1
Features
Active Mixer with Conversion Gain
Integrated LO and IF Drivers
Excellent Linearity
Broadband 50 W Impedance on All Ports
Low LO-RF Leakage
Differential or Single Ended Inputs
Applications
AMPS/GSM/TDMA/CDMA Transmitter
Other Digital Communication Applications
High Performance RF Instrumentation
Benefits
Small and Thin 16-pin SSOP Package with Exposed Paddle
Few External Components
Fully ESD Protected
Electrostatic sensitive device.
Observe precautions for handling.
Description
The ATR0785 is a highly linearity active mixer which is manufactured using Atmel´s
advanced Silicon Germanium technology for the use in a variety of high performance
requiring RF systems such as digital communications.
This mixer features a frequency range of 800 MHz to 1000 MHz. It operates from a
single 5 V supply and provides 14 dB of conversion gain while requiring only 0 dBm
input to the integrated LO driver. An IF and an LO amplifier is also included.
The ATR0785 incorporates internal matching on each RF, IF and LO port to enhance
ease of use and to reduce the external components required. The RF and LO inputs
can be driven differentially or single ended.
Figure 1. Block Diagram
RF_Out+
RF_Out-LO_IN+
LO_IN-
IF_IN+
IF_IN- 8
9
4
5
13
12
High Linearity
Active Transmit
Mixer for
800 MHz to
1000 MHz
ATR0785
Preliminary
Rev. 4585B–SIGE–02/03
2ATR0785
4585B–SIGE–02/03
Pin Configuration
Figure 2. Pinning TSSOP16
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
Gnd
Vcc
Gnd
RF_Out-
RF_Out+
Gnd
Vcc
IF_IN-
Gnd
Vcc
Gnd
LO_IN-
LO_IN+
Gnd
Vcc
IF_IN+
Pin Description
Pin Symbol Function
1 Gnd Ground
2 Vcc Supply voltage
3 Gnd Ground
4 RF_OUT- Negative RF output; nominal DC voltage is 2.3 V; (internally biased) input should be AC-coupled
5 RF_OUT+ Positive RF output; nominal DC voltage is 2.3 V; (internally biased) input should be AC-coupled
6 Gnd Ground
7 Vcc Supply voltage
8 IF_IN- Negative IF input; nominal DC voltage is 2.3 V, provided through off-chip inductors
9 IF_IN+ Positive IF input; nominal DC voltage is 2.3 V, provided through off-chip inductors
10 Vcc Supply voltage
11 Gnd Ground
12 LO_IN+ Negative local oscillator input; nominal DC voltage is 2.3 V; (internally biased) input should be AC-
coupled
13 LO_IN- Positive local oscillator input; nominal DC voltage is 2.3 V; (internally biased) input should be AC-coupled
14 Gnd Ground
15 Vcc Supply voltage
16 Gnd Ground
Paddle Device ground and heat sink, requires good thermal path; RF reference plane
3
ATR0785
4585B–SIGE–02/03
Absolute Maximum Ratings
Parameters Symbol Value Unit
Supply voltages, no RF applied VCC -0.5 to +5.5 V
LO input signals LO_IN-; LO_IN+ 10.0 dBm
IF input signals IF_IN-; IF_IN+ 10.0 dBm
Operating case temperature TC-40 to +85 °C
Storage temperature TSTG -55 to +150 °C
Thermal Resistance
Parameters Symbol Value Unit
Junction ambient RthJA 25 K/W
Electrical Characteristics
Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static
conditions: VCC = +5.0 V, Tamb = 25°C; PLO = 0 dBm; IF = 200 MHz; PIF = -20 dBm
No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*
General Performance
Supply voltage VCC 4.75 5.0 5.25 V
Supply current ICC 200 mA
LO drive Matched to 50 W -3 0 +3 dBm
LO, IF, RF return loss Matched to 50 W14 dB
Note: *) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
4ATR0785
4585B–SIGE–02/03
RF Electrical Characteristics
Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static
conditions: Vcc = +5.0 V, Tamb = 25°C; PLO = 0 dBm; IF = 200 MHz; PIF = -20 dBm
No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*
Mixer RF Performance
RF frequency fRF 800 900 MHz
LO frequency fLO 600 700 MHz
IF frequency fIF 30 200 400 MHz
Conversion gain G 9 12 16 dB
SSB noise figure NF 9.0 11.0 dB
Output IP3
IF1 = IF2 =
-20 dBm/tone,
1 MHz spacing
OIP3 17 21 dBm
Output P1dB P1dB 5 7 dBm
Leakage (LO-RF) -35 -25 dBm
Leakage (LO-IF) -40 -30 dBm
Mixer RF Performance
RF frequency fRF 900 1000 MHz
LO frequency fLO 700 800 MHz
IF frequency fIF 30 200 400 MHz
Conversion gain G 11 14 16 dB
SSB noise figure NF 9.0 11.0 dB
Output IP3
IF1 = IF2 =
-20 dBm/tone,
1 MHz spacing
OIP3 19 22 dBm
Output P1dB P1dB 6 8.5 dBm
Leakage (LO-RF) -30 -20 dBm
Leakage (LO-IF) -35 -25 dBm
Note: *) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
5
ATR0785
4585B–SIGE–02/03
Typical Performance Figure 3. Conversion Gain versus Frequency + Temperature
Figure 4. Output IP3 versus Frequency + Temperature
Figure 5. Output IP3 versus Frequency + LO Drive
Conversion Gain vs Temperature
Plo=0 dBm
4
6
8
10
12
14
16
18
800 850 900 950 1000
Frequency (MHz)
Conversion Gain (dB)
85C
25C
-40C
Output IP3 vs Temperature
Plo=0 dBm
14
16
18
20
22
24
26
800 850 900 950 1000
Frequency (MHz)
Output IP3 (dBm)
85C
25C
-40C
Output IP3 vs LO Drive
T=25 C
14
16
18
20
22
24
26
800 850 900 950 1000
Frequency (MHz)
Output IP3 (dBm)
-3 dBm
0 dBm
+3 dBm
6ATR0785
4585B–SIGE–02/03
Figure 6. Leakages versus Frequency
Figure 7. Noise Figure versus Frequency + Temperature
Figure 8. RF and LO Return Loss versus Frequency
Leakages
Plo=0 dBm at pins
T=25 C (Note 2)
-60
-50
-40
-30
-20
-10
0
500 600 700 800 900 1000
Fre que ncy (M Hz)
Leakage (dBm)
LO-RF
LO-IF
Noise Figure vs Temperature
Plo=0 dBm
4
6
8
10
12
14
16
800 850 900 950 1000
Frequency (MHz)
Noise Figure (dB)
85C
25C
-40C
RF & LO Return Loss (Note 1)
-25
-20
-15
-10
-5
0
400 600 800 1000 1200
RF Frequency (MHz)
Return Loss (dB)
RF RL
LO RL
7
ATR0785
4585B–SIGE–02/03
Figure 9. Output P1dB versus Frequency + Temperature
Figure 10. IF Return Loss versus Frequency
Figure 11. Output P1dB versus Frequency + LO Drive
Output P1dB vs Temperature
Plo=0 dBm
0
2
4
6
8
10
12
800 850 900 950 1000
Fr e que ncy (M Hz)
Output P1dB (dBm)
85C
25C
-40C
IF Return Loss (Note 1)
-35
-30
-25
-20
-15
-10
-5
0
0 100 200 300 400
IF Frequency (MHz)
Return Loss (dB)
Output P1dB vs LO Drive
T=25 C
0
2
4
6
8
10
12
800 850 900 950 1000
Frequency (MHz)
Output P1dB (dBm)
-3 dBm
0 dBm
+3 dBm
8ATR0785
4585B–SIGE–02/03
Figure 12. Demo Board Schematic
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
5V
Lfil
Vcc
ATR0787
C5
C3
Vcc
C4
Vcc
C20
Vcc
C21
C1
Vcc
LOin
T9
RFout
C7
T2
IFin
C9
C12
C11 T11
C30
IC1
J3 J4
J5
L1
Bill of Material of Demo Board
Parameters Test Conditions Pin Symbol Min. Typ.
Highly linear active mixer Atmel ATR0785 16-pin TSSOP
Capacitor C7, C9 100 pF 0603
Capacitor C1, C3, C20, C21, C30 27 pF 0603
Capacitor C11, C12 22 pF 0603
Capacitor C4, C5 5.6 pF 0603
Inductor Lfil Würth Elektronik 74476401 1 µH 1210
Inductor L1 TOKO LL1608-
FS39NJ 39 nH 0603
Transformer T9; T11 Panasonic EHF-FD1618
Transformer T2 Mini-Circuits®TC1-1
RF connector Johnson
Components 142-0701-851 SMA
Note: 1. Other sizes are possible.
9
ATR0785
4585B–SIGE–02/03
Figure 13. Demo Test Board
10 ATR0785
4585B–SIGE–02/03
Recommended Package Footprint
Notes: 1. Only ground signal traces are allowed directly under the package.
2. Primary dimensions are in millimeter alternate dimensions are in inches.
Remark: Heatslug must be soldered to GND!
Plugging of the ground vias under the heat slug is also recommended to avoid soldering problems.
3.0
3.0
0.25
1.25
6.9
0.74
0.74
0.7
0.9
0.4
f0.33 via
- Indicates metalization - vias connect pad to underlying ground plane
all units are in mm
11
ATR0785
4585B–SIGE–02/03
.
Package Information
Ordering Information
Extended Type Number Package Remarks
ATR0785 TSSOP16 5.0 mm ´ 6.4 mm
Printed on recycled paper.
© Atmel Corporation 2003.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.
Atmel Headquarters Atmel Operations
Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581
Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80
e-mail
literature@atmel.com
Web Site
http://www.atmel.com
4585B–SIGE–02/03 xM
Atmel® is the registered trademark of Atmel.
Other terms and product names may be the trademarks of others.