© Semiconductor Components Industries, LLC, 2015
January, 2018 − Rev. 1 1Publication Order Number:
KAI−47051/D
KAI-47051
8856 (H) x 5280 (V) Interline
CCD Image Sensor
Description
The KAI−47051 Image Sensor is a 47−megapixel CCD designed for
the most demanding inspection and surveillance applications. Based
on an advanced 5.5−micron Interline Transfer CCD Platform, the
sensor features broad dynamic range and excellent imaging
performance and uniformity. Full resolution readout of up to 7 frames
per second is enabled through a multi−tap output architecture, and a
vertical overflow drain structure suppresses image blooming and
enables electronic shuttering for precise exposure control.
The sensor is electrically similar to other devices in the 5.5−micron
Interline Transfer CCD Platform, allowing cameras designed for that
platform to be leveraged in support of this high−resolution device.
Table 1. GENERAL SPECIFICATIONS
Parameter Typical Value
Architecture Interline CCD, Progressive Scan
Total Number of Pixels 8880 (H) × 5392 (V)
Number of Effective Pixels 8880 (H) × 5304 (V)
Number of Active Pixels 8856 (H) × 5280 (V)
Pixel Size 5.5 mm (H) × 5.5 mm (V)
Active Image Size 48.7 mm (H) × 29.0 mm (V)
56.7 mm (diagonal)
Aspect Ratio 5:3
Number of Outputs 8 or 16
Charge Capacity 20,000 electrons
Output Sensitivity 38 mV/e
Quantum Efficiency
Pan (−AXA, −QXA)
R, G, B (−FXA, −QXA) 43%
28%, 35%, 38%
Read Noise (f = 40 MHz) 10 e rms
Dark Current
Photodiode / VCCD 7 / 140 e/s
Dark Current Doubling Temp
Photodiode / VCCD 7°C / 9°C
Dynamic Range 66 dB
Charge Transfer Efficiency 0.999999
Blooming Suppression > 300 X
Smear −100 dB
Image Lag < 10 electrons
Maximum Pixel Clock Speed 40 MHz
Maximum Frame Rate
8 Outputs / 16 Outputs 3.5 fps / 7.0 fps
Package Options 201 Pin PGA
Cover Glass AR Coated, 2-Sides
NOTE: All Parameters are specified at T = 40°C unless otherwise noted.
Features
Bayer Color Pattern, Sparse Color Filter
Pattern, and Monochrome Configurations
Progressive Scan Readout
Flexible Readout Architecture
High Frame Rate
High Sensitivity
Low Noise Architecture
Excellent Smear Performance
Applications
Industrial Imaging and Inspection
Aerial Surveillance
Security
www.onsemi.com
Figure 1. KAI−47051 Image Sensor
See detailed ordering and shipping information on page 2 o
f
this data sheet.
ORDERING INFORMATION
KAI−47051
www.onsemi.com
2
ORDERING INFORMATION
Table 2. ORDERING INFORMATION
Part Number Description Marking Code
KAI−47051−AXA−JD−B1 Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR
Coating (Both Sides), Grade 1
KAI−47051−AXA
Serial Number
KAI−47051−AXA−JD−B2 Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR
Coating (Both Sides), Grade 2
KAI−47051−AXA−JD−AE Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR
Coating (Both Sides), Engineering Grade
KAI−47051−AXA−JP−B1 Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass with
No Coatings, Grade 1
KAI−47051−AXA
Serial Number
KAI−47051−AXA−JP−B2 Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass with
No Coatings, Grade 2
KAI−47051−AXA−JP−AE Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass with
No Coatings, Engineering Grade
KAI−47051−FXA−JD−B1 Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Grade 1
KAI−47051−FXA
Serial Number
KAI−47051−FXA−JD−B2 Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Grade 2
KAI−47051−FXA−JD−AE Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Engineering Grade
KAI−47051−QXA−JD−B1 Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Grade 1
KAI−47051−QXA
Serial Number
KAI−47051−QXA−JD−B2 Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Grade 2
KAI−47051−QXA−JD−AE Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Engineering Grade
See the ON Semiconductor Device Nomenclature document (TND310/D) for a full description of the naming convention
used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at
www.onsemi.com.
KAI−47051
www.onsemi.com
3
DEVICE DESCRIPTION
Architecture
Figure 2. Block Diagram
12 Buffer Columns
12 Buffer Columns
1110 1110 1110 1110 1110 1110 1110 1110
1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows
1110 1110 1110 1110 1110 1110 1110 1110
1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows
FDGB
FDDB FDGB
FDDB
FDGT
FDDT
FDGT
FDDT
T_CATHODE
T_ANODE
V1B
V2B
V3B
V4B
V1B
V2B
V3B
V4B
SUB SUB
ESD ESD
GND GND
V1B
V2B
V3B
V4B
V1B
V2B
V3B
V4B
SUB SUB
ESD ESD
GND GND
VOUTa
6
VOUTb
6
VOUTc
6
VOUTd
6
VOUTe
6
VOUTf
6
VOUTg
6
VOUTh
6
VOUTi
6
VOUTj
6
VOUTk
6
VOUTl
6
VOUTm
6
VOUTn
6
VOUTo
6
VOUTp
6
8856H x 5280V
12 Buffer Rows
12 Buffer Rows
5.5 mm x 5.5 mm Pixels
Figure 3. HCCD and Output Detail
1110
6
HLODa
H1a
H2aHLASTa
RaVDDa
VOUTa
GND
OGa
RDa
a denotes a to p
Dark Pixels
There are 44 dark rows at the top and 44 dark rows at the
bottom of the image sensor. The dark rows are not entirely
dark and so should not be used for a dark reference level.
Dummy Pixels
Within each horizontal shift register there are 6 leading
additional shift phases. These pixels are designated as
dummy pixels and should not be used to determine a dark
reference level.
Active Buffer Pixels
On the perimeter of the sensor there are 12 unshielded
rows and columns that are classified as active buffer pixels.
These pixels are light sensitive but are not tested for defects
and non−uniformities.
KAI−47051
www.onsemi.com
4
Image Acquisition
An electronic representation of an image is formed when
incident photons falling on the sensor plane create
electron−hole pairs within the individual silicon
photodiodes. These photoelectrons are collected locally by
the formation of potential wells at each photo−site. Below
photodiode saturation, the number of photoelectrons
collected at each pixel is linearly dependent upon light level
and exposure time and non−linearly dependent on
wavelength. When the photodiodes charge capacity is
reached, excess electrons are discharged into the substrate t o
prevent blooming.
ESD Protection
Adherence to the power -up and power-down sequence is
critical. Failure to follow the proper power-up and
power-down sequences may cause damage to the sensor. See
Power -Up and Power-Down Sequence section.
Bayer Color Filter Pattern
Figure 4. Bayer Color Filter Pattern
B G
R
G
12 Buffer Columns
12 Buffer Columns
1110 1110 1110 1110 1110 1110 1110 1110
1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows
1110 1110 1110 1110 1110 1110 1110 1110
1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows
FDGB
FDDB FDGB
FDDB
FDGT
FDDT
FDGT
FDDT
T_CATHOD
E
T_ANODE
V1B
V2B
V3B
V4B
V1B
V2B
V3B
V4B
SUB SUB
ESD ESD
GND GND
V1B
V2B
V3B
V4B
V1B
V2B
V3B
V4B
SUB SUB
ESD ESD
GND GND
VOUTa
6
VOUTb
6
VOUTc
6
VOUTd
6
VOUTe
6
VOUTf
6
VOUTg
6
VOUTh
6
VOUT
i
6
VOUT
j
6
VOUT
k
6
VOUT
l
6
VOUT
m
6
VOUT
n
6
VOUTo
6
VOUT
p
6
12 Buffer Rows
12 Buffer Rows
B G
GR
B G
GR
B G
R
G
B G
GR
8856H x 5280V
5.5 mm x 5.5 mm Pixels
KAI−47051
www.onsemi.com
5
Sparse Color Filter Pattern
Figure 5. Sparse Color Filter Pattern
P
P
12 Buffer Columns
12 Buffer Columns
1110 1110 1110 1110 1110 1110 1110 1110
1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows
1110 1110 1110 1110 1110 1110 1110 1110
1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows
FDGB
FDDB FDGB
FDDB
FDGT
FDDT
FDGT
FDDT
T_CATHODE
T_ANODE
V1B
V2B
V3B
V4B
V1B
V2B
V3B
V4B
SUB SUB
ESD ESD
GND GND
V1B
V2B
V3B
V4B
V1B
V2B
V3B
V4B
SUB SUB
ESD ESD
GND GND
P B G
R
P
B P
P
G
G
GP
P
P R P
P B G
R
P
B P
P
G
G
GP
P
P R P
P B G
R
P
B P
P
G
G
GP
P
P R P
P B G
R
P
B P
P
G
G
GP
P
P R P
VOUTa
6
VOUTb
6
VOUTc
6
VOUTd
6
VOUTe
6
VOUTf
6
VOUTg
6
VOUTh
6
VOUT
i
6
VOUT
j
6
VOUT
k
6
VOUT
l
6
VOUT
m
6
VOUT
n
6
VOUT
o
6
VOUT
p
6
12 Buffer Rows
12 Buffer Rows
P
8856H x 5280V
5.5 mm x 5.5 mm Pixels
KAI−47051
www.onsemi.com
6
Physical Description
Pin Description and Device Orientation
Figure 6. Package Pin Designations − Top View
104
105106
201
200 199
108 107
198 197
1
3
2
4
56
97
100
98
95 96
Pixel
(1,1)
99
101
103
102
78 196 195
Figure 7. Package Pin Designations − Bottom View
104
105 106
201
200199
108107
198197
1
3
2
4
56
97
100
98
95
96
99
101
103
102
78196195
KAI−47051
www.onsemi.com
7
Table 3. PACKAGE PIN DESCRIPTION
Pin Name Pin Name Pin Name Pin Name Pin Name
1 N/C 41 VOUTd 81 VOUTh 121 VOUTp 161 VOUTl
2 SUB 42 VDDd 82 VDDh 122 VDDp 162 VDDl
3 ESD 43 RDd 83 RDh 123 HLODo 163 HLODk
4 GND 44 GND 84 GND 124 H1o 164 H1k
5 V3B 45 OGd 85 OGh 125 H2Lo 165 H2Lk
6 V4B 46 Rd 86 Rh 126 H2o 166 H2k
7 V1B 47 H2Ld 87 H2Lh 127 OGo 167 OGk
8 FDDB 48 H2d 88 H2h 128 Ro 168 Rk
9 V2B 49 HLODd 89 HLODh 129 RDo 169 RDk
10 FDGB 50 H1d 90 H1h 130 GND 170 GND
11 VOUTa 51 VOUTe 91 V1B 131 VOUTo 171 VOUTk
12 VDDa 52 VDDe 92 V2B 132 VDDo 172 VDDk
13 RDa 53 RDe 93 SUB 133 HLODn 173 HLODj
14 GND 54 GND 94 FDGB 134 H1n 174 H1j
15 OGa 55 OGe 95 V3B 135 H2Ln 175 H2Lj
16 Ra 56 Re 96 FDDB 136 H2n 176 H2j
17 H2La 57 H2Le 97 GND 137 OGn 177 OGj
18 H2a 58 H2e 98 V4B 138 Rn 178 Rj
19 HLODa 59 HLODe 99 TANODE 139 RDn 179 RDj
20 H1a 60 H1e 100 ESD 140 GND 180 GND
21 VOUTb 61 VOUTf 101 TCATHODE 141 VOUTn 181 VOUTj
22 VDDb 62 VDDf 102 n/c 142 VDDn 182 VDDj
23 RDb 63 RDf 103 n/c 143 HLODm 183 HLODi
24 GND 64 GND 104 ESD 144 H1m 184 H1i
25 OGb 65 OGf 105 GND 145 H2Lm 185 H2Li
26 Rb 66 Rf 106 V4T 146 H2m 186 H2i
27 H2Lb 67 H2Lf 107 V3T 147 OGm 187 OGi
28 H2b 68 H2f 108 FDDT 148 Rm 188 Ri
29 HLODb 69 HLODf 109 SUB 149 RDm 189 RDi
30 H1b 70 H1f 110 FDGT 150 GND 190 GND
31 VOUTc 71 VOUTg 111 V1T 151 VOUTm 191 VOUTi
32 VDDc 72 VDDg 112 V2T 152 VDDm 192 VDDi
33 RDc 73 RDg 113 HLODp 153 HLODl 193 V2T
34 GND 74 GND 114 H1p 154 H1l 194 FDGT
35 OGc 75 OGg 115 H2Lp 155 H2Ll 195 V1T
36 Rc 76 Rg 116 H2p 156 H2l 196 FDDT
37 H2Lc 77 H2Lg 117 OGp 157 OGl 197 V3T
38 H2c 78 H2g 118 Rp 158 Rl 198 V4T
39 HLODc 79 HLODg 119 RDp 159 RDl 199 ESD
40 H1c 80 H1g 120 GND 160 GND 200 GND
201 SUB
KAI−47051
www.onsemi.com
8
Table 4. PIN NAME DESCRIPTIONS
Pin Name(s) Description
V1B, V1T Vertical CCD Clock, Phase 1, Bottom (B) or Top (T)
V2B, V2T Vertical CCD Clock, Phase 2, Bottom (B) or Top (T)
V3B, V3T Vertical CCD Clock, Phase 3, Bottom (B) or Top (T)
V4B, V4T Vertical CCD Clock, Phase 4, Bottom (B) or Top (T)
FDDB, FDDT Fast Line Dump Drain, Bottom (B) or Top (T)
FDGB, FDGT Fast Line Dump Gate, Bottom (B) or Top (T)
SUB Substrate
GND Ground
ESD ESD Protection Disable
TANODE Temperature Diode Anode
TCATHODE Temperature Diode Cathode
N/C No connect
VOUTaVideo Output a to p
RaReset Gate a to p
RDaReset Drain a to p
OGaOutput Gate a to p
VDDaOutput Amplifier Supply a to p
H1aHorizontal CCD Clock, Phase 1, a to p
H2aHorizontal CCD Clock, Phase 2, a to p
H2LaHorizontal CCD Clock, Phase 2, Last Phase, a to p
HLODaHorizontal CCD Overflow Drain, a to p
KAI−47051
www.onsemi.com
9
IMAGING PERFORMANCE
Table 5. TYPICAL OPERATION CONDITIONS
Unless otherwise noted, the Imaging Performance Specifications are measured using the following conditions.
Description Condition Notes
Light Source Continuous red, green and blue LED illumination For monochrome sensor, only green LED used.
Operation Nominal operating voltages and timing
Table 6. PERFORMANCE PARAMETERS (Performance parameters are by design)
Description Symbol Nom. Units Notes
Maximum Photo−response Nonlinearity NL 2 % 2
Horizontal CCD Charge Capacity HNe 55 ke
Vertical CCD Charge Capacity VNe 40 ke
Photodiode Charge Capacity PNe 20 ke3
Image Lag Lag < 10 e
Anti−blooming Factor Xab > 300X
Vertical Smear Smr −100 dB
Read Noise ne−T 10 erms 4
Dynamic Range DR 66 dB 4, 5
Output Amplifier DC Offset Vodc 9.4 V
Output Amplifier Bandwidth f−3db 250 MHz 6
Output Amplifier Impedance ROUT 127 W
Output Amplifier Sensitivity DV/DN38 mV/e
Peak Quantum Efficiency (KAI−47051−ABA and KAI−47051−QBA Configurations) QEmax 43 %
Peak Quantum Efficiency
(KAI−47051−FBA and KAI−47051−QBA Configurations) Blue
Green
Red
QEmax 37
35
29
%
Table 7. PERFORMANCE SPECIFICATIONS
Description Symbol Min. Nom. Max. Units
Temperature
Tested At
(5C) Notes
Dark Field Global Non−Uniformity DSNU 5 mVpp 27, 40
Bright Field Global Non−Uniformity 5 %rms 27, 40 1
Bright Field Global Peak to Peak Non−Uniformity PRNU 30 %pp 27, 40 1
Horizontal CCD Charge Transfer Efficiency HCTE 0.999995 0.999999
Vertical CCD Charge Transfer Efficiency VCTE 0.999995 0.999999
Photodiode Dark Current Ipd 7 70 e/p/s 40
Vertical CCD Dark Current Ivd 100 300 e/p/s 40
1. Per color
2. Value is over the range of 10% to 90% of photodiode saturation.
3. The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such
that the photodiode charge capacity is 680 mV.
4. At 40 MHz
5. Uses 20LOG (PNe/ ne−T)
6. Assumes 5 pF load.
KAI−47051
www.onsemi.com
10
TYPICAL PERFORMANCE CUR VES
Quantum Efficiency
Monochrome with Microlens
Figure 8. Monochrome with Microlens Quantum Efficiency
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 110
0
Absolute Quantum Efficiency
Wavelength (nm)
Monochrome − Microlens
Measured with AR coated
cover glass
KAI−47051
www.onsemi.com
11
Color (Bayer RGB) with Microlens
Figure 9. Color (Bayer) with Microlens Quantum Efficiency
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100
Absolute Quantum Efficiency
Wavelength (nm)
Red Green Blue
Measured with AR coated
cover glass
Color (Sparse CFA) with Microlens
Figure 10. Color (Sparse CFA) with Microlens Quantum Efficiency
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100
Absolute Quantum Efficiency
Wavelength (nm)
Red Green Blue Pan
Measured with AR
coated cover glass
KAI−47051
www.onsemi.com
12
Angular Quantum Efficiency
For the curves marked “Horizontal”, the incident light angle is varied in a plane parallel to the HCCD.
For the curves marked “Vertical”, the incident light angle is varied in a plane parallel to the VCCD.
Monochrome with Microlens
Figure 11. Monochrome with Microlens Angular Quantum Efficiency
0
10
20
30
40
50
60
70
80
90
100
403020100 10203040
Relative Quantum Efficiency (%)
Angle (degrees)
Vertical
Horizontal
Dark Current vs. Temperature
Figure 12. Dark Current vs. Temperature
303540455055606570
0.1
1
10
100
1000
2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30
T (°C)
Dark Current (e¯/s/pixel)
1000/T (K)
Photodiode VCCD
KAI−47051
www.onsemi.com
13
Power-Estimated
Figure 13. Power
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0 5 10 15 20 25 30 35 40
Power (W)
HCCD Frequency (MHz)
8 Outputs 16 Outputs
Frame Rates
Figure 14. Frame Rates
0
1
2
3
4
5
6
7
8
0 5 10 15 20 25 30 35 40
Frame Rate (fps)
HCCD Frequency (MHz)
8 Outputs 16 Outputs
KAI−47051
www.onsemi.com
14
DEFECT DEFINITIONS
Table 8. OPERATING CONDITIONS
Description Condition Notes
Light Source Continuous Red, Green and/or Blue LED Illumination For monochrome sensor, only the green LED is used.
Operation Nominal Operating Voltages and Timing
Table 9. OPERATING PARAMETERS
Description 8 Outputs 16 Outputs
HCCD Clock Frequency 20 MHz 20 MHz
Pixels Per Line 1146 1146
Lines Per Frame 5392 2696
Line Time 82.3 ms82.3 ms
Frame Time 443.9 ms 222.0 ms
Table 10. TIMING MODES
Timing Modes Conditions
Mode A 8 Output, no electronic shutter used. Photodiode integration time is equal to Frame Time.
Mode B 16 Output, no electronic shutter used. Photodiode integration time is equal to Frame Time.
Table 11. DEFECT DEFINITIONS
Description Definition Grade 1 Grade 2
(Mono) Grade 2
(Color)
Column De-
fect A group of more than 10 contiguous pixels along a single column that deviate from
the neighboring columns by:
more than 29 mV in the dark field using Timing Mode A at 40°C
more than 29 mV in the dark field using Timing Mode A at 27°C
more than −12% or +16% in the bright field using Timing Mode B at 27°C or 40°C
0 7 27
Cluster Defect A group of 2 to N contiguous defective pixels, but no more than W adjacent defects
horizontally, that deviate from the neighboring pixels by:
more than 169 mV in the dark field using Timing Mode A at 40°C
more than 67 mV in the dark field using Timing Mode A at 27°C
more than −12% or +16% in the bright field using Timing Mode B at 40°C or 27°C
20
W = 4
N = 19
50
W = 5
N = 38
50
W = 5
N = 38
Major Point
Defect A single defective pixel that deviates from the neighboring pixels by:
more than 169 mV in the dark field using Timing Mode A at 40°C
more than 67 mV in the dark field using Timing Mode A at 27°C
more than −12% or +16% in the bright field using Timing Mode B at 27°C or 40°C
440 880 880
Minor Point
Defect A single defective pixel that deviates from the neighboring pixels by:
more than 84 mV in the dark field using Timing Mode A at 40°C4400 8800 8800
1. Bright field is define as where the average signal level of the sensor is 532 mV, with the substrate voltage set to the recommend VAB setting
such that the capacity of the photodiodes is 760 mV (20,000 electrons)
2. For the color device (KAI−47051−FBA or KAI−47051−QBA), a bright field defective pixel is with respect to pixels of the same color.
3. Column and cluster defects are separated by no less than two (2) good pixels in any direction (excluding single pixel defects).
KAI−47051
www.onsemi.com
15
Defect Map
The defect map supplied with each sensor is based upon
testing at an ambient (27°C) temperature. Minor point defects are not included in the defect map. All defective
pixels are reference to pixel 1, 1 in the defect maps.
Figure 15. Pixel 1, 1 Location
12 Buffer Columns
12 Buffer Columns
1110 1110 1110 1110 1110 1110 1110 1110
1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows
1110 1110 1110 1110 1110 1110 1110 1110
1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows 1110 columns
44 dark rows
VOUTa
6
VOUTb
6
VOUTc
6
VOUTd
6
VOUTe
6
VOUTf
6
VOUTg
6
VOUTh
6
VOUT
i
6
VOUT
j
6
VOUT
k
6
VOUT
l
6
VOUT
m
6
VOUT
n
6
VOUT
o
6
VOUT
p
6
12 Buffer Rows
12 Buffer Rows
1, 1
13,
13
Pixel
Pixel 8856H x 5280V
Active Pixels
KAI−47051
www.onsemi.com
16
OPERATION
Table 12. ABSOLUTE MAXIMUM RATINGS
Description Symbol Minimum Maximum Units Notes
Operating Temperature TOP −50 70 °C 1
Humidity RH 5 90 % 2
Output Bias Current IOUT 240 mA 3
Off-Chip Load CL 10 pF
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be af fected.
1. Noise performance will degrade at higher temperatures.
2. T = 25°C. Excessive humidity will degrade MTTF.
3. Total for all outputs. Maximum current is −15 mA for each output. Avoid shorting output pins to ground or any low impedance source during
operation. Amplifier bandwidth increases at higher current and lower load capacitance at the expense of reduced gain (sensitivity).
Table 13. ABSOLUTE MAXIMUM VOLTAGE RATINGS BETWEEN PINS AND GROUND
Description Minimum Maximum Units Notes
VDDa, VOUTa−0.4 17.5 V 1
RDa, FDDa, HLODa−0.4 15.5 V 1
V1B, V1T ESD − 0.4 ESD + 24.0 V
V2B, V2T, V3B, V3T, V4B, V4T ESD − 0.4 ESD + 14.0 V
FDGB, FDGT ESD − 0.4 ESD + 15.0 V
H1a, H2a, H2LaESD − 0.4 ESD + 14.0 V 1
ESD −10.0 0.0 V
SUB −0.4 40.0 V
1. a refers to a to p.
2. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions
KAI−47051
www.onsemi.com
17
Power-Up and Power-Down Sequence
Adherence to the power-up and power-down sequence is critical. Failure to follow the proper power-up and power-down
sequences may cause damage to the sensor.
Figure 16. Power-Up and Power-Down Sequence
VDD
SUB
ESD VCCD
Low HCCD
Low
Time
V+
V−
Do Not Pulse the Electronic Shutter until ESD is Stable
Activate All Other Biases when ESD is Stable and Sub is above 3 V
1. Activate all other biases when ESD is stable and SUB is above 3 V.
2. Do not pulse the electronic shutter until ESD is stable.
3. VDD cannot be +15 V when SUB is 0 V.
4. The image sensor can be protected from an accidental improper ESD voltage by current limiting the SUB current to less than 10 mA. SUB
and VDD must always be greater than GND. ESD must always be less than GND. Placing diodes between SUB, VDD, ESD and groun
d
will protect the sensor from accidental overshoots of SUB, VDD and ESD during power on and power off. See the figure below.
Notes:
The VCCD clock waveform must not have a negative overshoot more than 0.4 V below the ESD voltage.
Figure 17. VCCD Clock Waveform
All VCCD Clock Absolute
Maximum Overshoot of 0.4 V
0.0 V
ESD
ESD − 0.4 V
Example of external diode protection for SUB, VDD and ESD.a denotes a to p.
Figure 18. Example of External Diode Protection
ESD
GND
VDD
a
SUB
KAI−47051
www.onsemi.com
18
DC Bias Operating Conditions
Table 14. DC BIAS OPERATING CONDITIONS
Description Pins Symbol Min. Nom. Max. Units Max. DC
Current Notes
Reset Drain RDaRD 11.8 12.0 12.2 V 10 mA1
Fast Line Dump Drain FDDB,
FDDT FDD 11.8 12.0 12.2 V 10 mA1
Horizontal Lateral
Overflow Drain HLODaHLOD 11.8 12.0 12.2 V 10 mA1
Output Gate OGaOG −2.2 −2.0 −1.8 V10 mA1
Output Amplifier Supply VDDaVDD 14.5 15.0 15.5 V 11.0 mA 1, 2
Ground GND GND 0.0 0.0 0.0 V −1.0 mA
Substrate SUB VSUB 5.0 VAB VDD V50 mA3, 8
ESD Protection Disable ESD ESD −9.5 −9.0 −8.8 V50 mA6, 7
Output Bias Current VOUTaIOUT −3.0 −5.0 −10.0 mA 1, 4, 5
1. a denotes a to p.
2. The maximum DC current is for one output. IDD = IOUT + ISS. See Figure 19.
3. The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such
that the photodiode charge capacity is the nominal PNe (see Specifications).
4. An output load sink must be applied to each VOUT pin to activate each output amplifier.
5. Nominal value required for 40 MHz operation per output. May be reduced for slower data rates and lower noise.
6. Adherence to the power-up and power-down sequence is critical. See Power Up and Power Down Sequence section.
7. ESD maximum value must be less than or equal to V1_L + 0.4 V, V2_L + 0.4 V, V3_L + 0.4 V, and V2_L + 0.4 V.
8. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
Figure 19. Output Amplifier
Source
Follower
#1
Source
Follower
#2
Source
Follower
#3
Floating
Diffusion
ISS
IDD
IOUT
VOUTa
VDDa
Ra
RDa
HCCD
OGa
KAI−47051
www.onsemi.com
19
AC Operating Conditions
Table 15. CLOCK LEVELS
Description Pins
(Note 1) Symbol Level Min. Nom. Max. Units Capacitance
(Note 2)
Vertical CCD Clock, Phase 1 V1B, V1T V1_L Low −8.2 −8.0 −7.8 V290 nF
(Note 6)
V1_M Mid −0.2 0.0 0.2
V1_H High 10.8 11.0 11.2
Vertical CCD Clock, Phase 2 V2B, V2T V2_L Low −8.2 −8.0 −7.8 V290 nF
(Note 6)
V2_H High −0.2 0.0 0.2
Vertical CCD Clock, Phase 3 V3B, V3T V3_L Low −8.2 −8.0 −7.8 V290 nF
(Note 6)
V3_H High −0.2 0.0 0.2
Vertical CCD Clock, Phase 4 V4B, V4T V4_L Low −8.2 −8.0 −7.8 V290 nF
(Note 6)
V4_H High −0.2 0.0 0.2
Horizontal CCD Clock,
Phase 1 H1aH1_L Low −5.2
(Note 7) −4.0 −3.8 V1.3 nF
(Note 6)
H1_A Amplitude 3.8 4.0 5.2
(Note 7)
Horizontal CCD Clock,
Phase 2 H2aH2_L Low −5.2
(Note 7) −4.0 −3.8 V1.3 nF
(Note 6)
H2_A Amplitude 3.8 4.0 5.2
(Note 7)
Horizontal CCD Clock,
Last Phase (Note 3) H2LaH2L_L Low −5.2 −5.0 −4.8 V30 pF
(Note 6)
H2L_A Amplitude 4.8 5.0 5.2
Reset Gate RaR_L
(Note 4) Low −3.5 −2.0 −1.8 V20 pF
(Note 6)
R_H High 2.5 3.0 4.0
Electronic Shutter (Note 5) SUB VES High 29.0 30.0 40.0 V 20 nF
(Note 6)
Fast Line Dump Gate FDGB,
FDGT FDG_L Low −8.2 −8.0 −7.8 V70 pF
(Note 6)
FDG_H High 4.5 5.0 5.5
1. a denotes a to p.
2. Capacitance is total for all like named pins. As an example, if all 16 H1 pins are tied together the total capacitance will be 1.3 nF.
3. Use separate clock driver for improved speed performance.
4. Reset low should be set to –3 V for signal levels greater than 40,000 electrons.
5. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
6. Capacitance values are estimated.
7. If the minimum horizontal clock low level is used (–5.0 V), then the maximum horizontal clock amplitude should be used (5 V amplitude) to
create a –5.0 V to 0.0 V clock.
KAI−47051
www.onsemi.com
20
The figure below shows the DC bias (VSUB) and AC clock (VES) applied to the SUB pin. Both the DC bias and AC clock
are referenced to ground.
Figure 20. DC Bias and AC Clock Applied to the SUB Pin
VSUB
VES
GND GND
Temperature Sensor
Please contact an ON Semiconductor Field Application
Engineer for information regarding the operation of the
temperature sensing diode.
To operate the Temperature Sensor:
Source a negative current of 10 mA (Id) at the
TCATHODE pin against the TANODE pin.
Measure voltage (Vd) at TCATHODE.
Compare Vd to a linear curve, or a look−up table to
calculate the temperature.
Figure 21. Temperature Sensor Connections
GND
VDC
IdId R1 V1
TCathodePin
Id Vd
Temp
Diode
TAnodePin
Inside Sensor
External Circuit
KAI−47051
www.onsemi.com
21
TIMING
Table 16. REQUIREMENTS AND CHARACTERISTICS
Description Symbol Min. Nom. Max. Units Notes
Photodiode Transfer tPD 4 ms
VCCD Leading Pedestal t3P 16 ms
VCCD Trailing Pedestal t3D 16 ms
VCCD Transfer Delay tD4 ms
VCCD Transfer tV16 ms
VCCD Clock Cross-Over VVCR 75 100 % 1
VCCD Rise, Fall Times tVR, tVF 5 10 %1, 2
FDG Delay tFDG 2 ms
HCCD Delay tHS 1 ms
HCCD Transfer te25 ns
Shutter Transfer tSUB 1 ms
Shutter Delay tHD 1 ms
Reset Pulse tR2.5 ns
Reset − Video Delay tRV 2.2 ns
H2L − Video Delay tHV 3.1 ns
Line Time tLINE 53.7 ms
Frame Time tFRAME 144.7 ms 16 outputs
289.4 8 outputs
1. Refer to Figure 31: VCCD Clock Rise Time, Fall Time and Edge Alignment
2. Relative to the VCCD Transfer pulse width, tV.
KAI−47051
www.onsemi.com
22
Timing Flow Charts
In the timing flow charts the number of HCCD clock cycles per row, NH, and the number of VCCD clock cycles per frame,
NV, are shown in the following table.
Table 17. VALUES FOR NH AND NV WHEN OPERATING THE SENSOR IN VARIOUS MODES OF RESOLUTION
Full Resolution
NV NH
16 Outputs 2696 1116
8 Outputs 5392 1116
1. The time to read out one line tLINE = Line Timing + NH / (Pixel Frequency).
2. The time to read out one frame tFRAME = NV tLINE + Frame Timing.
3. Line Timing: See Table 19: Line T iming.
4. Frame Timing: See Table 18: Frame T iming.
No Electronic Shutter
In this case the photodiode exposure time is equal to the time to read out an image.
Figure 22. Timing Flow when Electronic Shutter is Not Used
Frame Timing
(see Table 18)
Line Timing
(see Table 19)
Pixel Timing
(see Table 20)
Repeat NH
Times
Repeat NV
Times
KAI−47051
www.onsemi.com
23
Using the Electronic Shutter
The exposure time begins on the falling edge of the
electronic shutter pulse on the SUB pin. The exposure time
ends on the falling edge of the photodiode transfer (Tpd) of
the V1T and V1B pins. The electronic shutter timing is
shown in Figure 28.
Figure 23. Timing Flow Chart using the Electronic Shutter for Exposure Control
Frame Timing
(see Table 18)
Line Timing
(see Table 19)
Pixel Timing
(see Table 20)
Repeat NH
Times
Repeat NV−NEXP
Times
Electronic
Shutter Timing
Line Timing
(see Table 19)
Pixel Timing
(see Table 20)
Repeat NH
Times
Repeat NEXP
Times
KAI−47051
www.onsemi.com
24
Timing Tables
Frame Timing
This timing table is for transferring char ge from the photodiodes to the VCCD. See Figure 24 and Figure 25 for frame timing
diagrams.
Table 18. FRAME TIMING
Device Pin
Full Resolution
16 Outputs 8 Outputs
V1T F1T F1B
V2T F2T F4B
V3T F3T F3B
V4T F4T F2B
V1B F1B
V2B F2B
V3B F3B
V4B F4B
FDGB, FDGT FDG_L
H1a to h P1 P1
H2a to h P2 P2
H2La to h P2 P2
Ra to h R R
H1i to p P1 P1 or see Note 1
H2i to p P2 P2 or see Note 1
H2Li to p P2 P2 or see Note 1
Ri to p RR or see Note 1
1. These clocks may all be held at their high level voltages or +5.0 V
KAI−47051
www.onsemi.com
25
Line Timing
This timing is for transferring one line of charge from the VCCD to the HCCD. See Figure 26 and Figure 27 for line timing
diagrams.
Table 19. LINE TIMING
Device Pin
Full Resolution
16 Outputs 8 Outputs
V1T L1T L1B
V2T L2T L4B
V3T L3T L3B
V4T L4T L2B
V1B L1B
V2B L2B
V3B L3B
V4B L4B
FDGB, FDGT FDG_L
H1a to h P1L P1L
H2a to h P2L P2L
H2La to h P2L P2L
Ra to h R R
H1i to p P1L P1 or see Note 1
H2i to p P2L P2 or see Note 1
H2Li to p P2L P2 or see Note 1
Ri to p RR or see Note 1
1. These clocks may all be held at their high level voltages or +5.0 V
KAI−47051
www.onsemi.com
26
Pixel Timing
This timing is for transferring one pixel from the HCCD to the output amplifier.
Table 20. PIXEL TIMING
Device Pin
Full Resolution
16 Outputs 8 Outputs
V1T V1_L V1_L
V2T V2_L V2_L
V3T V3_H V3_H
V4T V4_H V4_H
V1B V1_L
V2B V2_H
V3B V3_H
V4B V4_L
FDGB, FDGT FDG_L
H1a to h P1 P1
H2a to h P2 P2
H2La to h P2 P2
Ra to h R R
H1i to p P1 P1 or see Note 1
H2i to p P2 P2 or see Note 1
H2Li to p P2 P2 or see Note 1
Ri to p RR or see Note 1
1. These clocks may all be held at their high level voltages or +5.0 V
KAI−47051
www.onsemi.com
27
Timing Diagrams
The charge in the photodiodes its transfer to the VCCD on
the rising edge of the +13 V pulse and is completed by the
falling edge of the V1_H pulse on F1T and F1B. During the
time period when F1T and F1B are at V1_H (Tpd)
anti−blooming protection is disabled. The photodiode
integration time ends on the falling edge of the Tpd pulse.
Frame Timing− 16 Output Mode
Figure 24. Frame Timing Diagram 16 Output Mode
F1T
Pattern
F2T
F3T
F4T
F1B
F2B
F3B
F4B
V1_H
V1_M
V1_L
V1_H
V1_M
V1_L
V2_H
V2_L
V3_H
V3_L
V2_H
V2_L
V3_H
V3_L
V4_H
V4_L
V4_H
V4_L
Line
Timing
Pixel Timing
V1B
V2B
V3B
V4B
V1T
Device
Pin
V2T
V3T
V4T
Frame T iming
Frame T iming
T3p Tpd
Tv
2T3d Tv
2Td
T3p Tpd
Tv
2T3d Tv
2Td
See the Pin Assignment table for pin assignments.
KAI−47051
www.onsemi.com
28
Frame Timing− 8 Output Mode
Figure 25. Frame Timing Diagram 8 Output Mode
F1B
Pattern
F4B
F3B
F2B
F1B
F2B
F3B
F4B
V1_H
V1_M
V1_L
V1_H
V1_M
V1_L
V2_H
V2_L
V3_H
V3_L
V2_H
V2_L
V3_H
V3_L
V4_H
V4_L
V4_H
V4_L
Line
Timing
Pixel Timing
V1B
V2B
V3B
V4B
V1T
Device
Pin
V2T
V3T
V4T
Frame T iming
Frame T iming
T3p Tpd
Tv
2T3d Tv
2Td
T3p Tpd
Tv
2T3d Tv
2Td
See the Pin Assignment table for pin assignments.
KAI−47051
www.onsemi.com
29
Line Timing − Full Resolution − 16 Output Mode
Figure 26. Line Timing Diagram − Full Resolution − 16 Output Mode
See the Pin Assignment table for pin assignments.
L1T
Pattern
L2T
L3T
L4T
L1B
L2B
L3B
L4B
V1_M
V1_L
V1_M
V1_L
V2_H
V2_L
V3_H
V3_L
V2_H
V2_L
V3_H
V3_L
V4_H
H4_L
V4_H
V4_L
P1L H1_H
H1_L
H2_H
H2_L
Line T iming
Te
2
P2L
Device
Pin
Pixel
Timing
V1B
V2B
V3B
V4B
V1T
V2T
V3T
V4T
Horizontal
Clocks
Frame or Pixel
Timing
Ths
Tv
2Tv
2Tv
2
Tv
2Tv
2Tv
2
KAI−47051
www.onsemi.com
30
Line Timing − Full Resolution − 8 Output Mode
Figure 27. Line Timing Diagram − Full Resolution − 8 Output Mode
See the Pin Assignment table for pin assignments.
L1B
Pattern
L4B
L3B
L2B
L1B
L2B
L3B
L4B
V1_M
V1_L
V1_M
V1_L
V2_H
V2_L
V3_H
V3_L
V2_H
V2_L
V3_H
V3_L
V4_H
H4_L
V4_H
V4_L
P1L H1_H
H1_L
H2_H
H2_L
Line T iming
Te
2
P2L
Device
Pin
Pixel
Timing
V1B
V2B
V3B
V4B
V1T
V2T
V3T
V4T
Horizontal
Clocks
Frame or Pixel
Timing
Ths
Tv
2Tv
2Tv
2
Tv
2Tv
2Tv
2
KAI−47051
www.onsemi.com
31
Electronic Shutter Timing Diagrams
The electronic shutter pulse can be inserted at the end of
any line of the HCCD timing. The HCCD should be empty
when the electronic shutter is pulsed. A recommended
position for the electronic shutter is just after the last pixel
is read out of a line. The VCCD clocks should not resume
until at least Thd after the electronic shutter pulse has
finished. The HCCD clocks can be run during the electronic
shutter pulse as long as the HCCD does not contain valid
image data.
For short exposures less than one line time, the electronic
shutter pulse can appear inside the frame timing. Any
electronic shutter pulse transition should be Thd away from
any VCCD clock transition.
Figure 28. Electronic Shutter Timing
SUB
VAB
VES
V_M
V_L
VCCD clock
TsubThd Thd
Figure 29. Frame/Electronic Shutter Timing
V1T/V1B
SUB
Tint
Tframe
KAI−47051
www.onsemi.com
32
Pixel Timing − Full Resolution − All Output Modes
Figure 30. Pixel Timing Diagram − Full Resolution
Pattern
Device
Pin
Te
Tr
R
P1
P2
Video
H2_H
H2_L
H1_H
H1_L
R_H
R_L
Horizontal
Clocks
VOUTa
Ra
VCCD Clock Edge Alignment
Figure 31. VCCD Clock Rise Time, Fall Time and Edge Alignment
VVCR
90%
10%
tVR tVF
tVR
tVF
tV
KAI−47051
www.onsemi.com
33
Fast Line Dump Timing
The FDG pins may be optionally clocked to efficiently
remove unwanted lines in the image resulting for increased
frame rates at the expense of resolution. Below is an example
of a 2 line dump sequence followed by a normal readout line.
Note that the FDG timing transitions should complete prior
to the beginning of vertical timing transitions as illustrated
below.
Figure 32. Fast Line Dump Timing Diagram
L1T
Pattern
L2T
L3T
L4T
L1B
L2B
L3B
L4B
Te
2
Device
Pin
V1B
V2B
V3B
V4B
V1T
V2T
V3T
V4T
Frame or Pixel
Timing
ThsTfdgTfdg
Pixel
Timing
Tv
2Tv
2Tv
2Tv
2Tv
2Tv
2Tv
2Tv
2Tv
2Tv
2Tv
2
FDGT FDG
FDGB FDG
V1_M
V1_L
FDG_H
FDG_L
V2_H
V2_L
V3_H
V3_L
V2_H
V2_L
V3_H
V3_L
V4_H
V4_L
V4_H
V4_L
V1_M
V1_L
FDG_H
FDG_L
Line T iming
KAI−47051
www.onsemi.com
34
STORAGE AND HANDLING
Table 21. STORAGE CONDITIONS
Description Symbol Minimum Maximum Units Notes
Storage Temperature TST −55 80 °C 1
Humidity RH 5 90 % 2
1. Long-term storage toward the maximum temperature will accelerate color filter degradation.
2. T = 25°C. Excessive humidity will degrade MTTF.
For information on ESD and cover glass care and
cleanliness, please download the Image Sensor Handling
and Best Practices Application Note (AN52561/D) from
www.onsemi.com.
For information on environmental exposure, please
download the Using Interline CCD Image Sensors in High
Intensity Lighting Conditions Application Note
(AND9183/D) from www.onsemi.com.
For information on soldering recommendations, please
download the Soldering and Mounting Techniques
Reference Manual (SOLDERRM/D) from
www.onsemi.com.
For quality and reliability information, please download
the Quality & Reliability Handbook (HBD851/D) from
www.onsemi.com.
For information on device numbering and ordering codes,
please download the Device Nomenclature technical note
(TND310/D) from www.onsemi.com.
For information on Standard terms and Conditions of
Sale, please download Terms and Conditions from
www.onsemi.com.
KAI−47051
www.onsemi.com
35
MECHANICAL INFORMATION
Completed Assembly
Figure 33. Completed Assembly (1 of 2)
1. See Ordering Information for marking code.
2. Pin to pin distances are measured at pin base.
3. Pins are not centered about the vertical axis.
4. Units: mm
Notes:
KAI−47051
www.onsemi.com
36
Figure 34. Completed Assembly (2 of 2)
1. Units: mm
Notes:
DETAIL OF SLOTTED HOLE DETAIL OF HOLE
KAI−47051
www.onsemi.com
37
Cover Glass
Figure 35. Cover Glass with AR Coatings
Notes:
1. Substrate = Schott D263T eco
2. Dust, Scratch, Inclusion Specification:
a.) 20 microns maximum size in Zone A
3. MAR coated both sides
4. Spectral Transmission
a.) 350 − 365 nm: T 88%
b.) 365 − 405 nm: T 94%
c.) 405 − 450 nm: T 98%
d.) 450 − 650 nm: T 99%
e.) 650 − 690 nm: T 98%
f.) 690 − 770 nm: T 94%
g.) 770 − 870 nm: T 88%
5. Units: mm
KAI−47051
www.onsemi.com
38
Figure 36. Cover Glass without AR Coatings
Notes:
1. Substrate = Schott D263T eco
2. Dust, Scratch, Inclusion Specification (applies only if glass is sealed to the package):
a.) 10 mm max (A-ZONE)
b.) 20 mm max (B-ZONE)
3. Units: mm
4. Glass may or may not have epoxy
KAI−47051
www.onsemi.com
39
Cover Glass Transmission
Figure 37. Cover Glass Transmission
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage
may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer
is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of
any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices
intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was
negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright
laws and is not for resale in any manner.
P
UBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
KAI−47051/D
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loc
al
Sales Representative