Rev. 0.2 / April 2008 1
This document is a general produc t description and is s ubjec t to change witho ut no tice. Hynix s emico nduc tor d oes not assu me any
responsibility for use of circuits described. No patent licenses are implied.
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
1Gb DDR3 SDRAM
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
** Contents are subject to change at any time without notice.
Rev. 0.2 /April 2008 2
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Revision History
Revision No. History Draft Date Remark
0.01 Preliminary Initial Release Nov. 2007 Preliminary
0.02 IDD Added March 2008 Preliminary
0.1 Revision 0.1 specification Release April 2008
0.2 Added Halogen free products April 2008
Rev. 0.2 /April 2008 3
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Table of Contents
1. Description
1.1 Device Features and Ordering Information
1.1.1 Features
1.1.2 Ordering Information
1.1.3 Operating Frequency
1.2 Package Ballout / Mechanical Dimension
1.2.1 x4 Package Ball out
1.2.2 x8 Package Ball out
1.2.3 x16 Package Ball out
1.3 Row and Column Address Table : 1G/2G/4G/8G
1.4 Pin Functional Description
2. Command Description
2.1 Command Truth Table
2.2 Clock Enable (CKE) Truth Table for Synchronous Transitions
3. Absolute Maximum Ratings
4. Operating Conditions
4.1 Operating Temperature Condition
4.2 DC Operating Conditions
5. AC and DC Input Measurement Levels
5.1 AC and DC Logic Input Levels for Single-Ended Signals
5.2 AC and DC Logic Input Levels for Differential Signals
5.3 Differential Input Cross Point Voltage
5.4 Slew Rate Definitions for Single Ended Input Signals
5.4.1 Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS)
5.4.2 Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH)
5.5 Slew Rate Definitions for Differential Input Signals
Rev. 0.2 /April 2008 4
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
6. AC and DC Output Measurement Levels
6.1 Single Ended AC and DC Output Levels
6.1.1 Differential AC and DC Output Levels
6.2 Single Ended Output Slew Rate
6.3 Differential Output Slew Rate
6.4 Reference Load for AC Timing and Output Slew Rate
7. Overshoot and Undershoot Specifications
7.1 Address and Control Overshoot and Undershoot Specifications
7.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications
7.3 34 ohm Output Driver DC Electrical Characteristics
7.4 Output Driver Temperature and Voltage sensitivity
7.5 On-Die Termination (ODT) Levels and I-V Characteristics
7.5.1 On-Die Termination (ODT) Levels and I-V Characteristics
7.5.2 ODT DC Electrical Characteristics
7.5.3 ODT Temperature and Voltage sensitivity
7.6 ODT Timing Definitions
7.6.1 Test Load for ODT Timings
7.6.2 ODT Timing Reference Load
8. IDD Specification Parameters and Test Conditions
8.1 IDD Measurement Conditions
8.2 IDD Specifications
8.2.1 IDD6 Current Definition
8.2.2 IDD6TC Specification (see notes 1~2)
9. Input/Output Capacitance
10. Standard Speed Bins
11. Electrical Characteristics and AC Timing
12. Package Dimensions
Rev. 0.2 /April 2008 5
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
1. DESCRIPTION
The H5TQ1G43AFP-xxC, H5TQ1G83AFP- xxC and H5TQ1G63 AFP-xxC are a 1,0 73,741,824-bit CMOS Double Da ta Rate III
(DDR3) Synchronous DRAM, ideally suited for the main memory applications which requires large memory density and
high bandwidth. Hynix 1Gb DDR3 SDRAMs offer fully synchronous operations re f erenced to both rising and falling edges
of the clock. While all addresses and control inputs are latched on the rising edges of the CK (falling edges of the CK),
Data, Data strobes and Write data masks inputs are sampled on both rising and falling edges of it.
The data paths are internally pipelined and 8-bit prefetched to achieve very high bandwidth.
1.1 Device Features and Ordering Information
1.1.1 FEATURES
VDD=VDDQ=1.5V +/- 0.075V
Fully differential clock inputs (CK, /CK) operation
Differential Data Strobe (DQS, /DQS)
On chip DLL align DQ, DQS and /DQS transition with CK
transition
DM masks write data-in at the both rising and falling
edges of the data strobe
All addresses and control inputs except data,
data strobes and data masks latched on the
rising edges of the clock
Programmable CAS latency 5, 6, 7, 8, 9, 10, and (11)
supported
Programmable additive latency 0, CL-1, and CL-2
supported
Programmable CAS Write latency (CWL) = 5, 6, 7, 8
Programmable burst length 4/8 with both nibble
sequential and interleave mode
BL switch on the fly
8banks
8K refresh cycles /64ms
JEDEC standard 78ball FBGA(x4/x8) , 96ball FBGA(x16)
Driver strength selected by EMRS
Dynamic On Die Termination supported
Asynchronous RESET pin supported
ZQ calibration supported
TDQS (Termination Data Strobe) supported (x8 only)
Write Levelization supported
Auto Self Refresh supported
On Die Thermal Sensor supported ( JEDEC optional )
8 bit pre-fetch
1.1.2 ORDERING INFORMATION
* (R) means Halogen Free Products
** XX means Speed Bin Grade
Part No. Configuration Package
H5TQ1G43AFP*(R)-**xxC 256M x 4 78ball FBGA
H5TQ1G83AFP*(R)-**xxC 128M x 8
H5TQ1G63AFP*(R)-**xxC 64M x 16 96ball FBGA
1.1.3 OPERATING FREQUENCY
Grade Frequency [MHz] Remark
(CL-tRCD-tRP)
CL5 CL6 CL7 CL8 CL9 CL10
-S5 O O DDR3-800 5-5-5
-S6 O DDR3-800 6-6-6
-G7 O O O DDR3-1066 7-7-7
-G8 O O DDR3-1066 8-8-8
-H8 O O O O O O DDR3-1333 8-8-8
-H9 O O O O DDR3-1333 9-9-9
Rev. 0.2 /April 2008 6
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
1.2 Package Ballout/Mechanical Dimension
1.2.1 x4 Package Ball out ( Top view ) : 78ball FBGA Package ( no support balls )
Note : Green NC balls indicate mechanical support balls with no internal connection
1.4 Pin Functional Description
1 2 3 4 5 6 7 8 9
AVSS VDD NC NC VSS VDD A
BVSS VSSQ DQ0 DM VSSQ VDDQ B
CVDDQ DQ2 DQS DQ1 DQ3 VSSQ C
DVSSQ NC DQS# VDD VSS VSSQ D
EVREFDQ VDDQ NC NC NC VDDQ E
FNC VSS RAS# CK VSS NC F
GODT VDD CAS# CK# VDD CKE G
HNC CS# WE# A10/AP ZQ NC H
JVSS BA0 BA2 A15 VREFCA VSS J
KVDD A3 A0 A12/BC# BA1 VDD K
LVSS A5 A2 A1 A4 VSS L
MVDD A7 A9 A11 A6 VDD M
NVSS RESET# A13 NC A8 VSS N
1 2 3 4 4 5 6 8 9
12
A
B
C
D
E
F
G
H
J
K
L
M
N
Populated ball
Ball not populated
3789
(Top View: See the balls thr ough the Package)
Rev. 0.2 /April 2008 7
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
1.2 Package Ballout/Mechanical Dimension
1.2.2 x8 Package Ball out ( Top view ) : 78ball FBGA Package ( no support balls )
Note : Green NC balls indicate mechanical support balls with no internal connection
1 2 3 4 5 6 7 8 9
AVSS VDD NC NU/TDQS# VSS VDD A
BVSS VSSQ DQ0 DM/TDQS VSSQ VDDQ B
CVDDQ DQ2 DQS DQ1 DQ3 VSSQ C
DVSSQ DQ6 DQS# VDD VSS VSSQ D
EVREFDQ VDDQ DQ4 DQ7 DQ5 VDDQ E
FNC VSS RAS# CK VSS NC F
GODT VDD CAS# CK# VDD CKE G
HNC CS# WE# A10/AP ZQ NC H
JVSS BA0 BA2 NC VREFCA VSS J
KVDD A3 A0 A12/BC# BA1 VDD K
LVSS A5 A2 A1 A4 VSS L
MVDD A7 A9 A11 A6 VDD M
NVSS RESET# A13 NC A8 VSS N
1 2 3 4 4 5 7 8 9
12
A
B
C
D
E
F
G
H
J
K
L
M
N
Populated ball
Ball not populated
3789
(Top View: See the balls thr ough the Package)
Rev. 0.2 /April 2008 8
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
1.2 Package Ballout/Mechanical Dimension
1.2.3 x16 Package Ball out( Top view ) : 96ball FBGA Package ( no support balls )
Note : Green NC balls indicate mechanical support balls with no internal connection
1 2 3 4 5 6 7 8 9
AVDDQ DQU5 DQU7 DQU4 VDDQ VSS A
BVSSQ VDD VSS DQSU# DQU6 VSSQ B
CVDDQ DQU3 DQU1 DQSU DQU2 VDDQ C
DVSSQ VDDQ DMU DQU0 VSSQ VDD D
EVSS VSSQ DQL0 DML VSSQ VDDQ E
FVDDQ DQL2 DQSL DQL1 DQL3 VSSQ F
GVSSQ DQL6 DQSL# VDD VSS VSSQ G
HVREFDQ VDDQ DQL4 DQL7 DQL5 VDDQ H
JNC VSS RAS# CK VSS NC J
KODT VDD CAS# CK# VDD CKE K
LNC CS# WE# A10/AP ZQ NC L
MVSS BA0 BA2 A15 VREFCA VSS M
NVDD A3 A0 A12/BC# BA1 VDD N
PVSS A5 A2 A1 A4 VSS P
RVDD A7 A9 A11 A6 VDD R
TVSS RESET# A13 NC A8 VSS T
1 2 3 4 4 5 7 8 9
12
A
B
C
D
E
F
G
H
J
K
L
M
N
Populated ball
Ball not populated
P
T
3789
(Top View: See the balls through the Package)
R
Rev. 0.2 /April 2008 9
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
1.3 ROW AND COLUMN ADDRESS TABLE
1Gb
2Gb
4Gb
8Gb
Note1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers
when an ACTIVE command is registered. Page size is per bank, calculated as follows:
page size = 2 COLBITS * ORG ÷ 8
where COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits
Configuration 256Mb x 4 128Mb x 8 64Mb x 16
# of Banks 8 8 8
Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2
Auto precharge A10/AP A10/AP A10/AP
BL switch on the fly A12/BC# A12/BC# A12/BC#
Row Address A0 - A13 A0 - A13 A0 - A12
Column Address A0 - A9,A11 A0 - A9 A0 - A9
Page size 11 KB 1 KB 2 KB
Configuration 512Mb x 4 256Mb x 8 128Mb x 16
# of Banks 8 8 8
Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2
Auto precharge A10/AP A10/AP A10/AP
BL switch on the fly A12/BC# A12/BC# A12/BC#
Row Address A0 - A14 A0 - A14 A0 - A13
Column Address A0 - A9,A11 A0 - A9 A0 - A9
Page size 11 KB 1 KB 2 KB
Configuration 1Gb x 4 512Mb x 8 256Mb x 16
# of Banks 8 8 8
Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2
Auto precharge A10/AP A10/AP A10/AP
BL switch on the fly A12/BC# A12/BC# A12/BC#
Row Address A0 - A15 A0 - A15 A0 - A14
Column Address A0 - A9,A11 A0 - A9 A0 - A9
Page size 11 KB 1 KB 2 KB
Configuration 2Gb x 4 1Gb x 8 512Mb x 16
# of Banks 8 8 8
Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2
Auto precharge A10/AP A10/AP A10/AP
BL switch on the fly A12/BC# A12/BC# A12/BC#
Row Address A0 - A15 A0 - A15 A0 - A15
Column Address A 0 - A9, A11, A13 A0 - A9, A11 A0 - A9
Page size 12 KB 2 KB 2 KB
Rev. 0.2 /April 2008 10
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
1.4 Pin Functional Description
Symbol Type Function
CK, CK# Input Clock: CK and CK# are differential clock inputs. All address and control input signals are
sampled on the crossing of the positive edge of CK and negative edge of CK#.
CKE Input
Clock Enable: CKE HIGH activates, and CKE Low deactiv ates, internal clock signals and device
input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-
Refresh operation (all banks idle), or Active Power-Down (row Active in any bank).
CKE is asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have become stable
during the power on and initialization sequence, they must be maintained during all
operations (including Self-Refresh). CKE must be maintained high throughout read and write
accesses. Input buff e rs, excluding CK, CK#, ODT and CKE are disabled during power-down.
Input buffers, excluding CKE, are disabled during Self-Refresh.
CS# Input Chip Select: All commands are masked when CS# is registered HIGH.
CS# provides for external Rank selection on systems with multiple Ranks.
CS# is considered part of the command code.
ODT Input
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the
DDR3 SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS# and DM/TDQS,
NU/TDQS# (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x4/x8
configurations. For x16 configuration ODT is applied to each DQ, DQSU, DQSU#, DQSL,
DQSL#, DMU, and DML signal.
The ODT pin will be ignored if MR1 is programmed to disable ODT.
RAS#.
CAS#. WE# Input Command Inputs: RAS#, CAS# and WE# (along with CS#) define the command being
entered.
DM, (DMU),
(DML) Input
Input Data Mask: DM is an input mask signal f or write data. In put data is masked when DM is
sampled HIGH coincident with that input data during a Write access. DM is sampled on both
edges of DQS. F or x8 device, the function of DM or TD QS/TDQS# is enabled by Mode R egister
A11 setting in MR1.
BA0 - BA2 Input Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge
command is being applied. Bank address also determines if the mode register or extended
mode register is to be accessed during a MRS cycle.
A0 - A15 Input
Address Inputs: Provide the row address for Active commands and the column address for
Read/W rite commands to select one location out of the m emory arr a y in the respectiv e bank.
(A10/AP and A12/BC# have additional functions, see below).
The address inputs also provide the op-code during Mode Register Set commands.
A10 / AP Input
Auto-precharge: A10 is sampled during Read/Write commands to determine whether
Autoprecharge should be performed to the accessed bank after the Read/Write operation.
(HIGH: Autoprecharge; LOW: no Autoprecharge).A10 is sampled during a Precharge
command to determine whether the Precharge applies to one bank (A10 LOW) or all banks
(A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.
A12 / BC# Input Burst Chop: A12 / BC# is sampled during Read and Write commands to determine if burst
chop (on-the-fly) will be performed.
(HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
RESET# Input
Active Low Asynchronous Reset: Reset is active when RESET# is LOW, and inactive when
RESET# is HIGH. RESET# must be HIGH during normal operation.
RESET# is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD, i.e. 1.20V
for DC high and 0.30V for DC low.
Rev. 0.2 /April 2008 11
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
DQ Input /
Output Data Input/ Output: Bi-directional data bus.
DQU, DQL,
DQS, DQS#,
DQSU,
DQSU#,
DQSL, DQSL#
Input /
Output
Data Strobe: output with read data, input with write data. Edge-aligned with read data,
centered in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU
corresponds to the data on DQU0-DQU7. The data strobe DQS, DQSL, and DQSU are paired
with differential signals DQS#, DQSL#, and DQSU#, respectively, to provide differential pair
signaling to the system during reads and writes. DDR3 SDRAM supports differential data
strobe only and does not support single-ended.
TDQS, TDQS# Output
Termination Data Strobe: TDQS/TDQS# is applicable for x8 DRAMs only. When enabled via
Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance
function on TDQS/TDQS# that is applied to DQS/DQS#. When disabled via mode register A11
= 0 in MR1, DM/TDQS will provide the data mask function and TDQS# is not used. x4/x16
DRAMs must disable the TDQS function via mode register A11 = 0 in MR1.
NC No Connect: No internal electrical connection is present.
VDDQ Supply DQ Power Supply: 1.5 V +/- 0.075 V
VSSQ Supply DQ Ground
VDD Supply Power Supply: 1.5 V +/- 0.075 V
VSS Supply Ground
VREFDQ Supply Reference voltage for DQ
VREFCA Supply Reference voltage
ZQ Supply Reference Pin for ZQ calibration
Note:
Input only pins (BA0-BA2, A0-A15, RAS#, CAS#, WE#, CS#, CKE, ODT, DM, and RESET#) do not supply termination.
Symbol Type Function
Rev. 0.2 /April 2008 12
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
2. Command Description
2.1 Command Truth Table
(a) note 1,2,3,4 apply to the entire Command Truth Table
(b) Note 5 applies to all Read/Write command
[BA=Bank Address, RA=Rank Address, CA=Column Address, BC#=Burst Chop, X=Don’t Care, V=Valid]
Function Abbrev
iation
CKE
CS# RAS# CAS# WE# BA0-
BA3 A13-
A15 A12-
BC# A10-
AP A0-
A9,
A11 NotesPrevi
ous
Cycle
Curre
nt
Cycle
Mode Register Set MRS H H L L L L BA OP Code
Refresh REF H H L L LHVVVVV
Self Refresh Entry SRE H L L L L H V V V V V 7,9,12
Self Refresh E xit SRX L H HV VVVVVVV
7,8,9,1
2
LH HH
Single Bank Precharge PRE H H L L H L BA V V L V
Precharge all Banks PREA H H L L H L V V V H V
Bank Activate ACT H H L L H H BA Row Address (RA)
Write (Fixed BL8 or BC4) WR H H L H L L BA RFU V L CA
Write (BC4, on the Fly) WRS4 H H L H L L BA RFU L L CA
Write (BL8, on the Fly) WRS8 H H L H L L BA RFU H L CA
Write with Auto
Precharge
(Fixed BL8 or BC4) WRA H H L H L L BA RFU V H CA
Write with Auto
Precharge
(BC4, on the Fly)
WRAS
4HHLHLLBARFULHCA
Write with Auto
Precharge
(BL8, on the Fly)
WRAS
8HHLHLLBARFUHHCA
Read (Fixed BL8 or BC4) RD H H L H L H BA RFU V L CA
Read (BC4, on the Fly) RDS4 H H L H L H BA RFU L L CA
Read (BL8, on the Fly) RDS8 H H L H L H BA RFU H L CA
Read with Auto
Precharge
(Fixed BL8 or BC4) RDA H H L H L H BA RFU V H CA
Read with Auto
Precharge
(BC4, on the Fly) RDAS4 H H L H L H BA RFU L H CA
Read with Auto
Precharge
(BL8, on the Fly) RDAS8 H H L H L H BA RFU H H CA
No Operation NOP H H L H H H V V V V V 10
Device Deselected DES H H H X X X X X X X X 11
Power Down Entry PDE H L LH HH
VVVVV6,12
HV VV
Rev. 0.2 /April 2008 13
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Power Down Exit PDX L H LH HH
VVVVV6,12
HV VV
ZQ Calibration Long ZQCL H H L H H L X X X H X
ZQ Calibration Short ZQCS H H L H H L X X X L X
Notes:
1. All DDR3 SDRAM commands are defined by states of CS#, RAS#, CAS#, WE# and CKE at the rising edge of the
clock. The MSB of BA, RA and CA are device density and configuration dependant.
2. RESET# is Low enable command which will be used only for asynchronous reset so must be maintained HIGH during
any function.
3. Bank addresses (BA) determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode
Register.
4. “V” means “H or L (but a defined logic level)” and “X” means either “defined or undefined (like floating) logic level”.
5. Burst reads or writes cannot be terminated or interrupted and Fixed/on the Fly BL will be defined by MRS.
6. The Power Down Mode does not perform any refresh operation.
7. The state of ODT does not affect the states described in this table. The ODT function is not available during Self
Refresh.
8. Self Refresh Exit is asynchronous.
9. VREF(Both VrefDQ and VrefCA) must be maintained during Self Refresh operation.
10. The No Operation command should be used in cases when the DDR3 SDRAM is in an idle or wait state. The purpose
of the No Operation command (NOP) is to prevent the DDR3 SDRAM from registering any unwanted commands
between operations. A No Operation command will not terminate a previous operation that is still executing, such as
a burst read or write cycle.
11. The Deselect command performs the same function as No Operation command.
12. Refer to the CKE Truth Table for more detail with CKE transition.
Function Abbrev
iation
CKE
CS# RAS# CAS# WE# BA0-
BA3 A13-
A15 A12-
BC# A10-
AP A0-
A9,
A11 NotesPrevi
ous
Cycle
Curre
nt
Cycle
Rev. 0.2 /April 2008 14
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
2.2 CKE Truth Table
a) Notes 1-7 apply to the entire CKE Truth Table.
b) CKE low is allowed only if tMRD and tMOD are satisfied.
Current State2
CKE Command (N)3
RAS#, CAS#,
WE#, CS# Action (N)3Notes
Previous
Cycle1
(N-1)
Current
Cycle1
(N)
Power-Down L L X Maintain Power-Down 14, 15
L H DESELECT or NOP Power-Down Exit 11,14
Self-Refresh L L X Maintain Self-Refresh 15,16
L H DESELECT or NOP Self-Refresh Exit 8,12,16
Bank(s) Active H L DESELECT or NOP Active Power-Down Entry 11,13,14
Reading H L DESELECT or NOP Power-Down Entry 11,13,14,17
Writing H L DESELECT or NOP Power-Down Entry 11,13,14,17
Precharging H L DESELECT or NOP Power-Down Entry 11,13,14,17
Refreshing H L DESELECT or NOP Precharge Power-Down Entry 11
All Banks Idle H L DESELECT or NOP Precharge Power-Down Entry 11,13,14,18
H L REFRESH Self-Refresh 9,13,18
For more details with all signals See “2.1 Command Truth Table” on page 12.. 10
Notes:
1. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.
2. Current state is defined as the state of the DDR3 SDRAM immediately prior to clock edge N.
3. COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N), ODT is
not included here.
4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.
5. The state of ODT does not affect the states described in this table. The ODT function is not available during
Self-Refresh.
6. tCKEmin of [TBD] clocks means CKE must be registered on [TBD] consecutive positive clock edges. CKE must remain
at the valid input level the entire time it takes to achieve the [TBD] clocks of registration. Thus, after any CKE
transition, CKE may not transition from its valid level during the time period of tIS + [TBD] + tIH.
7. DESELECT and NOP are defined in the Command Truth Table.
8. On Self-Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXS
period. Read or ODT commands may be issued only after tXSDLL is satisfied.
9. Self-Refresh mode can only be entered from the All Banks Idle state.
10. Must be a legal command as defined in the Command Truth Table.
11. Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.
12. Valid commands for Self-Refresh Exit are NOP and DESELECT only.
13. Self-Refresh can not be entered during Read or Write operations. For a detailed list of restrictions
see 8.2.1 on page 44.
14. The Power-Down does not perform any refresh operations.
15. “X” means “don’t care“ (including floating around VREF) in Self-Refresh and Power-Down. It also applies to
Address pins.
16. VREF (Both Vref_DQ and Vref_CA) must be maintained during Self-Refresh operation.
17. If all banks are closed at the conclusion of the read, write or precharge command, then Precharge Power-Down
is entered, otherwise Active Power-Down is entered.
18. ‘Idle state’ is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is high,
and all timings from previous operations are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS, etc.) as well as
all Self-Refresh exit and Power-Down Exit parameters are satisfied (tXS, tXP, tXPDLL, etc).
Rev. 0.2 /April 2008 15
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
3. ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Rating Units Notes
VDD Voltage on VDD pin relative to Vss - 0.4 V ~ 1.975 V V ,3
VDDQ Voltage on VDDQ pin relative to Vss - 0.4 V ~ 1.975 V V ,3
VIN, VOUT Voltage on any pin relative to Vss - 0.4 V ~ 1.975 V V
TSTG Storage Temperature -55 to +100 , 2
Notes:
1. Stresses greater tha n those listed under “ Absolute Maximum Ratings” ma y cause permanent damage to the d evice.
This is a stress rating only and functional operation of the device at these or any other conditions above those
indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement
conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must not be greater than
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.
Rev. 0.2 /April 2008 16
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
4. Operating Conditions
4.1 OPERATING TEMPERATURE CONDITION
4.2 RECOMMENDED DC OPERATING CONDITIONS
Symbol Parameter Rating Units Notes
TOPER Operating Temperature (Tcase) 0 to 85 oC 2
Extended Temperature Range 85 to 95 oC1,3
Notes:
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM.
For measurement conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported.
During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC case
temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs.
(This double refresh requirement may not apply for some devices.) It is also poss ible to specify a component with
1X refresh (tREFI to 7. 8µs) in the Extended Temperature Range. Please refer to supplier data sheet and/or the
DIMM SPD for option availability.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use
the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or
enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).
Symbol Parameter Rating Units Notes
Min. Typ. Max.
VDD Supply Voltage 1.425 1.500 1.575 V 1,2
VDDQ Supply Voltage for Output 1.425 1.500 1.575 V 1,2
Notes:
1. Under all conditions, VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC paramaters are measured with VDD and VDDQ tied together.
Rev. 0.2 /April 2008 17
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
5. AC and DC Input Measurement Levels
5.1 AC and DC Logic Input Levels for Single-Ended Signals
The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in
below Figure. It shows a valid reference voltage VRef(t) as a function of time. (VRef stands for VRefCA and
VRefDQ likewise).
VRef(DC) is the linear average of VRef(t ) over a very long period of time (e.g. 1 sec). This average has to
meet the min/max requirements in Table 1.
Furthermore VRef(t) may temporarily deviate from VRef(DC) by no more than +/- 1% VDD.
Illustration of Vref(DC) tolerance and Vref ac-noise limits
Single Ended AC and DC Input Levels
Symbol Parameter DDR3-800, DDR3-1066,
DDR3-1333, DDR3-1600 Unit Notes
Min Max
VIH(DC) DC input logic high Vref + 0.100 TBD V 1
VIL(DC) DC input logic low TBD Vref - 0.100 V 1
VIH(AC) AC input logic high Vref + 0.175 - V 1, 2
VIL(AC) AC input logic low V ref - 0.175 V 1, 2
VRefDQ(DC) Reference Voltage for DQ, DM inputs 0.49 * VDD 0.51 * VDD V 3, 4
VRefCA(DC) Reference Voltage for ADD, CMD inputs 0.49 * VDD 0.51 * VDD V 3, 4
VTT Termination voltage for DQ, DQS outputs VDDQ/2 - TBD VDDQ/2 + TBD
Notes:
1. For DQ and DM, Vref = VrefDQ. For input any pins except RESET#, Vref = VrefCA.
2. The “t.b.d.” entries might change based on overshoot and undershoot specification.
3. The ac peak noise on VRef may not allow VRef to deviate from VRef(DC) by more than +/-1% VDD
(for reference: approx. +/- 15 mV).
4. For reference: approx. VDD/2 +/- 15 mV.
VDD
VSS
VDD/2
V
Ref(DC)
V
Ref
ac-noise
voltage
time
V
Ref(DC)max
V
Ref(DC)min
V
Ref
(t)
Rev. 0.2 /April 2008 18
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
5.2 AC and DC Logic Input Levels for Differential Signals
Note1.
Refer to “Overshoot and Undershoot Specification on page 23
5.3 Differential Input Cross Point Voltage
To guarantee tight setup and hold times a s well as output skew parameters with respect to clock and strobe,
each cross point voltage of differential input signals (CK, CK# and DQS, DQS#) must meet the requirements
below table. The differential input cross point voltage VIX is measured from the actual cross point of true and
complement signal to the midlevel between of VDD and VSS.
Vix Definition
Cross point voltage for differential input signals (CK, DQS)
Symbol Parameter DDR3-800, DDR3-1066,
DDR3-1333, DDR3-1600 Unit Notes
Min Max
VIHdiff Differential input logic high + 0.200 - V 1
VILdiff Differential input logic low - 0.200 V 1
Symbol Parameter DDR3-800, DDR3-1066,
DDR3-1333, DDR3-1600 Unit Notes
Min Max
VIX Differential Input Cross Point
Voltage relative to VDD/2 - 150 150 mV
VDD
VSS
VDD/2
VIX
VIX
VIX
CK#, DQS#
CK, DQS
Rev. 0.2 /April 2008 19
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
5.4 Slew Rate Definitions for Single Ended Input Signals
5.4.1 Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS)
Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing
of VRef and the first crossing of VIH(AC)min. Setup (tIS and tDS) nominal slew rate for a falling signal is
defined as the slew rate between the last crossing of VRe f an d the first crossing of VIL(AC)max.
5.4.2 Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH)
Hold nominal slew rate for a r ising sign al is defined as the slew rate between the last crossing of VIL(DC)max
and the first crossing of VRef. Hold (tIH and tDH) nominal slew rate for a falling signal is defined as the slew
rate between the last crossing of VIH( DC)min and the first crossing of VRef.
Single-Ended Input Slew Rate Definition
Input Nominal Slew Rate Definition for Single-Ended Signals
Description Measured Defined by Applicable for
Min Max
Input slew rate for rising edge Vref VIH(AC)min VIH(AC)min-Vref
Delta TRS Setup
(tIS, tDS)
Input slew rate for falling edge Vref VIL(AC)max Vref-VIL(AC)max
Delta TFS
Input slew rate for rising edge VIL(DC)max Vref Vref-VIL(DC)max
Delta TFH Hold
(tIH, tDH)
Input slew rate for falling edge VIH(DC)min Vr ef VIH(DC)min-Vref
Delta TRH
Delta TFS
Delta TRS
vIH(AC)m in
vIH(DC)m in
vIH(DC)m ax
vIH(AC)m ax
vRefD Q or
vRefCA
Part A: Set up
Single Ended input Voltage(DQ,ADD, CMD)
Part B: Hold
Delta TFH
Delta TRH
vIH(AC)m in
vIH(DC)m in
vIH(DC)m ax
vIH(AC)m ax
vRefD Q or
vRefCA
Single Ended input Voltage(DQ,ADD, CMD)
Figure 82 ? In pu t N o m in al S le w R a te D e finition fo r S in g le -E n ded S ig n als
Rev. 0.2 /April 2008 20
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
5.5 Slew Rate Definitions for Differential Input Signals
Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and measured as shown in
Table and Figure .
Note:
The dif ferential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds.
Description Measured Defined by
Min Max
Differential input slew rate for rising edge
(CK-CK and DQS-DQS)VILdiffmax VIHdiffmin VIHdiffmin-VILdiffmax
DeltaTRdiff
Differential input slew rate for falling edge
(CK-CK and DQS-DQS)VIHdiffmin VILdiffmax VIHdiffmin-VILdiffmax
DeltaTFdiff
Delta
TFdiff
Delta
TRdiff
vIHdiffmin
vILdiffmax
0
Differential Input Voltage (i.e. DQS-DQS; CK-CK)
D iffer e n tia l In p u t S le w R a te D e fin itio n fo r D QS, DQS# a n d C K , C K #
Rev. 0.2 /April 2008 21
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
6. AC and DC Output Measurement Levels
6.1 Single Ended AC and DC Output Levels
Table shows the output levels used for measurements of single ended signals.
6.1.1 Differential AC and DC Output Levels
Below table shows the output levels us ed for measurements of differential signals.
6.2 Single Ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and
measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table and Figure.
Note:
Output slew rate is verified by design and characterisation, and may not be sub ject to production tes t.
Symbol Parameter DDR3-800, 1066,
1333 and 1600 Unit Notes
VOH(DC) DC output high measurement level (for IV curve linearity) 0.8 x VDDQ V
VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V
VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V
VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V 1
VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V 1
1. The swing of ±0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with
a driver impedance of 40 and an effective test load of 25 to VTT = VDDQ / 2.
Symbol Parameter DDR3-800, 1066,
1333 and 1600 Unit Notes
VOHdiff(AC) AC differential output high measurement level (for output SR) + 0.2 x VDDQ V 1
VOLdiff(AC) AC differential output low measurement level (for outtput SR) - 0.2 x VDDQ V 1
1. The swing of ±0.2 x VDDQ is based on approximately 50% of the static differential output high or low swing with
a driver impedance of 40 and an effective test load of 25 to VTT = VDDQ/2 at each of the differential outputs.
Description Measured Defined by
From To
Single ended output slew rate for rising edge VOL(AC) VOH(AC) VOH(AC)-VOL(AC)
DeltaTRse
Single ended output slew rate for falling edge VOH(AC) VOL(AC) VOH(AC)-VOL(AC)
DeltaTFse
Rev. 0.2 /April 2008 22
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Fig. Single Ended Output Slew Rat e Definition
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units
Min Max Min Max Min Max Min Max
Single-ended Output Slew Rate SRQse 2.5 5 2.5 5 2.5 5 TBD 5 V/ns
Delta TFse
Delta TRse
vOH(AC)
vOl(AC)
V
Single Ended Output Voltage(l.e.DQ)
Single Ended Ou tput S lew R ate D e finition
Table. Output Slew Rate (single-ended)
*** For Ron = RZQ/7 setting
Rev. 0.2 /April 2008 23
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
6.3 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and
measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table and Figure .
Differential Output Slew Rate Definition
Note:
Output slew rate is verified by design and characterization, and may not be sub ject to production tes t.
Fig. Differential Output Slew Rate Definition
Table. Differential Output Slew Rate
***For Ron = RZQ/7 setting
Description Measured Defined by
From To
Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) VOHdiff(AC)-VOLdiff(AC)
DeltaTRdiff
Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) VOHdiff(AC)-VOLdiff(AC)
DeltaTFdiff
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units
Min Max Min Max Min Max Min Max
Differential Output Slew Rate SRQdiff 5 10 5 10 5 10 TBD 10 V/ns
Delta
TFdiff
Delta
TRdiff
vOHdiff(AC)
vOLdiff(AC)
O
Differential Output Voltage(i.e. DQS-DQS)
Differential Output Slew Rate Definition
Rev. 0.2 /April 2008 24
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
6.4 Reference Load for AC Timing and Output Slew Rate
Figure represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the
device as well as output slew rate measurements.
It is not intended as a precise representation of any particular system environment or a depiction of the actual load pre-
sented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing ref erence
load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial
transmission lines terminated at the tester electronics.
DUT DQ
DQS
DQS
VDDQ
25 Oh m VTT = VDDQ/2
CK, CK
R efe ren ce L o ad for A C Timing an d O u tpu t Slew R a te
Rev. 0.2 /April 2008 25
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
7. Overshoot and Undershoot Specifications
7.1 Address and Control Overshoot and Undershoot Specifications
Table. AC Overshoot/Undershoot Specification for Address and Control Pins
Description Specification
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Maximum peak amplitude allowed for
overshoot area (see Figure) 0.4V 0.4V 0.4V 0.4V
Maximum peak amplitude allowed for
undershoot area (see Figure) 0.4V 0.4V 0.4V 0.4V
Maximum overshoot area above VDD (See Figure) 0.67 V-ns 0.5 V-ns 0.4 V-ns 0.33 V-ns
Maximum undershoot area below VSS (See Figure) 0.67 V-ns 0.5 V-ns 0.4 V-ns 0.33 V-ns
Ma x imu m Amp litu d e
Overshoot Area
VDD
VSS
Maximum Amplitude Undershoot Area
Tim e (ns)
Address and Control O vershoot and Undershoot Definition
Rev. 0.2 /April 2008 26
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
7.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications
Table. AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask
Description Specification
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Maximum peak amplitude allowed for
overshoot area (see Figure) 0.4V 0.4V 0.4V 0.4V
Maximum peak amplitude allowed for
undershoot area (see Figure) 0.4V 0.4V 0.4V 0.4V
Maximum overshoot area above VDDQ (See Figure) 0.25 V-ns 0.19 V-ns 0.15 V-ns 0.13 V-ns
Maximum undershoot area below VSSQ (See Figure) 0.25 V-ns 0.19 V-ns 0.15 V-ns 0.13 V-ns
Ma x imu m Amp litu d e
O vershoot Area
VDDQ
VSSQ
Maximum Amplitude Undershoot Area
Tim e (ns)
Clock, Data Strobe and M ask Overshoot and Undershoot Definition
Volts
(V)
Rev. 0.2 /April 2008 27
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
7.3 34 ohm Output Driver DC Electrical Characteristics
A functional representation of the output buffer is shown in Figure . Output driver impedance RON is defined
by the value of the external reference resistor RZQ as follows:
RON34 = RZQ / 7 (nominal 34.3 W ±10% with nominal RZQ = 240 W ± 1%)
The individual pull- up and pull-down resistors (RONPu and RONPd) are defined as follows:
under the condition that RONPd is turned off
under the condition that RONPu is turned off
RONPu VDDQ VOut
IOut
--------------------------------------=
RONPd VOut
IOut
---------------=
To
other
Circuitry
Like
RCV,
...
Ipu
RONpu
RONpd
Ipd
Output Driver
Iout
Vout
VSSQ
DQ
VDDQ
Chip in Drive Mode
Output Driver: Definition of Voltages and Currents
Rev. 0.2 /April 2008 28
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Notes:
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of
the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and
temperature sensitivity.
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.
3. Pull-down and pull-up output driver impedances are recommended to be calibrated at 0.5 x VDDQ. Other
calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 x VDDQ
and 0.8 x VDDQ.
4. Measurement definition for mismatch between pu ll-up and pull-down, MMPuPd:
Measure RONPu and RONPd, both at 0.5 x VDDQ:
7.4 Output Driver Temperature and Voltage sensitivity
If temperature and/or voltage change after calibration, the tolerance limits widen according to Table and Table .
DT = T - T(@calibration); DV= VDDQ - VDDQ(@calibration); VDD = VDDQ
dRONdT and dRONdV are not subject to production test but are verified by design and characterization.
Output Driver DC Electrical Characteristics, assuming RZQ =240;
entire operating temperature range; after proper ZQ calibration
RONNom Resistor VOut min nom max Unit Notes
34
RON34Pd VOLdc = 0.2 × VDDQ 0.6 1.0 1.1 RZQ/7 1, 2, 3
VOMdc = 0.5 × VDDQ 0.9 1.0 1.1 RZQ/7 1, 2, 3
VOHdc = 0.8 × VDDQ 0.9 1.0 1.4 RZQ/7 1, 2, 3
RON34Pu VOLdc = 0.2 × VDDQ 0.9 1.0 1.4 RZQ/7 1, 2, 3
VOMdc = 0.5 × VDDQ 0.9 1.0 1.1 RZQ/7 1, 2, 3
VOHdc = 0.8 × VDDQ 0.6 1.0 1.1 RZQ/7 1, 2, 3
Mismatch between pull-up and pull-down,
MMPuPd VOMdc
0.5 × VDDQ -10 +10 % 1, 2, 4
Output Driver Sensitivity Definition
min max unit
RONPU@ VOHdc 0.6 - dRONdTH*|T| - dRONdVH*|V| 1.1 + dRONdTH*|T| + dRONdVH*|V| RZQ/7
RON@ VOMdc 0.9 - dRONdTM*|T| - dRONdVM*|V| 1.1 + dRONdTM*|T| + dRONdVM*|V| RZQ/7
RONPD@ VOLdc 0.6 - dRONdTL*|T| - dRONdVL*|V| 1.1 + dRONdTL*|T| + dRONdVL*|V| RZQ/7
Output Driver Voltage and Temperature Sensitivity
min max unit
dRONdTM 0 1.5 %/oC
dRONdVM 0 0.15 %/mV
dRONdTL 0 1.5 %/oC
dRONdVL 0 TBD %/mV
MMPuPd RONPu RONPd
RONNom
-------------------------------------------------
x
100=
Rev. 0.2 /April 2008 29
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
These parame ters may not be subject to production test. They are verified by design and characterization .
7.5 On-Die Termination (ODT) Levels and I-V Characteristics
7.5.1 On-Die Termination (ODT) Levels and I-V Characteristics
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of the MR1 Register.
ODT is applied to the DQ, DM, DQS/DQS# and TDQS/TDQS# (x8 devices only) pins.
A functional representation of the on-die termination is shown in Figure . The individual pull-up and pull-down resistors
(RTTPu and RTTPd) are defined as follows:
under the condition that RTTPd is turned off
under the condition that RTTPu is turned off
dRONdTH 01.5
%/oC
dRONdVH 0TBD%/mV
Output Driver Voltage and Temperature Sensitivity
min max unit
RTTPu VDDQ VOut
IOut
---------------------------------
=
RTTPd VOut
IOut
-------------
=
To
other
Circuitry
Like
RCV,
...
Ipu
RTTpu
RTTpd
Ipd
ODT
Iout
Vout
VSSQ
DQ
VDDQ
C h ip in T e rm in a tio n Mo d e
O n -D ie T ermination : D e fin ition of V oltag es a nd C urren ts
Iout = Ipd -Ipu
IO_CTT_DEFINITION_01
Rev. 0.2 /April 2008 30
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
7.5.2 ODT DC Electrical Characteristics
A below table provides an overview of the ODT DC electrical characteristics. The values for RTT60Pd120, RTT60Pu120,
R TT120Pd240, RTT120Pu240, R TT40Pd80, RTT40Pu80, RTT30Pd60, R TT30Pu60 , RTT20Pd40, RTT20Pu40 are not specifi-
cation requirements, but can be used as design guide lines:
ODT DC Electrical Characteristics, assuming RZQ =240+/- 1% ent ire op e rat in g tempera tur e ran ge;
after proper ZQ calibration
MR1 A9, A6, A2 RTT Resistor VOut min nom max Unit Notes
0, 1, 0 120
RTT120Pd240
VOLdc
0.2 × VDDQ 0.6 1.00 1.1 RZQ 1) 2) 3) 4)
0.5 × VDDQ 0.9 1.00 1.1 RZQ 1) 2) 3) 4)
VOHdc
0.8 × VDDQ 0.9 1.00 1.4 RZQ 1) 2) 3) 4)
RTT120Pu240
VOLdc
0.2 × VDDQ 0.9 1.00 1.4 RZQ 1) 2) 3) 4)
0.5 × VDDQ 0.9 1.00 1.1 RZQ 1) 2) 3) 4)
VOHdc
0.8 × VDDQ 0.6 1.00 1.1 RZQ 1) 2) 3) 4)
RTT120 VIL(ac) to VIH(ac) 0.9 1.00 1.6 RZQ/2 1) 2) 5)
0, 0, 1 60
RTT60Pd120
VOLdc
0.2 × VDDQ 0.6 1.00 1.1 RZQ/2 1) 2) 3) 4)
0.5 × VDDQ 0.9 1.00 1.1 RZQ/2 1) 2) 3) 4)
VOHdc
0.8 × VDDQ 0.9 1.00 1.4 RZQ/2 1) 2) 3) 4)
RTT60Pu120
VOLdc
0.2 × VDDQ 0.9 1.00 1.4 RZQ/2 1) 2) 3) 4)
0.5 × VDDQ 0.9 1.00 1.1 RZQ/2 1) 2) 3) 4)
VOHdc
0.8 × VDDQ 0.6 1.00 1.1 RZQ/2 1) 2) 3) 4)
RTT60 VIL(ac) to VIH(ac) 0.9 1.00 1.6 RZQ/4 1) 2) 5)
Rev. 0.2 /April 2008 31
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance
limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity.
The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.
Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5 x VDDQ. Other calibr ation schemes may be
used to achieve the linearity spec shown above, e.g. calibration at 0.2 x VDDQ and 0.8 x VDDQ.
Not a specification requirement, but a design guide line.
Measurement definition for RTT:
0, 1, 1 40
RTT40Pd80
VOLdc
0.2 × VDDQ 0.6 1.00 1.1 RZQ/3 1) 2) 3) 4)
0.5 × VDDQ 0.9 1.00 1.1 RZQ/3 1) 2) 3) 4)
VOHdc
0.8 × VDDQ 0.9 1.00 1.4 RZQ/3 1) 2) 3) 4)
RTT40Pu80
VOLdc
0.2 × VDDQ 0.9 1.00 1.4 RZQ/3 1) 2) 3) 4)
0.5 × VDDQ 0.9 1.00 1.1 RZQ/3 1) 2) 3) 4)
VOHdc
0.8 × VDDQ 0.6 1.00 1.1 RZQ/3 1) 2) 3) 4)
RTT40 VIL(ac) to VIH(ac) 0.9 1.00 1.6 RZQ/6 1) 2) 5)
1, 0, 1 30
RTT30Pd60
VOLdc
0.2 × VDDQ 0.6 1.00 1.1 RZQ/4 1) 2) 3) 4)
0.5 × VDDQ 0.9 1.00 1.1 RZQ/4 1) 2) 3) 4)
VOHdc
0.8 × VDDQ 0.9 1.00 1.4 RZQ/4 1) 2) 3) 4)
RTT30Pu60
VOLdc
0.2 × VDDQ 0.9 1.00 1.4 RZQ/4 1) 2) 3) 4)
0.5 × VDDQ 0.9 1.00 1.1 RZQ/4 1) 2) 3) 4)
VOHdc
0.8 × VDDQ 0.6 1.00 1.1 RZQ/4 1) 2) 3) 4)
RTT30 VIL(ac) to VIH(ac) 0.9 1.00 1.6 RZQ/8 1) 2) 5)
1, 0, 0 20
RTT20Pd40
VOLdc
0.2 × VDDQ 0.6 1.00 1.1 RZQ/6 1) 2) 3) 4)
0.5 × VDDQ 0.9 1.00 1.1 RZQ/6 1) 2) 3) 4)
VOHdc
0.8 × VDDQ 0.9 1.00 1.4 RZQ/6 1) 2) 3) 4)
RTT20Pu40
VOLdc
0.2 × VDDQ 0.9 1.00 1.4 RZQ/6 1) 2) 3) 4)
0.5 × VDDQ 0.9 1.00 1.1 RZQ/6 1) 2) 3) 4)
VOHdc
0.8 × VDDQ 0.6 1.00 1.1 RZQ/6 1) 2) 3) 4)
RTT20 VIL(ac) to VIH(ac) 0.9 1.00 1.6 RZQ/12 1) 2) 5)
Deviation of VM w.r.t. VDDQ/2, DVM -5 +5 % 1) 2) 5) 6)
ODT DC Electrical Characteristics, assuming RZQ =240+/- 1% ent ire op e rat in g tempera tur e ran ge;
after proper ZQ calibration
MR1 A9, A6, A2 RTT Resistor VOut min nom max Unit Notes
Rev. 0.2 /April 2008 32
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Apply VIH(ac) to pin under test and measure current I(VI H(ac)), then apply VIL(ac) to pin under test and measure current
I(VIL(ac)) respectively.
Measurement definition for VM and DVM :
Measure voltage (VM) at test pin (midpoint) with no load:
7.5.3 ODT Temperature and Voltage sensitivity
If temperature and/or vol tage change af ter calibration, the tolerance limits widen according to Table and Table .
DT = T - T(@calibration); DV= VDDQ - VDDQ(@calibration); VDD = VDDQ
These parameters may not be subject to production test. They are verified by design and characterization
ODT Sensitivity Definition
min max unit
RTT 0.9 - dRTTdT*|T| - dRTTdV*|V| 1.6 + dRTTdT*|T| + dRTTdV*|V| RZQ/2,4,6,8,12
ODT Voltage and Temperature Sensitivity
min max unit
dRTTdT 0 1.5 %/oC
dRTTdV 0 0.15 %/mV
RTT VIH(ac) VIL(ac)
I(VIH(ac)) I(VIL(ac))
---------------------------------------------------------=
VM
2VM
VDDQ
------------------1
⎝⎠
⎛⎞
100=
Rev. 0.2 /April 2008 33
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
7.6 ODT Timing Definitions
7.6.1 Test Load for ODT Timings
Different than for timing measurements, the reference load for ODT timings is defined in Figure .
7.6.2 ODT Timing Reference Load
ODT Timing Definitions
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in the table and subsequent figures. Measurement
reference settings are provided in the table.
ODT Timing Definitions
Symbol Begin Point Definition End Point Definition Figure
tAON Rising edge of CK - CK# defined by
the end point of ODTLon Extrapolated point at VSSQ Figure
tAONPD Rising edge of CK - CK# with
ODT being first registered high Extrapolated point at VSSQ Figure
tAOF Rising edge of CK - CK# defined by
the end point of ODTLoff End point: Extrapolated point at VRTT_Nom Figure
tAOFPD Rising edge of CK - CK# with
ODT being first registered low End point: Extrapolated point at VRTT_Nom Figure
tADC Rising edge of CK - CK# defined by the end point
of ODTLcnw, ODTLcwn4 or ODTLcwn8 End point: Extrapolated point at VRTT_Wr and
VRTT_Nom respectively Figure
Reference Settings for ODT Timing Measurements
Measured
Parameter RTT_Nom Setting RTT_Wr Setting VSW1 [V] VSW2 [V] Note
tAON RZQ/4 NA 0.05 0.10
RZQ/12 NA 0.10 0.20
tAONPD RZQ/4 NA 0.05 0.10
RZQ/12 NA 0.10 0.20
tAOF RZQ/4 NA 0.05 0.10
RZQ/12 NA 0.10 0.20
tAOFPD RZQ/4 NA 0.05 0.10
RZQ/12 NA 0.10 0.20
tADC RZQ/12 RZQ/2 0.20 0.30
BD_REFLOAD_ODT
CK
CK,
VDDQ
DQSDQS, TDQSTDQS,
DQ , DM
DUT
VT T =
VSSQ
RTT
= 25
VSSQ
T im ing Ref er enc e P oint s
Rev. 0.2 /April 2008 34
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Definition of tAON
Definition of tAONPD
CK
CK
VTT
TD_TAON_DEF
t
AON
VSSQ
DQS
DQ , DM
VSSQ
DQS, TDQSTDQS,
Begin point: Rising edge of C K - CK
defined by the end point of OD TLon
V
SW1
V
SW2
End point: Extrapolated point at VSSQ
T
SW1
T
SW2
CK
CK
VTT
TD_TAONPD_DEF
t
AONPD
VSSQ
DQS
DQ , DM
VSSQ
DQS, TDQSTDQS,
Begin point: R ising edge of CK - CK with
OD T being first registered high
VSW1
VSW2
End p oint: Extrapolated point at VSSQ
TSW1
TSW2
Rev. 0.2 /April 2008 35
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Definition of tAOF
Definition of tAOFPD
CK
CK
VTT
TD_TAOF_DEF
t
AOF
DQS
DQ , DM
DQS, TDQSTDQS,
Begin point: R ising edge of CK - CK
defined by the end point of ODTLoff
End point: Extrapolated point at VRTT_Nom
VRTT_Nom
VSSQ
VSW1
VSW2
TSW1
TSW2
CK
CK
VTT
TD_TAOFPD_DEF
t
AOFPD
DQS
DQ , DM
DQS, TDQSTDQS,
Begin point: R ising edge of CK - CK with
ODT being first registered low
End point: Extrapolated point at VRTT_Nom
VRTT_Nom
VSSQ
VSW1
VSW2
TSW1
TSW2
Rev. 0.2 /April 2008 36
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Definition of tADC
8. IDD Specification Parameters and Test Conditions
8.1 IDD Measurement Conditions
Within the tables provided further down, an overview about the IDD measurement conditions is provided as follows:
Within the tables about IDD measurement conditions, the following definitions are used :
LOW is defined as VIN <= VILAC(max.); HIGH is defined as VIN >= VIHAC(min.).
STABLE is defined as inputs are stable at a HIGH or LOW level.
FLOATING is defined as inputs are VREF = VDDQ / 2.
SWITCHING is defined as described in the following 2 tables.
Overview of Tables providing IDD Measurement Conditions and DRAM Behavior
Table number Measurement Conditions
Table on page 38 IDD0 and IDD1
Table on page 39 IDD2N, IDD2Q, IDD2P(0), IDD2P(1)
Table on page 40 IDD3N and IDD3P
Table on page 40 IDD4R, IDD4W, IDD7
Table on page 42 IDD7 for different Speed Grades and different tRRD, tFAW conditions
Table on page 42 IDD5B
Table on page 43 IDD6, IDD6ET (optional), IDD6TC (optional)
CK
CK
TD_TADC_DEF
t
ADC
DQS
DQ , DM
DQS, TDQSTDQS,
V
SW1
V
SW2
End point:
Extrapolated
point at VRTT_Nom T
SW11
T
SW21
t
ADC
End point: Extrapolated point at VRTT_Wr
VTT
VSSQ
VRTT_Nom
VRTT_Wr
VRTT_Nom
T
SW12
T
SW22
Begin point: R ising edge of CK - CK
defined by the end point of ODTLcnw Begin po int: Risin g e dg e of CK - CK defined by
the end point of ODTLcwn4 or ODTLcwn8
Rev. 0.2 /April 2008 37
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Timing parameters are listed in the following table:
Definition of SWITCHING for Address and Command Input Signals
SWITCHING for Address (row, column) and Command Signals (CS, RAS, CAS, WE) is defined as:
Address
(row, column)
If not otherwise mentioned the inputs are stable at HIGH or LOW during 4 clocks and change
then to the opposite value
(e.g. Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax .....
please see each IDDx definition for details
Bank address If not otherwise mentioned the bank addresses should be switched like the row/column
addresses - please see each IDDx definition for details
Command
(CS, RAS, CAS, WE)
Define D = {CS, RAS, CAS, WE } = {HIGH, LOW, LOW, LOW}
Define D = {CS, RAS, CAS, WE } = {HIGH, HIGH,HIGH,HIGH}
Define Command Background Pattern = D D D D D D D D D D D D ...
If other commands are necessary (e.g. ACT for IDD0 or Read for IDD4R), the Background
Pattern Command is substituted by the respective CS, RAS, CAS, WE levels of the necessary
command.
See each IDDx definition for details and figures 1,2,3 as examples.
Definition of SWITCHING for Data (DQ)
SWITCHING for Data (DQ) is defined as
Data (DQ)
Data DQ is changing between HIGH and LOW every other data transfer (once per clock) for
DQ signals, which means that data DQ is stable during one clock; see each IDDx definition
for exceptions from this rule and for further details.
See figures 1,2,3 as examples.
Data Masking (DM) NO Switching; DM must be driven LOW all the time
For IDD testing the following parameters are utili zed.
Parameter Bin DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Unit
5-5-5 6-6-6 6-6-6 7-7-7 8-8-8 7-7-7 8-8-8 9-9-9 8-8-8 9-9-9 101010
tCKmin(IDD) 2.5 1.875 1.5 1.25 ns
CL(IDD) 5 6 6 7 8 7 8 9 8 9 10
tRCDmin(IDD) 12.5 15 11.25 13.13 15 10.5 12 13.5 10 11.25 12.5 ns
tRCmin(IDD) 50 52.5 48.75 50.63 52.50 46.5 48 49.5 tbd tbd tbd ns
tRASmin(IDD) 37.5 37.5 37.5 37.5 37.5 36 36 36 tbd tbd tbd ns
tRPmin(IDD) 12.5 15 11.25 13.13 15 10.5 12 13.5 10 11.25 12.5 ns
tFAW(IDD) x4/x8 40 40 37.5 37.5 37.5 30 30 30 30 30 30 ns
x16 50 50 50 50 50 45 45 45 40 40 40 ns
tRRD(IDD) x4/x8 10 10 7.5 7.5 7.5 6.0 6.0 6.0 6.0 6.0 6.0 ns
x16101010 10 107.57.57.57.57.5 7.5ns
tRFC(IDD) -512Mb 90 90 90 90 90 90 90 90 90 90 90 ns
tRFC(IDD) -1 Gb 110 110 110 110 110 110 110 110 110 110 110 ns
tRFC(IDD) - 2 Gb 160 160 160 160 160 160 160 160 160 160 160 ns
tRFC(IDD) - 4 Gb tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd ns
Rev. 0.2 /April 2008 38
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
The following conditions apply:
IDD specifications are tested after the device is properly initialized.
Input slew rate is specified by AC Parametric test conditions.
IDD parameters are specified with ODT and output buffer disabled (MR1 Bit A12).
IDD Measurement Conditions for IDD0 and IDD1
Current IDD0 IDD1
Name Operating Current 0
-> One Bank Activate
-> Precharge
Operating Current 1
-> One Bank Activate
-> Read
-> Precharge
Measurement Condition
Timing Diagram Example Figure 1
CKE HIGH HIGH
External Clock on on
tCK tCKmin(IDD) tCKmin(IDD)
tRC tRCmin(IDD) tRCmin(IDD)
tRAS tRASmin(IDD) tRASmin(IDD)
tRCD n.a. tRCDmin(IDD)
tRRD n.a. n.a.
CL n.a. CL(IDD)
AL n.a. 0
CS HIGH between. Activate and Precharge
Commands HIGH between Activate, Read and Precharge
Command Inputs
(CS,RAS, CAS, WE)
SWITCHING as described in table only
exceptions are Activate and Precharge
commands; example of IDD0 pattern:
A0DDDDDDDDDDDDDD P0
(DDR3-800: tRAS = 37.5ns between
(A)ctivate and (P)recharge to bank 0;
Definition of D and D: see
<Hyperlink>Table )
SWITCHING as described in Table ; only
exceptions are Activate, Read and Precharge
commands; example of IDD1 pattern:
A0DDDDR0DDDDDDDDD P0
(DDR3-800 -555: tRCD = 12.5ns between
(A)ctivate and (R)ead to bank 0;
Definition of D and D: see Table )
Row, Column Addresses
Row addresses SWITCHING as
described in Table ;
Address Input A10 must be LOW all the
time!
Row addresses SWITCHING as described in
Table ;
Address Input A10 must be LOW all the time!
Bank Addresses bank address is fixed (bank 0) bank address is fixed (bank 0)
Data I/O SWITCHING as described in
<Hyperlink>Table
Read Data: output data switches every clock,
which means that Read data is stable during
one clock cycle.
To achieve Iout = 0mA, the output buffer
should be switched off by MR1 Bit A12 set to
“1”.
When there is no read data burst from DRAM,
the DQ I/O should be FLOATING.
Output Buffer DQ,DQS
/ MR1 bit A12 off / 1 off / 1
ODT
/ MR1 bits [A6, A2] disabled
/ [0,0] disabled
/ [0,0]
Burst length n.a. 8 fixed / MR0 Bits [A1, A0] = {0,0}
Active banks one
ACT-PRE loop one
ACT-RD-PRE loop
Rev. 0.2 /April 2008 39
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Idle banks all other all other
Precharge Power Down Mode /
Mode Register Bit 12 n.a. n.a.
IDD Measurement Conditions for IDD2N, IDD2P(1), IDD2P(0) and IDD2Q
Current IDD2N IDD2P(1) a
a.
IDD2P(0) IDD2Q
Name Precharge
Standby Current
Precharge Power
Down Current
Fast Exit -
MRS A12 Bit = 1
Precharge Power
Down Current
Slow Exit -
MRS A12 Bit = 0
Precharge Quiet
Standby Current
Measurement Condition
Timing Diagram Example Figure
CKE HIGH LOW LOW HIGH
External Clock on on on on
tCK tCKmin(IDD) tCKmin(IDD) tCKmin(IDD) tCKmin(IDD)
tRC n.a. n.a. n.a. n.a.
tRAS n.a. n.a. n.a. n.a.
tRCD n.a. n.a. n.a. n.a.
tRRD n.a. n.a. n.a. n.a.
CL n.a. n.a. n.a. n.a.
AL n.a. n.a. n.a. n.a.
CS HIGH STABLE STABLE HIGH
Bank Address, Row Addr. and
Command Inputs SWITCHING as
described in Table STABLE STABLE STABLE
Data inputs SWITCHING FLOATING FLOATING FLOATING
Output Buffer DQ,DQS
/ MR1 bit A12 off / 1 off / 1 off / 1 off / 1
ODT
/ MR1 bits [A6, A2] disabled
/ [0,0] disabled
/ [0,0] disabled
/ [0,0] disabled
/ [0,0]
Burst length n.a. n.a. n.a. n.a.
Active banks none none none none
Idle banks all all all all
Precharge Power Down Mode
/
Mode Register Bit a n.a.
Fast Exit / 1
(any valid
command
after tXPb)
b.
Slow Exit / 0
Slow exit (RD and ODT
commands must satisfy
tXPDLL-AL)
n.a.
IDD Measurement Conditions for IDD0 and IDD1
Current IDD0 IDD1
Name Operating Current 0
-> One Bank Activate
-> Precharge
Operating Current 1
-> One Bank Activate
-> Read
-> Precharge
a. In DDR3, the MRS Bit 12 defines DLL on/off behaviour ONLY for precharge power down. There are 2 different
Precharge Power Down state possible: one with DLL on(fast exit, bit 12=1) and one with DLL off(slow exit , bit 12=0).
b. Because it is an exit after precharge power down, the valid commands are: Activate, Refresh Mode-Register Set,
Enter-Self Refresh.
Rev. 0.2 /April 2008 40
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
IDD Measurement Conditions for IDD3N and IDD3P(fast exit)
Current IDD3N IDD3P
Name Active Standby Current Active Power-Down Currenta
Always Fast Exit
Measurement Condition
Timing Diagram Example Figure
CKE HIGH LOW
External Clock on on
tCK tCKmin(IDD) tCKmin(IDD)
tRC n.a. n.a.
tRAS n.a. n.a.
tRCD n.a. n.a.
tRRD n.a. n.a.
CL n.a. n.a.
AL n.a. n.a.
CS HIGH STABLE
Addr. and cmd Inputs SWITCHING as described in Table STABLE
Data inputs SWITCHING as described in Table FLOATING
Output Buffer DQ,DQS
/ MR1 bit A12 off / 1 off / 1
ODT
/ MR1 bits [A6, A2] disabled
/ [0,0] disabled
/ [0,0]
Burst length n.a. n.a.
Active banks all all
Idle banks none none
Precharge Power Down Mode /
Mode Register Bit an.a. n.a.(Active Power Down Mode is always
“Fast Exit” with DLL on)
a.DDR3 will offer only ONE active power down mode with DLL on (-> fast exit). MRS bit 12 will not be used for active power
down. Instead bit 12 will be used to switch between two different precharge power down modes.
IDD Measurement Conditions for IDD4R, IDD4W and IDD7
Current IDD4R IDD4W IDD7
Name Operating Current
Burst Read Operating Cu rrent
Burst Write All Bank Interleave Read
Current
Measurement Condition
Timing Diagram
Example <Hyperlink>Figure
CKE HIGH HIGH HIGH
External Clock on on on
tCK tCKmin(IDD) tCKmin(IDD) tCKmin(IDD)
tRC n.a. n.a. tRCmin(IDD)
tRAS n.a. n.a. tRASmin(IDD)
tRCD n.a. n.a. tRCDmin(IDD)
tRRD n.a. n.a. tRRDmin(IDD)
CL CL(IDD) CL(IDD) CL(IDD)
AL 0 0 tRCDmin - 1 tCK
Rev. 0.2 /April 2008 41
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
CS HIGH btw. valid cmds HIGH btw. valid cmds HIGH btw. valid cmds
Command Inputs
(CS, RAS, CAS, WE)
SWITCHING as described in
Table; exceptions are Read
commands => IDD4R Pattern:
R0DDDR1DDDR2DDDR3
.DDD R4 .....
Rx = Read from bank x;
Definition of D and D: see
Table
SWITCHING as described in
Table; exceptions are Write
commands => IDD4W Pattern:
W0DDDW1DDDW2DDDW3
DDD W4 ...
Wx = Write to bank x;
Definition of D and D: see
Table
For patterns see Table
Row,
Column Addresses
column addresses
SWITCHING as described in
Table;
Address Input A10 must be
LOW all the time!
column addresses
SWITCHING as described in
Table;
Address Input A10 must be
LOW all the time!
STABLE during DESELECTs
Bank Addresses bank address cycling
(0 -> 1 -> 2 -> 3 ...) bank address cycling
(0 -> 1 -> 2 -> 3 ...) bank address cycling (0 -> 1 ->
2 -> 3 ...), see pattern in Table
DQ I/O
Seamless Read Data Burst
(BL8): output data switches
every clock, which means that
Read data is stable during one
clock cycle.
To achieve Iout = 0mA the
output buffer should be
switched off by MR1 Bit A12
set to “1”.
Seamless Write Data Burst
(BL8): input data switches
every clock, which means that
Write da ta is stabl e during on e
clock cycle.
DM is low all the time.
Read Data (BL8): output data
switches every clock, which
means that Read data is stable
during one clock cycle.
To achieve Iout = 0mA the
output buffer should be
switched off by MR1 Bit A12
set to “1”.
Output Buffer DQ,DQS
/ MR1 bit A12 off / 1 off / 1 off / 1
ODT
/ MR1 bits [A6, A2] disabled
/ [0,0] disabled
/ [0,0] disabled
/ [0,0]
Burst length 8 fixed / MR0 Bits [A1, A0] =
{0,0} 8 fixed / MR0 Bits [A1, A0] =
{0,0} 8 fixed / MR0 Bits [A1, A0] =
{0,0}
Active banks all all all, rotational
Idle banks none none none
Precharge Power
Down Mode /
Mode Register Bit n.a. n.a. n.a.
IDD Measurement Conditions for IDD4R, IDD4W and IDD7
Current IDD4R IDD4W IDD7
Name Operating Current
Burst Read Operating Cu rrent
Burst Write All Bank Interleave Read
Current
Rev. 0.2 /April 2008 42
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
IDD7 Pattern for different Speed Grades and different tRRD, tFAW conditions
Speed Bin Org. tFAW tFAW tRRD tRRD IDD7 Patterna
a.A0 = Activation of Bank 0; RA0 = Read with Auto-Precharge of Bank 0; D = Deselect
Mb/s [ns] [CLK] [ns] [CLK] (Note this entire sequence is repeated.)
800 all x4/x8 40 16 10 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D A4 RA4 D D
A5 RA5 D D A6 RA6 D D A7 RA7 D D
all x16 50 20 10 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D A4
RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D D D
1066
all x4/x8 37.5 20 7.5 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA 3 D D D D D D A4
RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D D D
all x16 50 27 10 6 A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D
D D D D D A4 RA4 D D D D A5 RA5 D D D D A6 RA6 D D D D
A7 RA7 D D D D D D D
1333
all x4/x8 30 20 6 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D A4
RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D D D
all x16 45 30 7.5 5 A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D
D D D D D D D D A4 RA4 D D D A5 RA5 D D D A6 RA6 D D D
A7 RA7 D D D D D D D D D D D D D
1600
all x4/x8 30 24 6 5 A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D
D D A4 RA4 D D D A5 RA5 D D D A6 RA6 D D D A7 RA7 D D D
D D D D
all x16 40 32 7.5 6 A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D
D D D D D D D D D D A4 RA4 D D D D A5 RA5 D D D D A6 RA6
D D D D A7 RA7 D D D D D D D D D D D D
IDD Measurement Conditions for IDD5B
Current
I
DD5B
Name Burst Refresh Current
Measurement Condition
CKE HIGH
External Clock on
t
CK
t
CKmin(IDD)
t
RC n.a.
t
RAS n.a.
t
RCD n.a.
t
RRD n.a.
t
RFC
t
RFCmin(IDD)
CL n.a.
AL n.a.
CS HIGH btw. valid cmds
Addr. an d cmd Inputs SWITCHING
Data inputs SWITCHING
Output Buffer DQ,DQS
/ MR1 bit A12 off / 1
ODT
/ MR1 bits [A6, A2] disabled
/ [0,0]
Rev. 0.2 /April 2008 43
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Burst length n.a.
Active banks Refresh command every tRFC=tRFCmin
Idle banks none
Precharge Power Down Mode / Mode Register Bit n.a.
IDD Measurement Conditions for IDD6, IDD6ET, and IDD6TC
Current IDD6 IDD6ET (Optional) IDD6TC(Optional)
Name Self-Refresh Current
Normal Temperature Range
TCASE = 0 .. 85
Self-Refresh Current
Extended Temperature Range a
TCASE = 0 .. 95
Auto Self Refresh
Current
TCASE-See Table
Measurement Condition
Temperature TCASE = 85 TCASE = 95 TCASE-See Table
Auto Self Refresh
(ASR) / MR2 Bit A6 Disabled /
“0” Disalbed /
“0” Enabled /
“1”
Self Refresh
Temperature Range
(SRT) /
MR2 Bit A7
Normal /
“0” Extended /
“1” Disabled /
“0”
CKE LOW LOW LOW
External Clock OFF; CK and CK at LOW OFF; CK and CK at LOW OFF; CK and CK at LOW
tCK n.a. n.a. n.a.
tRC n.a. n.a. n.a.
tRAS n.a. n.a. n.a.
tRCD n.a. n.a. n.a.
tRRD n.a. n.a. n.a.
CL n.a. n.a. n.a.
AL n.a. n.a. n.a.
CS FLOATING FLOATING FLOATING
Command Inputs
(RAS, CAS, WE)FLOATING FLOATING FLOATING
Row, Colum
Addresses FLOATING FLOATING FLOATING
Bank Addresses FL OAT ING FL OATING FLOATING
Data I/O FLOATING FLOATING FLOATI NG
Output Buffer
DQ,DQS
/ MR1 bit A12 off / 1 off / 1 off / 1
ODT
/ MR1 bits [A6, A2] disabled
/ [0,0] disabled
/ [0,0] disabled
/ [0,0]
Burst length n.a. n.a. n.a.
Active banks all during self-refresh actions all during self-refresh actions all during self-refresh
actions
IDD Measurement Conditions for IDD5B
Current
I
DD5B
Name Burst Refresh Current
Rev. 0.2 /April 2008 44
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Idle banks all btw. Self-Refresh actions all btw. Self-Refresh actions all btw. Self-Refresh
actions
Precharge Power
Down Mode /
MR0 bit A12 n.a. n.a. n.a.
a.
IDD Measurement Conditions for IDD6, IDD6ET, and IDD6TC
Current IDD6 IDD6ET (Optional) IDD6TC(Optional)
Name Self-Refresh Current
Normal Temperature Range
TCASE = 0 .. 85
Self-Refresh Current
Extended Temperature Range a
TCASE = 0 .. 95
Auto Self Refresh
Current
TCASE-See Table
a. Users should refer to the DRAM supplier da ta sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support
the following options or requirements referred to in this material.
Rev. 0.2 /April 2008 45
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
8.2 IDD Specifications
IDD values are for full operating range of voltage and temperature unless otherwise noted.
I
DD Specification
Speed Grade
Bin DDR3 - 800
5-5-5 DDR3 - 1066
7-7-7 DDR3 - 1333
8-8-8 DDR3 - 1600
9-9-9 Unit Notes
Symbol Max. Max. Max. Max.
I
DD0 80 95 105 TBD mA x4/x8
90 105 115 TBD mA x16
I
DD1 95 110 120 TBD mA x4/x8
120 135 145 TBD mA x16
I
DD2P (0) slow exit 10 10 10 TBD mA x4/x8/x16
I
DD2P (1) fast exit 25 30 35 TBD mA x4/x8/x16
I
DD2N 50 60 75 TBD mA x4/x8/x16
I
DD2Q 45 60 70 TBD mA x4/x8/x16
I
DD3P (fast exit) 35 45 50 TBD mA x4/x8/x16
I
DD3N 55 70 85 TBD mA x4/x8/x16
I
DD4R
125 160 190 TBD mA x4
130 165 195 TBD mA x8
175 215 255 TBD mA x16
I
DD4W
130 165 195 TBD mA x4
140 180 215 TBD mA x8
175 220 265 TBD mA x16
I
DD5B 185 195 210 TBD mA x4/x8/x16
I
DD6 666TBDmAx4/x8
666TBDmAx16
I
DD6ET 10 10 10 TBD mA x4/x8
10 10 10 TBD mA x16
I
DD7 225 250 305 TBD mA x4/x8
325 355 430 TBD mA x16
Rev. 0.2 /April 2008 46
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
8.2.1 IDD6 Current Definition
8.2.2 IDD6TC Specification (see notes 1~2)
Symbol Parameter/Condition
IDD6
Normal Temperature Range Self-Refresh Current: CKE 0.2V; external clock off, CK and CK# at 0V; Other
control and address inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled.
Applicable for MR2 settings A6 = 0 and A7 = 0.
IDD6ET
Extended Temperature Range Self-Refresh Current: CKE 0.2V; external clock off, CK and CK# at 0V; Other
control and address inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled.
Applicable for MR2 settings A6 = 0 and A7 = 1.
IDD6TC
Auto Self-Refresh Current: CKE 0.2V ; external clock off, CK and CK# at 0V; Other control and address inputs
are FLOATING; Data Bus inputs are FLOATING, PASR disabled. Applicable when ASR is enabled by MR2
settings A6 = 1 and A7 = 0.
Symbol Temperature Range Value Unit Notes
IDD6 0 - 85 oCmA 3,4
IDD6ET 0 - 95 oCmA 5,6
IDD6TC
0 oC ~ TamA 6,7,8
Tb ~ TymA 6,7,8
Tz ~ TOPERmax mA 6,7,8
1. Some IDD currents are higher for x16 organization due to larger page size architecture.
2. Max. values for IDD currents considering worst case conditions of process, temperature and voltage.
3. Applicable for MR2 settings A6=0 and A7=0.
4. Supplier data sheets include a max value for IDD6.
5. Applicable for MR2 settings A6=0 and A7=1. IDD6ET is only specified for devices which support the Extended
Temperature Range feature.
6. Refer to the supplier data sheet for the value specification method (e.g. max, typical) for IDD6ET and IDD6TC
7. Applicable for MR2 settings A 6=1 and A7=0. IDD6TC is only specified for devices which support the Auto Self Refresh
feature.
8. The number of discrete temperature ranges supported and the associated Ta - Tz values are supplier/design specific.
Temperature ranges are specified for all supported values of TOPER. Refer to supplier data sheet for more
information.
Rev. 0.2 /April 2008 47
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
9. Input/Output Capacitance
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol Min Max Min Max Min Max Min Max Units Notes
Input/output capacitance
(DQ, DM, DQS, DQS#, TDQS,
TDQS#) CIO 1.5 3.0 1.5 3.0 1.5 2.5 TBD TBD pF 1,2,3
Input capacitance, CK and
CK# CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 pF 2,3
Input capacitance delta
CK and CK# CDCK 0 0.15 0 0.15 0 0.15 0 0.15 pF 2,3,4
Input capacitance
(All other input-only pins) CI0.75 1.5 0.75 1.5 0.75 1.3 0.75 1.3 pF 2,3,6
Input capacitance delta, DQS
and DQS# CDDQS 0 0.20 0 0.20 0 0.15 0 0.15 pF 2,3,5
Input capacitance delta
(All CTRL input-only pins) CDI_CTRL -0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 pF 2,3,7,8
Input capacitance delta
(All ADD/CMD input-only pins) CDI_ADD_
CMD -0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 pF 2,3,9,10
Input/output capacitance delta
(DQ, DM, DQS, DQS#) CDIO -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11
Notes:
1. Although the DM, TDQS and TDQS# pins have different functions, the loading matches DQ and DQS.
2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is
measured according to JEP147(“PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK
ANALYZER(VNA)”) with VDD, VDDQ, VSS,VSSQ applied and all other pins floating (except the pin under test, CKE,
RESET# and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK#.
5. The minimum CCK will be equal to the minimum CI.
6. Input only pins include: ODT, CS, CKE, A0-A15, BA0-BA2, RAS#, CAS#, WE#.
7. CTRL pins defined as ODT, CS and CKE.
8. CDI_CTRL=CI(CNTL) - 0.5 * CI(CLK ) + CI(CLK#))
9. ADD pins defined as A0-A15, BA0-BA2 and CMD pins are defined as RAS#, CAS# and WE#.
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK#))
11. CDIO=CIO(DQ) - 0.5*(CIO(DQS)+CIO(DQS#))
Rev. 0.2 /April 2008 48
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
10. Standard Speed Bins
DDR3 SDRAM S t and ard S peed Bins inc lude tCK, tR CD, tRP, tRAS and tRC for each c orresponding bin .
DDR3-800 Speed Bins
For specific Notes See “Speed Bin Table Notes” on page 52..
Speed Bin DDR3-800D DDR3-800E Unit Notes
CL - nRCD - nRP 5-5-5 6-6-6
Parameter Symbol min max min max
Internal read command to first data tAA 12.5 20 15 20 ns
ACT to internal rea d or wri te delay time tRCD 12.5 15 ns
PRE command period tRP 12.5 15 ns
ACT to ACT or REF command period tRC 50 52.5 ns
ACT to PRE command period tRAS 37.5 9 * tREFI 37.5 9 * tREFI ns
CL = 5 CWL = 5 tCK(AVG) 2.5 3.3 Reserved ns 1)2)3)4)
CL = 6 CWL = 5 tCK(AVG) 2.5 3.3 2.5 3.3 ns 1)2)3)
Supported CL Settings 5, 6 6 nCK
Supported CWL Settings 55
nCK
Rev. 0.2 /April 2008 49
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
DDR3-1066 Speed Bins
For specific Notes See “Speed Bin Table Notes” on page 52.
Speed Bin DDR3-1066E DDR3-1066F DDR3-1066G Unit Note
CL - nRCD - nRP 6-6-6 7-7-7 8-8-8
Parameter Symbol min max min max min max
Internal read command to
first data tAA 11.25 20 13.125 20 15 20 ns
ACT to internal read or
write delay time tRCD 11.25 13.125 15 ns
PRE command period tRP 11.25 13.125 15 ns
ACT to ACT or REF
command period tRC 48.75 50.625 52.5 ns
ACT to PRE command
period tRAS 37.5 9 * tREFI 37.5 9 * tREFI 37.5 9 * tREFI ns
CL = 5 CWL = 5 tCK(AVG) 2.5 3.3 Reserved Reserved ns 1)2)3)4)6)
CWL = 6 tCK(AVG) Reserved Reserved Reserved ns 4)
CL = 6 CWL = 5 tCK(AVG) 2.5 3.3 2.5 3.3 2.5 3.3 ns 1)2)3)6)
CWL = 6 tCK(AVG) 1.875 < 2.5 Reserved Reserved ns 1)2)3)4)
CL = 7 CWL = 5 tCK(AVG) Reserved Reserved Reserved ns 4)
CWL = 6 tCK(AVG) 1.875 < 2.5 1.875 < 2.5 Reserved ns 1)2)3)4)
CL = 8 CWL = 5 tCK(AVG) Reserved Reserved Reserved ns 4)
CWL = 6 tCK(AVG) 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 ns 1)2)3)
Supported CL Settings 5, 6, 7, 8 6, 7, 8 6, 8 nCK
Supported CWL Settings 5, 6 5, 6 5 , 6 nCK
Rev. 0.2 /April 2008 50
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
DDR3-1333 Speed Bins
For specific Notes See “Speed Bin Table Notes” on page 52..
Speed Bin DDR3-1333F
(optional) DDR3-1333G DDR3-1333H DDR3-1333J
(optional) Unit Note
CL - nRCD - nRP 7-7-7 8-8-8 9-9-9 10-10-10
Parameter Symbol min max min max min max min max
Internal read command
to first data tAA 10.5 20 12 20 13.5 20 15 20 ns
ACT to internal read or
write delay time tRCD 10.5 12 13.5 15 ns
PRE command period tRP 10.5 12 13.5 15 ns
ACT to ACT or REF
command period tRC 46.5 48 49.5 51 ns
ACT to PRE command
period tRAS 36 9 * tREFI 36 9 * tREFI 36 9 * tREFI 36 9 * tREFI ns
CL = 5 CWL = 5 tCK(AVG) 2.5 3.3 2.5 3.3 Reserved Reserved ns 1,2,3,4,7
CWL = 6, 7 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CL = 6
CWL = 5 tCK(AVG) 2.5 3.3 2.5 3.3 2.5 3.3 2.5 3.3 ns 1,2,3,7
CWL = 6 tCK(AVG) 1.875 < 2.5 Reserved Reserved Reserved ns 1,2,3,4,7
CWL = 7 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CL = 7
CWL = 5 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 6 tCK(AVG) 1.875 < 2.5 1.875 < 2.5 Reserved Reserved ns 1,2,3,4,7
CWL = 7 tCK(AVG) 1.5 <1.875 Reserved Reserved Reserved ns 1,2,3,4
CL = 8
CWL = 5 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 6 tCK(AVG) 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 ns 1,2,3,7
CWL = 7 tCK(AVG) 1.5 <1.875 1.5 <1.875 Reserved Reserved ns 1,2,3,4
CL = 9 CWL = 5, 6 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 1.5 <1.875 1.5 <1.875 Reserved ns 1,2,3,4
CL = 10 CWL = 5, 6 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 1.5 <1.875 1.5 <1.875 1.5 <1.875 ns 1,2,3
(Optional) (Optional) (Optional) ns 5
Supported CL Settings 5 , 6, 7, 8, 9 5, 6, 7, 8, 9 6, 8, 9 6, 8, 10 nCK
Supported CWL Settings 5, 6, 7 5, 6, 7 5, 6, 7 5, 6, 7 nCK
Rev. 0.2 /April 2008 51
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
DDR3-1600 Speed Bins
For specific Notes See “Speed Bin Table Notes” on page 52..
Speed Bin DDR3-1600G
(optional) DDR3-1600H DDR3-1600J DDR3-1600K
(optional) Unit Note
CL - nRCD - nRP 8-8-8 9-9-9 10-10-10 11-11-11
Parameter Symbol min max min max min max min max
Internal read command to
first data tAA 10 20 11.25 20 12.5 20 13.75 20 ns
ACT to internal read or
write delay time tRCD 10 11.25 12.5 13.75 ns
PRE command period tRP 10 11.25 12.5 13.75 ns
ACT to ACT or REF
command period tRC 45 46.25 47.5 48.75 ns
ACT to PRE command
period tRAS 35 9 * tREFI 35 9 * tREFI 35 9 * tREFI 35 9 * tREFI ns
CL = 5 CWL = 5 tCK(AVG) 2.5 3.3 2.5 3.3 2.5 3.3 Reserved ns 1,2,3,4,8
CWL = 6, 7, 8 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CL = 6
CWL = 5 tCK(AVG) 2.5 3.3 2.5 3.3 2.5 3.3 2.5 3.3 ns 1,2,3,8
CWL = 6 tCK(AVG) 1.875 < 2.5 1.875 < 2.5 Reserved Reserved ns 1,2,3,4,8
CWL = 7, 8 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CL = 7
CWL = 5 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 6 tCK(AVG) 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 Reserved ns 1,2,3,4,8
CWL = 7 tCK(AVG) 1.5 <1.875 Reserved Reserved Reserved ns 1,2,3,4,8
CWL = 8 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CL = 8
CWL = 5 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 6 tCK(AVG) 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 ns 1,2,3,8
CWL = 7 tCK(AVG) 1.5 <1.875 1.5 <1.875 Reserved Reserved ns 1,2,3,4,8
CWL = 8 tCK(AVG) 1.25 < 1.5 Reserved Reserved Reserved ns 1,2,3,4
CL = 9
CWL = 5, 6 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 1.5 <1.875 1.5 <1.875 Reserved ns 1,2,3,4,8
CWL = 8 tCK(AVG) 1.25 < 1.5 1.25 < 1.5 Reserved Reserved ns 1,2,3,4
CL = 10
CWL = 5, 6 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 1.5 <1.875 1.5 <1.875 1.5 <1.875 ns 1,2,3,8
CWL = 8 tCK(AVG) 1.25 < 1.5 1.25 < 1.5 1.25 < 1.5 Reserved ns 1,2,3,4
CL = 11 CWL = 5, 6, 7 tCK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 8 tCK(AVG) 1.25 < 1.5 1.25 < 1.5 1.25 < 1.5 1.25 < 1.5 ns 1,2,3
(Optional) (Optional) (Optional) ns 5
Supported CL Settings 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 6, 8, 10, 11 nCK
Supported CWL Settings 5, 6, 7, 8 5, 6, 7, 8 5, 6, 7, 8 5, 6, 7, 8 nCK
Rev. 0.2 /April 2008 52
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Speed Bin Table Notes
Absolute Specification (T OPER; VDDQ = VDD = 1.5V +/- 0.075 V);
Notes:
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of
tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(A VG).MIN limits: Since CAS Latency is not purely ana log - data and strobe output ar e synchronized by the DLL - all
possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard
tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [n s] / tCK(AVG) [ns], rounding up to the
next ‘Supported CL.
3. tCK(AVG).MAX limits: Calculate tCK(A VG) = tAA.MAX / CLSELECTED and round the res ulting tCK(AVG) down to the ne xt
valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CLSELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature.
Refer to supplier’s data sheet and SPD information if and how this setting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not
subject to Production Tests but verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not
subject to Production Tests but verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not
subject to Production Tests but verified by Design/Characterization.
11. Electrical Characteristics and AC Timing
Timing Parameters by Speed Bin
Note: The following general notes from page 57 apply to Table : a
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol Min Max Min Max Min Max Min Max Units Notes
Clock Timing
Minimum Clock
Cycle Time (DLL off
mode)
tCK(DLL_O
FF) 8- 8 - 8 -8 -ns6
Average Clock
Period tCK(avg) See “10. Standard Speed Bins” on page 48. ps f
Average high pulse
width tCH(avg) 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCK
(avg) f
Average low pulse
width tCL(avg) 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCK
(avg) f
Absolute Clock
Period tCK
(abs)
tCK
(avg)
min +
tJIT
(per)
min
tCK
(avg)
max
+ tJIT
(per)
max
tCK
(avg)
min +
tJIT
(per)
min
tCK
(avg)
max
+ tJIT
(per)
max
tCK
(avg)
min +
tJIT
(per)
min
tCK
(avg)
max
+ tJIT
(per)
max
tCK
(avg)
min +
tJIT
(per)
min
tCK
(avg)
max +
tJIT
(per)
max
ps
Absolute clock HIGH
pulse width tCH
(abs) 0.43 - 0.43 - 0.43 - 0.43 - tCK
(avg) 25
Absolute clock LOW
pulse width tCL(abs) 0.43 - 0.43 - 0.43 - 0.43 - tCK
(avg) 26
Clock Period Jitter JIT(per) - 100 100 - 90 90 - 80 80 - 70 70 ps
Rev. 0.2 /April 2008 53
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Clock Period Jitter
during DLL locking
period
tJIT
(per, lck) - 90 90 - 80 80 - 70 70 -60 60 ps
Cycle to Cycle Period
Jitter tJIT(cc) 200 180 160 140 ps
Cycle to Cycle Period
Jitter during DLL
locking peri od
tJIT
(cc, lck) 180 160 140 120 ps
Duty Cycle jitter tJIT
(duty) --------ps
Cumulative error
across 2 cycles tERR
(2per) -147 147 -132 132 -118 118 -103 103 ps
Cumulative error
across 3 cycles tERR
(3per) -175 175 -157 157 -140 140 -122 122 ps
Cumulative error
across 4 cycles tERR
(4per) -194 194 -175 175 -155 155 -136 136 ps
Cumulative error
across 5 cycles tERR
(5per) -209 209 -188 188 -168 168 -147 147 ps
Cumulative error
across 6 cycles tERR
(6per) -222 222 -200 200 -177 177 -155 155 ps
Cumulative error
across 7 cycles tERR
(7per) -232 232 -209 209 -186 186 -163 163 ps
Cumulative error
across 8 cycles tERR
(8per) -241 241 -217 217 -193 193 -169 169 ps
Cumulative error
across 9 cycles tERR
(9per) -249 249 -224 224 -200 200 -175 175 ps
Cumulative error
across 10 cycles tERR
(10per) -257 257 -231 231 -205 205 -180 180 ps
Cumulative error
across 11 cycles tERR
(11per) -263 263 -237 237 -210 210 -184 184 ps
Cumulative error
across 12 cycles tERR
(12per) -269 269 -242 242 -215 215 -188 188 ps
Cumulative error
across n = 13, 14,
.....49, 50 cycles
tERR
(nper) tERR(nper)min = ( 1 + 0.68ln(n)) * JIT(per)min
tERR(nper)max = ( 1 + 0.68ln(n)) * JIT(per)max ps 24
Data Timing
DQS, DQS# to DQ
skew, per group, per
access tDQSQ - 200 - 150 - 125 - 100 ps 13
DQ output hold time
from DQS, DQS# tQH 0.38 - 0.38 - 0.38 - 0.38 - tCK
(avg) 13, b
DQ low-impedance
time from CK, CK# tLZ(DQ) - 800 4 00 - 600 300 - 500 250 - 450 225 ps 13, 14,
a
DQ high impedance
time from CK, CK# tHZ(DQ) - 400 - 300 - 250 - 225 ps 13 , 14,
a
Timing Parameters by Speed Bin (Continued)
Note: The following general notes from page 57 apply to Table : a
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol Min Max Min Max Min Max Min Max Units Notes
Rev. 0.2 /April 2008 54
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Data setup time to
DQS, DQS#
referenced to Vih(ac)
/ Vil(ac) levels
tDS(base) 75 25 TBD TBD ps d, 17
Data hold time from
DQS, DQS#
referenced to Vih(dc)
/ Vil(dc) levels
tDH(base) 150 100 TBD TBD ps d, 17
Data Strobe Timing
DQS,DQS#
differential READ
Preamble tRPRE 0.9 Note 0.9 Note 0.9 Note 0.9 Note
tCK
(avg) 13, 19
b
DQS, DQS#
differential READ
Postamble tRPST 0.3 Note 0.3 Note 0.3 Note 0.3 Note
tCK
(avg) 11, 13,
b
DQS, DQS#
differential output
high time tQSH 0.38 - 0.38 - 0.38 - 0.38 - tCK
(avg) 13, b
DQS, DQS#
diff erential output low
time tQSL 0.38 - 0.38 - 0.38 - 0.38 - tCK
(avg) 13, b
DQS, DQS#
differential WRITE
Preamble tWPRE 0.9 - 0.9 - 0.9 - 0.9 - tCK
(avg)
DQS, DQS#
differential WRITE
Postamble tWPST 0.3 - 0.3 - 0.3 - 0.3 - tCK
(avg)
DQS, DQS# rising
edge output access
time from rising CK,
CK#
tDQSCK - 400 400 - 300 300 - 255 255 - 225 225 ps 13, a
DQS and DQS# low-
impedance time
(Referenced from RL
- 1)
tLZ(DQS) - 800 400 - 600 300 - 500 250 - 450 225 ps 13, 14,
a
DQS and DQS# high-
impedance time
(Referenced from RL
+ BL/2)
tHZ(DQS) - 400 - 300 - 250 - 225 ps 13, 14
a
DQS, DQS#
differential input low
pulse width tDQSL 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 tCK
(avg)
DQS, DQS#
differential input high
pulse width tDQSH 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 tCK
(avg)
DQS, DQS# rising
edge to CK, CK#
rising edge tDQSS - 0.25 0.25 - 0.25 0.25 - 0.25 0.25 - 0.25 0.25 tCK
(avg) c
Timing Parameters by Speed Bin (Continued)
Note: The following general notes from page 57 apply to Table : a
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol Min Max Min Max Min Max Min Max Units Notes
Rev. 0.2 /April 2008 55
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
DQS, DQS# falling
edge setup time to
CK, CK# rising edge tDSS 0.2 - 0.2 - 0.2 - 0.2 - tCK
(avg) c
DQS, DQS# falling
edge hold time from
CK, CK# rising edge tDSH 0.2 - 0.2 - 0.2 - 0.2 - tCK
(avg) c
Command and
Address Timing
DLL locking time tDLLK 512 - 512 - 512 - 512 - nCK
Internal READ
Command to
PRECHARGE
Command delay
tRTP max
(4nCK,
7.5ns) -max
(4nCK,
7.5ns) -max
(4nCK,
7.5ns) -max
(4nCK,
7.5ns) -e
Delay from start of
internal write
transaction to internal
read command
tWTR max
(4nCK,
7.5ns) -max
(4nCK,
7.5ns) -max
(4nCK,
7.5ns) -max
(4nCK,
7.5ns) -e, 18
WRITE recovery time tWR 15 - 15 - 15 - 15 - ns e
Mode Register Set
command cycle time tMRD 4 - 4 - 4 - 4 - nCK
Mode Register Set
command update
delay tMOD max
(12nCK
, 15ns) -max
(12nCK
, 15ns) -max
(12nCK
, 15ns) -max
(12nCK
, 15ns) -
ACT to internal read
or write delay time tRCD Refer to Table on pages 48 to pages 51 e
PRE command
period tRP Refer to Table on pages 48 to pages 51 e
ACT to ACT or REF
command period tRC Refer to Table on pages 48 to pages 51 e
CAS# to CAS#
command delay tCCD 4 - 4 - 4 - 4 - nCK
Auto precharge write
recovery + precharge
time tDAL(min) WR + roundup(tRP / tCK(avg)) nCK
End of MPR Read
burst to MSR for
MPR(exit) tMPRR 1 - 1 - 1 - 1 - nCK 22
ACTIVE to
PRECHARGE
command period tRAS See “10. Standard Speed Bins” on page 48 . e
ACTIVE to ACTIVE
command period for
1KB page size tRRD max
(4nCK
, 10ns) -max
(4nCK
, 7.5ns) -max
(4nCK,
6ns) -max
(4nCK,
6ns) -e
ACTIVE to ACTIVE
command period for
2KB page size tRRD max
(4nCK,
10ns) -max
(4nCK,
10ns) -max
(4nCK,
7.5ns) -max
(4nCK,
7.5ns) -e
Four activate window
for 1KB page size tFAW 40 - 37.5 - 30 - 30 - ns e
Timing Parameters by Speed Bin (Continued)
Note: The following general notes from page 57 apply to Table : a
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol Min Max Min Max Min Max Min Max Units Notes
Rev. 0.2 /April 2008 56
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Four activate window
for 2KB page size tFAW 50 - 50 - 45 - 40 - ns e
Command and
Address setup time
to CK, CK#
referenced to Vih(ac)
/ Vil(ac) levels
tIS(base) 200 125 65 TBD ps b, 16
Command and
Address hold time
from CK, CK#
referenced to Vih(dc)
/ Vil(dc) levels
tIH(base) 27 5 200 140 TBD ps b, 16
Command and
Address setup time
to CK, CK#
referenced to Vih(ac)
/ Vil(ac) levels
tIS(base)
AC150 - - - - 65+125 TBD+
125 ps b, 16,
27
Calibration Timing
Power-up and
RESET calibration
time tZQinit 512 - 512 - 512 - 512 - nCK
Normal operation Full
calibration time tZQoper 256 - 256 - 256 - 256 - nCK
Normal operation
Short calibration time tZQCS 64 - 64 - 64 - 64 - nCK 23
Reset Timing
Exit Reset from CKE
HIGH to a valid
command tXPR
max
(5nCK,
tRFC
(min) +
10ns)
-
max
(5nCK,
tRFC
(min) +
10ns)
-
max
(5nCK,
tRFC
(min) +
10ns)
-
max
(5nCK,
tRFC
(min) +
10ns)
-
Self Refresh
Timings
Exit Self Refresh to
commands not
requiring a locked
DLL
tXS
max
(5nCK,
tRFC
(min) +
10ns)
-
max
(5nCK,
tRFC
(min) +
10ns)
-
max
(5nCK,
tRFC
(min) +
10ns)
-
max
(5nCK,
tRFC
(min) +
10ns)
-
Exit Self Refresh to
com-mands requiring
a locked DLL tXSDLL tDLLK
(min) -tDLLK
(min) -tDLLK
(min) -tDLLK
(min) -nCK
Minimum CKE low
width for Self Refresh
entry to exit timing tCKESR tCKE
(min) +
1 nCK -tCKE
(min) + 1
nCK -tCKE
(min) +
1 nCK -tCKE
(min) +
1 nCK -
Valid Clock
Requirement after
Self Refresh Entry
(SRE) or Power-
Down Entry (PDE)
tCKSRE max
(5 nCK,
10 ns) -max
(5 nCK,
10 ns) -max
(5 nCK,
10 ns) -max
(5 nCK,
10 ns) -
Timing Parameters by Speed Bin (Continued)
Note: The following general notes from page 57 apply to Table : a
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol Min Max Min Max Min Max Min Max Units Notes
Rev. 0.2 /April 2008 57
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Valid Clock
Requirement before
Self Refresh Exit
(SRX) or Power-
Down Exit (PDX) or
Reset Exit
tCKSRX max
(5 nCK,
10 ns) -max
(5 nCK,
10 ns) -max
(5 nCK,
10 ns) -max
(5 nCK,
10 ns) -
Power Down
Timings
Exit Power Down
with DLL on to any
valid command; Exit
Precharge Power
Down with DLL
frozen to commands
not requiring a locked
DLL
tXP max
(3nCK,
7.5ns) -max
(3nCK,
7.5ns) -max
(3nCK,
6ns) -max
(3nCK,
6ns) -
Exit Precharge
Power Down with
DLL frozen to
commands requiring
a locked DLL
tXPDLL max
(10nCK
, 24ns) -max
(10nCK,
24ns) -max
(10nCK,
24ns) -max
(10nCK
, 24ns) -2
CKE minimum pulse
width tCKE max
(3nCK
7.5ns) -max
(3nCK,
5.625ns) -
max
(3nCK,
5.625ns
)
-max
(3nCK,
5ns) -
Command pass
disable delay tCPDED 1 - 1 - 1 - 1 - nCK
Power Down Entry to
Exit Timing tPD tCKE
(min) 9 *
tREFI tCKE
(min) 9 *
tREFI tCKE
(min) 9 *
tREFI tCKE
(min) 9 *
tREFI 15
Timing of ACT
command to Power
Down entry tACTPDEN 1 - 1 - 1 - 1 - nCK
Timing of PRE or
PREA command to
Power Down entry tPRPDEN 1 - 1 - 1 - 1 - nCK
Timing of RD/RDA
command to Power
Down entry tRDPDEN RL + 4
+ 1 -RL + 4
+ 1 -RL + 4
+ 1 -RL + 4
+ 1 -nCK
Timing of WR
command to Power
Down entry
(BL8OTF, BL8MRS,
BC4OTF)
tWRPDEN
WL+4+
(tWR /
tCK
(avg))
-
WL4+
(tWR /
tCK
(avg))
-
WL+4 +
(tWR /
tCK
(avg))
-
WL+4+
(tWR /
tCK
(avg))
-nCK9
Timing of WRA
command to Power
Down entry
(BL8OTF, BL8MRS,
BC4OTF)
tWRAPDEN WL+4+
WR + 1 -WL+4+
WR+ 1 -WL+4 +
WR + 1 -WL+4+
WR + 1 -nCK10
Timing Parameters by Speed Bin (Continued)
Note: The following general notes from page 57 apply to Table : a
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol Min Max Min Max Min Max Min Max Units Notes
Rev. 0.2 /April 2008 58
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Timing of WR
command to Power
Down entry
(BC4MRS)
tWRPDEN
WL+2+
(tWR /
tCK
(avg))
-
WL+2+
(tWR /
tCK
(avg))
-
WL+2 +
(tWR /
tCK
(avg))
-
WL+2+
(tWR /
tCK
(avg))
-nCK9
Timing of WRA
command to Power
Down entry
(BC4MRS)
tWRAPDEN WL+2
+ WR +
1-WL + 2 +
WR + 1 -WL + 2
+ WR +
1-WL+2 +
WR + 1 -nCK10
Timing of REF
command to Power
Down entry tREFPDEN 1 - 1 - 1 - 1 - nCK ,
Timing of MRS
command to Power
Down entry tMRSPDEN tMOD
(min) -tMOD
(min) -tMOD
(min) -tMOD
(min) -
ODT Timings
ODT high time
without write
command or with
write command and
BC4
ODTH4 4 - 4 - 4 - 4 - nCK
ODT high time with
Write command and
BL8 ODTH8 6 - 6 - 6 - 6 - nCK
Asynchronous RTT
turn-on delay
(Power-Down with
DLL frozen)
tAONPD 1 9 1 9 1 9 1 9 ns
Asynchronous RTT
turn-off delay (Power-
Down with DLL fro-
zen)
tAOFPD 1 9 1 9 1 9 1 9 ns
RTT turn-on tAON -400 400 -300 300 -250 250 -225 225 ps 7, a
RTT_NOM and
RTT_WR turn-off
time from ODTLoff
reference
tAOF 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK
(avg) 8, a
RTT dynamic change
skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK
(avg) a
Write Leveling
Timings
First DQS/DQS#
rising edge after write
leveling mode is
programmed
tWLMRD 40 - 40 - 40 - 40 - nCK 3
DQS/DQS# delay
after write leveling
mode is programmed tWLDQSEN 25 - 25 - 25 - 25 - nCK 3
Timing Parameters by Speed Bin (Continued)
Note: The following general notes from page 57 apply to Table : a
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol Min Max Min Max Min Max Min Max Units Notes
Rev. 0.2 /April 2008 59
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Write leveling setup
time from rising CK,
CK# crossing to
rising DQS, DQS#
crossing
tWLS 325 - 245 - 195 - TBD - ps
Write leveling hold
time from rising DQS,
DQS# crossing to
rising CK, CK#
crossing
tWLH 325 - 245 - 195 - TBD - ps
Write leveling output
delay tWLO 0 9 0 9 0 9 0 7.5 ns
Write leveling output
error tWLOE 0 2 0 2 0 2 0 2 ns
Timing Parameters by Speed Bin (Continued)
Note: The following general notes from page 57 apply to Table : a
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol Min Max Min Max Min Max Min Max Units Notes
Rev. 0.2 /April 2008 60
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
0.1 Jitter Notes
Specific Note a When the device is operated with input clock jitter, this p ar ameter needs to b e derated by
the actual tERR(mper), act of the input clock, where 2 <= m <=12.(output deratings are
relative to the SDRAM input clock.) For example, if the measured jitter into a DDR-800
SDRAM has tERR(mper),act,min = -172 ps and tERR(mper),act,max =+ 193 ps, then t
DQSCK,min(derated) = tDQSCK,min - tERR(mper),act,ma x = -400 p s - 193 p s = - 593 p s
and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps+ 172 ps = +
572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps -
193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. ( Caution on
the min/max usage!) Note that tERR(mper),act,min is the minimum measured value of
tERR(nper) where 2 <= n <=12, and tERR(mper),act,max is the maximum measured
value of tERR(nper) where 2 <= n <= 12
Specific Note b When the device is operated with input clock jitter, this p ar ameter needs to b e derated by
the actual tJIT(per),act of the input clock. ( output deratings are relative to the SDRAM
input clock. ) For example, if the measured jitter into a DDR3-800 SDRAM has
tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then
tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act +
tJIT(per),act,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act +
tJIT(per),act,min = 0.9 x 2500 ps - 72 ps =+ 2178 ps. Similarly, tQH,min(derated) =
tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps -
72 ps = + 878 ps. (Caution on the min/max usage!)
Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)#)
crossing to its respective clock signal (CK, CK#) cross ing . Th e spec values are not
affe cted by the amount of clo ck jitter applie d (i.e. tJIT(per), tJIT(cc), etc.), as these are rel-
ative to the clock signal crossing. That is, these parameters sh oul d be met wheth er cloc k
jitter is present or not.
S pecific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.)
transition edge to its respective data strobe signal (DQS(L/U), DQS(L/U)#) crossing.
Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{
tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter spec-
ifications are satisfied.For example, the device will support tnRP = RU{tRP / tCK(avg)},
which is in clock cycles, if all input clock jitter specifications are met. This means: For
DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)}
= 6, as long as the input clock jitter specifications are met, i.e. Precharge co mmand at Tm
and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input
clock jitter.
Specific Note f These parameters are specified per their average values, however it is understo od that
the following relationsh ip between the average timing and the absolute inst anta neous tim-
ing holds at all times. (Min and max of SPEC values are to be used for calculations in
Table .
Rev. 0.2 /April 2008 61
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Timing Parameter Notes
1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register.
5. Value must be rounded-up to next higher integer value.
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON See 4.2.2 “Timing Parameters” on page 93.
8. For definition of RTT turn-off time tAOF See 4.2.2 “Timing Parameters” on page 93.
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0.
11. The maximum postamble is bound by tHZDQS(max)
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter,
this parameter needs to be derated by t.b.d.
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter <t.b.d.> for definition and measurement method.
15. tREFI depends on TOPER
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK# differential slew
rate. Note for DQ and DM signals, VREF(DC) = VRefDQ(DC). For input only pins except RESET#,
VRef(DC) = VRefCA(DC). See “Address / Command Setup, Hold and Derating” on page 62.
17. tDS(base) and tDH(base) values ar e for 1V/ns DQ sin gle-ended slew r ate and 2V/ns DQS , DQS# diff erential slew r ate.
Note for DQ and DM signals, VREF(DC) = VRefDQ(DC). For input only pins except RESET#, VRef(DC) = VRefCA(DC).
See “Data Setup, Hold and Slew Rate Derating” on page 70..
18. Start of internal write transaction is definited as follows:
For BL8 (fixed by MRS and on- the-fly): Rising clock edge 4 clock cycles after WL.
For BC4 (on- the- fly): Rising clock edge 4 clock cycles after WL.
For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL.
19. The maximum preamble is bound by tLZDQS(min)
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are
in progress, but power-down IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be regis tered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are
cases where additional time such as tXPDLL(min) is also required.
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5% (ZQCorrection)of RON and RTT impedance error
within 64 nCK for all speed bins assuming the maximum sensitivities specified in the ‘Output Driver Voltage and
Temperature Sensitivity and ‘ODT Voltage and T emperature Sensitivity’ tables. The appropria te interv al between ZQCS
commands can be dete rmined from these tables and ot her application specific par ameters . One method for calculating
the interval be tween ZQCS commands, given the temper ature ( Tdrifr ate ) and voltage ( Vdriftra te ) drift rates that the
SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula.
Rev. 0.2 /April 2008 62
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and
voltage sensitivities. For example, if TSens = 1.5% / oC, VSens = 0.15% / mV, Tdriftrate = 1 oC / sec and Vdriftrate =
15 mV / sec, then the interval between ZQCS commands is calculated as :
24. n = from 13 cycles to 50 cycles.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from o ne rising edge to the following fall
ing edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising
edge.
27. The tIS(base) AC150 specifications are adjusted fr om the tI S(ba se) specifica tion by add ing an addition al 100 ps of der
ating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier refer
ence point [(175 mV - 150 mV) / 1 V/ns].
Address / Command Setup, Hold and Derating
For all input signals th e total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base)
and tIH(base) value (see Table 1) to the tIS and tIH derating value (see Table 2) respectively. Exampl e: tIS (total setup
time) = tIS(base) + tIS
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between th e last crossing of VREF(dc) and the
first crossing of VIH(ac)min. Setup (tIS) nominal slew rate for a falling signal is defin ed as the slew rate between the last
crossing of VREF(dc) and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate line
between shaded ‘VREF(dc) to ac region’, use nominal slew rate for derating value (see Figure 2). If the actual signal is later
than the nominal slew rate line anywhere between shaded ‘VREF(dc) to ac region ’, the slew rate of a tangent line to the
actual signal from the ac level to dc level is used for derating value (see Figure 4).
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc)max and the
first crossing of VREF(dc). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last cross-
ing of Vih(dc)min and the first crossing of VREF(dc). If the actual sign al is always later than the nominal slew rate line
between shaded ‘dc to V REF(dc) region’, use nominal slew rate for derating value (see Figure 3). If the actual signal is ear-
lier than the nominal slew rate line anywhere between shaded ‘dc to VREF(dc) region’, the slew rate of a tangent line to the
actual signal from the dc level to VREF(dc) level is used for derating value (see Figure 4).
For a valid transition the input signal has to remain above/be low VIH/IL(ac) for some time tVAC (see Table 4).
ZQCorrection
(Tsens x Tdriftrate)+( VSens x Vdriftrate)
------------------------------------------------------------------------------------------------------------
0.5
(1.5 x 1)+(0.15 x 15)
------------------------------------------------------ 0.133 128 m s==
Rev. 0.2 /April 2008 63
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac)
at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).
For slew rates in between the values liste d in Table 2, the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and ch aracterization.
Table 1 — ADD/CMD Setup and Hold Base-Values for 1V/ns
Note: - (ac/dc referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)
- The tIS(base) AC150 specifications are adjuste d from the tIS(base) specification by add ing an additional 100 ps of
derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier
reference point [(175 mV - 150 mV) / 1 V/ns]
unit [ps] DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 reference
tIS(base) 200 125 65 TBD VIH/L(ac)
tIH(base) 275 200 140 TBD VIH/L(dc)
tIH(base)AC150 - - 65 + 125 TBD + 125 VIH/L(dc)
Rev. 0.2 /April 2008 64
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Table 2 — Derating values DDR3-800/1066/1333/1600 tIS/tIH - ac/dc based
Table 3 — Derating values DDR3-800/1066/1333/1600 tIS/tIH - ac/dc based
tIS, tIH derating in [ps] AC/DC based
AC175 Threshold -> VIH(a c) = VREF(d c) + 175mV, VIL(ac)=VREF(dc) - 175mV
CK,CK# Differential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH
CMD
/
ADD
Slew
rate
V/ns
2.0 88 50 88 50 88 50 96 58 104 66 112 74 120 84 128 100
1.559345934593467427550835891689984
1.00 0 0 0 0 0 8 8 1616242432344050
0.9-2 -4 -2 -4 -2 -4 6 4 1412222030303846
0.8 -6 -10 -6 -10 -6 -10 2 -2 10 6 18 14 26 24 34 40
0.7 -11 -16 -11 -16 -11 -16 -3 -8 5 0 13 8 21 18 29 34
0.6 -17 -26 -17 -26 -17 -26 -9 -18 -1 -10 7 -2 15 8 23 24
0.5 -35 -40 -35 -40 -35 -40 -27 -32 -19 -24 -11 -16 -2 -6 5 10
0.4 -62 -60 -62 -60 -62 -60 -54 -52 -46 -44 -38 -36 -30 -26 -22 -10
tIS, tIH derating in [ps] AC/DC based
Alternate AC150 Threshold -> VIH(ac) = VREF(dc) + 150mV, VIL(ac)=VREF(dc) - 150mV
CK,CK# Differential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH
CMD
/
ADD
Slew
rate
V/ns
2.075507550755083589166997410784115100
1.550345034503458426650745882689084
1.00 0 0 0 0 0 8 8 1616242432344050
0.9 0 -4 0 -4 0 -4 8 4 16 12 24 20 32 30 40 46
0.8 0 -10 0 -10 0 -10 8 -2 16 6 24 14 32 24 40 40
0.7 0 -16 0 -16 0 -16 8 -8 16 0 24 8 32 18 40 34
0.6 -1 -26 -1 -26 -1 -26 7 -18 15 -10 23 -2 31 8 39 24
0.5 -10 -40 -10 -40 -10 -40 -2 -32 6 -24 14 -16 22 -6 30 10
0.4 -25 -60 -25 -60 -25 -60 -17 -52 -9 -44 -1 -36 7 -26 15 -10
Rev. 0.2 /April 2008 65
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Table 4 — Required time tVAC above VIH(ac) {below VIL(ac)} for valid trans ition
Slew Rate
[V/ns] tVAC @ 175 mV [ps] tVAC @ 150 mV [ps]
minmaxminmax
> 2.0 75 - 175 -
2.0 57 - 170 -
1.5 50 - 167 -
1.0 38 - 163 -
0.9 34 - 162 -
0.8 29 - 161 -
0.7 22 - 159 -
0.6 13 - 155 -
0.5 0 - 150 -
< 0.5 0 - 150 -
Rev. 0.2 /April 2008 66
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Figure 1 — Illustration of nominal slew rate and t VAC for setup time tDS (for DQ with respect to strobe) and
tIS (for ADD/CMD with respect to clock).
VSS
Setup Slew Rate
Setup Slew Rate Rising Signal
Falling Signal
TF
TR
VREF(dc)
- V
IL(ac)
max
TF
=V
IH(ac)
min -
VREF(dc)
TR
=
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
nominal
nominal
slew rate
VREF to ac
region
VREF to ac
region
tVAC
tVAC
slew rate
tDH
tDS
DQS
DQS#
tDH
tDS
CK#
CK
tIS tIH tIS tIH
Note: Clock and Strobe are drawn
on a different time scale.
Rev. 0.2 /April 2008 67
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Figure 2 — Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
VSS
Hold Slew Rate
Hold Slew Rate Falling Signal
Rising Signal
TR
TF
VREF(dc)
- V
IL(dc)
max
TR
=V
IH(dc)
min -
VREF(dc)
TF
=
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
nominal
slew rate
nominal
slew rate
dc to V
REF
region
dc to V
REF
region
tDH
tDS
DQS
DQS#
tDH
tDS
CK#
CK
tIS tIH tIS tIH
Note: Clock and Strobe are drawn
on a different time scale.
Rev. 0.2 /April 2008 68
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Figure 3 — Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock)
VSS
tDH
Setup Slew Rate
Setup Slew Rate
Rising Signal
Falling Signal
TF
TR
tangent line[
VREF(dc)
- V
IL(ac)
max]
TF
=
tangent line[V
IH(ac)
min -
VREF(dc)
]
TR
=
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
tDS
tangent
tangent
V
REF
to ac
region
V
REF
to ac
region
line
line
nominal
line
nominal
line
tVAC
tVAC
DQS
DQS#
tDH
tDS
CK#
CK
tIS tIH tIS tIH
Note: Clock and Strobe are drawn
on a different time scale.
Rev. 0.2 /April 2008 69
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Figure 4 — Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
VSS
Hold Slew Rate
TF
TR
tangent line [ V
IH(dc)
min -
VREF(dc)
]
TF
=
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
tangent
tangent
dc to V
REF
region
dc to V
REF
region
line
line nominal
line
nominal
line
Falling Signal
Hold Slew Rate tangent line [
VREF(dc)
- V
IL(dc)
max ]
TR
=
Rising Signal
tDH
tDS
DQS
DQS#
tDH
tDS
CK
tIS tIH tIS tIH
N
o
t
e:
Cl
oc
k
an
d
St
ro
b
e are
d
rawn
on a different time scale.
CK#
Rev. 0.2 /April 2008 70
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Data Setup, Hold and Slew Rate Derating
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet
tDS(base) and tDH(base) value (see Table 5) to the DtDS and DtDH (see Table 6) derating value respectively. Example:
tDS (total setup time) = tDS(base) + DtDS.
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the
first crossing of VIH(ac)min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last
crossing of VREF(dc) and the first crossing of VIL(ac)max (see Figure 5). If the actual signal is always earlier than the nomi-
nal slew rate line between shaded ‘VREF(dc) to ac region, use nominal slew rate for derating value. If the actual signal is
later than the nominal slew rate line anywhere between shaded ‘VREF(dc) to ac region’, the slew rate of a tangent line to
the actual signal from the ac level to dc level is used for derating value (see Figure 7).
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the
first crossing of VREF(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last
crossing of VIH(dc)min and the first crossing of VREF(dc) (see Figure 6). If the actual signal is always late r than the nominal
slew rate line between shaded ‘dc lev el to VREF(dc) region’, use nominal slew rate f o r derating value. If the actua l signal is
earlier than the nominal slew r ate line anywher e between sha ded ‘dc to V REF(dc) region’, the slew rate of a tangent line to
the actual signal from the dc level to VREF(dc) level is used for derating value (see figure 7).
For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC (see Table 7).
Although for slow slew rates the total setup time might be negative (i.e. a v alid input signal will not hav e reached VIH/IL(ac)
at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization.
Table 5 — Data Setup and Hold Base-Values
Note: (ac/dc referenced for 1V/ns DQ-slew rate and 2 V/ns DQS-slew rate)
Units [ps] DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 reference
tDS(base) 75 25 -10 TBD VIH/L(ac)
tDH(base) 150 100 65 TBD VIH/L(dc)
Rev. 0.2 /April 2008 71
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Table 6 Derating values DDR3-800/1066 tDS/tDH - ac/dc based
Table 7 — Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition
tDS, DH derating in [ps] AC/DC based a
a.Cell contents shaded in red are defined as ‘not supported’.
DQS, DQS# Differential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH
DQ
Slew
rate
V/ns
2.0885088508850 - - - - - - - - - -
1.55934593459346742 - - - - - - - -
1.0 0 0 0 0 0 0 8 8 16 16 - - - - - -
0.9 -- -2 -4 -2 -4 6 4 14122220 - - - -
0.8 - - - - -6 -10 2 -2 10 6 18 14 26 24 - -
0.7 - - - - - - -3 -8 5 0 13 8 21182934
0.6 - - - - - - - - -1 -10 7 -2 15 8 23 24
0.5 - - - - - - - - - --11-16-2-6510
0.4 - - - - - - - - - - - - -30 -26 -22 -10
Slew Rate [V/ns] tVAC [ps]
min max
> 2.0 75 -
2.0 57 -
1.5 50 -
1.0 38 -
0.9 34 -
0.8 29 -
0.7 22 -
0.6 13 -
0.5 0 -
< 0.5 0 -
Rev. 0.2 /April 2008 72
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Figure 5 — Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and
tIS (for ADD/CMD with respect to clock).
VSS
Setup Slew Rate
Setup Slew Rate Rising Signal
Falling Signal
TF
TR
VREF(dc)
- V
IL(ac)
max
TF
=V
IH(ac)
min -
VREF(dc)
TR
=
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
nominal
nominal
slew rate
VREF to ac
region
VREF to ac
region
tVAC
tVAC
slew rate
tDH
tDS
DQS
DQS
tDH
tDS
CK
CK
tIS tIH tIS tIH
Note: Clock and Strobe are drawn
on a different time scale.
Rev. 0.2 /April 2008 73
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
Figure 6 — Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
VSS
Hold Slew Rate
Hold Slew Rate Falling Signal
Rising Signal
TR
TF
VREF(dc)
- V
IL(dc)
max
TR
=V
IH(dc)
min -
VREF(dc)
TF
=
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
nominal
slew rate
nominal
slew rate
dc to V
REF
region
dc to V
REF
region
tDH
tDS
DQS
DQS
tDH
tDS
CK
CK
tIS tIH tIS tIH
Note: Clock and Strobe are drawn
on a different time scale.
Rev. 0.1 / April 2008 74
Figure 7 — Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS (for
ADD/CMD with respect to clock)
VSS
tDH
Setup Slew Rate
Setup Slew Rate
Rising Signal
Falling Signal
TF
TR
tangent line[
VREF(dc)
- V
IL(ac)
max]
TF
=
tangent line[V
IH(ac)
min -
VREF(dc)
]
TR
=
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
tDS
tangent
tangent
V
REF
to ac
region
V
REF
to ac
region
line
line
nominal
line
nominal
line
tVAC
tVAC
DQS
DQS
tDH
tDS
CK
CK
tIS tIH tIS tIH
Note: Clock and Strobe are drawn
on a different time scale.
Rev. 0.1 / April 2008 75
Figure 8 — Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/
CMD with respect to clock)
VSS
Hold Slew Rate
TF
TR
tangent line [ V
IH(dc)
min -
VREF(dc)
]
TF
=
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
tangent
tangent
dc to V
REF
region
dc to V
REF
region
line
line nominal
line
nominal
line
Falling Signal
Hold Slew Rate tangent line [
VREF(dc)
- V
IL(dc)
max ]
TR
=
Rising Signal
tDH
tDS
DQS
DQS
tDH
tDS
CK
CK
tIS tIH tIS tIH
Note: Clock and Strobe are drawn
on a different time scale.
Rev. 0.2 /April 2008 76
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
12. Package Dimensions
12.1 Package Dimension(x4/x8) ; 78Ball Fine Pitch Ball Grid Array Outline
A1 CORNER
INDEX AREA
(2.875)
(2.000)
8.000 0.100±
11.500 0.100±
0.340 0.050±
1.100 0.100±
987 321
A
B
C
D
E
F
G
H
J
K
L
M
N
0.800 0.100±
2.100 0.100±
0.800 X 8 = 6.40 0
0.800
A1 BALL MARK
1.600
0.800 X 12 = 9.600
0.800
1.600
78
x
φ0.450 0.050±
0.950 0.100±
0.150 0.050±
2-R0.130 MAX
TOP VIEW
BOTTOM VIEW
SIDE VIEW
3.0 X 5.0 MIN
FLAT AREA
Rev. 0.2 /April 2008 77
H5TQ1G43AFP(R)-xxC
H5TQ1G83AFP(R)-xxC
H5TQ1G63AFP(R)-xxC
12.2 Package Dimension(x16) ; 96Ball Fine Pitch Ball Grid Array Outline
A1 CORNER
INDEX AREA
(3.250)
(2.000)
8.000 0.100±
13.000 0.100±
0.340 0.050±
1.100 0.100±
TOP VIEW
987 321
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
2.100 0.100±
0.800 X 8 = 6.400
0.800
A1 BALL MARK
1.600
0.800 X 15 = 12.000
0.400
1.600
96
x
φ0.450 0.050±
0.500 0.100±
BOTTOM VIEW
0.150 0.050±
2-R0.130 MAX
SIDE VIEW
0.800 0.100±
3.0 X 5.0 MIN
FLAT AREA