www.irf.com 1
02/08/2010
IRFH5004PbF
HEXFET® Power MOSFET
Notes through are on page 8
PD -97450
Features and Benefits
Applications
Secondary Side Synchronous Rectification
Inverters for DC Motors
DC-DC Brick Applications
Boost Converters
Features Benefits
PQFN 5X6 mm
Absolute Maximum Ratings
Parameter Units
V
DS
Drain-to-Source Voltage
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25°C Continuous Drain Current, V
GS
@ 10V
I
D
@ T
A
= 70°C Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C(Bottom)
= 25°C Continuous Drain Current, V
GS
@ 10V
h
I
D
@ T
C(Bottom)
= 100°C Continuous Drain Current, V
GS
@ 10V
h
I
DM
Pulsed Drain Current
c
P
D
@T
A
= 25°C Power Dissipation
g
P
D
@ T
C(Bottom)
= 25°C Power Dissipation
g
Linear Derating Factor
g
W/°C
T
J
Operating Junction and
T
STG
Storage Temperature Range
V
W
A
°C
Max.
28
100
400
±20
40
23
100
-55 to + 150
3.6
0.029
250
Note
Form Quantit
y
IRFH5004TRPBF PQFN 5mm x 6mm Ta
p
e and Reel 4000
IRFH5004TR2PBF PQFN 5mm x 6mm Ta
p
e and Reel 1000
Orderable part number Package Type Standard Pack
Low R
DSon
( 2.6m)Lower Conduction Losses
Low Thermal Resistance to PCB (0.5°C/W) Enables better thermal dissipation
100% R
g
tested Increased Reliability
Low Profile ( 0.9 mm) results in Increased Power Density
Industry-Standard Pinout Multi-Vendor Compatibility
Compatible with Existin
g
Surface Mount Techniques Easier Manufacturin
g
RoHS Compliant Containin
g
no Lead, no Bromide and no Halo
g
en Environmentally Friendlier
MSL1, Industrial Qualification Increased Reliability
V
DS
40 V
R
DS(on) max
(@V
GS
= 10V)
2.6 m
Q
g (typical)
73 nC
R
G (typical)
1.2
I
D
(@T
c(Bottom)
= 25°C)
100
h
A
IRFH5004PbF
2www.irf.com
S
D
G
Thermal Resistance
Parameter Typ. Max. Units
RθJC (Bottom) Junction-to-Case
f
––– 0.5
RθJC (Top) Junction-to-Case
f
––– 15 °C/W
RθJA Junction-to-Ambient
g
––– 35
RθJA (<10s) Junction-to-Ambient
g
––– 33
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage 40 ––– ––– V
∆ΒV
DSS
/
T
J
Breakdown Voltage Temp. Coefficient ––– 0.04 ––– V/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 2.1 2.6
V
GS(th)
Gate Threshold Voltage 2.0 ––– 4.0 V
V
GS(th)
Gate Threshold Voltage Coefficient ––– -5.6 ––– mV/°C
I
DSS
Drain-to-Source Leakage Current ––– ––– 20
––– ––– 250
I
GSS
Gate-to-Source Forward Leakage ––– ––– 100
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 91 ––– ––– S
Q
g
Total Gate Charge ––– 73 110
Q
gs1
Pre-Vth Gate-to-Source Charge ––– 15 –––
Q
gs2
Post-Vth Gate-to-Source Charge ––– 6.1 –––
Q
gd
Gate-to-Drain Charge ––– 27 –––
Q
godr
Gate Charge Overdrive ––– 25 ––– See Fig.17 & 18
Q
sw
Switch Char
g
e (Q
gs2
+ Q
gd
)––– 33.1 –––
Q
oss
Output Charge ––– 27 ––– nC
R
G
Gate Resistance ––– 1.2 –––
t
d(on)
Turn-On Delay Time ––– 13 –––
t
r
Rise Time ––– 39 –––
t
d(off)
Turn-Off Delay Time ––– 28 –––
t
f
Fall Time ––– 16 –––
C
iss
Input Capacitance ––– 4490 –––
C
oss
Output Capacitance ––– 970 –––
C
rss
Reverse Transfer Capacitance ––– 460 –––
Avalanche Characteristics
Parameter Units
E
AS
Sin
le Pulse Avalanche Ener
y
d
mJ
I
AR
Avalanche Current
c
A
Diode Characteristics
Parameter Min. Typ. Max. Units
I
S
Continuous Source Current
(Body Diode)
h
I
SM
Pulsed Source Current
(Body Diode)
c
V
SD
Diode Forward Voltage ––– ––– 1.0 V
t
rr
Reverse Recovery Time ––– 32 48 ns
Q
rr
Reverse Recovery Charge ––– 100 150 nC
t
on
Forward Turn-On Time Time is dominated by parasitic Inductance
V
DS
= V
GS
, I
D
= 150µA
A
100
––– ––– 400
––– –––
nA
ns
pF
nC
Conditions
See Fig.15
Max.
340
50
ƒ = 1.0MHz
V
DS
= 20V
–––
Conditions
V
GS
= 0V, I
D
= 250µA
Reference to 25°C, I
D
= 1mA
V
GS
= 10V, I
D
= 50A
e
MOSFET symbol
V
DS
= 16V, V
GS
= 0V
V
DD
= 20V, V
GS
= 10V
I
D
= 50A
V
GS
= 0V
V
DS
= 20V
V
GS
= 20V
V
GS
= -20V
V
DS
= 40V, V
GS
= 0V
T
J
= 25°C, I
F
= 50A, V
DD
= 20V
di/dt = 300A/µs
e
T
J
= 25°C, I
S
= 50A, V
GS
= 0V
e
showing the
integral reverse
p-n junction diode.
V
GS
= 10V
Typ.
–––
R
G
=1.8
V
DS
= 15V, I
D
= 50A
V
DS
= 40V, V
GS
= 0V, T
J
= 125°C
m
µA
I
D
= 50A
IRFH5004PbF
www.irf.com 3
Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
8.0V
6.0V
5.0V
4.5V
4.3V
4.0V
BOTTOM 3.8V
60µs PULSE WIDTH
Tj = 25°C
3.8V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
3.8V
60µs PULSE WIDTH
Tj = 150°C
VGS
TOP 10V
8.0V
6.0V
5.0V
4.5V
4.3V
4.0V
BOTTOM 3.8V
234567
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 150°C
VDS = 15V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.6
0.8
1.0
1.2
1.4
1.6
1.8
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 50A
VGS = 10V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 102030405060708090100
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
VGS, Gate-to-Source Voltage (V)
VDS= 32V
VDS= 20V
ID= 50A
IRFH5004PbF
4www.irf.com
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
Fig 8. Maximum Safe Operating Area
Fig 9. Maximum Drain Current vs.
Case (Bottom) Temperature
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 10. Threshold Voltage vs. Temperature
0.2 0.4 0.6 0.8 1.0 1.2
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
25 50 75 100 125 150
TC , Case Temperature (°C)
0
50
100
150
200
250
ID, Drain Current (A)
Limited By Package
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th), Gate threshold Voltage (V)
ID = 150µA
ID = 500µA
ID = 1.0mA
ID = 1.0A
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0 1 10 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 150°C
Single Pulse
100µsec
1msec
10msec
DC
IRFH5004PbF
www.irf.com 5
Fig 13. Maximum Avalanche Energy vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
Fig 14b. Unclamped Inductive Waveforms
Fig 14a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 15a. Switching Time Test Circuit Fig 15b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
46810 12 14 16 18 20
VGS, Gate -to -Source Voltage (V)
1
2
3
4
5
6
RDS(on), Drain-to -Source On Resistance (m)
ID = 50A
TJ = 25°C
TJ = 125°C
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
1200
1400
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 11A
17A
BOTTOM 50A
IRFH5004PbF
6www.irf.com
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Fig 17. Gate Charge Test Circuit Fig 18. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
1K
VCC
DUT
0
L
S
IRFH5004PbF
www.irf.com 7
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
For footprint and stencil design recommendations, please refer to application note AN-1154 at
http://www.irf.com/technical-info/appnotes/an-1154.pdf
XXXX
XYWWX
XXXXX
INTERNATIONAL
RECTIFIER LOGO
PART NUMBER
MARKING CODE
(Per Marking Spec)
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
DATE CODE
PIN 1
IDENTIFIER LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
PQFN 5x6 Outline "B" Package Details
PQFN 5x6 Outline "B" Part Marking
IRFH5004PbF
8www.irf.com
Qualification standards can be found at International Rectifiers web site
http://www.irf.com/product-info/reliability
 Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
 Applicable version of JEDEC standard at the time of product release.
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.27mH, RG = 25, IAS = 50A.
Pulse width 400µs; duty cycle 2%.
Rθ is measured at TJ of approximately 90°C.
When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production test
capability.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/2010
Data and specifications subject to change without notice.
MS L1
( per JEDEC J-ST D-020D††† )
RoHS compliant Yes
PQFN 5mm x 6mm
Qualification information
Moisture Sensitivity Level
Qualification level Industrial††
( per JEDEC JESD47F ††† guidelines )
PQFN 5x6 Outline "B" Tape and Reel