NJU72040
– 1
Ver. 1.2E
Ground Referenced Stereo Headphone Amplifier
GENERAL DESCRIPTION
The NJU72040 is an audio headphone amplifier .
Ground-referenced outputs eliminate output coupling
capacitor. The pop noise suppression circuit removes a pop
noise at the power-on and power-off.
It is suitable for audio headphone amplifer application
APPLICATIONS
Audio applications which have audio headphone interface
FEATURES
Operating Voltage +2.7 to +3.6V
Operating Current I
DD
=10.5mA typ.
at V
+
=3.3V, No load, No Signal
Output Coupling Capacitor-less
Pop Noise Suppression Circuit
Gain Select
C-MOS Technology
Package Outline SSOP14
BLOCK DIAGRAM
PACKAGE OUTLINE
NJU72040V
INL-
INL+
OUTL
V+
CP
CN
GND
REF
V-
MUTE
GAIN
INR-
INR+
OUTR
32
Headphone
32
Headphone
V+
inverted
phase
inverted
phase
V-
Regulator
Bias
Gain Select
V+ V+
Pop Noise
Suppression
Pop Noise
Suppression
3M
100k
Reg
V+
NJU72040
– 2 –
PIN CONFIGURATION
No. Symbol Function No. Symbol Function
1 INL- Lch Inverted Input 8 REF Reference Voltage Input
2 INL+ Lch Noninverted Input 9 V- V- Power Supply
3 OUTL Lch Output 10 MUTE MUTE / Pop Noise Suppression
4 V+ V+ Power Supply 11 GND Ground
5 CP Flying Capacitor Positive Terminal 12 OUTR Rch Output
6 CN Flying Capacitor Negative Terminal 13 INR+ Rch Inverted Input
7 GAIN Gain Select 14 INR- Rch Noninverted Input
NJU72040
INL-
INL+ INR+
INR-
OUTL
OUTR
V+
GND
MUTE
CP
CN
V-
REF
GAIN
1
7
8
14
NJU72040
– 3 –
ABSOLUTE MAXIMUM RATING (Ta=25°C)
PARAMETER SYMBOL RATING UNIT
Supply Voltage V
+
+4 V
Power Dissipation P
D
SSOP14 : 550
(Note1)
mW
Maximum Input Voltage V
IM
V
+
+0.3 V
Operating Temperature Range Topr -40 ~ +85 °C
Storage Temperature Range Tstg -40 ~ +125 °C
(Note1) EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layer, FR-4) mounting
RECOMMENDED OPERATING CONDITIONS
(Ta=25°C
unless otherwise specified
)
PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT
Operating Voltage V
+
2.7 3.3 3.6 V
ELECTRICAL CHARACTERISTICS
(Ta=25°C, V
+
=3.3V, f=1kHz, Vin=0.1Vrms[differential input], Gv=6.4dB, MUTE=OFF, R
L
=32
unless otherwise specified
)
PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT
Operating Current I
DD
No signal, No load - 10.5 15.5 mA
Input Resistance1 R
in1
INL-, INR- 49 61 73 k
Input Resistance2 R
in2
INL+, INR+ 103 129 155 k
Voltage Gain1 G
V1
Gain Terminal=Low 5.4 6.4 7.4 dB
Voltage Gain2 G
V2
Gain Terminal=High 11.4 12.4 13.4 dB
Voltage Gain3 G
V3
Gain Terminal=Low, R
L
=10k 6.6 7.1 7.6 dB
Voltage Gain4 G
V4
Gain Terminal=High, R
L
=10k 12.6 13.1 13.6 dB
Maximum Output Power1 P
OMAX1
THD=3%, R
L
=32
Input=Lch or Rch - 80 - mW
Maximum Output Power2 P
OMAX2
THD=3%, R
L
=32
Input=Lch and Rch - 55 - mW
Maximum Output Voltage Level V
OMAX
THD=1%, R
L
=10k - 2.2 - Vrms
Mute Level V
MUTE
Rg=0 , Mute=ON - -90 -80 dB
Equivalent Input Noise Voltage V
NI
Rg=0 , BW:400Hz-22kHz - -100 -95 dBV
Total Harmonic Distortion1 THD1 BW:400Hz-22kHz, R
L
=32 - 0.08 0.3 %
Total Harmonic Distortion2 THD2 BW:400Hz-22kHz, R
L
=10k - 0.007 0.05 %
Channel Separation1 CS1 Rg=600 , (*1) 65 75 - dB
Channel Separation2 CS2 Rg=600 , f = 1 0k H z, (*1) 55 65 - dB
Output Offset Voltage V
OS
Rg=0 , Gv=12.4Db, No load - 1 5 mV
(*1)OUTL(measured terminal): 20log(OUTR/OUTL) , OUTR(measured terminal): 20log(OUTL/OUTR)
CONTROL CHARACTERISTICS
(Ta=25°C, V
+
=3.3V, Gv=6.4dB, MUTE=OFF, R
L
=32
unless otherwise specified
)
PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT
Mute terminal High MuteH Mute=OFF 0.8 V
+
- V
+
V
Mute terminal Low MuteL Mute=ON 0 - 0.2 V
+
V
Gain terminal High GainH Gv=12.4dB 0.8 V
+
- V
+
V
Gain terminal Low GainL Gv=6.4dB 0 - 0.2 V
+
V
NJU72040
– 4 –
TEST CIRCUIT (I
DD
)
(*2): Monolithic Ceramic Capacitors
TEST CIRCUIT (G
V
1, G
V
2, G
V
3, G
V
4, P
OMAX
1, V
OMAX
)
(*2): Monolithic Ceramic Capacitors
(*2)
(*2)
INL-
INL+
OUTL
V+
CP
CN
GND
MUTE
GAIN
INR-
INR+
OUTR
REF
V-
A
V+
C10=1uF
C8=1uFC2=1uF
C1=1uF
C6=10uF
C4=1uF
V-V-
Negative
Voltage
Regulator
Bias
Gain Select
Pop Noise
Suppression
Pop Noise
Supp ression
3M
100k
Regulator
V+
INL-
INL+
OUTL
V+
CP
CN
GND
MUTE
GAIN
INR-
INR+
OUTR
Gv1,2,P
OMAX
1
RL=32
Gv3,4,V
OMAX
RL=10k
V+
inverted phase
REF
V-
V
Gv1,2,P
OMAX
1
RL=32
Gv3,4,V
OMAX
RL=10k
C10=1uF
C8=1uFC2=1uF
C1=1uF
C6=10uF
C4=1uF
V-V-
Negative
Voltage
Regulator
Bias
Gain Select
Pop Noise
Suppression
Pop Noise
Suppression
3M
100k
Regulator
V+
(*2)
(*2)
NJU72040
– 5 –
TEST CIRCUIT (P
OMAX
2)
(*2): Monolithic Ceramic Capacitors
TEST CIRCUIT (V
MUTE
)
(*2): Monolithic Ceramic Capacitors
(*2)
(*2)
INL-
INL+
OUTL
V+
CP
CN
GND
MUTE
GAIN
INR-
INR+
OUTR
RL=32
V+
inverted phase
REF
V-
V
inverted phase
RL=32
C10=1uF
C8=1uFC2=1uF
C1=1uF
C6=10uF
C4=1uF
V-V-
Negative
Voltage
Regulator
Bias
Gain Select
Pop Noise
Suppression
Pop Noise
Suppression
3M
100k
Regulator
V+
INL-
INL+
OUTL
V+
CP
CN
GND
MUTE
GAIN
INR-
INR+
OUTR
inverted phase
REF
V-
V
RL=32RL=32
C10=1uF
C8=1uFC2=1uF
C1=1uF
C6=10uF
C4=1uF
V-V-
Negative
Voltage
Regulator
Bias
Gain Select
Pop Noise
Suppression
Pop Noise
Suppression
3M
100k
Regulator
V+
(*2)
(*2)
NJU72040
– 6 –
TEST CIRCUIT (V
NI
)
V
NI
=(measurement)-Gv1
(*2): Monolithic Ceramic Capacitors
TEST CIRCUIT (THD1, THD2)
(*2): Monolithic Ceramic Capacitors
(*3): Connect a low-pass filter circuit with the corner frequency of more than 20kHz in front of an analyzer for
rejecting the switching noise generated from NJU72040. Otherwise, the characteristic result may change
because of the switching noise.
INL-
INL+
OUTL
V+
CP
CN
GND
MUTE
GAIN
INR-
INR+
OUTR
RL=32
V+
REF
V-
V V
RL=32
C10=1uF
C8=1uFC2=1uF
C1=1uF
C6=10uF
C4=1uF
V-V-
Negative
Voltage
Regulator
Bias
Gain Select
Pop Noise
Suppression
Pop Noise
Supp ression
3M
100k
Regulator
V+
(*2)
(*2)
INL-
INL+
OUTL
V+
CP
CN
GND
MUTE
GAIN
INR-
INR+
OUTR
THD1
RL=32
THD2
RL=10kV+
inverted phase
REF
V-
V
Filter
Ex)
A
udioPrecision
aux-0025
THD1
RL=32
THD2
RL=10k
C10=1uF
C8=1uFC2=1uF
C1=1uF
C6=10uF
C4=1uF
V-V-
Negative
Voltage
Regulator
Bias
Gain Select
Pop Noise
Suppression
Pop Noise
Suppression
3M
100k
Regulator
V+
(*2)
(*2)
NJU72040
– 7 –
TEST CIRCUIT (CS1, CS2)
OUTL
(measured terminal) :
CS1=CS2=20log(OUTR/OUTL)
OUTR
(measured terminal) :
CS1=CS2=20log(OUTL/OUTR)
(*2): Monolithic Ceramic Capacitors
TEST CIRCUIT (V
OS
)
(*2): Monolithic Ceramic Capacitors
INL-
INL+
OUTL
V+
CP
CN
GND
MUTE
GAIN
INR-
INR+
OUTR
RL=32
V+
REF
V-
V
RL=32
inverted phase
Rg=600
Rg=600
C10=1uF
C8=1uFC2=1uF
C1=1uF
C6=10uF
C4=1uF
V-V-
Nega tive
Voltage
Regulator
Bias
Gain Select
Pop Noise
Suppressio n
Pop Noise
Suppression
3M
100k
Regulator
V+
INL-
INL+
OUTL
V+
CP
CN
GND
MUTE
GAIN
INR-
INR+
OUTR
V+
REF
V-
V V
C10=1uF
C8=1uFC2=1uF
C1=1uF
C6=10uF
C4=1uF
V-V-
Negative
Voltage
Regulator
Bias
Gain Select
Pop Noise
Supp ression
Pop Noise
Supp ression
3M
100k
Regulator
V+
NJU72040
– 8 –
APPLICATION CIRCUIT
(Single-end input)
(Differential input)
(*2): Monolithic Ceramic Capacitors
(*3): V- terminal (8pin) shouldn’t be tied to V+ terminal (4pin)
INL-
INL+
OUTL
V+
CP
CN
GND
REF
V-
MUTE
GAIN
INR-
INR+
OUTR
32
Headphone
32
Headphone
V+
C10=1uF
C8=1uFC2=1uF
C1=1uF
C6=10uF
C7=1uF
R2=100k
V+
C4=1uF
V+
V-V-
Negative
Voltage
Regulator
Bia s
Gain Select
Pop Noise
Suppression
Pop Noise
Suppression
3M
100k
Regulator
V+
INL-
INL+
OUTL
V+
CP
CN
GND
REF
V-
MUTE
GAIN
INR-
INR+
OUTR
32
Headphone
32
Headphone
V+
C10=1uF
C8=1uFC2=1uF
C1=1uF
C6=10uF
C7=1uF
R2=100k
V+
C4=1uF
inverted phase inverted phase
V+
V-V-
Negative
Voltage
Regulator
Bia s
Gain Select
Pop Noise
Suppression
Pop Noise
Suppression
3M
100k
Regulator
V+
NJU72040
– 9 –
APPLICATION NOTE
The NJU72040 is an audio headphone amplifier that eliminates the need for external dc-blocking output
capacitors. The NJU72040 has built-in pop suppression circuitry to eliminate disturbing pop noise during
power-on, power-off and mute-control.
1. Operating Principle
The NJU72040 has the built-in differential input operational amplifiers, voltage inverter, pop noise
suppression circuitry, gain selectable circuitry and thermal-overload protection circuitry (Fig.1).
For single-ended input signals, connect inverted terminal (INL-, INR-) or non-inverted terminal (INL+, INR+)
to ground through the capacitor. The voltage gain is selectable. In the differential circuitry, the setting gain is
+6.4dB or +12.4dB for the R
L
=32. In the single-end input circuitry, the setting gain is +0.4dB or +6.4dB for
the R
L
=32.
The voltage inverter for NJU72040 eliminates the need for external dc-blocking output capacitors. The pop
suppression circuitry for NJU72040 eliminates the pop noise during power-on, power-off and mute-control.
Fig.1 The NJU72040 functional block diagram
1.1 External parts
1.1.1 Input coupling capacitors C
i
(C1, C2, C8, C10)
The input coupling capacitor (C
i
) and the input resistance (R
in
=61k typ.) for the inverted terminal
form a high-pass filter with the corner frequency determined in [fc=1/(2π x 61k x C
i
)]. It is necessary to
adjust 1uF or more.
INL-
INL+
OUTL
V+
CP
CN
GND
REF
MUTE
GAIN
INR-
INR+
OUTR
32
Headphone
32
Headphone
V+
inverted phase inverted phase
C1
C2
C4
C6
C7
R2
C8
C10
V+
V+
V-V-
Negative
Voltage
Regulator
Bias
Gain Select
Pop Noise
Suppression
Pop Noise
Suppression
3M
100k
Regulator
V+
NJU72040
– 10 –
1.1.2 Flying capacitor (C4)
Use capacitors with a low-ESR (ex. ceramic capacitors) for optimum performance. Design to provide
low impedance for the wiring between CP terminal (5pin), CN terminal (6pin), and the flying capacitor
(C4).
Fig.2 The NJU72040 block diagram (5pin, 6pin)
1.1.3 Hold capacitor (C6)
Use capacitors with a low-ESR (ex. ceramic capacitors) for optimum performance. Design to provide
low impedance for the wiring between the hold capacitor (C6), V- terminal (9pin) and the GND on the
PCB.
Separate the GND pattern connecting to the hold capacitor (C6) from that connecting to the REF
terminal (8pin), thus suppressing the influence of switching noise by removing the common impedance
of the GND wiring.
Design no short-circuits of V- terminal (9pin) and V+ terminal (4pin) on the PCB pattern.
Fig.3 The NJU72040 block diagram (8pin, 9pin)
1.1.4 Mute terminal pop noise countermeasures (C7, R2)
Mute terminal needs time constant more than R2 x C7=0.1. It is necessary to adjust 100k or less.
Fig.4 The NJU72040 block diagram (10pin)
CP(5pin)
CN(6pin)
C4=1uF
C6
V-(9pin)
REF(8pin)
3M
MUTE(10pin)
R2=100k
C7=1uF
Vcnt
NJU72040
– 11 –
1.2 Control of V+ terminal and Mute terminal
1.2.2 Power-on procedure
1. Turn on the V+.
2. After 5msec from power on, change the control voltage of MUTE terminal (Vcnt) from "Low" to "High".
* It is necessary to stabilize an IC for 5msec.
By releasing the MUTE function, the output terminal output the signal.
1.2.3 Power-off procedure
1. Change the control voltage of MUTE terminal (Vcnt) from "High" to "Low".
By the MUTE function, the output signals are stopped from output terminal.
2. Turn off the V+ after “2RC” sec from MUTE.
* It is necessary to stabilize a MUTE condition for “2RC” sec.
Ex.) R2=100k, C7=1uF -> 2R2 x C7=200msec
Fig.5 Turn-on / Turn-off timing chart
5msec 2RC=200msec
t
t
t
V+
(4pin)
Vcnt
MUTE
(10pin)
MUTE ON MUTE OFF MUTE ON
NJU72040
– 12 –
40k
V+ V+ V+
V- V-
TERMINAL DESCRIPTION
Terminal SYMBOL FUNCTION EQUIVALENT CIRCUIT VOLTAGE
1
2
13
14
INL-
INL+
INR-
INR+
AC Input
0V
3
12
OUTL
OUTR AC Output
0V
7 GAIN Gain Select
0V
10 MUTE
MUTE/Pop Noise
Suppression
0V
V-
V+
FB
V-
10 5.5k 20k
REF
2k
V+ V+
V-
V+
20k
100k
1k
V+
V-
V+
20k
3M
NJU72040
– 13 –
TERMINAL DESCRIPTION
Terminal SYMBOL FUNCTION EQUIVALENT CIRCUIT VOLTAGE
5 CP
Flying Capacitor
Positive Terminal
-
6 CN
Flying Capacitor
Positive Terminal
-
8 REF
Reference Voltage
Input
-
V+
V-
V- V-
INL+
INR+
V+
V-
OUTL
OUTR
5.5k 10
V-
69k
40k
NJU72040
– 14 –
TYPICAL CHARACTERISTICS
Supply Current vs Temperature
V+=3.3V, RL=NoLoad, MUTE=L
0
5
10
15
20
25
-50 -25 0 25 50 75 100 125
Temperature[
o
C]
Supply Current[mA]
GAIN=L,H
Supply Current vs Supply Voltage
RL=NoLoad, MUTE=L, GAIN=L
0
5
10
15
20
25
00.511.522.533.54
Supply Voltage[V]
Supply Current[mA]
Ta=85
o
C
Ta=- 40
o
C
Ta=25
o
C
Supply Current vs Supply Voltage
RL=NoLoad, MUTE=H, GAIN=L
0
5
10
15
20
25
00.511.522.533.54
Supply Voltage[V]
Supply Current[mA]
Ta=85
o
C
Ta=25
o
C
Ta=- 40
o
C
Supply Current vs Temperature
V+=3.3V, RL=NoLoad, MUTE=H
0
5
10
15
20
25
-50 -25 0 25 50 75 100 125
Temperature[
o
C]
Supply Current[mA]
GAIN=L,H
Supply Current vs Supply Voltage
RL=NoLoad, MUTE=L, GAIN=H
0
5
10
15
20
25
00.511.522.533.54
Supply Voltage[V]
Supply Current[mA]
Ta=85
o
C
Ta=- 40
o
C
Ta=25
o
C
Supply Current vs Supply Voltage
RL=NoLoad, MUTE=H, GAIN=H
0
5
10
15
20
25
00.511.522.533.54
Supply Voltage[V]
Supply Current[mA]
Ta=85
o
C
Ta=25
o
C
Ta=- 40
o
C
NJU72040
– 15 –
Equivalent Input Noise vs Temperature
V+=3.3V, RL=32, Rg=0, MUTE=H, GAIN=L, INL+=0Vrms ,
INL-=0Vrms, Measure:OUTL, BW=400Hz - 22kHz
-120
-100
-80
-60
-40
-20
0
-50 -25 0 25 50 75 100 125
Temperature[
o
C]
Equivalent Input Noise[dBV]
VoltageGain vs Frequency
V+=3.3V, RL=32, MUTE=H, INL+=0.1Vrms
INL-=0.1Vrms(inverted), Measure=OUTL
0
5
10
15
20
10 100 1000 10000 100000
Frequency[Hz]
VoltageGain[dB]
GAIN=H
Ta=-40,25,85
o
C
GAIN=L
Ta=-40,25,85
o
C
MuteLevel vs Frequency
V+=3.3V, RL=10k, MUTE=H, GAIN=L, INL+=0.1Vrms
INL-=0.1Vrms(inverted), Measure=OUTL, Filter=Bandpass
-120
-100
-80
-60
-40
-20
0
10 100 1000 10000 100000
Freauency[Hz]
MuteLevel[dB]
Ta=-40,25,85
o
C
VoltageGain vs Frequency
V+=3.3V, RL=10k, MUTE=H, INL+=0.1V rms
INL-=0.1Vrms(inverted), Measure=OUTL
0
5
10
15
20
10 100 1000 10000 100000
Frequency[Hz]
VoltageGain[dB]
GAIN=H
Ta=-40,25,85
o
C
GAIN=L
Ta=-40,25,85
o
C
Equivalent Input Noise vs Temperature
V+=3.3V, RL=10k, Rg=0, MUTE=H, GA IN=L, INL+=0Vrms
INL-=0Vrms, Measure:OUTL, BW=400Hz - 22kHz
-120
-100
-80
-60
-40
-20
0
-50 -25 0 25 50 75 100 125
Temperature[
o
C]
Equivalent Input Noise[dBV]
MuteLevel vs Frequency
V+=3.3V, RL=32, MUTE=H, GAIN=L, INL+=0.1Vrms
INL-=0.1Vrms(inverted), Measure=OUTL, Filter=Bandpass
-120
-100
-80
-60
-40
-20
0
10 100 1000 10000 100000
Freauency[Hz]
MuteLevel[dB]
Ta=-40,25,85
o
C
NJU72040
– 16 –
PSRR vs Frequency
V+=3.3V, RL=32, MUTE=H, GAIN=L, Vripple=0.1Vrms
INL+=INR+=0Vrms, INL-=INR-=0V rms, Measure=OUTL,OUTR
Filter=Bandpass
0
20
40
60
80
100
10 100 1000 10000 100000
Freauency[Hz]
PSRR[dB
]
Ta=- 40
o
C
Ta=85
o
C
Ta=25
o
C
ChannelSeparation vs Frequency
V+=3.3V, RL=32, Rg=600, MUTE=H, GAIN=L
INR+=0.1Vrms, INR-=0.1Vrms(inverted), Measure=OUTL
Filter=Bandpass
0
20
40
60
80
100
10 100 1000 10000 100000
Freauency[Hz]
ChannelSeparation[dB]
Ta=- 40
o
C
Ta=85
o
C
Ta=25
o
C
ChannelSeparation vs Frequency
V+=3.3V, RL=32, Rg=600 , MUTE=H, GAIN=L,
INL+=0.1Vrms, INL-=0.1Vrms(inverted), Measure=OUTR
Filter=Bandpass
0
20
40
60
80
100
10 100 1000 10000 100000
Freauency[Hz]
ChannelSeparation[dB]
Ta=- 40
o
C
Ta=85
o
C
Ta=25
o
C
ChannelSeparation vs Frequency
V+=3.3V, RL=10k, Rg=600, MUTE=H, GAIN=L,
INL+=0.1Vrms, INL-=0.1Vrms(inverted), Measure=OUTR
Filter=Bandpass
0
20
40
60
80
100
10 100 1000 10000 100000
Freauency[Hz]
ChannelSeparation[dB]
Ta=- 40
o
C
Ta=85
o
C
Ta=25
o
C
ChannelSeparation vs Frequency
V+=3.3V, RL=10k, Rg=600, MUTE=H, GAIN=L
INR+=0.1Vrms, INR-=0.1Vrms(inverted), Measure=OUTL
Filter=Bandpass
0
20
40
60
80
100
10 100 1000 10000 100000
Freauency[Hz]
ChannelSeparation[dB]
Ta=- 40
o
C
Ta=85
o
C
Ta=25
o
C
PSRR vs Frequency
V+=3.3V, RL=10k, MUTE=H, GAIN=L, Vripple=0.1Vrms
INL+=INR+=0Vrms, INL-=INR-=0V rms, Measure=OUTL,OUTR
Filter=Bandpass
0
20
40
60
80
100
10 100 1000 10000 100000
Freauency[Hz]
PSRR[dB
]
Ta=- 40
o
C
Ta=85
o
C
Ta=25
o
C
NJU72040
– 17 –
CMRR vs Frequency
V+=3.3V, RL=32, MUTE=H, GAIN=L, INL+(INR+)=0.1Vrms
INL-(INR-)=0.1Vrms, Measure=OUTL(OUTR), BW=Bandpass
0
20
40
60
80
100
10 100 1000 10000 100000
Freauency[Hz]
CMRR[dB
]
OUTL
Ta=-40,25,85
o
C
OUTR
Ta=-40,25,85
o
C
Thermal Shut Down(SupplyCurrent)
V+=3.3V , RL=32 , MUTE=H , GAIN=L
0
2
4
6
8
10
12
14
120 130 140 150 160
Temperature[
o
C]
SupplyCurrent [A]
120
o
C
->160
o
C
160
o
C
->120
o
C
Pow er Dissipation vs Output Pow er
V+=3.3V, RL=32, MUTE=H, GAIN=L, Ta=25
o
C
f=1kHz, Measure=OUTL, BW=400Hz to 22kHz
0
50
100
150
200
250
300
0 20406080100
Output Pow er [mW/ch]
Power Dissipation [mW]
Input=Lch
Input=Lch,Rch
THD+N=3%
CMRR vs Frequency
V+=3.3V, RL=10k , MUTE=H , GA IN=L,INL+(INR+)=0.1Vrms
INL-(INR-)=0.1Vrms, Measure=OUTL(OUTR), BW=Bandpass
0
20
40
60
80
100
10 100 1000 10000 100000
Freauency[Hz]
CMRR[dB
]
OUTL
Ta=-40,25,85
o
C
OUTR
Ta=-40,25,85
o
C
Pow er Dissipation vs Output Pow er
V+=3.3V, RL=16, MUTE=H, GAIN=L, Ta=25
o
C
f=1kHz, Measure=OUTL, BW=400Hz to 22kHz
0
50
100
150
200
250
300
0 20406080100
Output Pow er [mW/ch]
Power Dissipation [mW]
Input=Lch
Input=Lch,Rch
THD+N=3%
NJU72040
– 18 –
THD+N vs Out pu t Po w e r
V+=3.3V, RL=16, MUTE=H , GAIN=L
Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz
Measure=OUTL, BW=400Hz to 22kHz
0.01
0.1
1
10
0.001 0.01 0.1 1 10 100 1000
Output Pow er[mW]
THD+N[%
]
Ta=25,85
o
C
Ta=- 40
o
C
THD+N vs Out pu t Po w e r
V+=3.3V, RL=16, MUTE=H, GAIN=L, Ta=25
o
C
Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz
Measure=OUTL, BW=22Hz to 22kHz
0.01
0.1
1
10
0.001 0.01 0.1 1 10 100 1000
Output Pow er[mW]
THD+N[%
]
f=10kHz
f=100Hz,1kHz
THD+N vs Out pu t Po w e r
V+=3.3V, RL=32, MUTE=H, GAIN=L
Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz
Measure=OUTL, BW=400Hz to 22kHz
0.01
0.1
1
10
0.001 0.01 0.1 1 10 100 1000
Output Pow er[mW]
THD+N[%
]
Ta=-40,25,85
o
C
THD+N vs Out pu t Po w e r
V+=3.3V, RL=32, MUTE=H, GAIN=L, Ta=25
o
C
Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz
Measure=OUTL, BW=22Hz to 22kHz
0.01
0.1
1
10
0.001 0.01 0.1 1 10 100 1000
Output Pow er[mW]
THD+N[%
]
f=10kHz
f=100Hz,1kHz
THD+N vs Out pu t Po w e r
V+=3.3V, RL=16, MUTE=H , GAIN=L
Input=INL+/R+,INL-/R-(inverted), f=1kHz, Measure=OUTL,
BW=400Hz to 22kHz
0.01
0.1
1
10
0.001 0.01 0.1 1 10 100 1000
Output Pow er[mW]
THD+N[%
]
Input=Lch
Input=Lch , Rch
THD+N vs Out pu t Po w e r
V+=3.3V, RL=32, MUTE=H, GAIN=L
Input=INL+/R+,INL-/R-(inverted), f=1kHz, Measure=OUTL
BW=400Hz to 22kHz
0.01
0.1
1
10
0.001 0.01 0.1 1 10 100 1000
Output Pow er[mW]
THD+N[%
]
Input=Lch
Input=Lch , Rch
NJU72040
– 19 –
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
THD+N vs Out pu t V o lt ag e
V+=3.3V, RL=10k, MUTE=H , GA IN=L
Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz
Measure=OUTL, BW=400Hz to 22kHz
0.001
0.01
0.1
1
10
0.01 0.1 1 10
Output Voltage[Vrms]
THD+N[%
]
Ta=-40,25,85
o
C
THD+N vs Out pu t V o lt ag e
V+=3.3V, RL=10k, MUTE=H, GAIN=L, Ta=25
o
C
Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz
Measure=OUTL, BW=22Hz to 22kHz
0.001
0.01
0.1
1
10
0.01 0.1 1 10
Output Voltage[Vrms]
THD+N[%
]
f=100,1k,10kHz
THD+N vs Out pu t V o lt ag e
V+=3.3V, MUTE=H, GAIN=L, Ta=25
o
C
Input=INL+,INL-(inverted), f=1kHz, Measure=OUTL ,
BW=400Hz to 22kHz
0.001
0.01
0.1
1
10
0.01 0.1 1 10
Output Voltage[Vrms]
THD+N[%
]
RL=16
RL=32
RL=1k
RL=10k
RL=64
THD+N vs Out pu t V o lt ag e
V+=3.3V, RL=10k, MUTE=H, GAIN=L
Input=INL+/R+,INL-/R-(inverted), f=1kHz, Measure=OUTL
BW=400Hz to 22kHz
0.001
0.01
0.1
1
10
0.01 0.1 1 10
Output Voltage[Vrms]
THD+N[%
]
Input=Lch , Rch
Input=Lch