ATF-38143 Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package Data Sheet Description Features Avago Technologies's ATF-38143 is a high dynamic range, low noise, PHEMT housed in a 4-lead SC-70 (SOT343) surface mount plastic package. * Lead-free Option Available Based on its featured performance, ATF-38143 is suitable for applications in cellular and PCS handsets, LEO systems, MMDS, and other systems requiring super low noise figure with good intercept in the 450 MHz to 10 GHz frequency range. Surface Mount Package SOT-343 * Low Noise Figure * Excellent Uniformity in Product Specifications * Low Cost Surface Mount Small Plastic Package SOT343 (4 lead SC-70) * Tape-and-Reel Packaging Option Available Specifications 1.9 GHz; 2 V, 10 mA (Typ.) * 0.4 dB Noise Figure * 16 dB Associated Gain * 12.0 dBm Output Power at 1 dB Gain Compression * 22.0 dBm Output 3rd Order Intercept Pin Connections and Package Marking DRAIN SOURCE 8Px Applications SOURCE * Low Noise Amplifier for Cellular/PCS Handsets GATE * LNA for WLAN, WLL/RLL, LEO, and MMDS Applications Note: Top View. Package marking provides orientation and identification. "8P" = Device code "x" = Date code character. A new character is assigned for each month, year. * General Purpose Discrete PHEMT for Other Ultra Low Noise Applications Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (Class A) ESD Human Body Model (Class 1) Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control. ATF-38143 Absolute Maximum Ratings[1] Symbol Parameter Units VDS Drain - Source Voltage [2] V 4.5 VGS Gate - Source Voltage V -4 VGD Gate Drain Voltage V -4 IDS Drain Current mA Idss Pdiss Total Power Dissipation[2] mW 580 RF Input Power dBm 17 C 160 Pin max TCH Channel Temperature Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. Source lead temperature is 25C. Derate 6 mW/C for TL > 64C. 3. Thermal resistance measured using 150C Liquid Crystal Measurement method. Absolute Maximum TSTG Storage Temperature C -65 to 160 jc Thermal Resistance [3] C/W 165 Product Consistency Distribution Charts 250 300 +0.6 V Cpk = 1.59062 Stdev = 0.73 dBm 6 Wafers Sample Size = 450 250 200 IDS (mA) 200 150 0V 150 +3 Std -3 Std 100 100 50 50 -0.6 V 0 0 1 2 3 VDS (V) 4 0 18 5 24 26 Figure 2. OIP3 @ 2 GHz, 2 V, 10 mA. LSL=18.5, Nominal=21.99, USL=26.0 Cpk = 4.08938 Stdev = 0.03 dB 6 Wafers Sample Size = 450 150 22 OIP3 (dB) Figure 1. Typical I-V Curves. (VGS = -0.2 V per step) 180 20 160 Cpk = 2.58097 Stdev = 0.14 dB 6 Wafers Sample Size = 450 120 120 90 -3 Std +3 Std 80 -3 Std +3 Std 60 40 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 15 Figure 3. NF @ 2 GHz, 2 V, 10 mA. LSL=0, Nominal=0.44, USL=0.85 16 16.5 17 17.5 18 Figure 4. Gain @ 2 GHz, 2 V, 10 mA. LSL=15.0, Nominal=16.06, USL= 18.0 Note: Distribution data sample size is 450 samples taken from 6 different wafers. Future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits. Measurements made on production test board. This circuit represents a trade-off between 15.5 GAIN (dB) NF (dB) an optimal noise match and a realizeable match based on production test requirements. Circuit losses have been de-embedded from actual measurements. ATF-38143 Electrical Specifications TA = 25C, RF parameters measured in a test circuit for a typical device Symbol Parameters and Test Conditions Idss VP [1] Saturated Drain Current [1] Pinchoff Voltage Id gm [1] VDS = 1.5 V, VGS = 0 V VDS = 1.5 V, IDS = 10% of Idss Quiescent Bias Current Transconductance -0.35 10 -- VDS = 1.5 V, gm = Idss /VP mmho 180 230 VGD = -5 V A VGD = VGS = -4 V A VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA dB VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA dB f = 900 MHz f = 2 GHz IIP3 P1dB 1 dB Compressed Compressed Power [3] 145 -0.5 Noise Figure Input 3rd Order Intercept Point [3] 118 -- f = 2 GHz Output 3rd Order Intercept Point [3] 90 -0.65 Gate Leakage Current OIP3 Max. mA V Igss Associated Gain[3] Typ.[2] mA Gate to Drain Leakage Current Ga Min. VGS = -0.54 V, VDS = 2 V IGDO NF Units -- 500 -- 30 300 0.6 0.4 0.3 0.85 0.6 0.4 0.3 VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA dB f = 900 MHz VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA dB f = 2 GHz VDS = 2 V, IDS = 10 mA dBm f = 900 MHz VDS = 2 V, IDS = 10 mA dBm 22.0 f = 2 GHz VDS = 2 V, IDS = 10 mA dBm 6.0 f = 900 MHz VDS = 2 V, IDS = 10 mA dBm 3.0 f = 2 GHz VDS = 2 V, IDS = 10 mA dBm 12.0 f = 900 MHz VDS = 2 V, IDS = 10 mA dBm 12.0 15 15.3 16.0 17.0 18 17.0 19.0 20.5 18.5 22.0 Notes: 1. Guaranteed at wafer probe level. 2. Typical value determined from a sample size of 450 parts from 6 wafers. 3. Measurements obtained using production test board described in Figure 5. Input 50 Ohm Transmission Line (0.5 dB loss) Input Matching Circuit mag = 0.380 ang = 58.2 (0.46 dB loss) DUT Output Matching Circuit mag = 0.336 ang = 34.5 (0.46 dB loss) 50 Ohm Transmission Line (0.5 dB loss) Output Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a tradeoff between an optimal noise match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. ATF-38143 Typical Performance Curves 30 OIP3 20 15 P1dB 10 5 0 OIP3 25 OIP3, P1dB (dBm) OIP3, P1dB (dBm) 25 0.7 20 15 P1dB 10 5 0 10 20 30 40 50 0 60 0.5 0.4 0.3 0.2 0.1 0 0 10 CURRENT, IDS (mA) 20 30 40 50 60 0 Figure 7. OIP3 and P1dB vs. Id at 2V, 900 MHz. 21 21 0.3 0.2 0.1 ASSOCIATED GAIN (dB) 0.6 ASSOCIATED GAIN (dB) 22 0.4 20 19 18 17 16 0 10 20 30 40 50 CURRENT, IDS (mA) Figure 9. Noise Figure vs. Id at 2V, 900 MHz. 60 15 0 30 40 50 60 Figure 8. Noise Figure vs. Id at 2V, 2 GHz. 22 0.5 20 CURRENT, IDS (mA) 0.7 0 10 CURRENT, IDS (mA) Figure 6. OIP3 and P1dB vs. Id at 2V, 2 GHz. NOISE FIGURE (dB) 0.6 NOISE FIGURE (dB) 30 20 19 18 17 16 10 20 30 40 50 CURRENT, IDS (mA) Figure 10. Associated Gain vs. Id at 2V, 2 GHz. 60 15 0 10 20 30 40 50 60 CURRENT, IDS (mA) Figure 11. Associated Gain vs. Id at 2V, 900 MHz. Notes: 1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 2 V 10 mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 2. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. ATF-38143 Typical Performance Curves, continued 0.5 0.4 0.3 0.8 15 6 0 8 0 1 FREQUENCY (GHz) 3 4 5 6 7 GAIN (dB), P1dB and OIP3 (dBm) 22 -40 C +25 C +85 C 16 14 12 10 0 2000 4000 0 2 6000 FREQUENCY (MHz) Figure 15. P1dB and OIP3 vs. Frequency and Temperature at 2V, 10 mA. 8000 1.0 20 0.8 15 0.6 10 0.4 P1dB OIP3 Gain NF 0 10 20 30 40 8 10 12 50 0.2 60 1.4 30 1.2 25 0 6 Figure 14. Associated Gain vs. Frequency and Current at 2V. 1.4 5 4 FREQUENCY (GHz) 30 24 18 0 Figure 13. Fmin and Ga vs. Frequency and Temperature at 2V, 10 mA. 26 20 0 FREQUENCY (GHz) Figure 12. Fmin vs. Frequency and Current at 2V. P1dB, OIP3 (dBm) 2 5 mA 10 mA 20 mA 5 0.2 0 CURRENT, IDS (mA) Figure 16. NF, Gain, P1dB and OIP3 vs. IDS at 2V, 3.9 GHz. 1.2 25 1.0 20 0.8 15 0.6 10 0 0.4 P1dB OIP3 Gain NF 5 0 10 20 30 40 50 NF (dB) 4 -40 C +25 C +85 C 5 NF (dB) 2 10 GAIN (dB), P1dB and OIP3 (dBm) 0 15 0.6 0.4 5 mA 10 mA 20 mA 0.1 20 1.0 10 0.2 25 1.2 Fmin Ga 20 Ga (dB) Fmin (dB) 0.6 30 1.4 25 0.7 0 1.6 30 0.8 Ga (dB) 0.9 0.2 60 0 CURRENT, IDS (mA) Figure 17. NF, Gain, P1dB and OIP3 vs. IDS at 2V, 5.8 GHz. Notes: 1. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 5 mA Freq. (GHz) S11 Mag. Ang. 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.98 0.95 0.93 0.87 0.82 0.80 0.75 0.71 0.67 0.66 0.66 0.68 0.70 0.72 0.74 0.78 0.82 0.83 0.85 0.87 0.88 0.88 0.89 -25 -40 -51 -75 -89 -98 -120 -139 -170 162 137 113 92 73 56 39 23 10 -2 -16 -30 -39 -50 dB S21 Mag. Ang. dB S12 Mag. 14.47 14.19 14.00 13.28 12.79 12.45 11.48 10.48 8.68 7.24 6.02 4.78 3.51 2.39 1.51 0.44 -0.73 -2.17 -3.54 -4.84 -6.16 -7.51 -9.07 5.289 5.122 5.010 4.613 4.362 4.192 3.751 3.342 2.716 2.302 2.000 1.734 1.498 1.316 1.190 1.052 0.919 0.779 0.665 0.573 0.492 0.421 0.352 160 148 140 122 111 105 89 76 52 30 10 -10 -29 -47 -64 -83 -100 -117 -132 -147 -161 -176 173 -26.56 -22.85 -21.21 -18.49 -17.52 -16.95 -16.19 -15.70 -15.44 -15.44 -15.60 -15.92 -16.59 -17.20 -17.46 -17.86 -18.42 -19.33 -20.00 -20.45 -20.82 -21.11 -21.83 0.047 0.072 0.087 0.119 0.133 0.142 0.155 0.164 0.169 0.169 0.166 0.160 0.148 0.138 0.134 0.128 0.120 0.108 0.100 0.095 0.091 0.088 0.081 S22 Ang. 73 63 56 41 33 28 16 5 -12 -27 -41 -55 -67 -77 -86 -97 -106 -115 -121 -129 -136 -145 -151 Mag. Ang. MSG/MAG (dB) 0.67 0.65 0.62 0.56 0.52 0.50 0.44 0.40 0.34 0.31 0.29 0.28 0.29 0.32 0.37 0.42 0.47 0.52 0.57 0.63 0.68 0.71 0.75 -21 -32 -40 -58 -69 -77 -94 -110 -138 -162 173 146 121 103 87 66 47 28 11 0 -12 -26 -37 20.51 18.52 17.60 15.88 15.16 14.70 13.84 13.09 12.06 11.34 10.81 10.35 8.89 7.33 6.93 6.66 6.22 4.93 3.95 3.58 2.90 1.98 1.24 ATF-38143 Typical Noise Parameters VDS = 2 V, IDS = 5 mA 25 Fmin opt dB Mag. Ang. Rn/50 - Ga dB 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.18 0.21 0.22 0.26 0.29 0.32 0.40 0.48 0.60 0.70 0.84 0.96 1.12 1.27 1.38 0.25 0.23 0.22 0.20 0.17 0.17 0.14 0.11 0.08 0.04 0.04 0.09 0.20 0.36 0.60 23.0 20.5 19.8 17.1 16.0 15.4 14.3 13.1 10.8 9.8 8.7 7.7 6.8 6.1 6.0 0.69 0.69 0.68 0.68 0.66 0.65 0.62 0.59 0.50 0.49 0.51 0.53 0.54 0.59 0.62 14 26 27 44 59 61 80 98 127 163 -169 -140 -111 -88 -68 20 MSG/MAG and S21 (dB) Freq. GHz 15 MSG 10 MAG 5 S21 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 18. MSG/MAG and |S21|2 vs. Frequency at 2 V, 5 mA. Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 10 mA Freq. (GHz) S11 Mag. Ang. 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.97 0.93 0.91 0.83 0.78 0.76 0.71 0.68 0.65 0.65 0.66 0.68 0.71 0.73 0.75 0.79 0.82 0.84 0.85 0.87 0.88 0.88 0.89 -29 -47 -58 -85 -100 -109 -131 -150 180 153 129 107 87 68 53 36 20 8 -4 -18 -31 -41 -51 dB S21 Mag. Ang. dB S12 Mag. 17.41 17.00 16.69 15.69 15.02 14.57 13.38 12.22 10.24 8.68 7.35 6.03 4.72 3.57 2.71 1.61 0.47 -0.93 -2.24 -3.45 -4.63 -5.81 -7.27 7.423 7.081 6.834 6.086 5.634 5.350 4.665 4.083 3.251 2.716 2.330 2.003 1.722 1.509 1.366 1.204 1.055 0.898 0.773 0.672 0.587 0.512 0.433 158 145 136 117 107 100 86 73 50 30 11 -9 -27 -43 -60 -78 -94 -110 -125 -140 -153 -167 -179 -27.74 -24.01 -22.50 -20.00 -19.17 -18.71 -17.99 -17.65 -17.27 -17.08 -16.95 -16.95 -17.27 -17.46 -17.27 -17.39 -17.65 -18.34 -18.86 -19.17 -19.49 -19.74 -20.54 0.041 0.063 0.075 0.100 0.110 0.116 0.126 0.131 0.137 0.140 0.142 0.142 0.137 0.134 0.137 0.135 0.131 0.121 0.114 0.110 0.106 0.103 0.094 S22 Ang. 72 61 55 40 33 28 18 9 -5 -18 -30 -42 -53 -62 -72 -83 -94 -104 -112 -122 -131 -141 -148 Mag. Ang. MSG/MAG (dB) 0.53 0.51 0.48 0.42 0.39 0.37 0.33 0.31 0.28 0.28 0.28 0.29 0.32 0.35 0.40 0.45 0.50 0.54 0.59 0.63 0.67 0.70 0.74 -26 -40 -50 -72 -85 -94 -114 -132 -163 172 147 122 99 83 70 52 35 17 2 -8 -19 -32 -41 22.58 20.51 19.60 17.84 17.09 16.64 15.68 14.94 13.75 12.88 12.15 11.49 9.09 7.94 7.55 7.27 6.84 5.72 4.77 4.42 3.85 3.03 2.34 ATF-38143 Typical Noise Parameters VDS = 2 V, IDS = 10 mA 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 25 Fmin opt dB Mag. Ang. 0.18 0.19 0.20 0.23 0.25 0.28 0.32 0.39 0.52 0.65 0.75 0.84 0.95 1.10 1.20 0.66 0.64 0.63 0.60 0.57 0.56 0.54 0.52 0.44 0.44 0.45 0.48 0.51 0.55 0.56 13 22 26 43 60 67 81 98 129 166 -165 -135 -106 -84 -65 Rn/50 0.17 0.16 0.15 0.14 0.12 0.12 0.10 0.08 0.06 0.04 0.04 0.08 0.16 0.29 0.46 Ga dB 24.1 21.0 20.4 17.9 17.0 16.1 15.2 13.9 11.9 10.8 9.6 8.7 7.7 7.0 6.8 20 MSG/MAG and S21 (dB) Freq. GHz MSG 15 10 MAG 5 S21 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 19. MSG/MAG and |S21|2 vs. Frequency at 2 V, 10 mA. Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 20 mA Freq. (GHz) Mag. S11 Ang. dB S21 Mag. Ang. dB S12 Mag. 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.96 0.91 0.88 0.79 0.75 0.73 0.68 0.66 0.64 0.64 0.66 0.68 0.71 0.73 0.76 0.80 0.83 0.85 0.86 0.88 0.89 0.89 0.90 -33 -53 -65 -93 -109 -119 -140 -159 172 147 124 103 83 65 50 34 18 6 -5 -19 -32 -42 -52 19.50 18.94 18.51 17.23 16.41 15.88 14.52 13.26 11.16 9.52 8.12 6.77 5.41 4.25 3.39 2.27 1.11 -0.26 -1.51 -2.69 -3.80 -4.91 -6.29 9.436 8.850 8.425 7.269 6.616 6.220 5.321 4.604 3.616 2.992 2.548 2.179 1.864 1.632 1.478 1.299 1.136 0.971 0.840 0.734 0.646 0.568 0.485 155 141 132 113 103 97 83 70 49 30 11 -8 -25 -41 -57 -74 -90 -106 -120 -134 -147 -161 -173 -28.87 -25.19 -23.74 -21.41 -20.63 -20.26 -19.58 -19.09 -18.49 -17.99 -17.52 -17.33 -17.39 -17.27 -16.95 -16.89 -17.14 -17.72 -18.13 -18.42 -18.79 -19.02 -19.83 0.036 0.055 0.065 0.085 0.093 0.097 0.105 0.111 0.119 0.126 0.133 0.136 0.135 0.137 0.142 0.143 0.139 0.130 0.124 0.120 0.115 0.112 0.102 S22 Ang. 71 60 54 41 34 30 21 14 2 -9 -20 -32 -43 -53 -63 -76 -87 -98 -107 -118 -127 -138 -146 Mag. Ang. MSG/MAG (dB) 0.39 0.37 0.35 0.31 0.29 0.29 0.27 0.27 0.28 0.29 0.31 0.34 0.37 0.40 0.44 0.50 0.55 0.58 0.62 0.67 0.69 0.71 0.74 -33 -50 -63 -90 -106 -116 -139 -157 174 151 129 107 87 73 61 44 28 11 -4 -13 -24 -36 -46 24.18 22.07 21.13 19.32 18.52 18.07 17.05 16.18 14.83 13.76 12.82 11.08 9.34 8.33 7.91 7.63 7.20 6.20 5.32 5.01 4.34 3.57 2.94 ATF-38143 Typical Noise Parameters VDS = 2 V, IDS = 20 mA 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 25 Fmin opt dB Mag. Ang. 0.15 0.16 0.16 0.18 0.20 0.22 0.28 0.33 0.45 0.56 0.65 0.72 0.82 0.90 1.00 0.71 0.68 0.66 0.60 0.55 0.51 0.48 0.46 0.37 0.39 0.40 0.44 0.48 0.52 0.60 13 22 26 43 55 68 82 100 133 172 -159 -129 -100 -79 -61 Rn/50 0.13 0.12 0.12 0.09 0.09 0.09 0.08 0.06 0.05 0.04 0.04 0.08 0.15 0.26 0.40 Ga dB 24.8 21.4 21.0 19.0 18.0 16.9 15.5 14.7 12.6 11.4 10.2 9.3 8.3 7.5 7.3 20 MSG/MAG and S21 (dB) Freq. GHz MSG 15 10 MAG S21 5 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 20. MSG/MAG and |S21|2 vs. Frequency at 2 V, 20 mA. Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. Noise Parameter Applications Information Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements, a true Fmin is calculated. Fmin represents the true minimum noise figure of the device when the device is presented with an impedance matching network that transforms the source impedance, typically 50, to an impedance represented by the reflection coefficient o. The designer must design a matching network that will present o to the device with minimal associated circuit losses. The noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. The noise figure of the device is equal to Fmin only when the device is presented with o. If the reflection coefficient of the matching network is other than o, then the noise figure of the device will be greater than Fmin based on the following equation. NF = Fmin + 4 Rn |s - o | 2 Zo (|1 + o| 2)(1 -s| 2) Where Rn /Zo is the normalized noise resistance, o is the optimum reflection coefficient required to produce Fmin and s is the reflection coefficient of the source impedance actually presented to the device. The losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. The losses of the matching networks are related to the Q of the components and associated printed circuit board loss. o is typically fairly low at higher frequencies and increases as frequency is lowered. Larger gate width devices will typically have a lower o as compared to narrower gate width devices. Typically for FETs, the higher o usually infers that an impedance much higher than 50 is required for the device to produce Fmin. At VHF frequencies and even lower L Band frequencies, the required impedance can be in the vicinity of several thousand ohms. Matching to such a high impedance requires very hi-Q components in order to minimize circuit losses. As an example at 900 MHz, when air-wound coils (Q > 100) are used for matching networks, the loss can still be up to 0.25 dB which will add directly to the noise figure of the device. Using muilti-layer molded inductors with Qs in the 30 to 50 range results in additional loss over the air-wound coil. Losses as high as 0.5 dB or greater add to the typical 0.15 dB Fmin of the device creating an amplifier noise figure of nearly 0.65 dB. A discussion concerning calculated and measured circuit losses and their effect on amplifier noise figure is covered in Avago Application 1085. ATF-38143 SC70 4 Lead, High Frequency Nonlinear Model INSIDE Package Var Ean VAR VAR1 K=5 Z2=85 Z1=30 TLINP TL1 Z=Z2/2 Ohm L=20 0 mil K=K A=0.0000 F=1 GHz TanD=0.001 GATE Port G Num=1 VIA2 V1 D=20 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40 mil TLINP TL4 Z=Z1 Ohm L=15 mil K=1 A=0.000 F=1 GHz TanD=0.001 TLINP TL3 Z=Z2 Ohm L=25 mil K=K A=0.000 F=1 GHz TanD=0.001 L L6 L=0.2 nH R=0.001 L L1 L=0.6 nH R=0.001 GaAsFET FET1 Model= MESFETN1 Mode= nonlinear SOURCE Port S1 Num=2 VIA2 V2 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil L TLINP TLINP L4 TL9 TL10 L=0.2 nH Z=Z2 Ohm Z=Z1 Ohm R=0.001 L=10.0 mil L=15 mil K=K K=1 A=0.000 A=0.000 F=1 GHz F=1 GHz TanD=0.001 TanD=0.001 VIA2 V3 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil TLINP TL2 Z=Z2/2 Ohm L=20 0 mil K=K A=0.0000 F=1 GHz TanD=0.001 MSub MSUB MSub1 H=25.0 mil Er=9.6 Mur=1 Cond=1.0E+50 Hu=3.9e+0.34 mil T=0.15 mil TanD=0 Rough=0 mil C C2 C=0.11 pF L L7 C=0.6 nH R=0.001 SOURCE TLINP TL7 Z=Z2/2 Ohm L=5.0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL8 Z=Z1 Ohm L=15 mil K=1 A=0.0000 F=1 GHz TanD=0.001 TLINP TL5 Z=Z2 Ohm L=26.0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL6 Z=Z1 Ohm L=15 mil K=1 A=0.0000 F=1 GHz TanD=0.001 VIA2 V4 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil Port S2 Num=4 DRAIN Port D Num=3 The vias are not part of the model as such. They are only included to account for the source vias in the test fixture. ATF-38143 Die Model Statz Model MESFETM1 NFET=yes PFET=no Vto=-0.75 Beta=0.3 Lambda=0.07 Alpha=4 B=0.8 Tnom=27 Idstc= Vbi=0.7 Tau= Betatce= Delta1= Delta2= Gscap=3 10 Cgs=0.997 pF Gdcap=3 Cgd=0.176 pF Rgd=0.195 Tqm= Vmax= Fc= Rd=0.084 Rg=0.264 Rs=0.054 Ld=0.0014 nH Lg-0.0883 nH Ls=0.001 nH Cds=0.0911 pF Crf=0.0936 Rc=137 Gsfwd=1 Gsrev=0 Gdfwd=1 Gdrev=0 Vjr=1 Is=1 nA Ir=1 nA Imax=0.1 Xti= N= Eg= Vbr= Vtotc= Rin= Taumd1=no Fnc=1E6 R=0.17 C=0.2 P=1 wVgfwd= wBvgs= wBvgd= wBvds= wldsmax= wPmax= All Params= Part Number Ordering Information Part Number No. of Devices Container ATF-38143-TR1G 3000 7" Reel ATF-38143-TR2G 10000 13" Reel ATF-38143-BLKG 100 antisatic bag Package Dimensions SC70 4L / SOT-343 1.30 (.051) BSC HE E 1.15 (.045) BSC b1 D A A2 A1 b L C DIMENSIONS (mm) SYMBOL E D HE A A2 A1 b b1 c L 11 MIN. 1.15 1.85 1.80 0.80 0.80 0.00 0.25 0.55 0.10 0.10 MAX. 1.35 2.25 2.40 1.10 1.00 0.10 0.40 0.70 0.20 0.46 NOTES: 1. All dimensions are in mm. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash & metal burr. 4. All specifications comply to EIAJ SC70. 5. Die is facing up for mold and facing down for trim/form, ie: reverse trim/form. 6. Package surface to be mirror finish. Recommended PCB Pad Layout for Avago's SC70 4L/SOT-343 Products 1.30 0.051 1.00 0.039 2.00 0.079 0.60 0.024 0.9 0.035 1.15 0.045 Dimensions in mm inches Device Orientation REEL TOP VIEW END VIEW 4 mm CARRIER TAPE USER FEED DIRECTION COVER TAPE 12 8 mm 8Px 8Px 8Px 8Px Tape Dimensions for Outline 4T P P2 D P0 E F W C D1 t1 (CARRIER TAPE THICKNESS) K0 10 MAX. A0 DESCRIPTION Tt (COVER TAPE THICKNESS) 10 MAX. B0 SYMBOL SIZE (mm) SIZE (INCHES) CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER A0 B0 K0 P D1 2.40 0.10 2.40 0.10 1.20 0.10 4.00 0.10 1.00 + 0.25 0.094 0.004 0.094 0.004 0.047 0.004 0.157 0.004 0.039 + 0.010 PERFORATION DIAMETER PITCH POSITION D P0 E 1.55 0.10 4.00 0.10 1.75 0.10 0.061 + 0.002 0.157 0.004 0.069 0.004 CARRIER TAPE WIDTH THICKNESS W t1 8.00 + 0.30 - 0.10 0.254 0.02 0.315 + 0.012 0.0100 0.0008 COVER TAPE WIDTH TAPE THICKNESS C Tt 5.40 0.10 0.062 0.001 0.205 + 0.004 0.0025 0.0004 DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) F 3.50 0.05 0.138 0.002 CAVITY TO PERFORATION (LENGTH DIRECTION) P2 2.00 0.05 0.079 0.002 For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright (c) 2005-2008 Avago Technologies. All rights reserved. Obsoletes 5989-3745EN AV02-1443EN - July 23, 2008