AOT1N60 600V,1.3A N-Channel MOSFET General Description Product Summary The AOT1N60 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular ACDC applications.By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. VDS ID (at VGS=10V) 700V@150 1.3A RDS(ON) (at VGS=10V) < 9 100% UIS Tested 100% Rg Tested For Halogen Free add "L" suffix to part number: AOT1N60L Top View D TO-220 G G D S S Absolute Maximum Ratings TA=25C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage Continuous Drain Current VGS TC=25C TC=100C Maximum 600 Units V 30 V 1.3 ID 0.9 A Pulsed Drain Current C IDM Avalanche Current C IAR 1 A Repetitive avalanche energy C EAR 15 mJ Single plused avalanche energy G Peak diode recovery dv/dt TC=25C Power Dissipation B Derate above 25oC Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Maximum Junction-to-Ambient A,D EAS dv/dt 30 5 41.7 mJ V/ns W 0.3 -55 to 150 W/ oC C 300 C Maximum Case-to-sink A Maximum Junction-to-Case Rev4: July 2010 4 PD TJ, TSTG TL Symbol RJA RCS Typical 55 Maximum 65 Units C/W 2 0.5 3 C/W C/W RJC www.aosmd.com Page 1 of 5 AOT1N60 Electrical Characteristics (TJ=25C unless otherwise noted) Symbol Parameter Conditions Min ID=250A, VGS=0V, TJ=25C 600 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /TJ Zero Gate Voltage Drain Current IDSS Zero Gate Voltage Drain Current IGSS ID=250A, VGS=0V, TJ=150C V 700 ID=250A, VGS=0V V/ oC 0.6 VDS=600V, VGS=0V 1 VDS=480V, TJ=125C 10 100 Gate-Body leakage current VDS=0V, VGS=30V VGS(th) Gate Threshold Voltage VDS=5V ID=250A 3 A 4.1 4.5 n V 9 1 V RDS(ON) Static Drain-Source On-Resistance VGS=10V, ID=0.65A 7.5 gFS Forward Transconductance VDS=40V, ID=0.65A 0.9 VSD Diode Forward Voltage IS=1A,VGS=0V 0.65 S IS Maximum Body-Diode Continuous Current 1 A ISM Maximum Body-Diode Pulsed Current 4 A pF DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge VGS=10V, VDS=480V, ID=1A 100 130 160 11 14.5 17.5 pF 1.4 1.8 2.2 pF 2.8 3.5 5.3 6.1 8 nC Qgs Gate Source Charge 1.3 2 nC Qgd Gate Drain Charge 3.1 4 nC tD(on) Turn-On DelayTime 10 12 ns tr Turn-On Rise Time 6.7 8 ns tD(off) Turn-Off DelayTime tf trr Turn-Off Fall Time Body Diode Reverse Recovery Time Qrr VGS=10V, VDS=300V, ID=1A, RG=25 20 25 ns 11.5 15 ns IF=1A,dI/dt=100A/s,VDS=100V 114 137 Body Diode Reverse Recovery Charge IF=1A,dI/dt=100A/s,VDS=100V 0.63 0.76 ns C A. The value of R JA is measured with the device in a still air environment with T A =25C. B. The power dissipation PD is based on TJ(MAX)=150C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150C, Ratings are based on low frequency and duty cycles to keep initial TJ =25C. D. The R JA is the sum of the thermal impedence from junction to case R JC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150C. The SOA curve provides a single pulse ratin g. G. L=60mH, IAS=1A, VDD=150V, RG=25, Starting TJ=25C THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev4: July 2010 www.aosmd.com Page 2 of 5 AOT1N60 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 2 10 10V -55C VDS=40V 6.5V 1.5 ID(A) ID (A) 6V 1 125C 1 VGS=5.5V 0.5 25C 0 0.1 0 5 10 15 20 25 30 2 4 VDS (Volts) Fig 1: On-Region Characteristics 6 8 10 VGS(Volts) Figure 2: Transfer Characteristics 14.0 2.5 Normalized On-Resistance 13.0 RDS(ON) ( ) 12.0 VGS=10V 11.0 10.0 9.0 8.0 VGS=10V ID=0.65A 2 1.5 1 0.5 7.0 0 0.5 1 1.5 2 0 2.5 -100 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 50 100 150 200 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+01 1.2 40 125C 1.0E-01 IS (A) BVDSS (Normalized) 1.0E+00 1.1 1 1.0E-02 25C 1.0E-03 0.9 1.0E-04 0.8 1.0E-05 -100 -50 0 50 100 150 200 TJ (C) Figure 5:Break Down vs. Junction Temparature Rev4: July 2010 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 5 AOT1N60 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 1000 VDS=480V ID=1A Ciss Capacitance (pF) VGS (Volts) 12 9 6 100 Coss 10 Crss 3 0 1 0 2 4 6 Qg (nC) Figure 7: Gate-Charge Characteristics 8 10 0.1 1 10 VDS (Volts) Figure 8: Capacitance Characteristics 0 25 100 2 10s ID (Amps) 1 100s 1ms 0.1 DC TJ(Max)=150C TC=25C 10ms 1 Current rating ID(A) RDS(ON) limited 1 1 0 0.01 1 10 100 1000 VDS (Volts) 0 Z JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZJC.RJC RJC=3C/W 50 75 100 125 150 TCASE (C) Figure 10: Current De-rating (Note B) Figure 9: Maximum Forward Biased Safe Operating Area for AOT1N60 (Note F) In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1 PD Single Pulse 0.1 Ton T 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance for AOT1N60 (Note F) Rev4: July 2010 www.aosmd.com Page 4 of 5 AOT1N60 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + VDC - VDC DUT Qgs Vds Qgd - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs + VDC 90% Vdd - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 AR BVDSS Vds Id + Vgs Vgs VDC - Rg Vdd I AR Id DUT Vgs Vgs Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig Rev4: July 2010 L Isd + Vdd trr dI/dt IRM Vdd VDC - IF Vds www.aosmd.com Page 5 of 5