®
1. General description
The ADC1453D is a dual channel 14-bit Analog-to-Digital Converter (ADC) with
JESD204B interface (which is backward compatible with the JESD204A interface)
optimized for high dynamic performance and low power consumption at sample rates up
to 246 Msps. Pipelined architecture and output error correction guarantee zero missing
codes over the entire operating range.
The ADC1453D has JESD204B serial outputs over a configurable number of lanes (1 or
2). Multiple Device Synchronization (MDS) allows sample-accurate synchronization of the
data outputs of multiple ADC devices. It guarantees a maximum skew of one clock period
between as many as 16 output lanes from up to eight ADC1453D devices.
An integrated Serial Peripheral Interface (SPI) allows easy configuration of the ADC. The
device also includes a programmable full-scale to allow a flexible input voltage range of
1 V (p-p) to 2 V (p-p).
The ADC1453D is available in an VFQFPN56 package (8 mm 8 mm outline). It is
supported with customer demo boards.
2. Features and benefits
ADC1453D250
Dual 14-bit ADC; up to 246 Msps; JESD204B serial outputs
Rev. 3.2 — 6 June 2014 Preliminary data sheet
Dual channel 14-bit resolution ADC SNR = 70.1 dBFS; fs = 246 Msps;
fi = 190 MHz
Sampling rate up to 246 Msps SFDR = 80 dBc; fs = 246 Msps;
fi = 190 MHz
JESD204B Device Subclass 0, 1 and 2
with harmonic clocking and deterministic
latency support
IMD3 = 86 dBc; fs = 246 Msps;
fi1 = 188.5 MHz; fi2 = 191.5 MHz
ADC Multiple Device Synchronization
(MDS)
Analog input bandwidth of 1 GHz
(typical)
Offset binary, two’s complement and
Gray output data
Pin to pin compatible with ADC1413D
and ADC1443D series
Two JESD204B serial output lanes, up
to 5 Gbps
Typical power dissipation = 1.4 W;
fs = 246 Msps
Flexible input voltage range from
1 V (p-p) to 2 V (p-p) by 1 dB steps
Industrial temperature range from
40 C to +85 C
Clock input divider from 1 to 8 supports
harmonic clocking
Serial Peripheral Interface (SPI) for
configuration control and status
monitoring
Duty Cycle Stabilizer (DCS) VFQFPN56 package; 8 8 mm
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 2 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
3. Applications
4. Ordering information
5. Block diagram
Wireless infrastructure: LTE, TD-LTE,
WiMAX, MC-GSM, CDMA, WCDMA,
TD-SCDMA
Microwave backhaul transceivers
Software defined radio Aerospace and defense
communications and radar systems
Medical non-invasive scanners Industrial signal analysis instruments
Scientific particle detectors General-purpose high-speed
applications
Table 1. Ordering information
Type number fs (Msps) Package
Name Description Version
ADC1453D250NGG 246 VFQFPN plastic thermal enhanced low profile quad flat package;
no leads; 56 terminals; resin based; body 8 8 1.35 mm
PSC-4449
Fig 1. Block diagram
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 3 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
6. Pinning information
6.1 Pinning
Fig 2. Pin configuration (PSC-4449)
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 4 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
6.2 Pin description
Table 2. Pin description
Symbol Pin Type[1] Description
INAM 1 I channel A complementary analog input
INAP 2 I channel A analog input
VCMA 3 O channel A output common voltage
DNC 4 - do not connect
DNC 5 - do not connect
AGND 6 G analog ground
CLKP 7 I clock input
CLKN 8 I complementary clock input
AGND 9 G analog ground
DNC 10 - do not connect
DNC 11 - do not connect
VCMB 12 O channel B output common voltage
INBP 13 I channel B analog input
INBM 14 I channel B complementary analog input
VDDA 15 P analog power supply
VDDA 16 P analog power supply
SCLK 17 I SPI clock (50 kinternal pull-dow)
SDIO 18 I/O SPI data IO (50 kinternal pull-dow)
SCS_N 19 I SPI chip select (50 kinternal pull-up)
AGND 20 G analog ground
DNC 21 - do not connect
SCR_EN 22 I scrambler enable (50 kinternal pull-up)
CFG0/OTRA 23 I/O configuration pin 0/OuT of Range A (OTRA) (50 k
internal pull-down)
CFG1/OTRB 24 I/O configuration pin 1/OuT of Range B (OTRB) (50 k
internal pull-down)
CFG2 25 I/O configuration pin 2 (50 kinternal pull-down)
CFG3 26 I/O configuration pin 3 (50 kinternal pull-down)
VDDO 27 P digital output power supply
AGND 28 G analog ground
OGND 29 G digital output ground
OGND 30 G digital output ground
VDDO 31 P digital output power supply
CMLBP 32 O channel B output
CMLBN 33 O channel B complementary output
VDDO 34 P digital output power supply
OGND 35 G digital output ground
OGND 36 G digital output ground
VDDO 37 P digital output power supply
CMLAN 38 O channel A complementary output
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 5 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.
6.2.1 Start-up Configuration
Because the maximum sampling clock of the ADC1453D is 246 Msps, care should be
taken in case of harmonic clocking. If the input clock frequency is higher than 246 MHz,
the clock divider must be set before providing the clock.
In order to avoid any issue, it is recommended to start the device in power-down mode by
setting the configuration pins to logic level ’1’ (see Table 19). This can be done by adding
for example a 1 kpull-up resistor on CFG0, CFG1, CFG2 and CFG3.
When the power supplies are set, the divider can be programmed by the use of the SPI
registers. Then the device is powered on and the JESD204B configuration is set by the
use of the SPI registers (bits CFG_SETUP[3:0] in Table 43).
CMLAP 39 O channel A output
VDDO 40 P digital output power supply
OGND 41 G digital output ground
OGND 42 G digital output ground
SYNCBP 43 I JESD204B SYNC synchronization signal from receiver
SYNCBN 44 I complementary SYNC from receiver
AGND 45 G analog ground
VDDO 46 P digital output power supply
DNC 47 - do not connect
SYSREFP 48 I positive clock synchronization
SYSREFN 49 I negative clock synchronization
VDDO 50 P digital output power supply
AGND 51 G analog ground
AGND 52 G analog ground
VDDA 53 P analog power supply
DNC 54 - do not connect
DNC 55 - do not connect
VDDA 56 P analog power supply
AGND EXP G Expose PAD
Table 2. Pin description …continued
Symbol Pin Type[1] Description
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 6 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
7. Limiting values
8. Thermal characteristics
[1] In compliance with JEDEC test board, in free air.
9. Static characteristics
Table 3. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
VDDA analog supply
voltage
0.3 +2.1 V
VDDO output supply
voltage
0.3 +2.1 V
VDD supply voltage
difference
VDDA VDDO 0.8 +0.8 V
VIinput voltage pins INP, INM, CLKP and CLKM;
referenced to AGND
0.3 VDDA + 0.3 V
pins OTR, SCS_N, SDIO,
SCLK, CFG, SCR_EN,
SYSREFP, SYSREFN,
SYNCBP, and SYNCBN;
referenced to AGND
0.3 VDDO + 0.3 V
VOoutput voltage pin VCM; referenced to AGND 0.3 VDDA + 0.3 V
pins CMLP, and CMLN;
referenced to OGND
0.3 VDDO + 0.3 V
Tstg storage temperature 55 +125 C
Tamb ambient
temperature
40 +85 C
Tjjunction
temperature
- 125 C
Table 4. Thermal characteristics
Symbol Parameter Conditions Typ Unit
Rth(j-a) thermal resistance from junction to ambient 66 vias [1] 22.7 K/W
Rth(j-c) thermal resistance from junction to case 66 vias [1] 9.3 K/W
Table 5. Static characteristics[1]
Symbol Parameter Conditions Min Typ Max Unit
Supplies
VDDA analog supply voltage 1.7 1.8 1.9 V
VDDO output supply voltage serial link up to 4 Gbps 1.7 1.8 1.9 V
serial link from 4 to 5 Gbps 1.8 1.85 1.9 V
IDDA analog supply current fs = 246 Msps; fi = 190 MHz - 407 <tbd> mA
IDDO output supply current fs = 246 Msps; fi = 190 MHz - 345 <tbd> mA
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 7 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
Ptot total power dissipation fi = 190 MHz
fs = 246 Msps - 1.4 <tbd> W
Power-down mode - 10 - mW
Sleep mode - 115 - mW
Clock inputs: pins CLKP and CLKM (AC-coupled; peak-to-peak)
Vi(clk) clock input voltage LVPECL - 0.8 - V
LVDS - 0.35 - V
SINE differential 0.5 1.25 - V
LVCMOS single - 0.6 - V
CIinput capacitance - 1.2 - pF
Logic inputs
IIL LOW-level input current absolute value - 30 - A
IIH HIGH-level input current absolute value - 70 - A
CIinput capacitance - 1.2 - pF
pins SYSREFP, SYSREFN, SYNCBP, and SYNCBN (differential pins)
Vi(cm) common-mode input voltage 0.925 1.2 1.475 V
Vi(dif) differential input voltage 0.2 0.7 - V
pins SCS_N, SDIO, SCLK, SCR_EN ,CFG, SYNCBP and SYSREFP (Single Ended)
VIL LOW-level input voltage 0 - 0.3VDDO V
VIH HIGH-level input voltage 0.7VDDO -V
DDO V
Logic output: pins OTRA, OTRB and SDIO
VOL LOW-level output voltage 0 - 0.2 V
VOH HIGH-level output voltage VDDO-0.2 - VDDO V
Digital outputs: pins CMLAP, CMLAN, CMLBP, and CMLBN
VO(cm) common-mode output voltage default current - 1.4 - V
VO(dif) differential output voltage default current; peak-to-peak - 800 - mV
Analog inputs: pins INP and INM
IIinput current - 5- A
RIinput resistance fi = 190 MHz - 400 -
CIinput capacitance fi = 190 MHz - 5 - pF
VI(cm) common-mode input voltage VINP = VINM;Tamb = 25 C 0.8 0.9 1.0 V
Biinput bandwidth - 1 - GHz
VI(dif) differential input voltage peak-to-peak; full-scale 1 - 2 V
Common-mode output voltage: pins VCMA and VCMB
VO(cm) common-mode output voltage IO(cm)=1mA - 0.9 - V
IO(cm) common-mode output current Tamb = 25 C--1mA
Accuracy
INL integral non-linearity fs = 246 Msps; fi = 4.43 MHz - 2.1 6.62 LSB
Table 5. Static characteristics[1] …continued
Symbol Parameter Conditions Min Typ Max Unit
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 8 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
[1] Typical values measured at VDDA = 1.8 V; VDDO = 1.85 V; Tamb = 25 C. Minimum and maximum values are across the full temperature
range Tamb = 40 C to +85 C at VDDA = 1.8 V; VDDO = 1.85 V; VI(dif) = 2 V; VINP VINM = 1.5 dBFS; unless otherwise specified.
DNL differential non-linearity fs = 246 Msps; fi = 4.43 MHz;
guaranteed no missing codes
negative DNL -0.88 0.71 - LSB
positive DNL - +0.87 +1.22 LSB
Eoffset offset error 20 - +20 mV
EGgain error full-scale - 4.1 - %
MG(CTC) channel-to-channel gain
matching
- 2.5 - %
OS Offset Spur measured at fs/2 with
fs = 246Msps
-80 dBc
Supply
PSRR power supply rejection ratio 100 mV (p-p) on VDDA, 0.5 to
2MHz
- -35 - dB
Table 5. Static characteristics[1] …continued
Symbol Parameter Conditions Min Typ Max Unit
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 9 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
10. Dynamic characteristics
10.1 Dynamic characteristics
Table 6. Dynamic characteristics[1]
Symbol Parameter Conditions fs = 246Msps Unit
Min Typ Max
2H second harmonic level fi = 70 MHz - -89 - dBc
fi = 140 MHz - -83 - dBc
fi = 190 MHz - -85 - dBc
fi = 230 MHz - -82 - dBc
fi = 310 MHz - -79 - dBc
3H third harmonic level fi = 70 MHz - -81 - dBc
fi = 140 MHz - -86 - dBc
fi = 190 MHz - -80 - dBc
fi = 230 MHz - -87 - dBc
fi = 310 MHz - -80 - dBc
SFDR spurious-free dynamic
range
fi = 70 MHz - 81 - dBc
fi = 140 MHz - 82 - dBc
fi = 190 MHz - 80 - dBc
fi = 230 MHz - 81 - dBc
fi = 310 MHz - 79 - dBc
THD total harmonic distortion fi = 70 MHz - -79 - dBc
fi = 140 MHz - -80 - dBc
fi = 190 MHz - -78 - dBc
fi = 230 MHz - -79 - dBc
fi = 310 MHz - -76 - dBc
IMD3 third-order
intermodulation distortion
fi1 = 68.5 MHz; fi2 = 71.5 MHz - 90 - dBc
fi1 = 138.5 MHz; fi2 = 141.5 MHz - 88 - dBc
fi1 = 188.5 MHz; fi2 = 191.5 MHz - 90 - dBc
fi1 = 228.5 MHz; fi2 = 231.5 MHz - 86 - dBc
fi1 = 308.5 MHz; fi2 = 311.5 MHz - 88 - dBc
SNR signal-to-noise ratio fi = 70 MHz - 70.6 - dBFS
fi = 140 MHz - 70.5 - dBFS
fi = 190 MHz - 70.1 - dBFS
fi = 230 MHz - 69.8 - dBFS
fi = 310 MHz - 69.3 - dBFS
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 10 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
[1] Typical values measured at VDDA = 1.8 V; VDDO = 1.85 V; Tamb = 25 C. Minimum and maximum values are across the full temperature
range Tamb = 40 C to +85 C at VDDA = 1.8 V; VDDO = 1.85 V; VI(dif) = 2 V; VINP VINM = 1.5 dBFS; unless otherwise specified.
ENOB effective number of bits fi = 70 MHz - 11.1 - bit
fi = 140 MHz - 11.1 - bit
fi = 190 MHz - 11 - bit
fi = 230 MHz - 11 - bit
fi = 310 MHz - 10.9 - bit
ct(ch) channel crosstalk fi = 140 MHz - 83 - dBc
fi = 230 MHz - 82 - dBc
Table 6. Dynamic characteristics[1] …continued
Symbol Parameter Conditions fs = 246Msps Unit
Min Typ Max
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 11 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
10.2 Timing
10.2.1 Clock timing
[1] Typical values measured at VDDA = 1.8 V; VDDO = 1.85 V; Tamb = 25 C. Minimum and maximum values are
across the full temperature range Tamb = 40 C to 85 C at VDDA = 1.8 V; VDDO = 1.85 V; VI(dif) = 2 V;
VINP VINM = 1.5 dBFS; unless otherwise specified.
10.2.2 SYSREFP/N and SYNCBP/N timings
Table 7. Clock and digital output timing characteristics[1]
Symbol Parameter Conditions Min Typ Max Unit
tlat(data) data latency time F = 1 54 - 55 clock
cycles
F = 2 45.5 - 46 clock
cycles
F = 4 41 - 41.25 clock
cycles
twake wake-up time from Power-down mode - 60 - μs
from Sleep mode - 54 - μs
Clock timing
fssampling rate 180 - 246 MHz
fclk clock frequency 60 - 1000 MHz
clk clock duty cycle 40 - 60 %
Table 8. SYSREF timing
Symbol Parameter Conditions Min Typ Max Unit
tsu set-up time 0.5 - - ns
thhold time (tclk/2)
-0.5
--ns
Table 9. SYNCB timing
Symbol Parameter Conditions Min Typ Max Unit
tsu set-up time 0.75 - - ns
thhold time (tclk/2)
-0.25
--ns
Fig 3. SYSREF timing
CLKP-CLKM
SYSREF
50 %
70 % 70 %
t
su
t
h
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 12 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
10.2.3 SPI timing
[1] Typical values measured at VDDA = 1.8 V; VDDO = 1.85 V; Tamb = 25 C. Minimum and maximum values are
across the full temperature range Tamb = 40 C to +85 C at VDDA = 1.8 V; VDDO = 1.85 V
Table 10. SPI timing characteristics [1]
Symbol Parameter Conditions Min Typ Max Unit
tw(SCLK) SCLK pulse width 40 - - ns
tw(SCLKH) SCLK HIGH pulse width 16 - - ns
tw(SCLKL) SCLK LOW pulse width 16 - - ns
tsu set-up time SDIO to SCLK HIGH 5 - - ns
SCS_N to SCLK HIGH 5 - - ns
thhold time SDIO to SCLK HIGH 2 - - ns
SCS_N to SCLK HIGH 2 - - ns
fclk clock frequency - - 25 MHz
Fig 4. SPI timing
tsu
SDIO
SCLK
R/W W1 W0 A12 A11 D2 D1 D0
tsu th
thtw(SCLK)
S
CS_N
t
w(SCLKL)
tw(SCLKH)
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 13 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
10.3 Typical dynamic performances1
10.3.1 Typical FFT at 246 Msps
1. Typical values measured at VDDA = 1.8 V; VDDO = 1.85 V; Tamb = 25 C
Fig 5. 1-tone FFT: 1.5 dBFS; fi =65 MHz;
fs = 246Msps
Fig 6. 1-tone FFT: 1.5 dBFS; fi = 190 MHz;
fs = 246 Msps
Fig 7. 1-tone FFT: 14 dBFS; fi = 190 MHz;
fs = 246 Msps
Fig 8. 2-tone FFT: 7.5 dBFS; fi1 = 188.5 MHz;
fi2 = 191.5 MHz; fs = 246 Msps
TBD TBD
TBD TBD
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 14 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
10.3.2 Typical performances
Fig 9. SNR and SFDR as a function of input
frequency; 1.5 dBFS
Fig 10. SNR and SFDR as a function of input
amplitude; VI(dif) = 2 V
Fig 11. SNR and SFDR as a function of full-scale
amplitude; 1.5 dBFS
Fig 12. tbd
TBD
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 15 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11. Application information
11.1 Analog inputs
11.1.1 Input stage
The analog input of the ADC1453D supports a differential or a single-ended input drive.
Optimal performance is achieved using differential inputs with respect to the
common-mode input voltage (VI(cm)) on pins INP and INM.
The equivalent circuit of the sample and hold input stage, including ElectroStatic
Discharge (ESD) protection circuit and package parasitics, is shown in Figure 13.
The sample phase occurs when the internal sampling clock (derived from the clock signal
on pin CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When
the sampling clock signal becomes LOW, the device enters the hold phase and the
voltage information is transmitted to the ADC core.
11.1.2 Common-mode input voltage (VI(cm))
Set the common-mode input voltage (VI(cm)) on pins INP and INM externally to 0.9 V for
optimal performance.
11.1.3 Pin VCM
When the input stage is AC-coupled, pin VCM can be used to set the common-mode
reference for the analog inputs, for instance, via a transformer middle point. Connect a
0.1 F filter capacitor between pin VCM and ground to ensure a low-noise common-mode
output voltage.
Fig 13. Input sampling circuit
I
NP
PACKAGE ESD PARASITICS
SWITCH
Ron = 15 Ω 4 pF
4 pF
SAMPLING
CAPACITOR
SAMPLING
CAPACITOR
SWITCH
Ron = 15 Ω
I
NM
INTERNAL
CLOCK
INTERNAL
CLOCK
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 16 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.1.4 Programmable full-scale
The full-scale analog input voltage range is configurable between 1 V (p-p) and 2 V (p-p)
by programming internal reference gain between 0 dB and 6 dB in 1 dB steps. The
full-scale range can be set independently via bits INTREF[2:0] of the SPI local registers
(see Table 11 and Table 30).
11.1.5 Anti-kickback circuitry
An anti-kickback circuitry (RC-filter in Figure 15) is required to counteract the effects of the
charge injection generated by the sampling capacitance.
The RC-filter is also used to filter noise from the signal before it reaches the sampling
stage. It is recommended that the capacitor has a value that maximizes noise attenuation
without degrading the settling time excessively.
Fig 14. Equivalent schematic of the common-mode reference circuit
VCM
0.1 μF
PACKAGE ESD PARASITICS COMMON MODE
REFERENCE
ADC CORE
Table 11. Reference gain control
Default values are shown highlighted.
INTREF[2:0] Level (dB) Full-scale (V (p-p))
000 0 2
001 1 1.78
010 2 1.59
011 3 1.42
100 4 1.26
101 5 1.12
110 61
111 reserved x
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 17 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
The input frequency determines the component values. Select values that do not affect
the input bandwidth. The values given in the following table are advised for 50
impedance system.
11.1.6 Transformer
The input frequency determines the configuration of the transformer circuit. The
configuration shown in Figure 16 is suitable for a baseband application.
Fig 15. Anti-kickback circuit
Table 12. RC coupling versus input frequency; typical values
Input frequency range (MHz) R () C (pF)
0 to 50 25 12
50 to 200 10 3.9
200 to 300 5 0.5
R
R
C
INxP
INxM
Fig 16. Single transformer configuration (baseband)
100 nF100 nF
100 nF
100 nF
25 Ω
25 Ω
25 Ω
25 Ω
12 pF
INxP
INxM
VCMx
100 nF
analog
input
100 nF
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 18 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
The configuration shown in Figure 17 is recommended for high-frequency applications. In
both cases, the choice of transformer is a compromise between cost and performance.
11.2 Clock input
11.2.1 Drive modes
The ADC1453D series can be driven differentially (LVPECL, LVDS or SINE). A
single-ended LVCMOS signal connected to either pin CLKP or pin CLKM can also drive
the device (connect the complementary pin to ground using a capacitor). The LVPECL is
recommended for an optimal performance.
Fig 17. Dual transformer configuration (high IF)
100 nF100 nF
100 nF
100 nF
10 Ω
10 Ω
3.9 pF
INxP
INxM
VCMx
50 Ω
50 Ω
50 Ω
50 Ω
analog
input
Fig 18. LVPECL/LVDS differential clock input
a. Differential sine clock input b. Single-ended sine clock input (with
transformer)
Fig 19. Sine clock input
L
VPECL / LVDS
clock input
CLKP
CLKM
Sine
c
lock input
CLKP
CLKM
Sine
c
lock input CLKP
CLKM
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 19 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
Single-ended or differential clock inputs can be selected via bit DIFF_SE of SPI. If
single-ended is enabled, the input pin (pin CLKM or pin CLKP) is selected using control bit
SE_SEL (see Table 29).
11.2.2 Equivalent input circuit
Figure 21 shows the equivalent circuit of the input clock buffer. The input signal must be
AC-coupled and the common-mode voltage of the differential input stage is set via internal
5 k resistors.
11.2.3 JESD204B harmonic clocking
The ADC1453D embeds an input clock divider that divides the incoming clock (clock
frequency fclk) by a factor of 1 to 8. The output of this divider is then used as sampling
clock (sampling frequency fs) (see bits CLK_DIV[2:0] in Table 29).
Caution must be taken to, first power the ADC1453D in «Power Down» mode by setting
the CFG Pins to «1111» see Table 19, second, program the clock divider to the wanted
value (see bits CLK_DIV[1:0] in Table 29) and finally, set the ADC using the SPI register
IP_CFG_SETUP Table 43, to the wanted configuration.
a. Rising edge LVCMOS b. Falling edge LVCMOS
Fig 20. LVCMOS single-ended clock input
LVCMOS
c
lock input CLKP
CLKM
LVCMOS
c
lock input
CLKP
CLKM
Fig 21. Equivalent input circuit
C
LKP
C
LKM
PACKAGE ESD PARASITICS
5 kΩ
Vcm(clk)
5 kΩ
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 20 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.2.4 JESD204B Deterministic Latency (pins SYSREFN and SYSREFP or SYNCBP
and SYNCBN)
In the JESD204B standard 3 subclasses have been defined.
Subclass 0: No deterministic latency is required (equivalent to the JESD204A)
Subclass 1: Deterministic latency is required and is realized through the dedicated
SYSREFP/N pins.
The deterministic latency can be controlled with a single-ended or a differential SYSREF
signal.
When SYSREF is active (High by default), it resets the clock divider phase registers. In a
multi-device application and when the clock divider factor is higher than 1, all sampling
clock edges for multiple ADC1453D will be aligned (see Table 8 and Figure 3).
On top of this, the SYSREFP/N pins initiates an internal LMFC clock (Local Multi-frame
Clock), with a period of a multi-frame F*K (F: number of octets per frame, K: number of
frames per multi-frame). See table Table 19 for examples.
A single pulse of SYSREF is needed for both clock divider reset and LMFC initialization.
Because the SYSREF processing doesn’t stop the data transmission, the signal can also
be sent periodically at an harmonic frequency of the LMFC in order to change the
alignment. In case of a periodic SYSREF not correlated to the LMFC, the user can
program the LMFC to take into account only the first SYSREF pulse (see bit
LMFC_periodic_rst in Table 48).
At a SYNC request from the receiver (on pins SYNCBP/N), K28.5 comma characters are
sent over the serial lanes. When the receiver releases the SYNC request, then the Initial
Lane Alignment (ILA) will start at an edge of the LMFC
At the receiver side, the different lanes are aligned using the ILA start of frame characters
and fetched at the next LMFC boundary.
This operation ensures a deterministic latency. See the JESD204B JEDEC standard for
more information.
Subclass2: Behavior is similar to Subclass1, but, instead of using a dedicated SYSREF
signal, the SYNCBP/N is used for both SYNC request and deterministic latency.
The rising edge of the SYNCBP/N start the LMFC, while the falling edge set the SYNC
request and hence start the Initial Lane Alignment according to the JEDEC JESD204B
standard.
Below is an example of a Subclass1 ADC1453D registers programming:
Table 13. Subclass1 path activation
Register value Comment
DCS_CTRL (@0x043) 0xC7 Choose the SYSREFP/N on rising edge as DCS
Reset
JESD204B_CTRL1 (@810) 0xC0 Enable an LMFC periodic reset
JESD204B_CTRL2 (@811) 0x40 Enable a one shot DCS reset
JESD204B_CTRL3 (@812) 0x0A Activate a Sync fetch at LMFC boundary
SYSREF_CFG (@81E) 0x08 Enable SYSREFP/N on differential mode
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 21 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.2.5 Clock Group Delay
The ADC1453D has the ability to delay the sampling clock when derived from a harmonic
clock within the range of a complete sampling clock period and with half harmonic clock
period step
The delay can be adjusted over 2 N steps, where N is the clock divider ratio (bits
CLK_DELAY[3:0] in Table 38).
As an example: for a device clock of 500 Mhz and a clock division by 2 (fs = 250 Msps),
the sampling clock can be delayed over 4 steps of 1/(2*500 Mhz)= 1 ns.
11.3 Digital outputs
11.3.1 Digital output buffers
The JESD204B standard specifies that both the receiver and the transmitter must share
the same supply if they are connected in DC-coupling.
Fig 22. Sampling clock with 4 different clock delay for a 4 clock division
Fig 23. JESD204B serial output - DC-coupled
VDDO
VDDO
CMLAP/CLMBP
CMLAN/CLMBN
OGND
12 mA to 26 mA
100 Ω
+
RECEIVER
50 Ω
-
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 22 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.3.2 JESD204B serializer
11.3.2.1 Digital JESD204B formatter
The block placed after the ADC1453D cores implements all the JESD204B standard
functionalities. This ensures signal integrity and guarantees the clock and the data
recovery at the receiver side.
The block is highly configurable in various ways depending on the sampling frequency
and the number of lanes used. All the processing and transmission are done with MSB
first.
Fig 24. JESD204B serial output - AC-coupled
VDDO
CMLAP/CLMBP
CMLAN/CLMBN
12 mA to 26 mA
100 Ω
10 nF
10 nF
+
RECEIVER
50 Ω
-
Fig 25. General overview of the JESD204B serializer
FRAME
TO
OCTETS
F octets SCRAMBLER
TX transport layer
CF: position of control bits
HD: frame boundary break
Padding with Tail bits (TT)
N' = N+CS
samples per frame cycle
samples stream to
lane stream mapping
N bits from Cr0 +
CS bits for control
N bits from CrM1 +
CS bits for control
M CONVERTERS L LANES
LANE
FRAME
TO
OCTETS
F octets SCRAMBLER 8-bit/
10-bit SER
TX CONTROLLER
LANE
8-bit/
10-bit SER
ALIGNMENT
CHARACTER
GENERATOR
ALIGNMENT
CHARACTER
GENERATOR
SYNC~
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 23 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.3.2.2 Scrambler (SCR_EN)
The main purpose of scrambling is to avoid the spectral peaks that would be produced
when the same data octet repeats from frame to frame. In general, scrambling makes
the spectrum data-independent, so that possible frequency-selective effects on the
electrical interface will not cause data-dependent errors. However, all digital operations
in converters (including scrambling) cause some amount of switching noise, so there may
be applications where it is of advantage to disable the scrambling.
The scrambler can be selected via the pin SCR_EN or the SPI registers (bit SCR_EN in
Table 58).
An internal pull-up resistor (50 k) sets pin SCR_EN to HIGH when no signal is
connected to it. The pin SCR_EN is active only at start-up or after a JESD204B reset (bit
SCR_EN in Table 42).
Fig 26. Detailed view of the JESD204B serializer with debug functionalities
N
AND
CS
N
AND
CS
SCR
SCR
8-bit/
10-bit
8-bit/
10-bit
8
8
N + CS
N + CS
14 + 114 + 1
14 + 1
ADC A
PLL
AND
DLL
frame CLK
character CLK
bit CLK
10
10
SER
SER
11
10
00
11
10
00
DUMMY
ADC_PD
ADC_PD
ADC B
PRBS
FSM
(frame
assembly,
character
replication;
ILA,
test mode)
FRAME
ASSEMBLY
sync_request
14 + 1
ADC_MODE[1:0]
LANE_MODE[1:0]
LANE_POL
LANE_MODE[1:0]
LANE_POL
14 + 1
14 + 1
DUMMY
PRBS
ADC_MODE[1:0]
× 1
× F
× 10F
Table 14. Scrambler configuration
Pin SCR_EN Scrambler
HIGH enabled
LOW disabled
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 24 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.3.3 OuT-of-Range (OTR)
An out-of-range signal is provided on pins OTRA and OTRB. The OTR signal goes logic
level HIGH when the input signal exceeds the maximum full scale range.
The latency of OTR is 31 clock cycles. The OTR response can be speeded up by enabling
fast OTR using SPI local registers (bit FAST_OTR in Table 37). In this mode, the latency
of OTR is reduced to only 11 clock cycles. The fast OTR detection threshold (below
full-scale) can be programmed using the SPI local registers (bits FAST_OTR_DET[2:0] in
Table 37).
11.3.4 Digital offset
By default, the ADC1453D delivers an output code that corresponds to the analog input.
However, it is possible to add a digital offset to the output code using the SPI local
registers (bits DIG_OFFSET[5:0] in see Table 16 and Table 33). The digital offset
adjustment is coded in two’s complement.
Table 15. Fast OTR register threshold
FAST_OTR_DET[2:0] Detection level (dB)
000 18.06
001 14.54
010 12.04
011 8.52
100 6.02
101 4.08
110 2.5
111 1.16
Table 16. Digital offset adjustment
Default values are shown highlighted.
DIG_OFFSET[5:0] Digital offset adjustment (LSB)
10 0000 32
10 0001 31
... ...
11 1111 1
00 0000 0
00 0001 +1
... ...
01 1110 +30
01 1111 +31
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 25 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.3.5 Test patterns
The ADC1453D can be configured to transmit a number of predefined test patterns using
the SPI local registers (bits TEST_PAT_SEL[2:0] in Table 17 and Table 34). The selected
test pattern is transmitted regardless of the analog input.
A custom test pattern can be defined using the SPI local registers
(bits TEST_PAT_USER[13:6] in Table 35 and bits TEST_PAT_USER[5:0] in Table 36).
11.3.6 Output data format selection
The ADC1453D output data format can be selected (offset binary, two’s complement or
gray code) using the SPI local registers (bits DATA_FORMAT[1:0] in Table 32).
11.3.7 Output codes versus input voltage
Table 17. Digital test pattern selection
Default values are shown highlighted.
TEST_PAT_SEL[2:0] Digital test pattern
000 Off
001 Mid code
010 Min code
011 Max code
100 Toggle ‘1111..1111’/’0000..0000’
101 Custom test pattern
110 ‘0101..0101’
111 ‘1010..1010’
Table 18. Output codes
VINP VINM Offset binary Two’s complement Gray code OTR
< 1 00 0000 0000 0000 10 0000 0000 0000 00 0000 0000 0000 1
1 00 0000 0000 0000 10 0000 0000 0000 00 0000 0000 0000 0
0.99987793 00 0000 0000 0001 10 0000 0000 0001 00 0000 0000 0001 0
0.99975586 00 0000 0000 0010 00 0000 0000 0010 00 0000 0000 0011 0
... ... ... ... 0
0.00024414 01 1111 1111 1110 11 1111 1111 1110 01 0000 0000 0001 0
0.00012207 01 1111 1111 1111 11 1111 1111 1111 01 0000 0000 0000 0
+0.00012207 10 0000 0000 0000 00 0000 0000 0000 11 0000 0000 0000 0
+0.0.00024414 10 0000 0000 0001 00 0000 0000 0001 11 0000 0000 0001 0
... ... ... ... 0
+0.99975586 11 1111 1111 1101 01 1111 1111 1101 10 0000 0000 0011 0
+0.99987793 11 1111 1111 1110 01 1111 1111 1110 10 0000 0000 0001 0
+1 11 1111 1111 1111 01 1111 1111 1111 10 0000 0000 0000 0
> +1 11 1111 1111 1111 01 1111 1111 1111 10 0000 0000 0000 1
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 26 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.4 Configuration pins (CFG0, CFG1, CFG2, CFG3)
The configuration pins are only active as inputs at start-up. The values on those pins are
read once to set up the device. Then the pins become outputs (OTRA and OTRB). Any
further modification must be applied via SPI registers.
Each of these pins is internally connected to a 50 kpull-down resistor. In case of
harmonic sampling, it is recommended to connect externally a 1 kpull-up resistor in
order to start in power-down mode.
[1] F: Octets per frame clock cycle
HD: High-density mode
K: Frame per multi-frame
M: Converters per device
L: Lane per converter device
For all the configurations, the number of control bit per conversion sample (CS) is 1, the
number of control words per frame clock cycle and link (CF) is 0, the number of samples
transmitter per single converter per frame cycle (S) is 1 and the formula (F K) 17 is
always verified.
Table 19. JESD204B configuration table
CFG 3 CFG 2 CFG 1 CFG 0 ADC A ADC B Lane A Lane B F[1] HD[1] K[1] M[1] L[1]
0000ON ON ON ON 20922
0001ON ON ON OFF 4 0 5 2 1
0010ON ON OFF ON 40521
0 0 1 1 reserved
0 1 0 0 reserved
0101ON OFF ON OFF 2 0 9 1 1
0110ON OFF OFF ON 20911
0 1 1 1 reserved
1 0 0 0 reserved
1001ON OFF ON ON 111712
1 0 1 0 reserved
1 0 1 1 reserved
1 1 0 0 reserved
1 1 0 1 reserved
1 1 1 0 reserved
1 1 1 1 OFF OFF OFF OFF 2 0 9 2 2
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 27 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.5 Serial Peripheral Interface (SPI)
11.5.1 Register description
The ADC1453D serial interface is a synchronous serial communication port, which allows
easy interfacing with many commonly used microprocessors. It provides access to the
registers controlling the operation of the chip.
The register bits are either global or local functions:
A global function operates over the full IC behavior. A local function operates on one
or several previously selected channels only. If a channel is selected, the next WRITE
command in the local registers applies to the selected channel. The WRITE command
has no impact on channels that are not selected. This makes it possible to apply
different configurations on each channel by first selecting a specific channel and then
all the related settings.
Select only one channel during a READ operation of the local registers. If several
channels are selected, the READ operation occurs on the channel A.
Programming all registers at the same time is required:
The IC allows the storage of a set of settings for the addresses 06h to 23h, which
enables the configuration of all registers simultaneously by setting bit TRANSFER to
HIGH (see Table 40). This bit is auto-clearing. This function can be disabled using
SPI (bit TRANS_DIS in Table 40). The registers are then updated at each WRITE
operation.
The transfer function does not apply to a READ operation.
The SPI interface is configured as a 3-wire type: pin SDIO is the bidirectional pin, pin
SCLK is the serial clock input and SCS_N is the chip select pin.
A LOW level on pin SCS_N initiates each READ/WRITE operation. A minimum of 3 bytes
is transmitted (two instruction bytes and at least 1 DATA byte; see Table 21).
Bit R/W indicates whether it is a READ (when HIGH) or a WRITE (when LOW)
operation.
Bits W1 and W0 indicate the number of bytes to be transferred after both instruction
bytes (see Table 21).
Table 20. Instruction bytes for the SPI
Bit: 7 (MSB) 6 5 4 3 2 1 0 (LSB)
Description R/W W1 W0 A12 A11 A10 A9 A8
A7 A6 A5 A4 A3 A2 A1 A0
Table 21. Number of data bytes transferred
W1 W0 Number of bytes transferred
0 0 1 byte
0 1 2 bytes
1 0 3 bytes
1 1 4 or more bytes
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 28 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
Bits A12 to A0 indicate the address of the register being accessed. If it concerns a
multiple byte transfer, this address is the first register accessed. An address counter is
increased to access subsequent addresses.
The steps for a data transfer are:
1. Communication starts with the first rising edge on pin SCLK after a falling edge on pin
SCS_N.
2. The first phase is the transfer of the 2-byte instruction.
3. The second phase is the transfer of the data. Its length varies, but it is always a
multiple of 8 bits. The MSB is always sent first (for instruction and data bytes).
4. A rising edge on pin SCS_N indicates the end on data transmission.
Fig 27. SPI mode timing
SCS_N
SCLK
SDIO R/W W1 W0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D3 D2 D1 D0D0 D7 D6 D5 D4
Instruction bytes Register N (data) Register N + 1 (data)
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 29 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.5.2 Start-up programing
At power-up or after a reset by SPI, the device needs a start-up programming for optimum
performances. This initialization is done in 3 steps:
Table 22. Step 1 - Clock divider programming
register address (hex) value (hex) comment
0007 CLK_DIV[2:0] in Table 29 in case of harmonic clocking
Table 23. Step 2 - JESD204B initialization
register address (hex) value (hex) comment
080c 01
080c 00
0803 CFG_SETUP[3:0] in Table 43 JESD204B configuration
0802 08 frame assembler subclock reset
Table 24. Step 3 - ADC core initialization
register address
(hex)
ADC1453D250 comment
value (hex)
0100 d1
0200 01
00ff 80 registers updated on each WRITE command
0012 0f
0024 01
0040 80
040a 05
0102 07
0103 67
0108 93
0109 02
010a C5
010b 01
0160 ff
0161 1f
0170 10
0171 10
0400 00
0401 18
0409 10
- - wait for 200 ms
0004 08
- - wait for 200 ms
0004 40
- - wait for 200 ms
0004 20
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 30 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
Those registers adjust some specific currents and timings. The programmed values
should not be modified by the customer to ensure proper behavior over temperature and
power supply variations.
- - wait for 200 ms
0004 10
- - wait for 200 ms
0409 -
Table 24. Step 3 - ADC core initialization
register address
(hex)
ADC1453D250 comment
value (hex)
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 31 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.5.3 Register allocation map
Table 25 shows an overview of all registers.
Table 25. Register allocation map
Addr.
(hex)
Register
name
R/W Bit definition Default
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ADC control registers
0000h CHIP_RST RW SW_RST[7:0] 0000 0000
0001h CHIP_ID R CHIP_ID[7:0][1] 0100 0011
0005h SW_RST R/W SW_RST - - - - - - - 0000 0000
0006h
[2]
OP_MODE R/W - - - - - - OP_MODE[1:0][3] 0000 0000
0007h CLK_CFG R/W - - - SE_SEL DIFF_SE CLK_DIV[2:0] 0000 0000
0008h INTERNAL_
REF
R/W - - - - - INTREF[2:0] 0000 0000
0009h CHANNEL_
SEL
R/W - - - - - - ADC_B ADC_A 0000 1111
0011h OUTPUT_
CFG
R/W - - - - - DATA_
SWAP
DATA_FORMAT[1:0] 0000 0000
0013h DIG_OFFSET R/W DIG_OFFSET[5:0] - - 0000 0000
0014h TEST_CFG_1 R/W - - - - - TEST_PAT_SEL[2:0] 0000 0000
0015h TEST_CFG_2 R/W TEST_PAT_USER[13:6] 0000 0000
0016h TEST_CFG_3 R/W TEST_PAT_USER[5:0] - - 0000 0000
0017h OTR_CFG R/W - - - RESERVED FAST_
OTR
FAST_OTR_DET[2:0] 0001 0100
0042h GRD_CTRL R/W RESERVED CLK_DELAY[3:0] 0000 0000
0043h DCS_CTRL R/W RESERVED DIV_RESET
_POL
DIV_RESE
T_SEL
1100 0100
00FFh TRANS_CFG R/W TRANS_
DIS
TRANSFER - - - - - - 0000 0000
JESD204B control
0801h IP_STATUS R RXSYNC_
ERR_FLG
RESERVED[5:0] PLL_LOCK 0100 0010
0802h IP_RST R/W SW_
RST
- - - ASSEMBLER_
SW_RST
- - - 0000 0000
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 32 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
0803h IP_CFG_
SETUP
R/W - - - - CFG_STP[3:0] 0000 0000
0805h IP_CTRL1 R/W RESERVED TRISTATE_
CFG_PAD
SYNCB_
POL
SYNCB_SE EN_
RXSYNC_ERR
RESERVED 0000 1001
0806h IP_CTRL2 R/W RESERVED SWP_
‘LANE_A_B
SWP_
ADC_A_B
0011 0100
080Bh IP_PRBS_
CTRL
R/W RESERVED PRBS_
TYPE
RES 0000 0000
0810h JESD204B_C
TRL1
R/W LMFC_
periodic_rst
LMFC_
reset_en
- - - - - - 0000 0000
0811h JESD204B_C
TRL2
R/W DCS_
periodic_rst
DCS_
reset_en
- - - - - - 0000 0000
0812h JESD204B_C
TRL3
R/W - - - - sync_
at_lmfc_en
- sync_captur
e_path
- 0000 0000
0816h IP_DEBUG_
OUT1
R/W - - - - - - PAT_OUT[9:8] 0000 0010
0817h IP_DEBUG_
OUT2
R/W PAT_OUT[7:0] 1010 1010
0818h IP_DEBUG_
IN1
R/W PAT_IN[15:8] 1110 0110
0819h IP_DEBUG_
IN2
R/W PAT_IN[7:0] 1110 1010
081Bh IP_
TESTMODE
R/W RESERVED LOOP_
ALIGN
DIS_REPL_
CHAR
BYP_
ALIGN
RESERVED 0000 0000
081Ch IP_EXPERT_
DOOR
R/W KEY[7:0] 0000 0000
081Eh SYSREF_CFG R/W - - - - SYSREF_EN SYSREF_
SE
- - 0000 0000
0822h SCR_L R/W SCR_EN RESERVED L 0000 0001
0824h CFG_K R/W - - - K[4:0] 000x xxxx
0827h JESD_SUB R/W SUBCLASS[2:0] RESERVED 000x xxxx
0828h JESD_VER R/W VERSION[2:0] - - RESERVED 0000 0xxx
Table 25. Register allocation map …continued
Addr.
(hex)
Register
name
R/W Bit definition Default
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 33 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
[1] The READ-ONLY and RESERVED registers.
[2] The registers influenced by the TRANSFER function.
[3] The LOCAL registers.
086Bh OUTBUF_A_
SWING
R/W RESERVED SWING[2:0] 0000 0011
086Ch OUTBUF_B_
SWING
R/W RESERVED SWING[2:0] 0000 0011
0871h LANE_A_0_
CTRL
R/W RESERVED LANE_MODE[1:0] LANE_POL RESERVED LANE_
PD
0000 0000
0872h LANE_B_0_
CTRL
R/W RESERVED LANE_MODE[1:0] LANE_POL RESERVED LANE_
PD
0000 0000
0890h ADC_A_0_
CTRL
R/W - - ADC_MODE[1:0] - - - ADC_
PD
0000 0000
0891h ADC_B_0_
CTRL
R/W - - ADC_MODE[1:0] - - - ADC_
PD
0000 0000
Table 25. Register allocation map …continued
Addr.
(hex)
Register
name
R/W Bit definition Default
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 34 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.5.4 Detailed register description
The tables in this section contain detailed descriptions of the registers.
11.5.4.1 ADC control registers
[1] Local register.
Table 26. CHIP_RESET register (address 0000h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 0 SW_RST R/W - resets global and local registers for any value “1”
written at any bit (auto-clear).
Table 27. SW_RESET register (address 0005h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 SW_RST R/W resets global and local registers
0 no reset
1 performs a reset to the default values (auto-clear)
6 to 0 - - - not used
Table 28. OP_MODE register (address 0006h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 2 - - - not used
1 to 0 OP_MODE[1:0][1] R/W operating mode for the selected channel
00 normal (power-up)
01 power-down
10 sleep
11 not used
Table 29. CLK_CFG register (address 0007h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 5 - - - not used
4 SE_SEL R/W single-ended clock input pin selection
0 CLKP
1 CLKM
3 DIFF_SE R/W differential/single-ended clock input selection
0 fully differential
1 single-ended
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 35 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
[1] Local register
2 to 0 CLK_DIV[2:0] R/W clock divider selection
000 divide by 1
001 divide by 2
010 divide by 3
011 divide by 4
100 divide by 5
101 divide by 6
110 divide by 7
111 divide by 8
Table 29. CLK_CFG register (address 0007h) bit description …continued
Default settings are shown highlighted.
Bit Symbol Access Value Description
Table 30. INTERNAL_REF register (address 0008h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 3 - - - not used
2 to 0 INTREF[2:0][1] R/W 000 see Table 11
Table 31. CHANNEL_SEL register (address 0009h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 2 - - - not used
1 ADC_B R/W channel B selection for next SPI operation in local
registers
0 not selected
1 selected
0 ADC_A R/W channel A selection for next SPI operation in local
registers
0 not selected
1 selected
Table 32. OUTPUT_CFG register (address 0011h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 3 - - - not used
2 DATA_SWAP[1] R/W output data bits swapped
0 no swapping
1 MSBs swapped with LSBs
1 to 0 DATA_FORMAT[1:0:][1] R/W output data format
00 offset binary
01 two’s complement
10 gray code
11 offset binary
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 36 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
[1] Local register
[1] Local register
[1] Local register
[1] Local register
[1] Local register
[1] Local register
Table 33. DIG_OFFSET register (address 0013h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 2 DIG_OFFSET[7:0][1] R/W 000000 see Table 16
1 to 0 - - - not used
Table 34. TEST_CFG_1 register (address 0014h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 3 - - - not used
2 to 0 TEST_PAT_SEL[2:0][1] R/W 000 see Table 17
Table 35. TEST_CFG_2 register (address 0015h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 0 TEST_PAT_USER[13:6][1] R/W 00000000 custom digital test pattern (bits 13 to 6)
Table 36. TEST_CFG_3 register (address 0016h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 2 TEST_PAT_USER[5:0][1] R/W 000000 custom digital test pattern (bits 5 to 0)
1 to 0 - - - not used
Table 37. OTR_CFG register (address 0017h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 5 - - - not used
4 RESERVED R/W 1 reserved
3 FAST_OTR[1] R/W Selection OTR full-scale/ fast OTR
0 OTR full-scale
1 fast OTR
2 to 0 FAST_OTR_DET[2:0][1] R/W 100 see Table 15
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 37 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
Table 38. GRD_CTRL register (address 0042h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 4 RESERVED R/W 0000 reserved
3 to 0 CLK_DELAY[3:0] R/W 0000 number of delay step expressed in half device clock
period unit
Table 39. DCS_CTRL register (address 0043h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 2 RESERVED R/W 110001 reserved
1 DIV_RESET_POL R/W Polarity of the DCS reset
0 falling edge (Subclass 2)
1 Rising edge (Subclass 1)
0 DIV_RESET_SEL R/W DCS reset selection
0 SYNCBP/N is used (Subclass 2)
1 SYSREFP/N is used (Subclass 1)
Table 40. TRANS_CFG register (address 00FFh) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 TRANS_DIS R/W disable transfer function
0 transfer function active
1 registers updated on a WRITE command
6 TRANSFER R/W updates the registers with the written settings
0 settings are stored
1 registers updated (auto-clear)
5 to 0 - - - not used
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 38 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
11.5.4.2 JESD204B control registers
Table 41. IP_STATUS register (address 0801h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 RXSYNC_ERR_FLG R RX synchronization error
0 no error
1 synchronization error has occurred
6 to 1 RESERVED R/W 100001 reserved
0 PLL_LOCK R JEDEC PLL lock
0 unlocked
1 locked
Table 42. IP_RESET register (address 0802h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 SW_RST R/W resets All JESD204B sub-blocks and registers
0 no reset
1 performs a reset to the default values (auto-clear)
6 to 4 - - - not used
3 ASSEMBLER_SW_RST R/W resets RXSYNC_ERR_FLG register bit and the
frame assembler sub-block
0 no reset
1 performs a reset to the default values (auto-clear)
2 to 0 - - - not used
Table 43. IP_CFG_SETUP register (address 0803h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 4 - - - not used
3 to 0 CFG_SETUP[3:0] R/W 0000 see Table 44
Table 44. JESD204B configuration table
CFG_SETUP
[3:0]
ADC A ADC B Lane A Lane B F[1] HD[1] K[1] M[1] L[1] Lane A serial
frequency
Lane B serial
frequency
0000 ON ON ON ON 20922 20 fs20 fs
0001 ON ON ON OFF40521 40 fs0
0010 ON ON OFF ON 40521 0 40 fs
0011 reserved
0100 reserved
0101 ON OFF ON OFF20911 20 fs0
0110 ON OFF OFF ON 20911 0 20 fs
0111 reserved
1000 reserved
1001 ON OFF ON ON 1 1 17 1 2 10 fs10 fs
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 39 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
[1] F: Octets per frame clock cycle
HD: High-density mode
K: Frame per multi-frame
M: Converters per device
L: Lane per converter device
For all the configurations, the number of control bit per conversion sample (CS) is 1, the
number of control words per frame clock cycle and link (CF) is 0, the number of samples
transmitter per single converter per frame cycle (S) is 1 and the formula (F K) 17 is
always verified.
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 OFF OFF OFF OFF 20922 0 0
Table 44. JESD204B configuration table …continued
CFG_SETUP
[3:0]
ADC A ADC B Lane A Lane B F[1] HD[1] K[1] M[1] L[1] Lane A serial
frequency
Lane B serial
frequency
Table 45. IP_CTRL1 register (address 0805h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 RESERVED R/W 0 reserved
6 TRISTATE_CFG_PAD R/W CFG pad in tri-state mode
0 CFG Pads in Output mode
1 CFG Pads in Input mode; operating at power-up
5 SYNCB_POL R/W selects synchronization polarity
0 synchronization active LOW
1 synchronization active HIGH
4 SYNCB_SE R/W selects single-ended or differential synchronization
0 differential synchronization
1 single-ended synchronization on SYNCBP
3 EN_RXSYNC_ERR R/W SYNC error reporting
0 disabled
1 enabled
2 to 0 RESERVED R/W 001 reserved
Table 46. IP_CTRL2 register (address 0806h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 2 RESERVED R/W 001101 reserved
1 SWP_LANE_A_B R/W swaps the lanes
0 no swap
1 lane A and B are inverted
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 40 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
0 SWP_ADC_A_B R/W swaps the ADC at the input of the frame assembler
0 no swap
1 ADC A and B are inverted
Table 46. IP_CTRL2 register (address 0806h) bit description …continued
Default settings are shown highlighted.
Bit Symbol Access Value Description
Table 47. IP_PRBS_CTRL register (address 080Bh) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 2 RESERVED R/W 000000 reserved
1 PRBS_TYPE R/W Pseudo-Random Binary Sequence (PRBS) pattern
selection
0 PRBS-7; 1 + x6 + x7
1 PRBS-23; 1 + x18 + x23
0 RESERVED R/W 0 reserved
Table 48. JESD204B_CTRL1 register (address 0810h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 LMFC_periodic_rst R/W LMFC mode definition
0 LMFC reset is done once
1 LMFC reset at each SYSREF or SYNC pulse
6 LMFC_reset_en R/W LMFC reset selection
0 LMFC reset is disabled (Subclass 0)
1 LMFC reset is enabled (Subclass 1 and 2)
5 to 0 RESERVED R/W 00000 reserved
Table 49. JESD204B_CTRL2 register (address 0811h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 DCS_periodic_rst R/W DCS mode definition
0 DCS reset is done once
1 DCS reset at each SYSREF or SYNC pulse
6 DCS_reset_en R/W DCS reset selection
0 DCS reset is disabled
1 DCS reset is enabled
5 to 0 RESERVED R/W 00000 reserved
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 41 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
Table 50. JESD204B_CTRL3 register (address 0812h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 4 RESERVED R/W 0000 reserved
3 sync_at_lmfc_en R/W defines the relation between SYNC and LMFC
0 SYNC is fetched directly (Subclass 0)
1 SYNC is taken at next LMFC boundary (Subclass
1 and Subclass 2)
2 RESERVED R/W 0 reserved
1 sync_capture_path R/W selects SYNC mode
0 Subclass 0
1 Subclass 1 and Subclass 2
0 RESERVED R/W 0 reserved
Table 51. IP_DEBUG_OUT1 register (address 0816h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 2 - - - not used
1 to 0 PATTERN_OUT[9:8] R/W 10 2 most significant bits of output stage debug word
(inserted just before serializer)
Table 52. IP_DEBUG_OUT2 register (address 0817h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 0 PATTERN_OUT[7:0] R/W 1010 1010 8 least significant bits of output stage debug word
(inserted just before serializer)
Table 53. IP_DEBUG_IN1 register (address 0818h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 0 PATTERN_IN[15:8] R/W 1110 0110 8 most significant bits of input stage debug word
(inserted in place of ADC data)
Table 54. IP_DEBUG_IN2 register (address 0819h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 0 PATTERN_IN[7:0] R/W 1110 1010 8 least significant bits of input stage debug word
(inserted in place of ADC data)
Table 55. IP_TESTMODE register (address 081Bh) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 RESERVED R/W 0 reserved
6 LOOP_ALIGN R/W continuous ILA[1] sequence
0 normal operation
1 ILA[1] repeated continuously
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 42 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
[1] ILA = Initial Lane Alignment Sequence (see JESD204 JEDEC standard).
5 DIS_REPL_CHAR R/W character replacement function selection
0 normal operation
1 character replacement disabled
4 BYP_ALIGN R/W ILA[1] sequence function selection
0 normal operation
1 ILA[1] sequence disabled
3 to 0 RESERVED R/W 0000 reserved
Table 55. IP_TESTMODE register (address 081Bh) bit description …continued
Default settings are shown highlighted.
Bit Symbol Access Value Description
Table 56. IP_EXPERT_DOOR register (address 081Ch) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 0 KEY[7:0] R/W 0000 0000 8-bit key (0x4a) to enable write access for scrambler
(register 0822h) and parameter K (register 0824h)
Table 57. SYSREF_CFG register (address 081Eh) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 4 RESERVED R/W 0000 reserved
3 SYSREF_EN R/W enables SYSREFP/N path
0 SYSREFP/N path disabled
1 SYSREFP/N path enabled
2 SYSREF_SE R/W selects single-ended or differential SYSREF
0 SYSREFP/SYREFN are used as differential pair
1 SYSREFP is used as single ended SYSREF input
1 to 0 RESERVED R/W 00 reserved
Table 58. SCR_L register (address 0822h) bit description (IP_EXPERT_DOOR write access needed, address
081Ch)
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 SCR_EN R/W selects the scrambler function
0 scrambler disabled
1 scrambler enabled
6 to 1 RESERVED R/W 000000 reserved
0 L R/W lanes number minus 1
0 1 lane
1 2 lanes
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 43 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
Table 59. CFG_K register (address 0824h) bit description (IP_EXPERT_DOOR write access needed, address
081Ch)
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 5 - - - not used
4 to 0 K[4:0] R/W 000x xxxx Number of frames in a multi-frame. Default value
depends on the JESD204B configuration.
Table 60. JESD_SUB register (address 0827h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 5 SUBCLASS[2:0] R/W 000 JESD204 subclass information to be written for link
configuration information
4 to 0 RESERVED R/W xxxxx reserved
Table 61. JESD_VER register (address 0828h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 5 VERSION[2:0] R/W 000 JESD204 version information to be written for link
configuration information
4 to 3 - - - not used
2 to 0 RESERVED R/W xxx reserved
Table 62. IP_OUTBUF_A_SWING register (address 086Bh) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 3 RESERVED[4:0] R/W 00000 reserved
2 to 0 SWING[2:0] R/W Configurable lane Aoutput current
000 12 mA; 300 mV (p-p)
001 14 mA; 350 mV (p-p)
010 16 mA; 400 mV (p-p)
011 18 mA; 450 mV (p-p)
100 20 mA; 500 mV (p-p)
101 22 mA; 550 mV (p-p)
110 24 mA; 600 mV (p-p)
111 26 mA; 650 mV (p-p)
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 44 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
Table 63. IP_OUTBUF_B_SWING register (address 086Ch) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 3 RESERVED[4:0] R/W 00000 reserved
2 to 0 SWING[2:0] R/W Configurable lane B output current
000 12 mA; 300 mV (p-p)
001 14 mA; 350 mV (p-p)
010 16 mA; 400 mV (p-p)
011 18 mA; 450 mV (p-p)
100 20 mA; 500 mV (p-p)
101 22 mA; 550 mV (p-p)
110 24 mA; 600 mV (p-p)
111 26 mA; 650 mV (p-p)
Table 64. IP_LANE_A_0_CTRL register (address 0871h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 5 RESERVED[2:0] R/W 000 reserved
4 to 3 LANE_MODE[1:0] R/W debug option directly before serializer
00 normal mode, ADC path
01 0/1 toggle sent over the lanes
10 IP_DEBUG_OUT value sent over the lanes
11 10-bit PRBS pattern is sent over the lane
2 LANE_POL R/W selects lane polarity
0 no inversion
1 lane polarity P/N inverted
1 RESERVED R/W 0 reserved
0 LANE_PD R/W Selects lane power mode
0 lane is powered-up
1 lane is powered-down
Table 65. IP_LANE_B_0_CTRL register (address 0872h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 5 RESERVED[2:0] R/W 000 reserved
4 to 3 LANE_MODE[1:0] R/W debug option directly before serializer
00 normal mode, ADC path
01 0/1 toggle sent over the lanes
10 IP_DEBUG_OUT value sent over the lanes
11 10-bit PRBS pattern is sent over the lane
2 LANE_POL R/W selects lane polarity
0 no inversion
1 lane polarity P/N inverted
1 RESERVED R/W 0 reserved
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 45 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
0 LANE_PD R/W Selects lane power mode
0 lane is powered-up
1 lane is powered-down
Table 65. IP_LANE_B_0_CTRL register (address 0872h) bit description …continued
Default settings are shown highlighted.
Bit Symbol Access Value Description
Table 66. IP_ADC_A_0_CTRL register (address 0890h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 6 RESERVED R/W 00 reserved
5 to 4 ADC_MODE[1:0] R/W debug option at ADC output
00 normal mode, ADC path
01 ramp pattern
10 IP_DEBUG_IN value sent i.s.o. ADC data
11 16-bit PRBS pattern is sent i.s.o. ADC data
3 to 1 RESERVED R/W 000 reserved
0 ADC_PD R/W selects ADC power mode
0 ADC is powered-up
1 ADC is powered-down
Table 67. IP_ADC_B_0_CTRL register (address 0891h) bit description
Default settings are shown highlighted.
Bit Symbol Access Value Description
7 to 6 RESERVED R/W 00 reserved
5 to 4 ADC_MODE[1:0] R/W debug option at ADC output
00 normal mode, ADC path
01 ramp pattern
10 IP_DEBUG_IN value sent i.s.o. ADC data
11 16-bit PRBS pattern is sent i.s.o. ADC data
3 to 1 RESERVED R/W 000 reserved
0 ADC_PD R/W selects ADC power mode
0 ADC is powered-up
1 ADC is powered-down
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 46 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
12. Package outline
Fig 28. Package outline PSC-4449 (VFQFPN56)
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 47 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
13. Abbreviations
Table 68. Abbreviations
Acronym Description
ADC Analog-to-Digital Converter
CDMA Code Division Multiple Access
DAV DAta Valid
ESD ElectroStatic Discharge
FFT Fast Fourier Transform
GSM Global System for Mobile communications
ILA Initial Lane Alignment
IMD3 third order InterMoDulation product
LSB Least Significant Bit
LTE Long-Term Evolution
LVDS DDR Low Voltage Differential Signaling Double Data Rate
LVPECL Low-Voltage Positive Emitter-Coupled Logic
MIMO Multiple Input Multiple Output
MSB Most Significant Bit
OTR OuT-of-Range
SFDR Spurious-Free Dynamic Range
SPI Serial Peripheral Interface
SNR Signal-to-Noise Ratio
TD-SCDMA Time Division-Synchronous Code Division Multiple Access
WCDMA Wideband Code Division Multiple Access
WiMAX Worldwide interoperability for Microwave Access
Tclk Period of the Sampling Clock
ADC1453D250 © IDT 2014. All rights reserved.
Preliminary data sheet Rev. 3.2 — 6 June 2014 48 of 49
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
Contact information
6024 Silver Creek Valley Road
San Jose, California 95138
14. Revision history
Table 69. Revision history
Document ID Release date Data sheet status Change notice Supersedes
ADC1453D250 v.3.2 20140606 Preliminary data sheet - Changed to Preliminary
- ADC1453D160 removed
- Registers updated
- Offset error updated
ADC1453D_SER v.3.1
ADC1453D_SER v.3.1 20140123 Advance data sheet - Pin 50 changed to VDDO
- Min VDDO set to 1.8 V
ADC1453D_SER v.3.0
ADC1453D_SER v.3.0 20131115 Advance data sheet - ADC1453D_SER v.1.2
ADC1453D_SER v.1.2 20130402 Objective data sheet New package outline ADC1453D_SER v.1.1
ADC1453D_SER v.1.1 20130316 Objective data sheet - ADC1453D_SER v.1.0
ADC1453D_SER v.1.0 20130227 Objective data sheet - -
Integrated Device Technology
ADC1453D250
Dual 14-bit ADC; up to246 Msps; JESD204B serial outputs
Disclaimer
Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion.
All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters
of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein
is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied
warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual
property rights of IDT or any third parties.
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the
health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are
the property of IDT or their respective third party owners.
Copyright, 2014. All rights reserved.
15. Contents
1 General description . . . . . . . . . . . . . . . . . . . . . . 1
2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1
3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4 Ordering information . . . . . . . . . . . . . . . . . . . . . 2
5 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2
6 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3
6.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
6.2.1 Start-up Configuration. . . . . . . . . . . . . . . . . . . . 5
7 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 6
8 Thermal characteristics. . . . . . . . . . . . . . . . . . . 6
9 Static characteristics. . . . . . . . . . . . . . . . . . . . . 6
10 Dynamic characteristics . . . . . . . . . . . . . . . . . . 9
10.1 Dynamic characteristics . . . . . . . . . . . . . . . . . . 9
10.2 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10.2.1 Clock timing . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10.2.2 SYSREFP/N and SYNCBP/N timings. . . . . . . 11
10.2.3 SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.3 Typical dynamic performances . . . . . . . . . . . . 13
10.3.1 Typical FFT at 246 Msps . . . . . . . . . . . . . . . . 13
10.3.2 Typical performances . . . . . . . . . . . . . . . . . . . 14
11 Application information. . . . . . . . . . . . . . . . . . 15
11.1 Analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . 15
11.1.1 Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11.1.2 Common-mode input voltage (VI(cm)) . . . . . . . 15
11.1.3 Pin VCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11.1.4 Programmable full-scale . . . . . . . . . . . . . . . . . 16
11.1.5 Anti-kickback circuitry . . . . . . . . . . . . . . . . . . . 16
11.1.6 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . 17
11.2 Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
11.2.1 Drive modes . . . . . . . . . . . . . . . . . . . . . . . . . . 18
11.2.2 Equivalent input circuit . . . . . . . . . . . . . . . . . . 19
11.2.3 JESD204B harmonic clocking . . . . . . . . . . . . 19
11.2.4 JESD204B Deterministic Latency (pins
SYSREFN and SYSREFP or SYNCBP and
SYNCBN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11.2.5 Clock Group Delay . . . . . . . . . . . . . . . . . . . . . 20
11.3 Digital outputs. . . . . . . . . . . . . . . . . . . . . . . . . 21
11.3.1 Digital output buffers. . . . . . . . . . . . . . . . . . . . 21
11.3.2 JESD204B serializer . . . . . . . . . . . . . . . . . . . 22
11.3.2.1 Digital JESD204B formatter . . . . . . . . . . . . . . 22
11.3.2.2 Scrambler (SCR_EN). . . . . . . . . . . . . . . . . . . 23
11.3.3 OuT-of-Range (OTR) . . . . . . . . . . . . . . . . . . . 24
11.3.4 Digital offset . . . . . . . . . . . . . . . . . . . . . . . . . . 24
11.3.5 Test patterns. . . . . . . . . . . . . . . . . . . . . . . . . . 25
11.3.6 Output data format selection . . . . . . . . . . . . . 25
11.3.7 Output codes versus input voltage. . . . . . . . . 25
11.4 Configuration pins (CFG0, CFG1, CFG2, CFG3)
26
11.5 Serial Peripheral Interface (SPI) . . . . . . . . . . 27
11.5.1 Register description . . . . . . . . . . . . . . . . . . . . 27
11.5.2 Start-up programing . . . . . . . . . . . . . . . . . . . . 29
11.5.3 Register allocation map . . . . . . . . . . . . . . . . . 31
11.5.4 Detailed register description. . . . . . . . . . . . . . 34
11.5.4.1 ADC control registers . . . . . . . . . . . . . . . . . . . 34
11.5.4.2 JESD204B control registers . . . . . . . . . . . . . . 38
12 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 46
13 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 47
14 Revision history . . . . . . . . . . . . . . . . . . . . . . . 48
15 Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49