2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA SLR/SLO/SLG/SLY2016
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178 5 March 23, 2000-01
Design Considerations
For details on design and applications of the SLX2016 in multi-
ple display systems, refer to Appnote 15 at www.infineon.com/
opto.
Electrical & Mechanical Considerations
Voltage Transient Suppression
We recommend that the same power supply be used for the
display and the components that interface with the display to
avoid logic inputs higher than
V
CC
. Additionally, the LEDs may
cause transients in the power supply line while they change
display states. The common practice is to place .01 mF capaci-
tors close to the displays across
V
CC
and GND, one for each
display, and one 10
µ
F capacitor for every second display.
ESD Protection
The CMOS IC of the SLX2016 is resistant to ESD damage and
capable of withstanding discharges less than 2.0 kV. However,
take all the standard precautions, normal for CMOS compo-
nents. These include properly grounding personnel, tools,
tables, and transport carriers that come in contact with
unshielded parts. If these conditions are not, or cannot be met,
keep the leads of the device shorted together or the parts in
anti-static packaging.
Soldering Considerations
The SLX2016 can be hand soldered with SN63 solder using a
grounded iron set to 260
°
C.
Wave soldering is also possible following these conditions: Pre-
heat that does not exceed 93
°
C on the solder side of the PC
board or a package surface temperature of 85
°
C. Water soluble
organic acid flux (except carboxylic acid) or rosin-based RMA
flux without alcohol can be used.
Wave temperature of 245
°
C ±5
°
C with a dwell between 1.5 sec.
to 3.0 sec. Exposure to the wave should not exceed tempera-
tures above 260
°
C for five seconds at 0.063" below the seating
plane. The packages should not be immersed in the wave.
Post Solder Cleaning Procedures
The least offensive cleaning solution is hot D.I. water (60
°
C) for
less than 15 minutes. Addition of mild saponifiers is accept-
able. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Carefully select any
solvent as some may chemically attack the nylon package.
Maximum exposure should not exceed two minutes at ele-
vated temperatures. Acceptable solvents are TF (trichorotrifluo-
rethane), TA, 111 Trichloroethane, and unheated acetone.
Note:
Acceptable commercial solvents are: Basic TF, Arklone,
P. Genesolv, D. Genesolv DA, Blaco-Tron TF, Blaco-Tron TA,
and Freon TA.
Unacceptable solvents contain alcohol, methanol, methylene chlo-
ride, ethanol, TP35, TCM, TMC, TMS+, TE, or TES. Since many
commercial mixtures exist, contact a solvent vendor for chemical
composition information. Some major solvent manufacturers are:
Allied Chemical Corporation, Specialty Chemical Division, Morris-
town, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland,
MI; E.I. DuPont de Nemours & Co., Wilmington, DE.
For further information refer to Appnotes 18 and 19 at www.infineon.
com/opto.
An alternative to soldering and cleaning the display modules is
to use sockets. Standard pin DIP sockets .300" wide with .100"
centers work well for single displays. Multiple display assem-
blies are best handled by longer SIP sockets or DIP sockets
when available for uniform package alignment. Socket manu-
facturers are Aries Electronics, Inc., Frenchtown, NJ; Garry
Manufacturing, New Brunswick, NJ; Robinson-Nugent, New
Albany, IN; and Samtec Electronic Hardware, New Albany, IN.
For further information refer to Appnote 22 at www.infineon.com/
opto.
Optical Considerations
The .180" high characters of the SLX2016 gives readability up
to eight feet. Proper filter selection enhances readability over
this distance.
Filters enhance the contrast ratio between a lit LED and the charac-
ter background intensifying the discrimination of different charac-
ters.The only limitation is cost. Take into consideration the ambient
lighting environment for the best cost/benefit ratio for filters.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response of
sunlight. Plastic band-pass filters are an inexpensive and effec-
tive way to strengthen contrast ratios.The SLR2016 is a stan-
dard red display and should be matched with long wavelength
pass filter in the 600 nm to 620 nm range.
The SLO2016 is a high efficiency red display and should be
matched with a long wavelength pass filter in the 470 nm to 590
nm range. The SLG/SLY2016 should be matched with a yellow-
green band-pass filter that peaks at 565 nm. For displays of multi-
ple colors, neutral density gray filters offer the best compromise.
Additional contrast enhancement is gained by shading the dis-
plays. Plastic band-pass filters with built-in louvers offer the
next step up in contrast improvement. Plastic filters can be
improved further with anti-reflective coatings to reduce glare.
The trade-off is fuzzy characters. Mounting the filters close to
the display reduces this effect. Take care not to overheat the
plastic filter by allowing for proper air flow.
Optimal filter enhancements are gained by using circular polar-
ized, anti-reflective, band-pass filters. Circular polarizing further
enhances contrast by reducing the light that travels through the
filter and reflects back off the display to less than 1%.
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell, NJ;
SGL Homalite, Wilmington, DE; 3M Company, Visual Products
Division, St. Paul, MN; Polaroid Corporation, Polarizer Division,
Cambridge, MA; Marks Polarized Corporation, Deer Park, NY,
Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing displays and bezel
assemblies is an inexpensive way to provide a shading effect in
overhead lighting situations. Several Bezel manufacturers are:
R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plas-
tic Corp., Burlingame, CA; Photo Chemical Products of Califor-
nia, Santa Monica, CA; I.E.E.-Atlas, Van Nuys, CA.
Refer to Appnote 23 at www.infineon.com/opto for further infor-
mation.