EOL Data Sheet
16 Mbit Dual-Bank Flash + 2/4 Mbit SRAM ComboMemory
SST34HF162G / SST34HF164G
3
©2008 Silicon Storage Technology, Inc. S71276-01-EOL 02/08
Flash Chip-Erase Operation
The SST34HF16xG provide a Chip-Erase operation, which
allows the user to erase all sectors/blocks to the “1” state.
This is useful when the device must be quickly erased.
The Chip-Erase operation is initiated by executing a six-
byte command sequence with Chip-Erase command (10H)
at address 555H in the last byte sequence. The Erase
operation begins with the rising edge of the sixth WE# or
BEF#, whichever occurs first. During the Erase operation,
the only valid read is Toggle Bits or Data# Polling. See
Table 5 for the command sequence, Figure 12 for timing
diagram, and Figure 24 for the flowchart. Any commands
issued during the Chip-Erase operation are ignored.
Flash Erase-Suspend/-Resume Operations
The Erase-Suspend operation temporarily suspends a
Sector- or Block-Erase operation thus allowing data to be
read from any memory location, or program data into any
sector/block that is not suspended for an Erase operation.
The operation is executed by issuing a one-byte command
sequence with Erase-Suspend command (B0H). The
device automatically enters read mode within 20 µs after
the Erase-Suspend command had been issued. Valid data
can be read from any sector or block that is not suspended
from an Erase operation. Reading at address location
within erase-suspended sectors/blocks will output DQ2 tog-
gling and DQ6 at “1”. While in Erase-Suspend mode, a Pro-
gram operation is allowed except for the sector or block
selected for Erase-Suspend. To resume Sector-Erase or
Block-Erase operation which has been suspended, the
system must issue an Erase-Resume command. The
operation is executed by issuing a one-byte command
sequence with Erase Resume command (30H) at any
address in the one-byte sequence.
Flash Write Operation Status Detection
The SST34HF16xG provides two software means to
detect the completion of a Write (Program or Erase)
cycle, in order to optimize the system Write cycle time.
The software detection includes two status bits: Data#
Polling (DQ7) and Toggle Bit (DQ6). The End-of-Write
detection mode is enabled after the rising edge of WE#,
which initiates the internal Program or Erase operation.
The actual completion of the nonvolatile write is asynchro-
nous with the system; therefore, either a Data# Polling
(DQ7) or Toggle Bit (DQ6) read may be simultaneous with
the completion of the Write cycle. If this occurs, the system
may possibly get an erroneous result, i.e., valid data may
appear to conflict with either DQ7 or DQ6. In order to pre-
vent spurious rejection, if an erroneous result occurs, the
software routine should include a loop to read the
accessed location an additional two (2) times. If both reads
are valid, then the device has completed the Write cycle,
otherwise the rejection is valid.
Flash Data# Polling (DQ7)
When the device is in an internal Program operation, any
attempt to read DQ7 will produce the complement of the
true data. Once the Program operation is completed, DQ7
will produce true data. During internal Erase operation, any
attempt to read DQ7 will produce a ‘0’. Once the internal
Erase operation is completed, DQ7 will produce a ‘1’. The
Data# Polling is valid after the rising edge of fourth WE# (or
BEF#) pulse for Program operation. For Sector-, Block-, or
Chip-Erase, the Data# Polling is valid after the rising edge
of sixth WE# (or BEF#) pulse. See Figure 10 for Data# Poll-
ing (DQ7) timing diagram and Figure 22 for a flowchart.
Toggle Bits (DQ6 and DQ2)
During the internal Program or Erase operation, any con-
secutive attempts to read DQ6 will produce alternating “1”s
and “0”s, i.e., toggling between 1 and 0. When the internal
Program or Erase operation is completed, the DQ6 bit will
stop toggling. The device is then ready for the next opera-
tion. The toggle bit is valid after the rising edge of the fourth
WE# (or BEF#) pulse for Program operations. For Sector-,
Block-, or Chip-Erase, the toggle bit (DQ6) is valid after the
rising edge of sixth WE# (or BEF#) pulse. DQ6 will be set to
“1” if a Read operation is attempted on an Erase-sus-
pended Sector/Block. If Program operation is initiated in a
sector/block not selected in Erase-Suspend mode, DQ6 will
toggle.
An additional Toggle Bit is available on DQ2, which can be
used in conjunction with DQ6 to check whether a particular
sector is being actively erased or erase-suspended. Table 1
shows detailed status bit information. The Toggle Bit (DQ2)
is valid after the rising edge of the last WE# (or BEF#)
pulse of a Write operation. See Figure 11 for Toggle Bit tim-
ing diagram and Figure 22 for a flowchart.
http://store.iiic.cc/