H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 1Gb DDR3 SDRAM H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC ** Contents are subject to change at any time without notice. Rev. 0.2 / April 2008 This document is a general product description and is subject to change without notice. Hynix semiconductor does not assume any responsibility for use of circuits described. No patent licenses are implied. 1 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Revision History Revision No. History Draft Date Remark 0.01 Preliminary Initial Release Nov. 2007 Preliminary 0.02 IDD Added March 2008 Preliminary 0.1 Revision 0.1 specification Release April 2008 0.2 Added Halogen free products April 2008 Rev. 0.2 /April 2008 2 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Table of Contents 1. Description 1.1 Device Features and Ordering Information 1.1.1 Features 1.1.2 Ordering Information 1.1.3 Operating Frequency 1.2 Package Ballout / Mechanical Dimension 1.2.1 x4 Package Ball out 1.2.2 x8 Package Ball out 1.2.3 x16 Package Ball out 1.3 Row and Column Address Table : 1G/2G/4G/8G 1.4 Pin Functional Description 2. Command Description 2.1 Command Truth Table 2.2 Clock Enable (CKE) Truth Table for Synchronous Transitions 3. Absolute Maximum Ratings 4. Operating Conditions 4.1 Operating Temperature Condition 4.2 DC Operating Conditions 5. AC and DC Input Measurement Levels 5.1 AC and DC Logic Input Levels for Single-Ended Signals 5.2 AC and DC Logic Input Levels for Differential Signals 5.3 Differential Input Cross Point Voltage 5.4 Slew Rate Definitions for Single Ended Input Signals 5.4.1 Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS) 5.4.2 Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH) 5.5 Slew Rate Definitions for Differential Input Signals Rev. 0.2 /April 2008 3 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 6. AC and DC Output Measurement Levels 6.1 Single Ended AC and DC Output Levels 6.1.1 Differential AC and DC Output Levels 6.2 Single Ended Output Slew Rate 6.3 Differential Output Slew Rate 6.4 Reference Load for AC Timing and Output Slew Rate 7. Overshoot and Undershoot Specifications 7.1 Address and Control Overshoot and Undershoot Specifications 7.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications 7.3 34 ohm Output Driver DC Electrical Characteristics 7.4 Output Driver Temperature and Voltage sensitivity 7.5 On-Die Termination (ODT) Levels and I-V Characteristics 7.5.1 On-Die Termination (ODT) Levels and I-V Characteristics 7.5.2 ODT DC Electrical Characteristics 7.5.3 ODT Temperature and Voltage sensitivity 7.6 ODT Timing Definitions 7.6.1 Test Load for ODT Timings 7.6.2 ODT Timing Reference Load 8. IDD Specification Parameters and Test Conditions 8.1 IDD Measurement Conditions 8.2 IDD Specifications 8.2.1 IDD6 Current Definition 8.2.2 IDD6TC Specification (see notes 1~2) 9. Input/Output Capacitance 10. Standard Speed Bins 11. Electrical Characteristics and AC Timing 12. Package Dimensions Rev. 0.2 /April 2008 4 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 1. DESCRIPTION The H5TQ1G43AFP-xxC, H5TQ1G83AFP-xxC and H5TQ1G63AFP-xxC are a 1,073,741,824-bit CMOS Double Data Rate III (DDR3) Synchronous DRAM, ideally suited for the main memory applications which requires large memory density and high bandwidth. Hynix 1Gb DDR3 SDRAMs offer fully synchronous operations referenced to both rising and falling edges of the clock. While all addresses and control inputs are latched on the rising edges of the CK (falling edges of the CK), Data, Data strobes and Write data masks inputs are sampled on both rising and falling edges of it. The data paths are internally pipelined and 8-bit prefetched to achieve very high bandwidth. 1.1 Device Features and Ordering Information 1.1.1 FEATURES * VDD=VDDQ=1.5V +/- 0.075V * Fully differential clock inputs (CK, /CK) operation * Programmable burst length 4/8 with both nibble sequential and interleave mode * Differential Data Strobe (DQS, /DQS) * BL switch on the fly * On chip DLL align DQ, DQS and /DQS transition with CK transition * 8banks * DM masks write data-in at the both rising and falling edges of the data strobe * JEDEC standard 78ball FBGA(x4/x8) , 96ball FBGA(x16) * All addresses and control inputs except data, data strobes and data masks latched on the rising edges of the clock * Dynamic On Die Termination supported * Programmable CAS latency 5, 6, 7, 8, 9, 10, and (11) supported * ZQ calibration supported * Programmable additive latency 0, CL-1, and CL-2 supported * Write Levelization supported * Programmable CAS Write latency (CWL) = 5, 6, 7, 8 * 8K refresh cycles /64ms * Driver strength selected by EMRS * Asynchronous RESET pin supported * TDQS (Termination Data Strobe) supported (x8 only) * Auto Self Refresh supported * On Die Thermal Sensor supported ( JEDEC optional ) * 8 bit pre-fetch 1.1.2 ORDERING INFORMATION Part No. Configuration H5TQ1G43AFP*(R)-**xxC 256M x 4 H5TQ1G83AFP*(R)-**xxC 128M x 8 H5TQ1G63AFP*(R)-**xxC 64M x 16 * (R) means Halogen Free Products ** XX means Speed Bin Grade Rev. 0.2 /April 2008 1.1.3 OPERATING FREQUENCY Package Grade 78ball FBGA 96ball FBGA -S5 Frequency [MHz] CL5 CL6 O O DDR3-800 5-5-5 O DDR3-800 6-6-6 -S6 -G7 O -G8 -H8 -H9 CL7 O O O O CL8 CL9 CL10 Remark (CL-tRCD-tRP) O O DDR3-1066 7-7-7 O O DDR3-1066 8-8-8 O O O DDR3-1333 8-8-8 O O O DDR3-1333 9-9-9 5 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 1.2 Package Ballout/Mechanical Dimension 1.2.1 x4 Package Ball out ( Top view ) : 78ball FBGA Package ( no support balls ) 1 2 3 VSS VDD NC B VSS VSSQ C VDDQ DQ2 D VSSQ NC E VREFDQ A 4 5 6 7 8 9 NC VSS VDD A DQ0 DM VSSQ VDDQ B DQS DQ1 DQ3 VSSQ C DQS# VDD VSS VSSQ D VDDQ NC NC NC VDDQ E F NC VSS RAS# CK VSS NC F G ODT VDD CAS# CK# VDD CKE G H H NC CS# WE# A10/AP ZQ NC J VSS BA0 BA2 A15 VREFCA VSS J K VDD A3 A0 A12/BC# BA1 VDD K L VSS A5 A2 A1 A4 VSS L M VDD A7 A9 A11 A6 VDD M N VSS RESET# A13 NC A8 VSS N 1 2 3 6 8 9 4 4 5 Note : Green NC balls indicate mechanical support balls with no internal connection 1 2 3 7 8 9 A B C D E F G H J K (Top View: See the balls through the Package) Populated ball Ball not populated L M N 1.4 Pin Functional Description Rev. 0.2 /April 2008 6 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 1.2 Package Ballout/Mechanical Dimension 1.2.2 x8 Package Ball out ( Top view ) : 78ball FBGA Package ( no support balls ) 1 2 3 VSS VDD B VSS C VDDQ D E A 4 5 6 7 8 9 NC NU/TDQS# VSS VDD A VSSQ DQ0 DM/TDQS VSSQ VDDQ B DQ2 DQS DQ1 DQ3 VSSQ C VSSQ DQ6 DQS# VDD VSS VSSQ D VREFDQ VDDQ DQ4 DQ7 DQ5 VDDQ E F NC VSS RAS# CK VSS NC F G ODT VDD CAS# CK# VDD CKE G H H NC CS# WE# A10/AP ZQ NC J VSS BA0 BA2 NC VREFCA VSS J K VDD A3 A0 A12/BC# BA1 VDD K L VSS A5 A2 A1 A4 VSS L M VDD A7 A9 A11 A6 VDD M N VSS RESET# A13 NC A8 VSS N 1 2 3 7 8 9 4 4 5 Note : Green NC balls indicate mechanical support balls with no internal connection 1 2 3 7 8 9 A B C D E F G H (Top View: See the balls through the Package) Populated ball Ball not populated J K L M N Rev. 0.2 /April 2008 7 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 1.2 Package Ballout/Mechanical Dimension 1.2.3 x16 Package Ball out( Top view ) : 96ball FBGA Package ( no support balls ) A 1 2 3 VDDQ DQU5 4 5 6 7 8 9 DQU7 DQU4 VDDQ VSS A B VSSQ VDD VSS DQSU# DQU6 VSSQ B C VDDQ DQU3 DQU1 DQSU DQU2 VDDQ C D VSSQ VDDQ DMU DQU0 VSSQ VDD D E VSS VSSQ DQL0 DML VSSQ VDDQ E F VDDQ DQL2 DQSL DQL1 DQL3 VSSQ F G VSSQ DQL6 DQSL# VDD VSS VSSQ G H VREFDQ VDDQ DQL4 DQL7 DQL5 VDDQ H J NC VSS RAS# CK VSS NC J K ODT VDD CAS# CK# VDD CKE K L NC CS# WE# A10/AP ZQ NC L M VSS BA0 BA2 A15 VREFCA VSS M N VDD A3 A0 A12/BC# BA1 VDD N P VSS A5 A2 A1 A4 VSS P R VDD A7 A9 A11 A6 VDD R T VSS RESET# A13 NC A8 VSS T 1 2 3 7 8 9 4 4 5 Note : Green NC balls indicate mechanical support balls with no internal connection 1 2 3 7 8 9 A B C D E F G H J (Top View: See the balls through the Package) Populated ball Ball not populated K L M N P R T Rev. 0.2 /April 2008 8 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 1.3 ROW AND COLUMN ADDRESS TABLE 1Gb Configuration # of Banks Bank Address Auto precharge BL switch on the fly Row Address Column Address Page size 1 256Mb x 4 128Mb x 8 64Mb x 16 8 BA0 - BA2 A10/AP A12/BC# A0 - A13 A0 - A9,A11 1 KB 8 BA0 - BA2 A10/AP A12/BC# A0 - A13 A0 - A9 1 KB 8 BA0 - BA2 A10/AP A12/BC# A0 - A12 A0 - A9 2 KB 512Mb x 4 256Mb x 8 128Mb x 16 8 BA0 - BA2 A10/AP A12/BC# A0 - A14 A0 - A9,A11 1 KB 8 BA0 - BA2 A10/AP A12/BC# A0 - A14 A0 - A9 1 KB 8 BA0 - BA2 A10/AP A12/BC# A0 - A13 A0 - A9 2 KB 1Gb x 4 512Mb x 8 256Mb x 16 8 BA0 - BA2 A10/AP A12/BC# A0 - A15 A0 - A9,A11 1 KB 8 BA0 - BA2 A10/AP A12/BC# A0 - A15 A0 - A9 1 KB 8 BA0 - BA2 A10/AP A12/BC# A0 - A14 A0 - A9 2 KB 2Gb x 4 1Gb x 8 512Mb x 16 8 BA0 - BA2 A10/AP A12/BC# A0 - A15 A0 - A9, A11, A13 2 KB 8 BA0 - BA2 A10/AP A12/BC# A0 - A15 A0 - A9, A11 2 KB 8 BA0 - BA2 A10/AP A12/BC# A0 - A15 A0 - A9 2 KB 2Gb Configuration # of Banks Bank Address Auto precharge BL switch on the fly Row Address Column Address Page size 1 4Gb Configuration # of Banks Bank Address Auto precharge BL switch on the fly Row Address Column Address Page size 1 8Gb Configuration # of Banks Bank Address Auto precharge BL switch on the fly Row Address Column Address Page size 1 Note1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered. Page size is per bank, calculated as follows: page size = 2 COLBITS * ORG / 8 where COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits Rev. 0.2 /April 2008 9 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 1.4 Pin Functional Description Symbol Type CK, CK# Input Clock: CK and CK# are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK#. CKE Input Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and SelfRefresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK#, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh. CS# Input Chip Select: All commands are masked when CS# is registered HIGH. CS# provides for external Rank selection on systems with multiple Ranks. CS# is considered part of the command code. ODT Input On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS# and DM/TDQS, NU/TDQS# (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x4/x8 configurations. For x16 configuration ODT is applied to each DQ, DQSU, DQSU#, DQSL, DQSL#, DMU, and DML signal. The ODT pin will be ignored if MR1 is programmed to disable ODT. RAS#. CAS#. WE# Input Command Inputs: RAS#, CAS# and WE# (along with CS#) define the command being entered. DM, (DMU), (DML) Input Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of DM or TDQS/TDQS# is enabled by Mode Register A11 setting in MR1. BA0 - BA2 Input Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS cycle. Input Address Inputs: Provide the row address for Active commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. (A10/AP and A12/BC# have additional functions, see below). The address inputs also provide the op-code during Mode Register Set commands. A10 / AP Input Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge).A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses. A12 / BC# Input Burst Chop: A12 / BC# is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details. Input Active Low Asynchronous Reset: Reset is active when RESET# is LOW, and inactive when RESET# is HIGH. RESET# must be HIGH during normal operation. RESET# is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD, i.e. 1.20V for DC high and 0.30V for DC low. A0 - A15 RESET# Rev. 0.2 /April 2008 Function 10 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Symbol Type DQ Input / Output Data Input/ Output: Bi-directional data bus. Input / Output Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS, DQSL, and DQSU are paired with differential signals DQS#, DQSL#, and DQSU#, respectively, to provide differential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and does not support single-ended. Output Termination Data Strobe: TDQS/TDQS# is applicable for x8 DRAMs only. When enabled via Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function on TDQS/TDQS# that is applied to DQS/DQS#. When disabled via mode register A11 = 0 in MR1, DM/TDQS will provide the data mask function and TDQS# is not used. x4/x16 DRAMs must disable the TDQS function via mode register A11 = 0 in MR1. DQU, DQL, DQS, DQS#, DQSU, DQSU#, DQSL, DQSL# TDQS, TDQS# Function No Connect: No internal electrical connection is present. NC VDDQ Supply DQ Power Supply: 1.5 V +/- 0.075 V VSSQ Supply DQ Ground VDD Supply Power Supply: 1.5 V +/- 0.075 V VSS Supply Ground VREFDQ Supply Reference voltage for DQ VREFCA Supply Reference voltage ZQ Supply Reference Pin for ZQ calibration Note: Input only pins (BA0-BA2, A0-A15, RAS#, CAS#, WE#, CS#, CKE, ODT, DM, and RESET#) do not supply termination. Rev. 0.2 /April 2008 11 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 2. Command Description 2.1 Command Truth Table (a) note 1,2,3,4 apply to the entire Command Truth Table (b) Note 5 applies to all Read/Write command [BA=Bank Address, RA=Rank Address, CA=Column Address, BC#=Burst Chop, X=Don't Care, V=Valid] Function CKE Abbrev Previ Curre CS# RAS# CAS# WE# BA0- A13- A12- A10- A0A9, iation BA3 A15 BC# AP A11 ous nt Cycle Cycle Notes Mode Register Set MRS H H L L L L BA Refresh REF H H L L L H V V V V V Self Refresh Entry SRE H L V V V V V 7,9,12 V V V V V 7,8,9,1 2 BA V V L V V V H V L L L H H V V V L H H H L OP Code Self Refresh Exit SRX L H Single Bank Precharge PRE H H L L H Precharge all Banks PREA H H L L H L V Bank Activate ACT H H L L H H BA Write (Fixed BL8 or BC4) WR H H L H L L BA RFU V L CA Write (BC4, on the Fly) WRS4 H H L H L L BA RFU L L CA Write (BL8, on the Fly) WRS8 H H L H L L BA RFU H L CA Write with Auto Precharge (Fixed BL8 or BC4) WRA H H L H L L BA RFU V H CA Write with Auto Precharge (BC4, on the Fly) WRAS 4 H H L H L L BA RFU L H CA Write with Auto Precharge (BL8, on the Fly) WRAS 8 H H L H L L BA RFU H H CA Read (Fixed BL8 or BC4) RD H H L H L H BA RFU V L CA Read (BC4, on the Fly) RDS4 H H L H L H BA RFU L L CA Read (BL8, on the Fly) RDS8 H H L H L H BA RFU H L CA Read with Auto Precharge (Fixed BL8 or BC4) RDA H H L H L H BA RFU V H CA Read with Auto Precharge (BC4, on the Fly) RDAS4 H H L H L H BA RFU L H CA Read with Auto Precharge (BL8, on the Fly) RDAS8 H H L H L H BA RFU H H CA Row Address (RA) No Operation NOP H H L H H H V V V V V 10 Device Deselected DES H H H X X X X X X X X 11 Power Down Entry PDE H L L H H H H V V V V V V V V 6,12 Rev. 0.2 /April 2008 12 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC CKE Function Abbrev Previ Curre CS# RAS# CAS# WE# BA0- A13- A12- A10- A0A9, iation BA3 A15 BC# AP A11 ous nt Cycle Cycle L H H H H V V V H L H H H L H H Power Down Exit PDX L H ZQ Calibration Long ZQCL H ZQ Calibration Short ZQCS H V V V V V L X X X H X L X X X L X Notes 6,12 Notes: 1. All DDR3 SDRAM commands are defined by states of CS#, RAS#, CAS#, WE# and CKE at the rising edge of the clock. The MSB of BA, RA and CA are device density and configuration dependant. 2. RESET# is Low enable command which will be used only for asynchronous reset so must be maintained HIGH during any function. 3. Bank addresses (BA) determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode Register. 4. "V" means "H or L (but a defined logic level)" and "X" means either "defined or undefined (like floating) logic level". 5. Burst reads or writes cannot be terminated or interrupted and Fixed/on the Fly BL will be defined by MRS. 6. The Power Down Mode does not perform any refresh operation. 7. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. 8. Self Refresh Exit is asynchronous. 9. VREF(Both VrefDQ and VrefCA) must be maintained during Self Refresh operation. 10. The No Operation command should be used in cases when the DDR3 SDRAM is in an idle or wait state. The purpose of the No Operation command (NOP) is to prevent the DDR3 SDRAM from registering any unwanted commands between operations. A No Operation command will not terminate a previous operation that is still executing, such as a burst read or write cycle. 11. The Deselect command performs the same function as No Operation command. 12. Refer to the CKE Truth Table for more detail with CKE transition. Rev. 0.2 /April 2008 13 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 2.2 CKE Truth Table a) Notes 1-7 apply to the entire CKE Truth Table. b) CKE low is allowed only if tMRD and tMOD are satisfied. CKE Current State 2 Power-Down Previous Cycle1 (N-1) Current Cycle1 (N) Command (N)3 RAS#, CAS#, WE#, CS# Action (N)3 Notes L L X Maintain Power-Down 14, 15 L H DESELECT or NOP Power-Down Exit 11,14 L L X Maintain Self-Refresh 15,16 L H DESELECT or NOP Self-Refresh Exit 8,12,16 Bank(s) Active H L DESELECT or NOP Active Power-Down Entry 11,13,14 Reading H L DESELECT or NOP Power-Down Entry 11,13,14,17 Writing H L DESELECT or NOP Power-Down Entry 11,13,14,17 Precharging H L DESELECT or NOP Power-Down Entry 11,13,14,17 Self-Refresh Refreshing All Banks Idle H L DESELECT or NOP Precharge Power-Down Entry 11 H L DESELECT or NOP Precharge Power-Down Entry 11,13,14,18 H L REFRESH Self-Refresh 9,13,18 For more details with all signals See "2.1 Command Truth Table" on page 12.. 10 Notes: 1. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge. 2. Current state is defined as the state of the DDR3 SDRAM immediately prior to clock edge N. 3. COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N), ODT is not included here. 4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document. 5. The state of ODT does not affect the states described in this table. The ODT function is not available during Self-Refresh. 6. tCKEmin of [TBD] clocks means CKE must be registered on [TBD] consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the [TBD] clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + [TBD] + tIH. 7. DESELECT and NOP are defined in the Command Truth Table. 8. On Self-Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXS period. Read or ODT commands may be issued only after tXSDLL is satisfied. 9. Self-Refresh mode can only be entered from the All Banks Idle state. 10. Must be a legal command as defined in the Command Truth Table. 11. Valid commands for Power-Down Entry and Exit are NOP and DESELECT only. 12. Valid commands for Self-Refresh Exit are NOP and DESELECT only. 13. Self-Refresh can not be entered during Read or Write operations. For a detailed list of restrictions see 8.2.1 on page 44. 14. The Power-Down does not perform any refresh operations. 15. "X" means "don't care" (including floating around VREF) in Self-Refresh and Power-Down. It also applies to Address pins. 16. VREF (Both Vref_DQ and Vref_CA) must be maintained during Self-Refresh operation. 17. If all banks are closed at the conclusion of the read, write or precharge command, then Precharge Power-Down is entered, otherwise Active Power-Down is entered. 18. `Idle state' is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is high, and all timings from previous operations are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS, etc.) as well as all Self-Refresh exit and Power-Down Exit parameters are satisfied (tXS, tXP, tXPDLL, etc). Rev. 0.2 /April 2008 14 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 3. ABSOLUTE MAXIMUM RATINGS Symbol VDD VDDQ Parameter Rating Units Notes Voltage on VDD pin relative to Vss - 0.4 V ~ 1.975 V V ,3 Voltage on VDDQ pin relative to Vss - 0.4 V ~ 1.975 V V ,3 - 0.4 V ~ 1.975 V V VIN, VOUT Voltage on any pin relative to Vss TSTG Storage Temperature -55 to +100 ,2 Notes: 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must not be greater than 0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. Rev. 0.2 /April 2008 15 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 4. Operating Conditions 4.1 OPERATING TEMPERATURE CONDITION Symbol TOPER Parameter Rating Operating Temperature (Tcase) 0 to 85 Extended Temperature Range 85 to 95 Units Notes C 2 oC 1,3 o Notes: 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions. 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 s. (This double refresh requirement may not apply for some devices.) It is also possible to specify a component with 1X refresh (tREFI to 7.8s) in the Extended Temperature Range. Please refer to supplier data sheet and/or the DIMM SPD for option availability. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b). 4.2 RECOMMENDED DC OPERATING CONDITIONS Rating Symbol VDD VDDQ Parameter Units Notes 1.575 V 1,2 1.575 V 1,2 Min. Typ. Max. Supply Voltage 1.425 1.500 Supply Voltage for Output 1.425 1.500 Notes: 1. Under all conditions, VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC paramaters are measured with VDD and VDDQ tied together. Rev. 0.2 /April 2008 16 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 5. AC and DC Input Measurement Levels 5.1 AC and DC Logic Input Levels for Single-Ended Signals Single Ended AC and DC Input Levels Symbol DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600 Parameter Unit Notes 1 Min Max Vref + 0.100 TBD V VIH(DC) DC input logic high VIL(DC) DC input logic low TBD Vref - 0.100 V 1 VIH(AC) AC input logic high Vref + 0.175 - V 1, 2 VIL(AC) AC input logic low Vref - 0.175 V 1, 2 VRefDQ(DC) Reference Voltage for DQ, DM inputs 0.49 * VDD 0.51 * VDD V 3, 4 VRefCA(DC) Reference Voltage for ADD, CMD inputs 0.49 * VDD 0.51 * VDD V 3, 4 VDDQ/2 - TBD VDDQ/2 + TBD VTT Termination voltage for DQ, DQS outputs Notes: 1. For DQ and DM, Vref = VrefDQ. For input any pins except RESET#, Vref = VrefCA. 2. The "t.b.d." entries might change based on overshoot and undershoot specification. 3. The ac peak noise on VRef may not allow VRef to deviate from VRef(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV). 4. For reference: approx. VDD/2 +/- 15 mV. The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in below Figure. It shows a valid reference voltage VRef(t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise). VRef(DC) is the linear average of VRef(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements in Table 1. Furthermore VRef(t) may temporarily deviate from VRef(DC) by no more than +/- 1% VDD. voltage VDD VRef ac-noise VRef(DC) VRef(t) VRef(DC)max VDD/2 VRef(DC)min VSS time Illustration of Vref(DC) tolerance and Vref ac-noise limits Rev. 0.2 /April 2008 17 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 5.2 AC and DC Logic Input Levels for Differential Signals Symbol DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600 Parameter VIHdiff VILdiff Differential input logic high Differential input logic low Min Max + 0.200 - 0.200 Unit Notes V V 1 1 Note1. Refer to "Overshoot and Undershoot Specification on page 23" 5.3 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK# and DQS, DQS#) must meet the requirements below table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the midlevel between of VDD and VSS. VDD CK#, DQS# VIX VDD/2 VIX VIX CK, DQS VSS Vix Definition Cross point voltage for differential input signals (CK, DQS) Symbol VIX Parameter Differential Input Cross Point Rev. 0.2 /April 2008 Voltage relative to VDD/2 DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600 Min Max - 150 150 Unit Notes mV 18 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 5.4 Slew Rate Definitions for Single Ended Input Signals 5.4.1 Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS) Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VRef and the first crossing of VIH(AC)min. Setup (tIS and tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VRef and the first crossing of VIL(AC)max. 5.4.2 Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH) Hold nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VRef. Hold (tIH and tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VRef. Single-Ended Input Slew Rate Definition Measured Description Min Max Input slew rate for rising edge Vref VIH(AC)min Input slew rate for falling edge Vref VIL(AC)max Input slew rate for rising edge VIL(DC)max Vref Input slew rate for falling edge VIH(DC)min Vref Defined by Applicable for VIH(AC)min-Vref Delta TRS Vref-VIL(AC)max Setup (tIS, tDS) Delta TFS Vref-VIL(DC)max Delta TFH VIH(DC)min-Vref Hold (tIH, tDH) Delta TRH Input Nominal Slew Rate Definition for Single-Ended Signals P a rt A : S e t u p Single Ended input Voltage(DQ,ADD, CMD) D e lt a T R S v I H ( A C ) m in v I H ( D C ) m in v R e fD Q o r v R e fC A v IH (D C )m a x v IH (A C )m a x D e lt a T F S P a r t B : H o ld Single Ended input Voltage(DQ,ADD, CMD) D e lt a T R H v I H ( A C ) m in v I H ( D C ) m in v R e fD Q o r v R e fC A v IH (D C )m a x v IH (A C )m a x D e lt a T F H F ig u r e 8 2 ? I n p u t N o m in a l S le w R a t e D e f in it io n f o r S in g le - E n d e d S ig n a ls Rev. 0.2 /April 2008 19 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 5.5 Slew Rate Definitions for Differential Input Signals Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and measured as shown in Table and Figure . Measured Description Min Max Differential input slew rate for rising edge (CK-CK and DQS-DQS) VILdiffmax VIHdiffmin Differential input slew rate for falling edge (CK-CK and DQS-DQS) VIHdiffmin VILdiffmax Defined by VIHdiffmin-VILdiffmax DeltaTRdiff VIHdiffmin-VILdiffmax DeltaTFdiff Differential Input Voltage (i.e. DQS-DQS; CK-CK) Note: The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds. Delta TRdiff vIHdiffmin 0 vILdiffmax Delta TFdiff Differential Input Slew Rate Definition for DQS, DQS# and CK, CK# Rev. 0.2 /April 2008 20 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 6. AC and DC Output Measurement Levels 6.1 Single Ended AC and DC Output Levels Table shows the output levels used for measurements of single ended signals. Symbol DDR3-800, 1066, Parameter 1333 and 1600 Unit VOH(DC) DC output high measurement level (for IV curve linearity) 0.8 x VDDQ V VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V Notes 1 VOL(AC) VTT - 0.1 x VDDQ V 1 AC output low measurement level (for output SR) 1. The swing of 0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 and an effective test load of 25 to VTT = VDDQ / 2. 6.1.1 Differential AC and DC Output Levels Below table shows the output levels used for measurements of differential signals. Symbol DDR3-800, 1066, Parameter 1333 and 1600 VOHdiff(AC) AC differential output high measurement level (for output SR) + 0.2 x VDDQ Unit Notes V 1 VOLdiff(AC) AC differential output low measurement level (for outtput SR) - 0.2 x VDDQ V 1 1. The swing of 0.2 x VDDQ is based on approximately 50% of the static differential output high or low swing with a driver impedance of 40 and an effective test load of 25 to VTT = VDDQ/2 at each of the differential outputs. 6.2 Single Ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table and Figure. Measured Description Defined by From To VOL(AC) VOH(AC) VOH(AC)-VOL(AC) Single ended output slew rate for rising edge DeltaTRse VOH(AC)-VOL(AC) Single ended output slew rate for falling edge VOH(AC) VOL(AC) DeltaTFse Note: Output slew rate is verified by design and characterisation, and may not be subject to production test. Rev. 0.2 /April 2008 21 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Fig. Single Ended Output Slew Rate Definition Single Ended Output Voltage(l.e.DQ) Delta TRse vOH(AC) V vOl(AC) Delta TFse Single Ended Output Slew Rate Definition Table. Output Slew Rate (single-ended) DDR3-800 Parameter Single-ended Output Slew Rate DDR3-1066 DDR3-1333 DDR3-1600 Units Symbol SRQse Min Max Min Max Min Max Min Max 2.5 5 2.5 5 2.5 5 TBD 5 V/ns *** For Ron = RZQ/7 setting Rev. 0.2 /April 2008 22 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 6.3 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table and Figure . Differential Output Slew Rate Definition Measured Description Defined by From To Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) VOHdiff(AC)-VOLdiff(AC) DeltaTRdiff VOHdiff(AC)-VOLdiff(AC) DeltaTFdiff Note: Output slew rate is verified by design and characterization, and may not be subject to production test. Differential Output Voltage(i.e. DQS-DQS) Delta TRdiff vOHdiff(AC) O vOLdiff(AC) Delta TFdiff Differential Output Slew Rate Definition Fig. Differential Output Slew Rate Definition Table. Differential Output Slew Rate DDR3-800 Parameter Differential Output Slew Rate DDR3-1066 DDR3-1333 DDR3-1600 Units Symbol SRQdiff Min Max Min Max Min Max Min Max 5 10 5 10 5 10 TBD 10 V/ns ***For Ron = RZQ/7 setting Rev. 0.2 /April 2008 23 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 6.4 Reference Load for AC Timing and Output Slew Rate Figure represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VDDQ CK, CK DUT DQ DQS DQS 25 Ohm VTT = VDDQ/2 Reference Load for AC Timing and Output Slew Rate Rev. 0.2 /April 2008 24 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 7. Overshoot and Undershoot Specifications 7.1 Address and Control Overshoot and Undershoot Specifications Table. AC Overshoot/Undershoot Specification for Address and Control Pins Specification Description Maximum peak amplitude allowed for overshoot area (see Figure) Maximum peak amplitude allowed for undershoot area (see Figure) Maximum overshoot area above VDD (See Figure) Maximum undershoot area below VSS (See Figure) DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 0.4V 0.4V 0.4V 0.4V 0.4V 0.4V 0.4V 0.4V 0.67 V-ns 0.67 V-ns 0.5 V-ns 0.5 V-ns 0.4 V-ns 0.4 V-ns 0.33 V-ns 0.33 V-ns M a x im u m A m p litu d e O v e rs h o o t A re a VDD VSS U n d e rs h o o t A re a M a x im u m A m p litu d e T im e (n s ) A d d re s s a n d C o n tro l O v e rs h o o t a n d U n d e rs h o o t D e fin itio n Rev. 0.2 /April 2008 25 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 7.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications Table. AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask Specification Description Maximum peak amplitude allowed for overshoot area (see Figure) Maximum peak amplitude allowed for undershoot area (see Figure) Maximum overshoot area above VDDQ (See Figure) Maximum undershoot area below VSSQ (See Figure) DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 0.4V 0.4V 0.4V 0.4V 0.4V 0.4V 0.4V 0.4V 0.25 V-ns 0.25 V-ns 0.19 V-ns 0.19 V-ns 0.15 V-ns 0.15 V-ns 0.13 V-ns 0.13 V-ns M a x im u m A m p litu d e O v e rsh o o t A re a V o lts (V ) VDDQ VSSQ U n d e rsh o o t A re a M a x im u m A m p litu d e T im e (n s) C lo c k , D a ta S tro b e a n d M a sk O v e rsh o o t a n d U n d e rsh o o t D e fin itio n Rev. 0.2 /April 2008 26 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 7.3 34 ohm Output Driver DC Electrical Characteristics A functional representation of the output buffer is shown in Figure . Output driver impedance RON is defined by the value of the external reference resistor RZQ as follows: RON34 = RZQ / 7 (nominal 34.3 W 10% with nominal RZQ = 240 W 1%) The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows: V DDQ - V Out RON Pu = -------------------------------------I Out under the condition that RONPd is turned off V Out RON Pd = --------------I Out under the condition that RONPu is turned off Chip in Drive Mode Output Driver VDDQ Ipu To other Circuitry Like RCV, ... RONpu DQ RONpd Iout Ipd Vout VSSQ Output Driver: Definition of Voltages and Currents Rev. 0.2 /April 2008 27 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Output Driver DC Electrical Characteristics, assuming RZQ = 240 ; entire operating temperature range; after proper ZQ calibration RONNom VOut min nom max Unit Notes VOLdc = 0.2 x VDDQ VOMdc = 0.5 x VDDQ VOHdc = 0.8 x VDDQ VOLdc = 0.2 x VDDQ VOMdc = 0.5 x VDDQ VOHdc = 0.8 x VDDQ VOMdc 0.5 x VDDQ 0.6 1.0 1.1 1, 2, 3 0.9 1.0 1.1 0.9 1.0 1.4 1, 2, 4 Resistor RON34Pd 34 RON34Pu Mismatch between pull-up and pull-down, MMPuPd 0.9 1.0 1.4 0.9 1.0 1.1 0.6 1.0 1.1 RZQ/7 RZQ/7 RZQ/7 RZQ/7 RZQ/7 RZQ/7 +10 % -10 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 Notes: 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity. 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS. 3. Pull-down and pull-up output driver impedances are recommended to be calibrated at 0.5 x VDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 x VDDQ and 0.8 x VDDQ. 4. Measurement definition for mismatch between pull-up and pull-down, MMPuPd: Measure RONPu and RONPd, both at 0.5 x VDDQ: RON Pu - RON Pd MM PuPd = ------------------------------------------------- x 100 RON Nom 7.4 Output Driver Temperature and Voltage sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to Table and Table . DT = T - T(@calibration); DV= VDDQ - VDDQ(@calibration); VDD = VDDQ dRONdT and dRONdV are not subject to production test but are verified by design and characterization. Output Driver Sensitivity Definition min max unit RONPU@ VOHdc 0.6 - dRONdTH*|T| - dRONdVH*|V| 1.1 + dRONdTH*|T| + dRONdVH*|V| RZQ/7 RON@ VOMdc 0.9 - dRONdTM*|T| - dRONdVM*|V| 1.1 + dRONdTM*|T| + dRONdVM*|V| RZQ/7 RONPD@ VOLdc 0.6 - dRONdTL*|T| - dRONdVL*|V| 1.1 + dRONdTL*|T| + dRONdVL*|V| RZQ/7 Output Driver Voltage and Temperature Sensitivity min max unit dRONdTM 0 1.5 %/oC dRONdVM 0 0.15 %/mV dRONdTL 0 1.5 %/oC dRONdVL 0 TBD %/mV Rev. 0.2 /April 2008 28 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Output Driver Voltage and Temperature Sensitivity min max unit dRONdTH 0 1.5 %/oC dRONdVH 0 TBD %/mV These parameters may not be subject to production test. They are verified by design and characterization. 7.5 On-Die Termination (ODT) Levels and I-V Characteristics 7.5.1 On-Die Termination (ODT) Levels and I-V Characteristics On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of the MR1 Register. ODT is applied to the DQ, DM, DQS/DQS# and TDQS/TDQS# (x8 devices only) pins. A functional representation of the on-die termination is shown in Figure . The individual pull-up and pull-down resistors (RTTPu and RTTPd) are defined as follows: V DDQ - V Out RTT Pu = --------------------------------I Out V Out RTT Pd = -----------I Out under the condition that RTTPd is turned off under the condition that RTTPu is turned off C h ip in T e r m in a t io n M o d e ODT VDDQ Ip u To o th e r C ir c u it r y L ik e RCV, . .. Io u t = Ip d -Ip u RTTpu DQ RTTpd Io u t Vout Ip d VSSQ IO _ C T T _ D E F IN IT IO N _ 0 1 O n - D ie T e r m in a t io n : D e f in it io n o f V o lt a g e s a n d C u r r e n t s Rev. 0.2 /April 2008 29 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 7.5.2 ODT DC Electrical Characteristics A below table provides an overview of the ODT DC electrical characteristics. The values for RTT60Pd120, RTT60Pu120, RTT120Pd240, RTT120Pu240, RTT40Pd80, RTT40Pu80, RTT30Pd60, RTT30Pu60 , RTT20Pd40, RTT20Pu40 are not specification requirements, but can be used as design guide lines: ODT DC Electrical Characteristics, assuming RZQ = 240 +/- 1% entire operating temperature range; after proper ZQ calibration MR1 A9, A6, A2 RTT Resistor RTT120Pd240 0, 1, 0 120 RTT120Pu240 RTT120 RTT60Pd120 0, 0, 1 60 RTT60Pu120 RTT60 Rev. 0.2 /April 2008 VOut min nom max Unit Notes VOLdc 0.2 x VDDQ 0.6 1.00 1.1 RZQ 1) 2) 3) 4) 0.5 x VDDQ 0.9 1.00 1.1 RZQ 1) 2) 3) 4) VOHdc 0.8 x VDDQ 0.9 1.00 1.4 RZQ 1) 2) 3) 4) VOLdc 0.2 x VDDQ 0.9 1.00 1.4 RZQ 1) 2) 3) 4) 0.5 x VDDQ 0.9 1.00 1.1 RZQ 1) 2) 3) 4) VOHdc 0.8 x VDDQ 0.6 1.00 1.1 RZQ 1) 2) 3) 4) VIL(ac) to VIH(ac) 0.9 1.00 1.6 RZQ/2 1) 2) 5) VOLdc 0.2 x VDDQ 0.6 1.00 1.1 RZQ/2 1) 2) 3) 4) 0.5 x VDDQ 0.9 1.00 1.1 RZQ/2 1) 2) 3) 4) VOHdc 0.8 x VDDQ 0.9 1.00 1.4 RZQ/2 1) 2) 3) 4) VOLdc 0.2 x VDDQ 0.9 1.00 1.4 RZQ/2 1) 2) 3) 4) 0.5 x VDDQ 0.9 1.00 1.1 RZQ/2 1) 2) 3) 4) VOHdc 0.8 x VDDQ 0.6 1.00 1.1 RZQ/2 1) 2) 3) 4) VIL(ac) to VIH(ac) 0.9 1.00 1.6 RZQ/4 1) 2) 5) 30 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC ODT DC Electrical Characteristics, assuming RZQ = 240 +/- 1% entire operating temperature range; after proper ZQ calibration MR1 A9, A6, A2 RTT Resistor VOut min nom max Unit Notes VOLdc 0.2 x VDDQ 0.6 1.00 1.1 RZQ/3 1) 2) 3) 4) 0.5 x VDDQ 0.9 1.00 1.1 RZQ/3 1) 2) 3) 4) VOHdc 0.8 x VDDQ 0.9 1.00 1.4 RZQ/3 1) 2) 3) 4) VOLdc 0.2 x VDDQ 0.9 1.00 1.4 RZQ/3 1) 2) 3) 4) 0.5 x VDDQ 0.9 1.00 1.1 RZQ/3 1) 2) 3) 4) VOHdc 0.8 x VDDQ 0.6 1.00 1.1 RZQ/3 1) 2) 3) 4) VIL(ac) to VIH(ac) 0.9 1.00 1.6 RZQ/6 1) 2) 5) VOLdc 0.2 x VDDQ 0.6 1.00 1.1 RZQ/4 1) 2) 3) 4) 0.5 x VDDQ 0.9 1.00 1.1 RZQ/4 1) 2) 3) 4) VOHdc 0.8 x VDDQ 0.9 1.00 1.4 RZQ/4 1) 2) 3) 4) VOLdc 0.2 x VDDQ 0.9 1.00 1.4 RZQ/4 1) 2) 3) 4) 0.5 x VDDQ 0.9 1.00 1.1 RZQ/4 1) 2) 3) 4) VOHdc 0.8 x VDDQ 0.6 1.00 1.1 RZQ/4 1) 2) 3) 4) VIL(ac) to VIH(ac) 0.9 1.00 1.6 RZQ/8 1) 2) 5) VOLdc 0.2 x VDDQ 0.6 1.00 1.1 RZQ/6 1) 2) 3) 4) 0.5 x VDDQ 0.9 1.00 1.1 RZQ/6 1) 2) 3) 4) VOHdc 0.8 x VDDQ 0.9 1.00 1.4 RZQ/6 1) 2) 3) 4) VOLdc 0.2 x VDDQ 0.9 1.00 1.4 RZQ/6 1) 2) 3) 4) 0.5 x VDDQ 0.9 1.00 1.1 RZQ/6 1) 2) 3) 4) VOHdc 0.8 x VDDQ 0.6 1.00 1.1 RZQ/6 1) 2) 3) 4) VIL(ac) to VIH(ac) 0.9 1.00 1.6 RZQ/12 1) 2) 5) +5 % 1) 2) 5) 6) RTT40Pd80 40 0, 1, 1 RTT40Pu80 RTT40 RTT30Pd60 30 1, 0, 1 RTT30Pu60 RTT30 RTT20Pd40 20 1, 0, 0 RTT20Pu40 RTT20 Deviation of VM w.r.t. VDDQ/2, DVM -5 The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5 x VDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 x VDDQ and 0.8 x VDDQ. Not a specification requirement, but a design guide line. Measurement definition for RTT: Rev. 0.2 /April 2008 31 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Apply VIH(ac) to pin under test and measure current I(VIH(ac)), then apply VIL(ac) to pin under test and measure current I(VIL(ac)) respectively. V IH(ac) - V IL(ac) RTT = -------------------------------------------------------I(VIH(ac)) - I(VIL(ac)) Measurement definition for VM and DVM : Measure voltage (VM) at test pin (midpoint) with no load: 2 * VM V M = ----------------- - 1 * 100 V DDQ 7.5.3 ODT Temperature and Voltage sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to Table and Table . DT = T - T(@calibration); DV= VDDQ - VDDQ(@calibration); VDD = VDDQ ODT Sensitivity Definition RTT min max unit 0.9 - dRTTdT*|T| - dRTTdV*|V| 1.6 + dRTTdT*|T| + dRTTdV*|V| RZQ/2,4,6,8,12 ODT Voltage and Temperature Sensitivity min max unit dRTTdT 0 1.5 %/oC dRTTdV 0 0.15 %/mV These parameters may not be subject to production test. They are verified by design and characterization Rev. 0.2 /April 2008 32 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 7.6 ODT Timing Definitions 7.6.1 Test Load for ODT Timings Different than for timing measurements, the reference load for ODT timings is defined in Figure . VDDQ DUT CK, CK DQ, DM DQS, DQS TDQS, TDQS RTT = 25 VTT = VSSQ VSSQ Timing Reference Points BD_REFLOAD_ODT 7.6.2 ODT Timing Reference Load ODT Timing Definitions Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in the table and subsequent figures. Measurement reference settings are provided in the table. ODT Timing Definitions Symbol Begin Point Definition End Point Definition Figure tAON Rising edge of CK - CK# defined by the end point of ODTLon Extrapolated point at VSSQ Figure tAONPD Rising edge of CK - CK# with ODT being first registered high Extrapolated point at VSSQ Figure tAOF Rising edge of CK - CK# defined by the end point of ODTLoff End point: Extrapolated point at VRTT_Nom Figure tAOFPD Rising edge of CK - CK# with ODT being first registered low End point: Extrapolated point at VRTT_Nom Figure tADC Rising edge of CK - CK# defined by the end point of ODTLcnw, ODTLcwn4 or ODTLcwn8 End point: Extrapolated point at VRTT_Wr and VRTT_Nom respectively Figure Reference Settings for ODT Timing Measurements Measured Parameter tAON tAONPD tAOF tAOFPD tADC Rev. 0.2 /April 2008 RTT_Nom Setting RTT_Wr Setting VSW1 [V] VSW2 [V] RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/12 RZQ/2 0.20 0.30 Note 33 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Begin point: Rising edge of CK - CK defined by the end point of ODTLon CK VTT CK t AON TSW2 DQ, DM DQS, DQS TDQS, TDQS T SW1 VSW2 VSW1 VSSQ VSSQ End point: Extrapolated point at VSSQ TD_TAON_DEF Definition of tAON Begin point: Rising edge of CK - CK with ODT being first registered high CK VTT CK t AONPD T SW2 DQ, DM DQS, DQS TDQS, TDQS T SW1 VSW2 VSSQ VSW1 VSSQ End point: Extrapolated point at VSSQ TD_TAONPD_DEF Definition of tAONPD Rev. 0.2 /April 2008 34 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Begin point: Rising edge of CK - CK defined by the end point of ODTLoff CK VTT CK t AOF End point: Extrapolated point at VRTT_Nom VRTT_Nom T SW2 DQ, DM DQS, DQS TDQS, TDQS T SW1 VSW2 VSW1 VSSQ TD_TAOF_DEF Definition of tAOF Begin point: Rising edge of CK - CK with ODT being first registered low CK VTT CK t AOFPD End point: Extrapolated point at VRTT_Nom VRTT_Nom T SW2 DQ, DM DQS, DQS TDQS, TDQS T SW1 VSW2 VSW1 VSSQ TD_TAOFPD_DEF Definition of tAOFPD Rev. 0.2 /April 2008 35 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Begin point: Rising edge of CK - CK defined by the end point of ODTLcnw Begin point: Rising edge of CK - CK defined by the end point of ODTLcwn4 or ODTLcwn8 CK VTT CK t ADC VRTT_Nom End point: DQ, DM Extrapolated DQS, DQS point at VRTT_Nom TDQS, TDQS tADC VRTT_Nom T SW21 TSW11 T SW22 VSW2 VSW1 T SW12 VRTT_Wr End point: Extrapolated point at VRTT_Wr VSSQ TD_TADC_DEF Definition of tADC 8. IDD Specification Parameters and Test Conditions 8.1 IDD Measurement Conditions Within the tables provided further down, an overview about the IDD measurement conditions is provided as follows: Overview of Tables providing IDD Measurement Conditions and DRAM Behavior Table number Measurement Conditions Table on page 38 IDD0 and IDD1 Table on page 39 IDD2N, IDD2Q, IDD2P(0), IDD2P(1) Table on page 40 IDD3N and IDD3P Table on page 40 IDD4R, IDD4W, IDD7 Table on page 42 IDD7 for different Speed Grades and different tRRD, tFAW conditions Table on page 42 IDD5B Table on page 43 IDD6, IDD6ET (optional), IDD6TC (optional) Within the tables about IDD measurement conditions, the following definitions are used: LOW is defined as VIN <= VILAC(max.); HIGH is defined as VIN >= VIHAC(min.). STABLE is defined as inputs are stable at a HIGH or LOW level. FLOATING is defined as inputs are VREF = VDDQ / 2. SWITCHING is defined as described in the following 2 tables. Rev. 0.2 /April 2008 36 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Definition of SWITCHING for Address and Command Input Signals SWITCHING for Address (row, column) and Command Signals (CS, RAS, CAS, WE) is defined as: Address (row, column) If not otherwise mentioned the inputs are stable at HIGH or LOW during 4 clocks and change then to the opposite value (e.g. Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax ..... please see each IDDx definition for details Bank address If not otherwise mentioned the bank addresses should be switched like the row/column addresses - please see each IDDx definition for details Define D = {CS, RAS, CAS, WE } = {HIGH, LOW, LOW, LOW} Define D = {CS, RAS, CAS, WE } = {HIGH, HIGH,HIGH,HIGH} Command (CS, RAS, CAS, WE) Define Command Background Pattern = D D D D D D D D D D D D ... If other commands are necessary (e.g. ACT for IDD0 or Read for IDD4R), the Background Pattern Command is substituted by the respective CS, RAS, CAS, WE levels of the necessary command. See each IDDx definition for details and figures 1,2,3 as examples. Definition of SWITCHING for Data (DQ) SWITCHING for Data (DQ) is defined as Data DQ is changing between HIGH and LOW every other data transfer (once per clock) for DQ signals, which means that data DQ is stable during one clock; see each IDDx definition for exceptions from this rule and for further details. See figures 1,2,3 as examples. Data (DQ) Data Masking (DM) NO Switching; DM must be driven LOW all the time Timing parameters are listed in the following table: For IDD testing the following parameters are utilized. DDR3-800 Parameter Bin 5-5-5 6-6-6 tCKmin(IDD) 5 tRCDmin(IDD) tRCmin(IDD) tRASmin(IDD) tRPmin(IDD) tRRD(IDD) 6-6-6 2.5 CL(IDD) tFAW(IDD) DDR3-1066 7-7-7 DDR3-1333 8-8-8 7-7-7 8 7 1.875 8-8-8 DDR3-1600 9-9-9 8-8-8 9 8 9 10 1.5 8 Unit 9-9-9 101010 1.25 ns 6 6 7 12.5 15 11.25 13.13 15 10.5 12 13.5 10 11.25 12.5 ns 50 52.5 48.75 50.63 52.50 46.5 48 49.5 tbd tbd tbd ns 37.5 37.5 37.5 37.5 37.5 36 36 36 tbd tbd tbd ns 12.5 15 11.25 13.13 15 10.5 12 13.5 10 11.25 12.5 ns x4/x8 40 40 37.5 37.5 37.5 30 30 30 30 30 30 ns x16 50 50 50 50 50 45 45 45 40 40 40 ns x4/x8 10 10 7.5 7.5 7.5 6.0 6.0 6.0 6.0 6.0 6.0 ns x16 10 10 10 10 10 7.5 7.5 7.5 7.5 7.5 7.5 ns tRFC(IDD) -512Mb 90 90 90 90 90 90 90 90 90 90 90 ns tRFC(IDD) -1 Gb 110 110 110 110 110 110 110 110 110 110 110 ns tRFC(IDD) - 2 Gb 160 160 160 160 160 160 160 160 160 160 160 ns tRFC(IDD) - 4 Gb tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd ns Rev. 0.2 /April 2008 37 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC The following conditions apply: IDD specifications are tested after the device is properly initialized. Input slew rate is specified by AC Parametric test conditions. IDD parameters are specified with ODT and output buffer disabled (MR1 Bit A12). IDD Measurement Conditions for IDD0 and IDD1 Current IDD0 Name Operating Current 0 -> One Bank Activate -> Precharge IDD1 Operating Current 1 -> One Bank Activate -> Read -> Precharge Measurement Condition Timing Diagram Example CKE External Clock tCK tRC tRAS tRCD tRRD CL AL CS Command Inputs (CS,RAS, CAS, WE) Row, Column Addresses Bank Addresses Data I/O Output Buffer DQ,DQS / MR1 bit A12 ODT / MR1 bits [A6, A2] Burst length Active banks Rev. 0.2 /April 2008 Figure 1 HIGH HIGH on on tCKmin(IDD) tCKmin(IDD) tRCmin(IDD) tRCmin(IDD) tRASmin(IDD) tRASmin(IDD) n.a. tRCDmin(IDD) n.a. n.a. n.a. CL(IDD) n.a. 0 HIGH between. Activate and Precharge HIGH between Activate, Read and Precharge Commands SWITCHING as described in table only SWITCHING as described in Table ; only exceptions are Activate and Precharge exceptions are Activate, Read and Precharge commands; example of IDD0 pattern: commands; example of IDD1 pattern: A0DDDDDDDDDDDDDD P0 A0DDDDR0DDDDDDDDD P0 (DDR3-800: tRAS = 37.5ns between (DDR3-800 -555: tRCD = 12.5ns between (A)ctivate and (P)recharge to bank 0; (A)ctivate and (R)ead to bank 0; Definition of D and D: see Definition of D and D: see Table ) Table ) Row addresses SWITCHING as Row addresses SWITCHING as described in described in Table ; Table ; Address Input A10 must be LOW all the Address Input A10 must be LOW all the time! time! bank address is fixed (bank 0) bank address is fixed (bank 0) Read Data: output data switches every clock, which means that Read data is stable during one clock cycle. SWITCHING as described in To achieve Iout = 0mA, the output buffer Table should be switched off by MR1 Bit A12 set to "1". When there is no read data burst from DRAM, the DQ I/O should be FLOATING. off / 1 off / 1 disabled / [0,0] n.a. one ACT-PRE loop disabled / [0,0] 8 fixed / MR0 Bits [A1, A0] = {0,0} one ACT-RD-PRE loop 38 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC IDD Measurement Conditions for IDD0 and IDD1 Current IDD0 Name Operating Current 0 -> One Bank Activate -> Precharge Idle banks Precharge Power Down Mode / Mode Register Bit 12 all other IDD1 Operating Current 1 -> One Bank Activate -> Read -> Precharge all other n.a. n.a. IDD Measurement Conditions for IDD2N, IDD2P(1), IDD2P(0) and IDD2Q Current Name IDD2N IDD2P(1) a IDD2P(0) IDD2Q Precharge Standby Current Precharge Power Down Current Fast Exit MRS A12 Bit = 1 Precharge Power Down Current Slow Exit MRS A12 Bit = 0 Precharge Quiet Standby Current Measurement Condition Timing Diagram Example Figure CKE HIGH LOW LOW HIGH External Clock on on on on tCK tCKmin(IDD) tCKmin(IDD) tCKmin(IDD) tCKmin(IDD) tRC n.a. n.a. n.a. n.a. tRAS n.a. n.a. n.a. n.a. tRCD n.a. n.a. n.a. n.a. tRRD n.a. n.a. n.a. n.a. CL n.a. n.a. n.a. n.a. AL n.a. n.a. n.a. n.a. CS HIGH STABLE STABLE HIGH Bank Address, Row Addr. and Command Inputs SWITCHING as described in Table STABLE STABLE STABLE Data inputs SWITCHING FLOATING FLOATING FLOATING Output Buffer DQ,DQS / MR1 bit A12 off / 1 off / 1 off / 1 off / 1 ODT / MR1 bits [A6, A2] disabled / [0,0] disabled / [0,0] disabled / [0,0] disabled / [0,0] Burst length n.a. n.a. n.a. n.a. Active banks none none none none Idle banks all all all all n.a. Fast Exit / 1 (any valid command after tXPb) Slow Exit / 0 Slow exit (RD and ODT commands must satisfy tXPDLL-AL) Precharge Power Down Mode / Mode Register Bit a n.a. a. a. In DDR3, the MRS Bit 12 defines DLL on/off behaviour ONLY for precharge power down. There are 2 different b. Precharge Power Down state possible: one with DLL on(fast exit, bit 12=1) and one with DLL off(slow exit, bit 12=0). b. Because it is an exit after precharge power down, the valid commands are: Activate, Refresh Mode-Register Set, Enter-Self Refresh. Rev. 0.2 /April 2008 39 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC IDD Measurement Conditions for IDD3N and IDD3P(fast exit) Current IDD3N IDD3P Name Active Standby Current Active Power-Down Currenta Always Fast Exit Measurement Condition Timing Diagram Example Figure CKE HIGH LOW External Clock on on tCK tCKmin(IDD) tCKmin(IDD) tRC n.a. n.a. tRAS n.a. n.a. tRCD n.a. n.a. tRRD n.a. n.a. CL n.a. n.a. AL n.a. n.a. CS HIGH STABLE Addr. and cmd Inputs SWITCHING as described in Table STABLE Data inputs SWITCHING as described in Table FLOATING Output Buffer DQ,DQS / MR1 bit A12 off / 1 off / 1 ODT / MR1 bits [A6, A2] disabled / [0,0] disabled / [0,0] Burst length n.a. n.a. Active banks all all Idle banks none none Precharge Power Down Mode / Mode Register Bit a n.a. n.a.(Active Power Down Mode is always "Fast Exit" with DLL on) a.DDR3 will offer only ONE active power down mode with DLL on (-> fast exit). MRS bit 12 will not be used for active power down. Instead bit 12 will be used to switch between two different precharge power down modes. IDD Measurement Conditions for IDD4R, IDD4W and IDD7 Current IDD4R IDD4W IDD7 Name Operating Current Burst Read Operating Current Burst Write All Bank Interleave Read Current Measurement Condition Timing Diagram Example Figure CKE HIGH HIGH HIGH External Clock on on on tCK tCKmin(IDD) tCKmin(IDD) tCKmin(IDD) tRC n.a. n.a. tRCmin(IDD) tRAS n.a. n.a. tRASmin(IDD) tRCD n.a. n.a. tRCDmin(IDD) tRRD n.a. n.a. tRRDmin(IDD) CL CL(IDD) CL(IDD) CL(IDD) AL 0 0 tRCDmin - 1 tCK Rev. 0.2 /April 2008 40 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC IDD Measurement Conditions for IDD4R, IDD4W and IDD7 Current IDD4R IDD4W IDD7 Name Operating Current Burst Read Operating Current Burst Write All Bank Interleave Read Current CS HIGH btw. valid cmds HIGH btw. valid cmds HIGH btw. valid cmds SWITCHING as described in SWITCHING as described in Table; exceptions are Read Table; exceptions are Write commands => IDD4R Pattern: commands => IDD4W Pattern: Command Inputs (CS, RAS, CAS, WE) Row, Column Addresses Bank Addresses DQ I/O For patterns see Table R0DDDR1DDDR2DDDR3 .DDD R4 ..... Rx = Read from bank x; Definition of D and D: see Table W0DDDW1DDDW2DDDW3 DDD W4 ... Wx = Write to bank x; Definition of D and D: see Table column addresses SWITCHING as described in Table; Address Input A10 must be LOW all the time! column addresses SWITCHING as described in Table; Address Input A10 must be LOW all the time! STABLE during DESELECTs bank address cycling (0 -> 1 -> 2 -> 3 ...) bank address cycling (0 -> 1 -> 2 -> 3 ...) bank address cycling (0 -> 1 -> 2 -> 3 ...), see pattern in Table Seamless Read Data Burst Seamless Write Data Burst Read Data (BL8): output data (BL8): output data switches (BL8): input data switches switches every clock, which every clock, which means that every clock, which means that means that Read data is stable Read data is stable during one Write data is stable during one during one clock cycle. clock cycle. clock cycle. To achieve Iout = 0mA the To achieve Iout = 0mA the DM is low all the time. output buffer should be output buffer should be switched off by MR1 Bit A12 switched off by MR1 Bit A12 set to "1". set to "1". Output Buffer DQ,DQS / MR1 bit A12 off / 1 off / 1 off / 1 ODT / MR1 bits [A6, A2] disabled / [0,0] disabled / [0,0] disabled / [0,0] Burst length 8 fixed / MR0 Bits [A1, A0] = {0,0} 8 fixed / MR0 Bits [A1, A0] = {0,0} 8 fixed / MR0 Bits [A1, A0] = {0,0} Active banks all all all, rotational Idle banks none none none Precharge Power Down Mode / Mode Register Bit n.a. n.a. n.a. Rev. 0.2 /April 2008 41 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC IDD7 Pattern for different Speed Grades and different tRRD, tFAW conditions Speed Bin Org. Mb/s IDD7 Patterna tFAW tFAW tRRD tRRD [ns] [CLK] [ns] [CLK] (Note this entire sequence is repeated.) all x4/x8 40 16 10 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D all x16 50 20 10 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D D D all x4/x8 37.5 20 7.5 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D D D all x16 50 27 10 6 A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D D D D D D A4 RA4 D D D D A5 RA5 D D D D A6 RA6 D D D D A7 RA7 D D D D D D D all x4/x8 30 20 6 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D D D all x16 45 30 7.5 5 A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D D D D D D D D D A4 RA4 D D D A5 RA5 D D D A6 RA6 D D D A7 RA7 D D D D D D D D D D D D D all x4/x8 30 24 6 5 A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D D D A4 RA4 D D D A5 RA5 D D D A6 RA6 D D D A7 RA7 D D D DDDD all x16 40 32 7.5 6 A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D D D D D D D D D D D A4 RA4 D D D D A5 RA5 D D D D A6 RA6 D D D D A7 RA7 D D D D D D D D D D D D 800 1066 1333 1600 a.A0 = Activation of Bank 0; RA0 = Read with Auto-Precharge of Bank 0; D = Deselect IDD Measurement Conditions for IDD5B IDD5B Current Name Burst Refresh Current Measurement Condition Rev. 0.2 /April 2008 CKE HIGH External Clock on tCK tCKmin(IDD) tRC n.a. tRAS n.a. tRCD n.a. tRRD n.a. tRFC tRFCmin(IDD) CL n.a. AL n.a. CS HIGH btw. valid cmds Addr. and cmd Inputs SWITCHING Data inputs SWITCHING Output Buffer DQ,DQS / MR1 bit A12 off / 1 ODT / MR1 bits [A6, A2] disabled / [0,0] 42 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC IDD Measurement Conditions for IDD5B Current IDD5B Name Burst Refresh Current Burst length n.a. Active banks Refresh command every tRFC=tRFCmin Idle banks none Precharge Power Down Mode / Mode Register Bit n.a. IDD Measurement Conditions for IDD6, IDD6ET, and IDD6TC Current IDD6 IDD6ET (Optional) IDD6TC(Optional) Name Self-Refresh Current Normal Temperature Range TCASE = 0 .. 85 Self-Refresh Current Extended Temperature Range a TCASE = 0 .. 95 Auto Self Refresh Current TCASE-See Table Measurement Condition Temperature TCASE = 85 TCASE = 95 TCASE-See Table Auto Self Refresh (ASR) / MR2 Bit A6 Disabled / "0" Disalbed / "0" Enabled / "1" Self Refresh Temperature Range (SRT) / MR2 Bit A7 Normal / "0" Extended / "1" Disabled / "0" CKE LOW LOW LOW External Clock OFF; CK and CK at LOW OFF; CK and CK at LOW OFF; CK and CK at LOW tCK n.a. n.a. n.a. tRC n.a. n.a. n.a. tRAS n.a. n.a. n.a. tRCD n.a. n.a. n.a. tRRD n.a. n.a. n.a. CL n.a. n.a. n.a. AL n.a. n.a. n.a. CS FLOATING FLOATING FLOATING Command Inputs (RAS, CAS, WE) FLOATING FLOATING FLOATING Row, Colum Addresses FLOATING FLOATING FLOATING Bank Addresses FLOATING FLOATING FLOATING Data I/O FLOATING FLOATING FLOATING Output Buffer DQ,DQS / MR1 bit A12 off / 1 off / 1 off / 1 ODT / MR1 bits [A6, A2] disabled / [0,0] disabled / [0,0] disabled / [0,0] Burst length n.a. n.a. n.a. Active banks all during self-refresh actions all during self-refresh actions all during self-refresh actions Rev. 0.2 /April 2008 43 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC IDD Measurement Conditions for IDD6, IDD6ET, and IDD6TC Current IDD6 IDD6ET (Optional) IDD6TC(Optional) Name Self-Refresh Current Normal Temperature Range TCASE = 0 .. 85 Self-Refresh Current Extended Temperature Range a TCASE = 0 .. 95 Auto Self Refresh Current TCASE-See Table Idle banks all btw. Self-Refresh actions all btw. Self-Refresh actions all btw. Self-Refresh actions Precharge Power Down Mode / MR0 bit A12 n.a. n.a. n.a. a. a. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material. Rev. 0.2 /April 2008 44 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 8.2 IDD Specifications IDD values are for full operating range of voltage and temperature unless otherwise noted. IDD Specification Speed Grade Bin DDR3 - 800 5-5-5 DDR3 - 1066 7-7-7 DDR3 - 1333 8-8-8 DDR3 - 1600 9-9-9 Symbol Max. Max. Max. Max. IDD0 80 95 105 90 105 115 IDD1 IDD2P (0) slow exit Unit Notes TBD mA x4/x8 TBD mA x16 95 110 120 TBD mA x4/x8 120 135 145 TBD mA x16 10 10 10 TBD mA x4/x8/x16 IDD2P (1) fast exit 25 30 35 TBD mA x4/x8/x16 IDD2N 50 60 75 TBD mA x4/x8/x16 IDD2Q 45 60 70 TBD mA x4/x8/x16 IDD3P (fast exit) 35 45 50 TBD mA x4/x8/x16 IDD3N 55 70 85 TBD mA x4/x8/x16 125 160 190 TBD mA x4 130 165 195 TBD mA x8 175 215 255 TBD mA x16 130 165 195 TBD mA x4 140 180 215 TBD mA x8 175 220 265 TBD mA x16 185 195 210 TBD mA x4/x8/x16 6 6 6 TBD mA x4/x8 IDD4R IDD4W IDD5B IDD6 IDD6ET IDD7 Rev. 0.2 /April 2008 6 6 6 TBD mA x16 10 10 10 TBD mA x4/x8 10 10 10 TBD mA x16 225 250 305 TBD mA x4/x8 325 355 430 TBD mA x16 45 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 8.2.1 IDD6 Current Definition Symbol Parameter/Condition Normal Temperature Range Self-Refresh Current: CKE 0.2V; external clock off, CK and CK# at 0V; Other IDD6 control and address inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled. Applicable for MR2 settings A6 = 0 and A7 = 0. Extended Temperature Range Self-Refresh Current: CKE 0.2V; external clock off, CK and CK# at 0V; Other IDD6ET control and address inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled. Applicable for MR2 settings A6 = 0 and A7 = 1. Auto Self-Refresh Current: CKE 0.2V; external clock off, CK and CK# at 0V; Other control and address inputs IDD6TC are FLOATING; Data Bus inputs are FLOATING, PASR disabled. Applicable when ASR is enabled by MR2 settings A6 = 1 and A7 = 0. 8.2.2 IDD6TC Specification (see notes 1~2) Symbol Temperature Range IDD6 IDD6ET Unit Notes 0 - 85 oC mA 3,4 0 - 95 oC mA 5,6 mA 6,7,8 Tb ~ Ty mA 6,7,8 Tz ~ TOPERmax mA 6,7,8 0 IDD6TC Value oC ~ Ta 1. Some IDD currents are higher for x16 organization due to larger page size architecture. 2. Max. values for IDD currents considering worst case conditions of process, temperature and voltage. 3. Applicable for MR2 settings A6=0 and A7=0. 4. Supplier data sheets include a max value for IDD6. 5. Applicable for MR2 settings A6=0 and A7=1. IDD6ET is only specified for devices which support the Extended Temperature Range feature. 6. Refer to the supplier data sheet for the value specification method (e.g. max, typical) for IDD6ET and IDD6TC 7. Applicable for MR2 settings A6=1 and A7=0. IDD6TC is only specified for devices which support the Auto Self Refresh feature. 8. The number of discrete temperature ranges supported and the associated Ta - Tz values are supplier/design specific. Temperature ranges are specified for all supported values of TOPER. Refer to supplier data sheet for more information. Rev. 0.2 /April 2008 46 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 9. Input/Output Capacitance Parameter Symbol Input/output capacitance CIO (DQ, DM, DQS, DQS#, TDQS, TDQS#) Input capacitance, CK and CCK CK# Input capacitance delta CDCK CK and CK# Input capacitance CI (All other input-only pins) Input capacitance delta, DQS CDDQS and DQS# Input capacitance delta CDI_CTRL (All CTRL input-only pins) Input capacitance delta CDI_ADD_ (All ADD/CMD input-only pins) CMD Input/output capacitance delta CDIO (DQ, DM, DQS, DQS#) Notes: DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Min Max Min Max Min Max Min Max Units Notes 1.5 3.0 1.5 3.0 1.5 2.5 TBD TBD pF 1,2,3 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 pF 2,3 0 0.15 0 0.15 0 0.15 0 0.15 pF 2,3,4 0.75 1.5 0.75 1.5 0.75 1.3 0.75 1.3 pF 2,3,6 0 0.20 0 0.20 0 0.15 0 0.15 pF 2,3,5 -0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 pF 2,3,7,8 -0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 pF 2,3,9,10 -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11 1. Although the DM, TDQS and TDQS# pins have different functions, the loading matches DQ and DQS. 2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER(VNA)") with VDD, VDDQ, VSS,VSSQ applied and all other pins floating (except the pin under test, CKE, RESET# and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK#. 5. The minimum CCK will be equal to the minimum CI. 6. Input only pins include: ODT, CS, CKE, A0-A15, BA0-BA2, RAS#, CAS#, WE#. 7. CTRL pins defined as ODT, CS and CKE. 8. CDI_CTRL=CI(CNTL) - 0.5 * CI(CLK) + CI(CLK#)) 9. ADD pins defined as A0-A15, BA0-BA2 and CMD pins are defined as RAS#, CAS# and WE#. 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK#)) 11. CDIO=CIO(DQ) - 0.5*(CIO(DQS)+CIO(DQS#)) Rev. 0.2 /April 2008 47 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 10. Standard Speed Bins DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. DDR3-800 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 52.. Speed Bin CL - nRCD - nRP Symbol Parameter DDR3-800D DDR3-800E 5-5-5 min max 6-6-6 Unit min max tAA 12.5 20 15 20 ns tRCD 12.5 -- 15 -- ns PRE command period tRP 12.5 -- 15 -- ns ACT to ACT or REF command period tRC 50 -- 52.5 -- ns ACT to PRE command period tRAS 37.5 9 * tREFI 37.5 9 * tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 CWL = 5 tCK(AVG) 2.5 3.3 Internal read command to first data ACT to internal read or write delay time CL = 5 CL = 6 Supported CL Settings Supported CWL Settings Rev. 0.2 /April 2008 Reserved 2.5 3.3 Notes ns 1)2)3)4) ns 1)2)3) 5, 6 6 nCK 5 5 nCK 48 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC DDR3-1066 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 52. Speed Bin CL - nRCD - nRP Parameter Symbol DDR3-1066E DDR3-1066F DDR3-1066G 6-6-6 7-7-7 8-8-8 Unit min max min max min max Internal read command to first data tAA 11.25 20 13.125 20 15 20 ns ACT to internal read or write delay time tRCD 11.25 -- 13.125 -- 15 -- ns PRE command period tRP 11.25 -- 13.125 -- 15 -- ns ACT to ACT or REF command period tRC 48.75 -- 50.625 -- 52.5 -- ns ACT to PRE command period tRAS 37.5 9 * tREFI 37.5 9 * tREFI 37.5 9 * tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 CWL = 6 tCK(AVG) CWL = 5 tCK(AVG) 2.5 CWL = 6 tCK(AVG) 1.875 CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) CL = 5 CL = 6 CL = 7 CL = 8 Reserved 3.3 < 2.5 Reserved 1.875 < 2.5 Reserved 1.875 < 2.5 Reserved Reserved ns 1)2)3)4)6) Reserved Reserved ns 4) ns 1)2)3)6) 2.5 3.3 2.5 3.3 Reserved Reserved ns 1)2)3)4) Reserved Reserved ns 4) Reserved ns 1)2)3)4) Reserved ns 4) ns 1)2)3) 1.875 < 2.5 Reserved 1.875 < 2.5 1.875 < 2.5 Supported CL Settings 5, 6, 7, 8 6, 7, 8 6, 8 nCK Supported CWL Settings 5, 6 5, 6 5, 6 nCK Rev. 0.2 /April 2008 Note 49 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC DDR3-1333 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 52.. DDR3-1333F (optional) Speed Bin CL - nRCD - nRP Parameter Symbol 7-7-7 min max DDR3-1333G DDR3-1333H DDR3-1333J (optional) 8-8-8 min max 9-9-9 min max 10-10-10 min max Unit Note Internal read command to first data tAA 10.5 20 12 20 13.5 20 15 20 ns ACT to internal read or write delay time tRCD 10.5 -- 12 -- 13.5 -- 15 -- ns PRE command period tRP 10.5 -- 12 -- 13.5 -- 15 -- ns ACT to ACT or REF command period tRC 46.5 -- 48 -- 49.5 -- 51 -- ns ACT to PRE command period tRAS 36 9 * tREFI 36 9 * tREFI 36 9 * tREFI 36 9 * tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 2.5 3.3 Reserved Reserved ns 1,2,3,4,7 CWL = 6, 7 tCK(AVG) Reserved Reserved Reserved ns 4 CWL = 5 tCK(AVG) 3.3 ns 1,2,3,7 CWL = 6 tCK(AVG) 1.875 CWL = 7 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) 1.875 CWL = 7 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) 1.875 CWL = 7 tCK(AVG) CWL = 5, 6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 5, 6 tCK(AVG) Reserved Reserved Reserved CWL = 7 tCK(AVG) 1.5 <1.875 (Optional) 1.5 <1.875 (Optional) 1.5 <1.875 (Optional) Supported CL Settings 5, 6, 7, 8, 9 5, 6, 7, 8, 9 6, 8, 9 Supported CWL Settings 5, 6, 7 5, 6, 7 5, 6, 7 CL = 5 CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 Rev. 0.2 /April 2008 Reserved 2.5 3.3 3.3 2.5 3.3 2.5 Reserved Reserved Reserved ns 1,2,3,4,7 Reserved Reserved Reserved Reserved ns 4 Reserved Reserved Reserved Reserved ns 4 Reserved Reserved ns 1,2,3,4,7 Reserved Reserved Reserved ns 1,2,3,4 Reserved Reserved Reserved ns 4 ns 1,2,3,7 ns 1,2,3,4 1.5 < 2.5 2.5 < 2.5 <1.875 Reserved 1.5 < 2.5 < 2.5 1.875 < 2.5 <1.875 1.5 <1.875 Reserved 1.5 1.875 <1.875 Reserved 1.5 <1.875 1.875 < 2.5 Reserved Reserved 1.5 <1.875 1.875 < 2.5 Reserved Reserved ns 4 Reserved ns 1,2,3,4 Reserved ns 4 1,2,3 5 6, 8, 10 ns ns nCK 5, 6, 7 nCK 1.5 <1.875 50 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC DDR3-1600 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 52.. DDR3-1600G (optional) Speed Bin CL - nRCD - nRP 8-8-8 Parameter Symbol min max DDR3-1600H DDR3-1600J DDR3-1600K (optional) 9-9-9 min max 10-10-10 min max 11-11-11 min max Unit Internal read command to first data tAA 10 20 11.25 20 12.5 20 13.75 20 ns ACT to internal read or write delay time tRCD 10 -- 11.25 -- 12.5 -- 13.75 -- ns PRE command period tRP 10 -- 11.25 -- 12.5 -- 13.75 -- ns ACT to ACT or REF command period tRC 45 -- 46.25 -- 47.5 -- 48.75 -- ns ACT to PRE command period tRAS 35 9 * tREFI 35 9 * tREFI 35 9 * tREFI ns tCK(AVG) 2.5 3.3 2.5 3.3 CL = 5 CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 CWL = 5 CWL = 6, 7, 8 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) 1.875 2.5 Reserved 3.3 2.5 3.3 < 2.5 1.875 < 2.5 2.5 3.3 Reserved ns 1,2,3,4,8 Reserved Reserved ns 4 3.3 ns 1,2,3,8 Reserved Reserved ns 1,2,3,4,8 2.5 3.3 2.5 CWL = 7, 8 tCK(AVG) Reserved Reserved Reserved Reserved ns 4 CWL = 5 tCK(AVG) Reserved Reserved Reserved Reserved ns 4 CWL = 6 tCK(AVG) 1.875 Reserved ns 1,2,3,4,8 CWL = 7 tCK(AVG) 1.5 < 2.5 <1.875 1.875 < 2.5 1.875 < 2.5 Reserved Reserved Reserved ns 1,2,3,4,8 CWL = 8 tCK(AVG) Reserved Reserved Reserved Reserved ns 4 CWL = 5 tCK(AVG) Reserved Reserved Reserved Reserved ns 4 CWL = 6 tCK(AVG) 1.875 ns 1,2,3,8 CWL = 7 tCK(AVG) CWL = 8 tCK(AVG) 1.25 1.5 CWL = 5, 6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 8 tCK(AVG) 1.25 < 2.5 1.875 < 2.5 <1.875 1.5 <1.875 < 1.5 Reserved 1.5 CWL = 5, 6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 8 tCK(AVG) 1.25 CWL = 5, 6, 7 tCK(AVG) CL = 11 Reserved 35 9 * tREFI Note 1.5 < 2.5 Reserved ns 1,2,3,4,8 Reserved Reserved ns 1,2,3,4 Reserved Reserved Reserved ns 4 Reserved ns 1,2,3,4,8 Reserved Reserved ns 1,2,3,4 Reserved Reserved ns 4 ns 1,2,3,8 Reserved ns 1,2,3,4 Reserved ns 4 1,2,3 5 6, 8, 10, 11 ns ns nCK 5, 6, 7, 8 nCK <1.875 < 1.5 1.25 < 1.5 Reserved 1.5 <1.875 <1.875 1.5 <1.875 1.5 <1.875 < 1.5 1.25 < 1.5 1.25 < 1.5 Reserved Reserved 1.25 < 1.5 (Optional) 1.25 < 1.5 (Optional) Supported CL Settings 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 Supported CWL Settings 5, 6, 7, 8 CWL = 8 Rev. 0.2 /April 2008 tCK(AVG) < 2.5 Reserved 1.5 Reserved 1.875 Reserved <1.875 Reserved 1.875 5, 6, 7, 8 1.25 < 1.5 (Optional) 5, 6, 7, 8 1.5 1.25 <1.875 < 1.5 51 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Speed Bin Table Notes Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V); Notes: 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next `Supported CL'. 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CLSELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CLSELECTED. 4. `Reserved' settings are not allowed. User must program a different value. 5. `Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier's data sheet and SPD information if and how this setting is supported. 6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 11. Electrical Characteristics and AC Timing Timing Parameters by Speed Bin Note: The following general notes from page 57 apply to Table : a Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol Min Max Min Max Min Max Min Max tCK(DLL_O FF) 8 - 8 - 8 - 8 - Units Notes Clock Timing Minimum Clock Cycle Time (DLL off mode) Average Clock Period Average high pulse width Average low pulse width tCK(avg) See "10. Standard Speed Bins" on page 48. tCH(avg) 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCL(avg) 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 Absolute Clock Period tCK (abs) tCK (avg) min + tJIT (per) min tCK (avg) max + tJIT (per) max tCK (avg) min + tJIT (per) min tCK (avg) max + tJIT (per) max tCK (avg) min + tJIT (per) min tCK (avg) max + tJIT (per) max tCK (avg) min + tJIT (per) min tCK (avg) max + tJIT (per) max Absolute clock HIGH pulse width Absolute clock LOW pulse width Clock Period Jitter tCH (abs) 0.43 - 0.43 - 0.43 - 0.43 - tCL(abs) 0.43 - 0.43 - 0.43 - 0.43 - JIT(per) - 100 100 - 90 90 - 80 80 - 70 70 Rev. 0.2 /April 2008 ns 6 ps f tCK (avg) tCK (avg) f f ps tCK (avg) tCK (avg) ps 25 26 52 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Timing Parameters by Speed Bin (Continued) Note: The following general notes from page 57 apply to Table : a Parameter Clock Period Jitter during DLL locking period Cycle to Cycle Period Jitter Cycle to Cycle Period Jitter during DLL locking period Duty Cycle jitter Cumulative error across 2 cycles Cumulative error across 3 cycles Cumulative error across 4 cycles Cumulative error across 5 cycles Cumulative error across 6 cycles Cumulative error across 7 cycles Cumulative error across 8 cycles Cumulative error across 9 cycles Cumulative error across 10 cycles Cumulative error across 11 cycles Cumulative error across 12 cycles Cumulative error across n = 13, 14, .....49, 50 cycles Data Timing DQS, DQS# to DQ skew, per group, per access DQ output hold time from DQS, DQS# DQ low-impedance time from CK, CK# DQ high impedance time from CK, CK# Rev. 0.2 /April 2008 DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol Min Max Min Max Min Max Min Max tJIT (per, lck) - 90 90 - 80 80 - 70 70 -60 60 Units Notes ps tJIT(cc) 200 180 160 140 ps tJIT (cc, lck) 180 160 140 120 ps tJIT (duty) tERR (2per) tERR (3per) tERR (4per) tERR (5per) tERR (6per) tERR (7per) tERR (8per) tERR (9per) tERR (10per) tERR (11per) tERR (12per) - - - - - - - - ps -147 147 -132 132 -118 118 -103 103 ps -175 175 -157 157 -140 140 -122 122 ps -194 194 -175 175 -155 155 -136 136 ps -209 209 -188 188 -168 168 -147 147 ps -222 222 -200 200 -177 177 -155 155 ps -232 232 -209 209 -186 186 -163 163 ps -241 241 -217 217 -193 193 -169 169 ps -249 249 -224 224 -200 200 -175 175 ps -257 257 -231 231 -205 205 -180 180 ps -263 263 -237 237 -210 210 -184 184 ps -269 269 -242 242 -215 215 -188 188 ps tERR (nper) tERR(nper)min = ( 1 + 0.68ln(n)) * JIT(per)min tERR(nper)max = ( 1 + 0.68ln(n)) * JIT(per)max ps 24 tDQSQ - 200 - 150 - 125 - 100 ps 13 tQH 0.38 - 0.38 - 0.38 - 0.38 - tCK (avg) 13, b tLZ(DQ) - 800 400 - 600 300 - 500 250 - 450 225 ps tHZ(DQ) - 400 - 300 - 250 - 225 ps 13, 14, a 13, 14, a 53 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Timing Parameters by Speed Bin (Continued) Note: The following general notes from page 57 apply to Table : a Parameter Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels Data hold time from DQS, DQS# referenced to Vih(dc) / Vil(dc) levels Data Strobe Timing DQS,DQS# differential READ Preamble DQS, DQS# differential READ Postamble DQS, DQS# differential output high time DQS, DQS# differential output low time DQS, DQS# differential WRITE Preamble DQS, DQS# differential WRITE Postamble DQS, DQS# rising edge output access time from rising CK, CK# DQS and DQS# lowimpedance time (Referenced from RL - 1) DQS and DQS# highimpedance time (Referenced from RL + BL/2) DQS, DQS# differential input low pulse width DQS, DQS# differential input high pulse width DQS, DQS# rising edge to CK, CK# rising edge Rev. 0.2 /April 2008 DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol Min Min Min Min tDS(base) 75 25 TBD TBD ps d, 17 tDH(base) 150 100 TBD TBD ps d, 17 tRPRE 0.9 Note 0.9 Note 0.9 Note 0.9 Note tCK 13, 19 (avg) b tRPST 0.3 Note 0.3 Note 0.3 Note 0.3 Note tCK 11, 13, (avg) b tQSH 0.38 - 0.38 - 0.38 - 0.38 - tCK (avg) 13, b tQSL 0.38 - 0.38 - 0.38 - 0.38 - tCK (avg) 13, b tWPRE 0.9 - 0.9 - 0.9 - 0.9 - tCK (avg) tWPST 0.3 - 0.3 - 0.3 - 0.3 - tCK (avg) tDQSCK - 400 400 - 300 300 - 255 255 - 225 225 ps 13, a tLZ(DQS) - 800 400 - 600 300 - 500 250 - 450 225 ps 13, 14, a tHZ(DQS) - 400 - 300 - 250 - 225 ps 13, 14 a tDQSL 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 tCK (avg) tDQSH 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 tCK (avg) tDQSS - 0.25 0.25 - 0.25 0.25 - 0.25 0.25 - 0.25 0.25 tCK (avg) Max Max Max Max Units Notes c 54 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Timing Parameters by Speed Bin (Continued) Note: The following general notes from page 57 apply to Table : a Parameter DQS, DQS# falling edge setup time to CK, CK# rising edge DQS, DQS# falling edge hold time from CK, CK# rising edge Command and Address Timing DLL locking time Internal READ Command to PRECHARGE Command delay Delay from start of internal write transaction to internal read command WRITE recovery time Mode Register Set command cycle time Mode Register Set command update delay ACT to internal read or write delay time PRE command period ACT to ACT or REF command period CAS# to CAS# command delay Auto precharge write recovery + precharge time End of MPR Read burst to MSR for MPR(exit) ACTIVE to PRECHARGE command period ACTIVE to ACTIVE command period for 1KB page size ACTIVE to ACTIVE command period for 2KB page size Four activate window for 1KB page size Rev. 0.2 /April 2008 DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol Min Max Min Max Min Max Min Max tDSS 0.2 - 0.2 - 0.2 - 0.2 - tCK (avg) c tDSH 0.2 - 0.2 - 0.2 - 0.2 - tCK (avg) c tDLLK 512 - 512 - 512 - 512 - nCK tRTP max (4nCK, 7.5ns) - max (4nCK, 7.5ns) - max (4nCK, 7.5ns) - max (4nCK, 7.5ns) - e tWTR max (4nCK, 7.5ns) - max (4nCK, 7.5ns) - max (4nCK, 7.5ns) - max (4nCK, 7.5ns) - e, 18 tWR 15 - 15 - 15 - 15 - ns tMRD 4 - 4 - 4 - 4 - nCK tMOD max (12nCK , 15ns) - max (12nCK , 15ns) - max (12nCK , 15ns) - max (12nCK , 15ns) - Units Notes e tRCD Refer to Table on pages 48 to pages 51 e tRP Refer to Table on pages 48 to pages 51 e tRC Refer to Table on pages 48 to pages 51 e tCCD 4 - tDAL(min) tMPRR tRRD tFAW - 4 - 4 - WR + roundup(tRP / tCK(avg)) 1 - tRAS tRRD 4 1 - 1 - nCK nCK 1 - nCK See "10. Standard Speed Bins" on page 48. max (4nCK , 10ns) max (4nCK, 10ns) 40 - - max (4nCK , 7.5ns) max (4nCK, 10ns) 37.5 - - max (4nCK, 6ns) max (4nCK, 7.5ns) 30 - - max (4nCK, 6ns) max (4nCK, 7.5ns) 30 22 e - e - e - ns e 55 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Timing Parameters by Speed Bin (Continued) Note: The following general notes from page 57 apply to Table : a Parameter Four activate window for 2KB page size Command and Address setup time to CK, CK# referenced to Vih(ac) / Vil(ac) levels Command and Address hold time from CK, CK# referenced to Vih(dc) / Vil(dc) levels Command and Address setup time to CK, CK# referenced to Vih(ac) / Vil(ac) levels Calibration Timing Power-up and RESET calibration time Normal operation Full calibration time Normal operation Short calibration time Reset Timing Exit Reset from CKE HIGH to a valid command DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol Min Max Min Max Min Max Min Max tFAW 50 - 50 - 45 - 40 - tIS(base) 200 125 65 tIH(base) 275 200 tIS(base) AC150 - - - tZQinit 512 - tZQoper 256 tZQCS 64 tXPR max (5nCK, tRFC (min) + 10ns) Units Notes ns e TBD ps b, 16 140 TBD ps b, 16 - 65+125 TBD+ 125 ps b, 16, 27 512 - 512 - 512 - nCK - 256 - 256 - 256 - nCK - 64 - 64 - 64 - nCK - max (5nCK, tRFC (min) + 10ns) - max (5nCK, tRFC (min) + 10ns) - max (5nCK, tRFC (min) + 10ns) - tXS max (5nCK, tRFC (min) + 10ns) - max (5nCK, tRFC (min) + 10ns) - max (5nCK, tRFC (min) + 10ns) - max (5nCK, tRFC (min) + 10ns) - tXSDLL tDLLK (min) - tDLLK (min) - tDLLK (min) - tDLLK (min) - tCKESR tCKE (min) + 1 nCK - tCKE (min) + 1 nCK - tCKE (min) + 1 nCK - tCKE (min) + 1 nCK - tCKSRE max (5 nCK, 10 ns) - max (5 nCK, 10 ns) - max (5 nCK, 10 ns) - max (5 nCK, 10 ns) - 23 Self Refresh Timings Exit Self Refresh to commands not requiring a locked DLL Exit Self Refresh to com-mands requiring a locked DLL Minimum CKE low width for Self Refresh entry to exit timing Valid Clock Requirement after Self Refresh Entry (SRE) or PowerDown Entry (PDE) Rev. 0.2 /April 2008 nCK 56 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Timing Parameters by Speed Bin (Continued) Note: The following general notes from page 57 apply to Table : a Parameter Valid Clock Requirement before Self Refresh Exit (SRX) or PowerDown Exit (PDX) or Reset Exit Power Down Timings Exit Power Down with DLL on to any valid command; Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL CKE minimum pulse width Command pass disable delay Power Down Entry to Exit Timing Timing of ACT command to Power Down entry Timing of PRE or PREA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Rev. 0.2 /April 2008 DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol Min Max Min Max Min Max Min Max tCKSRX max (5 nCK, 10 ns) - max (5 nCK, 10 ns) - max (5 nCK, 10 ns) - max (5 nCK, 10 ns) - tXP max (3nCK, 7.5ns) - max (3nCK, 7.5ns) - max (3nCK, 6ns) - max (3nCK, 6ns) - tXPDLL max (10nCK , 24ns) - max (10nCK, 24ns) - max (10nCK, 24ns) - max (10nCK , 24ns) - tCKE max (3nCK 7.5ns) - max (3nCK, 5.625ns) - max (3nCK, 5.625ns ) - max (3nCK, 5ns) - tCPDED 1 - 1 - 1 - 1 - tPD tCKE (min) 9* tREFI tCKE (min) 9* tREFI tCKE (min) 9* tREFI tCKE (min) 9* tREFI tACTPDEN 1 - 1 - 1 - 1 - nCK tPRPDEN 1 - 1 - 1 - 1 - nCK tRDPDEN RL + 4 +1 - RL + 4 +1 - RL + 4 +1 - RL + 4 +1 - nCK tWRPDEN WL+4+ (tWR / tCK (avg)) - WL4+ (tWR / tCK (avg)) - WL+4 + (tWR / tCK (avg)) - WL+4+ (tWR / tCK (avg)) - nCK 9 tWRAPDEN WL+4+ WR + 1 - WL+4+ WR+ 1 - WL+4 + WR + 1 - WL+4+ WR + 1 - nCK 10 Units Notes 2 nCK 15 57 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Timing Parameters by Speed Bin (Continued) Note: The following general notes from page 57 apply to Table : a Parameter Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS command to Power Down entry ODT Timings ODT high time without write command or with write command and BC4 ODT high time with Write command and BL8 Asynchronous RTT turn-on delay (Power-Down with DLL frozen) Asynchronous RTT turn-off delay (PowerDown with DLL frozen) RTT turn-on RTT_NOM and RTT_WR turn-off time from ODTLoff reference RTT dynamic change skew Write Leveling Timings First DQS/DQS# rising edge after write leveling mode is programmed DQS/DQS# delay after write leveling mode is programmed Rev. 0.2 /April 2008 DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol Min Max Min Max Min Max Min Max tWRPDEN WL+2+ (tWR / tCK (avg)) - WL+2+ (tWR / tCK (avg)) - WL+2 + (tWR / tCK (avg)) - WL+2+ (tWR / tCK (avg)) - nCK 9 WL+2 tWRAPDEN + WR + 1 - WL + 2 + WR + 1 - WL + 2 + WR + 1 - WL+2 + WR + 1 - nCK 10 tREFPDEN 1 - 1 - 1 - 1 - nCK , tMRSPDEN tMOD (min) - tMOD (min) - tMOD (min) - tMOD (min) - ODTH4 4 - 4 - 4 - 4 - nCK ODTH8 6 - 6 - 6 - 6 - nCK tAONPD 1 9 1 9 1 9 1 9 ns tAOFPD 1 9 1 9 1 9 1 9 ns tAON -400 400 -300 300 -250 250 -225 225 ps 7, a tAOF 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK (avg) 8, a tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK (avg) a tWLMRD 40 - 40 - 40 - 40 - nCK 3 tWLDQSEN 25 - 25 - 25 - 25 - nCK 3 Units Notes 58 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Timing Parameters by Speed Bin (Continued) Note: The following general notes from page 57 apply to Table : a Parameter Write leveling setup time from rising CK, CK# crossing to rising DQS, DQS# crossing Write leveling hold time from rising DQS, DQS# crossing to rising CK, CK# crossing Write leveling output delay Write leveling output error Rev. 0.2 /April 2008 DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol Min Max Min Max Min Max Min Max tWLS 325 - 245 - 195 - TBD - ps tWLH 325 - 245 - 195 - TBD - ps tWLO 0 9 0 9 0 9 0 7.5 ns tWLOE 0 2 0 2 0 2 0 2 ns Units Notes 59 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 0.1 Jitter Notes Specific Note a When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper), act of the input clock, where 2 <= m <=12.(output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR-800 SDRAM has tERR(mper),act,min = -172 ps and tERR(mper),act,max =+ 193 ps, then t DQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = -400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps+ 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. ( Caution on the min/max usage!) Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12 Specific Note b When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. ( output deratings are relative to the SDRAM input clock. ) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps =+ 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps 72 ps = + 878 ps. (Caution on the min/max usage!) Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)#) crossing to its respective clock signal (CK, CK#) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe signal (DQS(L/U), DQS(L/U)#) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied.For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter. Specific Note f These parameters are specified per their average values, however it is understood that the following relationship between the average timing and the absolute instantaneous timing holds at all times. (Min and max of SPEC values are to be used for calculations in Table . Rev. 0.2 /April 2008 60 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Timing Parameter Notes 1. Actual value dependant upon measurement level definitions which are TBD. 2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands. 3. The max values are system dependent. 4. WR as programmed in mode register. 5. Value must be rounded-up to next higher integer value. 6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI. 7. For definition of RTT turn-on time tAON See 4.2.2 "Timing Parameters" on page 93. 8. For definition of RTT turn-off time tAOF See 4.2.2 "Timing Parameters" on page 93. 9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer. 10. WR in clock cycles as programmed in MR0. 11. The maximum postamble is bound by tHZDQS(max) 12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated by t.b.d. 13. Value is only valid for RON34 14. Single ended signal parameter. Refer to chapter for definition and measurement method. 15. tREFI depends on TOPER 16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK# differential slew rate. Note for DQ and DM signals, VREF(DC) = VRefDQ(DC). For input only pins except RESET#, VRef(DC) = VRefCA(DC). See "Address / Command Setup, Hold and Derating" on page 62. 17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS# differential slew rate. Note for DQ and DM signals, VREF(DC) = VRefDQ(DC). For input only pins except RESET#, VRef(DC) = VRefCA(DC). See "Data Setup, Hold and Slew Rate Derating" on page 70.. 18. Start of internal write transaction is definited as follows: For BL8 (fixed by MRS and on- the-fly): Rising clock edge 4 clock cycles after WL. For BC4 (on- the- fly): Rising clock edge 4 clock cycles after WL. For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL. 19. The maximum preamble is bound by tLZDQS(min) 20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations. 21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time such as tXPDLL(min) is also required. 22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function. 23. One ZQCS command can effectively correct a minimum of 0.5% (ZQCorrection)of RON and RTT impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the `Output Driver Voltage and Temperature Sensitivity' and `ODT Voltage and Temperature Sensitivity' tables. The appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters. One method for calculating the interval between ZQCS commands, given the temperature ( Tdrifrate ) and voltage ( Vdriftrate ) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula. Rev. 0.2 /April 2008 61 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC ZQCorrection -----------------------------------------------------------------------------------------------------------(Tsens x Tdriftrate)+( VSens x Vdriftrate) where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities. For example, if TSens = 1.5% / oC, VSens = 0.15% / mV, Tdriftrate = 1 oC / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as : 0.5 ------------------------------------------------------ = 0.133 = 128ms (1.5 x 1)+(0.15 x 15) 24. n = from 13 cycles to 50 cycles. 25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following fall ing edge. 26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge. 27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of der ating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier refer ence point [(175 mV - 150 mV) / 1 V/ns]. Address / Command Setup, Hold and Derating For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table 1) to the tIS and tIH derating value (see Table 2) respectively. Example: tIS (total setup time) = tIS(base) + tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of VIH(ac)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate line between shaded `VREF(dc) to ac region', use nominal slew rate for derating value (see Figure 2). If the actual signal is later than the nominal slew rate line anywhere between shaded `VREF(dc) to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 4). Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc)max and the first crossing of VREF(dc). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vih(dc)min and the first crossing of VREF(dc). If the actual signal is always later than the nominal slew rate line between shaded `dc to VREF(dc) region', use nominal slew rate for derating value (see Figure 3). If the actual signal is earlier than the nominal slew rate line anywhere between shaded `dc to VREF(dc) region', the slew rate of a tangent line to the actual signal from the dc level to VREF(dc) level is used for derating value (see Figure 4). For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC (see Table 4). Rev. 0.2 /April 2008 62 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac). For slew rates in between the values listed in Table 2, the derating values may obtained by linear interpolation. These values are typically not subject to production test. They are verified by design and characterization. Table 1 -- ADD/CMD Setup and Hold Base-Values for 1V/ns unit [ps] DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 reference tIS(base) 200 125 65 TBD VIH/L(ac) tIH(base) 275 200 140 TBD VIH/L(dc) tIH(base)AC150 - - 65 + 125 TBD + 125 VIH/L(dc) Note: - (ac/dc referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate) - The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mV - 150 mV) / 1 V/ns] Rev. 0.2 /April 2008 63 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Table 2 -- Derating values DDR3-800/1066/1333/1600 tIS/tIH - ac/dc based tIS, tIH derating in [ps] AC/DC based AC175 Threshold -> VIH(ac) = VREF(dc) + 175mV, VIL(ac)=VREF(dc) - 175mV CK,CK# Differential Slew Rate 4.0 V/ns tIS tIH 3.0 V/ns tIS 2.0 V/ns tIH tIS tIH 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH 2.0 88 50 88 50 88 50 96 58 104 66 112 74 120 84 128 100 1.5 59 34 59 34 59 34 67 42 75 50 83 58 91 68 99 84 1.0 CMD 0.9 / ADD 0.8 Slew rate 0.7 V/ns 0.6 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50 -2 -4 -2 -4 -2 -4 6 4 14 12 22 20 30 30 38 46 -6 -10 -6 -10 -6 -10 2 -2 10 6 18 14 26 24 34 40 -11 -16 -11 -16 -11 -16 -3 -8 5 0 13 8 21 18 29 34 -17 -26 -17 -26 -17 -26 -9 -18 -1 -10 7 -2 15 8 23 24 0.5 -35 -40 -35 -40 -35 -40 -27 -32 -19 -24 -11 -16 -2 -6 5 10 0.4 -62 -60 -62 -60 -62 -60 -54 -52 -46 -44 -38 -36 -30 -26 -22 -10 Table 3 -- Derating values DDR3-800/1066/1333/1600 tIS/tIH - ac/dc based tIS, tIH derating in [ps] AC/DC based Alternate AC150 Threshold -> VIH(ac) = VREF(dc) + 150mV, VIL(ac)=VREF(dc) - 150mV CK,CK# Differential Slew Rate 4.0 V/ns tIS tIH 3.0 V/ns tIS 2.0 V/ns tIH tIS tIH 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH 2.0 75 50 75 50 75 50 83 58 91 66 99 74 107 84 115 100 1.5 50 34 50 34 50 34 58 42 66 50 74 58 82 68 90 84 1.0 CMD 0.9 / ADD 0.8 Slew rate 0.7 V/ns 0.6 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50 0 -4 0 -4 0 -4 8 4 16 12 24 20 32 30 40 46 0 -10 0 -10 0 -10 8 -2 16 6 24 14 32 24 40 40 0 -16 0 -16 0 -16 8 -8 16 0 24 8 32 18 40 34 -1 -26 -1 -26 -1 -26 7 -18 15 -10 23 -2 31 8 39 24 0.5 -10 -40 -10 -40 -10 -40 -2 -32 6 -24 14 -16 22 -6 30 10 0.4 -25 -60 -25 -60 -25 -60 -17 -52 -9 -44 -1 -36 7 -26 15 -10 Rev. 0.2 /April 2008 64 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Table 4 -- Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition Slew Rate [V/ns] tVAC @ 175 mV [ps] tVAC @ 150 mV [ps] min max min max > 2.0 75 - 175 - 2.0 57 - 170 - 1.5 50 - 167 - 1.0 38 - 163 - 0.9 34 - 162 - 0.8 29 - 161 - 0.7 22 - 159 - 0.6 13 - 155 - 0.5 0 - 150 - < 0.5 0 - 150 - Rev. 0.2 /April 2008 65 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Note: Clock and Strobe are drawn on a different time scale. tIS tIH tDS tDH tIS tIH CK CK# DQS# DQS tDS tDH VDDQ tVAC VIH(ac) min VREF to ac region VIH(dc) min nominal slew rate VREF(dc) nominal slew rate VIL(dc) max VREF to ac region VIL(ac) max tVAC VSS TF Setup Slew Rate = VREF(dc) - VIL(ac)max Falling Signal TF TR Setup Slew Rate VIH(ac)min - VREF(dc) Rising Signal = TR Figure 1 -- Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock). Rev. 0.2 /April 2008 66 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Note: Clock and Strobe are drawn on a different time scale. tIS tIH tDS tDH tIS tIH CK CK# DQS# DQS tDS tDH VDDQ VIH(ac) min VIH(dc) min dc to VREF region nominal slew rate VREF(dc) nominal slew rate dc to VREF region VIL(dc) max VIL(ac) max VSS TR VREF(dc) - VIL(dc)max Hold Slew Rate = Rising Signal TR TF VIH(dc)min - VREF(dc) Hold Slew Rate = Falling Signal TF Figure 2 -- Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock). Rev. 0.2 /April 2008 67 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Note: Clock and Strobe are drawn on a different time scale. tIS tIH tDS tDH tIS tIH CK CK# DQS# DQS tDS VDDQ nominal line VIH(ac) min tDH tVAC VREF to ac region VIH(dc) min tangent line VREF(dc) tangent line VIL(dc) max VREF to ac region VIL(ac) max nominal line tVAC VSS Setup Slew Rate Rising Signal = TF TR tangent line[VIH(ac)min - VREF(dc)] TR Setup Slew Rate tangent line[VREF(dc) - VIL(ac)max] Falling Signal = TF Figure 3 -- Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock) Rev. 0.2 /April 2008 68 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Note: Clock and Strobe are drawn on a different time scale. tIS tIH tDS tDH tIS tIH CK CK# DQS# DQS tDS tDH VDDQ VIH(ac) min nominal line VIH(dc) min dc to VREF region tangent line VREF(dc) dc to VREF region tangent line nominal line VIL(dc) max VIL(ac) max VSS TR TF Hold Slew Rate tangent line [ VREF(dc) - VIL(dc)max ] Rising Signal = TR tangent line [ VIH(dc)min - VREF(dc) ] Hold Slew Rate = Falling Signal TF Figure 4 -- Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock) Rev. 0.2 /April 2008 69 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Data Setup, Hold and Slew Rate Derating For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see Table 5) to the DtDS and DtDH (see Table 6) derating value respectively. Example: tDS (total setup time) = tDS(base) + DtDS. Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of VIH(ac)min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of VIL(ac)max (see Figure 5). If the actual signal is always earlier than the nominal slew rate line between shaded `VREF(dc) to ac region', use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between shaded `VREF(dc) to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 7). Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the first crossing of VREF(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(dc)min and the first crossing of VREF(dc) (see Figure 6). If the actual signal is always later than the nominal slew rate line between shaded `dc level to VREF(dc) region', use nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded `dc to VREF(dc) region', the slew rate of a tangent line to the actual signal from the dc level to VREF(dc) level is used for derating value (see figure 7). For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC (see Table 7). Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac). For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation. These values are typically not subject to production test. They are verified by design and characterization. Table 5 -- Data Setup and Hold Base-Values Units [ps] DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 reference tDS(base) 75 25 -10 TBD VIH/L(ac) tDH(base) 150 100 65 TBD VIH/L(dc) Note: (ac/dc referenced for 1V/ns DQ-slew rate and 2 V/ns DQS-slew rate) Rev. 0.2 /April 2008 70 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Table 6 -- Derating values DDR3-800/1066 tDS/tDH - ac/dc based tDS, DH derating in [ps] AC/DC based a DQS, DQS# Differential Slew Rate 4.0 V/ns DQ Slew rate V/ns 3.0 V/ns 2.0 V/ns tDS tDH tDS tDH tDS tDH 2.0 88 50 88 50 88 50 1.5 59 34 59 34 59 34 1.0 0 0 0 0 0 0 0.9 - - -2 -4 -2 -4 0.8 - - - - -6 0.7 - - - - - 1.8 V/ns tDS 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns tDH tDS tDH tDS tDH tDS tDH tDS tDH - - - - - - - - - - 67 42 - - - - - - - - 8 8 16 16 - - - - - - 6 4 14 12 22 20 - - - - -10 2 -2 10 6 18 14 26 24 - - - -3 -8 5 0 13 8 21 18 29 34 0.6 - - - - - - - - -1 -10 7 -2 15 8 23 24 0.5 - - - - - - - - - - -11 -16 -2 -6 5 10 0.4 - - - - - - - - - - - - -30 -26 -22 -10 a.Cell contents shaded in red are defined as `not supported'. Table 7 -- Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition Slew Rate [V/ns] Rev. 0.2 /April 2008 tVAC [ps] min max > 2.0 75 - 2.0 57 - 1.5 50 - 1.0 38 - 0.9 34 - 0.8 29 - 0.7 22 - 0.6 13 - 0.5 0 - < 0.5 0 - 71 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Note: Clock and Strobe are drawn on a different time scale. tIS tIH tDS tDH tIS tIH CK CK DQS DQS tDS tDH VDDQ tVAC VIH(ac) min VREF to ac region VIH(dc) min nominal slew rate VREF(dc) nominal slew rate VIL(dc) max VREF to ac region VIL(ac) max tVAC VSS TF Setup Slew Rate = VREF(dc) - VIL(ac)max Falling Signal TF TR Setup Slew Rate VIH(ac)min - VREF(dc) Rising Signal = TR Figure 5 -- Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock). Rev. 0.2 /April 2008 72 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC Note: Clock and Strobe are drawn on a different time scale. tIS tIH tDS tDH tIS tIH CK CK DQS DQS tDS tDH VDDQ VIH(ac) min VIH(dc) min dc to VREF region nominal slew rate VREF(dc) nominal slew rate dc to VREF region VIL(dc) max VIL(ac) max VSS TR VREF(dc) - VIL(dc)max Hold Slew Rate Rising Signal = TR TF VIH(dc)min - VREF(dc) Hold Slew Rate = Falling Signal TF Figure 6 -- Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock). Rev. 0.2 /April 2008 73 Note: Clock and Strobe are drawn on a different time scale. tIS tIH tDS tDH tIS tIH CK CK DQS DQS tDS VDDQ nominal line VIH(ac) min tDH tVAC VREF to ac region VIH(dc) min tangent line VREF(dc) tangent line VIL(dc) max VREF to ac region VIL(ac) max nominal line tVAC VSS Setup Slew Rate Rising Signal = TF TR tangent line[VIH(ac)min - VREF(dc)] TR Setup Slew Rate tangent line[VREF(dc) - VIL(ac)max] Falling Signal = TF Figure 7 -- Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock) Rev. 0.1 / April 2008 74 Note: Clock and Strobe are drawn on a different time scale. tIS tIH tDS tDH tIS tIH CK CK DQS DQS tDS tDH VDDQ VIH(ac) min nominal line VIH(dc) min dc to VREF region tangent line VREF(dc) dc to VREF region tangent line nominal line VIL(dc) max VIL(ac) max VSS TR TF Hold Slew Rate tangent line [ VREF(dc) - VIL(dc)max ] Rising Signal = TR tangent line [ VIH(dc)min - VREF(dc) ] Hold Slew Rate Falling Signal = TF Figure 8 -- Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/ CMD with respect to clock) Rev. 0.1 / April 2008 75 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 12. Package Dimensions 12.1 Package Dimension(x4/x8) ; 78Ball Fine Pitch Ball Grid Array Outline A1 CORNER INDEX AREA 8.000 0.100 (2.000) 1.100 0.100 11.500 0.100 (2.875) 0.340 0.050 3.0 X 5.0 MIN FLAT AREA TOP VIEW SIDE VIEW 0.800 X 8 = 6.400 2.100 0.100 0.800 0.800 0.100 9 8 7 3 2 1 A1 BALL MARK A B F G H J K 0.150 0.050 0.800 E 0.800 X 12 = 9.600 C D 2-R0.130 MAX L M 78 x 0.450 0.050 1.600 1.600 0.950 0.100 N BOTTOM VIEW Rev. 0.2 /April 2008 76 H5TQ1G43AFP(R)-xxC H5TQ1G83AFP(R)-xxC H5TQ1G63AFP(R)-xxC 12.2 Package Dimension(x16) ; 96Ball Fine Pitch Ball Grid Array Outline 8.000 0.100 A1 CORNER INDEX AREA 1.100 0.100 (2.000) 13.000 0.100 (3.250) 0.340 0.050 3.0 X 5.0 MIN FLAT AREA TOP VIEW 0.800 X 8 = 6.400 2.100 0.100 0.800 SIDE VIEW 0.800 0.100 9 8 7 3 2 1 A1 BALL MARK A B C D H J K L M 0.150 0.050 F G 0.800 X 15 = 12.000 0.400 E 2-R0.130 MAX N 96 x 0.450 0.050 1.600 1.600 0.500 0.100 P R T BOTTOM VIEW Rev. 0.2 /April 2008 77