1/28August 2004
M34C02
2 Kbit Serial I²C Bus EEPROM
For DIMM Serial Presence Detec t
FEATURES SUMMARY
Software Data Protection for lower 128 Bytes
Two Wire I2C Se rial Interface
100kHz and 400kHz Transfer Rat es
Sin gle Supply Vo ltage:
2.5 t o 5.5V up to 400kHz for M34C02-W
2.2 t o 5.5V up to 400kHz for M34C02-L
1.8 t o 5.5V up to 100kHz for M34C02-R
1.7 t o 3.6V up to 100kHz for M34C02-F
BYTE and P AG E WR ITE (up to 16 bytes)
RANDOM and SEQ UENTIAL READ Modes
Self-Timed Programming Cycle
Automatic Address Incrementing
Enh anced ESD/ Latch -Up Protection
More than 1 Million Erase/Write Cycles
More than 40 Yea r Data Retention
Table 1. Product List
Figure 1. Packages
Reference Part Number
M34C02
M34C02-W
M34C02-L
M34C02-R
M34C02-F
PDIP8 (BN)
SO8 (MN)
150 mil width
8
1
TSSOP8 (DW)
169 mil width
TSSOP8 (DS)
3x3mm² body size (MSO P)
8
1
UFDFPN8 (MB)
2x3mm² (MLP)
M34C02
2/28
TABLE OF CONTENTS
FEATUR ES SUMM ARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 1. Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMM ARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. DIP, SO, TSSOP and MLP Conne ctions (Top View). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Power On Reset: VCC Lock-Out Write Protect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Serial Data (SDA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chip Enable (E0, E1, E2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 4. Maximum RL Value versus Bus Capacitance (CBUS ) for an I2C Bus . . . . . . . . . . . . . . . 5
Figure 5. I2C Bus Pro tocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Device Select Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Stop Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Acknowledge B it (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Memo ry Add ressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. Setting the Write Protection Register (WC = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Setting the Software Write-Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Figure 7. Result of Setting the Write Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. Write Mode Sequenc es in a Non Write-Protected Area . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Byte W rite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 9. Write Cycle Polling Flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Minim izing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 10.Read M ode S equences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
R andom Add ress Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
C urre nt Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Acknowledge in Read Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
USE WITHIN A DRAM DIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3/28
M34C02
Programming the M34C02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. DRA M DIMM Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11.Serial Presence Detect Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5
Table 7. Operating Conditions (M34C02-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 8. Operating Conditions (M34C02-L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 9. Operating Conditions (M34C02-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 10. Op erating Conditions (M3 4C02-F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 11. AC Measurem ent Condition s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12.AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 12. Input Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 13. DC Characteristics (M34C02-W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 14. DC Characteristics (M34C02-L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 15. DC Characteristics (M34C02-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 16. DC Characteristics (M34C02-F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 17. AC Characteristics (M34C02 -W, M34C02-L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 18. AC Characteristics (M34C02 -R, M34C02-F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 13.AC Wavefo rms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14.P DIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outlin e . . . . . . . . . . . . . . . . . 21
Table 19. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package M echanical Data. . . . . . . . . . 21
Figure 15.S O8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . . 22
Table 20. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Mechan ical Data . . . . 22
Figure 16.UFDFPN8 (MLP8) 8-lead Ultra thin Fi ne pitch Dual Flat Package No lead 2x3mm ², Outline
23
Table 21. UF DFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Data.
23
Figure 17.TSS OP 8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 24
Table 22. TSS OP8 – 8 lead Thin Shrink Sma ll Outline, Packag e Mechani cal Data . . . . . . . . . . . . 24
Figure 18.TSS OP 8 3x3m m² – 8 lead Thin Shrink Small Outline, 3x3mm ² body size, Outline . . . . 25
Table 23. TSS OP8 3x 3m m² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Data . . . . . . 25
PAR T NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 25. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7
M34C02
4/28
S UM MARY DESCRIP TION
The M34C02 is a 2Kbit serial EEPROM memory
able to lock permanently the data in its first half
(from location 00h to 7Fh). This facility has been
designed specifically for use in DRAM DIMMs (du-
al interli ne m emory modules) wi th Serial Presence
Detect. All the information concerning the DRAM
module configuration (such as its access speed,
its size, its organization) c an be kept write protect-
ed in the f irst half o f the memory.
This bottom half of the memory area can be write-
protected using a specially designed software
write protection mechanism. By sending the de-
vice a specific sequence, the first 128 Bytes of the
memory become permanently write protected.
Care must be t aken when using t his sequence as
its effect cannot be reversed. In addition, the de-
vice allows t he entire memory area to be write pro-
tected, using the W C input (for example by tieing
this input to V CC).
These I2C-compatible electrically erasable pro-
grammabl e memor y (EEPROM) devices are orga-
nized as 256x8 bit s.
Figure 2. Logic Diagram
I2C uses a two wire seria l interface, comprising a
bi-directional data line and a clock line. The device
carries a built-in 4-bit Device Type Identifier code
(1010) in accordance with the I2C bus definition to
access the memory area and a second Device
Type Identifier Code (0110) to access the Protec-
tion Register. These codes are used together wi th
three chip enabl e i nputs (E2, E1, E0) so that up to
eight 2Kbit devices m ay be attached to t he I²C bus
and selected individu ally.
The device behaves as a slave device in the I2C
protocol, with all memory operations sy nc hronized
by the serial clock. Read and Write operations are
initiated by a START cond ition, generated by the
bus master. T he START condition is followed by a
Device Select Code and RW bit (as described in
Table 3.), terminated by an acknowledge bit.
When w riting data to the memory , the mem ory in-
serts an acknowledge bit during the 9th bit time,
following the bus master’s 8-bit transmission.
When data is read by the bus master, the bus
master acknowledg es the receipt of the data byte
in t he same way. Data transfers are terminated by
a STOP c ondition after an Ack for WRITE, and af -
ter a NoAck for READ.
Figure 3. DI P, SO, TSSO P and MLP
Connections (To p View)
Not e: See PACKAGE MECHANICAL section for package dimen-
si ons, and how to i dentify pi n-1.
Table 2. Signal Names
Power On Reset: VCC Lock-Out Write Protec t
In order to prevent data corruption and inadvertent
Write operations during power up, a Power On Re-
set (POR) circuit is included. The intern al reset is
held active unt il VCC has reached the POR thresh-
old value, and all operations are disabled – the de-
vice will not respond to any command. In the same
way, when VCC drops from the operat ing voltage,
below the POR threshold value, all operations are
disabled and the device will not respond to any
command.
A stable and valid VCC (as defined in Table 7. to
Table 10.) must be applied before applying any
logic signal.
AI01931
3
E0-E2 SDA
VCC
M34C02
WC
SCL
VSS
E0, E1, E2 Chip Enable
SDA Serial Data
SCL Serial Clock
WC Write Control
VCC Supply Volta ge
VSS Ground
SDAVSS SCL
WCE1
E0 VCC
E2
AI01932C
M34C02
1
2
3
4
8
7
6
5
5/28
M34C02
SIGNAL DESCRIPTION
Serial Clock (SCL)
This input signal is u sed to strobe all data in and
out of the device. In applications where this signal
is used by slave devices to synchronize the bus to
a slower clock, the bus master must have an open
drain output, and a pull-up resistor can be con-
nected from Serial Clock (SCL) t o VCC. (Figure 4.
indicates how the valu e of the pull-up resist or can
be calculated). In most applications, though, this
method of synchronization is not employed, and
so the pull-up resistor is not necessary, provided
that the bus master has a push-pull (rather than
open drain) output.
Serial Data (SDA)
This bi-directional signal is used t o trans fer dat a i n
or out of the device. It is an open drain out put that
may be wi re-OR’ed with ot her op en drai n or open
collector signals on the bus. A pull up resistor must
be connected from Ser ial Data (SDA) to VCC. (Fig-
ure 4. indicates how the value of the pull-up resis-
tor can be cal culated).
Chip Enable (E0, E1, E2)
These input signals are used to set the value that
is to be looked f or on the three least signi ficant bits
(b3, b2, b1) of t he 7-bit Device Select Code. These
inputs mus t be tied t o VCC or VSS to e stablish the
Device Select Code.
Write Control (WC)
This input signal is provided for protecting the con-
tents of the whole memory from inadvertent write
operations. Write Control ( WC) is used to enable
(when driven Low) or disable (when driven High)
write instructions to the entire memory area or to
the P ro tect io n Regis ter.
When Write Control (WC) i s tied Low or left uncon-
nected, the write protection of the first half of the
memory is determined by t he status of the Protec-
ti on Regi ster.
Figure 4. Maximum RL Value versu s Bus Capacitance (CBUS) for an I2C Bus
AI01665
VCC
CBUS
SDA
RL
MASTER
RL
SCL CBUS
100
0
4
8
12
16
20
CBUS (pF)
Maximum RP value (k)
10 1000
fc = 400kHz
fc = 100kHz
M34C02
6/28
Figure 5. I2C Bus Protocol
Table 3. Device Select Code
Note: 1. The most significant bit, b7, is sent first.
2. E0 , E 1 and E2 are com pared against the respe ct i ve exte rnal pins on the memo ry device .
Device Type Identifier1Chip Enable Address2RW
b7 b6 b5 b4 b3 b2 b1 b0
Memory Area Select
Code (two arrays) 1010E2E1E0RW
Protection Register
Select Code 0110E2E1E0RW
SCL
SDA
SCL
SDA
SDA
START
Condition
SDA
Input SDA
Change
AI00792B
STOP
Condition
123 789
MSB ACK
START
Condition
SCL 123 789
MSB ACK
STOP
Condition
7/28
M34C02
DEVICE OPERATION
The device supports the I2C protocol. T hi s i s sum -
mari ze d in Figure 5.. Any device that sends data
on to the bus is defined to be a transmitter, and
any device that reads the data to be a receiver.
The device that controls the data transfer is known
as the bus master, and the other as the slave de-
vice. A data transfer can only be initiated by the
bus master, which will also provide t he serial clock
for synchronization. The memory device is always
a slave in all communication.
Start Condition
Start is identified by a falling edge of Serial Data
(SDA) while Serial Clock (SCL) is stable in the
High state. A Start condition must precede any
data transfer command. The device continuously
monitors (except durin g a Write cycle) Serial Data
(SDA) and Serial Cloc k (SCL) for a Start condition,
and will not re spond unles s one is given.
Stop Condition
Stop is identified by a rising edge of Serial Data
(SDA) while Serial Clock (SCL) is stable and driv-
en High. A Stop condition terminat es comm unica-
tion between the device and the bus master. A
Read command that is followed by NoAc k can be
followed by a Stop condition to force the device
into the Stand-by mode. A Stop condition at the
end of a W rite command triggers the internal EE-
P R OM Write cycle.
Acknowledge Bit (ACK)
The acknowledge bit is used t o indicate a success-
ful byte transfer. The bus transmitter, whether it be
bus master or slave device, releases Serial Data
(SDA) after sending eight bits of data. During the
9th clock pulse period, the receiver pulls Serial
Data (SDA) Low to acknowledge the receipt of the
eight data bits.
Data Input
During data input, the device samples Serial Data
(SDA) on the rising edge of Serial Clock (SCL).
For correct device operation, Serial Data (SDA)
must be stable during the rising edge of Serial
Clock (SCL), and the Serial Data (SDA) signal
must change only when Serial Clock (S CL) i s driv-
en Low.
Memory Addressing
To start communication between the bus master
and the slave device, the bus maste r must initiate
a Start condition. Following this, the bus master
sends the Device Select Code, shown in Table 3.
(on Serial Data (SDA ), most significant bit first).
The Device Select Code consists of a 4-bit Devi ce
Type Identifier, and a 3-bit Chip Enable “Add ress”
(E2, E1, E0). To address the memory array, t he 4-
bit Device Type Identifier is 1010b; to address the
Protection Register, it is 0110b.
Up to eight memory devices can be connec ted on
a single I 2C bus. Eac h one is given a unique 3-bit
code on the Chip Enable (E0, E1, E2) inputs.
When the Device Select Code i s received, the de-
vice only responds if the Chip Enable Address is
the same as the value on the Chip Enable ( E0, E1,
E2 ) in pu ts .
The 8th bit is the Read/Write bit (RW). This bit is
set to 1 fo r Read and 0 fo r Write operations.
If a match occurs on the Device Select code, the
corresponding device gives an acknowledgment
on Serial Data (SD A) du ring the 9 th bit time. If the
device does not match the Device Select code, it
deselects itself from the bus, and goes into Stand-
by mode.
Table 4. O peratin g Modes
No te: 1. X = VIH or VIL.
Mode RW bit WC 1 Bytes Initial Sequence
Current Address Read 1 X 1 START, Device Select, RW = 1
Random Address Read 0X1START, Device Select, RW = 0, Address
1 X reSTART, Device Select, RW = 1
Sequential Read 1 X 1 Similar to Current or Random Address Read
Byte Write 0 VIL 1 START, Device Select, RW = 0
Page Write 0 VIL 16 START, Device Select, RW = 0
M34C02
8/28
Figure 6. Setting the Write Protection Register (WC = 0)
Setting the Software Write-Protection
The M34C02 has a hardware write-protection fea-
ture, using the Write Contr ol (WC) signal. This sig-
nal can be driven High or Low, and must be held
constant for the whole instruction sequence.
When Write Control (WC) is held Low, the whole
memory array (addresses 00h to FFh) is write pro-
tected. When Wri te Control (WC) i s held High, the
write protection of the memory ar ray is dependent
on whether software write-protection has been
set.
Software write-protection allows the bottom half of
the memory area (addresses 00h to 7Fh) to be
permanently write protected irrespective of subse-
quent states of the Write Control (WC) signal.
The write protection feature is activated by writing
once to the Protection Register. The Protection
Register is accessed with the device select code
set to 0110b (as shown in Table 3.), and the E2,
E1 and E0 bits set according to the states being
applied on the E2, E1 and E0 signals. As for any
other write command, Write Control (WC) needs to
be held Low. Address and data bytes must be sent
with this command, but their values are all ignored,
and are treated as Don’t Care. Once the Protec-
tion Register has been writt en, the write protecti on
of the first 128 Bytes of the memory is enabled,
and it is not possible to unprotect these 128 Bytes,
even if the de vice is po wered off and on, and re-
gardless the state of Wri te Control (WC ).
When the Protection Register has been written,
the M34C02 no longer responds to the device type
identifier 0110b in either read or write mode.
Figu re 7. Re sult of Setti ng the Write P rot ection
START
SDA LINE
AI01935B
ACK
WORD
ADDRESS
VALUE
(DON'T CARE)
ACK
DATA
VALUE
(DON'T CARE)
STOP
ACK
CONTROL
BYTE
BUS ACTIVITY
MASTER
BUS ACTIVITY
Default EEPROM memory area
state before write access
to the Protect Register
AI01936C
Standard
Array
FFh
Standard
Array
80h
7Fh
00h
Standard
Array
FFh
Write
Protected
Array
80h
7Fh
00h
State of the EEPROM memory
area after write access
to the Protect Register
Memory
Area
9/28
M34C02
Figure 8. Write Mode Sequ ence s in a Non Write-Protected Area
Write Operations
Following a Start condition the b us master sends
a Device Select Code with the RW b it rese t to 0.
The device acknowledges t hi s, as shown in Figure
8., an d waits for an address byte. The device re-
sponds to the address byte with an acknowledge
bit, and th en w aits for the data byte.
When th e bus mast er generate s a Stop con dition
immediately af ter the Ack bi t (in the “10th bit” time
slot), either at the end of a Byte Write or a Page
Write, the internal memory Write cycle is triggered.
A Stop condition at any other time slot does not
trigger the internal Write cycle.
During the internal Write cycle, Seria l Da ta (SDA)
and Serial Clock (SCL) are ignored, and the de-
vice does not respond to any requests.
Byte Write
After the Device Select Code and the address
byte, the bus master sends one data byte. If the
addressed location is hardware write-protected,
the device repli es to the data byte with NoAck, and
the location is not modified. If, instead, the ad-
dressed location is not Write-protected, t he devi ce
replies with Ack. The bus master terminates the
transfer by generating a Stop condi tion, as shown
in Figur e 8..
Page Write
The Pag e Write m ode allows u p to 16 byt es to be
written in a single Write cycle, provided that they
are all located in the same page in the memory:
that is, the most significant memory address bits
are t he same. If more bytes are sent than will fit up
to the end of the pa ge, a c ond ition known as ‘ roll-
over’ occurs. This should be avoided, as data
starts to become overwrit ten in an implementation
dependent way.
The bus master sends f rom 1 to 16 b ytes of data,
each of which is acknowledged by the device if
Write Control (WC ) is Low. If the a ddressed loca-
tion is hardware write-protected, the device replies
to th e data byte with NoAc k, and the locations are
not modifi ed. A fter each byte is transferred, the in-
ternal byte address counter (the 4 least significant
address bits only) is in cremented. The transfer is
terminated by the bus master generating a Stop
condition.
STOP
START
BYTE WRITE DEV SEL BYTE ADDR DATA IN
START
PAGE WRITE DEV SEL BYTE ADDR DATA IN 1 DATA IN 2
AI01941
STOP
DATA IN N
ACK ACK ACK
R/W
ACK ACK ACK
R/W
ACK ACK
M34C02
10/28
Figu re 9. Wri t e C yc le Pol l in g Fl owchart usi n g A C K
Minimizing System Delays by Polling On ACK
During the internal Write cycle, the device discon-
nects itself from the bus, and writes a copy of the
data from its internal latches to the memory cells.
The maximum Write time (tw) is shown in Table
17. and Table 18., but the typical time is shorter.
To make use of this, a polling sequence can be
used by the bus master.
The sequence , as shown in Figure 9., is :
Initial cond ition: a Write cyc le is in progress.
Step 1: the bus master issues a Start condition
followed by a Device Select Code (the first
byte of the new instruction).
Step 2: if the device is b usy with the internal
Wri te cycle, no Ack will be returned and the
bus master goes back to Step 1. If the device
has terminated the internal Write cy cle, it
respo nds with an Ack, indicating that the
devi ce is ready to receive t he second part of
the instruction (the first byte of this instruction
hav ing been sent during Step 1).
WRITE Cycle
in Progress
AI01847C
Next
Operation is
Addressing the
Memory
START Condition
DEVICE SELECT
with RW = 0
ACK
Returned
YES
NO
YESNO
ReSTART
STOP
DATA for the
WRITE Operation DEVICE SELECT
with RW = 1
Send Address
and Receive ACK
First byte of instruction
with RW = 0 already
decoded by the device
YESNO START
Condition
Continue the
WRITE Operation Continue the
Random READ Operation
11/28
M34C02
Figure 10. Read Mode Sequences
Note: 1. T he seven most significant bits of t he Device Sel ect Code of a Ra ndom Rea d (i n the 1st an d 3rd bytes ) m ust be ident i cal.
Read Operation s
Read operations are performed independently of
whether hardware or software prot ection has been
set.
The device has an internal address counter which
is incremented each time a byte is read.
Random Address Read
A dummy Write is first performed to load the ad-
dress into this address counter (as shown in Fig-
ure 10.) but without sending a Stop condition.
Then, the bus master sends another Start condi-
tion, and repeats the Device Select Code, wit h the
RW bit set to 1. The device acknowledges this,
and outputs the contents of the addressed byte.
The bus master must not acknowledge the byte,
and terminates the transfer with a Stop condition.
Current Address Read
For the Current Address Read operation, following
a Start condition, the bus master only sends a De-
vice Select Code with the RW bit set to 1. The de-
vice acknowledges this, and outputs the byte
addressed by the internal address counter. The
counter is then incremented. The bus master ter-
minates the transfer with a Stop condition, as
shown in Figure 10., without acknowledging the
byte.
START
DEV SEL * BYTE ADDR
START
DEV SEL DATA OUT 1
AI01942
DATA OUT N
STOP
START
CURRENT
ADDRESS
READ DEV SEL DATA OUT
RANDOM
ADDRESS
READ
STOP
START
DEV SEL * DATA OUT
SEQUENTIAL
CURRENT
READ
STOP
DATA OUT N
START
DEV SEL * BYTE ADDR
SEQUENTIAL
RANDOM
READ
START
DEV SEL * DATA OUT 1
STOP
ACK
R/W
NO ACK
ACK
R/W
ACK ACK
R/W
ACK ACK ACK NO ACK
R/W
NO ACK
ACK ACK
R/W
ACK ACK
R/W
ACK NO ACK
M34C02
12/28
Sequenti al Re ad
This operation can be used after a Current Ad-
dress Read or a Random Address Read. The bus
master does acknowledge the data byte output,
and sends additional clock pulses so that the de-
vice continues to output the next byte in sequence.
To terminate the stream of bytes, the bus master
must not acknowledge the last byte, and must
generate a Stop condition, as shown in Figur e 10..
The output data com es from consecutive address-
es, with the internal address counter automatically
incremented after each byte output. After the last
memory address, the address count er ‘rolls-over’,
and the device continues to output data from
memory address 00h.
Acknowledge in Read Mode
For all Read commands, the device waits, after
each byte read, f or an acknowledgment during the
9th bit time. If the bus master does not drive S erial
Data (SDA) Low during this time, the device termi-
nates the data transfer an d switches to its St and-
by mode.
USE WITHIN A DRAM DIM M
In the application, the M34C02 is soldered directly
in the printed circuit module. The 3 Chip Enable in-
puts (pins 1, 2 and 3) are wired at VCC or VSS
through the DIMM socket (see Table 5.). The pull-
up resistors needed for normal behavior of the I2C
bus are connected on the I2C bus of the mother-
board (as shown in Figure 11.).
The Write Control (WC) of the M34C02 can be left
unconnected. However, connecting it to VSS is
recommende d, to m aintain full read and write ac-
cess.
Programm ing the M34C02
When the M34C02 is delivered, full read and write
access is given to the whole memory array. It is
recommende d that the first st ep is to use th e test
equipment to write the module information (such
as its access speed, its size, its organization) to
the first half of the memory, starting from the first
memory location. When the data has been vali dat -
ed, the test equipment can send a Write command
to the Protection Register, using the de vice select
code ’01100000b’ followed by an address and
data byte (made up of Don’t Care values) as
shown in Figure 6.. The first 128 bytes of the mem-
ory area are then write-protected, and the M34C02
will no longer respond to the specific device select
code ’0110000xb’. I t is not possible to reverse this
sequence.
Table 5. DRA M DIMM Connections
INITIAL DELIVERY STATE
The device is delivered with the memory array
erased: all bits are set to 1 (each byte contains
FFh).
DIMM Position E2 E1 E0
0 VSS VSS VSS
1 VSS VSS VCC
2 VSS VCC VSS
3 VSS VCC VCC
4 VCC VSS VSS
5 VCC VSS VCC
6 VCC VCC VSS
7 VCC VCC VCC
13/28
M34C02
Figure 11. Serial Presence Detect Blo ck Diagram
Note: 1. E0, E1 and E 2 are wire d at e ach DIMM socket i n a bi nary sequenc e for a maxi m um of 8 devices.
2. Com m on clock and common da ta are s hared across all t he devices.
3. Pu ll-up re sisto rs ar e r equi red on all S DA a nd SCL b us li nes ( typic all y 4.7 k ) beca use t he se li nes ar e o pen dr ain w he n use d as
outputs.
R = 4.7k
AI01937
DIMM Position 7 SDASCLE0E1E2
VCC
DIMM Position 6 SDASCLE0E1E2
DIMM Position 5 SDASCLE0E1E2
DIMM Position 4 SDASCLE0E1E2
DIMM Position 3 SDASCLE0E1E2
DIMM Position 2 SDASCLE0E1E2
VCC
DIMM Position 1 SDASCLE0E1E2
DIMM Position 0 SDASCLE0E1E2
VSS
VSS
VSS VCC
VSS
VSS VCC
VCC VSS
VCC
VCC VSS
VSS
VCC
SCL line SDA line
From the motherboard
I2C master controller
M34C02
14/28
MAXI MUM RAT IN G
Stressing the device ab ove t he rating listed in t he
Absolute Maximum Ratings" table may cause per-
manent damage to the device. These are stress
ratings only and operation of the device at t hese or
any other con ditions ab ove those i ndicated in t he
Operating sections of this specification is not im-
plied. Exposure to Absolute Max imum Rating con-
ditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics
SURE Program and other relevant quality docu-
ments.
Table 6. Absolute Maximum Ratings
Note : 1. Comp li ant wit h JED EC Std J- STD- 020 B (for small bod y, Sn-Pb or Pb asse mbl y), t he ST EC OPA CK ® 7191395 spec ification, an d
the Eu ropean di rectiv e on Restr i ct i ons on Haz ardous S ubstan ces (RoHS) 2002/ 95/EU.
2. JE DEC Std JESD22-A114A (C1=100 pF, R1=1500 , R2=500 )
Symbol Parameter Min. Max. Unit
TSTG Storage Temperature –65 150 °C
TLEAD Lead Temperature during Soldering 1See note1°C
VIO Input or Output Voltage –0.50 6.5 V
VCC Supply Voltage –0.50 6.5 V
VESD Electrostatic Discharge Voltage (Human Body model) 2–4000 4000 V
15/28
M34C02
DC AND AC PARAMETERS
This section summarizes the operating and mea-
surement condition s, and t he DC a nd AC charac-
teristics of the device. The parameters i n the DC
and AC Characteristic tables that follow are de-
rived from tests performed under the Measure-
ment Conditions summarized in the relevant
tables. Des igners shoul d c heck that the operating
conditions in t heir circuit matc h the measurem ent
conditions when relying on the quoted parame-
ters.
Table 7. O per ating Conditions (M34 C02-W)
Table 8. O per ating Conditions (M34 C02-L)
Table 9. O per ating Conditions (M34C02-R)
Table 10. O per ating Conditions (M34C02-F)
Symbol Parameter Min. Max. Unit
VCC Supply Voltage 2.5 5.5 V
TAAmb ient Operati ng Tem peratur e –40 85 °C
Symbol Parameter Min. Max. Unit
VCC Supply Voltage 2.2 5.5 V
TAAmb ient Operati ng Tem peratur e –40 85 °C
Symbol Parameter Min. Max. Unit
VCC Supply Voltage 1.8 5.5 V
TAAmb ient Operati ng Tem peratur e –40 85 °C
Symbol Parameter Min. Max. Unit
VCC Supply Voltage 1.7 3.6 V
TAAmb ient Operati ng Tem peratur e 0 70 °C
M34C02
16/28
Table 11. AC Measurement Conditions
Figu re 12. AC Measure m e nt I/ O Wa veform
Table 12. Input Parameter s
Note: 1. TA = 25 ° C, f = 40 0 kHz
2. Sampled only, not 100% tested.
Symbol Parameter Min. Max. Unit
CLLoad Capacitance 100 pF
Input Rise and Fall Times 50 ns
Input Levels 0.2VCC to 0.8VCC V
Input and Output Timing Reference Levels 0.3VCC to 0.7VCC V
Symbol Parameter1,2 Test Condition Min.Max.Unit
CIN Input Capa citanc e (SDA) 8 pF
CIN Input Capacitance (other pins) 6 pF
ZWCL WC Input Impedance VIN < 0.5 V 5 20 k
ZWCH WC Input Impedance VIN > 0.7VCC 500 k
tNS Pulse width ignored
(Input Filter on SCL and SDA) Single glitch 100 500 ns
AI00825B
0.8VCC
0.2VCC
0.7VCC
0.3VCC
Input and Output
Timing Reference Levels
Input Levels
17/28
M34C02
Table 13. DC Characteristics (M34C02-W)
Table 14. DC Characteristics (M34C02-L)
Symbol Parameter Test Condition
(in addition to those in Table 7.)Min. Max. Unit
ILI Input Leaka ge Curren t
(SCL, SDA) VIN = VSS or VCC ± 2 µA
ILO Output Leakage Current VOUT = VSS or VCC, SDA in Hi-Z ± 2 µA
ICC Supply Current VCC =5V, fc=40 0kHz (ris e/fall time < 30ns) 2mA
VCC =2.5V, fc=400kHz (rise/fall time < 30ns) 1mA
ICC1 Stand -by Supply Current VIN = VSS or VCC , VCC = 5V 1 µA
VIN = VSS or VCC , VCC = 2.5V 0.5 µA
VIL
Input Low Voltage
(E2, E1, E0, SCL, SDA) –0.3 0.3VCC V
Input Low Voltage (WC) –0.3 0.5 V
VIH Input High Volta ge
(E2, E1, E0, SCL, SDA, WC)0.7VCC VCC+1 V
VOL Output Low Voltage IOL = 3mA, VCC = 5V 0.4 V
IOL = 2.1mA, VCC = 2.5V 0.4 V
Symbol Parameter Test Condition
(in addition to those in Table 8.)Min. Max. Unit
ILI Input Leaka ge Curren t
(SCL, SDA) VIN = VSS or VCC ± 2 µA
ILO Output Leakage Current VOUT = VSS or VCC, SDA in Hi-Z ± 2 µA
ICC Supply Current
VCC =5V, fc=40 0kHz (ris e/fall time < 30ns) 2mA
VCC =2.5V, fc=400kHz (rise/fall time < 30ns) 1mA
VCC =2.2V, fc=400kHz (rise/fall time < 30ns) 1mA
ICC1 Stand -by Supply Current VIN = VSS or VCC , VCC = 5 V 1 µA
VIN = VSS or VCC , 2.2V VCC < 2.5V 0.5 µA
VIL
Input Low Voltage
(E2, E1, E0, SCL, SDA) –0.3 0.3VCC V
Input Low Voltage (WC) –0.3 0.5 V
VIH Input High Volta ge
(E2, E1, E0, SCL, SDA, WC)0.7VCC VCC+1 V
VOL Output Low Voltage IOL = 3mA, VCC = 5V 0.4 V
IOL = 2.1mA, 2.2V VCC < 2.5V 0.4 V
M34C02
18/28
Table 15. DC Characteristics (M34C02-R)
Table 16. DC Characteristics (M34C02-F)
Note: 1. Preliminary Data.
Symbol Parameter Test Condition
(in addition to those in Table 9.)Min. Max. Unit
ILI Input Leaka ge Curren t
(SCL, SDA) VIN = VSS or VCC ± 2 µA
ILO Output Leakage Current VOUT = VSS or VCC, SDA in Hi-Z ± 2 µA
ICC Supply Current VCC =1 . 8 V, f c=100kHz (rise/f all time < 30ns) 1mA
ICC1 Stand -by Supply Current VIN = VSS or VCC , VCC = 5V A
VIN = VSS or VCC , 1.8V VCC < 2.5V 0.5 µA
VIL
Input Low Voltage
(E2, E1, E0, SCL, SDA) 2.5V VCC 5.5V – 0.3 0.3 VCC V
1.8V VCC < 2.5V – 0.3 0.25 VCC V
Input Low Voltage (WC) –0.3 0.5 V
VIH Input High Volta ge
(E2, E1, E0, SCL, SDA, WC)0.7VCC VCC+1 V
VOL Output Low Voltage
IOL = 3mA, VCC = 5V 0.4 V
IOL = 2.1mA, 2.2V VCC < 2.5V 0.4 V
IOL = 0.15mA, VCC = 1.8V 0.2 V
Symbol Parameter Test Condition
(in addition to those in Table 10.)Min.1Max.1Unit
ILI Input Leaka ge Curren t
(SCL, SDA) VIN = VSS or VCC ± 2 µA
ILO Output Leakage Current VOUT = VSS or VCC, SDA in Hi-Z ± 2 µA
ICC Supply Current VCC =1 . 7 V, f c=100kHz (rise/f all time < 30ns) 1mA
ICC1 Stand -by Supply Current VIN = VSS or VCC , VCC = 3.6V 1 µA
VIN = VSS or VCC , 1.7V VCC < 2.5V 0.5 µA
VIL
Input Low Voltage
(E2, E1, E0, SCL, SDA) 2.5V VCC 3.6V – 0.3 0.3 VCC V
1.7V VCC < 2.5V – 0.3 0.25 VCC V
Input Low Voltage (WC) –0.3 0.5 V
VIH Input High Volta ge
(E2, E1, E0, SCL, SDA, WC)0.7VCC VCC+1 V
VOL Output Low Voltage IOL = 2.1mA, 2.2V VCC 3.6V 0.4 V
IOL = 0.15mA, VCC = 1.7V 0.2 V
19/28
M34C02
Table 17. AC Characteristics (M34C02-W, M34C02-L)
Note: 1. F or a reSTA RT condi tion, or fol l owing a Wr i te cycle .
2. Sampled only, not 100% tested.
3. To avoid spurious START and STOP conditions , a minimum delay is placed between SCL=1 and the fal ling or rising edge of SDA.
Table 18. AC Characteristics (M34C02-R, M34C02-F )
Note: 1. F or a reSTA RT condi tion, or fol l owing a Wr i te cycle .
2. Sampled only, not 100% tested.
3. To avoid spurious START and STOP conditions , a minimum delay is placed between SCL=1 and the fal ling or rising edge of SDA.
Test conditions specified in Table 11. and Table 7. or Table 8.
Symbol Alt. Parameter Min. Max. Unit
fCfSCL Clock Fre quenc y 400 kHz
tCHCL tHIGH Clock Pulse Width High 600 ns
tCLCH tLOW Clock Pulse Width Low 1300 ns
tDL1DL2 2tFSDA Fall Time 20 300 ns
tDXCX tSU:DAT Data In Set Up Time 100 ns
tCLDX tHD:DAT Data In Hold Time 0 ns
tCLQX tDH Data Out Hold Time 200 ns
tCLQV 3tAA Clock Low to Next Data Valid (Access Time) 200 900 ns
tCHDX 1tSU:STA Start Condition Set Up Time 600 ns
tDLCL tHD:STA Start Condition Hold Time 600 ns
tCHDH tSU:STO Stop Condition Set Up Time 600 ns
tDHDL tBUF Time between Stop Condition and Next Start Condition 1300 ns
tWtWR Write Time 10 ms
Test conditions specified in Table 11. and Table 9. or Table 10.
Symbol Alt. Parameter Min. Max. Unit
fCfSCL Clock Fre quenc y 100 kHz
tCHCL tHIGH Clock Pulse Width High 4000 ns
tCLCH tLOW Clock Pulse Width Low 4700 ns
tDL1DL2 2tFSDA Fall Time 20 300 ns
tDXCX tSU:DAT Data In Set Up Time 250 ns
tCLDX tHD:DAT Data In Hold Time 0 ns
tCLQX tDH Data Out Hold Time 200 ns
tCLQV 3tAA Clock Low to Next Data Valid (Access Time) 200 3500 ns
tCHDX 1tSU:STA Start Condition Set Up Time 4700 ns
tDLCL tHD:STA Start Condition Hold Time 4000 ns
tCHDH tSU:STO Stop Condition Set Up Time 4000 ns
tDHDL tBUF Time between Stop Condition and Next Start Condition 4700 ns
tWtWR Write Time 10 ms
M34C02
20/28
Figure 13. AC Waveforms
SCL
SDA In
SCL
SDA Out
SCL
SDA In
tCHCL
tDLCL
tCHDX
START
Condition
tCLCH
tDXCXtCLDX
SDA
Input
SDA
Change tCHDH tDHDL
STOP
Condition
Data Valid
tCLQV tCLQX
tCHDH
STOP
Condition
tCHDX
START
Condition
Write Cycle
tW
AI00795C
START
Condition
21/28
M34C02
P ACKAGE MECHANI CAL
Figure 14. PDIP8 – 8 pin Plastic DIP, 0.25mm lead fram e, Packag e Outline
No te : Drawi ng is not to sc al e.
Table 19. PDIP8 – 8 pin Plastic DIP, 0.25m m l ead frame, Package M ech anical Data
Symb. mm inches
Typ. Min. Max. Typ. Min. Max.
A 5.33 0.210
A1 0.38 0.015
A2 3.30 2.92 4.95 0.130 0.115 0.195
b 0.46 0.36 0.56 0.018 0.014 0.022
b2 1.52 1.14 1.78 0.060 0.045 0.070
c 0.25 0.20 0.36 0.010 0.008 0.014
D 9.27 9.02 10.16 0.365 0.355 0.400
E 7.87 7.62 8.26 0.310 0.300 0.325
E1 6.35 6.10 7.11 0.250 0.240 0.280
e2.54––0.100––
eA 7.62 0.300
eB 10.92 0.430
L 3.30 2.92 3.81 0.130 0.115 0.150
PDIP-B
A2
A1
A
L
be
D
E1
8
1
c
eA
b2
eB
E
M34C02
22/28
Figure 15. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width , Packag e Outline
No te : Drawi ng is not to sc al e.
Table 20. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body wi dth, Mechanical Data
Symb. mm inches
Typ. Min. Max. Typ. Min. Max.
A 1.35 1.75 0.053 0.069
A1 0.10 0.25 0.004 0.010
B 0.33 0.51 0.013 0.020
C 0.19 0.25 0.007 0.010
D 4.80 5.00 0.189 0.197
E 3.80 4.00 0.150 0.157
e1.27––0.050––
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.020
L 0.40 0.90 0.016 0.035
α 0°
N8 8
CP 0.10 0.004
SO-a
E
N
CP
Be
A
D
C
LA1 α
1H
h x 45˚
23/28
M34C02
Figure 16. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Outline
Note: 1. Drawing is not to scale.
2. T he centr al pad ( the area E 2 by D2 in the above ill ustra tion) is pul l ed, internall y, to VSS. I t must not be allowed to be connect ed to
any ot her v ol tage or si gnal lin e on t he P CB, for ex am ple du ri ng t he s ol derin g process.
Table 21. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Pac kage No lead 2x3m m², Data
Symbol mm inches
Typ. Min. Max. Typ. Min. Max.
A 0.55 0.50 0.60 0.022 0.020 0.024
A1 0.00 0.05 0.000 0.002
b 0.25 0.20 0.30 0.010 0.008 0.012
D 2.00 0.079
D2 1.55 1.65 0.061 0.065
ddd 0.05 0.002
E 3.00 0.118
E2 0.15 0.25 0.006 0.010
e 0.50 0.020
L 0.45 0.40 0.50 0.018 0.016 0.020
L1 0.15 0.006
L3 0.30 0.012
N8 8
D
E
UFDFPN-01
A
A1 ddd
L1
eb
D2
L
E2
L3
M34C02
24/28
Figure 17. TSS OP8 – 8 lead Thin Shrink S mall Outline, Packa ge Ou tline
No te : Drawi ng is not to sc al e.
Table 22. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechan ical Data
Symbol mm inches
Typ. Min. Max. Typ. Min. Max.
A 1.200 0.0472
A1 0.050 0.150 0.0020 0.0059
A2 1.000 0.800 1.050 0.0394 0.0315 0.0413
b 0.190 0.300 0.0075 0.0118
c 0.090 0.200 0.0035 0.0079
CP 0.100 0.0039
D 3.000 2.900 3.100 0.1181 0.1142 0.1220
e 0.650 0.0256
E 6.400 6.200 6.600 0.2520 0.2441 0.2598
E1 4.400 4.300 4.500 0.1732 0.1693 0.1772
L 0.600 0.450 0.750 0.0236 0.0177 0.0295
L1 1.000 0.0394
α 0°
TSSOP8AM
1
8
CP
c
L
EE1
D
A2A
α
eb
4
5
A1
L1
25/28
M34C02
Figure 18. TSSOP 8 3x3mm ² – 8 lead Thin Shri nk Sm all Outline, 3x3m m ² body size, Outline
No te : Drawi ng is not to sc al e.
Table 23. TSSOP 8 3x3mm ² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Data
Symbol mm inches
Typ. Min. Max. Typ. Min. Max.
A 1.100 0.0433
A1 0.050 0.150 0.0020 0.0059
A2 0.850 0.750 0.950 0.0335 0.0295 0.0374
b 0.250 0.400 0.0098 0.0157
c 0.130 0.230 0.0051 0.0091
D 3.000 2.900 3.100 0.1181 0.1142 0.1220
E 4.900 4.650 5.150 0.1929 0.1831 0.2028
E1 3.000 2.900 3.100 0.1181 0.1142 0.1220
e 0.650 0.0256
CP 0.100 0.0039
L 0.550 0.400 0.700 0.0217 0.0157 0.0276
L1 0.950 0.0374
α 0°
TSSOP8BM
1
8
CP
c
L
EE1
D
A2A
α
eb
4
5
A1
L1
M34C02
26/28
PART NUMBERING
Table 24. Ordering Information Scheme
Note: 1. Pa ckage av ai l able only on request.
For a list of available options (speed, package,
etc.) or for further i nf ormation on any aspect of this device, please c ontact your neares t ST Sales O f-
fice.
Example: M34C02 W MN 6 T P
Device Type
M34 = ASSP I2C serial access EEPROM
Device Function
02 = 2 Kbit (256 x 8)
Operating Voltage
W = VCC = 2.5 to 5.5V (400kHz)
L = VCC = 2.2 to 5.5V (400kHz)
R = VCC = 1.8 to 5.5V (100kHz)
F = VCC = 1.7 to 3.6V (100kHz)
Package
BN1= PD IP8
MN = SO8 (150 mil width)
MB = UDFDFPN8 (MLP8)
DW = TSSOP8 (169 mil width)
DS = TSSOP8 (3x3mm² body size, MSOP8)
Device Grade
6 = Industrial temperature range, –40 to 85 °C.
Device tested with standard test flow
1 = Temperature range 0 to 70 °C.
Device tested with standard test flow
Option
blank = Standard Packing
T = Tape and Reel Packing
Plating Technology
blank = Standard SnPb plating
P = Lead-Free and RoHS compliant
G = Lead-Free, RoHS compliant, Sb2O3-free and TBBA-free
27/28
M34C02
REVISION HISTORY
Table 25. Revision History
Date Rev. Description of Revision
27-Dec-1999 2.0 Adjustments to the formatting. 0 to 70°C temperature range removed from DC and AC tables.
No change to description of device, or parameters
07-Dec-2000 2.1 New definition of lead soldering temperature absolute rating for certain packages
13-Mar-2001 2.2 -R voltage range added
18-Jul-2002 2.3 TSSOP8 (3x3mm² body size) package (MSOP8) added
22-May-2002 2.4 VFDFPN8 package (MLP8) added
21-Jul-2003 3.0 Document reformatted. -F voltage range added.
17-Mar-2004 4.0 Table of Contents added. MLP package changed. Absolute Maximum Ratings for VIO(min)
and VCC(m in) change d. Solder ing tempe rature information clar ified for Ro HS complia nt
devices. Device grade information clarified
14-Apr-2004 5.0 Typos corrected in Ordering Information example
26-Aug-2004 6.0 Device Grade clarified. Product List summary table added
M34C02
28/28
Information furnished is believed to b e accurate and reliable. However, S TMicroelectronics assumes no re sponsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication ar e sub j ect
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronic s products are not
authorized for us e as cri tical compon ent s in li fe supp ort devices or sys tems wi th out expre ss written app rov al of STMi croelect ronics.
The ST l ogo is a regist ered tra demark of STM i croelectron ics.
All other names are th e property of their respective o wners
© 200 4 STMicr oel ectro ni cs - All ri ghts reserved
STM i croelectron ics g roup of co m panies
Aus tralia - Bel gium - B razil - Canada - China - Czech Republic - F i nl and - Fra nce - Germ any - Hong Kong - India - Israel - Italy - Japan -
Malaysia - M a l t a - Moroc co - Singap ore - Spain - Sweden - Switze rl and - Un i ted Kingdom - United States of A m eri ca
www.st.com