.051)
3.9 (0.153)
MAX
3.0 (0.118) (4X) TYP
9.5 (0.374)
TYP
Pin 1
4.8 (0.189) TYP
5.95 (0.234) TYP
126.65 (4.99)
TYP
0.85 (0.033)
TYP
0.60 (0.0236)
TYP
0.75 (0.030) R
64.6 (2.54)
TYP
56.10 (2.21)
TYP
Pin 288 Pin 145
2.20 (0.087) TYP
72.25 (2.84)
TYP
0.5 (0.0197) TYP
28.9 (1.14)
TYP
10.2 (0.4)
TYP 25.5 (1.0)
TYP
22.95 (0.9)
TYP
10.2 (0.4)
TYP
22.95 (0.90)
TYP
3.35 (0.132) TYP
(2X)
3.15 (0.124)
TYP
14.6 (0.57)
TYP 8.0 (0.315)
TYP
16.1 (0.63)
TYP
Pin 144
1.25 (0.049) x 45° (2X)
U1 U2 U3 U4
U6
U7 U8 U9 U10
U11 U12 U13 U14 U15 U16 U17 U18
U5
U19
Notes: 1. All dimensions are in millimeters (inches); MAX/MIN or typical (TYP) where noted.
2. The dimensional diagram is for reference only.
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000
www.micron.com/products/support Sales inquiries: 800-932-4992
Micron and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.
Although considered final, these specifications are subject to change, as further product development and data characterization some-
times occur.
8GB (x72, ECC, DR) 288-Pin DDR4 UDIMM
Module Dimensions
PDF: CCMTD-1725822587-9423
asf18c1gx72az.pdf – Rev. G 11/17 EN 20 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2013 Micron Technology, Inc. All rights reserved.