KAI-47051 8856 (H) x 5280 (V) Interline CCD Image Sensor Description The KAI-47051 Image Sensor is a 47-megapixel CCD designed for the most demanding inspection and surveillance applications. Based on an advanced 5.5-micron Interline Transfer CCD Platform, the sensor features broad dynamic range and excellent imaging performance and uniformity. Full resolution readout of up to 7 frames per second is enabled through a multi-tap output architecture, and a vertical overflow drain structure suppresses image blooming and enables electronic shuttering for precise exposure control. The sensor is electrically similar to other devices in the 5.5-micron Interline Transfer CCD Platform, allowing cameras designed for that platform to be leveraged in support of this high-resolution device. www.onsemi.com Table 1. GENERAL SPECIFICATIONS Parameter Typical Value Figure 1. KAI-47051 Image Sensor Architecture Interline CCD, Progressive Scan Total Number of Pixels 8880 (H) x 5392 (V) Number of Effective Pixels 8880 (H) x 5304 (V) Number of Active Pixels 8856 (H) x 5280 (V) Pixel Size 5.5 mm (H) x 5.5 mm (V) Active Image Size 48.7 mm (H) x 29.0 mm (V) 56.7 mm (diagonal) Aspect Ratio 5:3 Number of Outputs 8 or 16 Charge Capacity 20,000 electrons Output Sensitivity 38 mV/e- Quantum Efficiency Pan (-AXA, -QXA) R, G, B (-FXA, -QXA) 43% 28%, 35%, 38% Features * Bayer Color Pattern, Sparse Color Filter * * * * * * Pattern, and Monochrome Configurations Progressive Scan Readout Flexible Readout Architecture High Frame Rate High Sensitivity Low Noise Architecture Excellent Smear Performance Applications e- Read Noise (f = 40 MHz) 10 Dark Current Photodiode / VCCD 7 / 140 e-/s Dark Current Doubling Temp Photodiode / VCCD 7C / 9C Dynamic Range 66 dB Charge Transfer Efficiency 0.999999 Blooming Suppression > 300 X Smear -100 dB Image Lag < 10 electrons Maximum Pixel Clock Speed 40 MHz Maximum Frame Rate 8 Outputs / 16 Outputs 3.5 fps / 7.0 fps Package Options 201 Pin PGA Cover Glass AR Coated, 2-Sides * Industrial Imaging and Inspection * Aerial Surveillance * Security rms ORDERING INFORMATION See detailed ordering and shipping information on page 2 of this data sheet. NOTE: All Parameters are specified at T = 40C unless otherwise noted. (c) Semiconductor Components Industries, LLC, 2015 January, 2018 - Rev. 1 1 Publication Order Number: KAI-47051/D KAI-47051 ORDERING INFORMATION Table 2. ORDERING INFORMATION Part Number Description KAI-47051-AXA-JD-B1 Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Grade 1 KAI-47051-AXA-JD-B2 Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Grade 2 KAI-47051-AXA-JD-AE Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Engineering Grade KAI-47051-AXA-JP-B1 Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass with No Coatings, Grade 1 KAI-47051-AXA-JP-B2 Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass with No Coatings, Grade 2 KAI-47051-AXA-JP-AE Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass with No Coatings, Engineering Grade KAI-47051-FXA-JD-B1 Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Grade 1 KAI-47051-FXA-JD-B2 Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Grade 2 KAI-47051-FXA-JD-AE Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Engineering Grade KAI-47051-QXA-JD-B1 Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Grade 1 KAI-47051-QXA-JD-B2 Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Grade 2 KAI-47051-QXA-JD-AE Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Engineering Grade Marking Code KAI-47051-AXA Serial Number KAI-47051-AXA Serial Number KAI-47051-FXA Serial Number KAI-47051-QXA Serial Number See the ON Semiconductor Device Nomenclature document (TND310/D) for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.onsemi.com. www.onsemi.com 2 KAI-47051 DEVICE DESCRIPTION 6 6 6 6 VOUTp VOUTo VOUTn VOUTm VOUTl VOUTj VOUTi 6 FDGT FDDT VOUTk Architecture 6 6 6 1110 1110 1110 1110 1110 1110 1110 1110 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows FDGT FDDT 12 Buffer Rows V4B V3B V2B V1B V4B V3B V2B V1B 12 Buffer Columns GND ESD SUB 12 Buffer Columns GND ESD SUB 8856H x 5280V 5.5 mm x 5.5 mm Pixels SUB ESD GND T_ANODE T_CATHODE SUB ESD GND V1B V2B V3B V4B V1B V2B V3B V4B 12 Buffer Rows FDDB FDGB 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 1110 1110 1110 1110 1110 1110 1110 6 6 VOUTa VOUTb VOUTc VOUTd VOUTe 6 6 6 VOUTh 6 VOUTg 6 VOUTf 6 FDDB FDGB Figure 2. Block Diagram Dark Pixels 1110 There are 44 dark rows at the top and 44 dark rows at the bottom of the image sensor. The dark rows are not entirely dark and so should not be used for a dark reference level. 6 Dummy Pixels HLODa H2a Ra VOUTa RDa Within each horizontal shift register there are 6 leading additional shift phases. These pixels are designated as dummy pixels and should not be used to determine a dark reference level. Active Buffer Pixels H1a HLASTa VDDa GND OGa On the perimeter of the sensor there are 12 unshielded rows and columns that are classified as active buffer pixels. These pixels are light sensitive but are not tested for defects and non-uniformities. a denotes a to p Figure 3. HCCD and Output Detail www.onsemi.com 3 KAI-47051 Image Acquisition wavelength. When the photodiodes charge capacity is reached, excess electrons are discharged into the substrate to prevent blooming. An electronic representation of an image is formed when incident photons falling on the sensor plane create electron-hole pairs within the individual silicon photodiodes. These photoelectrons are collected locally by the formation of potential wells at each photo-site. Below photodiode saturation, the number of photoelectrons collected at each pixel is linearly dependent upon light level and exposure time and non-linearly dependent on ESD Protection Adherence to the power-up and power-down sequence is critical. Failure to follow the proper power-up and power-down sequences may cause damage to the sensor. See Power-Up and Power-Down Sequence section. 6 6 6 6 VOUTp VOUTo VOUTn VOUTm VOUTl VOUTj VOUTi 6 FDGT FDDT VOUTk Bayer Color Filter Pattern 6 6 6 1110 1110 1110 1110 1110 1110 1110 1110 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows FDGT FDDT 12 Buffer Rows V4B V3B V2B V1B BG G R V4B V3B V2B V1B BG G R 12 Buffer Columns GND ESD SUB 12 Buffer Columns GND ESD SUB 8856H x 5280V 5.5 mm x 5.5 mm Pixels SUB ESD GND T_ANODE T_CATHODE SUB ESD GND V1B V2B V3B V4B BG G R BG G R V1B V2B V3B V4B 12 Buffer Rows FDDB FDGB 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 1110 1110 1110 1110 1110 1110 1110 VOUTc 6 6 6 VOUTh VOUTb 6 VOUTg VOUTa 6 VOUTf 6 VOUTe 6 VOUTd 6 Figure 4. Bayer Color Filter Pattern www.onsemi.com 4 FDDB FDGB KAI-47051 6 6 6 6 VOUTp VOUTo VOUTn VOUTm VOUTl VOUTj VOUTi 6 FDGT FDDT VOUTk Sparse Color Filter Pattern 6 6 6 1110 1110 1110 1110 1110 1110 1110 1110 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows FDGT FDDT 12 Buffer Rows G P B P V4B V3B V2B V1B P G P B R P G P P R P G G P B P P G P B R P G P P P R P G V4B V3B V2B V1B 12 Buffer Columns GND ESD SUB 12 Buffer Columns GND ESD SUB 8856H x 5280V 5.5 mm x 5.5 mm Pixels SUB ESD GND T_ANODE T_CATHODE SUB ESD GND V1B V2B V3B V4B G P B P P G P B R P G P P R P G G P B P P G P B R P G P P R P G V1B V2B V3B V4B 12 Buffer Rows FDDB FDGB 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 1110 1110 1110 1110 1110 1110 1110 VOUTc 6 6 VOUTh VOUTb 6 VOUTg VOUTa 6 VOUTf 6 6 VOUTe 6 VOUTd 6 Figure 5. Sparse Color Filter Pattern www.onsemi.com 5 FDDB FDGB KAI-47051 Physical Description 105 107 103 102 104 195 196 106 197 198 108 199 200 201 Pin Description and Device Orientation 101 96 100 98 8 7 99 6 5 97 4 3 95 2 1 Pixel (1,1) Figure 7. Package Pin Designations - Bottom View www.onsemi.com 6 99 101 97 102 95 96 104 98 106 105 100 108 107 103 7 8 196 195 5 1 2 3 198 6 200 197 201 199 4 Figure 6. Package Pin Designations - Top View KAI-47051 Table 3. PACKAGE PIN DESCRIPTION Pin Name Pin Name Pin 81 Name VOUTh Pin Name Pin 121 VOUTp 161 Name 1 N/C 41 VOUTd 2 SUB 42 VDDd 82 VDDh 122 VDDp 162 VDDl 3 ESD 43 RDd 83 RDh 123 HLODo 163 HLODk 4 GND 44 GND 84 GND 124 H1o 164 H1k 5 V3B 45 OGd 85 OGh 125 H2Lo 165 H2Lk 6 V4B 46 Rd 86 Rh 126 H2o 166 H2k 7 V1B 47 H2Ld 87 H2Lh 127 OGo 167 OGk 8 FDDB 48 H2d 88 H2h 128 Ro 168 Rk 9 V2B 49 HLODd 89 HLODh 129 RDo 169 RDk 10 FDGB 50 H1d 90 H1h 130 GND 170 GND 11 VOUTa 51 VOUTe 91 V1B 131 VOUTo 171 VOUTk 12 VDDa 52 VDDe 92 V2B 132 VDDo 172 VDDk 13 RDa 53 RDe 93 SUB 133 HLODn 173 HLODj 14 GND 54 GND 94 FDGB 134 H1n 174 H1j 15 OGa 55 OGe 95 V3B 135 H2Ln 175 H2Lj 16 Ra 56 Re 96 FDDB 136 H2n 176 H2j 17 H2La 57 H2Le 97 GND 137 OGn 177 OGj 18 H2a 58 H2e 98 V4B 138 Rn 178 Rj 19 HLODa 59 HLODe 99 TANODE 139 RDn 179 RDj 20 H1a 60 H1e 100 ESD 140 GND 180 GND 21 VOUTb 61 VOUTf 101 TCATHODE 141 VOUTn 181 VOUTj 22 VDDb 62 VDDf 102 n/c 142 VDDn 182 VDDj 23 RDb 63 RDf 103 n/c 143 HLODm 183 HLODi 24 GND 64 GND 104 ESD 144 H1m 184 H1i 25 OGb 65 OGf 105 GND 145 H2Lm 185 H2Li 26 Rb 66 Rf 106 V4T 146 H2m 186 H2i 27 H2Lb 67 H2Lf 107 V3T 147 OGm 187 OGi 28 H2b 68 H2f 108 FDDT 148 Rm 188 Ri 29 HLODb 69 HLODf 109 SUB 149 RDm 189 RDi 30 H1b 70 H1f 110 FDGT 150 GND 190 GND 31 VOUTc 71 VOUTg 111 V1T 151 VOUTm 191 VOUTi 32 VDDc 72 VDDg 112 V2T 152 VDDm 192 VDDi 33 RDc 73 RDg 113 HLODp 153 HLODl 193 V2T 34 GND 74 GND 114 H1p 154 H1l 194 FDGT 35 OGc 75 OGg 115 H2Lp 155 H2Ll 195 V1T 36 Rc 76 Rg 116 H2p 156 H2l 196 FDDT 37 H2Lc 77 H2Lg 117 OGp 157 OGl 197 V3T 38 H2c 78 H2g 118 Rp 158 Rl 198 V4T 39 HLODc 79 HLODg 119 RDp 159 RDl 199 ESD 40 H1c 80 H1g 120 GND 160 GND 200 GND 201 SUB www.onsemi.com 7 VOUTl KAI-47051 Table 4. PIN NAME DESCRIPTIONS Pin Name(s) Description V1B, V1T Vertical CCD Clock, Phase 1, Bottom (B) or Top (T) V2B, V2T Vertical CCD Clock, Phase 2, Bottom (B) or Top (T) V3B, V3T Vertical CCD Clock, Phase 3, Bottom (B) or Top (T) V4B, V4T Vertical CCD Clock, Phase 4, Bottom (B) or Top (T) FDDB, FDDT Fast Line Dump Drain, Bottom (B) or Top (T) FDGB, FDGT Fast Line Dump Gate, Bottom (B) or Top (T) SUB Substrate GND Ground ESD ESD Protection Disable TANODE Temperature Diode Anode TCATHODE Temperature Diode Cathode N/C No connect VOUTa Video Output a to p Ra Reset Gate a to p RDa Reset Drain a to p OGa Output Gate a to p VDDa Output Amplifier Supply a to p H1a Horizontal CCD Clock, Phase 1, a to p H2a Horizontal CCD Clock, Phase 2, a to p H2La Horizontal CCD Clock, Phase 2, Last Phase, a to p HLODa Horizontal CCD Overflow Drain, a to p www.onsemi.com 8 KAI-47051 IMAGING PERFORMANCE Table 5. TYPICAL OPERATION CONDITIONS Unless otherwise noted, the Imaging Performance Specifications are measured using the following conditions. Condition Notes Light Source Continuous red, green and blue LED illumination For monochrome sensor, only green LED used. Operation Nominal operating voltages and timing Description Table 6. PERFORMANCE PARAMETERS (Performance parameters are by design) Description Symbol Nom. Units Notes NL 2 % 2 Maximum Photo-response Nonlinearity Horizontal CCD Charge Capacity HNe 55 ke- Vertical CCD Charge Capacity VNe 40 ke- Photodiode Charge Capacity PNe 20 ke- Lag < 10 e- Anti-blooming Factor Xab > 300X Vertical Smear Smr -100 dB 10 e-rms 4 4, 5 Image Lag Read Noise ne-T Dynamic Range DR 66 dB Output Amplifier DC Offset Vodc 9.4 V Output Amplifier Bandwidth f-3db 250 MHz Output Amplifier Impedance ROUT 127 W Output Amplifier Sensitivity DV/DN 38 mV/e- Peak Quantum Efficiency (KAI-47051-ABA and KAI-47051-QBA Configurations) QEmax 43 % QEmax 37 35 29 % Peak Quantum Efficiency (KAI-47051-FBA and KAI-47051-QBA Configurations) Blue Green Red 3 6 Table 7. PERFORMANCE SPECIFICATIONS Description Dark Field Global Non-Uniformity Symbol Min. Nom. Max. Units Temperature Tested At (5C) DSNU - - 5 mVpp 27, 40 Bright Field Global Non-Uniformity Notes - - 5 %rms 27, 40 1 Bright Field Global Peak to Peak Non-Uniformity PRNU - - 30 %pp 27, 40 1 Horizontal CCD Charge Transfer Efficiency HCTE 0.999995 0.999999 - Vertical CCD Charge Transfer Efficiency VCTE 0.999995 0.999999 - Photodiode Dark Current Ipd - 7 70 e/p/s 40 Vertical CCD Dark Current Ivd - 100 300 e/p/s 40 1. Per color 2. Value is over the range of 10% to 90% of photodiode saturation. 3. The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such that the photodiode charge capacity is 680 mV. 4. At 40 MHz 5. Uses 20LOG (PNe/ ne-T) 6. Assumes 5 pF load. www.onsemi.com 9 KAI-47051 TYPICAL PERFORMANCE CURVES Quantum Efficiency Monochrome with Microlens 0.50 Measured with AR coated cover glass 0.45 Absolute Quantum Efficiency 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 300 350 400 450 500 550 600 650 700 750 800 850 900 Wavelength (nm) Monochrome - Microlens Figure 8. Monochrome with Microlens Quantum Efficiency www.onsemi.com 10 950 1000 1050 1100 KAI-47051 Color (Bayer RGB) with Microlens 0.50 Measured with AR coated cover glass 0.45 0.40 Absolute Quantum Efficiency 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 Wavelength (nm) Red Green Blue Figure 9. Color (Bayer) with Microlens Quantum Efficiency Color (Sparse CFA) with Microlens 0.50 Measured with AR coated cover glass 0.45 0.40 Absolute Quantum Efficiency 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 Wavelength (nm) Red Green Blue Pan Figure 10. Color (Sparse CFA) with Microlens Quantum Efficiency www.onsemi.com 11 1050 1100 KAI-47051 Angular Quantum Efficiency For the curves marked "Horizontal", the incident light angle is varied in a plane parallel to the HCCD. For the curves marked "Vertical", the incident light angle is varied in a plane parallel to the VCCD. Monochrome with Microlens 100 Relative Quantum Efficiency (%) 90 Vertical 80 70 60 50 Horizontal 40 30 20 10 0 -40 -30 -20 -10 0 10 20 30 40 Angle (degrees) Figure 11. Monochrome with Microlens Angular Quantum Efficiency Dark Current vs. Temperature T (C) 70 65 60 55 2.90 2.95 3.00 3.05 50 45 40 35 30 3.10 3.15 3.20 3.25 3.30 Dark Current (e/s/pixel) 1000 100 10 1 0.1 1000/T (K) Photodiode VCCD Figure 12. Dark Current vs. Temperature www.onsemi.com 12 KAI-47051 Power-Estimated 4.5 4.0 3.5 Power (W) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 5 10 15 20 25 30 35 40 30 35 40 HCCD Frequency (MHz) 8 Outputs 16 Outputs Figure 13. Power Frame Rates 8 7 Frame Rate (fps) 6 5 4 3 2 1 0 0 5 10 15 20 25 HCCD Frequency (MHz) 8 Outputs 16 Outputs Figure 14. Frame Rates www.onsemi.com 13 KAI-47051 DEFECT DEFINITIONS Table 8. OPERATING CONDITIONS Description Condition Notes Light Source Continuous Red, Green and/or Blue LED Illumination Operation Nominal Operating Voltages and Timing For monochrome sensor, only the green LED is used. Table 9. OPERATING PARAMETERS Description 8 Outputs 16 Outputs 20 MHz 20 MHz Pixels Per Line 1146 1146 Lines Per Frame 5392 2696 HCCD Clock Frequency Line Time Frame Time 82.3 ms 82.3 ms 443.9 ms 222.0 ms Table 10. TIMING MODES Timing Modes Conditions Mode A 8 Output, no electronic shutter used. Photodiode integration time is equal to Frame Time. Mode B 16 Output, no electronic shutter used. Photodiode integration time is equal to Frame Time. Table 11. DEFECT DEFINITIONS Definition Grade 1 Grade 2 (Mono) Grade 2 (Color) Column Defect A group of more than 10 contiguous pixels along a single column that deviate from the neighboring columns by: * more than 29 mV in the dark field using Timing Mode A at 40C * more than 29 mV in the dark field using Timing Mode A at 27C * more than -12% or +16% in the bright field using Timing Mode B at 27C or 40C 0 7 27 Cluster Defect A group of 2 to N contiguous defective pixels, but no more than W adjacent defects horizontally, that deviate from the neighboring pixels by: * more than 169 mV in the dark field using Timing Mode A at 40C * more than 67 mV in the dark field using Timing Mode A at 27C * more than -12% or +16% in the bright field using Timing Mode B at 40C or 27C 20 W=4 N = 19 50 W=5 N = 38 50 W=5 N = 38 Major Point Defect A single defective pixel that deviates from the neighboring pixels by: * more than 169 mV in the dark field using Timing Mode A at 40C * more than 67 mV in the dark field using Timing Mode A at 27C * more than -12% or +16% in the bright field using Timing Mode B at 27C or 40C 440 880 880 Minor Point Defect A single defective pixel that deviates from the neighboring pixels by: * more than 84 mV in the dark field using Timing Mode A at 40C 4400 8800 8800 Description 1. Bright field is define as where the average signal level of the sensor is 532 mV, with the substrate voltage set to the recommend VAB setting such that the capacity of the photodiodes is 760 mV (20,000 electrons) 2. For the color device (KAI-47051-FBA or KAI-47051-QBA), a bright field defective pixel is with respect to pixels of the same color. 3. Column and cluster defects are separated by no less than two (2) good pixels in any direction (excluding single pixel defects). www.onsemi.com 14 KAI-47051 Defect Map 6 6 6 6 6 6 VOUTp VOUTo VOUTn VOUTl VOUTm defects are not included in the defect map. All defective pixels are reference to pixel 1, 1 in the defect maps. VOUTk VOUTj VOUTi The defect map supplied with each sensor is based upon testing at an ambient (27C) temperature. Minor point 6 6 1110 1110 1110 1110 1110 1110 1110 1110 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 columns 44 dark rows 12 Buffer Columns Pixel 13, 13 12 Buffer Columns 12 Buffer Rows 8856H x 5280V Active Pixels Pixel 1, 1 12 Buffer Rows 1110 columns 44 dark rows 1110 columns 44 dark rows 1110 1110 columns 44 dark rows 1110 1110 1110 1110 1110 1110 6 6 6 VOUTf VOUTg VOUTh VOUTb 6 Figure 15. Pixel 1, 1 Location www.onsemi.com 15 1110 6 VOUTe VOUTa 6 1110 columns 44 dark rows VOUTd 6 VOUTc 6 1110 columns 44 dark rows KAI-47051 OPERATION Table 12. ABSOLUTE MAXIMUM RATINGS Description Symbol Minimum Maximum Units Notes TOP -50 70 C 1 Humidity RH 5 90 % 2 Output Bias Current IOUT - 240 mA 3 CL - 10 pF Operating Temperature Off-Chip Load Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Noise performance will degrade at higher temperatures. 2. T = 25C. Excessive humidity will degrade MTTF. 3. Total for all outputs. Maximum current is -15 mA for each output. Avoid shorting output pins to ground or any low impedance source during operation. Amplifier bandwidth increases at higher current and lower load capacitance at the expense of reduced gain (sensitivity). Table 13. ABSOLUTE MAXIMUM VOLTAGE RATINGS BETWEEN PINS AND GROUND Description VDDa, VOUTa Minimum Maximum Units Notes -0.4 17.5 V 1 1 -0.4 15.5 V V1B, V1T ESD - 0.4 ESD + 24.0 V V2B, V2T, V3B, V3T, V4B, V4T ESD - 0.4 ESD + 14.0 V FDGB, FDGT ESD - 0.4 ESD + 15.0 V H1a, H2a, H2La ESD - 0.4 ESD + 14.0 V ESD -10.0 0.0 V SUB -0.4 40.0 V RDa, FDDa, HLODa 1. a refers to a to p. 2. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions www.onsemi.com 16 1 KAI-47051 Power-Up and Power-Down Sequence Adherence to the power-up and power-down sequence is critical. Failure to follow the proper power-up and power-down sequences may cause damage to the sensor. Do Not Pulse the Electronic Shutter until ESD is Stable V+ VDD SUB Time ESD V- VCCD Low HCCD Low Activate All Other Biases when ESD is Stable and Sub is above 3 V Notes: 1. Activate all other biases when ESD is stable and SUB is above 3 V. 2. Do not pulse the electronic shutter until ESD is stable. 3. VDD cannot be +15 V when SUB is 0 V. 4. The image sensor can be protected from an accidental improper ESD voltage by current limiting the SUB current to less than 10 mA. SUB and VDD must always be greater than GND. ESD must always be less than GND. Placing diodes between SUB, VDD, ESD and ground will protect the sensor from accidental overshoots of SUB, VDD and ESD during power on and power off. See the figure below. Figure 16. Power-Up and Power-Down Sequence The VCCD clock waveform must not have a negative overshoot more than 0.4 V below the ESD voltage. 0.0 V ESD ESD - 0.4 V All VCCD Clock Absolute Maximum Overshoot of 0.4 V Figure 17. VCCD Clock Waveform Example of external diode protection for SUB, VDD and ESD.a denotes a to p. VDDa SUB GND ESD Figure 18. Example of External Diode Protection www.onsemi.com 17 KAI-47051 DC Bias Operating Conditions Table 14. DC BIAS OPERATING CONDITIONS Pins Symbol Min. Nom. Max. Units Max. DC Current Notes RDa RD 11.8 12.0 12.2 V 10 mA 1 Fast Line Dump Drain FDDB, FDDT FDD 11.8 12.0 12.2 V 10 mA 1 Horizontal Lateral Overflow Drain HLODa HLOD 11.8 12.0 12.2 V 10 mA 1 Description Reset Drain Output Gate OGa OG -2.2 -2.0 -1.8 V 10 mA 1 Output Amplifier Supply VDDa VDD 14.5 15.0 15.5 V 11.0 mA 1, 2 Ground GND GND 0.0 0.0 0.0 V -1.0 mA Substrate SUB VSUB 5.0 VAB VDD V 50 mA 3, 8 ESD Protection Disable ESD ESD -9.5 -9.0 -8.8 V 50 mA 6, 7 VOUTa IOUT -3.0 -5.0 -10.0 mA - 1, 4, 5 Output Bias Current VDDa RDa Ra 1. a denotes a to p. 2. The maximum DC current is for one output. IDD = IOUT + ISS. See Figure 19. 3. The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such that the photodiode charge capacity is the nominal PNe (see Specifications). 4. An output load sink must be applied to each VOUT pin to activate each output amplifier. 5. Nominal value required for 40 MHz operation per output. May be reduced for slower data rates and lower noise. 6. Adherence to the power-up and power-down sequence is critical. See Power Up and Power Down Sequence section. 7. ESD maximum value must be less than or equal to V1_L + 0.4 V, V2_L + 0.4 V, V3_L + 0.4 V, and V2_L + 0.4 V. 8. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions. IDD HCCD Floating Diffusion IOUT OGa VOUTa ISS Source Follower #1 Figure 19. Output Amplifier www.onsemi.com 18 Source Follower #2 Source Follower #3 KAI-47051 AC Operating Conditions Table 15. CLOCK LEVELS Description Pins (Note 1) Symbol Level Min. Nom. Max. Units Vertical CCD Clock, Phase 1 V1B, V1T V1_L Low -8.2 -8.0 -7.8 V 290 nF (Note 6) V1_M Mid -0.2 0.0 0.2 V1_H High 10.8 11.0 11.2 V2_L Low -8.2 -8.0 -7.8 V V2_H High -0.2 0.0 0.2 290 nF (Note 6) V3_L Low -8.2 -8.0 -7.8 V V3_H High -0.2 0.0 0.2 290 nF (Note 6) V4_L Low -8.2 -8.0 -7.8 V V4_H High -0.2 0.0 0.2 290 nF (Note 6) H1_L Low -5.2 (Note 7) -4.0 -3.8 V 1.3 nF (Note 6) H1_A Amplitude 3.8 4.0 5.2 (Note 7) H2_L Low -5.2 (Note 7) -4.0 -3.8 V 1.3 nF (Note 6) H2_A Amplitude 3.8 4.0 5.2 (Note 7) H2L_L Low -5.2 -5.0 -4.8 V H2L_A Amplitude 4.8 5.0 5.2 30 pF (Note 6) R_L (Note 4) Low -3.5 -2.0 -1.8 V 20 pF (Note 6) Vertical CCD Clock, Phase 2 V2B, V2T Vertical CCD Clock, Phase 3 V3B, V3T Vertical CCD Clock, Phase 4 Horizontal CCD Clock, Phase 1 Horizontal CCD Clock, Phase 2 Horizontal CCD Clock, Last Phase (Note 3) Reset Gate Electronic Shutter (Note 5) Fast Line Dump Gate 1. 2. 3. 4. 5. 6. 7. V4B, V4T H1a H2a H2La Ra Capacitance (Note 2) R_H High 2.5 3.0 4.0 SUB VES High 29.0 30.0 40.0 V 20 nF (Note 6) FDGB, FDGT FDG_L Low -8.2 -8.0 -7.8 V FDG_H High 4.5 5.0 5.5 70 pF (Note 6) a denotes a to p. Capacitance is total for all like named pins. As an example, if all 16 H1 pins are tied together the total capacitance will be 1.3 nF. Use separate clock driver for improved speed performance. Reset low should be set to -3 V for signal levels greater than 40,000 electrons. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions. Capacitance values are estimated. If the minimum horizontal clock low level is used (-5.0 V), then the maximum horizontal clock amplitude should be used (5 V amplitude) to create a -5.0 V to 0.0 V clock. www.onsemi.com 19 KAI-47051 The figure below shows the DC bias (VSUB) and AC clock (VES) applied to the SUB pin. Both the DC bias and AC clock are referenced to ground. VES VSUB GND GND Figure 20. DC Bias and AC Clock Applied to the SUB Pin Temperature Sensor * Measure voltage (Vd) at TCATHODE. * Compare Vd to a linear curve, or a look-up table to Please contact an ON Semiconductor Field Application Engineer for information regarding the operation of the temperature sensing diode. To operate the Temperature Sensor: * Source a negative current of 10 mA (Id) at the TCATHODE pin against the TANODE pin. calculate the temperature. GND VDC Id R1 V1 External Circuit TCathodePin Inside Sensor Id Temp Diode Vd TAnodePin Figure 21. Temperature Sensor Connections www.onsemi.com 20 KAI-47051 TIMING Table 16. REQUIREMENTS AND CHARACTERISTICS Description Symbol Min. Nom. Max. Units tPD 4 - - ms VCCD Leading Pedestal t3P 16 - - ms VCCD Trailing Pedestal t3D 16 - - ms VCCD Transfer Delay tD 4 - - ms VCCD Transfer tV 16 - - ms VVCR 75 - 100 % 1 tVR, tVF 5 - 10 % 1, 2 FDG Delay tFDG 2 - - ms HCCD Delay Photodiode Transfer VCCD Clock Cross-Over VCCD Rise, Fall Times tHS 1 - - ms HCCD Transfer te 25 - - ns Shutter Transfer tSUB 1 - - ms Shutter Delay tHD 1 - - ms Reset Pulse tR 2.5 - - ns Reset - Video Delay tRV - 2.2 - ns H2L - Video Delay Line Time Frame Time tHV - 3.1 - ns tLINE 53.7 - - ms tFRAME 144.7 - - ms 289.4 - - 1. Refer to Figure 31: VCCD Clock Rise Time, Fall Time and Edge Alignment 2. Relative to the VCCD Transfer pulse width, tV. www.onsemi.com 21 Notes 16 outputs 8 outputs KAI-47051 Timing Flow Charts In the timing flow charts the number of HCCD clock cycles per row, NH, and the number of VCCD clock cycles per frame, NV, are shown in the following table. Table 17. VALUES FOR NH AND NV WHEN OPERATING THE SENSOR IN VARIOUS MODES OF RESOLUTION Full Resolution NV NH 16 Outputs 2696 1116 8 Outputs 5392 1116 1. 2. 3. 4. The time to read out one line tLINE = Line Timing + NH / (Pixel Frequency). The time to read out one frame tFRAME = NV tLINE + Frame Timing. Line Timing: See Table 19: Line Timing. Frame Timing: See Table 18: Frame Timing. No Electronic Shutter In this case the photodiode exposure time is equal to the time to read out an image. Frame Timing (see Table 18) Line Timing (see Table 19) Pixel Timing (see Table 20) Repeat NH Times Repeat NV Times Figure 22. Timing Flow when Electronic Shutter is Not Used www.onsemi.com 22 KAI-47051 Using the Electronic Shutter The exposure time begins on the falling edge of the electronic shutter pulse on the SUB pin. The exposure time ends on the falling edge of the photodiode transfer (Tpd) of the V1T and V1B pins. The electronic shutter timing is shown in Figure 28. Frame Timing (see Table 18) Line Timing (see Table 19) Pixel Timing (see Table 20) Repeat NH Times Repeat NV-NEXP Times Electronic Shutter Timing Line Timing (see Table 19) Pixel Timing (see Table 20) Repeat NH Times Repeat NEXP Times Figure 23. Timing Flow Chart using the Electronic Shutter for Exposure Control www.onsemi.com 23 KAI-47051 Timing Tables Frame Timing This timing table is for transferring charge from the photodiodes to the VCCD. See Figure 24 and Figure 25 for frame timing diagrams. Table 18. FRAME TIMING Full Resolution Device Pin 16 Outputs 8 Outputs V1T F1T F1B V2T F2T F4B V3T F3T F3B V4T F4T F2B V1B F1B V2B F2B V3B F3B V4B F4B FDGB, FDGT FDG_L H1a to h P1 P1 H2a to h P2 P2 H2La to h P2 P2 Ra to h R R H1i to p P1 P1 or see Note 1 H2i to p P2 P2 or see Note 1 H2Li to p P2 P2 or see Note 1 Ri to p R R or see Note 1 1. These clocks may all be held at their high level voltages or +5.0 V www.onsemi.com 24 KAI-47051 Line Timing This timing is for transferring one line of charge from the VCCD to the HCCD. See Figure 26 and Figure 27 for line timing diagrams. Table 19. LINE TIMING Full Resolution Device Pin 16 Outputs 8 Outputs V1T L1T L1B V2T L2T L4B V3T L3T L3B V4T L4T L2B V1B L1B V2B L2B V3B L3B V4B L4B FDGB, FDGT FDG_L H1a to h P1L P1L H2a to h P2L P2L H2La to h P2L P2L Ra to h R R H1i to p P1L P1 or see Note 1 H2i to p P2L P2 or see Note 1 H2Li to p P2L P2 or see Note 1 Ri to p R R or see Note 1 1. These clocks may all be held at their high level voltages or +5.0 V www.onsemi.com 25 KAI-47051 Pixel Timing This timing is for transferring one pixel from the HCCD to the output amplifier. Table 20. PIXEL TIMING Full Resolution Device Pin 16 Outputs 8 Outputs V1T V1_L V1_L V2T V2_L V2_L V3T V3_H V3_H V4T V4_H V4_H V1B V1_L V2B V2_H V3B V3_H V4B V4_L FDGB, FDGT FDG_L H1a to h P1 P1 H2a to h P2 P2 H2La to h P2 P2 Ra to h R R H1i to p P1 P1 or see Note 1 H2i to p P2 P2 or see Note 1 H2Li to p P2 P2 or see Note 1 Ri to p R R or see Note 1 1. These clocks may all be held at their high level voltages or +5.0 V www.onsemi.com 26 KAI-47051 Timing Diagrams The charge in the photodiodes its transfer to the VCCD on the rising edge of the +13 V pulse and is completed by the falling edge of the V1_H pulse on F1T and F1B. During the time period when F1T and F1B are at V1_H (Tpd) anti-blooming protection is disabled. The photodiode integration time ends on the falling edge of the Tpd pulse. Frame Timing- 16 Output Mode Frame Timing Device Pattern Pin V1T Tv 2 T3p Tpd T3d Tv 2 F1T Td V1_H V1_M V1_L V2_H V2T F2T V2_L V3_H V3T F3T V3_L V4_H V4T F4T V4_L V1_H V1B F1B V1_M V1_L V2_H V2B F2B V2_L V3_H V3B F3B V3_L V4_H V4B F4B Pixel Timing Tv 2 T3p Tpd Frame Timing T3d See the Pin Assignment table for pin assignments. Figure 24. Frame Timing Diagram 16 Output Mode www.onsemi.com 27 Tv 2 V4_L Td Line Timing KAI-47051 Frame Timing- 8 Output Mode Frame Timing Device Pin V1T Pattern Tv 2 T3p Tpd T3d Tv 2 F1B Td V1_H V1_M V1_L V2_H V2T F4B V2_L V3_H V3T F3B V3_L V4_H V4T F2B V4_L V1_H V1B F1B V1_M V1_L V2_H V2B F2B V2_L V3_H V3B F3B V3_L V4_H V4B F4B Pixel Timing Tv 2 T3p Tpd Frame Timing T3d See the Pin Assignment table for pin assignments. Figure 25. Frame Timing Diagram 8 Output Mode www.onsemi.com 28 Tv 2 V4_L Td Line Timing KAI-47051 Line Timing - Full Resolution - 16 Output Mode Line Timing Device Pin Pattern V1T L1T Tv 2 Tv 2 Tv 2 V1_M V1_L V2_H V2T L2T V2_L V3_H V3T L3T V3_L V4_H V4T L4T V4_L V1_M V1B L1B V1_L V2_H V2B L2B V2_L V3_H V3B L3B V3_L V4_H V4B L4B Horizontal Clocks H4_L H1_H P1L H1_L H2_H P2L H2_L Tv 2 Frame or Pixel Timing Tv 2 Te 2 Tv 2 Pixel Timing Ths See the Pin Assignment table for pin assignments. Figure 26. Line Timing Diagram - Full Resolution - 16 Output Mode www.onsemi.com 29 KAI-47051 Line Timing - Full Resolution - 8 Output Mode Line Timing Device Pin Pattern V1T L1B Tv 2 Tv 2 Tv 2 V1_M V1_L V2_H V2T L4B V2_L V3_H V3T L3B V3_L V4_H V4T L2B V4_L V1_M V1B L1B V1_L V2_H V2B L2B V2_L V3_H V3B L3B V3_L V4_H V4B L4B Horizontal Clocks H4_L H1_H P1L H1_L H2_H P2L H2_L Tv 2 Frame or Pixel Timing Tv 2 Te 2 Tv 2 Pixel Timing Ths See the Pin Assignment table for pin assignments. Figure 27. Line Timing Diagram - Full Resolution - 8 Output Mode www.onsemi.com 30 KAI-47051 Electronic Shutter Timing Diagrams The electronic shutter pulse can be inserted at the end of any line of the HCCD timing. The HCCD should be empty when the electronic shutter is pulsed. A recommended position for the electronic shutter is just after the last pixel is read out of a line. The VCCD clocks should not resume until at least Thd after the electronic shutter pulse has finished. The HCCD clocks can be run during the electronic Thd shutter pulse as long as the HCCD does not contain valid image data. For short exposures less than one line time, the electronic shutter pulse can appear inside the frame timing. Any electronic shutter pulse transition should be Thd away from any VCCD clock transition. Tsub Thd VES SUB VAB V_M VCCD clock V_L Figure 28. Electronic Shutter Timing Tframe V1T/V1B SUB Tint Figure 29. Frame/Electronic Shutter Timing www.onsemi.com 31 KAI-47051 Pixel Timing - Full Resolution - All Output Modes Te Device Pin Pattern VOUTa Video Ra R R_H R_L Horizontal Clocks H1_H P1 H1_L H2_H P2 H2_L Tr Figure 30. Pixel Timing Diagram - Full Resolution VCCD Clock Edge Alignment VVCR 90% 10% tVF tVR tV tVF tVR Figure 31. VCCD Clock Rise Time, Fall Time and Edge Alignment www.onsemi.com 32 KAI-47051 Fast Line Dump Timing The FDG pins may be optionally clocked to efficiently remove unwanted lines in the image resulting for increased frame rates at the expense of resolution. Below is an example of a 2 line dump sequence followed by a normal readout line. Note that the FDG timing transitions should complete prior to the beginning of vertical timing transitions as illustrated below. Line Timing Device Pin Pattern V1T L1T Tv 2 Tv 2 Tv 2 Tv 2 Tv 2 Tv 2 Tv 2 Tv 2 Tv 2 Tv 2 Tv 2 V1_M V1_L V2_H V2T L2T V2_L V3_H V3T L3T V3_L V4_H V4T L4T V4_L FDG_H FDGT FDG FDG_L V1_M V1B L1B V1_L V2_H V2B L2B V2_L V3_H V3B L3B V3_L V4_H V4B L4B V4_L FDG_H FDGB FDG FDG_L Pixel Timing Frame or Pixel Timing Te 2 Tfdg Tfdg Figure 32. Fast Line Dump Timing Diagram www.onsemi.com 33 Ths KAI-47051 STORAGE AND HANDLING Table 21. STORAGE CONDITIONS Description Symbol Minimum Maximum Units Notes Storage Temperature TST -55 80 C 1 Humidity RH 5 90 % 2 1. Long-term storage toward the maximum temperature will accelerate color filter degradation. 2. T = 25C. Excessive humidity will degrade MTTF. For information on ESD and cover glass care and cleanliness, please download the Image Sensor Handling and Best Practices Application Note (AN52561/D) from www.onsemi.com. For quality and reliability information, please download the Quality & Reliability Handbook (HBD851/D) from www.onsemi.com. For information on device numbering and ordering codes, please download the Device Nomenclature technical note (TND310/D) from www.onsemi.com. For information on environmental exposure, please download the Using Interline CCD Image Sensors in High Intensity Lighting Conditions Application Note (AND9183/D) from www.onsemi.com. For information on Standard terms and Conditions of Sale, please download Terms and Conditions from www.onsemi.com. For information on soldering recommendations, please download the Soldering and Mounting Techniques Reference Manual (SOLDERRM/D) from www.onsemi.com. www.onsemi.com 34 KAI-47051 MECHANICAL INFORMATION Completed Assembly Notes: 1. See Ordering Information for marking code. 2. Pin to pin distances are measured at pin base. 3. Pins are not centered about the vertical axis. 4. Units: mm Figure 33. Completed Assembly (1 of 2) www.onsemi.com 35 KAI-47051 DETAIL OF SLOTTED HOLE DETAIL OF HOLE Notes: 1. Units: mm Figure 34. Completed Assembly (2 of 2) www.onsemi.com 36 KAI-47051 Cover Glass Notes: 1. Substrate = Schott D263T eco 2. Dust, Scratch, Inclusion Specification: a.) 20 microns maximum size in Zone A 3. MAR coated both sides 4. Spectral Transmission a.) 350 - 365 nm: T 88% b.) 365 - 405 nm: T 94% c.) 405 - 450 nm: T 98% d.) 450 - 650 nm: T 99% e.) 650 - 690 nm: T 98% f.) 690 - 770 nm: T 94% g.) 770 - 870 nm: T 88% 5. Units: mm Figure 35. Cover Glass with AR Coatings www.onsemi.com 37 KAI-47051 Notes: 1. Substrate = Schott D263T eco 2. Dust, Scratch, Inclusion Specification (applies only if glass is sealed to the package): a.) 10 mm max (A-ZONE) b.) 20 mm max (B-ZONE) 3. Units: mm 4. Glass may or may not have epoxy Figure 36. Cover Glass without AR Coatings www.onsemi.com 38 KAI-47051 Cover Glass Transmission Figure 37. Cover Glass Transmission ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 www.onsemi.com 39 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative KAI-47051/D