Title R eference Design R eport for a 10 W CV/ CC USB Charger using I nnoSw itch TM -CH I N N2023K Specification 85 VAC - 264 VAC Input; 5 V, 2 A Output (end of USB Cable) Application Cell Phone / USB Charger Author Applications Engineering Department Document Number RDR-420 Date April 20, 2015 Revision 1.1 Summary and Features * InnoSwitch-CH - Industry first AC/DC ICs with isolated, safety rated integrated feedback * All the benefits of secondary side control with the simplicity of primary side regulation * 3% CV, 5% CC regulation * Insensitive to transformer variation * Transient response independent of load timing * Smaller, lower cost output capacitors * <10 mW no-load input power * Cable voltage drop compensation * Built in synchronous rectification for high efficiency PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at . Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 Table of Contents 1 2 3 4 Introduction .........................................................................................................4 Power Supply Specification ...................................................................................5 Schematic ............................................................................................................6 Circuit Description ................................................................................................7 4.1 Input EMI Filtering .........................................................................................7 4.1 InnoSwitch-CH IC Primary ..............................................................................7 4.2 InnoSwitch-CH IC Secondary ..........................................................................8 5 PCB Layout ..........................................................................................................9 6 Bill of Materials .................................................................................................. 11 7 Transformer Specification ................................................................................... 12 7.1 Electrical Diagram ........................................................................................ 12 7.2 Electrical Specifications ................................................................................ 12 7.3 Materials ..................................................................................................... 12 7.4 Transformer Build Diagram .......................................................................... 13 7.5 Transformer Instructions .............................................................................. 13 7.6 Transformer Illustrations .............................................................................. 14 8 Transformer Design Spreadsheet ........................................................................ 18 9 Performance Data .............................................................................................. 21 9.1 Active Mode Efficiency (at USB Socket) vs. Line ............................................. 21 9.2 Active Mode Efficiency (at USB Socket) vs. Load ............................................ 22 9.2.1 Efficiency without Schottky Diode in Parallel with Q1, SR FET .................. 22 9.2.2 Efficiency with a Schottky Diode, SS16, in Parallel with Q1, SR FET .......... 24 9.3 No-Load Input Power ................................................................................... 25 9.4 Average Efficiency (at USB Socket) ............................................................... 26 9.4.1 Efficiency Requirements ........................................................................ 26 9.4.2 Average Efficiency at 115 VAC Input ...................................................... 26 9.4.3 Average Efficiency at 230 VAC Input ...................................................... 27 9.5 CV/CC Regulation Measured at the End of Cable ............................................ 28 10 Open Case Thermal Performance ..................................................................... 29 11 Waveforms ..................................................................................................... 31 11.1 Load Transient Response (end of cable)........................................................ 31 11.2 Load Transient Response (at USB Socket) ..................................................... 32 11.3 Switching Waveforms................................................................................... 33 11.3.1 InnoSwitch-CH Waveforms .................................................................... 33 11.3.2 SR FET Waveforms ............................................................................... 33 11.4 Output Ripple Measurements........................................................................ 34 11.4.1 Ripple Measurement Technique ............................................................. 34 11.4.2 Measurement Results ............................................................................ 35 12 Conductive EMI............................................................................................... 36 12.1 2 A Resistive Load, Floating Output (PK / AV) ................................................ 36 12.2 2 A Resistive Load, Artificial Hand Ground (PK / AV) ...................................... 38 12.3 Smartphone with Monitor Set-up (HDMI) (QP / AV) ....................................... 40 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 13 Radiative EMI ................................................................................................. 42 14 Audible Noise.................................................................................................. 44 15 Lighting Surge & ESD Test............................................................................... 49 15.1 Differential Mode Test .................................................................................. 49 15.2 Common Mode Test ..................................................................................... 49 15.3 ESD Test ..................................................................................................... 49 16 Revision History .............................................................................................. 50 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Page 3 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 1 Introduction This document is an engineering report describing a 2 A, 5.0 V USB charger utilizing a device from the InnoSwitch-CH family of ICs. This design is intended to show the high power density and efficiency that is possible due to the high level of integration while still providing exceptional performance. This document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data. Figure 1 - Populated Circuit Board Photograph, Top. Figure 2 - Populated Circuit Board Photograph, Bottom. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 2 Power Supply Specification The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section. Description Input Voltage Frequency No-load Input Power Output Output Voltage Symbol Min Typ Max Units Comment VIN fLINE 85 50 265 64 10 VAC Hz mW 2 Wire - no P.E. 50/60 5.25 V 5.5 V 150 350 2.5 3.5 mV mV A V 0.35 V cable resistance drop 0 A - 2 A - 0 A load step end of cable At the end of the output cable At the end of the output cable 20 ms W VOUT 4.75 Transient Output Voltage VOUT(T) 4.2 Output Ripple Voltage Output Cable Compensation Output Current CC point Auto-Restart Voltage VRIPPLE VCBL IOUT VAR 250 2 2 Turn on Rise Time Rated Output Power Efficiency Average 25%, 50%, 75%, and 100% 10% tR POUT 5.0 300 10 230 VAC At 2 A output current At end of cable AVE[BRD] 84 % Measured at USB socket AVE[CBL] 80 % With 0.38 V cable resistance drop 10% 79 % Environmental Output Cable Impedance RCBL 190 m CISPR22B / EN55022B Load floating or grounded via artificial hand Resistive load, 6 dB Margin Connected to mobile phone and TV (MHL connection enabled) 6 dB Margin IEC950 / UL1950 Class II Designed to meet Conducted EMI Safety Audible noise 25 dB Measured at 3 cm Line Surge Common mode (L1/L2-PE) 6 kV Ring Wave, Common Mode: 12 Ambient Temperature Page 5 of 51 kV kV 16.5 8 ESD TAMB 0 40 o C Contact Air discharge No degradation in performance Free convection, sea level in sealed enclosure Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 3 Schematic Figure 3 - Schematic. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 4 Circuit Description 4.1 I nput EM I Filtering Fuse F1 provides protection against catastrophic failure of components on the primary side. An inrush limiting thermistor (RT1) was necessary due to the low surge current rating of the rectifier diodes (D1-D4) and the relatively high value and therefore low impedance of the bulk storage capacitors C2 and C4. Physically small diodes were selected for D1-D4 due to the limited space, specifically height from PCB to case. Capacitor C2 and C4 provide filtering of the rectified AC input and together with L1 and L2 form a (pi) filter to attenuate differential mode EMI. A low value Y capacitor (C8) reduces common mode EMI. 4.1 I nnoSw itch-CH I C P rim ary One side of the transformer primary is connected to the rectified DC bus, the other is connected to the integrated 650 V power MOSFET inside the InnoSwitch-CH IC (U1). A low cost RCD clamp formed by D1, R1, R14 and C1 limits the peak drain voltage due to the effects of transformer and output trace inductance. The IC is self-starting, using an internal high voltage current source to charge the BPP pin capacitor (C6) when AC is first applied. During normal operation the primary side block is powered from an auxiliary winding on the transformer. The output of this is configured as a flyback winding, rectified and filtered (D2 and C5) and fed in the BPP pin via a current limiting resistor R4. Output regulation is achieved using On/Off control, the number of enabled switching cycles are adjusted based on the output load. At high load most switching cycles are enabled, and at light load or no-load most cycled are disabled or skipped. Once a cycle is enabled, the power MOSFET remain on until the primary current ramps to the device current limit for the specific operating state. There are four operating states (current limits) arrange such that the frequency content of the primary current switching pattern remains out of the audible range until at light load where the transformer flux density and therefore audible noise generation is at a very low level. Page 7 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 4.2 I nnoSw itch-CH I C Secondary The secondary side of the InnoSwitch-CH provides output voltage, output current sensing and drive to a MOSFET providing synchronous rectification. The secondary of the transformer is rectified by Q1 and filtered by C10. High frequency ringing during switching transients that would otherwise create high voltage across Q1 and radiated EMI is reduced via snubber components R7 and C9. To reduce dissipation synchronous rectification (SR) is provided by Q1. The gate of Q1 is turned on based on the winding voltage sensed via R5 and the FWD pin of the IC. In continuous conduction mode operation the power MOSFET is turned off just prior to the secondary side commanding a new switching cycle from the primary. In discontinuous mode the MOSFET is turned off when the voltage drop across the MOSFET falls below a threshold. Secondary side control of the primary side MOSFET ensure that it is never on simultaneously with the synchronous rectification MOSFET. The MOSFET drive signal is output on the SR/P pin. The secondary side of the IC is self-powered from either the secondary winding forward voltage or the output voltage. During CV operation the output voltage powers the device, fed into the VO pin. During CC operation, when the output voltage falls the device will power itself from the secondary winding directly. During the on-time of the primary side MOSFET the forward voltage that appears across the secondary winding is used to charge the decoupling capacitor C7 via R5 and an internal regulator. The unit enters auto-restart when the sensed output voltage is lower than 3 V. Output current is sensed internally between the IS and GND pins with a threshold of 35 mV to minimize losses. Once the internal current sense threshold is exceeded, the device adjusts the number of enabled switching cycles to maintain a fixed output current. Below the CC threshold the device operates in constant voltage mode. The output voltage is sensed via resistor divider R8 and R9 operation with a reference voltage of 1.265 V on the FB pin when at the regulation output voltage. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 5 PCB Layout PCB copper thickness is 2 oz (2.8 mils / 70 m) unless otherwise stated Figure 4 - Printed Circuit Layout, Top. Page 9 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 Figure 5 - Printed Circuit Layout, Bottom. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 10 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 6 Bill of Materials Item Qty Ref Des 1 1 C1 Description 2 2 C2 C4 3 1 C5 1 nF, 250 V, Ceramic, X7R, 0805 8.2 F, 400 V, Electrolytic, (8 x 14) 8.2 F, 400 V, Electrolytic, (8 x 14), Alternate part 22 F, 16 V, Ceramic, X5R, 0805 Mfg Part Number Mfg GRM21AR72E102KW01D 400AX8.2M8X16 C2012X5R1C226K Murata Capxon Rubycon TDK 4 1 C6 1 F, 25 V, Ceramic, X5R, 0805 C2012X5R1E105K TDK 5 1 6 1 C7 2.2 F, 25 V, Ceramic, X7R, 0805 C2012X7R1E225M TDK C8 100 pF, Ceramic, Y1 440LT10-R Vishay 7 8 1 C9 1.5 nF, 200 V, 10%, Ceramic, X7R, 0805 08052C152KAT2A AVX 1 C10 560 F, 6.3 V, Al Organic Polymer, Gen. Purpose, 20% RS80J561MDN1JT Nichicon AVX 9 1 C15 100 pF 100 V 10 % X7R 0805 08051C101JAT2A 10 1 C16 1 F, 50 V, Ceramic, X5R, 0805 08055D105KAT2A AVX 11 1 D1 600 V, 1 A, Rectifier, Glass Passivated, POWERDI123 DFLR1600-7 Diodes, Inc. 12 1 13 4 14 1 D2 D3 D4 D5 D6 F1 200 V, 1 A, Rectifier, Glass Passivated, POWERDI123 800 V, 1.5 A, Gen Purpose, SMA 800 V, 1.5 A, Gen Purpose, SMA, Alternate part 3.15 A, 250 V, Slow, RST DFLR1200-7 S2KA-13-F RS2MA-13-F 507-1181 Diodes, Inc. Diodes, Inc. Diodes, Inc. Belfuse 15 1 J1 Test Point, BLK, Miniature THRU-HOLE MOUNT 5001K-ND Keystone 16 1 J2 Test Point, WHT, Miniature THRU-HOLE MOUNT 5002K-ND Keystone 17 1 J3 Connector USB Female Type A USB-AF-DIP-094-H GOLDCONN 18 1 L1 100 H, 0.490 A, 20% RL-5480-2-100 Renco 19 1 L2 4.7 H, 600 mA SMD INDUCTOR, MULTILAYER 20 1 Q1 21 1 22 1 23 MLZ2012N4R7LT000 TDK 60 V, 15 A, N-Channel, PowerPAK SO-8 SI7478DP-T1-E3 Vishay R1 200 k, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ204V Panasonic R4 3 k, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ302V Panasonic 1 R5 47 , 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ470V Panasonic 24 1 R7 20 , 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ200V Panasonic 25 1 R8 100 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1003V Panasonic 26 1 R9 34 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF3402V Panasonic 27 1 R10 330 k, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ334V Panasonic 28 1 R11 100 k, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ104V Panasonic 29 1 R14 30 , 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ300V Panasonic 30 1 RT1 NTC Thermistor, 10 Ohms, 0.7 A 31 1 T1 Custom (see transformer section for material set) 32 1 U1 InnoSwitch-CH IC eSOP-R16B MF72-010D5 SNX-R1776 TSD-3517 INN2023K Cantherm Santronics Premier Magnetics Power Integrations Page 11 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 7 Transformer Specification 7.1 Electrical Diagram FL, #24 AWG Bare wire 4 6 WD1: Primary 54T - #30 AWG 3 WD4: Secondary 5T - 22 AWG_TIW 5 nc WD3: Shield 10T - #34 AWG 1 2 WD2: Bias 9T - 2 x #34 AWG 1 Figure 6 - Transformer Electrical Diagram. 7.2 Electrical Specifications Primary Inductance Resonant Frequency Primary Leakage Inductance Pins 3-4, all other windings open, measured at 100 kHz, 0.4 VRMS. Pins 3-4, all other windings open. Pins 3-4, with pins 5-6 shorted, measured at 100 kHz, 0.4 VRMS. 546 H 5% 1200 kHz (min) 25 H (max) 7.3 M aterials Item [1] [2] [3] [4] [5] [6] [7] [8] [9] Description Core: EE1621; PC-40 or equivalent. Bobbin: EE1621-Vertical - 8 pins (4/4) Shen Zhen Xin Yu Jia Technology Ltd. Magnet Wire: #30 AWG, double coated. Magnet Wire: #34 AWG, double coated. Magnet Wire: #22 AWG, Triple Insulated Wire. Tape: 3M 1298 Polyester Film, 2 mil thick, 5.5 mm wide. Epoxy: Devcon, 5 Minute Epoxy, No. 14210; or equivalent. Bus wire: #24 AWG, Belden Electronics Div; or equivalent. Varnish: Dolph BC-359. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 7.4 Transform er Build Diagram WD4: Secondary 5T - #22 AWG_TIW 5 6 WD3: Shield 10T - #34 AWG 2 (wound in parallel with...) WD2: Bias 9T - 2x#34 AWG NC 1 4 WD1: Primary 54T - #30 AWG 3 Figure 7 - Transformer Build Diagram. 7.5 Transform er I nstructions Winding Preparation WD1 Primary Insulation WD2 & WD3 Bias & Shield Insulation WD4 Secondary Insulation Finish Page 13 of 51 For the purpose of these instructions, bobbin is oriented on winder such that pin side is on the left side. Winding direction is clockwise direction. Start at pin 3, wind 54 turns wire item [2] in 3 layers (18T/layer) with tight tension. At the last turn bring the wire back to the left and finish at pin 4. 1 layer of tape [6] for insulation. Use 3 wires item [4], start at pin 1, and wind 9 turns from left to right. At the last turn, bring 2 wires to the left to terminate at pin 2 for WD2. Then continue winding on the 3rd wire 1 more turn and left no-connect for WD3. 1 layer of tape [6] for insulation. Start at pin 6, wind 5 turns wire item [5], spread wire evenly. At the last turn bring the wire back to the left and finish at pin 5. 2 Layer of tape [6] to secure the windings. Gap core halves for 546 H inductance. Place epoxy item [7] onto both center legs of core halves, (see illustration below). Wrap core halves and bus wire item [8] with tape, (see illustration below). Varnish with item [9]. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 7.6 Transform er I llustrations Winding Preparation For the purpose of these instructions, bobbin is oriented on winder such that pin side is on the left side. Winding direction is clockwise direction. WD1 Primary Start at pin 3, wind 54 turns wire item [2] in 3 layers (18T/layer) with tight tension. At the last turn bring the wire back to the left and finish at pin 4. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 14 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 1 layer of tape [6] for insulation. Insulation Use 3 wires item [4], start at pin 1, and wind 9 turns from left to right. At the last turn, bring 2 wires to the left to terminate at pin 2 for WD2. Then continue winding on the 3rd wire 1 more turn and left noconnect for WD3. WD2 & WD3 Bias & Shield 2 wires for WD2 Page 15 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 3rd wire left NC for WD3 Insulation 1 layer of tape [6] for insulation. WD4 Secondary Start at pin 6, wind 5 turns wire item [5], spread wire evenly. At the last turn bring the wire back to the left and finish at pin 5. Insulation 2 layer of tape [6] to secure the windings. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 16 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger Gap core halves for 546 H inductance. Place epoxy item [7] onto both center legs of core halves, (see illustration beside). Finish bus wire item [8] left ~ 40 mm floating on primary side Wrap core halves and bus wire item [8] with tape, (see illustration below). Varnish with item [9]. Page 17 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 8 20-Apr-15 Transformer Design Spreadsheet ACDC_InnoSwitchCH_101614; Rev.2.0; Copyright INPUT Power Integrations 2014 ENTER APPLICATION VARIABLES VACMIN VACMAX fL INFO OUTPUT UNIT 85 265 50 V V Hz VO 5.00 5.00 V IO 2.00 2.00 A 10.6 W Power n 0.82 0.82 Z 0.50 tC 3.00 mSeconds 16.40 uFarad CIN 16.40 ENTER InnoSwitch VARIABLES InnoSwitch-CH INN20x3 Cable drop 6% compensation Complete Part Number Chose Configuration INC Info INN20x3 6% Select Cable Drop Compensation option INN2023K Final part number including package Increased Current Limit 0.682 0.75 0.818 93000 A A A Hz I^2fmin 47.25 A^2kHz 58 V VDS 5.00 V KP 0.80 KP_TRANSIENT 0.46 ENTER BIAS WINDING VARIABLES VB VDB NB 10.00 0.70 9.32 V V V PIVB 102.59 V 58 ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type Custom Custom Core EE1621 EE1621 Bobbin 0 AE 0.325 0.325 cm^2 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Minimum AC Input Voltage Maximum AC Input Voltage AC Mains Frequency Output Voltage (continuous power at the end of the cable) Power Supply Output Current (corresponding to peak power) Continuous Output Power, including cable drop compensation Efficiency Estimate at output terminals. Use 0.8 if no better data available Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available Bridge Rectifier Conduction Time Estimate !!! Input capacitor is too small. Recommnded to increase CIN above 19.05 uF to ensure VMIN>70 V User defined InnoSwitch ILIMITMIN ILIMITTYP ILIMITMAX fSmin VOR ACDC_InnoSwitch_101614_Rev2-0; InnoSwitch-CH Continuous/Discontinuous Flyback Transformer Design Spreadsheet Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications) Minimum Current Limit Typical Current Limit Maximum Current Limit Minimum Device Switching Frequency Worst case I2F parameter across the temperature range Reflected Output Voltage (VOR <= 100 V Recommended) InnoSwitch on-state Drain to Source Voltage Ripple to Peak Current Ratio at Vmin, assuming ILIMITMIN, and I2FMIN (KP < 6) Worst case transient Ripple to Peak Current Ratio. Ensure KP_TRANSIENT > 0.25 Bias Winding Voltage Bias Winding Diode Forward Voltage Drop Bias Winding Number of Turns Bias winding peak reverse voltage at VACmax and assuming VB*1.2 Enter Transformer Core Enter core part number, if necessary Enter bobbin part number, if necessary Core Effective Cross Sectional Area Page 18 of 51 20-Apr-15 LE AL BW RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 3.93 2800 5.40 M 3.93 2800 5.40 cm nH/T^2 mm 0.00 mm L 3 NS 5 DC INPUT VOLTAGE PARAMETERS VMIN 62 3 5 Warning 62 V VMAX CURRENT WAVEFORM SHAPE PARAMETERS 375 V DMAX 0.50 IAVG IP 0.21 0.682 A A IR 0.546 A IRMS 0.31 A Core Effective Path Length Ungapped Core Effective Inductance Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers Number of Secondary Turns !!! Minimum DC Input Voltage < 70 Volts. Increase VACMIN or increase CIN Maximum DC Input Voltage Duty Ratio at full load, minimum primary inductance and minimum input voltage Average Primary Current Peak Primary Current assuming ILIMITMIN Primary Ripple Current assuming ILIMITMIN, and LPMIN Primary RMS Current, assuming ILIMITMIN, and LPMIN TRANSFORMER PRIMARY DESIGN PARAMETERS LP 546 uHenry 5.0 54 187 % nH/T^2 BM 2868 Gauss BAC 1147 Gauss ur LG BWE OD 2694 0.20 16.2 0.30 mm mm mm INS 0.05 mm DIA 0.25 mm AWG 31 AWG CM 81 Cmils CMA 259 Cmils/Amp LP_TOLERANCE NP ALG 5.0 TRANSFORMER SECONDARY DESIGN PARAMETERS Lumped parameters ISP 7.37 ISRMS 3.33 IRIPPLE 2.67 CMS 667 A A A Cmils AWGS 21 AWG VOLTAGE STRESS PARAMETERS VDRAIN 517 V PIVS 54 V TRANSFORMER SECONDARY DESIGN PARAMETERS 1st output VO1 5.30 Page 19 of 51 V Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 518 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Maximum Operating Flux Density, BM<3000 is recommended AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film thickness) Bare conductor diameter Primary Wire Gauge (Rounded to next smaller standard AWG value) Bare conductor effective area in circular mils Primary Winding Current Capacity (200 < CMA < 500) Peak Secondary Current, assuming ILIMITMIN Secondary RMS Current Output Capacitor RMS Ripple Current Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) Maximum Drain Voltage Estimate Output Rectifier Maximum Peak Inverse Voltage, assuming the primary has a Voltage spike 40% above VMAX and VO*1.05 Main Output Voltage directly after output rectifier Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger IO1 PO1 2.00 10.60 A W VD1 0.06 V NS1 ISRMS1 IRIPPLE1 5.00 3.33 2.67 Turns A A 54 V PIVS1 Recommended MOSFET RDSON_HOT VRATED CMS1 QM6006 Output DC Current Output Power Output Synchronous Rectification FET Forward Voltage Drop Output Winding Number of Turns Output Winding RMS Current Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage, assuming the primary has a Voltage spike 40% above VMAX and VO*1.05 Recommended SR FET for this output 0.027 60 667 Ohm V Cmils AWGS1 21 AWG DIAS1 ODS1 0.73 1.08 mm mm Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 20-Apr-15 RDSon at 100C Rated voltage of selected SR FET Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple Insulated Wire Page 20 of 51 20-Apr-15 9 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger Performance Data All measurements performed with external room ambient temperature and 60 Hz input for 115 VAC range and 50 Hz for 230 VAC input range. 9.1 Active M ode Efficiency (at USB Socket) vs. Line 87 86 Efficiency (%) 85 84 83 82 81 80 70 90 110 130 150 170 190 210 230 250 270 Input Voltage (VAC) Figure 8 - Efficiency vs Line Voltage, Room Temperature Page 21 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 290 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 9.2 20-Apr-15 Active M ode Efficiency (at USB Socket) vs. Load 9.2.1 Efficiency without Schottky Diode in Parallel with Q1, SR FET 90 85 80 85 VAC 115 VAC 230 VAC 265 VAC 75 Efficiency (%) 70 65 60 55 50 45 40 35 30 0 10 20 30 40 50 60 Load (%) 70 80 90 100 Figure 9 - Efficiency vs Load, Room Ambient Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 90 85 80 85 VAC 115 VAC 230 VAC 265 VAC 75 Efficiency (%) 70 65 60 55 50 45 40 35 30 0.1 1.0 Load (%) 10.0 Figure 10 - Efficiency vs Load (log scale to demonstrate light load performance) Page 23 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 100.0 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 9.2.2 Efficiency with a Schottky Diode, SS16, in Parallel with Q1, SR FET 90 85 80 85 VAC 115 VAC 230 VAC 265 VAC Efficiency (%) 75 70 65 60 55 50 45 40 35 0 10 20 30 40 50 60 Load (%) 70 80 90 100 Figure 11 - Efficiency vs Load, Room Temperature, 60 Hz. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 24 of 51 20-Apr-15 9.3 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger No-Load I nput P ow er 12 11 Input Power (mW) 10 9 8 7 6 5 4 3 70 90 110 130 150 170 190 210 230 250 270 Input Voltage (VAC) Figure 12 - No Load Input Power vs. Input Line Voltage, Room Temperature. Page 25 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 290 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 9.4 20-Apr-15 Average Efficiency (at USB Socket) 9.4.1 Efficiency Requirements Test <6 V Voltage 2016 10% Load <6 V Voltage Now 10% Load <6 V Voltage 2016 CoC v5 Tier 1 CoC v5 Tier 2 CoC v5 Tier 1 CoC v5 Tier 2 76.0% 79.0% 66.6% 69.7% Average Average Effective <6 V Voltage Now <6 V Voltage 2016 <6 V Voltage Now Power [W] Energy Star 2 New IESA2007 10 74.2% 78.7% Model Average Average 9.4.2 Average Efficiency at 115 VAC Input 9.4.2.1 No Schottky Diode in Parallel with Q1, SR FET Load (%) VIN (VRMS) IIN (ARMS) PIN (W) PF %ATHD VOUT (VDC) IOUT (ADC) POUT (W) Efficiency (%) 100 75 50 25 10 114.98 114.98 114.99 114.99 114.99 0.19 0.15 0.10 0.06 0.03 12.473 9.255 6.078 3.001 1.266 0.566 0.542 0.505 0.449 0.392 131 144.4 163.5 194.8 231.7 5.2575 5.1950 5.1300 5.0550 5.0100 1.999 1.499 0.999 0.500 0.199 10.509 7.789 5.124 2.525 0.999 84.26 84.16 84.30 84.14 78.94 Average Efficiency (%) 84.21 9.4.2.2 Schottky Diode, SS16, in Parallel with Q1, SR FET Load (%) VIN (VRMS) IIN (ARMS) PIN (W) PF %ATHD VOUT (VDC) IOUT (ADC) POUT (W) Efficiency (%) 100 75 50 25 10 114.98 114.99 114.99 114.99 114.99 0.19 0.15 0.10 0.06 0.03 12.492 9.230 6.060 2.987 1.259 0.572 0.544 0.508 0.452 0.392 129.4 143.5 162.6 193.4 231.1 5.2588 5.1963 5.1325 5.0563 5.0113 1.999 1.499 0.999 0.500 0.199 10.511 7.791 5.125 2.526 0.999 84.15 84.41 84.58 84.55 79.36 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Average Efficiency (%) 84.42 Page 26 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 9.4.3 Average Efficiency at 230 VAC Input 9.4.3.1 No Schottky Diode in Parallel with Q1, SR FET Load (%) VIN (VRMS) IIN (ARMS) PIN (W) PF %ATHD VOUT (VDC) IOUT (ADC) POUT (W) Efficiency (%) 100 75 50 25 10 230.04 230.04 230.04 230.04 230.04 0.12 0.09 0.07 0.04 0.02 12.364 9.179 6.021 3.097 1.273 0.450 0.426 0.397 0.358 0.312 195.1 209.4 228.4 258.7 300.9 5.2663 5.2000 5.1363 5.0488 5.0150 1.999 1.499 0.999 0.500 0.199 10.527 7.797 5.130 2.522 1.000 85.14 84.94 85.20 81.43 78.56 Average Efficiency (%) 84.18 9.4.3.2 Schottky Diode, SS16, in Parallel with Q1, SR FET Load (%) VIN (VRMS) IIN (ARMS) PIN (W) PF %ATHD VOUT (VDC) IOUT (ADC) POUT (W) Efficiency (%) 100 75 50 25 10 230.04 230.04 230.04 230.04 230.04 0.12 0.09 0.07 0.04 0.02 12.329 9.133 6.007 3.073 1.255 0.449 0.425 0.397 0.357 0.312 195.6 210 229.2 259.5 301.7 5.2663 5.2000 5.1363 5.0488 5.0150 1.999 1.499 0.999 0.500 0.199 10.527 7.796 5.129 2.522 1.000 85.38 85.36 85.39 82.06 79.68 Page 27 of 51 Average Efficiency (%) Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 84.55 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 9.5 20-Apr-15 CV/ CC R egulation M easured at the End of Cable 6.0 Output Voltage (V) 5.0 4.0 3.0 2.0 85 VAC 110 VAC 230 VAC 265 VAC 1.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Output Current (A) Figure 13 - Output Voltage vs, Output current, Room Temperature. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 28 of 51 20-Apr-15 10 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger Open Case Thermal Performance Room ambient. Figure 14 - Transformer Side. 85 VAC, 2 A Load. Ambient = 26.3 C. Figure 15 - InnoSwitch-CH Side. 85 VAC, 2 A Load. Ambient = 27 C. Figure 16 - Transformer Side. 110 VAC, 2 A Load. Ambient = 26.2 C. Figure 17 - InnoSwitch-CH Side. 110 VAC, 2 A Load. Ambient = 25 C. Page 29 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger Figure 18 - Transformer Side. 230 VAC, 2 A Load. Ambient = 26.5 C. Figure 19 - InnoSwitch-CH Side. 230 VAC, 2 A Load. Ambient = 25.4 C. Figure 20 - Transformer Side. 265 VAC, 2 A Load. Ambient = 26.5 C. Figure 21 - InnoSwitch-CH Side. 265 VAC, 2 A Load. Ambient = 25.3 C. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 20-Apr-15 Page 30 of 51 20-Apr-15 11 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger Waveforms 11.1 Load Transient R esponse (end of cable) Results were measured with 47 F at end of cable which is the typical specified measurement condition for mobile phone chargers. Figure 22 - Transient Response (4.5 VMIN). 85 VAC, 0-2 A Load Step. Upper: ILOAD, 1 A / div. Lower: VOUT, 500 mV, 50 ms / div. Figure 24 - Transient Response (4.6 VMIN). 230 VAC, 0-2 A Load Step. Upper: ILOAD, 1 A / div. Lower: VOUT, 500 mV, 50 ms / div. Page 31 of 51 Figure 23 - Transient Response (4.5 VMIN). 110 VAC, 0-2 A Load Step. Upper: ILOAD, 1 A / div. Lower: VOUT, 500 mV, 50 ms / div. Figure 25 - Transient Response (4.6 VMIN). 265 VAC, 0-2 A Load Step. Upper: ILOAD, 1 A / div. Lower: VOUT, 500 mV, 50 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 11.2 Load Transient R esponse (at USB Sock et) Figure 26 - Transient Response (4.75 VMIN). 85 VAC, 0-2 A Load Step. Upper: ILOAD, 1 A / div. Lower: VOUT, 500 mV, 50 ms / div. Figure 28 - Transient Response (4.85 VMIN). 230 VAC, 0-2 A Load Step. Upper: ILOAD, 1 A / div. Lower: VOUT, 500 mV, 50 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 27 - Transient Response (4.75 VMIN). 110 VAC, 0-2 A Load Step. Upper: ILOAD, 1 A / div. Lower: VOUT, 500 mV, 50 ms / div. Figure 29 - Transient Response (4.86 VMIN). 265 VAC, 0-2 A Load Step. Upper: ILOAD, 1 A /div. Lower: VOUT, 500 mV, 50 ms / div. Page 32 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 11.3 Sw itching W aveform s 11.3.1 InnoSwitch-CH Waveforms Figure 30 - Drain Voltage and Current Waveforms. 85 VAC, 2 A load, Lower: IDRAIN, 500 mA / div. Upper: VDRAIN, 100 V, 20 s / div. Figure 31 - Drain Voltage and Current Waveforms. 265 VAC, 2 A Load, 545 VMAX. Lower: IDRAIN, 500 mA / div. Upper: VDRAIN, 200 V, 20 s / div. 11.3.2 SR FET Waveforms Figure 32 - SR FET Voltage Waveforms. 85 VAC Input, 2 A Load. VDRAIN, 10 V, 20 s / div. Page 33 of 51 Figure 33 - SR FET Voltage Waveforms. 265 VAC Input, 2 A Load. VDRAIN, 20 V, 20 s / div. (45.4 VMAX). Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 11.4 Output R ipple M easurem ents 11.4.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pick-up. Details of the probe modification are provided in the Figures below. The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 F/50 V ceramic type and one (1) 47 F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below). Probe Ground Probe Tip Figure 34 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed) Figure 35 - Oscilloscope Probe with Probe Master (www.probemaster.com) 4987A BNC Adapter. (Modified with wires for ripple measurement, and two parallel decoupling capacitors added) Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 34 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 11.4.2 Measurement Results Measured at the end of cable. 0.14 85 V 115 V 230 V 265 V 0.12 Ripple (mV PK-PK) 0.10 0.08 0.06 0.04 0.02 0.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Current (mA) Figure 36 - Output Ripple Voltage. 85 V RIPPLE (VPK-PK) 0.126 Page 35 of 51 115 V RIPPLE (VPK-PK) 0.123 230 V RIPPLE (VPK-PK) 0.123 265 V RIPPLE (VPK-PK) 0.121 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 2.0 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 12 Conductive EMI 12.1 2 A R esistive Load, Floating Output (P K / AV) After running 5 minutes. Freq (MHz) QP Limit Margin 0.19 50.48 63.95 13.47 Figure 37 - Floating Ground EMI at 115 VAC. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 36 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger Figure 38 - Floating Ground at 230 VAC. Page 37 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 12.2 2 A R esistive Load, Artificial Hand Ground (P K / AV) FREQ (MHZ) 0.20 1.37 1.73 Figure 39 - QP LIMIT MARGIN 52.26 63.82 11.56 44.97 56 11.03 41.65 56 14.35 Artificial Ground at 115 VAC. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 38 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger FREQ QP LIMIT MARGIN (MHZ) 0.50 43.6 56.07 12.47 0.99 47.3 56 8.7 1.62 44.51 56 11.49 4.65 41.37 56 14.63 Figure 40 - Artificial Ground at 230 VAC. Page 39 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 12.3 Sm artphone w ith M onitor Set-up (HDM I ) (QP / AV) Phone is connected to charger and LCD monitor. The monitor connection increases capacitance to earth ground. Figure 41 - HDMI at 115 VAC. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 40 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger Figure 42 - HDMI at 230 VAC. Page 41 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 13 Radiative EMI Maximized quasi-peak readings (NO manipulation of EUT interface cables) Class B Detector Azimuth Frequency Level Pol dBV/m v/h Limit Margin Pk/QP/Avg degrees MHz -6.3 QP 4 30.234 23.7 V 30.0 185.989 19.4 H 30.0 -10.6 QP 116 Height meters 1.0 4.0 Comments QP (1.00s) QP (1.00s) Figure 43 - Radiation at 110 VAC. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 42 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger Maximized quasi-peak readings (NO manipulation of EUT interface cables) Class B Frequency Level Pol Detector Azimuth dBV/m v/h Limit Margin Pk/QP/Avg degrees MHz 30.287 23.8 V 30.0 -6.2 QP 57 191.605 19.9 H 30.0 -10.1 QP 121 Height meters 1.0 4.0 Comments QP (1.00s) QP (1.00s) Figure 44 - Radiation at 230 VAC. Page 43 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 14 Audible Noise Test performed inside case with microphone placed 3 mm from case surface on long side of case, transformer facing towards microphone. Figure 45 - Audible Noise Spectrum: No-load, VIN Swept from 85 VAC to 264 VAC. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 44 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger Figure 46 - Audible Noise Spectrum: 85 VAC, IOUT Swept from 0 A to 2.0 A. Page 45 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 Figure 47 - Audible Noise Spectrum: 110 VAC, IOUT Swept from 0 A to 2.0 A. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 46 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger Figure 48 - Audible Noise Spectrum: 220 VAC, IOUT Swept from 0 A to 2.0A. Page 47 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 Figure 49 - Audible Noise Spectrum: 265 VAC, IOUT Swept from 0 A to 2.0 A. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 48 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 15 Lighting Surge & ESD Test 15.1 Differential M ode Test Passed 1 kV, 500 A surge test 15.2 Com m on M ode Test Passed 6 KV, 500 A ring wave test. Need to install plastic barrier for >5 kV ring wave common mode surge test. 15.3 ESD Test Passed 16.5 kV air, 8 kV contact. Need to install plastic barrier to pass ESD test. Page 49 of 51 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger 20-Apr-15 16 Revision History Date 11-Nov-14 20-Apr-15 Author DK KM Revision 1.0 1.1 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Description & Changes Initial Release Updated Transformer Resonant Frequency Spec, CV/CC Graph and Output Ripple Table Reviewed Mktg & Apps Page 50 of 51 20-Apr-15 RDR-420 10 W 5 V, 2 A InnoSwitch-CH USB Charger For the latest updates, visit our website: www.power.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwtich, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. (c)Copyright 2015 Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@powerint.com CHINA (SHANGHAI) Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales@powerint.com CHINA (SHENZHEN) 17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@powerint.com Page 51 of 51 GERMANY Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail: eurosales@powerint.com INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: indiasales@powerint.com ITALY Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 e-mail: eurosales@powerint.com JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 UK First Floor, Unit 15, Meadway Court, Rutherford Close, Stevenage, Herts. SG1 2EF United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: japansales@powerint.com e-mail: koreasales@powerint.com e-mail: taiwansales@powerint.com e-mail: eurosales@powerint.com SINGAPORE 51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@powerint.com Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Power Integrations: RDK-420