C/FSTM File System for CrossCore(R) Embedded Studio version 1.1.0 Release Notes Introduction This document contains the release notes for C/FSTM File System for CrossCore(R) Embedded Studio version 1.1.0. It describes the release in detail and provides latest information that supplements the main documentation. Users of previous releases should check the "Version Compatibility" section for pertinent instructions on modifying existing applications for this new release. Support and Assistance There are several options for contacting support: Submit your questions online at http://www.analog.com/support E-mail your Processor and DSP software and development tools questions from within CrossCore Embedded Studio. Go to "Help->E-mail Support...". This will create a new e-mail addressed to processor.tools.support@analog.com, and will automatically attach your CrossCore Embedded Studio version information (ProductInfo.html). E-mail your Processors and DSP applications and processor questions to: o processor.support@analog.com OR o processor.china@analog.com (Greater China support) Post your questions in the Processors and DSP online technical support community in Engineer Zone at http://ez.analog.com/community/dsp Update Highlights The focus of C/FSTM File System for CCES version 1.1.0 is to support the release of ADSP-BF70x processor family. The version of the Micrim's file system included with C/FSTM File System for CCES version 1.1.0 has been upgraded to v4.07.00. Micrim's file system documentation has migrated to their website at address http://doc.micrium.com instead of being included with C/FSTM File System for CrossCore(R) Embedded Studio. Any documentation specific to Analog Devices processors can still be found within this product. New supported Processors C/FSTM File System for CrossCore(R) Embedded Studio 1.1.0 supports all the processors supported by C/FSTM 1.0.2. The newly supported processors are: ADSP-BF700, ADSP-BF701, ADSP-BF702, ADSP-BF703, ADSP-BF704, ADSP-BF705, ADSPBF706, ADSP-BF707 o Devices supported: RAM Disk, SD Card, USB Mass Storage New add-ins to support ADSP-BF707 ROM ADSP-BF70x processors include a Utility ROM which contains the C/OS-III Real-Time Kernel and C/LIB and C/CPU which are required by C/OS-III. To support the utility ROM, C/FS includes new add-ins that do not add C/LIB and C/CPU to the project.To use C/FS in a project with C/OS-III in ROM, you must choose the ROM-specific C/FS add-ins. If you have uC-CPU from uC-FS (i.e non-ROM uCFS) and the uCOS3 ROM then you will get double definitions and link errors. Further, using the C/FS components to support the C/OS-III ROM configurations without a C/OS-III ROM add-in results in compilation failures since the C/LIB and C/CPU headers and sources are not in the project. Micrim software versions C/FSTM File System for CrossCore(R) Embedded Studio version 1.1.0 is based on Micrim's C/FSTM File System version 4.07.00 There are several CrossCore Embedded Studio add-ins based on Micrim's products which share common add-ins. To ensure that the same version of these add-ins is used by all the add-ins that require them, these add-ins are installed in a common location which is distinct from the C/OS-FS install folder. These common add-ins are C/CPU which is installed in %COMMONPROGRAMFILES%\Analog Devices\uC-CPU v1.1.0. This installation includes C/CPU version 1.30.01. C/LIB which is installed in %COMMONPROGRAMFILES%\Analog Devices\uC-LIB v1.1.0. This installation includes C/LIB version 1.38.00. This is the minimum version of C/LIB required to build C/FS 4.07.00. Version 1.38.00 of C/LIB has deprecated some APIs that were used by previous versions of C/FS, most notably Mem_PoolBlkGetUsedAtIx() and Mem_PoolBlkIxGet(). Updating to C/FS V4.07.00 is required if updating other Micrium products that require C/LIB V1.38.00. C/CLK which is installed in %COMMONPROGRAMFILES%\Analog Devices\uC-CLK v1.1.0. This installation includes C/CLK version 3.09.03 Version Compatibility C/FSTM File System requires CrossCore(R) Embedded Studio version 1.1.0 or later for all processors. C/FSTM File System version 1.1.0 requires requires C/LIB version 1.1.0 or later. This is the version of C/LIB included with this product. C/FS File System for CrossCore Embedded Studio Software Anomalies TM (R) TM This section enumerates the most significant anomalies which relate to C/FS File System for (R) CrossCore Embedded Studio. For a comprehensive list of all the public software anomalies visit http://www.analog.com/SoftwareAnomalies Anomalies fixed in version 1.1.0 Anomalies fixed by the Micrim upgrade to version 4.07.00 SD Driver: issue STOP_TRANSMISSION command only once per stop operation. Missing err code init in FSDev_Access(Lock|Unlock). Mounting logical partition fails if extended partition type is LBA extended (0xF). NAND Driver: incorrect data size allocation for Micron ECC and Soft ECC. FS_FAT_JournalOpen(): erroneous journal file's cluster count calculation when the journal size is smaller than the cluster size. NAND Driver errors in 16 bits defect mark checking. NAND Driver: add support for switching to 16 bits width Known issues with C/FSTM File System for CrossCore(R) Embedded Studio 1.1.0 These are the currently known problems which affect C/FSTM File System for CrossCore(R) Embedded Studio. UCFS-217 Upgrading the file system add-in to 1.1.0 results in warnings CCES produces some unexpected warnings when upgrading the uC-FS component to 1.1.0. The following warnings can be ignored safely and the resulting project should build without issues. Property "uccpu-ucfs-compatibility" required by Add-in "..." doesn't exist Property "uclib-ucfs-compatibility" required by Add-in "..." doesn't exist C/FSTM File System for CrossCore(R) Embedded Studio version 1.0.2 Release Notes Introduction This document contains the release notes for C/FSTM File System for CrossCore(R) Embedded Studio version 1.0.2. It describes the release in detail and provides latest information that supplements the main documentation. Users of previous releases should check the "Version Compatibility" section for pertinent instructions on modifying existing applications for this new release. For product support assistance, please contact our Processor Tools Support Team at processor.tools.support@analog.com. Update Highlights The focus of C/FSTM File System for CCES version 1.0.2 is to support the release of the Mass Storage Class (MSC) component. The MSC file system component is required to use the C/USB Host Stack add-in for CrossCore(R) Embedded Studio Mass Storage Class component. For new projects, the option to align buffers on cache lines is set by default since it provides better performance out of the box. To create a project with the exact same settings as in previous versions, you must uncheck the relevant box in the configuration window. The version of the Micrim's file system included with C/FSTM File System for CCES version 1.0.2 contains major bug fixes in the NAND device support and therefore it is highly recommended that NAND projects are updated. Similarly, the journaling module has been fully redesigned so any journalled volume used under prior versions must be cleanly unmounted before upgrading to C/FSTM File System for CCES version. Supported Processors The new USB Mass Storage Class component is supported in the following processors ADSP-BF522, ADSP-BF524, ADSP-BF526, ADSP-BF523, ADSP-BF525, ADSPBF527 ADSP-BF542, ADSP-BF542M, ADSPBF547, ADSP-BF547M, ADSP-BF548, ADSP-BF548M, ADSP-BF549, ADSP-BF549M ADSP-BF606, ADSP-BF607, ADSP-BF608, ADSP-BF609 Since C/FSTM File System for CrossCore(R) Embedded Studio 1.0.2 also supports the same processors as version 1.0.1 the full list of processors supported is: ADSP-BF504, ADSP-BF504F, ADSP-BF506F o Devices supported: RAM Disk, SD Card ADSP-BF512, ADSP-BF514, ADSP-BF516, ADSP-BF518 o Devices supported: RAM Disk, SD Card ADSP-BF522, ADSP-BF524, ADSP-BF526, ADSP-BF523, ADSP-BF525, ADSPBF527 o Devices supported: RAM Disk, NAND Flash, USB Mass Storage ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF534, ADSP-BF536, ADSPBF537, ADSP-BF538, ADSP-BF539 o Devices supported: RAM Disk only ADSP-BF542, ADSP-BF542M, ADSPBF547, ADSP-BF547M, ADSP-BF548, ADSP-BF548M, ADSP-BF549, ADSP-BF549M o Devices supported: RAM Disk, SD Card, IDE, NAND Flash, USB Mass Storage ADSP-BF544, ADSP-BF544M, o Devices supported: RAM Disk ADSP-BF561 RAM Disk o Devices supported: RAM Disk ADSP-BF592-A o Devices supported: RAM Disk ADSP-BF606, ADSP-BF607, ADSP-BF608, ADSP-BF609 o Devices supported: RAM Disk, SD Card, USB Mass Storage Micrim software versions C/FSTM File System for CrossCore(R) Embedded Studio version 1.0.2 is based on Micrim's C/FSTM File System version 4.06.01 There are several CrossCore Embedded Studio add-ins based on Micrim's products which share common add-ins. To ensure that the same version of these add-ins is used by all the add-ins that require them, these add-ins are installed in a common location which is distinct from the C/OS-FS install folder. These common add-ins are: C/CPU which is installed in %COMMONPROGRAMFILES%\Analog Devices\uC-CPU v1.0.3. This installation includes C/CPU version 1.29.02.03. C/LIB which is installed in %COMMONPROGRAMFILES%\Analog Devices\uCLIB v1.0.3. This installation includes C/LIB version 1.37.01. C/CLK which is installed in %COMMONPROGRAMFILES%\Analog Devices\uC-CLK v1.0.1. This installation includes C/CLK version 3.09.03 Version Compatibility C/FSTM File System version 1.0.2 requires CrossCore(R) Embedded Studio version 1.0.2 or later. The Mass Storage Class component of this release requires the use of C/USB HostTM Stack which, in turn, requires device drivers which are only available in CrossCore(R) Embedded Studio version 1.0.3. If you are using CrossCore(R) Embedded Studio version 1.0.2 then you will also need the USB host device drivers which have been provided separately. C/FSTM File System for CCES version 1.0.2 upgrades the release of Micrim's file system to the latest currently available. This version of C-FS introduces an incompatibility in the NAND flash support due to changes in the low level formatting. If a NAND device was used with a prior version of C-FS then you should either: Re-format the NAND flash prior to use (including both volume and low level formatting). This is the recommended solution since the new low level formatting settings are the ones preferred by Micrim for all new development. To help with the formatting the NAND examples provided with the C/FSTM File System for CrossCore(R) Embedded Studio version 1.0.2 installation contain the appropriate APIs to execute the formatting. See each example's readme for further information. Edit your code to maintain compatibility. To do this you need to: a) Define the macro APP_CFG_FS_NAND_UB_CNT_MAX=10 in the compiler preprocessor options b) Edit the file fs_app.c and add the following code to the function App_FS_AddNAND. Note that this code is already included in the latest fs_app.c template. #ifdef APP_CFG_FS_NAND_UB_CNT_MAX nand_cfg.UB_CntMax = APP_CFG_FS_NAND_UB_CNT_MAX; #endif /* APP_CFG_FS_NAND_UB_CNT_MAX */ Software requirements In order to use all the add-ins which are part of C/FS File System version 1.0.2 to a project we recommend that you use CrossCore Embedded Studio version 1.0.2 or later. In order to add the Mass Storage Class component of C/FS to a project you need to use C/USB HostTM Stack version 1.0.0 or later. C/FSTM File System for CrossCore(R) Embedded Studio Software Anomalies This section enumerates the most significant anomalies which relate to C/FSTM File System for CrossCore(R) Embedded Studio. For a comprehensive list of all the public software anomalies visit http://www.analog.com/SoftwareAnomalies Anomalies fixed in version 1.0.2 TAR-48701/ UCFS-120: uCFS: The file system removes the file app_timing.c when it shouldn't When all the file system components are removed from a project, the file app_timing.c is also removed. Since this is a file that customer's may have modified uC/FS should leave it in the project so customers can remove it when they want C-FSTM File System for CrossCore(R) Embedded Studio version 1.0.1 Release Notes Introduction This document contains the release notes for C/FSTM File System for CrossCore(R) Embedded Studio version 1.0.1. It describes the release in detail and provides latest information that supplements the main documentation. This release includes support for the processors listed in the next section, below. Users of previous releases should check the "Version Compatibility" section, below, for pertinent instructions on modifying existing applications for this new release. For product support assistance, please contact our Processor Tools Support Team at . Update Highlights Supported Processors This release of C-FSTM File System for CrossCore(R) Embedded Studio adds support for the following Blackfin processors: ADSP-BF504, ADSP-BF504F, ADSP-BF506F o Devices supported: RAM Disk, SD Card ADSP-BF512, ADSP-BF514, ADSP-BF516, ADSP-BF518 o Devices supported: RAM Disk, SD Card ADSP-BF522, ADSP-BF524, ADSP-BF526, ADSP-BF523, ADSP-BF525, ADSPBF527 o Devices supported: RAM Disk, NAND Flash ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF534, ADSP-BF536, ADSPBF537, ADSP-BF538, ADSP-BF539 o Devices supported: RAM Disk only ADSP-BF542, ADSP-BF542M, ADSPBF547, ADSP-BF547M, ADSP-BF548, ADSP-BF548M, ADSP-BF549, ADSP-BF549M o Devices supported:RAM Disk, SD Card, IDE, NAND Flash ADSP-BF544, ADSP-BF544M, Devices supported: RAM Disk ADSP-BF561 RAM Disk o Devices supported: RAM Disk ADSP-BF592-A o Devices supported: RAM Disk o As with C-FSTM File System for CrossCore(R) Embedded Studio 1.0.0, this release also supports the following Blackfin processors: ADSP-BF606, ADSP-BF607, ADSP-BF608, ADSP-BF609 o Devices supported:RAM Disk, SD Card Micrim software versions C-FSTM File System for CrossCore(R) Embedded Studio version 1.0.1 is based on Micrim's C-FSTM File System version 4.05.01 There are several CrossCore Embedded Studio add-ins based on Micrim's products which share common add-ins. To ensure that the same version of these add-ins is used by all the add-ins that require them, these add-ins are installed in a common location which is distinct from the C-FS install folder. These common add-ins are C/CPU which is installed in %COMMONPROGRAMFILES%\Analog Devices\uC-CPU v1.0.1. This installation includes C/CPU version 1.29.01. C/LIB which is installed in %COMMONPROGRAMFILES%\Analog Devices\uCLIB v1.0.1. This installation includes C/LIB version 1.37.00. C/CLK which is installed in %COMMONPROGRAMFILES%\Analog Devices\uC-CLK v1.0.1. This installation includes C/CLK version 3.09.03 The documentation for all of these add-ins can be found in CrossCore(R) Embedded Studio Help under C/FSTM 1.0.1 Supported devices IDE device support Configuring the ATAPI interface with the Pin Multiplexing add-in Double-clicking the system.svc opens the System Configuration utility, which also shows the configuration tabs for each add-in. Select the "Pin Multiplexing" tab to open the configuration options. The "peripherals" list displays all the peripherals that can be configured. Enable the "ATAPI [ATAPI - data signals muxed with the async bus]" tick box to generate the required code in the Pin Multiplexing add-in that will configure the ATAPI interface for the ADSP-BF548 EZ-Kit. NAND device support Supported NAND chips: Micron 2Gbit 29F2G08 (ADSP-BF548 EZ-Kit Lite BOM Rev 2.5 and later) Micron 4Gbit 29F4G08 (ADSP-BF527 EZ-Kit Lite BOM Rev 3.4 and later) ST Micro 2Gbit NAND02 (earlier ADSP-BF548 EZ-Kit Lite) ST Micro 4Gbit NAND04 (earlier ADSP-BF527 EZ-Kit Lite) Configuring the NAND interface with the Pin Multiplexing add-in Double-clicking the system.svc opens the System Configuration utility, which also shows the configuration tabs for each add-in. Select the "Pin Multiplexing" tab to open the configuration options. The "peripherals" list displays all the peripherals that can be configured. For ADSPBF54x, enable the "NAND [NAND Flash Module]" tick box. For ADSP-BF52x, enable the "NAND [NAND Flash Controller on PORTH]" tick box. These options generate the required code, on their respective platforms, in the Pin Multiplexing add-in that will configure the NAND Flash Controller. Configuring the NAND device with the C/FSTM add-in Double-clicking the system.svc opens the System Configuration utility, which also shows the configuration tabs for each add-in. Select the "C/FS" tab and the "NAND" page to open the configuration options. Micron 29F2G08 and 29F4G08 Type of error correction: Micron hardware ECC Enable automatic configuration (ONFI): checked ST Micro NAND02 Type of error correction: Software ECC(1-bit) Free spare area start: 2 Free spare area length (bytes): 60 Enable automatic configuration (ONFI): unchecked Bus width (bits): 8 Number of blocks in device: 2048 Number of pages per block: 64 NAND page size (bytes): 2048 Spare area size (bytes): 64 Factory defect mark type: Spare byte/word 1 in 1st or last page Codeword size required for ECC (bytes): 528 Maximum number of bad blocks: 40 Maximum number of erases on a single block: 100000 Number of partial page programming allowed before erase: 4 ST Micro 4Gbit NAND04 Type of error correction: Software ECC(1-bit) Free spare area start: 2 Free spare area length (bytes): 60 Enable automatic configuration (ONFI): unchecked Bus width (bits): 8 Number of blocks in device: 4096 Number of pages per block: 64 NAND page size (bytes): 2048 Spare area size (bytes): 64 Factory defect mark type: Spare byte/word 1 in 1st or last page Codeword size required for ECC (bytes): 528 Maximum number of bad blocks: 80 Maximum number of erases on a single block: 100000 Number of partial page programming allowed before erase: 4 Note that NAND Flash and SD Card cannot be used simultaneously on ADSP-BF54x processors, The reason is that both RSI and NFC are treated as a single peripheral by the DMA channel peripheral mapping. RAM Disk device support The RAM Disk device support existing in C/FS version 1.0.0 has been extended to support further Blackfin processors as specified in the supported processors section above. SD Card device support Configuring the RSI/SDH interface with the Pin Multiplexing add-in Double-clicking the system.svc opens the System Configuration utility, which also shows the configuration tabs for each add-in. Select the "Pin Multiplexing" tab to open the configuration options. The "peripherals" list displays all the peripherals that can be configured. For ADSPBF60x, enable the "RSI0 [RSI Module]" tick box. For ADSP-BF50x and ADSP-BF51x, enable the "SD-RSI [SD/RSI Module]" tick box. For ADSP-BF54x, enable the "SDH [Secure Digital Host]" tick box. These options generate the required code, on their respective platforms, in the Pin Multiplexing add-in that will configure the SD Card interface. Note that NAND Flash and SD Card cannot be used simultaneously on ADSP-BF54x processors, The reason is that both RSI and NFC are treated as a single peripheral by the DMA channel peripheral mapping. Version Compatibility The add-In framework provided with CCES 1.0.0 and C-FS 1.0.0 itself have several undocumented issues related to add-In upgrades. Because of this it is recommended that you do not use the CCES add-in framework to upgrade existing projects that use C/FS 1.0.0 add-ins to use C/FS 1.0.1. Instead, it is recommended that entirely new projects are created Software requirements C/FS File System for CrossCore Embedded Studio requires CrossCore Embedded Studio version 1.0.1 or later to be installed to build projects. Adding C/FS to a project When a C/FS device is added to a CrossCore Embedded Studio project, the CCES add-in framework executes the following actions Adds links to the file system files in the installation folder Adds generated files based on the configuration window settings Sets up the required toolchain options. Copies fs_app.c to your project. This file is a copy of a micrium template which contains funtions for file system initialization. This file can be edited by the application developer and will not be removed from the project when the file system is removed or overwritten if it is already present in the destination folder. Copies app_timing.c to your project. This file contains template time-stamping interface for uC-FS when not using an RTOS. This file can be edited by the application developer and will not be removed from the project when the file system is removed or overwritten if it is already present in the destination folder. C/FS for CrossCore Embedded Studio version 1.0.1 contains changes to the files fs_app.c and fs_app.h which are required to support the new NAND flash add-in. For this reason it is recommended that all projects start with a new version of these files. If you already have an older version of fs_app.c and fs_app.h in your project we recommend that you copy new versions to your project from the path where you installed C/FS. The files are located in uC-FS\common\uC-FS\APP\Template. MISRA-C Compliance Conformance Checking The Motor Industry Software Reliability Association (MISRA) published a set of guidelines for the C programming language to promote best practice in developing safety related electronic systems in road vehicles and other embedded systems. The CrossCore(R) Embedded Studio compiler fully supports the MISRA-C 2004 Guidelines, and can detect violations of the rules at compile-time, link-time, and run-time. The C/FS File System for CrossCore Embedded Studio complies with MISRA by documenting known violations of the MISRA Compliance standard. The violations mean that C/FS sources will not compile with MISRA conformance checking enabled, and any file that includes C/FS headers will also not compile. The file {C/FS File System install folder}\uC-FS\Docs\FS MISRA-C 2004 Compliance Matrix.xls contains the list of MISRA-C violations by C/FS. Known issues with C/FSTM File System for CrossCore(R) Embedded Studio These are the currently known problems which affect C/FSTM File System for CrossCore(R) Embedded Studio. TAR-49883 ADI_NFC doesn't support DMA on BF52x The Crosscore Embedded Studio NFC driver in CCES 1.0.1 uses 32-bit DMA operations which cannot be used with the NAND Flash Controller on ADSP-BF52x processors. For this reason, Programmed I/O must be used instead. In order to use Programmed I/O uC-FS for CCES defines the macros _ADI_NFC_PIO_READS and _ADI_NFC_PIO_WRITES when CCES 1.0.1 is used which instruct its BSP to use the Programmed I/O NFC interface. In later versions of CCES uC-FS will default to use DMA instead. In order to keep on using Programmed I/O applications can define _ADI_NFC_PIO_READS and _ADI_NFC_PIO_WRITES. Note that the NFC driver is delivered as part of the CCES product. C/FSTM File System for CrossCore(R) Embedded Studio version 1.0.0 Release Notes What is C/FS File System for CrossCore Embedded Studio C/FSTM File System for CrossCore(R) Embedded Studio is the result of a partnership between Analog Devices and Micrim to provide a user-friendly programming environment for C/FS applications running on Analog Devices' processors. C/FSTM File System for CrossCore(R) Embedded Studio provides an integrated environment with CrossCore Embedded Studio which offers the advantage of an industry-standard IDE combined with Analog Devices' advanced optimizing compiler technology. C/FS is a compact, reliable, high-performance file system based on clean, consistent ANSI C source code. It supports the FAT file system for interoperability with all major operating systems. The memory footprint of C/FS can be adjusted at compile time based on required features and the desired level of run-time argument checking. For applications with limited RAM, features such as cache and read/write buffering can be disabled; for applications with sufficient RAM, enabling these features improves performance. C/FS can access multiple media simultaneously, including multiple instances of the same type of medium (since all drivers are re-entrant). In addition, a logical device driver is provided so that a single file system can span several (typically identical) devices. Features Integration with CrossCore(R) Embedded Studio for Analog Devices Processors Software POSIX-compatible interface for file access and directory access Processor-independent interface Ease of porting to new platforms Scalable RAM and ROM requirements Full FAT support including FAT12/16/32 and long file names (VFAT) Optional journaling component for failsafe FAT operation Please contact Analog Devices for more information on purchasing the optional journaling component. Support for formatting and the creation of DOS partitions on a device Capabilities The primary file interface is the familiar POSIX interface, where Micrium-specific functions provide the same functionality as the following standard functions: clearerr closedir fclose feof ferror fflush fgetpos flockfile fopen fread fseek fsetpos ftell ftruncate ftrylockfile funlockfile fwrite s_mkdir opendir readdir remove rename rewind rmdir setvbuf The C/FS implementation provides the same POSIX interface, but uses a "fs_" prefix for each API. For example, C/FS provides fs_feof(), which is equivalent to the POSIX feof() API. Getting Started with C/FSTM File System for CrossCore(R) Embedded Studio Installation CrossCore(R) Embedded Studio v.1.0.0 or newer must be installed prior to installing C/FSTM File System. Please make sure to close CrossCoreEmbedded Studio before proceeding with the installation. If CrossCore Embedded Studio is left open during the installation, it will have to be restarted after installing C/FS File System. C/FS File System for CrossCore Embedded Studio installs the following: C/FS File System. Its default installation directory is C:\Analog Devices\uCFileSystem-Rel1.0.0. C/LIB . This software is always installed into Common Program Files directory. This location is determined by the %CommonProgramFiles(x86)% environment variable in 64-bit operating systems or by %CommonProgramFiles% in 32-bit operating systems. C/CPU. This software is always installed into Common Program Files directory. This location is determined by the %CommonProgramFiles(x86)% environment variable in 64-bit operating systems or by %CommonProgramFiles% in 32-bit operating systems. C/CLK. This software is always installed into Common Program Files directory. This location is determined by the %CommonProgramFiles(x86)% environment variable in 64-bit operating systems or by %CommonProgramFiles% in 32-bit operating systems. Analog Devices strongly recommends installing C/FS File System outside of the Program Files directory to prevent possible permission issues related to UAC (User Access Control). If you have already installed the product under Program Files then we recommend that you uninstall it and re-install it in a different location. Note: Multiple versions of the C/FS File System can be installed on the same system. Only a single instance of a specific version of the product can be installed on a system. License Checking The installation process checks for a valid license for C/FS File System. If a valid license is not detected, the installer will start the Manage Licenses utility for entering and activating a license. The installer will fail in a non-interactive mode when valid license is not present. Installation Logging The installer does not create a log file by default. If you encounter installation issues, you can generate an installation log file by running the installer from the command prompt. Change to the directory containing the downloaded installer executable and run the following from the command prompt: ADI_uCFileSystem-Rel1.0.0.exe /v"/l*v c:\temp\installer.log" License The installation process checks for a valid license for C/FSTM File System. Refer to the Licensing Guide in your CrossCore(R) Embedded Studio installation which can also be found in http://www.analog.com/CrossCoreLicensingGuide. Support and Assistance There are several options for contacting support: Submit your questions online at: http://www.analog.com/support E-mail your Processor and DSP software and development tools questions from within CrossCore Embedded Studio. Go to "Help->E-mail Support...". This will create a new e-mail addressed to processor.tools.support@analog.com, and will automatically attach your CrossCore Embedded Studio version information (ProductInfo.html). o E-mail your Processors and DSP applications and processor questions to: o processor.support@analog.com OR processor.china@analog.com (Greater China support) Post your questions in the Processors and DSP online technical support community in Engineer Zone at http://ez.analog.com/community/dsp Supported processors C/FS File System for CrossCore Embedded Studio 1.0.0 supports the ADSP-BF60x family of Blackfin processors. Supported Devices SD Card, which uses the RSI interface. RAM Disk Software requirements C/FS File System for CrossCore Embedded Studio requires CrossCore Embedded Studio version 1.0.0 or later to be installed to build projects. Getting started with a project that uses the File System Adding the File System to a project Creating a new project which includes the File System In order to create a project you should follow the instructions provided in the CrossCore Embedded Studio help. As part of the project creation, the page "Add-in Selection" contains a list of all the available add-ins for the project that you are creating, based on the products that you have installed and the processor and type of project selected. You can see the C/FS add-ins in the Middleware section under "File System" and then "Micrim uC-FS". Adding the File System to an existing project Every CrossCore Embedded Studio project contains a System Configuration file called system.svc which is located in the root of the project. The file is the IDE's interface for managing the various prewritten software components used in the "system" implemented by a project. Double-clicking any system.svc file in a navigation view opens that file in a System Configuration Utility which allows you to see the add-ins that you currently have in your project. Clicking on Add allows you to select one of the C/FS add-ins in the Middleware section under "File System" and then "Micrim uCFS". Add-Ins There are two add-ins supported with this release: uC-FS RAMDisk for Blackfin (1.0.0) uC-FS SD Card for Blackfin (1.0.0) When you add an add-in the CrossCore Embedded Studio IDDE makes the appropriate changes to your project, including the necessary files, links and include folders. The add-ins can be used independently, or used together in the same project. C/FS project structure When adding C/FS to a CrossCore Embedded Studio project, the C/FS-specific files get place in the system folder. Please do not change this organization. In the system folder the following structure gets created: A uC-FS folder This folder contains any sources and header files which are part of the C/FS File System. It contains the folders: o FAT, OS, Source These folders contain the actual RTOS code which should not be modified. Dev This folder contains the files required for the devices used by each of the addins selected, including platform-dependant implementation (BSP) files. These files should not be modified. GeneratedSources This folder contains headers and sources generated by the product based on the GUI configurations. These files should not be modified. A uC-CPU folder This folder contains any sources and header files which are required by Micrim uC/CPU software. uC/CPU provides a processor-independent interface to the supported processors and toolchains that is used in all Micrim products. A uC-LIB folder This folder contains any sources and header files which are required by Micrim uC/LIB software. uC/LIB provides a clean and organized implementation of some of the most common standard library functions, macros and constants. uC/LIB is required by many Micrim products including uC/OSIII. A uC-CLK folder This folder contains the sources and headers required by the C/CLK software. C/CLK provides the timing functionality required by the C/FS File System. A uC-Common folder. This folder contains sources and headers which are common to several Micrim products but that are not part of any Micrim product themselves. These include for example app_cfg.h which is needed by all Micrim applications. System view CrossCore Embedded Studio provides the System view which is used by C/FS File System for CrossCore Embedded Studio. Use the System Configuration Overview tab to add a C/FS add-in to a CrossCore Embedded Studio project. To access the System Configuration Overview tab, do one of the following: In a navigation view, double-click the system.svc file of a project. The System Configuration utility appears with the overview tab selected. If the utility is already open, select the Overview tab. For more information about the System view, see the CrossCore Embedded Studio help. Configuration tabs When a C/FSTM File System for CrossCore(R) Embedded Studio add-in gets added to a project, several configuration tabs get added to the System view. These include tabs for Micrim components which are required by several products like uC-LIB and a configuration tab for C/FS. These configuration tabs provide an easy mechanism to generate any macro definitions required by the Micrim products. If the C/FS add-in is used by a CrossCore Embedded Studio project, its configuration tab includes the following pages: C/FS General FAT Build Settings Application General Look in the CrossCore Embedded Studio help in the C/FS node under C/FS tab for more information about each of the configuration options. Configuring the SD Card device The SD Card device uses the RSI interface. This means that the pins related to the RSI need to be configured on your board before the SD Card device is used. We recommend using the Pin Multiplexing add-in for CrossCore(R) Embedded Studio to configure the RSI driver for use with the C/FS SD Card device. When selecting which add-in are used in your application, ensure that the "Pin Multiplexing (1.0.0)" add-in from the "Recommended Add-ins" section is selected. Configuring the RSI interface with the Pin Multiplexing add-in Double-clicking the system.svc opens the System Configuration utility, which also shows the configuration tabs for each add-in. Select the "Pin Multiplexing" tab to open the configuration options. The "peripherals" list displays all the peripherals that can be configured - Enable the "RSI0 [RSI Module]" tick box to generate the required code in the Pin Multiplexing addin that will configure the RSI. Configuring the RAMDisk device The RAM Disk device does not require any hardware-specific configuration. We recommend that external memory is used, as there is unlikely to be enough memory using internal memory alone. To enable external memory use the "Startup Code/LDF" add-in for CrossCore(R) Embedded Studio, and configure the use of external memory in the LDF section under the Startup Code/LDF tab. C/CLK configuration C/CLK is an independent clock/calendar management module, with source code for easily managing date and time in a product. C/FS uses the date and time information from C/CLK to update files and directories with the proper creation/modification/access time. C/CLK can be used with or without an RTOS. C/CLK relies on a periodic signal to increment an internal timestamp, which can either be provided by an RTOS or an external source. When not using an RTOS When not using an RTOS, C/CLK relies on an external timestamp. The default configuration provided with C-FS File System for CrossCore Embedded Studio does not enable the external timestamp option, so C/CLK requires changes to be able to link. To enable external timestamps, use the C-CLK tab in the System Configuration utility and enable "include support for external clock/calendar". The file system/uC-FS/app_timing.c contains a framework with all the definitions required for the C/FS to be used without an RTOS. This file is a template and it must be modified so that it produces the correct delays and signals required for C/CLK. When using COS-III C/CLK detects if C/OS-III Real-Time Kernel for CrossCore Embedded Studio is being used, and includes the correct implementation of the OS-specific sources. In this case, the default configuration of C/CLK uses the RTOS clock and timestamps are maintained using a C/CLK-specific task. The C/CLK task must be configured with parameters that are appropriate for your application, specifically for task priority and stack size. These fields can be configured by clicking on the C/FS tab in the System View, and selecting the "Application General" page. The priority of the CLK Task should be set so that the task can run frequently. Other RTOSs Like C/FS, the RTOS interface provided by Micrim has been designed so that it can be ported onto any other RTOS. However, the Analog Devices CrossCore Embedded Studio software only supports the COS-III and no-OS environments. The framework to use another RTOS exists, but requires external software. Please contact your thirdparty RTOS vendor if another RTOS is required. Initializing C/FSTM File System for CrossCore(R) Embedded Studio To ensure timely initialization, the IDE adds required code to a global C function named adi_initComponents(). C/FS must be initialized after all the components that it depends on, like pin muxing or the RTOS. This means that C/FS must be initialized after the call to adi_initComponents(). When you add any C/FS component to your project, CrossCore Embedded Studio's IDE adds fs_app.c and fs_app.h to the project. These files contain skeleton functions which can be used to initialize C/FS but can be modified to suit each specific application. We recommend that you initialize the file system using the App_FS_Init() interface in fs_app.c, which initializes the file system and all the required devices. It is also possible to make direct calls to FS_Init() to initialize the file system. C/FS requires timing functionality provided by C/CLK. This means that C/CLK must be initialized before initialising the file system. A call to Clk_Init() must be made after the adi_initComponents() and before the file system initialization. Header files In versions prior to 4.04.01 of Micrim's C/FS, the inclusion of fs.h was sufficient to include all the required headers for any module that uses the file system. From version 4.04.01 onwards, Micrim recommend the inclusion of header files specific to the functionality required, so including fs.h no longer includes types and function prototypes to support all C/FS functionality. The fs_inc.h header includes a list of the most common header files, though it may not include everything that is required. Examples C/FS File System for CrossCore Embedded Studio provides two simple examples which show how to use the File System, one example shows the use of the RAMDisk device and the other the SD Card device. Each example is shipped for ADSP-BF609, and can be used in both Release and Debug configurations. Notes The examples use features that can be disabled in the configuration windows. Disabling any of the used features results in expected link errors. Double-clicking on a example from the example browser or the system overview page opens the project in the installation folder without copying it to your workspace. If you want to modify the example in any way, it is recommended that it gets copied to your workspace. If you would like to copy the project to your workspace note that you may have to copy the sources separately. See the Known Issues section for more details. Location In order to locate C/FS examples you can do the following: Open CrossCore Embedded Studio's Example Browser which can be found in CrossCore Embedded Studio under Help. Select in the Product section "Micrim C/FS v 4.04.00 [1.0.0]" for a full list of examples. Import projects located in your C/FS installation folder under uC-FS/Examples. Interaction with other CrossCore(R) Embedded Studio software C/OS-IIITM Real Time Kernel for CrossCore(R) Embedded Studio Although C/FS File System for CrossCore Embedded Studio does not require an RTOS, if C/OS-III is in the application then C/FS uses some RTOS objects to ensure its behavior in a multi-threaded environment. In its first release C/FS requires semaphores, and 2 task-specific registers if working directory functionality is enabled. Under certain conditions the API OSTimeDlyHMSM() can also be required. Common Micrim Components There are several CrossCore Embedded Studio add-ins based on Micrim's products which share common components. To ensure that the same version of these components is used by all the add-ins that require them, these components are installed in a common location which is distinct from the add-in install folders. These common components are C/CPU which is installed in %COMMONPROGRAMFILES%\Analog Devices\uC-CPU v1.0.0. This installation includes C/CPU version 1.29.01. C/LIB which is installed in %COMMONPROGRAMFILES%\Analog Devices\uCLIB v1.0.0. This installation includes C/LIB version 1.36.02. C/CLK which is installed in %COMMONPROGRAMFILES%\Analog Devices\uC-CLK v1.0.0. This installation includes C/CLK version 3.09.00. The documentation for these components can be found in CrossCore(R) Embedded Studio Help under C/FSTM 1.0.0 > Components Shared by Add-ins. Features not supported File System Features MSC Not Supported The initial release of the C/FSTM File System for CrossCore(R) Embedded Studio will not support the MSC Class driver. Command Line Interface This is currently not supported for the initial release of the C/FS File System for CrossCore Embedded Studio. Toolchain Options MISRA-C Compliance Conformance Checking The Motor Industry Software Reliability Association (MISRA) published a set of guidelines for the C programming language to promote best practice in developing safety related electronic systems in road vehicles and other embedded systems. The CrossCore(R) Embedded Studio compiler fully supports the MISRA-C 2004 Guidelines, and can detect violations of the rules at compile-time, link-time, and run-time. The C/FS File System for CrossCore Embedded Studio complies with MISRA by documenting known violations of the MISRA Compliance standard. The violations mean that C/FS sources will not compile with MISRA conformance checking enabled, and any file that includes C/FS headers will also not compile. The file {C/FS File System install folder}\uC-FS\Docs\FS MISRA-C 2004 Compliance Matrix.xls contains the list of MISRA-C violations by C/FS. Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Analog Devices Inc.: AD-UCFS-JRN-SPRD