Ju ne 200 9 Rev 3 1/46
1
STW4511
7-channel power management unit
Features
2 step-down converters
Vsdc1: 1 V to 1.5 V
600 mA maximum output current
I2C control possibility
programmable default output voltage
(1.45 V predefined value(a))
OFF mode on external Pwren signal
Vsdc2: 1.8 V
600 mA maximum output current
OFF mode on external Pwren signal
5 low-drop output regulators
Vdig: 1.0 V (100 mA) to 1.5 V - 250 mA max
Match up Vsdc1 output voltage
Always switched on after start-up
(even on reset)
Vana1: 1.8 V - 150 mA max
Match up Vsdc2 output voltage
Always switched on after start-up
(even on reset)
Vana2/3/4: 1.8, 2.5, 2.8, 3.3 V - 150 mA max
ON or OFF mode possibility at start-up
ON/OFF mode controlled by I2C or by
Pwren = 0
Battery supervisor
Programmable minimum battery level
Power supply swi tches
2 internal switches for external DRAM memory
supply (1.8 V)
Supply via Vana1 in low power mode
Supply via Vsdc2 in high power mode
Miscellaneous
I2C control
Temperature shutdown
Internal clock generation for supply switching
and state machine sequencing
Application
Portable navigation device (GPS)
Portable multimedia player
Personal digital assistant (PDA)
Portable consumer equipment or handheld
devices
Description
STW4511 is a 7-channel power management
device de veloped f or applications powered by one
Li-Ion or Li-Polymer cell. STW4511 embeds 2
highly efficient step-down DC/DC converters and
5 LDO regulators. STW4511 enables two always-
on LDOs for low system quiescent current.
Integrated switches are used to keep the DRAM
memories supplied even in stand by mode.
a. This value can be one of the available out put voltages
(see Power Control Register @ 05h) - Please contact
ST-Ericsson sales if different predefined output
voltage is needed.
7)%*$
[[PP
EDOOVPP
TFGA, 64 balls, 6 mm x 6 mm x 1.2 mm with 0.5mm pitch
www.stericsson.com
Contents STW4511
2/46
Contents
1 Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Ball information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Package ball map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Ball description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 STW4511 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Power on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 High po wer mode (HPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Lo w p ower mode (LPM) or sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Battery supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 RAM memory supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.1 1.8V switch definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.2 Shipping mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.3 1.8 V switch electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Control pin descripti on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Power supply timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Po wer supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9.1 Step-down converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9.2 LDO regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.10 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Step-down converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Low-drop output con verters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 DC/DC converter monitoring characteristics . . . . . . . . . . . . . . . . . . . . . 28
3.3 Digital specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 CMOS input/output static characteristics: I2C interface . . . . . . . . . . . . . 28
3.3.2 CMOS input/output dynamic characteristics: I2C interface . . . . . . . . . . 29
3.3.3 CMOS input/output static characteristics: VddIO level . . . . . . . . . . . . . 29
STW4511 Contents
3/46
3.3.4 CMOS input static characteristics: Vbat level . . . . . . . . . . . . . . . . . . . . 30
3.3.5 NMOS input Pon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 Internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Internal 32 kHz clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1 Appli cation and external components . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7 Register definition and mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
List of tables STW4511
4/46
List of tables
Table 1. Package ball out for TFBGA 64 - 6 mm x 6 mm with 0.5 mm pitch . . . . . . . . . . . . . . . . . . . 7
Table 2. Ball description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Battery voltage falling threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4. Battery voltage rising threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Vswitch truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 6. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 7. Selection table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 8. Supplies thermal shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 9. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 10. Vsdc1 electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 11. Vsdc2 electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 12. Vana1 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 13. Vana2/3/4 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 14. Vdig electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 15. Vsdc1/2 monitoring output levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 16. CMOS input/output static characteristics: I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 17. CMOS input/output dynamic characteristics: I2C interface. . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 18. VddIO level: control I/Os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 19. CMOS input static characteristics: Vbat level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 20. Pon input static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 21. Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 22. Register address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 23. Register data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 24. List of materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 25. Register general information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 26. Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 27. Power control register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 28. TFBGA 6mm x 6mm x 1.2mm with 0.5 mm pitch and 0.3 mm ball. . . . . . . . . . . . . . . . . . . 43
Table 29. Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 30. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STW4511 List of figures
5/46
List of figures
Figure 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. 1.8V switch diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3. Initial start up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4. Low power sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. Wake-up sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. Device power off sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 7. Control interface: I2C format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 8. Control interface: I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 9. Application diagram example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 10. TFBGA 6mm x 6mm x 1.2mm with 0.5 mm pitch and 0.3 mm ball. . . . . . . . . . . . . . . . . . . 44
Produc t over view STW4511
6/46
1 Product overview
The STW4511 device is a power management unit (PMU) that integrates:
two step down converters,
five LDOs, among which two are always switched on,
RAM supply in low power mode,
autonomous state machine handling smooth supply sequencing,
die temperature shutdown,
battery supervisor with programmable minimum battery voltage and processor reset.
1.1 Block diagram
Figure 1. Block diagram
PMIC
Bias & Ref
Soft-Start
SMPS
Monitoring
LDO
Vana1
Vref18
Vdig
Vbat_Vdig
Vana1
Vbat_Vana1_Vana3
Vana3 LDO
Vana3
LDO
Vdig
LDO
Vana2
LDO
Vana4
Vana2
Vbat_Vana2
Vana4
Vbat_Vana4
SCL
Voltage
supply
selection
Vana2-sel_0
Vana2-sel_1
Vana4-sel_0
Vana4-sel_1
Vana3-sel_0
Vana3-sel_1
Internal
Osc
SMPS
Vsdc1
Vsdc1_Vbat
Vsdc1_Vlx
Vsdc1_Gnd
Vsdc1_FB
SMPS
Vsdc2
Vsdc2_Vbat
Vsdc2_Vlx
Vsdc2_Gnd
Vsdc2-FB
SW-Reset
General
Control Pwren
VddOK
Pon
Res_Pro
I2C
Clo ck &
Control
PMIC
THSD
Gnd
SDA
Vbat_ana
Vbat_Dig
Battery
supervisor
Vbat_Max_Thr_0
Vbat_Max_Thr_1
Vbat_Min_Thr_0
Vbat_Min_Thr_1
Vbat_Thr_Sel
Vram_In
1.8V
Switch Vram_Out
Vram-Sel
VddIO
STW4511 Product overview
7/46
1.2 Ball information
1.2.1 Package ball map
1.2.2 Ball description
The device includes four ball types:
VddD/VddA: digital/analog positive supply
GndD/GndA: digital/analog ground
DO/DI/DIO: digital output/input/input-output
AO/AI/AIO: analog output/input/input-output
Table 1. Package ball out for TFBGA 64 - 6 mm x 6 mm with 0.5 mm pitch
12345678910
AReserved Vsdc2_Gnd Vsdc2_Vlx Vsdc2_Vbat Gnd_ana Vdig Vana1 Vbat_
Vana1_
Vana3 Vana3 Vref18
BReserved Vsdc2_Gnd Vsdc2_Vlx Vsdc2_Vbat Vsdc2_FB Vbat_ana Vbat_Vdig Not used Reserved Pon
CGnd_Dig Reserved Reserved Vsdc1_FB
DVbat_dig Reserved Vsdc1_Gnd Vsdc1_Gnd
EVram_In Reserved Vsdc1_Vlx Vsdc1_Vlx
FVram_Out Reserved Vsdc1_Vbat Vsdc1_Vbat
GVram_Sel Vana4_
Sel_0 Vbat_Min_
Thr_0 Vana2
HVddOK Not used Not used Vbat-
Vana2
JRes_Pro Not used Not used Vana4_
Sel_1 Pwren Vana2_
Sel_0 Vana3_
Sel_0 Vbat_Max_
Thr_0 Not used VddIo
KSW_Reset Vbat_
Vana4 Vana4 SCL SDA Vbat_Thr_
Sel Vana2_
Sel_1 Vana3_
Sel_1 Vbat_Max_
Thr_1 Vbat_Min_
Thr_1
Table 2. Ball description
Ball number Name Type Description
Step-down conver ters
F9, F10 Vsdc1_ Vbat VddA SMPS dedicated supply input
E9, E10 Vsdc1_Vlx AO SMPS coil output
C10 Vsdc1_FB AI SMPS feedback
D9, D10 Vsdc1_Gnd GndA SMPS dedicated ground
A4, B4 Vsdc2_ Vbat VddA SMPS dedicated supply input
A3, B3 Vsdc2_Vlx AO SMPS coil output
B5 Vsdc2_FB AI SMPS feedba ck
A2, B2 Vsdc2_Gnd GndA SMPS dedicated ground
14 Switched converters total ball number
Produc t over view STW4511
8/46
LDO converters
A8 Vbat_Vana1_Vana3 VddA LDO dedicated supply input
A7 Vana1 AO LDO output
H10 Vbat_Vana2 VddA LDO dedicated supply input
G10 Vana2 AO LDO output
A9 Vana3 AO LDO output
B7 Vbat_Vdig VddA LDO dedicated supply input
A6 Vdig AO LDO output
K2 Vbat_Vana4 VddA LDO dedicated supply input
K3 Vana4 AO LDO output
9Linear convert er total ba ll number
I2C interface
K5 SDA DI/O (1.8V) I2C data interface
K4 SCL DI (1.8V) I2C clock interface
2Control interface ball number
General control for power supplies
B10 Pon DI (Nmos) pull-
down 1.5 MΩPower on of the su pplies part
H1 VddOK DO (1.8V) SMPS high value monitoring status
J1 Res_pro DO (1.8V) Processor reset
J5 Pwren DI (1.8V) pull-up
1.5MΩ
Sleep high power mode/low power
mode control
K1 SW_reset DI (1.8V) pull-up
1.5MΩS/W reset from processor
5PMIC gener al control t otal ball number
Selection voltage inputs
J6 Vana2-Sel_0 DI (Vbat) Voltage selection
K7 Vana2_Sel_1 DI (Vbat) Voltage se lection
J7 Vana3_Sel_0 DI (Vbat) Voltage selection
K8 Vana3_Sel_1 DI (Vbat) Voltage se lection
G2 Vana4_Sel_0 DI (Vbat) Voltage selection
J4 Vana4_Sel_1 DI (Vbat) Vo ltage selection
G9 Vbat_Min_Thr_0 DI (Vbat) Battery voltage threshold to set the
processor in reset
Table 2. Ball description (continued)
Ball number Name Type Description
STW4511 Product overview
9/46
K10 Vbat_Min_Thr_1 DI (Vbat) Battery voltage threshold to set the
processor in reset
J8 Vbat_Max_Thr_0 DI (Vbat) Battery voltage threshold to set the
processor in HPM
K9 Vbat_Max_Thr_1 DI (Vbat) Battery voltage threshold to set the
processor in HPM
10 Total voltage selection inputs
Other inputs and outputs
A10 Vref18 AO Internal reference of the power
management device
J10 VddIO DI IO power supply
B6 Vbat-ana VddA PM analog part supply
D1 Vbat-Dig VddD Oscillator part supply
K6 Vbat_Thr_Sel DI (Vbat) Battery voltage supervision enable
C1 Gnd_Dig GndD Ground
A5 Gnd_Ana GnDA Ground
E1 Vram_In AI 1.8V switch input from Vsdc2 for
memory
F1 Vram_Out AO 1.8V output
G1 Vram_sel DI (Vbat) Memory supply switch enable.
D2 Reserved Opened Test purpose
E2 Reserved Opened Test purpose
F2 Reserved Opened Test purpose
B9 Reserved Opened Test purpose
A1 Reserved GndA Test purpose
B1 Reserved GndA Test purpose
C2 Reserved GndA Test purpose
C9 Reserved GndA Test purpose
16 Other I/O ba ll number
Not used balls
B8, H2, J2,
J3, H9, J9 Not used Opened
6Not used
64 Overall ball number
Table 2. Ball description (continued)
Ball number Name Type Description
STW4511 description STW4511
10/46
2 STW4511 description
2.1 Introduction
The device integrates power supplies for the processor and associated peripherals.
2.2 Power on
The device is in power on mode when Pon is set to 1 (Pon = 1). Power on state is also
reached by connecting directly the input pin to Vbat or to a voltage above 1 V.
When P on equals 0 (P on = 0) the device completely shuts down. Thus, it is possible to make
a full hard reset of the supplies.
2.3 High power mode (HPM)
The device is in high power mode (HPM) when Pwren is set to 1 (Pwren = 1). The converter
outputs are then regulated and able to supply the dedicated application features.
At power on the device must be in high power mode. For that purpose, the IC includes an
internal pull-up on the Pwren ball.
2.4 Low power mode (LPM) or sleep mode
The device is in sleep mode when Pwren is set to 0 (Pwren = 0).
Vana1 and Vdig signal values do not change.
The two step-down converters are s witched OFF. The overall consumption is then reduced
to leakage current.
Vana2, V ana3, and Vana4 are switched off if Vana2_Vana3_Off = 1 and Vana4_Off = 1 (see
Power control register @ 09h
). In other cases, Vana2, Vana3, and Vana4 remain in high
power mode.
2.5 Battery supervisor
STW4511 has two different battery voltage thresholds:
battery voltage falling threshold:
when the battery voltage drops down below this threshold, the device shuts down
battery voltage rising threshold:
when the battery voltage rises above this threshold, the device can (re-)start in high-
power mode if Pon is set to 1 (Pon=1).
The battery supervisor feature is enabled when Vbat_Thr_Sel ball is set to 1
(Vbat_Thr_Sel = 1). Low threshold values stop the device when the battery is very low.
The battery supervisor falling/rising thresholds are programmable via dedicated signals,
Vbat_Min_Thr_0/1 and Vbat_Max_Thr_0/1 respectively. These pins can be connected
either to the battery voltage or to ground.
STW451 1 STW4 511 descr ip tio n
11/46
The rising threshold ensures that the battery has enough energy to supply the whole
application at start up. The device starts when the battery supply rises above the threshold
ri si ng value.
Below the falling down threshold the battery has not enough energy to supply the alwa ys-on
parts , the device is completely switched off.
2.6 RAM memory supply
2.6.1 1.8V switch definition
STW4511 includes integrated switches that supply the DRAM memory
with 1.8 V always-on supply in low power mode and,
with 1.8 V supply from the step-down converter in high power mode.
The Vram_Out ball supplies the DRAM memory.
The Vram_Sel connected to the battery voltage enables the RAM memory supply. Vram_Sel
is active high.
Vsdc2 output is connected to the Vram_In ball. An internal switch connects this input to the
Vram_Out. This switch is closed only in high power mode.
An internal switch connects the Vana1 output (internal connection, no ball used) to the
Vram_Out. This switch is closed only in low power mode, when PWREN signal is low.
When Pon is low, the Vram_Out is switched to ground via the use of a third internal switch.
Table 3. Battery voltage falling threshold
Vbat_Min_Thr0 Vbat_Min_Thr1 Vbat-Thr-En Threshold value (V)
0012.7
0112.85
1013.05
1113.3
XX02.25
Table 4. Battery voltage rising threshold
Vbat_Max_Thr0 Vbat_Max_Thr1 Vbat-Thr-En Threshold value (V)
0013.4
0113.5
1013.6
1113.7
XX02.65
STW4511 description STW4511
12/46
Figure 2. 1.8V switch diagram
2.6.2 Shipping mode
Shipping mode is a special feature that can be programmed using the bit 2 of Application
register 2 @ 11h. This bit controls the shipping mode f eature that can force switches S1 and
S2 to be opened. The RAM is not supplied. This mode permits to limit the RAM
consumption when the device is moved from the factory to the end-user.
2.6.3 1.8 V switch electrical char acter istics
Vsdc2 @ 1.8V
Control
Vana1 @ 1.8V
Vram_In
Vram_out
Vana1
S1
S2
Vs dc2
Table 5. Vswitch truth table
Pwren Vram_Sel shipping mode 11h
bit2 Vram_Out
1 0 0 gnd
1 1 0 Vsdc2
1 0 1 gnd
1 1 1 gnd
0 0 0 gnd
0 1 0 Vana1
0 0 1 gnd
0 1 1 gnd
Table 6. Electrical characteristics
Parameter Condition Min. Typ. Max. Unit
Vram input voltage -3% 1.8 +3% V
Vram output voltage 1.70 1.8 +3% V
STW451 1 STW4 511 descr ip tio n
13/46
S1_I_max Maximum current through the
switch in HPM 140 mA
S2_I_max Maximum current through the
switch in LPM 0.3 mA
S1 Ron Voltage = 1.8V 0.2 Ω
S2 Ron Vo ltage = 1.8V @ Vbat=3.6V 0.08 1 kΩ
Table 6. Electrical characteristics
Parameter Condition Min. Typ. Max. Unit
STW4511 description STW4511
14/46
2.7 Control pin description
Control pin Pon
Pon input signal is active high. Pon signal is used to turn on the device and start the internal
state machine that handles the supply sequencing.
Pon ball can be directly connected to the battery voltage.
Pon voltage must always be lower or equal to Vbat.
Control pin Pwren
Pwren input signal is active high. Pwren signal sets the device in high power mode.
At start up the Pwren signal is masked until the internal oscillator stabilizes and the device is
biased. After this period, Pwren is handled by the device internal state machine.
When Pwren = 0 (low power mode):
Vsdc1 and Vsdc2 are switched off
Vana1 and Vdig remain in HPM
Vana2/3/4 are switched off, but can remain in HPM (
Power control register @ 09h
-
Vana2/3_OFF and Vana4_OFF)
When Pwren is not driven by external components (typically at start-up), an internal pull-up
ties Pwren to high level to ensure power on in high power mode.
Control pin Res_pro
Res_pro is an output signal used to reset the processor. Res_pro is active low.
Res_pro = 0 when:
the device is starting up,
when the battery voltage drops below the battery voltage threshold programmed by the
battery supervisor
Control pin VddOK
VddOK is an output signal pin active high. VddOK confirms that Vsdc1, Vsdc2 values are
within the output voltage range.
VddOK falls to 0 when :
Pwren = 0
Vsdc1 or Vsdc2 values are below the defined threshold (output voltage monitoring),
see
Table 16
in
Chapter 3: Electrical characteristics
.
the battery voltage drops below the battery voltage threshold programmed by the
battery supervisor
Control pin SW-reset
This input signal is used to reset all registers except the ones at 1Eh and 1Fh addresses.
SW-reset signal is active low.
STW451 1 STW4 511 descr ip tio n
15/46
2.8 Power supply timing diagrams
Start up sequence
When Pon = 1
Vana1 and Vdig are switched on, these LDO remain on until they are reset by Pon = 0.
When P on = 1 and Pwren = 1
Vsdc2 and Vsdc1 are switched on only if Vana1 and Vdig have also been switched on,
Vana2, Vana3, Vana4 can start up simultaneously to supply the peripherals.
Alternatively, Vana2, Vana3, Vana4 can be off at start up and then controlled by I2C
(
Power control register @ 07h
- En_Vana3, En_Vana4 and
Power contr o l re g is t e r @
08h
- En_Vana2)
Vana2, Vana3 and Vana4 are switched on at the same time as Vsdc2
When Res_pro = 1
the processor is out of reset mode and the application is running.
STW4511 description STW4511
16/46
Figure 3. Initial start up sequence
,QWB3RQ
,QWHUQDOBRVF
'HYLFHLQWHUQDO
VWDUWXS
3GQBUHJXODWRU
LQWVLJQDO
9GG2.
,QWB&ORFN.
5(6(7
5HVBSUR
,&RI30,&DYDLODEOH
3ZUHQ
9GLJ#VDPHYROWDJHDV9VGF
9VGF#9
9DQD#9
:KHQFRQWUROOHGE\3RQ3ZUHQ9DQD
#9WR9
9RXWDOZD\V
21
3:5(1LQWHUQDOO\PDVNHG
3URFHVVRULQDFWLYHVWDWH
9VGF#WR9
!PV
9RXWIRU
SHULSKHUDOV
3URFHVVRU
9RXW3RZHU
9%DW
9EDWBPD[BWKU
9EDWBPLQBWKU
3RQ
5HVBSURLQKLJKLPSHGDQFH
STW451 1 STW4 511 descr ip tio n
17/46
LPM mode sequence
When Pwren = 0
Vsdc1 and Vsdc2 are switched off
Vana1 and Vdig remain in HPM
Vana2/3/4 can be in off mode or stay in HPM (
Power control register @ 09h
-
Vana2/3_OF F, Va na4 _OF F)
Figure 4. Low power sequence
3RQ
9GG2.
,QWB&ORFN.
5HVBSUR
3ZUHQ
9GLJ#VDPHYROWDJHDV9VGF
9VGF#9
9DQD#9
9DQD#9WR9
9RXWDOZD\V
21
3:5(1LQWHUQDOO\
PDVNHG
9VGF#WR9
9RXWIRU
SHULSKHUDOV
3URFHVVRU
9RXW3RZHU
9%DW
9EDWBPD[BWKU
9EDWBPLQBWKU
,QWB3RQ
STW4511 description STW4511
18/46
Wake-up sequence
The wake-up sequence occurs when Pwren goes from 0 to 1:
Vana1 and Vdig stay in HPM
Vsdc2 and Vsdc1 are switched on
Vana2/3/4 are switched off or stay in HPM (
Power control register @ 09h
-
Vana2/3_OF F, Va na4 _OF F).
Figure 5. Wake-up sequence
3RQ
9GG2.
,QWB&ORFN.
5HVBSUR
3ZUHQ
9GLJ#6DPH9VGFYROWDJH
9VGF#9
9DQD#9
9DQD#WR9
9RXWDOZD\V
21
3:5(1LQWHUQDOO\
PDVNHG
9VGF#WR9
9RXWIRU
SHULSKHUDOV
3URFHVVRU
9RXW3RZHU
9%DW
9EDWBPD[BWKU
9EDWBPLQBWKU
,QWB3RQ
STW451 1 STW4 511 descr ip tio n
19/46
Device power-off sequence
The device power-off sequence occurs when the battery v oltage falls under the Vbat-min-thr
battery voltage thresh old :
all power supplies are turned off,
a S/W threshold can be added to switch off the DC/DC conv erter before the low battery
threshold is reached. This is a smart way to keep only the always-on LDO and let the
processor in sleep mode. The application quickly restarts when an external power
supply is plugged.
Figure 6. Device power off sequence
9%DW
9GG2.
,QWB&ORFN.
5HVBSUR
3ZUHQ
9GLJ#6DPH
9VGFYROWDJH
9VGF#9
9DQD#9
9DQD#9WR9
9RXWDOZD\V
21
9VGF#
WR9
9RXWIRU
SHULSKHUDOV
9RXW3RZHU
30,&VWRSSHG
1HZ,QLWLDOSRZHU21VHTXHQFH
,QWB3RQ
9EDWBPLQBWKU
9EDWBPD[BWKU
STW4511 description STW4511
20/46
2.9 Power supplies
The device has 2 step-down converters and 5 LDO supplies.
2.9.1 Step-down converters
Vsdc1 DC/DC converter supply voltage
Vsdc1 is a step-down converter with a very high efficiency.
Adjustable voltage levels enable a dynamic scaling voltage suitable for any supply voltage
with CMOS proc ess.
Vsdc1 has 2 modes:
high power mode (HPM) to supply the application
low power mode (LPM) to switch off the output voltage.
The regulated output voltage levels are adjustable by controlling the dedicated registers via
I2C interface (
Power control register @ 05h
). The output voltage has predefined values at
start-up which can be chosen in the available range defined in the Power Control Register
@ 05h (see
Note 1
).
The output voltage is coupled with the LDO Vdig to ensure the same output voltage values
at both outputs.
The power supply is switched off by Pwren signal set low level and is switched on by Pwren
signal set high.
Note: 1 For any other default output voltages, please contact your local ST-Ericsson sales.
Vsdc2 DC/DC converter supply voltage
Vsdc2 is a step-down converter with a very high efficiency.
1.8 V voltage level enables to supply all I/O voltages or any other voltage requested by the
application.
Vsdc2 has 2 modes:
high power mode (HPM) to supply the application,
low power mode (LPM) to switch off the output voltage.
The power supply is switched off by Pwren signal set low and is switched on by Pwren signal
set high.
2.9.2 LDO regulators
Vdig LDO regulator
Vdig LDO regulator has the same adjustment levels as Vsdc1.
Vdig is switched on at start-up and remains on when the application is power supplied.
Output voltage levels are adjustable via the Vsdc1 dedicated registers.
Vana1 LDO regulator
Vana1 is a LDO regulator with 1.8 V output voltage level.
STW451 1 STW4 511 descr ip tio n
21/46
Vana1 is switched on at start-up and remains always on when the application is power
supplied.
Vana2, Vana3,Vana4 LDO regulators
Vana2, Vana3 and Vana4 are adjustable LDO regulators with four output voltage le vels used
to supply different application peripherals.
Vana2/3/4 are turned on after Pon = 1 and Pwren =1, in that case the three power supplies
are controlled by En_Vana(i) bit set high by default (
Note 1
) -
Power control register @ 07h
,
En_Vana3, En_Vana4 and
Power control register @ 08h
- En_Vana2.
If Vana2/3/4 need to be controlled directly by I2C, the converters are controlled by
Pdn_Vana(i ) bit in
Application controls register 1 @ 10h
- Pdn_Vana2 and
Applicatio n
controls register 2 @ 11h
- Pdn_Vana3, Pdn_Vana4.
The Pdn_Vana(i) bit and En_Vana(i) control bit are OR-gated features.
Vana2/3/4 high and low power modes are enabled by register
Power control register @ 09h
- Vana2/3_OFF, Vana4_OFF (
Note 1
).
Output voltage lev els are adjustable by connecting the dedicated pins Vana2/3/4_Sel_0 and
Vana2/3/4_Sel_1 to battery voltage or to the ground.
Note: 1 For the different possible configurations of the Vana(i) supplies, please contact directly your
ST-Er icsson sales office.
Table 7. Selection table
Vana(i)_Sel_1 Vana(i)_Sel_0 Output voltage (V)
001.8
012.5
102.8
113.3
STW4511 description STW4511
22/46
2.10 Thermal shutdown
A thermal sensor monitors the device temperature. This sensor is placed near the hottest
part of the device. When the temperature exceeds the thermal threshold, the supplies are
turned off . The supplies are turned back to their default start-up state, starting on Pon = 1,
after around 10 ms (device at room temperature (25°C). The device mode changes back to
normal and is ready to be controlled by I2C.
Table 8. Supplies thermal shutdown
Description Min. Typ. Max. Unit
Supply thermal threshold 150 °C
STW451 1 Electri cal character istics
23/46
3 Electrical characteristics
Otherwise specified typical electrical characteristics have been defined for 25°C ambient
temperature and 3.6 V battery voltage.
3.1 Absolute maximum rating
Table 9. Absolute maximum ratings
Parameter Condition Min. Typ. Max. Unit
Input supply operating
voltage 2.7 3.6 5.5 V
Input supply maximum
rating voltage 2.7 7 V
VddIO ra tin g voltage 1.65 1.8 1.84 V
Operating temperature -40 +85 °C
Junction operating
temperature Spec. is guarant eed up to
125°C +125 °C
Junction rating
temperature +150 °C
Consumption in off
mode (Pon = 0) Vbat = 3.6 V 10 µA
Consumption in sleep
mode At 25°C, Vbat = 3.6V
Pon = 1 and Pwren = 0 180 µA
ESD HBM JESD22-A114-B -2 +2 kV
CDM
ANSI-ESDSM5.3.1-1999 -450 +500 V
Package Rth 70 °C/W
Ele ctrical characteristics STW4511
24/46
3.2 Electrical characteristics
3.2.1 Step-down converters
1. Guaranteed by design
2. Quiescent current defined as the current measured on the Vsdc1 dedicated power supply
Table 10. Vsdc1 electrical characteristics
Parameter name Condition Min. Typ. Max. Unit
Vsupply 2.7 5.5 V
Output voltage 16 steps -5% 1.0 to 1.5 +5% V
Vripple Output voltage ripple 10 mVpp
Output load current 0 600 mA
Efficiency 86 %
Short circuit limitation(1) 0.9 1.2 1.4 A
Quiescent current(2) A
Power-down current 1.5 µA
Switching frequency 900 kHz
PSRR(1) 1kHz < f < 10kHz 40 dB
Rising slope Iout = 10mA 0.3 ms/V
Line regulation Vbat [2.7, 5.5V] 10 mV
Load regulation Iout [0.1, 600mA] 10 mV
Line transient(1)
Vsdc1 = 1.2V
Iout = 200mA
ΔVbat = 300mV
Tr = tf = 10µs
7mV
Load transient(1) Vsdc1 = 1.2V
Iout = [1, 400mA]
Tr = tf = 100ns 70 mV
STW451 1 Electri cal character istics
25/46
1. Guaranteed by design
2. Quiescent current defined as the current measured on the Vsdc2 dedicated power supply
Table 11. Vsdc2 electrical characteristics
Parameter name Condition Min. Typ. Max. Unit
Vsupply 2.7 5.5 V
Output voltage 3% 1.8 +3 % V
Vripple Output voltage ripple 10 mVpp
Output load current 0 600 mA
Efficiency 90 %
Short circuit limitation(1) 0.9 1.2 1.4 A
Quiescent current(2) A
Power-down current 1.5 µA
Switching frequency 900 kHz
PSRR(1) 1kHz < f < 10kHz 40 dB
Rising time (10 to 90%) 0.5 ms
Line regulation Vbat [2.7, 5.5V] 10 mV
Load regulation Iout [0.1, 600mA] 10 mV
Line transient(1)
Vsdc2 = 1.8V
Iout = 200mA
ΔVbat = 300mV
Tr = tf = 10µs
7mV
Load transient(1) Vsdc2 = 1.8V
Iout = [1, 400mA]
Tr = tf = 100ns 70 mV
Ele ctrical characteristics STW4511
26/46
3.2.2 Low-drop output converters
1. Guaranteed by design
2. Quiescent current defined as the current measured on the Vana1 dedicated power supply
Table 12. Vana1 electrical characteristics
Parameter name Condition Min. Typ. Max. Unit
Vsupply 2.7 5.5 V
Out put voltage -3% 1.8 +3% V
Output load current 150 mA
Short circuit limitation(1) 230 340 550 mA
Quiescent current(2) No load 30 µA
Power-down current 1 µA
Power supply rejection(1) f < 20kHz
f < 100kH z 50
45 dB
Rising time (10 to 90%) Output voltage 1.8V
Iout = 10mA 0.5 ms
Line regulation Vbat [2.7, 5.5V] 5 mV
Load regulation Iout [0.1, 150mA] 10 mV
Line transient(1)
Vana1= 1.8V
Iout = 150mA
ΔVbat = 300mV
Tr = tf = 10µs
2mV
Load transient(1) Vsdc2 = 1.8V
Iout = [1, 150mA]
Tr = tf = 1µs 20 mV
Table 13. Vana2/3/4 electrical characteristics
Parameter name Condition Min. Typ. Max. Unit
Vsupply Max[Va na(i)+0.2V,
Vbat_min] 5.5 V
Out put voltage -3%
1.8
2.5
2.8
3.3
+3% V
Output load current 150 mA
Short circuit
limitation(1) 230 340 550 mA
Quiescent current(2) No load 30 µA
Power-down current 1 µA
Power supply
rejection(1) f < 20kHz
f < 100kHz 50
45 dB
STW451 1 Electri cal character istics
27/46
Rising slope for Vana4 20 µs/V
Rising slo pe f or Vana 2,
Vana3 Iout = 10mA 0.3 ms/V
Line regulation Vbat [2.7, 5.5V] 5 mV
Load regulation Iout [0.1, 150mA] 10 mV
Line transient(1)
Vana1= 2.8V
Iout = 150mA
ΔVb at = 300m V
Tr = tf = 10µs
2mV
Load regulation(1) Vsdc2 = 1.8V
Iout = [1, 150mA]
Tr = tf = 1µs 20 mV
1. Guaranteed by design
2. Quiescent current defined as the current measured on the Vana2/3 dedicated power supply
Table 14. Vdig electrical characteristics
Parameter name Condition Min. Typ. Max. Unit
Vsupply 2.7 5.5 V
Output voltage -3% 1.0 to 1.5 +3% V
Output load current 250 mA
Short circuit limitation(1)
1. Guaranteed by design
330 800 mA
Quiescent current(2)
2. Quiescent current defined as the current measured on the Vdig dedicated power supply
No load 43 µA
Power-down current 1.5 µA
Rising slope Iout = 10mA 0.3 ms/V
Line regulation Vbat [2.7, 5.5V] 5 mV
Load regulation Iout [0.1, 150mA] 10 mV
Line transient(1)
Vdig = 1.2V
Iout = 150mA
ΔVbat = 300mV
Tr = tf = 10µs
1mV
Load transient(1) Vdig = 1.2V
Iout = [1, 150mA]
Tr = tf = 1µs 40 mV
Table 13. Vana2/3/4 electrical characteristics (continued)
Parameter name Condition Min. Typ. Max. Unit
Ele ctrical characteristics STW4511
28/46
3.2.3 DC/DC converter monitoring characteristics
3.3 Digital specification
All electrical specifications using VddIO voltage as ref erence are able to sustain 1.8 V ± 5%.
3.3.1 CMOS input/output static characteristics: I2C interface
Table 15. Vsdc1/2 monitoring output levels
Symbol Desc ription Test conditions Min. Typ. Max. Units
Threshold
THCORE Threshold Vsdc1 Vsdc1 = 1.2V or 1.5V -3% Vsdc1-150 +3% mV
Vsdc1 = 1V -3% Vsdc1-100 +3% mV
THVIO Threshold Vsdc2 -3% 1.65 +3% V
Table 16. CMOS input/output static characteristics: I2C interface
Symbol Description Test condition Min. Typ. Max. Unit
I2C interface
Vil Low level input voltage 0.3xVio V
Vih High level input voltage 0.7xVio V
Iil Low level input current -1.0 +1.0 µA
Iih High level input current -1.0 +1.0 µA
Vol Low level output voltage Iol = 3mA (with open
drain or open collector) 0.2xVio V
Voh High level output voltage Iol = 3mA (with open
drain or open collector) 0.8xVio V
STW451 1 Electri cal character istics
29/46
3.3.2 CMOS input/output dynamic characteristics: I2C interface
1. Cb = total capacitance of one bus line in pF
3.3.3 CMOS input/output static characteristics: VddIO level
Table 17. CMOS input/output d ynamic characteri stics: I2C interface
Symbol Description Min. Typ. Max. Unit
I2C interface
Fscl Clock frequency 400 kHz
Thigh Clock pulse width high 600 ns
Tlow Clock pulse width low 1300 ns
tr SDA, SCL rise time 20+0.1Cb(1) 300 ns
tf SDA, SCL rise time 20+0.1Cb(1) 300 ns
Thd_sta Start condition hold time 600 ns
Tsu_sta Start condition set up time 600 ns
Thd_dat Data input hold time 0 ns
Tsu_dat Data input set up time 100 ns
Tsu_sto Stop condition set up time 600 ns
tbuf Bus free time 1300 ns
Cb Capacitive load for each bus line 400 pF
Table 18. VddIO level: control I/Os
Symbol Description Test condition Min. Typ. Max. Unit
SW_reset, VddOK, Res_pro, Pwren
Vil Low level input voltage 0.3xVio V
Vih High level input voltage 0.7xVio V
Iil Low level input current -1.0 1.5 µA
Iih High level input current -1.0 1.5 µA
Cin Input capacitance 10 pF
Vol Low level output voltage Iol = 4mA 0.2xVio V
Voh High level output voltage Iol = 4mA 0.8xVio V
Tof Output fall time 1 ns
Tor Input fall time 1 ns
Ci/o Driving capability 100 pF
Ele ctrical characteristics STW4511
30/46
3.3.4 CMOS input static characteristics: Vbat level
3.3.5 NMOS input Pon
Table 19. CMOS input static characteristics: Vbat level
Symbol Description Test condition Min. Typ. Max. Unit
Vana2_sel[0:1], Vana3_sel[0:1], Vana4_sel[0:1], Vbat_Min_Thr_[0,1], Vbat_Max_Thr_[0,1], Vram_Sel,
Vbat_Thr_Sel
Vil Low level input voltage 0.3xVbat V
Vih High level input voltage 0.7xVbat V
Iil Low level input current -1.0 1.5 µA
Iih High level input current -1.0 1.5 µA
Cin Input capacitance 10 pF
Table 20. Pon input static characteristics
Symbol Description Test condition Min. Typ. Max. Unit
Pon
Vil Low level input voltage 0.5 V
Vih High level input voltage 1 Vbat V
Iil Low level input current -1.0 1.5 µA
Iih High level input current -1.0 1.5 µA
STW4511 I2C interface
31/46
4 I2C interface
The I2C inte rface is used to cont rol the power supplies.
The I2C bus is configured as a slave serial interface compatible with the I2C register
trademark of Philips Inc (version 2.1).
The device is a slave serial interface with a data line (SDA) and a clock line (SCL):
SCL is the input clock used to shift the data,
SDA is the input/output bidirectional data transfer line.
The internal bus connection is composed of:
one filter to reject spike on the bus data line and preserve data integrity,
one bidirectional data transfer up to 400 kbit/s (fast mode) via SDA signal.
The SDA signal contains the input/output control and data signals that are shifted in the
device MSB first. The first bit must be high (START) followed by the device ID (7 bits). A
read/write bit control '1’ in dicates read access while a logical ‘0’ indicates a write access.
Device ID:
device ID in write mode: 5Ch
device ID in read mode: 5Dh
The device sends an acknowledge at the end of an 8-bit transf er. The following 8-bit
sequence corresponds to the register address followed by another acknowledge. The 8-bit
data field is sent last and is also followed by a last acknowledge.
Table 21. Device ID
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
AdrD6 AdrD5 AdrD4 AdrD3 AdrD2 AdrD1 AdrD0 R/W
Table 22. Register address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RegADR7 RegADR6 RegADR5 RegADR4 RegADR3 RegADR2 RegADR1 RegADR0
Table 23. Register data
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0
I2C interface STW4511
32/46
Figure 7. Control interface: I2C for mat
Figure 8. Control interface: I2C timing
Note: Multi-write possibility is not available. F or each data it is mandatory to send the address first.
DEVICE ADDRESS
0 1 0 1 1 1 0 0 REGn ADDRESS
REGn Data In
WRITE
SINGLE BYTE
START
ACK ACK
ACK
STOP
DEVICE ADDRESS
0 1 0 1 1 1 0 0 REGn ADDRESS
START
ACK ACK
DEVICE ADDRESS
0 1 0 1 1 1 0 1 REGn Data Out
START
ACK NO ACK
RANDOM ADDR
SINGLE BYTE
READ
DEVICE ADDRESS
0 1 0 1 1 1 0 0
REGn ADDRESS
START
ACK ACK
DEVICE ADDRESS
0 1 0 1 1 1 0 1
START
Reg n Data Out ACK NO ACK
STOP
m+1 data bytes
ACK Reg n + m Data Out
RANDOM ADDR
MULTI BYTE
READ
ACK
StopStart repeat edStop
tbuf thd_statftlow
tr
thigh
thd_dat tsu_dat
Start
SDA
SCL
tsu_sta
thd_sta tsu_sto
USBSDA
USBSCL
STW4511 Clock management
33/46
5 Clock management
5.1 Internal oscillator
The device functions with internal clock at around 1 MHz to switch the step-down
converters. This oscillator is operational as s oon as Pon = 1.
5.2 Internal 32 kHz clock
The device state machine functions with a 32 kHz clock generated internally by dividing the
intern al osci ll ator frequency.
Application hints STW4511
34/46
6 Application hints
6.1 Application and external components
The application diagram shown in
Figure 9
illustrates an example where LDO is at 3.3 V and
the battery supervisor threshold is respectively at 2.85 V and 3.5 V voltage values. Vram is
suppli ed by Vsdc2 DC/DC converter at 1.8 V.
Figure 9. Application diagram example
STW4511 App l i cati o n hint s
35/46
Note: The production dispersion, temperature range, biasing and aging must be considered f or all
the above-listed components.
Table 24. List of materials
Name Typ. Units Comments
L1 and L2 4.7 µH Vsdc1 and Vsdc2 coils
C7 and C10 22 µF Vsdc1 and Vsdc2 output capacitors, X5R type
C8 and C9 10 µF Vsdc1 and Vsdc2 input capacitors, X5R type
C1, C2, C3, C4, C5 2.2 µF LDO output capacitors
C15, C16, C17, C18 1 µF LDO input capacitors
C6 2.2 µF Vref capacitor
C19 10 µF VddIO bypass capacitor
C20 1 µF Analog supply bypass capacitor
C21 20 µF DRAM memory maximum decoupling capacitor
value
R5 and R6 2.2 kΩI2C pull-up resistors
Register definition and mapping STW4511
36/46
7 Register definition and mapping
The set of registers used to program the device are accessible via the 5Ch I2C address.
Note: Register 1Fh must be sent to the I2C before the register 1Eh (MSB address must be sent
first).
Table 25. Register general information
Address Type Comment
00h, 01h, 02h Reserved
03h R Device version ID
10h R/W Application control register 1
11h R/W Application control register 2
12h to 1Dh Test registers
1Eh to 1Fh R/W Power control registers
Table 26. Register summary
Register Addr. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device
version ID 03h01000001
Application
control
register 1 10h
RESERVED
PDN_VANA2
RESERVED
Application
register 2 11h
PDN_VANA1
RESERVED
MONITORING_VSDC1/2
0
PDN_VANA3
SHIP_MODE
RESERVED
PDN_VANA4
Register15141312109876543210
Power control
RESERVED
REG_ADDRESS_2BIT
REG_ADDRESS_3BIT
DATA_IN/OUT_4BIT
EN
Address 1Fh 1Eh
STW4511 Register definition and mapping
37/46
Application controls register 1 @ 10h
Address: 10h
Type: R/W
Reset: 0000_0000
Description:
Application controls register 2 @ 11h
Address: 11h
Type: RW
Reset: 0000 0000
Description:
76543210
RESERVED PDN_VANA2 RESERVED
[7:2] RESERVED
[1] PDN_VANA2
0: Vana2 in power off (default) 1: Vana2 in HPM
[0] RESERVED
76543210
PDN_VANA1
RESERVED
MONITORING_VSDC1/2
RESERVED
PDN_VANA3
SHIP_MODE
RESERVED
PDN_VANA4
RW R R(1)
1. Will be reset after reading
RRW
[7] PDN_VANA1
0: Vana1 in power down mode (default) 1: Vana1 in high power mode
[6] RESERVED
[5] MONITORING_VSDC1/2
0: output in the good range (default)
1: output lower than expected on Vsdc1 or Vsdc2
[4] RESERVED
[3] PDN_VANA3
0 : Vana3 in power down mode (default)
1 : Vana3 in high power mode
Register definition and mapping STW4511
38/46
Power control register @ 1Eh
Address: 1Eh
Type: RW
Reset: 0000 0000
Description:
Power control register @ 1Fh
Address: 1Fh
Type: RW
Reset: 0000 0000
Description:
[2] SHIP_MODE
0 : no impact (default value)
1 : shipping mode selection : internal switch is OFF whatever the status of the Vram_Sel pin
[1] RESERVED
[0] PDN_VANA4
0: Vana4 in power down mode (default)
1: Vana4 in high power mode
76543210
REGISTER_ADDRESS_3BIT DATA_IN_OUT_4BIT EN
[7:5] REGISTER_ADDRESS_3BIT
See “Address” column (LSB) table (default =0)
[4:1] DATA_IN_OUT_4BIT
See control register table (default = 0)
[0] EN
0: Read enabled (default) 1: write enabled
1514131211109876543210
RESERVED
REG_ADDRESS_2BIT
RESERVED
[15:8] Reserved
[9:8] REG_ADDRESS_2BIT
See “Address” column (MSB) table (default = 0)
STW4511 Register definition and mapping
39/46
Power control register mapping
Power control register @ 05h
Address: 05h
Type: RW
Reset: 0000 0000 1011 1100
Description:
Table 27. Power contr ol register mapping
Address 1Fh Address 1Eh
Comment
RESERVED REG_ADDRESS DATA_IN/OUT EN
2-bit MSB 3-bit LSB
151413121110987654321 0
00h to 04h Test purpose
05h to 09h Setting
Power control register @ 05h
to
Power control register @ 09h
0Bh to 1Eh Test purpose
Address 1Fh Address 1Eh
1514131211109876543210
RESERVED 0 0 1 0 1 VSDC1_VDIG[3:0] EN
[15:10] Reserved
[4:1] VSDC1_VDIG_PRG[3:0]
0000 1.00 V 0001 = 1.05 V
0010 1.10 V 0011 1.15 V
0100 1.20 V 0101 1.22 V
0110 1.24 V 0111 1.26 V
1000 1.28 V 1001 1.30 V
1010 1.32 V 1011 1.40V
1100 1.43 V 1101 1.45 V (default)
1110 1.47 V 1111 1.50 V
[0] EN
0 read enabled (default) 1 write enabled
Register definition and mapping STW4511
40/46
Power control register @ 06h
Address: 06h
Type: RW
Reset: 0000 0000 1101 1110
Description:
Power control register @ 07h
Address: 07h
Type: RW
Reset: 0000 0000 1111 0110
Description:
Address 1Fh Address 1Eh
1514131211109876543210
RESERVED
0
0
1
1
0
1
EN_VDIG
1
1
EN
RRRRRRW
[15:10] RESERVED
[4] 1 Default value = 1
[3] EN_VDIG
0: Vdig in power down mode
1: Vdig in high power mode (default)
[2] 1 Default value = 1
[1] 1 Default value = 1
[0] EN
0: Read enabled (default) 1: Write enabled
Address 1Fh Address 1Eh
1514131211109876543210
RESERVED
0
0
1
1
1
EN_VANA3
RESERVED
EN_VANA4
RESERVED
EN
R RRRRRRWRRWRRW
[15:10] RESERVED
[4] EN_VANA3
0: Vana3 in power down mode
1: Vana3 in high power mode (default)
[3] RESERVED
STW4511 Register definition and mapping
41/46
Power control register @ 08h
Address: 08h
Type: RW
Reset: 0000 0001 0000 1100
Description:
[2] EN_VANA4
0: Vana4 in power down mode
1: Vana4 in high power mode (default)
[1] RESERVED
[0] EN
0: Read enabled (default) 1: Write enabled
Address 1Fh Address 1Eh
1514131211109876543210
RESERVED
0
1
0
0
0
RESERVED
EN_MONITORING
EN_VANA2
RESERVED
EN
R RRRRRRRRWRRW
[15:10] RESERVED
[4] RESERVED
[3] EN_MONITORING
0: Disabled/monitoring = OFF
1: Enabled/Vsdc1 and Vsdc2 monitoring = 0N (default)
[2] EN_VANA2
0: Vana2 in power down mode
1: Vana2 enabled in high power mode (default)
[1] RESERVED
[0] EN
0: Read enabled (default) 1: Write enabled
Register definition and mapping STW4511
42/46
Power control register @ 09h
Address: 09h
Type: RW
Reset: 0000 0001 0011 1010
Description:
Address 1Fh Address 1Eh
1514131211109876543210
RESERVED
0
1
0
0
1
VANA2/3_OFF
0
RESERVED
VANA4_OFF
EN
R RRRRRRWRRWRRW
[15:10] RESERVED
[9] 0: default value = 0
[8] 1: default value = 1
[7] 0: default value = 0
[6] 0: default value = 0
[5] 1: default value = 1
[4] VANA2_VANA3 _OFF: when Pwren = 0
0: VANA2 and VANA3 stay in HPM
1: VANA2 and VANA3 go in OFF mode (default)
[3] 0: default value = 0
[2] RESERVED
[1] VANA4_OFF: when Pwren = 0
0: VANA4 stay in HPM
1: VANA4 go in OFF mode (default)
[0] EN
0: Read enabled (default) 1: Write enabled
STW4511 Package mechanical data
43/46
8 Package mechanical data
Table 28. TFBGA 6mm x 6mm x 1.2mm with 0.5 mm pitch and 0.3 mm ball
Databook (mm) Drawing (mm)
Ref. Min. Typ. Max. Min. Typ. Max.
A(1)
1. TFBGA stands for Thin profile Fine Pitch Ball Grid Array.
Thin profile:
The total profile height (Dim A) is measured from the seating plane to the top of the component.
The maximum total package height is calculated by the following methodology:
1.20 1.06
A1 0.15 0.16 0.21 0.26
A2 0.20 0.16 0.20 0.24
A4 0.585 0.57 0.585 0.60
b(2)
2. The typical hall diameter before mounting is 0.30mm.
0.25 0.30 0.35 0.25 0.30 0.35
D 5.85 6.00 6.15 5.90 6.00 6.10
D1 4.50 4.50
E 5.85 6.00 6.15 5.90 6.00 6.10
E1 4.50 4.50
e 0.50 0.50
Z 0.75 0.75
ddd 0.08 0.08
eee(3)
3. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B.
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true
position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each bail
must lie within this tolerance zone.
0.15 0.15
fff(4)
4. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each
tolerance zone in the array is contained entirely in the respective zone eee above. The axis of each ball
must lie simultaneously in both tolerance zones.
0.05 0.05
1.00mm A 1.20mm/Fine pitch: e 1.00mm pitch.<<
A Max A1 TypA2 TypA4 Typ A1
2A22A32tolerance values++()+++=
Package mechanical data STW4511
44/46
Figure 10. TFBGA 6mm x 6mm x 1.2mm with 0.5 mm pitch and 0.3 mm ball
1. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized
markings, or other feature of package body or integral heatslug.
A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1
corner. Exact shape of each corner is optional.
See
Note 1
STW4511 Ordering information
45/46
9 Ordering information
10 Revision history
Table 29. Ordering information
Order code Package P acking
STW4511BH)/HF TFBGA 6mm x 6mm x 1.2mm Tray
STW4511BH)T/HF TFBGA 6mm x 6mm x 1.2mm Tape and reel
Table 30. Document revision history
Date Revision Changes
26-Nov-2008 1 Initial release.
10-Feb-2009 2 Updated the minimum temperature value in the section related to
absolute ma ximum ratings.
12-Jun-2009 3
Added Vana3 in the functional description and the register
description.
Added one section on shipping mode in the functional description
and the shipping_mode bit in the register description.
Updated the minimum value for the package Rth in the absolute
maximum ratings.
Updated the docum ent st atus to d atashe et with resp ect t o the de v ice
maturity level.
Updated the ordering inform ation.
STW4511
46/46
Please Read Carefully:
The contents of this document are subject to change without prior notice. ST-Ericsson makes no representation or warranty of any nature
whatsoev er (nei ther ex press ed nor implie d) with r espect to the mat ters addre ssed in thi s document , in cluding but not limit ed to warr anties of
merchantab ilit y or fi tness for a pa rticu lar purpo se, in terpre tabilit y or in terope rabi lity o r, again st in fringeme nt of third p arty i ntellec tual prop ert y
rights, and in no event shall ST-Ericsson be liable to any party for any direct, indirect, incidental and or consequential damages and or loss
whatsoev er (including but not limit ed to monetary losse s or loss of data) , that might ari se from the use of this docu ment or the informa tion in it.
ST-Erics son and the ST-Ericsson log o are trademarks of the ST-Ericsson group of companies or used under a license from
STMicroelec tronics NV or Telefonaktiebolaget LM Ericsson.
All other names are the property of their respective owners.
© ST-Ericsson, 2009 - All rights reserved
Contact information at www.stericsson.com under Contacts
www.stericsson.com