© Semiconductor Components Industries, LLC, 2012
December, 2012 Rev. 15
1Publication Order Number:
MC10EP445/D
MC10EP445, MC100EP445
3.3V/5V ECL 8-Bit
Serial/Parallel Converter
Description
The MC10/100EP445 is an integrated 8–bit differential serial to
parallel data converter with asynchronous data synchronization. The
device has two modes of operation. CKSEL HIGH mode is designed
to operate NRZ data rates of up to 3.3 Gb/s, while CKSEL LOW mode
is designed to operate at twice the internal clock data rate of up to
5.0 Gb/s. The conversion sequence was chosen to convert the first
serial bit to Q0, the second bit to Q1, etc. Two selectable differential
serial inputs, which are selected by SINSEL, provide this device with
loopback testing capability. The MC10/100EP445 has a SYNC pin
which, when held high for at least two consecutive clock cycles, will
swallow one bit of data shifting the start of the conversion data from
Dn to Dn+1. Each additional shift requires an additional pulse to be
applied to the SYNC pin.
Control pins are provided to reset and disable internal clock
circuitry. Additionally, VBB pin is provided for singleended input
condition.
The 100 Series contains temperature compensation.
Features
1530 ps Propagation Delay
5.0 Gb/s Typical Data Rate for CLKSEL LOW Mode
Differential Clock and Serial Inputs
VBB Output for Single-Ended Input Applications
Asynchronous Data Synchronization (SYNC)
Asynchronous Master Reset (RESET)
PECL Mode Operating Range: VCC = 3.0 V to 5.5 V
with VEE = 0 V
NECL Mode Operating Range: VCC = 0 V
with VEE = 3.0 V to 5.5 V
Open Input Default State
CLK ENABLE Immune to Runt Pulse Generation
PbFree Packages are Available*
*For additional information on our PbFree strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
LQFP32
FA SUFFIX
CASE 873A
MARKING
DIAGRAM*
*For additional marking information, refer to
Application Note AND8002/D.
http://onsemi.com
MCxxx
EP445
AWLYYWWG
xxx = 10 or 100
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G or G= PbFree Package
(Note: Microdot may be in either location)
See detailed ordering and shipping information in the package
dimensions section on page 17 of this data sheet.
ORDERING INFORMATION
32
1
MCxx
EP445
AWLYYWWG
G
1
QFN32
MN SUFFIX
CASE 488AM
MC10EP445, MC100EP445
http://onsemi.com
2
Q7
2526272829303132
1514131211109
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
16
MC10EP445
MC100EP445
Q6 Q5 VCC VCC Q4 Q3 VEE
VCC SINA SINA VBB0 VEE SINB SINB SINSEL
VCC
CKSEL
VBB1
CLK
CLK
CKEN
RESET
VCC
Q2
Q1
VCC
Q0
PCLK
VCC
PCLK
Figure 1. 32Lead LQFP Pinout (Top View)
SYNC
Warning: All VCC and VEE pins must be externally connected to
Power Supply to guarantee proper operation.
2526272829303132
1514131211109
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
16
Figure 2. 32Lead QFN Pinout (Top View)
MC10EP445
MC100EP445
Q7 Q6 Q5 VCC VCC Q4 Q3 VEE
VCC SINA SINA VBB0 VEE SINB SINB SINSEL
VCC
CKSEL
VBB1
CLK
CLK
CKEN
RESET
VCC
Q2
Q1
VCC
Q0
PCLK
VCC
PCLK
SYNC
Table 1. PIN DESCRIPTION
Pin
SINA*, SINA*
Function
ECL Differential Serial Data Input A
SINSEL*
Q0Q7 ECL Parallel Data Outputs
ECL Serial Input Selector Pin
CLK*, CLK* ECL Differential Clock Inputs
PCLK, PCLK ECL Differential Parallel Clock Output
SYNC* ECL Conversion Synchronizing Input
CKSEL* ECL Clock Input Selector Pin
VBB0, VBB1 Output Reference Voltage
VCC Positive Supply
VEE Negative Supply
SINB*, SINB* ECL Differential Serial Data Input B
CKEN* ECL Clock Enable Pin
RESET* ECL Reset Pin
* Pins will default logic LOW or differential logic LOW
when left open.
EP The exposed pad (EP) on the QFN32
package bottom is thermally connected
to the die for improved heat transfer out
of the package. THe exposed pad must
be attached to a heatsinking conduit.
The pad is electrically connected to
VEE.
Exposed Pad
(EP)
MC10EP445, MC100EP445
http://onsemi.com
3
Table 2. TRUTH TABLE
PIN
FUNCTION
High Low
SINSEL Select SINB Input Select SINA Input
CKSEL Q: PCLK = 8:1
CLK: Q = 1:1
Q
CLK
Q: PCLK = 8:1
CLK: Q = 1:2
Q
CLK
CKEN Synchronously Disable Internal Clock Circuitry Synchronously Enable Internal
Clock Circuitry
RESET Asynchronous Master Reset Synchronous Enable
SYNC Asynchronously Applied to Swallow a Data Bit Normal Conversion Process
Figure 3. Logic Diagram
Q0
1:2
DEMUX
1:2
DEMUX
1:2
DEMUX
1:2
DEMUX
Q4
Q2
Q6
Q1
Q5
Q3
Q7
1:2
DEMUX
1:2
DEMUX
1:2
DEMUX
DIV2DIV2 PCLK
PCLK
SINA
SINA
SINB
SINB
SINSEL
T
C
Q
R
CKSEL
T
C
Q
R
CKEN
CLK
CLK
RESET
SYNC
Control
Logic
VEE
MC10EP445, MC100EP445
http://onsemi.com
4
Table 3. ATTRIBUTES
Characteristics Value
Internal Input Pulldown Resistor 75 k
Internal Input Pullup Resistor N/A
ESD Protection Human Body Model
Machine Model
Charged Device Model
> 2 kV
> 200 V
> 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Pb Pkg PbFree Pkg
LQFP32
QFN32
Level 2
N/A
Level 2
Level 1
Flammability Rating Oxygen Index: 28 to 34 UL 94 V0 @ 0.125 in
Transistor Count 993 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
Table 4. MAXIMUM RATINGS
Symbol Parameter Condition 1 Condition 2 Rating Unit
VCC PECL Mode Power Supply VEE = 0 V 6 V
VEE NECL Mode Power Supply VCC = 0 V 6 V
VIPECL Mode Input Voltage
NECL Mode Input Voltage
VEE = 0 V
VCC = 0 V
VI VCC
VI VEE
6
6
V
V
Iout Output Current Continuous
Surge
50
100
mA
mA
IBB VBB Sink/Source ± 0.5 mA
TAOperating Temperature Range 40 to +85 °C
Tstg Storage Temperature Range 65 to +150 °C
JA Thermal Resistance (JunctiontoAmbient) 0 lfpm
500 lfpm
32 LQFP
32 LQFP
80
55
°C/W
°C/W
JC Thermal Resistance (JunctiontoCase) Standard Board 32 LQFP 12 to 17 °C/W
JA Thermal Resistance (JunctiontoAmbient) 0 lfpm
500 lfpm
QFN32
QFN32
31
27
°C/W
°C/W
JC Thermal Resistance (JunctiontoCase) 2S2P QFN32 12 °C/W
Tsol Wave Solder Pb
PbFree
<2 to 3 sec @ 248°C
<2 to 3 sec @ 260°C
265
265
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
MC10EP445, MC100EP445
http://onsemi.com
5
Table 5. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 2)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current 95 119 143 98 122 146 100 125 150 mA
VOH Output HIGH Voltage (Note 3) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV
VOL Output LOW Voltage (Note 3) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV
VIH Input HIGH Voltage (SingleEnded) 2090 2415 2155 2480 2215 2540 mV
VIL Input LOW Voltage (SingleEnded) 1365 1690 1460 1755 1490 1815 mV
VBB Output Voltage Reference 1790 1890 1990 1855 1955 2055 1915 2015 2115 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 4)
2.0 3.3 2.0 3.3 2.0 3.3 V
IIH Input HIGH Current 150 150 150 A
IIL Input LOW Current 0.5 0.5 0.5 A
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
2. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to 2.2 V.
3. All loading with 50 to VCC 2.0 V.
4. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 6. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 5)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current (Note 6) 95 119 143 98 122 146 100 125 150 mA
VOH Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV
VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV
VIH Input HIGH Voltage (SingleEnded) 3790 4115 3855 4180 3915 4240 mV
VIL Input LOW Voltage (SingleEnded) 3065 3390 3130 3455 3190 3515 mV
VBB Output Voltage Reference 3490 3590 3690 3555 3655 3755 3615 3715 3815 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 8)
2.0 5.0 2.0 5.0 2.0 5.0 V
IIH Input HIGH Current 150 150 150 A
IIL Input LOW Current 0.5 0.5 0.5 A
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
5. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to 0.5 V.
6. Required 500 lfpm air flow when using +5 V power supply. For (VCC VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal
protection at elevated temperatures. Recommend VCCVEE operation at 3.3 V.
7. All loading with 50 to VCC 2.0 V.
8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
MC10EP445, MC100EP445
http://onsemi.com
6
Table 7. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = 5.5 V to 3.0 V (Note 9)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current (Note 10) 95 119 143 98 122 146 100 125 150 mA
VOH Output HIGH Voltage (Note 11) 1135 1010 885 1070 945 820 1010 885 760 mV
VOL Output LOW Voltage (Note 11) 1935 1810 1685 1870 1745 1620 1810 1685 1560 mV
VIH Input HIGH Voltage (SingleEnded) 1210 885 1145 820 1085 760 mV
VIL Input LOW Voltage (SingleEnded) 1935 1610 1870 1545 1810 1485 mV
VBB Output Voltage Reference 1510 1410 1310 1445 1345 1245 1385 1285 1185 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 12)
VEE+2.0 0.0 VEE+2.0 0.0 VEE+2.0 0.0 V
IIH Input HIGH Current 150 150 150 A
IIL Input LOW Current 0.5 0.5 0.5 A
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
9. Input and output parameters vary 1:1 with VCC.
10.Required 500 lfpm air flow when using 5 V power supply. For (VCC VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal
protection at elevated temperatures. Recommend VCCVEE operation at 3.3 V.
11. All loading with 50 to VCC 2.0 V.
12.VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 8. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 13)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current 95 119 143 98 122 146 100 125 150 mA
VOH Output HIGH Voltage (Note 14) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV
VOL Output LOW Voltage (Note 14) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV
VIH Input HIGH Voltage (SingleEnded) 2075 2420 2075 2420 2075 2420 mV
VIL Input LOW Voltage (SingleEnded) 1355 1675 1355 1675 1355 1675 mV
VBB Output Voltage Reference 1775 1875 1975 1775 1875 1975 1775 1875 1975 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 15)
2.0 3.3 2.0 3.3 2.0 3.3 V
IIH Input HIGH Current 150 150 150 A
IIL Input LOW Current 0.5 0.5 0.5 A
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
13.Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to 2.2 V.
14.All loading with 50 to VCC 2.0 V.
15.VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
MC10EP445, MC100EP445
http://onsemi.com
7
Table 9. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 16)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current (Note 17) 95 119 143 98 122 146 100 125 150 mA
VOH Output HIGH Voltage (Note 18) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV
VOL Output LOW Voltage (Note 18) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV
VIH Input HIGH Voltage (SingleEnded) 3775 4120 3775 4120 3775 4120 mV
VIL Input LOW Voltage (SingleEnded) 3055 3375 3055 3375 3055 3375 mV
VBB Output Voltage Reference 3475 3575 3675 3475 3575 3675 3475 3575 3675 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 19)
2.0 5.0 2.0 5.0 2.0 5.0 V
IIH Input HIGH Current 150 150 150 A
IIL Input LOW Current 0.5 0.5 0.5 A
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
16.Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to 0.5 V.
17.Required 500 lfpm air flow when using +5 V power supply. For (VCC VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal
protection at elevated temperatures. Recommend VCCVEE operation at 3.3 V.
18.All loading with 50 to VCC 2.0 V.
19.VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 10. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = 5.5 V to 3.0 V (Note 20)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current (Note 21) 95 119 143 98 122 146 100 125 150 mA
VOH Output HIGH Voltage (Note 22) 1145 1020 895 1145 1020 895 1145 1020 895 mV
VOL Output LOW Voltage (Note 22) 1945 1820 1695 1945 1820 1695 1945 1820 1695 mV
VIH Input HIGH Voltage (SingleEnded) 1225 880 1225 880 1225 880 mV
VIL Input LOW Voltage (SingleEnded) 1945 1625 1945 1625 1945 1625 mV
VBB Output Voltage Reference 1525 1425 1325 1525 1425 1325 1525 1425 1325 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 23)
VEE + 2.0 0.0 VEE + 2.0 0.0 VEE + 2.0 0.0 V
IIH Input HIGH Current 150 150 150 A
IIL Input LOW Current 0.5 0.5 0.5 A
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
20.Input and output parameters vary 1:1 with VCC.
21.Required 500 lfpm air flow when using 5.0 V power supply. For (VCC VEE) > 3.3 V, 5 to 10 in line with VEE required for maximum
thermal protection at elevated temperatures. Recommend VCC VEE operation at v 3.3 V.
22.All loading with 50 to VCC 2.0 V.
23.VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
MC10EP445, MC100EP445
http://onsemi.com
8
Table 11. AC CHARACTERISTICS VCC = 0 V; VEE = 3.0 V to 5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 24)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
fmax Maximum Input CLK Frequency CKSEL = LOW
(See Figure 13. Fmax/JITTER) CKSEL = HIGH
2.0
2.8
2.5
3.3
2.0
2.8
2.5
3.3
1.7
2.8
2.2
3.3
GHz
tPLH,
tPHL
Propagation Delay to CLK to Q
Output Differential CLK TO PCLK
1280
1000
1475
1240
1710
1490
1335
1050
1557
1310
1795
1580
1450
1140
1663
1420
1950
1710
ps
ts Setup Time SINA, B+ TO CLK+ (Figure 5)
CKEN+ TO CLK (Figure 6)
400
100
459
50
420
100
479
50
440
100
492
50
ps
thHold Time CLK+ TO SINA, B (Figure 5)
CLK TO CKEN (Figure 6)
533
45
474
35
550
45
490
35
560
45
508
35
ps
tRR/tRR2 Reset Recovery (Figure 4) 350 180 350 180 350 180 ps
tPW Minimum Pulse Width RESET 400 400 400 ps
tJITTER RMS Random Clock Jitter
@ 2.0 GHz CLK_SEL LOW
@ 2.5 GHz CLK_SELF HIGH
@ 3.0 GHz CLK_SEL HIGH
1.5
1.0
1.5
1.5
1.0
2.0
1.5
1.5
2.5
ps
VPP Input Voltage Swing (Differential Configuration)
(Note 25)
150 800 1200 150 800 1200 150 800 1200 mV
tr
tf
Output Rise/Fall Times Q/Q
(20% 80%) PCLK/PCLK
100
100
180
180
400
250
100
100
200
200
400
300
125
125
230
230
425
325
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
24.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC 2.0 V.
25.VPP(min) is the minimum input swing for which AC parameters are guaranteed.
MC10EP445, MC100EP445
http://onsemi.com
9
Figure 4. Reset Recovery
Reset
CLK
tRR
CLK
Figure 5. Data Setup and Hold Time
Data Setup Time
CLK
Figure 6. CKEN Setup and Hold Time
CKEN Setup Time
th
ts
Data Hold Time
+
+
CLK
th
ts
CKEN Hold Time
+
+
MC10EP445, MC100EP445
http://onsemi.com
10
APPLICATION INFORMATION
The MC10/100EP445 is an integrated 1:8 serial to parallel
converter with two modes of operation selected by
CKSEL (Pin 7). CKSEL HIGH mode only latches data on
the rising edge of the input CLK and CKSEL LOW mode
latches data on both the rising and falling edge of the input
CLK. CKSEL LOW is the open default state. Either of the
two differential input serial data path provided for this
device, SINA and SINB, can be chosen with the SINSEL pin
(pin 25). SINA is the default input path when SINSEL pin
is left floating. Because of internal pulldowns on the input
pins, all input pins will default to logic low when left open.
The two selectable serial data paths can be used for
loopback testing as well as the bit error testing.
Upon powerup, the internal flipflops will attain a
random state. To synchronize multiple flip–flops in the
device, the Reset (pin 1) must be asserted. The reset pin will
disable the internal clock signal irrespective of the CKEN
state (CKEN disables the internal clock circuitry). The
device will grab the first stream of data after the falling edge
of RESETÀ, followed by the falling edge of CLKÁ, on
second rising edge of CLKÂ in either CKSEL modes. (See
Figure 6)
CLK
RESET
PCLK
RESET
(Asynchronous Reset) RESET
(Synchronous ENABLE)
Figure 7. Reset Timing Diagram
À
ÁÂ
MC10EP445, MC100EP445
http://onsemi.com
11
For CKSEL LOW operation, the data is latched on both the rising edge and the falling edge of the clock and the time from
when the serial data is latchedÀ to when the data is seen on the parallel outputÁ is 6 clock cycles (see Figure 8).
Figure 8. Timing Diagram A. 1:8 Serial to Parallel Conversion with CKSEL LOW
CLK
SINA
RESET
CKSEL
PCLK
Q0
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24
Q1
Q2
Q3
Q4
Q5
Q6
Q7
D0 D8 D16
D1 D9 D17
D2 D10 D18
D3 D11 D19
D4 D12 D20
D5 D13 D21
D6 D14 D22
D7 D15 D23
CKEN
123456
Á
À
Number of
C
lock
C
ycles from Data Latch to
Q
MC10EP445, MC100EP445
http://onsemi.com
12
Similarly, for CKSEL HIGH operation, the data is latched only on the rising edge of the clock and the time from when the
serial data is latchedÀ to when the data is seen on the parallel outputÁ is 12 clock cycles (see Figure 9).
Figure 9. Timing Diagram A. 1:8 Serial to Parallel Conversion with CKSEL HIGH
CLK
SINA
RESET
CKSEL
PCLK
Q0
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14
Q1
Q2
Q3
Q4
Q5
Q6
Q7
D0
D1
D2
D3
D4
D5
D6
D7
CKEN
123456
Á
À
Number of Clock Cycles from Data Latch to Q
7 8 9 10 11 12
MC10EP445, MC100EP445
http://onsemi.com
13
To allow the user to synchronize the output byte data
correctly, the start bit for conversion can be moved using the
SYNC input pin (pin 2). Asynchronously asserting the
SYNC pin will force the internal clock to swallow a clock
pulse, effectively shifting a bit from the Qn to the Qn1 output
as shown in Figure 10 and Figure 11. For CKSEL LOW, a
single pulse applied asynchronously for two consecutive
clock cycles shifts the start bit for conversion from Qn to
Qn1. The bit is swallowed following the two clock cycle
pulse width of SYNCÀ on the next triggering edge of
clockÁ (either on the rising or the falling edge of the clock).
Each additional shift requires an additional pulse to be
applied to the SYNC pin. (See Figure 10)
Figure 10. Timing Diagram A. 1:8 Serial to Parallel Conversion with SYNC Pulse at CKSEL LOW
CLK
SINA
CKSEL
PCLK
SYNC
Q0
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24
Q1
Q2
Q3
Q4
Q5
Q6
Q7
D0 D9 D17
D1 D10 D18
D2 D11 D19
D3 D12 D20
D4 D13 D21
D5 D14 D22
D6 D15 D23
D7 D16 D24
12
Á
À
2 Clock Cycles for SYNC Next Triggering Edge of Clock
Bit D8 is Swallowed
MC10EP445, MC100EP445
http://onsemi.com
14
For CKSEL HIGH, a single pulse applied asynchronously
for three consecutive clock cycles shifts the start bit for
conversion from Qn to Qn1. The bit is swallowed following
the three clock cycle pulse width of SYNCÀ on the next
triggering edge of clockÁ (on the rising edge of the clock
only). Each additional shift requires an additional pulse to be
applied to the SYNC pin. (See Figure 11)
Figure 11. Timing Diagram A. 1:8 Serial to Parallel Conversion with SYNC Pulse at CKSEL HIGH
12
Á
À
3 Clock Cycles for Sync Next Triggering Edge of Clock
Bit D8 is Swallowed
CLK
SINA
PCLK
Q0
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14
Q1
Q2
Q3
Q4
Q5
Q6
Q7
D0
D1
D2
D3
D4
D5
D6
D7
SYNC
3
D15 D16 D17 D18 D19 D20 D21 D22 D23 D24
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
MC10EP445, MC100EP445
http://onsemi.com
15
The synchronous CKEN (pin 3) applied with at least one
clock cycle pulse length will disable the internal clock
signal. The synchronous CKEN will suspend all of the
device activities and prevent runt pulses from being
generated. The rising edge of CKEN followed by the falling
edge of CLK will suspend all activities. The first data bit will
clock on the rising edge, since the falling edge of CKEN
followed by the falling edge of the incoming clock triggers
the enabling of the internal process. (See Figure 12)
CLK
PCLK
Internal Clock
Disabled Internal Clock
Enabled
Figure 12. Timing Diagram with CKEN with CKSEL HIGH
CKSEL
CKEN
The differential PCLK output (pins 22 and 23) is a word
framer and can help the user to synchronize the parallel data
outputs. During CKSEL LOW operation, the PCLK will
provide a divide by 4clock frequency, which frames the
serial data in period of PCLK output. Likewise during
CKSEL HIGH operation, the PCLK will provide a divide by
8clock frequency.
The VBB pin, an internally generated voltage supply, is
available to this device only. For single–ended input
conditions, the unused differential input is connected to VBB
as a switching reference voltage. VBB may also rebias AC
coupled inputs. When used, decouple VBB and VCC via a
0.01 F capacitor, which will limit the current sourcing or
sinking to 0.5mA. When not used, VBB should be left open.
Also, both outputs of the differential pair must be terminated
(50 to VTT = VCC – 2 V) even if only one output is used.
MC10EP445, MC100EP445
http://onsemi.com
16
0
100
200
300
400
500
600
700
800
900
1000
0 500 1000 1500 2000 2500 3000 3500
Figure 13. Fmax/Jitter
INPUT CLK FREQUENCY (MHz)
1
2
3
4
5
6
7
8
VOUTpp (mV)
JITTEROUT ps (RMS)
ÉÉ
ÉÉ
9
10
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
(JITTER)
CKSEL LOW
CKSEL HIGH
Figure 14. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D Termination of ECL Logic Devices.)
Driver
Device
Receiver
Device
QD
Q D
Zo = 50
Zo = 50
50 50
VTT
VTT = VCC 2.0 V
MC10EP445, MC100EP445
http://onsemi.com
17
ORDERING INFORMATION
Device Package Shipping
MC10EP445FA LQFP32 250 Units / Tray
MC10EP445FAG LQFP32
(PbFree)
250 Units / Tray
MC10EP445FAR2 LQFP32 2000 / Tape & Reel
MC10EP445FAR2G LQFP32
(PbFree)
2000 / Tape & Reel
MC10EP445MNG QFN32
(PbFree)
74 Units / Rail
MC10EP445MNR4G QFN32
(PbFree)
1000 / Tape & Reel
MC100EP445FAG LQFP32
(PbFree)
250 Units / Tray
MC100EP445FAR2 LQFP32 2000 / Tape & Reel
MC100EP445FAR2G LQFP32
(PbFree)
2000 / Tape & Reel
MC100EP445MNG QFN32
(PbFree)
74 Units / Rail
MC100EP445MNR4G QFN32
(PbFree)
1000 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D ECL Clock Distribution Techniques
AN1406/D Designing with PECL (ECL at +5.0 V)
AN1503/D ECLinPSt I/O SPiCE Modeling Kit
AN1504/D Metastability and the ECLinPS Family
AN1568/D Interfacing Between LVDS and ECL
AN1672/D The ECL Translator Guide
AND8001/D Odd Number Counters Design
AND8002/D Marking and Date Codes
AND8020/D Termination of ECL Logic Devices
AND8066/D Interfacing with ECLinPS
AND8090/D AC Characteristics of ECL Devices
MC10EP445, MC100EP445
http://onsemi.com
18
PACKAGE DIMENSIONS
32 LEAD LQFP
CASE 873A02
ISSUE C
ÉÉ
ÉÉ
ÉÉ
DETAIL Y
A
S1
VB
1
8
9
17
25
32
AE
AE
P
DETAIL Y
BASE
N
J
DF
METAL
SECTION AEAE
G
SEATING
PLANE
R
Q_
WK
X
0.250 (0.010)
GAUGE PLANE
E
C
H
DETAIL AD
DETAIL AD
A1
B1 V1
4X
S
4X
9
T
Z
U
T-U0.20 (0.008) ZAC
T-U0.20 (0.008) ZAB
0.10 (0.004) AC
AC
AB
M_
8X
T, U, Z
T-U
M
0.20 (0.008) ZAC
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION:
MILLIMETER.
3. DATUM PLANE AB IS LOCATED AT
BOTTOM OF LEAD AND IS COINCIDENT
WITH THE LEAD WHERE THE LEAD
EXITS THE PLASTIC BODY AT THE
BOTTOM OF THE PARTING LINE.
4. DATUMS T, U, AND Z TO BE
DETERMINED AT DATUM PLANE AB.
5. DIMENSIONS S AND V TO BE
DETERMINED AT SEATING PLANE AC.
6. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.250 (0.010) PER SIDE.
DIMENSIONS A AND B DO INCLUDE
MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE AB.
7. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. DAMBAR
PROTRUSION SHALL NOT CAUSE THE
D DIMENSION TO EXCEED 0.520 (0.020).
8. MINIMUM SOLDER PLATE THICKNESS
SHALL BE 0.0076 (0.0003).
9. EXACT SHAPE OF EACH CORNER MAY
VARY FROM DEPICTION.
DIM
A
MIN MAX MIN MAX
INCHES
7.000 BSC 0.276 BSC
MILLIMETERS
B7.000 BSC 0.276 BSC
C1.400 1.600 0.055 0.063
D0.300 0.450 0.012 0.018
E1.350 1.450 0.053 0.057
F0.300 0.400 0.012 0.016
G0.800 BSC 0.031 BSC
H0.050 0.150 0.002 0.006
J0.090 0.200 0.004 0.008
K0.450 0.750 0.018 0.030
M12 REF 12 REF
N0.090 0.160 0.004 0.006
P0.400 BSC 0.016 BSC
Q1 5 1 5
R0.150 0.250 0.006 0.010
V9.000 BSC 0.354 BSC
V1 4.500 BSC 0.177 BSC
__
___ _
B1 3.500 BSC 0.138 BSC
A1 3.500 BSC 0.138 BSC
S9.000 BSC 0.354 BSC
S1 4.500 BSC 0.177 BSC
W0.200 REF 0.008 REF
X1.000 REF 0.039 REF
MC10EP445, MC100EP445
http://onsemi.com
19
PACKAGE DIMENSIONS
QFN32 5*5*1 0.5 P
CASE 488AM01
ISSUE O
SEATING
32 X
K
0.15 C
(A3)
A
A1
D2
b
1
916 17
32
2 X
2 X
E2
32 X
8
24
32 X
L
32 X
BOTTOM VIEW
EXPOSED PAD
TOP VIEW
SIDE VIEW
D
A
B
E
0.15 C
ÉÉ
ÉÉ
PIN ONE
LOCATION
0.10 C
0.08 C
C
25
e
A0.10 B
C
0.05 C
NOTES:
1. DIMENSIONS AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM TERMINAL
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
PLANE
DIM MIN NOM MAX
MILLIMETERS
A0.800 0.900 1.000
A1 0.000 0.025 0.050
A3 0.200 REF
b0.180 0.250 0.300
D5.00 BSC
D2 2.950 3.100 3.250
E5.00 BSC
E2
e0.500 BSC
K0.200 −−− −−−
L0.300 0.400 0.500
2.950 3.100 3.250
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
0.50 PITCH
3.20
0.28
3.20
32 X
28 X
0.63
32 X
5.30
5.30
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
MC10EP445/D
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative