5SDD 14F6000
TS - DV/051/01 Jul-10 1 of 5
5SDD 14F6000
Old part no. DV 808-1360-60
High Voltage Diode
Properties Key Parameters
§ Low forward voltage drop VRRM = 6 000 V
§ Low recovery charge IFAVm = 1 363 A
§ High operating temperature IFSM = 17 500
A
§ Low leakage current VTO = 1.015 V
Applications rT = 0.407 m
§ Rectifier bridges
Types
VRRM
5SDD 14F6000
5SDD 14F5800 6 000 V
5 800 V
Conditions:
Tj = -40 ÷ 150 °C,
half sine waveform,
f = 50 Hz
Mechanical Data
Fm Mounting force 22 ± 2 kN
m Weight 0.46 kg
DS Surface creepage
distance 30 mm
Da Air strike distance 20.5 mm
Fig. 1 Case
ABB s.r.o.
Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
tel.: +420 261 306 250, http://www.abb.com/semiconductors
5SDD 14F6000
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - DV/051/01 Jul-10 2 of 5
Maximum Ratings Maximum Limits Unit
VRRM Repetitive peak reverse
voltage
Tj = -40 ÷ 150 °C
5SDD 14F6000
5SDD 14F5800 6 000
5 800 V
IFAVm Average forward current
Tc = 85 °C 1 363 A
IFRMS RMS forward current 2 142 A
IRRM Repetitive reverse current,
VR = VRRM 75 mA
tp = 8.3 ms 20 300 A
IFSM Non repetitive peak surge current
VR = 0 V, half sine pulse, Tj = 25 °C tp = 10 ms 19 000 A
tp = 8.3 ms 18 700 A
Non repetitive peak surge current
VR = 0 V, half sine pulse tp = 10 ms 17 500 A
tp = 8.3 ms 1 710 000 A2s
I2t Limiting load integral
VR = 0 V, half sine pulse, Tj = 25 °C tp = 10 ms 1 805 000 A2s
tp = 8.3 ms 1 450 000 A2s
Limiting load integral
VR = 0 V, half sine pulse tp = 10 ms 1 531 250 A2s
Tjmin -Tjmax Operating temperature range -40 ÷ 150 °C
TSTG Storage temperature range -40 ÷ 150 °C
Unless otherwise specified Tj = 150 °C
Value
Characteristics
min typ max
Unit
VT0 Threshold voltage
IF1 = 2 142 A, IF2 = 6 425 A 1.015
V
rT Forward slope resistance 0.407
m
VFM Maximum forward voltage
IFM = 4 000 A 2.68 V
Qrr Recovered charge
VR = 100 V, IFM = 1 000 A, diF/dt = -10 A/µs 3 000
4 000
µC
Unless otherwise specified Tj = 150 °C
5SDD 14F6000
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - DV/051/01 Jul-10 3 of 5
Thermal Parameters Value Unit
double side cooling 20 K/kW
anode side cooling 34
Rthjc Thermal resistance
junction to case
cathode side cooling 48
double side cooling 5 K/kW
Rthch Thermal resistance
case to heatsink single side cooling 10
Transient Thermal Impedance
i 1 2 3 4
Ri( K/kW )
11.83 4.26 1.63 2.28
τi ( s ) 0.432 0.071 0.01 0.0054
0
2
4
6
8
10
12
14
16
18
20
22
0,001 0,01 0,1 1 10
Square wave pulse duration td ( s )
Transient thermal impedance
junction to case Zthjc ( K/kW )
Analytical function for transient
thermal impedance
=τ= 4
1))/exp(1(
iiithjc tRZ
Conditions:
Fm = 22 ± 2 kN, Double side cooled
Fig. 2 Dependence transient thermal impedance junction
to case on square pulse
5SDD 14F6000
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - DV/051/01 Jul-10 4 of 5
0
1000
2000
3000
4000
5000
6000
7000
0 1 2 3 4
VF ( V )
IF ( A )
150 °C
25 °C
Fig. 3
Maximum forward voltage drop characteristics
10
14
18
22
26
30
34
38
110 100
t ( ms )
IFSM ( kA )
0,8
1
1,2
1,4
1,6
1,8
2
2,2
i2dt (106 A2s)
I
FSM
i2dt
0
5
10
15
20
1 10 100
Number n of cycles at 50 Hz
IFSM ( kA )
VR = 0 V
VR
0.5 VRRM
Fig. 4
Surge forward current vs. pulse length,
half sine wave, single pulse,
VR = 0 V, Tj = Tjmax
Fig. 5
Surge forward current vs. number
of pulses, half sine wave, Tj = Tjmax
5SDD 14F6000
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - DV/051/01 Jul-10 5 of 5
0
500
1000
1500
2000
2500
3000
3500
0200 400 600 8001000120014001600
IFAV ( A )
PT ( W )
120°
180°
DC
ψ
= 60°
0
500
1000
1500
2000
2500
3000
3500
0 200 400 600 8001000120014001600
IFAV ( A )
PT ( W )
ψ
= 30°
60°
90°
120°
180°
270°
DC
Fig. 6
Forward power loss vs. average forward
current, sine waveform, f = 50 Hz, T = 1/f Fig. 7
Forward power loss vs. average forward
current, square waveform, f = 50 Hz,
T = 1/f
60
70
80
90
100
110
120
130
140
150
160
0200 400 600 800 1000120014001600
IFAV ( A )
TC ( °C )
180°
120°
DC
ψ
= 60°
60
70
80
90
100
110
120
130
140
150
160
0200 400 600 800 1000120014001600
IFAV ( A )
TC ( °C )
180°
DC
270°
120°
90°
60°
ψ
= 30°
Fig. 8
Max. case temperature vs. aver. forward
current, sine waveform, f = 50 Hz,
T = 1/f
Fig. 9
Max.case temperature vs. aver. forward
current, square waveform, f = 50 Hz,
T = 1/f
Notes: