Standard Software Package SPA440 Angular Synchronous Control for the T400 Technology Module 1 = 2 * u 1 Manual Edition 05.01 2 Order No.: 6DD1903-0BB0 Contents Contents 0 Warning information.............................. ................................................................................ 3 1 Overview.................................................................................................................................. 5 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2 T400 technology module ..................................................................................................... 17 2.1 2.2 3 Validity........................................... ...................................................................................... 5 Order Numbers.................................................................................................................... 6 Introduction.......................................................................................................................... 6 Terminology......................................................................................................................... 6 1.4.1 Important terminology................................................................................................ 6 1.4.2 Functions and features.............................................................................................. 8 A comparison between speed- and angular synchronism................................................... 9 1.5.1 Model......................................................................................................................... 9 1.5.2 Differences between speed- and angular synchronism .......................................... 10 Displacement and synchronization.................................................................................... 11 Hardware constellation.................... .................................................................................. 14 Information and instructions when using angular synchronous control............................. 16 Communication interfaces................................................................................................. 17 2.1.1 Interface to the basic drive (CU) ............................................................................. 18 2.1.2 Interface to COMBOARD ........................................................................................ 19 2.1.3 Peer-to-peer interface.............. ............................................................................... 20 2.1.4 Diagnostics interface............................................................................................... 20 2.1.5 USS-slave interface................................................................................................. 21 Terminal assignment..................... .................................................................................... 22 2.2.1 Digital I/O................................................................................................................. 22 2.2.2 Analog I/O........................... .................................................................................... 24 2.2.3 Pulse encoders........................................................................................................ 24 Absolute value encoder ..................................................................................................... 27 Function description................................. ........................................................................... 28 3.1 3.2 3.3 3.4 3.5 Ratio......................................... ......................................................................................... 29 3.1.1 Speed ratio........................... ................................................................................... 29 3.1.2 Fine ratio.................................. ............................................................................... 30 Setpoints and actual values............................................................................................... 31 3.2.1 Setpoints........................... ...................................................................................... 31 3.2.2 Actual value sensing................. .............................................................................. 32 3.2.3 Position actual value sensing with absolute value encoders................................... 35 Determining the displacement and synchronization .......................................................... 41 3.3.1 Synchronization......................... .............................................................................. 41 3.3.2 Determining the displacement................................................................................. 42 3.3.3 Noise-immune synchronization ............................................................................... 46 3.3.4 Synchronism achieved........... ................................................................................. 48 Closed-loop angular control............................................................................................... 49 3.4.1 Enable signals............................... .......................................................................... 49 3.4.2 Displacement setpoint............................................................................................. 49 3.4.3 Angular controller............................. ....................................................................... 50 Closed-loop speed control................................................................................................. 52 3.5.1 Ratio....................................... ................................................................................. 52 3.5.2 Master speed setpoint................... .......................................................................... 53 3.5.3 Inertia compensation............................................................................................... 53 3.5.4 Speed controller Kp adaption .................................................................................. 54 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 1 Contents 3.6 3.7 3.8 4 Parameters and connectors ................................................................................................ 60 4.1 4.2 4.3 5 3.5.5 Jogging.................................. .................................................................................. 54 3.5.6 Parameters to the speed controller ......................................................................... 55 Open-loop control........................... ................................................................................... 56 Faults, alarm and status display ........................................................................................ 56 3.7.1 General information on faults and alarms ............................................................... 56 3.7.2 Monitoring the communication coupling .................................................................. 57 Application example........................................................................................................... 58 3.8.1 Synchronous operation and synchronizing using as an example a gantry crane.... 58 Parameter handling.................................... ....................................................................... 60 4.1.1 BICO parameters.................................. .................................................................. 61 4.1.2 Resources to adapt the software and commissioning............................................. 61 Parameter list................................ .................................................................................... 63 Connector list................................................................................................................... 104 Start-up....................................... ......................................................................................... 115 5.1 5.2 5.3 5.4 5.5 Commissioning, general............. ..................................................................................... 115 Commissioning, closed-loop speed control ..................................................................... 117 Commissioning the angular control ................................................................................. 123 5.3.1 Information regarding optimizing the angular controller ........................................ 126 Commissioning synchronization ...................................................................................... 127 Trace function with "symTrace-D7" ................................................................................. 129 6 Literature................................... .......................................................................................... 130 7 Appendix.............................................................................................................................. 131 8 Changes............................................................................................................................... 145 2 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Warning information 0 Warning information WARNING Electrical equipment has components which are at dangerous voltage levels. If these instructions are not strictly adhered to, this can result in severe bodily injury and material damage. Only appropriately qualified personnel may work on/commission this equipment. This personnel must be completely knowledgable about all the warnings and service measures according to this User Manual. It is especially important that the warning information in the relevant Operating Instructions (MASTERDRIVES or DC MASTER) is strictly observed. Definitions D Qualified personnel for the purpose of this Manual and product labels are personnel who are familiar with the installation, mounting, start-up and operation of the equipment and the hazards involved. He or she must have the following qualifications: 1. Trained and authorized to energize, de-energize, clear, ground and tag circuits and equipment in accordance with established safety procedures. 2. Trained in the proper care and use of protective equipment in accordance with established safety procedures. 3. Trained in rendering first aid. ! ! ! DANGER For the purpose of this Manual and product labels, Danger" indicates death, severe personal injury and/or substantial property damage will result if proper precautions are not taken. WARNING For the purpose of this Manual and product labels, Warning" indicates death, severe personal injury or property damage can result if proper precautions are not taken CAUTION For the purpose of this Manual and product labels, Caution" indicates that minor personal injury or material damage can result if proper precautions are not taken. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 3 Warning information NOTE For the purpose of this Manual, Note" indicates information about the product or the respective part of the Manual which is essential to highlight. CAUTION This board contains components which can be destroyed by electrostatic discharge. Prior to touching any electronics board, your body must be electrically discharged. This can be simply done by touching a conductive, grounded object immediately beforehand (e.g. bare metal cabinet components, socket protective conductor contact). 4 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Overview 1 1.1 Overview Validity This User Manual is valid for the SPA440 angular synchronous control standard software package. NOTE This documentation is not compatible with the previous MS340 angular synchronous controls! Contrary to the earlier version, version 2.02 and higher includes socalled BICO technology. This allows connections within the application to be adapted to the actual task by making the appropriate parameter changes. Supplementary functions can be implemented by inserting free blocks. For compatibility reasons, the multiplexer blocks have been kept, although they are no longer required as a result of the BICO technology. All of the parameters from versions V2.00 and V2.01 which can be changed, have been kept. Changes have been made with respect to the display parameters. Hardware configuration The documentation refers to operational standard software package, comprising the T400 technology module and the software which is loaded onto it. Generally, the T400 is operated in the drive converter (SIMOVERT MASTERDRIVES MC or VC; DC Master) with/without communications module (e. g.: PROFIBUS connection). However, the software package can also be used when the T400 is inserted in the SRT400. In this particular case, data is not transferred to the basic drive converter via a common backplane bus. Presently, it is not possible to parameterize the system using SIMOVIS. NOTE The control core (all of the functions) of the SPA440 standard software package is also available for other configurations, e.g. CPU modules PM4 - PM6 with the IT41 expansion module. In this case, the application-specific changes are made using the graphic configuring tool CFC. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 5 Overview 1.2 Order Numbers The sources of the standard software package SPA440 angular synchronous control, are available on CD-ROM (designation SPA440) . When required, the angular synchronous control function can be adapted to specific customer requirements using the graphic configuring interface of SIMADYN D, i.e. CFC (also refer to Table 1-1). Designation Explanation MLFB / Order No. SPA440 SPA440 angular synchronous control on CD-ROM and the documentation (as file). 6DD1842-0AB0 D7 ES SIMADYN D configuring software D7-ES. Package comprising 6DD1801-4DA2 STEP7, CFC and D7-SYS on CD-ROM Table 1-1 1.3 Components for adapting the software package using CFC Introduction Electrical shaft The angular synchronous control with synchronization is an application which is frequently used in drive technology. This synchronous operation, which is achieved with the control software, is also known as "Electrical shaft". Standard software package Angular synchronous operation is implemented using the SPA440 standard software package. This standard software package can run on the T400 technology module, integrated in a drive converter. It is available as CFC source software on CD-ROM or directly on the T400. It can be modified with STEP7, CFC and the supplementary D7-SYS software, to adapt the technology functions to the customer's precise requirements. 1.4 Terminology 1.4.1 Important terminology Master slave The "angular synchronous" application comprises a master drive and one or several slave drives. The master drive specifies the speed and angular position of the slaves. Pulses / pulse encoder Position actual values are sensed by counting the pulses received from the connected pulse encoder. The pulse encoder has two signal lines, which supply pulse series with a 90 offset to one another. The direction of rotation is determined from the phase position of the two pulse series. For these pulse series, both the rising as well as the falling edges are evaluated. Overall, the pulses are quadrupled, which means that the resolution is also quadrupled. The position- and speed actual values are retrieved from the quadrupled pulses per software (using the speed sensing function blocks). Encoder pulse number / synchronizing pulse number 6 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Overview A differentiation must be made between "Encoder pulse number" (parameter H011) and "Synchronizing pulse number" (parameter H100). "Encoder pulse number" specifies the number of encoder pulses per revolution ("Pulse number"). On the other hand, the "Synchronizing pulse number" refers to the number of pulse edges between two synchronizing pulses (quadrupled pulses). This means, that for an encoder with an encoder pulse number H011=1024, the synchronizing pulse number is H100=4096, if one synchronizing pulse (e.g. zero pulse) occurs per revolution. Position actual value The number of summed pulses since the drive was powered-up, or since it was reset the last time. The position actual value can be reset, e.g. when a zero pulse occurs. In this case, the position actual value corresponds to the number of summed pulses since the last time the drive was reset. Actual angular value Rotation of the rotor of a drive with reference to a defined zero position in angular degrees. The definition of the actual angular value is from 0 to 360. It can only be determined after a synchronizing pulse has been received (zero pulse, BERO proximity switch) with the drive running. The absolute position of the drive is known as a result of the synchronizing pulse. As the drive moves, additional pulses are received, which are summed and the actual position changes. The actual angular value is obtained from the difference of the instantaneous actual position and the actual position at the synchronizing instant. It therefore corresponds to the angle that the rotor has moved through since the last synchronizing pulse was received. Position actual value The summed pulses of the incremental encoder represent the actual position value. The actual travel is calculated from the actual position value, which is generated due to the fact that the drive is moving, e.g. the distance that a gantry crane moves when the drives are running (refer to 3.8.1) Speed synchronism The master- and slave drive(s) receive the same speed setpoint. The speed setpoint can be weighted for the individual drives using a ratio. For pure synchronous speed control, only the speeds of the drives are controlled and the angular position is ignored. Angular synchronism The angular synchronous control has a closed-loop speed synchronizing control as subordinate control loop. In addition to the speed synchronism, the differential position actual values (i. e. the difference pulses) between the master- and slave drive(s) are fed to a higher-level closed-loop angular control. Angular synchronous operation of the drives means that while the master- and slave drives are operational, the relative angular position between the master and slaves is controlled so that it remains constant. The same as the closed-loop synchronous speed control, the master/slave ratio can be adjusted over a wide range. Synchronization In addition to speed- and angular synchronism, the drives can also be synchronized with one another. This means, that the angular- or positions of the drives can be synchronized to a specified offset (displacement) when synchronizing marks are passed (pulse encoder zero pulse or BERO proximity switch). Synchronization is realized, depending on the application, at various intervals. The synchronizing mechanism is explained in more detail in Section 1.5. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 7 Overview 1.4.2 Functions and features * Ratio between the master and slave which can be set over a wide range * Both drives can be synchronized with one another, also for a flying master * An offset (displacement) can be entered depending on the direction of rotation * Speed controller KP adaption for low speeds * Angular controller KP adaption as a function of the ratio * Communications coupling is monitored and the angular controller enabled * From V2.1. onwards for linear axis, angular synchronism can also be implemented using 2 absolute value encoders by comparing the two position actual values: Delta_Pos = Pos_Master - Pos_Slave. When using this version, parameters L098 must be set to 0 and L099 to 1. In this case, the peer-to-peer coupling of the T400 cannot be used. If the standard version is used (position differential sensing with incremental encoders), parameter L098 must be set to 1 and L099 to 0 (factory setting). Functions The control core consists of the following CFC charts: SYNC01, SYNC02 and CONTR. All of the other charts form the interfaces to the drive converter, communication channels and HMI devices. Functions in the standard software package Implemented in CFC chart Sampl. time Closed-loop control reading-in setpoints sensing actual values angular controller determining the displacement synchronizing speed controller (optional) analog outputs analog inputs * AE1 * AE2 to AE4 Open-loop control jogging enable functions for: * angular controller * synchronization * speed controller * communication interfaces fault- and alarm handling monitoring functions * couplings Communications drive converter (CU), receive PZD drive converter (CU), send PZD COMBOARD PZD 8 Description Section 2.2 SYNC01, SYNC02 9.6 ms 1.2 ms 1.2 ms 1.2 ms 1.2 ms 1.2 ms 1.2 ms Section 3 1.2 ms 9.6 ms CONTR Section 3 19.2 ms 19.2 ms 19.2 ms 19.2 ms when initial. 153.6 ms 19.2 ms Section 2.1 IF_CU (interface to CU) IF_COM (interface to CB1) 19.2 ms 1.2 ms 9.6 ms SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Overview - peer-to-peer PZD IF_Peer (interface to peer.) Parameter handling defining the texts for the technology parameters Table 1-2 PAR_GER (German) PAR_ENG (English) 9.6 ms 153.6 ms Section 4 Functions and structure at a glance 1.5 A comparison between speed- and angular synchronism 1.5.1 Model The following sketch of the model is intended to provide a better understanding of the control principles of speed- and angular synchronism. Disk, master drive P_M N zero mark Offset Disk, slave drive P_S F Sensor Stroboscope S Fig. 1-1 Model to illustrate angular synchronism S_M and S_S The lefthand disk is located on the rotor of the master drive. In the following it will be called "Disk, master drive" (P_M). The righthand disk is connected to the rotor of the slave drive and is called "Disk, slave drive" (P_S). Stroboscope S The slave drive is operated from a closed-loop synchronous speed- or angular synchronous control, where the reference is the master. The master/slave speed ratio is assumed to be 1:1, i.e. the two disks P_M and P_S rotate with the same speed, in the same direction. Stroboscope S is triggered by the rotational motion of the master. It is triggered precisely then, when cam N is located above sensor F, i.e., if the line on the disk P_M points vertically upwards (i.e. to "12"). This is implemented, e.g. using the zero pulse of a pulse encoder. NOTE Pulse pattern The situation assumes a master/slave speed ratio of 1:1 (this is easier to depict). The observations also apply for other ratios. In spite of the rotational movement, as a result of the stroboscope, anybody looking at the disk, will see a steady-state pattern of lines on the disks P_M and P_S. The principles behind closed-loop speed- and angular synchronous controls can be made very clear using the position of the lines on the two disks, as will be seen in the following. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 9 Overview 1.5.2 Differences between speed- and angular synchronism For synchronous speed control, the master- and slave drives receive the same speed setpoint, while the angular position is ignored. The closedloop angular synchronous control has, as subordinate control, a closedloop synchronous speed control. In addition to speed synchronism, the differential position actual values (i. e. the difference pulses) between the master- and slave drives, are fed to a higher-level closed-loop angular control. The differences between the two control types will be clarified using the following example: There are three disks (refer to Fig. 1-2): one master disk (P_M) and two slave (P_S) disks. The master drive rotates with a constant impressed speed. One of the slave drives is controlled from a closed-loop speed control, and the other slave drive, from a closed-loop angular synchronous control; both of them are referred to the master drive. The master/slave ratio is set to 1:1 for both of the slaves, i.e. the three disks rotate in the same direction and with the same speed. Master Status Slave, speed synchronism Slave, angular synchronism Instant t Undisturbed, steady-state operation Instant t+1 Vx Vx Disturbance quantity injected into the slave Instant t+2 Vx Disturbance quantity has been corrected Fig. 1-2 Difference between speed- and angular synchronism Three instants in time are shown in Fig. 1-2 : the disks of the master (P_M) and slave (P_S) at the instants t, t+1 and t+2. Instant t: Operation without any disturbance quantity. In this operating status, there are no differences between closed-loop speed- and angular synchronous control. However, this particular situation is only of theoretical relevance, as in practical operation, disturbances are always present. Instant t+1: 10 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Overview A disturbance affects the slave drives. This disturbance initially causes the slave drive to lead by a specific offset Vx, both for the closed-loop speed- as well as for the closed-loop angular synchronous control. Instant t+2: Note 1.6 In steady-state operation, for closed-loop angular synchronous control, this offset Vx is corrected and for the pure closed-loop synchronous speed control, it is not. For the closed-loop angular synchronous control, the slave disk re-assumes its original position, contrary to the pure closedloop synchronous speed control. The angular controller corrects until the previous pulse difference between the master- and slave drive at instant t has been re-established. After the disturbance has been corrected, for the closed-loop angular synchronous control, disk P_S assumes its original position, i.e. relative angular position. Contrary to this, for the pure closed-loop speed control, this disturbance is not corrected. This means that the additional angular offset, caused by the fault, is kept ! Displacement and synchronization When two drives are operated with synchronous control, it may be necessary to also synchronize the drives. This is generally the case after the drives have been powered-up, as the master- and slave drives are not in a defined position. Certain applications make it also necessary to synchronize shorter or longer intervals (also refer to e.g. Section 3.7.1). The goal is to correct an erroneous differential pulse actual value between the master and slave. In this case, the sensed actual values are referenced to absolute synchronizing marks. Synchronization When synchronizing, the displacementat the synchronizing instant is determined and then this displacement to a specified displacement setpoint is corrected. Synchronization is required, if the relative position between two drives regarding absolute synchronizing marks must be detected and corrected. Synchronizing mark When a synchronizing mark is passed it is detected per hardware using a zero pulse from the pulse encoder or using a BERO proximity switch. The absolute position of the drives with respect to one another is sensed using one synchronizing signal. Displacement (actual value) The actual angular values of the two drives is set to defined actual angular values when the fixed synchronizing marks are passed. Only after both drives have passed their synchronizing marks, can the actual offset (actual value) be defined as the number of pulses, which are received from the master- and slave drives between the synchronizing marks. Note The number of synchronizing pulses between the master- and slave drive at the machine part, to which the drive must be synchronized, must be the same. This standard software package does not take into account unequal synchronizing pulse rates ! Displacement and synchronization are explained using a rotary movement. This is essentially the same also for linear motion (refer to Section 3.7.1) SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 11 Overview Position of the zero mark of the master drive Offset Position of the zero mark of the slave drive Disk, master drive P M Fig. 1-3 Disk, slave drive P S Position displacement between the master- and slave drives After both drive synchronizing marks have been passed, the correct displacement (actual value) can be determined as master/slave pulse difference. This displacement replaces the previous differential position actual value in the angular synchronous control (which could have been possibly incorrect). Displacement setpoint The relative (angular) position of the master and slave are entered using the displacement setpoint so that the master- and slave drives have the required position to one another. If they are not synchronized, the displacement setpoint refers to the angular position of the drives at the instant that the differential position actual value was last set. For example, at the start of the closed-loop control. If synchronized, the displacement setpoint refers to the last synchronized displacement actual value. The displacement is entered as quadrupled pulses (refer to Section 1.3.1). The disks of the master (P_M) and slave (P_S) at instants t, t+1 and t+2 are illustrated in Fig. 1-4 at three instants in time. They are intended to clarify the interaction between displacement setpoint and displacement actual value. These instantaneous states are obtained using a stroboscope and the model as shown in Fig. 1-1. Action, status Master Slave Instant t Displacement actual value V1 and displacement Setpoint V1* are present V1 * V1 Instant t+1 Synchronization has taken place, the displacement actual value has been corrected. Displacement setpoint V1 is kept, the change is corrected. Instant t+2 New displacement setpoint V2* is entered and kept, actual value V2 is corrected. V1 * V2 * V2 Fig. 1-4 Synchronizing to an displacement setpoint Instant t: 12 The slave drive is operated from the closed-loop angular synchronous control. V1* is available as displacement setpoint, which should specify the required relative displacement between the master and slave. The SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Overview displacement setpoint V1* refers to the angular position of the drive the last time that the differential position actual value was set. If synchronization still has not taken place, this reference instant can extend back to the past until the angular controller has been enabled after poweron. However, if synchronization has already taken place, the displacement setpoint refers to the last synchronized angular position. However, the actual displacement is V1. This means that synchronization is necessary (refer to instant t+1). The displacement setpoint V1* is kept during synchronization. Instant t+1: Synchronizing takes place after the synchronizing marks have been passed. An undesirable deviation between the actual displacement V1 and the displacement setpoint V1* occurs. The deviation is corrected with unchanged displacement setpoint V1*. In the closed-loop angular synchronous control, the displacement actual value is set directly to the actual displacement at the synchronizing instant. The angular control then corrects the set displacement actual value to the constant displacement setpoint. Synchronization is completed at instant t+1. Instant t+2: A new displacement setpoint V2* is entered and corrected. The setpoint now refers to the synchronized angular position at instant t+1. Summary Synchronization is sub-divided into: * Determining the displacement, and * Correcting the deviation, to the differential angular actual value. The angular synchronous control is a lower-level control to the synchronizing circuit. When synchronizing, the differential position actual value is directly set to the actual displacement at the synchronizing instant (i. e. when at least one synchronizing mark is passed). With a constant displacement setpoint at the angular synchronous controller, deviations which may be present at the synchronizing instant, are corrected. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 13 Overview 1.7 Hardware constellation A typical hardware constellation to implement angular synchronous control on a T400 technology module is shown in Fig. 1-5. Incremental encoder The incremental encoder for the master drive is connected at connector X6. For the slave drive, the pulse encoder signals are either received from connector X8 or via the backplane bus of the basic drive (refer to Section 2.2) CU COM T400 BASEBOARD (MasterDrives / DC Master) COMBOARD (CB1, CBP, ...) Technology module Electronics box of the drive converter Fig. 1-5: Typical hardware arrangement in the electronics box of a drive converter Control structure 14 The basic closed-loop control structure of the angular synchronous control is shown in Fig. 1-6. The master- and slave drive(s) are connected to a common speed master setpoint n*. The speed master setpoint n* is used for pre-control and ensures that the required speed of the slave(s) is achieved. Further, the speed of each slave drive can be set using different master/slave ratios. The higher-level angular controller ensures angular synchronism and corrects steady-state errors in the lower-level speed control loop (also refer to Fig. 3-1, Overview closed-loop control). SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Overview Commands, messages/signals setpoints and actual values Master setpoint n* n* Drive converter Motor nMaster T400 T400 CU CU Drive converter Drive converter Motor Motor nSlave if required, amplifier Position and speed of the master Master drive Fig. 1-6 Slave drive 1 If required, add. slave drives Basic closed-loop control structure of the angular synchronous control (CU: Basic drive module) Input quantities The closed-loop control for the slave drive requires the following input quantities: * Speed master setpoint n* (reference speed for the master and slave) * Speed- and position actual value of the master (from pulse encoder signals) * Additional commands and signals, setpoints and actual values (e. g. from the automation) Synchronization NOTE The closed-loop control structure, illustrated above, is independent of the synchronization. This is because, when synchronizing, only a correction signal for the differential position actual value can be generated from the position of the synchronizing marks (refer to Fig. 3-1). Synchronization is only necessary if the machine requires this. Angular synchronous control can also be operated without synchronization (without synchronizing pulse/marks). Several slave drives NOTES If angular synchronism has to be established between several drives, then the drive with the highest output or the longest rise time should be used as the master drive. If this drive runs unsteadily, then it might make more sense to select a smoother running drive, i.e. deviating from this recommendation. The pulse encoder of the master drive must be simultaneously connected to the appropriate inputs of the slave drives. It is not permissible to overload the pulse encoder of the master drive! SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 15 Overview 1.8 Information and instructions when using angular synchronous control NOTE Applications Angular synchronous control means that the machine runs in true angular synchronism which for instance can be realized using mechanical linkages and couplings (e. g. shafts or gearboxes). NOTE Applications, which under certain circumstances, are not practical: Applications, which can be implemented using a pure closed-loop speed control. Closed-loop speed control is preferable to angular synchronism due to the simpler controller optimization, if the task in hand permits this. Generally, angular synchronous control does not further improve the control dynamic performance. Applications, which require load equalization or closed-loop tension control. 16 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 T400 technology module 2 T400 technology module The interfaces between the standard software package and the system environment are explained in this Section. In addition to the local interfaces of the T400 technology module (terminals and backplane bus to the basic drive), the three configured communication interfaces are also involved. 2.1 Communication interfaces The approximate structure of the standard software package is shown in Fig. 2-1. It is sub-divided into: * Communication interfaces: COMBOARD (e. g. PROFIBUS slave), peer-to-peer and USS slave (USS is only required if the T400 is used in standalone applications, i.e. is not used with a basic drive. In this case, only restricted parameterization capability is possible via the USS-slave interface.) * Interface to the basic drive (process data PZD, parameterization, faultand alarm messages) * Analog and digital I/O * Control core (the speed controller can be alternatively located on the T400 or in the basic drive). The functions of the control core are explained in detail in Section 0. The interfaces, via which process- and parameter data are transferred/exchanged with the T400, are described in the following Sections. Communications COMBOARD (e.g. PROFIBUS) Control core Open-loop control Local interface Interface CU Closed-loop angular control Peer-to-peer Analog I/O Closed-loop speed control USS slave (operation without CU) Fig. 2-1 Speed/position sensing Digital I/O Structure of the standard software package (CU is the processor module of the basic drive) SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 17 T400 technology module 2.1.1 Interface to the basic drive (CU) Communications with CU Data, including fast process data and parameters, as well as faults/alarms, is exchanged between the T400 technology module and the basic drive converter (abbreviated: "Basic drive") using the backplane bus LBA (Local Bus Adapter) via a parallel DUAL-PORT RAM interface. Basic drive setting The basic drive must be commissioned. For instance, for SIMOVERT MasterDrives this is realized according to the "Expert application" mode in [1] the Operating Instructions . In order to operate the SPA440 standard software package, the following pre-set basic drive parameters must be set, refer to Table 2-1 and Table 2-2. NOTE The T400 supplies the basic drive with the following control words; however, they are only effective in the drive converter after the basic drive has been appropriately parameterized. Variable Word VC (CU2) CUMC DC-Master Bit Param. Value Param. Value Param. Value On command (main contactor) W1.0 P554 3001 P554 3100 P654 3100 Off2 W1.1 P555..557 3001 P555 3101 P655 3101 Off3 W1.2 P558..560 3001 P558 3102 P658 3102 Setpoint enable W1.6 P564 3001 P564 3106 P664 3106 Fault acknowledgement W1.7 P565-567 3001 P565 3107 P665 3107 Jogging 1 W1.8 P568 3001 P568 3108 P668 3108 Jogging 2 W1.9 P569 3001 P569 3109 P669 3109 External fault 1 W1.15 P575 3001 P575 3115 P675 3115 Speed controller enable Speed setpoint (if H140 = 0) Suppl. speed setpoint from the angular controller Pre-control value for the speed controller W4.9 P585 3004 P585 3409 P685 3409 W2 P443 3002 P443 3002 P644 3002 W5 P433 3005 P224 3005 P634 3005 W8 P506 3008 P262 3008 P501 3008 Table 2-1 Control word- and setpoint channel Variable Word / Bit VC CUMC DC-Master Param. Value Param. Value Param. Value Status word 1 W1 P694.01 968 552 P734.01 0032 U734.01 0032 Speed actual value W2 P694.02 219 P734.02 0091 U734.02 0040 Torque W3 P694.03 7 P734.03 0182 U734.03 0142 Status word 2 W4 P694.04 553 P734.04 0033 U734.04 0033 Drive converter output current W5 P694.05 4 P734.05 U734.05 0116 Table 2-2 18 Status word- and actual value channel SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 T400 technology module 2.1.2 Interface to COMBOARD Communications module Communication modules (COMBOARDs; abbreviated: CB) form the interface between the T400 and a communication's network. The type of COMBOARD depends on the network protocol. For example, CB1,CBP or CBP2 are available for PROFIBUS applications. For the T400, the COMBOARD is an interface, which can be used to transfer process data (PZD) and parameters (PKW). The COMBOARD is parameterized from the basic drive (protocol, baud rate, telegram length, monitoring,... ). The number of pieces of net (useful) data can extend up to 10 PZD (each 16 bits). T400 in the SRT400 Example The parameterization is only made from the T400, if the T400 is used as standalone solution in the SRT400 with COMBOARD at slot 2. Parameters H480 - H496 are provided for this special case. Fixed protocol versions are available for PROFIBUS (parameter process data objects PPO [2, 4]). The required PPO type of the slave is generally saved in the master. It defines the number of PZD which are transferred. If, for example, PPO type 4 (6 PZD) is used, PZD7 to PZD10 are undefined. Enable COMBOARD communications can be activated or de-activated using parameter H409. Receive data The first 6 of the process data received from the communications module are assigned as follows in the factory setting (refer to Chart 410): PZD Monitoring Normalization Display 1 Control word1 (e. g. On) None d460 2 Master setpoint H451 d450 3 Setpoint, displacement setpoint H453 d452 4 Control word2 None d461 5 Setpoint, ratio H455 d454 6 Setpoint, inertia compensation H457 d456 Table 2-3 Send data Receive words (factory setting) COMBOARD receive channels (sampling time 9.6 ms; free PZD, refer to Chart 410) The send data are selected via multiplexer (H442 to H449), or using BICO re-connections. Refer to Chart 440 to normalize the send data. Telegram reception can be monitored from a time perspective (watchdog). Two time limits are available. After power-on there is a delay of H462 ms, and during operation H463 ms for a valid receive telegram. The error- and alarm messages are transferred to the CU where they are displayed if the messages were not suppressed (H003 and H004). SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 19 T400 technology module 2.1.3 Peer-to-peer interface Communications via peer-to-peer The standard software package contains a peer-to-peer interface for fast data transfer between two modules, e.g. to an additional T400. This interface has the following factory setting: Baud rate H363 19200 baud Monitoring time limit after power-on H360 20 s Monitoring time limit in operation H361 100 ms Telegram structure (cannot be changed) Table 2-4 Factory setting, peer-to-peer interface NOTE The peer-to-peer telegram always includes 5 PZD. (PZD2 and PZD3) or (PZD4 and PZD 5) can, alternatively, be used as single words, double word or floating-point value (refer to Chart 300). For the factory setting, floating-point values are transferred. Caution In order to eliminate data transfer disturbances, the interface terminating resistors must be switched-in (switches S1/3 to S1/6; refer to [4]). Parameter H309 communications. Enable Monitoring is used to enable or inhibit peer-to-peer Telegram reception can be monitored from a time perspective. There are two time limits. After power-on, there is a delay of H360 ms and during operation H361 ms for a valid receive telegram. The error- and alarm messages are transferred to the CU where they are displayed if the messages were not suppressed (refer to H003 and H004). For absolute value encoders 2.1.4 1 control word 2 floating-point values If the position sensing of the 2 absolute value encoders of the T400 are used, the peer-to-peer interface cannot be used, as absolute value encoder 2 uses the same terminals! Diagnostics interface A PC can be connected to serial interface 1 (RS232). The interface can be used with the Service-IBS/ TELEMASTER or with the CFC in the test mode. Thus, values and connections can be changed. The baud rate 19200 baud. T400 20 PC Terminal Function 9-pin 25-pin 67 RxD 3 3 68 TxD 2 2 69 Ground 5 7 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 T400 technology module Table 2-5 2.1.5 Terminals of interface X01 on T400 (RS232) USS-slave interface Serial interface 1 (RS232 / RS485) can be alternatively used for parameterization. This is intended for the special case, where the T400 is used in the SRT400. When used in the basic drive, parameterization is realized via the basic drive. The following settings are required for this particular case: Involves Value Factory H700 1 1 Significance Enable USS slave H701 9600 H703 0 Slave address at the USS bus H704 0 0: RS485 (OP1S) 1: RS232 (SIMOVIS) S1/8 on T400 Table 2-6 Caution: ON OFF Baud rate (OP1S : 9600 or 19200) Changeover from online operation (CFC, basic start-up) on USS. This only becomes effective after power-down / when the T400 is reset Settings for USS-slave operation (factory = factory setting) It is not possible to simultaneously use USS and CFC online! USS operation is not possible if the parameterization is incorrect. This means, that the error can only be resolved if online operation is selected, and then the error is, for example, resolved using the basic-IBS (basic start-up tool). OP1S can only be used from version V2.3 onwards. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 21 T400 technology module 2.2 Terminal assignment Setpoints and control signals can be read-in and actual values and status signals output via digital and analog signals. For the T400, the system/plant signals are connected directly at the appropriate terminals, which are accessible from the front. Fig. 2-2 shows an overview of the T400 connections. The following description refers to the terminal assignment. 2.2.1 Digital I/O Supply voltage The digital inputs and outputs of the T400 Technology Module have a 24 V signal level. The 24 V power supply for the digital outputs must be externally connected. The SPA440 control core uses 5 control signals, which, when required can be entered via digital inputs (refer Table 2-7) . Terminal Recommended assignment (control signals) 53 Angular controller enable 54 Synchronizing command 55 Reset position 56 Displacement reset 57 Jog enable Table 2-7 Recommended terminal assignment for the digital inputs, T400 module Digital outputs The digital outputs are pre-assigned for status messages, refer to Table 2-8. Properties When the unit is powered-up, all of the outputs are initially open-circuit (high ohmic state). After the initialization phase, they are driven with the values which are present. All of the outputs are connected to ground when the drive converter is powered-down or when a fault develops. NOTE Logical "0": Output open-circuit or connected to ground Logical "1": Output is closed, i. e. the terminal is at the connected supply voltage of approx. - 2.5 V. The max. output load is 50 mA, short-circuit proof Term. BICO param. Enable 46 Synchronism reached H631 H637 47 Angular controller at its limit H632 H638 48 Enable status of the ang. controller H633 H639 49 Fault H634 H640 51 Alarm H635 Not relev. Table 2-8 22 Factory setting Terminal assignment of the digital outputs of the T400 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 T400 technology module X8.80 +15V / 100mA Track A Track 82 B Pulse 83 Zero pulse encoder 1 84 Coarse pulse T400 81 HTL 85 Pulse encoder Tracks A and B from CU Zero pulse from CU M Increm_1 X6.62 HTL TTL RS422 Track B + Zero 64 pulse 65 Coarse pulse 66 X8.86 M Track A - 87 Track B - 88 Zero pulse X01 Pulse encoder 2 X9.90 10V 5 analog inputs 2 differential inputs 11 bits + sign 10 V / 10 k + - 91 A D 92 10V RS485, 2-wire Track A + 63 Selected using switch S2 MASTERDRIVES basic drive CUx 93 + - A + - A + - A + - A D 10V Tx/Rx- 71 69 Symbolic hardware addresses of the basic software package TTL RS232 TxD 68 RxD 67 11 bits + VZ Ana_In_1 D Ana_In_3 D D X9.97 A Ana_In_4 P24 external X5.45 50 Ana_In_5 51 99 X5. 45 46 4 digital I/O 52 M P24 external 47 bi-directional 24 V DC (8 mA input current) 2 analog outputs 10 V / 10 mA 11 bits + sign 99 96 10V Program download CFC online USS / SIMOVIS 98 D 95 10V Serial interface 1 A Ana_In_2 Ana_Out_2 D X7.70 Increm_2 Ana_Out_1 94 Tx/Rx+ +24V 2 digital outputs 24 V DC / 100 mA Base load 40 mA for external P24supply, which can also be taken from the basic drive BinInOut 48 X7.76 77 78 79 49 SSI_1 Absolute value encoder 1 24V 50 M SSI_2 53 4 digital inputs interrupt-capable 24 V DC (8 mA input current ) 54 55 X6 X7.72 56 BinInput 57 4 digital inputs 24 V DC X02 58 59 61 Communications module e.g.: CB1 Fig. 2-2 Absolute value encoder-2 74 or 75 Serial interface 2 Peer-to-peer or USS 60 24V 73 M Dual port RAM Dual port RAM MASTERDRIVES basic drive CUx Layout of the terminals of the T400 Technology Module SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 23 T400 technology module 2.2.2 Analog I/O An output- and input voltage of 5 V corresponds, in the factory setting to an internal value of 1.0 (100 %). This pre-setting can be changed using scaling factors and offsets. The following is valid for analog inputs: Scaling Analog value = terminal voltage scaling factor / 5 V - offset Generally, the analog inputs have a smoothing element connected in series. The smoothing can be de-activated by setting the filter time constant to 0. Terminal Recommended assignment Sampling time Scaling Offset Filter time constant Value, smoothed 90 / 91 Inertia compensation 1.2 ms H210 H211 H222 d223 92 / 93 Ratio 9.6 ms H213 H214 H224 d225 94 / 99 Speed master setpoint 9.6 ms H216 H217 H226 d227 95 / 99 Offset setpoint 9.6 ms H219 H220 H228 d229 Table 2-9 Terminal assignment of the analog inputs, T400 module T400 has two analog outputs which are processed in the fastest sampling time (1.2 ms). The output quantity is selected per multiplexer or the BICO connection. During operation, every output can be inhibited by a control signal (output = 0V). Analog outputs The outputs can be scaled. For the factory setting, 1.0 is output for 5 V. The output voltage V is obtained as follows: V = ( value + offset ) scaling factor 5 V Terminal Multiplexer BICO input Inhibit input Scaling factor Offset 97 / 99 H618 H620 H621 H161 H160 98 / 99 H619 H622 H623 H163 H162 Table 2-10 2.2.3 Analog outputs and associated parameters Pulse encoders Pulse encoder type Encoder power supply Shielding 24 Pulse encoders with two tracks, offset through 90 degrees must be used. If the synchronizing function is used, the zero pulse or a comparable synchronizing signal (e. g. BERO switch) must be connected. The T400 module provides 15 V (max. 100 mA) as encoder power supply. Encoders with a 15 - 24 V supply voltage, especially: SIEMENS rotary pulse encoders 1XP8001-1 (for 1LA5 motors, frame sizes 100K to 200L); SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 T400 technology module The pulse encoder cable and the cables used to conduct the synchronizing pulses must be shielded. The cable shield must be connected at both ends, if possible through clamps, to ground potential through the lowest impedance connection. This is especially important for signals from proximity- or switches using contacts. 15 V power supply units If the 100 mA of the internal 15 V supply is not adequate, we recommend the following 15V power supplies: * Type CM62-PS-220 AC/ 15 DC/ 1 220 V AC to 15V DC, load capacity 1 A Manufacturer, Phoenix * Type FMP 15S 500 "with fast mounting" 110/220 V AC to 15V DC, load capacity 0.5 A Manufacturer, Block Encoder pulse numbers When selecting the encoder pulse number, the following issues must be taken into account: 1. Maximum pulse frequency, 1.5 MHz 2. The ratio should be approx. 1:1 as in this case, the best dynamic performance is obtained. A ratio in the range from 1:4 to 4:1 is acceptable (definitions, refer to the following sections). 3. The encoder pulse numbers of the master- and slave drives should be same; however, criteria 1) and 2) have priority. The master drive pulse encoders are directly connected to the T400. The slave drive can use the incremental encoder signals from the basic drive (CU) from the backplane bus. The operating mode can be parameterized using parameters H018 and H019. The following should be set: * Encoder type * Filter parameterization and filter time constant of the digital filter for the signals of the two pulse tracks / zero pulse track * Source of the encoder tracks The recommended values for H018 and H019 are specified in the parameter table in Section 4.2. For additional information, refer to Lit.[5] block NAVS, connector MOD. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 25 T400 technology module Encoder 1 Encoder 2 HTL RS422 HTL TTL HTL 3V 81 62 62 62 62 - 86 - - - 82 63 63 63 63 - 87 - - - Synchronizing pulse N+ 83 64 64 64 64 Synchronizing pulse N - 66 88 - - - Coarse pulse inputs 84 65 65 65 65 P15 output for the 15 V encoder power supply 80 80 80 80 80 Ground 85 66 66 66 66 Switch S2.1 ON OFF ON OFF Switch S2.2 ON OFF ON OFF Switch S2.3 ON OFF OFF ON Switch S2.4 ON OFF ON OFF Switch S2.5 ON OFF OFF ON Track A+ and track A Track ATrack B+ and track B Track B- Table 2-11 Incremental encoder inputs of the T400: Terminal assignment and switch settings for various encoder types Coarse pulse evaluation Coarse pulses are used to suppress undesirable synchronizing signals. For example, by combining coarse- and fine pulses, disturbances can be suppressed, or just specific synchronizing pulses evaluated. 5 different cases are investigated. The default setting is for synchronizing pulses which are used independently of the associated coarse pulses (mode 1). The coarse pulse mode is selected using H022 and H023. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Coarse pulse ignored Y = XG AND XF only 1st pulse Y = XG AND XF Y = XG AND XF only 1st pulse Y = XG AND XF Coarse pulse Coarse pulse Coarse pulse Coarse pulse Coarse pulse XG Fine pulses Fine pulses Fine pulses Fine pulses Fine pulses XF Evaluation signal Evaluation signal Evaluation signal Evaluation signal Evaluation signal Y Fig. 2-3 26 Operating modes for coarse pulse evaluation (the synchronizing pulses correspond to the fine pulses) SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 T400 technology module Absolute value encoder When using the absolute value encoder for differential position sensing, two absolute encoders with SSI or EnDat interface are connected. We recommend a multi-turn encoder with e.g. 4096 steps per revolution and 4096 revolutions which can be differentiated between. The encoder should be a coded rotary encoder. (function block type to evaluate an absolute value encoder: AENC) T400 terminal Significance 72 Absolute encoder 2, data + 73 Absolute encoder 2, data - 74 Absolute encoder 2, clock + 75 Absolute encoder 2, clock - 76 Absolute encoder 1, data + 77 Absolute encoder 1, data - 78 Absolute encoder 1, clock + 79 Absolute encoder 1, clock - Drive to be connected Master drive Slave drive with T400 Table 2-12: T400 terminals for absolute value encoder SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 27 Function description 3 Function description A control-related block diagram of the standard angular synchronism software package is illustrated in Fig. 3-1. The closed-loop angular control is implemented on the technology module. The closed-loop speed control is either realized on the connected drive converter or is internally computed on the T400 (refer to parameter H140). The setpoints are either received from the basic drive (CU), COMBOARD, peer-to-peer or analog input or can be entered as fixed value. Inertia compensation Closed-loop speed control Basic drive CU Speed controller Master speed setpoint (reference speed) Speed setpoint To the current controller Ratio Speed actual value, slave Closed-loop angular control Conversion into pulse number conversion Pulse encoder Slave 0 Actual value sensing Speed actual values Position act. value, slave and master Master Status and control signals Control signals for synchronizing # Displacement determination & synchronization Displacement act. value Displacement position difference Position difference Position difference - correction value Ramp-function generator Angular controller Displacement setpoint P- or PI controller Fig. 3-1 Overview of the SPA440 standard software package 28 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description 3.1 Ratio 3.1.1 Speed ratio The master- and slave drives receive the same speed setpoint, whereby this setpoint is weighted by the (master/slave) speed ratio u. The speed ratio u between the master and slave drive is defined as follows: Speed ratio Speed, master drive u= Speed, slave drive Example: Speed, master drive: Ratio Speed, slave drive: NOTE nM = 1710 RPM u = 1.5 nS = nM / u = 1710 RPM / 1.5 = 1140 RPM Contrary to the older versions of the angular synchronous control, the ratio, as floating-point value, can be practically set without any limitations. Parameter Use H040 Multiplexer selection of the source for the ratio H041 Source for the supplementary ratio H043 Fixed value, ratio d044 Actual ratio d045 Ratio, numerator d046 Ratio, denominator H047 Fixed value, supplementary ratio H048 Multiplexer selection for the relative ratio H067 Source for the ratio H068 Source for the relative ratio H086 Fixed value, fine ratio, numerator H087 Fixed value, fine ratio, denominator H088 Enable fine ratio H155 Resolution for calculating numerator and denominator Table 3-1 Parameters to define and display the ratio SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 29 Function description 3.1.2 Fine ratio The ratio is generally entered as a floating-point value. The integer value for numerator and denominator DN and NM are automatically calculated from the selected ratio (refer to Chart 80). The calculated ratio exhibits a maximum error of 0.0001 with respect to the floating-point input (this can be influenced using the resolution of the ratio H155). Nominator and denominator can be separately entered as integer value ("fine ratio") (refer to Table 3-1). (For example, this may be required if the ratio is entered with OP1S, whereby only 3 decimal points are possible). Example: * Ratio: 2 * Pulses, slave/revolution: 1024 * Pulses, master/revolution: 2048 /3 (master speed/slave speed) * Displacement correction should be made Settings: Parameter Value H077 5001 H078 30 Explanation st Source for fixed value 1 ratio of the displacement calculation = 1, as the number of pulses between 2 synchronizing operations has been taken into account (refer to H100, H102, H105, H107) H086 2 Fine ratio, numerator H087 3 Fine ratio, denominator H088 1 Activates the fine ratio H100 16384 (242048) number of edges between 2 synchronizing signals of the master (2 revolutions) H102 12288 (341024) number of edges between 2 synchronizing signals of the slave (3 revolutions) H105 10993 Suppresses the first synchronizing pulse from the master (synchronizing is only enabled after 1.5 revolutions) H107 10240 Suppresses the first two synchronizing pulses from the slave (synchronizing is only enabled after 2.5 revolutions) SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description 3.2 Setpoints and actual values 3.2.1 Setpoints Setpoints can be entered from any interface. A connection must be established from the required source to the appropriate setpoint input using BICO technology. When making a selection with the multiplexer, a selection can be made between the following sources. Also refer to function chart 500 and the tables specified below. Setpoint Selection Pre-assigned with ... Displacement H050 Fixed value (by H066) Ratio H040 Fixed value (by H043) Relative ratio H048 Fixed value (by H049) Master speed setpoint H070 Speed actual value, master Inertia compensation H080 Differentiation of the speed setpoint Table 3-2 Multiplexer to select the setpoint channel Selection Normalization 0 - Fixed value 0.0 1 - Fixed value (a separate fixed value for each setpoint channel) 2 H210 Analog input 1, smoothed 3 H213 Analog input 2, smoothed 4 H216 Analog input 3, smoothed 5 H219 Analog input 4, smoothed 6 H550 Basic drive, word 2 7 H552 Basic drive, word 3 8 H554 Basic drive, word 5 Setpoint sources 9 H451 COMBOARD word 2 10 H453 COMBOARD word 3 11 H455 COMBOARD word 5 12 H457 COMBOARD word 6 13 - Peer-to-peer, words 2 + 3 14 - Peer-to-peer, words 4 + 5 15 Table 3-3 Speed actual value, master (channel 15 is only available to select the master setpoint) Setpoint sources SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 31 Function description 3.2.2 Actual value sensing The actual speed, position and position difference are sensed by counting the pulses from the two pulse encoders from the master- and slave drives. Principle The speed actual value sensing is calibrated using parameters H010 to H013. The speed actual value is referred to the configured rated speed, i.e. the rated speed has a speed actual value of 1.0. Speed Pulses Normalization factor Measuring time Encoder pulse No.. Rated speed All of the parameters which have to be set for the actual value sensing are listed in Table 3-4: Param. Significance Explanation H010 Encoder pulse number, slave Number of pulses (single) per revolution H011 Encoder pulse number, master Number of pulses (single) per revolution H012 Rated speed, slave Speed actual value, which is simulated for 1.0 H013 Rated speed, master Speed actual value, which is simulated for 1.0 d014 Speed actual value, slave Display parameter d015 Speed actual value, master Display parameter d016 Position actual value, slave Display parameter d017 Position actual value, master Display parameter H018 Slave sensing mode Encoder type (always type 1); filter time; behavior for zero pulse; source of the tracked signals and zero pulse H019 Master sensing mode Encoder type (always type 1); filter time; behavior for zero pulse d020 Error code, slave sensing Refer to Section 4.2 d021 Error code, master sensing Refer to Section 4.2 H022 Coarse pulse evaluation, slave Refer to Section 4.2 and 2.2.3 H023 Coarse pulse evaluation, master Refer to Section 4.2 and 2.2.3 Table 3-4 Parameters for the speed actual value sensing NOTE The explanations in this Manual only assume encoders with 2 tracks A and B, offset through 90 and possibly with zero pulse! However, the information is also valid for encoders with separate forwards- and reverse tracks. Rated speed, master (H013) and rated system frequency: If the master setpoint for the slave is referred to the encoder pulses of the master (H070 = 15), the rated speed of the master (H013) and the rated system frequency (or the speed for a drive converter) must be parameterized so that they are identical. The rated speeds of the master and slave are required to generate the master setpoint and to display the speed actual value (d014, d015). These are used when calculating the pos. and pos. difference. 32 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description Position actual value sensing The master and slave position actual values are required to determine the displacement. To sense the position actual value, the encoder pulse edges from the master- and slave drives are counted which have been received since the last time the system was reset with the drives operational. The position actual values are reset as follows: * the control signal reset position (refer to Chart 90) * when enabling the angular controller * using the synchronizing pulse (e. g. zero pulse) at the pulse encoder input. When the synchronizing marks are passed, the position actual value is set to 0 and runs-up to four times the encoder pulse number in one revolution. The position difference is sensed per software using a 32-bit counter. This means that a maximum pulse number of 231 = 2147483648 quadrupled pulses is possible. NOTE Param. 31 In order that the position actual values do not overflow (e. g. from 2 31 -2 ), a synchronizing pulse must be generated, at the latest after 231 quadrupled pulses, which then resets the position! Significance Explanation d017 Position actual value, master Calculated in quadrupled pulses d016 Position actual value, slave Calculated in quadrupled pulses H105 Synchronizing threshold, slave A synchronizing pulse is only evaluated if the position actual value exceeds threshold H105 H107 Synchronizing threshold, master As for H105, however for the master position d109 Status of the angular controller enable At d109=0, the position is reset H173 Multiplexer for reset position Selects the source for this control signal H097 H167 Inputs for the reset position function BICO inputs H181 Input, reset slave position " H189 Input, reset master position " Table 3-5 Parameters for position actual value sensing Position difference sensing The position difference actual value is defined as the position actual value through which the slave must be moved, so that the position actual value of the slave and the position actual value of the master, referred to the slave, are the same. The position pulse number of the master drive is re-normalized to the slave. This means it can be directly compared with the position pulse number of the slave, i.e. the angle through which the master drive moves, is represented as a pulse number of the slave. The following algorithm for the position difference is obtained, taking into account different encoder SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 33 Function description pulse numbers for the master- and slave drives. "Master- and encoder pulses" refer to the quadrupled position pulses generated by the pulse encoder. "Rated pulses" represents the number of position pulses, where the position actual value should be 1.0. PulseMaster Pos. difference = Calculation DN Slave encoder pulse No. NM Master encoder pulse No. - PulseSlave Rated pulses The quotient of NM / DN corresponds to ratio u (refer to Section 3.1.2). A so-called correction pulse number (H093), calculated from the displacement calculation, is added to the position difference for synchronization. This means that the angular controller is forced to correct the position difference which is entered. This correction value is zero if synchronization is not applied or when in the synchronous condition Correction pulse number Par. Significance Explanation H093 Correction pulse number H117 Filter time, position difference d124 Differential position actual value, smoothed Table 3-6 Number of pulses which, when the displacement is being corrected are input per sampling time into the angular controller to correct the displacement Number of pulse edges (pulses 4) which represents the offset between the master and slave; this is zero when the system is synchronized. Parameters for the differential position sensing The pulse number ratio should be approximately 1:1. An inaccuracy of several pulses can occur, especially for a pulse number ratio 1. The highest accuracy is achieved for a pulse number ratio of 1:1, refer to the example in Fig. 3.5. Inaccuracy 1 2 3 4 5 6 7 8 9 9 edges Pulses, master 1 Counter saved 1 edge Pulses, slave Counter saved Ratio = 1 Determined position difference: Actual position difference: 9 edges - 1 edge 4.5 pulses - 0.75 pulses = 8 edges = 3.75 pulses Ratio = 6 Determined position difference: Actual position difference: Fig. 3-2 34 9 edges - 6 * 1 edge = 3 edges 4.5 pulses - 6 * 0.75 pulses = 0 pulse Example of inaccuracies when determining the position difference SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description The settings when using absolute value encoders are described in the next section. 3.2.3 Position actual value sensing with absolute value encoders Parameter Description Factory setting Connector L098 Enables position sensing using a pulse encoder (NAVS). It is necessary to reset after a value is changed! 1 --- L099 Enables position sensing using an absolute value encoder (AENC). It is necessary to reset after a value is changed! 0 --- Table 3-7: Activating the absolute value encoder Settings The absolute value encoder is set using the following parameters. The required data can be taken from the manufacturers Operating Instructions for the particular absolute value encoder. Absolute Absolute encoder encoder 1 2 Description L100 Resolution per turn (RPT) L200 Example: L100 = 4096 (Operating Instructions, absolute encoder) L101 L201 Number of turns (NOT) only for multi-turn encoders. For single-turn encoders = 0. Example: A multi-turn encoder is used. L101 = 4096 (Operating Instructions, absolute encoder) L102 L202 Preceding zero bits (PZB) Number of non-relevant bits at the start of the position value transfer. This is valid for SSI encoders, with which the various protocol versions are specified. Example: L102 = 0 (Operating Instructions, absolute encoder) L103 L203 Alarm bit position (ABP) Position of the interrupt bit within the data transfer protocol of an SSI encoder. If there is no interrupt bit, then ABP = 0 applies. Example: L103 = 0 (Operating Instructions, absolute encoder) L104 L204 Clock frequency (MDF) There are four possible clock frequencies for data transfer. 0 : Clock frequency = 100 kHz, period = 10 s 1 : Clock frequency = 500 kHz, period = 2 s 2 : Clock frequency = 1 MHz, period = 1 s 3 : Clock frequency = 2 MHz, period = 0.5 s Example: L104 = 0 (Operating Instructions, absolute encoder) SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 35 Function description L105 L205 Encoder type (MDT) Specification of the encoder type. The differentiation between coded rotary encoders and length measuring systems has an influence on the velocity output (parameter c114 or c214). 0 : SSI (coded rotary encoder) 1 : SSI (coded length measuring system) 2 : EnDat (coded rotary encoder) 3 : EnDat (coded length measuring system) 4 : SSI (coded length measuring system with range correction) 5 : EnDat (coded length measuring system with range correction) Example: L105 = 0 (Operating Instructions, absolute encoder) L106 L206 Data coding (MDC) 0 : Binary code (permissible for EnDat and SSI) 1 : Gray code (permissible for SSI) 2 : Gray Excess code (permissible for SSI single-turn encoders) Example: L106 = 1 (Operating Instructions, absolute encoder) L107 L207 Control word (CW) Bit 0 : Enables the parity monitoring for an SSI encoder. A check is made for even parity. The parity bit is directly transferred after the position value, i.e. as 14th bit or as 26th bit. 0 = No parity monitoring (permissible for SSI, EnDat) 1 = Parity monitoring, even parity (permissible for SSI). Bit 1 : Resets the AENC block and deletes the fault messages and alarms as well as individual bits of the fault word. When using an EnDat encoder, its alarms and alarm bits are reset. For SSI encoders, after connecting-up and powering-up the encoder, it is necessary to reset. A 0 to 1 signal edge is required to reset. Example: L107 = 0000h (hexadecimal value, with all bits = 0, setting, bit 0 from the Operating Instructions, absolute encoder) L108 L208 L109 L209 L110 L210 Gearbox ratio (NFG) Takes into account a gear ratio between the coded rotary encoder and the drive system. The position values and the speed are converted over to the drive system. For a length measuring system, the gear ratio is not taken into account. The following applies: Position(drive) = gear ratio * position(encoder). Example: L208 = 1.0 (recommended setting) Normalization, position (NFP) Normalization basis for the offset input (OFF). Example: L109 = 1.0 (recommended setting) Normalization, speed (NFY) This value influences the output value Y of the speed: Y = NFY * revolutions/min. Factory setting: 0.0 Example: L110 = 1.0 (i.e. for 100 revolutions/min, c114 = 100.0 is displayed at the output) 36 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description L111 L211 Position offset (OFF) When entering an offsets 0 the encoder zero position is shifted. The offset value has the same normalization as the position outputs. It is subtracted from the encoder position actual value. Example: L111 = .... (must be determined from the position normalization, refer to Section 4) L112 L212 Upper speed limit (LU) Maximum operating speed of the encoder where valid position values can still be determined. The data is a value normalized to the speed output (parameter c114 and c214). Example: L112 = 6000.0 (i.e. 6000 revolutions/min, must, if required, be adapted) L120 L220 Offset, number of rotations This is used to enter an offset for the number of revolutions (parameter c116 or c216). This determines the scaled position actual value. Example: L120 = ... (must be determined from the position normalization, refer to Section 6.2.6) L121 L221 Scaling, position actual value This normalizes the scaled position actual value (c125 or c225). Example: L121 = ... (must be determined from the position normalization, refer to Section 4) L122 L222 Selection, MUL/DIV: 0: The scaling factor L121 (or L221) is multiplied by the value supplied from AENC. 1: The value supplied from AENC is divided by the scaling factor L121 (or L221). The scaling factor must be assigned its inverse value: L121 = 1.0 / L121. The selection must be made if the scaling factor < 0.1 and otherwise the multiplication would be too inaccurate. Example: 1: L122 = 0 (the scaling factor L121 = 3.431 determined from the position normalization and can therefore be multiplied) Example: 2: L122 = 1 (the original scaling factor L121U = 0.01234 originally determined from the position normalization, is less than 0.1. The scaling factor to be entered, L121 = 1.0 / L121U = 81.037. L123 L223 Offset, position actual value: The position can only be normalized if a defined point has the position actual value 0.0. However, if this point is not at 0.0, then it can be shifted to 0.0 using the offset. The following applies for AENC 1: if L122 = 0 : c125 = (c115 + c116 - L120) * L121 + L123. if L122 = 1 : c125 = (c115 + c116 - L120) / L121 + L123. The corresponding is true for AENC 2. Example: H123 = 10000.0 (reference point 1 for the position normalization is at 10000.0 mm, however, it must be 0.0 and is therefore shifted via L123 (offset). Table 3-8: Settings for absolute value encoders (examples only for AENC1) INIT parameters Parameters L100 - L106 (or L200 - L206) are INIT parameters, i.e. after a value has been changed, a reset is required (e.g. power off/on). SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 37 Function description Diagnostics c114 Speed actual value AENC1, slave only display KR4114 c115 Position counter AENC1, slave only display KR4115 c116 Revolution counter AENC1, slave only display KR4116 c118 Error code AENC1, slave (refer below) only display --- c119 Error word AENC1, slave (refer below) only display --- c125 Position actual value AENC1, slave [length units] only display KR4125 c214 Speed actual value AENC2, master only display KR4214 c215 Position counter AENC2, master only display KR4215 c216 Revolution counter AENC2, master only display KR4216 c218 Error code AENC2, master (refer below) only display --- c219 Error word AENC2, master (refer below) only display --- c225 Position actual value AENC2, master [length units] only display KR4225 c300 Differential position, master - slave [length units] only display KR4300 Table 3-9: Diagnostic parameters for absolute value encoders Normalization of the position actual values L301 Adaptation, division differential position (Y1 = c300/L301) 1.0 --- L302 Adaptation, multiplication differential position Y2 = Y1 * L302. This value is saved in connector KR3124 via the filter smoothed with H117 and transferred to the angular controller. 1.0 --- Table 3-10: Parameter and connectors for absolute value encoders The position actual values can be represented in length units. A length unit can be freely selected, e.g. 1 length unit = 1 mm or 1 length unit = 1 m. Position normalization Procedure when normalizing the position (as an example, AENC1). Parameters L111, L120, L121, L122 and L123 must be defined using the position normalization. 1. Prerequisites: L111 = 0.0 (Offset zero position). L120 = 0.0 (Offset, number of revolutions) L121 = 1.0 (Scaling factor). L122 = 0 (Multiplication of the scaling factor). The defined first position should be, e.g. 10000 mm: L123 = 10000. These values should first be entered. The angular synchronism may still not be activated (H172=0), as the values from the absolute value encoder block have still not been normalized in this phase and therefore are not correct. 2. Move to the first position (in this case 10,000 mm). The first position is now used as a virtual zero point. 38 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description Read-off c115 and enter in L111. Read-off c116 and enter in L120. A value of 10000 must now be in c125. 3. Traverse to a second position. The distance lDiff to the first position must be known. lDiff = 15014.3 mm; i.e. the second position is 25014.3 mm, as the first position = 10000 mm. Read-off parameter c125. Example 1: If c125 = 26023.5, a scaling factor is obtained L121 = 15014.3 / (26023.5 - 10000) = 0.937 This value is greater than 0.1, which means that L122 can be kept at 0. Example 2: If c125 = 1234567.8, then this results in a scaling factor L121 = 15014.3 / (1234567.8 - 10000) = 0.0123 This value is less than 0.1, a correction must be made: L122 = 1 (it is divided by the scaling factor). L121 = (1234567.8 - 10000) / 15014.3 = 81.560 4. Check: Move to the "second position" position and read-off c125 (in this case, c125 = 25014.3). Then move to the "first position" and ready-off c125 (in this case, c125 = 10000). 5. Proceed in the same way for the master drive (AENC2). 6. After position normalization, the synchronous operation function can be activated. The slave will now always control itself to track the master position. If the position is to shift, then this can be corrected via the offset slave L123 or offset master L223. Example: Actual slave position = 12000.0 mm, display c125 = 12000.5 mm. Then L123 = L123old + real position - c125 = 10000.0 + 12000.0 - 12000.5 = 9999.5 This means that the display is c125 = 12000.0 The position actual value must be re-normalized if the encoder type is changed. When using the plausibility check (function chart 75 of the SPA440 Operating Instructions) the dn enable (H118 and H119) must be set to a higher value (e.g. 1.2), if the speed actual value source (parameter H192 or H195) was not configured. A higher value is not required for the dn enable if the speed actual values from the master and slave from the absolute value encoder blocks are SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 39 Function description used. In this particular case, the source parameters should be set as follows: H192 = 4114 (speed actual value AENC1, observe the normalization L110!) H195 = 4214 (speed actual value AENC2, observe the normalization L210!) Error codes for the absolute value encoders Parameters c118 and c218 This involves erroneous input parameters (configuring error) communication errors (possibly erroneous encoder specification) or operating errors. Bit 0 - 1 Not specified Bit 2 Timeout Bit 3 Communications error: The component of messages (telegrams) with parity/CRC errors is, on the average, 10% and more. If the error rate decreases the error bit is automatically reset. Bit 4 Communication errors: On the average, a parity or CFC error occurs at each second position transfer (or more frequently). The error bit is automatically reset if the error rate decreases. Bit 5 Not specified Bit 6 Parity check only possible in the SSI mode Bit 7 Illegal data coding Bit 8 Illegal encoder type Bit 9 Illegal clock cycle frequency Bit 10 Format error: Contradictory or illegal data Bit 11 Hardware address illegal or already assigned Bit 12-15 Not specified Table 3-11: Error codes for absolute value encoders Errors words of the absolute encoder Monitoring parameters c119 and c219 Error status word of an EnDat encoder. The significance of the error bits can be taken from the manufacturers data sheets. Fault word = 0000Hex, as long as no fault is present. Fault word = FFFFHex, as long as an SSI encoder sends a set interrupt bit. Faults, alarms via CU 40 Faults and alarms can also be sent to the basic unit (CU): Fault Significance Alarm Binector F125 Fault AENC2 master A106 B0212 F126 Fault AENC1 slave A107 B0211 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description 3.3 Determining the displacement and synchronization 3.3.1 Synchronization The differential position actual value is determined as a result of the difference between the pulses which have occurred since the position difference was reset. This does not indicate the relative position of the drives to one another! The displacement is determined if the position of two drives with respect to one another regarding their synchronizing pulses (e.g. zero pulses) must be identified and corrected. Synchronization involves determining and correcting the displacement, which isn't clear from the position difference, e.g. after the drives have been rotated with the drive converter powered-down. For instance, it makes sense to first synchronize the drives after they have been powered-up, as they are still not in defined positions at the instant of power-on. Initial synchronization can be automatically initiated (refer to H168, H169). After this initial synchronization, additional synchronized operations are required, if errors occur in the position actual value sensing of the drives, as a result of disturbances for example, wheel slip (also refer to Section 3.8.1) NOTE Task For angular synchronous control, synchronization and therefore the availability of synchronizing marks is not a prerequisite (if the displacement is not specified)! Synchronization is sub-divided into: 1. Determining the displacement from the position of the synchronizing marks, whereby a correction value for the differential position actual value is generated, 2. Correcting the differential position actual value by correcting the displacement. In principle, it is adequate to synchronize just once. Continuous synchronization is mandatory under the following conditions: * The (pulse number) ratio cannot be precisely entered. While fractions can be precisely set, irrational ratios (e.g. ) cannot be precisely entered ! * Encoder pulses can be lost * Closed-loop position control of a traversing gear (refer to Section3.8.1) should be executed. As the pulse encoders are mounted on the motor, they do not emulate the actual position of the crane (position actual values). For wheel slip, position actual value sensing drive errors occur, which can only be corrected by synchronizing. Enable Synchronization, i. e. correcting an displacement which may have been identified, is realized by activating a synchronizing command (H174). The synchronizing command must be inhibited for applications which do not require synchronization. Synchronization sequence SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 41 Function description The differential position actual value can be corrected using the calculated displacement, either once within a sampling time, or distributed over several sampling times. * Directly setting the displacement The differential position actual value is set directly to a correction value, which is retrieved from the position of the synchronizing marks, if a synchronizing command is present, and after at least one synchronizing pulse has been received. Thus, the angular controller receives a system deviation, generated from the displacement calculation, which must be corrected. As there is a time delay between the instant that the displacement is determined, and the instant that the displacement is set per software, then the difference pulses, which are received during this time, must be taken into account. This is possible when configuring the speed sensing blocks by appropriately connecting-up the setting inputs and selecting specific setting modes. The differential position actual value is corrected, so that no pulses are lost between determining the displacement and correcting the differential position actual value. * Successively setting the displacement in n sampling times When the displacement is set once, this can result in large steps in the differential position actual value at the angular synchronous controller and can even result in overshoot. Steps such as these can be avoided by successively setting the displacement. Correction is then step-by-step, i.e. in n sampling times by the correction pulse number (H093): n = displacement/H093. Correction pulse number NOTE 3.3.2 H093 is used to define how many pulses of the defined displacement per sampling time should be corrected. If the angular controller is inactive, then the differential position value would assume the displacement setpoint after n sampling cycles. In order that the displacement correction isn't too high, the correction pulse number H093 should be set to extremely low values (typically =1). The value of the correction pulse number is subtracted from the differential position actual value in each sampling time until synchronism is achieved. A synchronizing operation, started once is executed until synchronism is achieved (correction value is 0); this can no longer be interrupted ! Determining the displacement Synchronizing pulse number The number of encoder pulses between two synchronizing pulses, the socalled synchronizing pulse number, must be entered in order to determine the displacement actual value (refer to Fig. 3-3). The synchronizing pulse numbers from the master- and slave drives are entered using parameters H100 and H102. If a small deviation occurs between the entered and actual pulse number, e.g. as a result of an encoder error, then this is corrected by the synchronization. 42 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description Master drive, pulses, pulse edges Track A Track B Pulse edges Synchronizing pulse, master Synchronizing pulse number, master H100 (in this case: 52) Slave drive, pulses, pulse edges Track A Track B Pulse edges Synchronizing pulse, slave Synchronizing pulse number, slave H102 (in this case: 104) Fig. 3-3 Explanation of the synchronizing pulse number Operating mode The displacement actual value can be determined once if the master- and slave drives pass over the two synchronizing marks at least once. This can be determined in two ways: * "continuous" (H091=0) displacement determination: As soon as the displacement actual value has been determined once, i. e. both synchronizing marks have been passed once, then an displacement actual value (d094, d095) is calculated each time a synchronizing mark is passed. The number of synchronizing pulses passed is counted and is evaluated with the synchronizing pulse numbers (H100 and H102). This allows the actual displacement to be determined, even if the associated synchronizing pulse of the other drive is missing. Several revolutions of the machine parts to be synchronized may be included in the displacement actual value. For a synchronizing operation, several synchronizing pulses which are passed are corrected ("revolutions"). This is the default mode. * "Retrigger" displacement calculation (H091=1): When synchronizing, correction is only made within a synchronizing pulse period. This corresponds, for example, for a zero pulse during one encoder revolution. The "Retrigger" operating mode should be used, if 1. if, for technology reasons it is sufficient or it makes more sense to only synchronize within one "revolution", or 2. if the synchronizing pulse number can only be determined with insufficient accuracy. In this case, both synchronizing pulses are required in order to determine the precise displacement. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 43 Function description In order to determine a new displacement, both synchronizing marks must be again passed. The number of synchronizing marks which are passed is not counted. If an displacement of several revolutions is to be obtained, then this is lost the next time the displacement is calculated. NOTE In the "Retrigger" mode, the danger exists, that the angular control loop becomes unstable if the dynamic performance is set too high and for low-frequency synchronizing pulses. This is because if the two synchronizing pulses occur one after the another, alternating positive and negative displacement actual values could be determined, which the angular controller would attempt to correct Example: +10 would be obtained from an displacement of -370 Edge evaluation The displacement is determined when the synchronizing pulse edges are received using the position actual values from the master- and slave drives. Using the example of the switching cam in Fig. 3-4, this corresponds to edge a for clockwise direction of rotation or edge b for counter-clockwise direction of rotation. The synchronizing circuit has a so-called direction of rotationdependent edge evaluation, i.e. synchronization is realized for both directions of rotations at the same edge of the switching cam and more precisely, at the front (positive) edge of the synchronizing pulse when rotating clockwise (in Fig. 3-4, edge a). When rotating counter-clockwise, synchronization is realized at the falling edge of the synchronizing pulse (i. e. at edge a). Proximity switch L S S=switching cams, length L with edges a and b b a RL Fig. 3-4 Command type Resetting displacement calculation NOTE 44 LL Determining the displacement and synchronizing for clockwise- and counterclockwise directions of rotation The synchronizing command can be parameterized for either signal levelor edge control using parameter H092. The synchronizing command must be 1 for at least the time it takes to determine the displacement. For signal level control, the displacement is corrected as long as the signal is active (logical 1); for edge control, correction is only executed once after a positive (01) edge. The displacement isn't suddenly corrected, but it is corrected with a pulse number, which can be set using parameter H093, at each sampling time. Resetting the displacement calculation is realized by * using the reset position control signal (refer to Chart 90) * by enabling the angular controller The displacement calculation should only be reset briefly when required, for example, when the drive starts. After this, it is SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description automatically controlled by the internal monitoring function The displacement at the instant that at least one synchronizing pulse is received, is calculated using the function block Displace in the CFC Chart SYNC02. Displacement calculation NOTES * The distance between two synchronizing operations may not exceed 231 quadrupled pulses. * The time between two synchronizing operations must be greater than 4.8 ms (for safety reasons, 4x sampling time for a basic sampling time of 1.2 ms) * The synchronizing pulse must be inactive for T > 1.6 ms, i. e. low (for safety, 2x sampling time for a basic sampling time of 1.2 ms). Synchronizing example Master- and slave drive with pulse encoders mounted on the motor shaft. The pulse encoders generate two pulse series, displacement through 90 and zero pulses. The drives should be synchronized, so that the zero pulses (synchronizing pulses) are always simultaneously received. The pulse trains would look like this on a suitable plotter or oscilloscope: Pulses, slave Track A Track B Synchronizing pulse, slave Position act. value, slave Pulses, master Track A Track B Synchronizing pulse, master Positon act. value, master Synchronizing command (edge-dependent) Determine offset Correction duration Fig. 3-5 Calculating the displacement and synchronization SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 45 Function description 3.3.3 Noise-immune synchronization An adjustable enable threshold is used to suppress multiple edges (switch bounce) and suppress disturbances on the synchronizing pulse cable. Erroneous synchronizing pulses, caused by switch bounce or disturbances, can have, among others, the following results: - inaccuracy in the angular position, - the synchronizing control sense could be reversed, as the rigid sequence of synchronizing pulses is interrupted (e.g. master-, slave-, master drive), - the slave drive could run without any closed-loop control. Thus, the synchronizing pulse cables must be especially carefully routed and shielded. The following diagrams should show the behavior at contact-bounce and the resulting evaluation. Signals at the T400 terminals Switching threshold Internal evaluation Fig. 3-6 Signal characteristic with clear pulse edges, e.g. for zero pulses from pulse encoders Synchronizing pulse at the T400 terminal Switching threshold Te > 0,8 Internal evaluation Fig. 3-7 NOTE Noisy signal characteristics, e.g. for proximity switches. Disturbances and noise which occur in the sampling time are automatically suppressed when processed in the sampling time ! Faults which occur between two leading edges of the synchronizing pulses can be suppressed by entering an enable threshold when a specific position actual value is reached. The synchronizing pulses are 46 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description only evaluated again after the position actual value exceeds the threshold for the master- (H107) or slave drive (H105) (refer to Fig. 3-8). Calculating the limit value of the enable thresholds (H105, H107): 1.) If the situation is non-critical, the enable threshold can be set to approx. 95% of the synchronizing pulse numbers (parameters H100 and H102). If the synchronizing pulses are noisy or there is the danger, that at high speeds, an enable threshold for the enable minimum duration tmin (refer to Fig. 3-8) is not maintained, then enable threshold d can be calculated using the following formula: d = SS x (1 - t min+ SF x TS ); TS d>0 Whereby: SS Number of pulse edges between 2 synchronizing pulses TS Time between 2 synchronizing pulses at the maximum speed tmin Minimum enable time. Time period where synchronization is permitted; calculation: e.g.: 4 * T1 (4 * base sampling time = 4.8 ms) SF Safety factor (0.05 to 0.1) if the synchronizing pulse comes earlier due to mechanical inaccuracy. Limit value d designates the enable threshold for the synchronizing pulse. It defines, how many edges (pulses * 4) must be counted after synchronization (i. e. how high the position actual value must be) before the next synchronizing operation is enabled. Limit value d must be separately calculated for master- and slave drive. Bounce time ( typical 1 ms .. 10 ms) tsyn Signal at the T400 terminal Switching threshold Enable TS Inhibit duration f (threshold) Enabled tmin Inhibited Internal evaluation Fig. 3-8: Effect of the enable control (only one drive is shown) SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 47 Function description 3.3.4 Synchronism achieved The threshold for the "Synchronism reached" signal can be set using parameter H103. A high signal is output at digital output terminal 46 when synchronism is reached. Conditioned actual displacement Dynamic fluctuations in the angular difference, which are mirrored in the actual displacement, are taken into account by correcting the displacement actual value by the differential angular actual value. This corrected actual displacement is known as the conditioned actual displacement. Synchronism is reached, if the conditioned actual displacement has been determined and this is zero or is a selected displacement setpoint (including a possible synchronizing displacement setpoint which is dependent on the direction of rotation), i. e. conditioned actual displacement = displacement setpoint H103. Significance Par. Explanation d056 Actual displacement setpoint Display parameter H091 Trigger condition, actual displacement sensing 0 1 = = continuous retrigger H092 Edge evaluation, synchronizing command 0 1 = = level controlled (continuous) edge-controlled (once) H093 Correction pulse number Select the lowest possible value (preferably 1); this should be increased, if the displacement, in spite of low-frequency synchronizing pulses, must be quickly corrected, or if required, for the "Retrigger" operating mode d094 Displacement actual value Display parameter; also includes, if relevant, a set displacement setpoint d095 Actual displacement - differential position act. value Display parameter d096 Actual displacement sensing, error identification: Bit 0 = Overflow SSslave Bit 1 = Overflow SSmaster Bit 2 = Overflow SSslave (H102) Bit 3 = Overflow SSmaster (H100) Bit 8 = Overflow displacement- diff. pos. actual value Display parameter SS = Sum of the synchronizing pulses H100 Synchronizing pulse number, master Pulse edges (pulses *4) of the master drive, which are received between 2 synchronizing pulses H102 Synchronizing pulse number, slave Pulse edges (pulses *4) of the slave drive, which are received between 2 synchronizing pulses H103 Response threshold, synchronism reached If the actual displacement = displacement setpoint H103, synchronism has been reached. H105 Enable threshold, slave synchronization To suppress the effects of contact bounce and suppressing disturbances on the zero pulse cable. H107 Enable threshold, master synchronization Same as H105 Table 3-12 Parameters for displacement sensing/synchronization 48 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description 3.4 Closed-loop angular control Closed-loop angular synchronous control refers to a cascading speed control loop with a higher-level angular control. The angular controller has the task to control the relative angular position between the master- and slave drive to zero or to an displacement setpoint. Angular differences, which can be obtained due to different load levels and speed fluctuations are corrected. The implementation of an angular controller is shown in Function Chart 110 (Appendix). Principle 3.4.1 Enable signals The angular controller is enabled as a result of the following two conditions Principle * External enable, angular controller enable (H173, H131,H139), and * Enable threshold of the angular controller (H118) The angular controller is first enabled. The angular control (d109) is actually enabled by automatically monitoring the speed actual value of the slave. An enable threshold defines the margin between the speed setpoint of the slave and speed actual value of the slave. As soon as the enable threshold is reached, the angular controller is automatically switched-in. The displacement calculation is simultaneously reset together with the position actual values of the slave/master. This avoids unnecessary overshoot and non-stable rotary motion of the closed-loop angular synchronous control if there is a considerable speed difference between the master and slave (e. g: when powering-up or powering-down a slave while the master is running). Flying synchronization 3.4.2 The SPA440 standard software package permits this automatic monitoring function to also synchronize a stationary slave with a flying master, and to establish angular synchronism. Before the slave speed actual value approaches its setpoint, or an enable threshold is reached, the angular controller becomes inactive. The displacement calculation and slave/master position are simultaneously reset. Only the speed control operates during this time. Synchronization is only executed after the angular controller has been actually enabled. Displacement setpoint A shift between the relative angular position of the master- and slave drives can be set using the displacement setpoint. If synchronization was not realized, the displacement setpoint refers to the angular drive position at the instant that the differential position actual value was last set, e.g. that the angular controller was enabled. If synchronization was realized, the displacement setpoint refers to the synchronized angular position. The displacement setpoint is defined as the number of slave-encoder pulse edges (pulses 4), which the slave drive leads with respect to the master drive. The limits can be set using parameters H054, H055. Examples: Encoder pulse number, slave = 1000 (H010) SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 49 Function description The slave drive should lead the master drive by 0.5 revolutions displacement setpoint = 0.5 * (1000 * 4) = 2000 pulses The displacement setpoint is fed to the angular controller via a rampfunction generator. The ramp-up time should be selected to be as high as possible (recommended: 5 s to 10 s). NOTE Direction of rotation-dependent synchronous displacement The displacement setpoint, in the displacement calculation = retrigger (H091=1) mode, should be a maximum of half of a revolution of the parts which are to be synchronized (safety-/control margin, refer to Section 3.3.1) It is possible to provide an displacement setpoint depending on the direction of rotation. Generally, independent of the direction of rotation, the same edge of the synchronizing signal is always used (i. e. the same encoder position). Various displacements can be added to the speed setpoint using parameters H062 to H064 depending on the direction of rotation of the master and slave. Param. Master speed Slave speed H062 Positive Positive Slave lags H063 Negative Positive Slave lags H064 Positive Negative Slave leads H065 Negative Negative Slave leads Table 3-13 3.4.3 Displacement for positive value Direction of rotation-dependent synchronizing displacement setpoint Angular controller The angular controller can be operated as P- or PI controller (H110). Optionally, the P gain can be adapted as a function of ratio u. Smoothing, differential position actual value The differential position actual value is smoothed using a PT1 element. The smoothing time is set using parameter H117. The smoothed differential position actual value is used as actual value for the angular controller. Adapting the P gain The angular controller provides a supplementary speed setpoint for the speed controller at its output. For high speed ratios u, an overproportional high supplementary speed setpoint is demanded and at low speeds, an appropriately below-proportional low supplementary speed setpoint. This non-linear interdependency is simulated using a polygon characteristic (refer to Fig. 3-9), The polygon characteristic sets the P gain, dependent on the ratio. The characteristic linearly interpolated between transition points A and B. The P gain should be adapted if the ratio is changed in operation by factors of approximately > 1.5 or < 0.75. 50 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description KP B H113 KP_UE H114 KP_UE_O A u -H115 H116 ue_KP_O -H116 No adaption for: H115 ue_KP H115 = H116 = 0 H113 = H114 Fig. 3-9 Adapting the P gain for the angular controller The adaption values are determined empirically using the usual techniques: 1. Starting from the standard setting (no adaption), the highest ratio is selected. This is entered for ue_KP, and the control should be optimized for this value (KP_UE). 2. The lowest ratio is then selected. This is entered at ue_KP_0, and the control should be optimized for this value (KP_UE_0). Example: Parameter list Ratio range: 0.2 to 4.0 H116 = ue_KP_0 H114 = KP_UE_0 H115 = ue_KP H113 = KP_UE = = = = 0.2 3 4.0 5 Table 3-14 lists the parameters used in the angular controller. The structure is illustrated in Chart 110. Parameter Significance H052 Ramp-up time, displacement setpoint H053 Ramp-down time, displacement setpoint H054 Setpoint limiting, positive Displacement setpoint limiting H055 Setpoint limiting, negative Displacement setpoint limiting d056 Actual displacement setpoint Display parameter H062-H065 Direction of rotation-dependent displacement setpoint Synchronizing displacement setpoint (refer to Table 3-13) H066 Fixed setpoint Default `0' H110 Angular controller as P controller (0 / 1 = no / yes = = PI / P controller) H111 Integral action time TN I controller H112 Limit value, angular controller Positive and negative output limiting (as a % of the rated speed) H113 P gain, KP_UE P gain for a high ratio u > ue_KP SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Explanation 51 Function description Parameter Significance Explanation H114 P gain, KP_UE_0 For a low ratio H115 Limit value, ue_KP From a P gain = KP_UE H116 Limit value, ue_KP_0 From a P gain = KP_UE_0 H117 Smoothing, differential pos. act. value Smoothing time H118 Threshold for angular controller enable Reduce for a low speed setpoint (default 0.1) and monitoring the slave speed d120 Output, angular controller Display parameter d121 System deviation, angular controller Display parameter d122 I component, angular controller Display parameter d109 Status of the angular controller enable Also available at digital terminal 48 Table 3-14 3.5 Parameters for the angular controller Closed-loop speed control External or internal The closed-loop speed control is either external using the connected drive converter or internal on the T400 processor module. The "Closedloop speed control external or internal" option is used to select one of these alternatives, which can be controlled using parameter H140 (H140 = 1 internal on the T400). Parameter H140 = 0 is the default setting, i. e. the closed-loop speed control is implemented in the drive converter of the slave drive. It receives a speed setpoint via the communications interface to the basic drive. The speed controller structure is illustrated in function chart 120. 3.5.1 Ratio Ratio u is defined as the ratio between the speed of the master drive referred to the speed of the slave drive. The actual ratio comprises three parts (refer to Chart 80): * Ratio (d060) * Relative change of the ratio (d061) * Supplementary ratio (this is added) Relative change A ratio, entered as absolute value is used, for example, to set stretching factors and compression factors for material webs in a user-friendly fashion. The absolute ratio is multiplied by a value, which is supplied from a source which can be selected using H048, H068. If this factor has the value 1.0, the selected ratio is not changed. Supplementary ratio 52 A fixed ratio can be set using parameter H047; the product of d060 with d061 is added to this value. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description 3.5.2 Master speed setpoint The master speed setpoint is the speed setpoint at which the master drive should rotate. The speed setpoint for the slave drive is calculated from the speed master setpoint after smoothing (H072; refer to Chart 115) and after dividing by the ratio. This is fed to the speed control which is superimposed on an angular control. The master speed setpoint source is selected using a parameter (H070, H071). The setpoint smoothing (in ms) is set using parameter H072. This is recommended, if the master speed actual value is used as master setpoint (setting, H070 = 15). NOTE If the angular controller or synchronization is used, then the slave master setpoint with respect to the master may only be changed using ratio u. The angular difference, which occurs as a result of the ratio, does not appear as differential position value, so that the angular controller does not have to work to correct it. 3.5.3 Inertia compensation System deviations from angular synchronism, which can occur when the master speed setpoint changes quickly, can be reduced using the "inertia compensation" function. The inertia compensation acts as pre-control value for the speed controller. The sources for the inertia compensation can be selected using parameters H080 and H244. The following drawing clearly illustrates the characteristics of the DT1 element and the influence of the parameters: X(t) X H083 H082 Y(t) t H082 Fig. 3-10 Setting: Step response of the DT1 element to illustrate the use of parameters H082 and H083 H082 generally lies in the range between 100 ms and 500 ms. The magnitude of the differential element output quantity is set using parameter H083. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 53 Function description 3.5.4 Speed controller Kp adaption The speed controller is a PI controller. If extremely low speeds (n* < 0.05 nrated) are used, then we recommend a speed setpoint-dependent adaption of the P gain. This can be implemented using an adjustable polygon characteristic. The characteristic is linearly interpolated between the corner points A and B. KP A H142 KP H141 KP_O B n -H143 Fig. 3-11 -H144 H144 n_KP_O H143 n_KP P gain adaption for the speed controller The adaption values should be determined using the usual techniques and using the following experiments: 1. Starting from the standard setting (no adaption), the lowest speed should be determined, where the already optimized drive, manifests the required control quality. 2. Then, for n_KP_0, the value n_KP_0 = n_KP/2 is approximately defined. 3. The speed is entered as under 2. and approached. The closed-loop control is then optimized with KP_0. 4. The values for KP_0 and n_KP_0 must still, if required, be varied. 3.5.5 Jogging When jogging is enabled, a jog setpoint is added to the master setpoint. This means that the slave speed can be changed with respect to the master speed, and it is possible to take-up or slack-off with respect to the master. Jogging is not practical in the closed-loop angular control mode, except for test purposes, as the angular controller acts to oppose the jog setpoint. The jog setpoint is set as fixed value using parameter H130. The source of the jog enable is defined using H171, H208 (refer to Chart 115). 54 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description 3.5.6 Parameters to the speed controller Param. Significance Explanation H040 H048 H070 Multiplexer, ratio Multiplexer, relative ratio Multiplexer, master speed setpoint H072 Smoothing, master speed setpoint H080 Multiplexer, inertia compensation Only required due to compatibility to V2.01. H130 Jog setpoint Selectable supplementary speed value H132 Speed setpoint limiting, positive H133 Speed setpoint limiting, negative H134 Speed controller output limiting, positive H135 Speed controller output limiting, negative Reference to the speed controller on T400 H140 Speed controller calculated on T400 0/1 == no/yes H141 KP: P gain H142 H143 H144 H145 d150 d152 KP_0: P gain Limit value for KP Limit value for KP_0 Integral action time, speed controller Speed controller output Actual basic drive setpoint At high speeds n > n_KP At low speeds Speed n_KP, from the P gain = KP Speed n_KP_0, up to the P gain = KP_0 Default 200 ms Effective at H140=1 At H140=1, d152=d150 At H140=0, d152= speed setpoint d153 H171 KP speed controller Jog enable Table 3-15 Only required due to compatibility to V2.01. Only required due to compatibility to V2.01. Only required due to compatibility to V2.01. Reference to the speed controller on T400 Only required due to compatibility to V2.01. Parameters to the speed controllers SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 55 Function description 3.6 Open-loop control In order to control open-loop angular synchronism, in addition to the setpoint, five control signals have to be handled (the control signals in this documentation are always written in italics): * displacement reset * reset position * angular controller enable * synchronizing commend * jog enable The sources of these control signals can be selected per multiplexer (refer to H170 to H174), or can be connected-up as required using BICO connection. Several options are possible to generate control words for the basic drive or for output via the communications interface: * Fixed values can entered * Control words can be transferred from one interface to another (e. g. control word 1 from CB to control word 1 CU) * The control word can be selected bit by bit (e. g. by combining a CB control word with digital inputs) Also refer to function charts 170 to 570. 3.7 Faults, alarm and status display 3.7.1 General information on faults and alarms Fault- and alarm statuses contain various monitoring quantities (Table 3-16). The quantities, which are to be transferred to the basic drive as alarm or fault are selected using the two masks H003 or H004. If at least one of the bits, enabled per mask, is set to 1, then the associated digital output is activated (fault, terminal 49; alarm, terminal 51). In the factory setting, all faults and alarms are de-activated, i. e. H003 = H004 = 0. Fault 56 The basic drive is fault tripped if a bit is set in the fault word and it is appropriately enabled with mask parameter H003 (behaves the same as OFF2, i. e. the equipment is powered-down and the drive coasts-down). The fault is saved in the basic drive. As soon as the cause has been resolved, i.e. the associated bit has become 0, then the fault can be acknowledged on the basic drive. The fault cannot be acknowledged as long as a fault exists (="1"), and is transferred to the basic drive via the dual port RAM! SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description When appropriately enabled with mask parameter H004, alarms are displayed as appropriate numbers on the operator panels. They do not influence the drive. They cannot be acknowledged, but can be deleted automatically when the cause has been removed, as soon as the appropriate bit has become 0. Alarms Bit 0 1 2 3 4 5 6 7 8 Monitoring Time overflow COMBOARD (correct data have not been received) Time overflow peer-to-peer (correct data have not been received) Speed controller at its limit Angular controller at its limit External fault Master speed not plausible (deviation w. r. t. the master setpoint is too high) Slave speed not plausible (deviation w. r. t. the setpoint is too high) Error, speed sensing, master (illegal parameterization, refer to d021) Error, speed sensing, slave (illegal parameterization, refer to d120) Table 3-16 Fault Alarm F116 F117 F118 F119 F120 F121 F122 F123 F124 A097 A098 A099 A100 A101 A102 A103 A104 A105 Monitoring functions and associated faults and alarms Suppressing the fault/alarm message Fault- and alarm messages can be suppressed using selectable masks. The appropriate monitoring function is evaluated if a bit in the mask is set to 1. Example: H003 = 16#0021 H003 = 0000 0000 0010 0001 Bit 0 = 1 Bit 4 = 1 (input with CFC) (digital input with OP1S) time monitoring COMBOARD (watchdog) can initiate a fault external fault can initiate a fault We recommend that when commissioning the basic drive, the fault- and alarm messages of the T400 are de-activated using parameters H003 and H004. When the system is operated, these monitoring functions should be re-enabled. 3.7.2 Monitoring the communication coupling Principle The communication monitoring function checks, whether in a definable period, a valid telegram (and error-free) has been received. If this is not the case, the associated error bit is set. If valid telegrams are again received after an error, the error bit is again reset. Note In order to make the first commissioning steps easier, so that they are not hindered by non-relevant fault trips, when the angular synchronous software package is supplied, the communication errors and alarms are suppressed per mask (H003, H004). If communications are used, the associated status bits to initiate a fault must be re-enabled! Power-on time limit SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 57 Function description After power-up, it must be assumed that it will take several seconds until the communication channels become operational. Thus, the so-called power-on time limit is decisive for this particular phase (peer H360; COMBOARD H462). Time limit for cyclic operation As soon as the initialization delay time after power-on has expired, or already valid telegrams have been received, the cyclic monitoring time for the telegram error identification becomes effective (watchdog). This is defined using parameter H361 (peer), H496 (COMBOARD). For this monitoring time, for CB1 (PROFIBUS), if necessary, the number of nodes must be taken into account, as the reception of telegrams depends on the number of nodes (stations) and the send clock cycle. 3.8 Application example 3.8.1 Synchronous operation and synchronizing using as an example a gantry crane The following traversing gear of a container crane can be used as a specific example for the necessity of having synchronization. Task description Both sides of the crane traversing gear (fixed legs-master drive and moving legs-slave drive) should operate with position synchronous control and in synchronism. This prevents the crane running skew in the rails along the quay. Necessity Synchronization is required in this case, as the pulse encoders are mounted on the motor and therefore do not directly represent the movement of the crane (position actual value), but instead, the position of the wheels (as a result of slip, wheel slip, etc.). If the wheels slip, then errors can occur in the drive actual value sensing resulting in errors in the position difference as controlled variable between the two drives. Task The task of synchronization is to correct the above mentioned errors. The position actual values of the two drives are set to defined, actual position values when fixed synchronizing marks are passed. The difference between the two drives, after the second drive has passed its mark, is known as displacement. This displacement is the real position difference between the two drives, which must be corrected. As it involves a linear-axis application, synchronization is always realized when the position value of the master and slave is approx. 0.0. Thus, in this case, synchronization must always be enabled. This means that the position-dependent synchronization must be de-activated (H105 = H107 = 0.0). Bero proximity switch 58 To realize this, the position actual value is set to zero on both sides when the synchronizing mark is passed - Bero proximity switch 3. The position marks are mechanically located and precisely aligned along the crane track. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Function description If the crane traversing gear arrives at the synchronizing mark in a skew position, then at first, the position actual value of side 1 is set to zero, and then the position actual value of side 2. The position actual values of the master and slave are therefore corrected. Displacement The pulses, which are sensed between these two events, represent the displacement. The displacement is added to the position difference (in small steps), whereby the angular controller identifies a position difference which is the same as the displacement. The skew position is resolved after the position difference has been corrected. Coarse signal mark Fine signal mark 1 2 3 4 Synchronizing marks 1 4 3 Motion direction Crane traversing gear in the skew position Side 1 master drive Fig. 3-12 2 Fine signal evaluation Coarse signal evaluation (BERO) Side 2 slave drive Closed-loop synchronous operation of a crane traversing gear SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 59 Parameters and connectors 4 Parameters and connectors 4.1 Parameter handling Definition Parameters are used to * visualize internal quantities (monitoring parameters) * to change fixed values * to change connections (BICO parameters) All of the parameters which refer to the function and setting of the technology module are called technology parameters. The technology parameters for the closed-loop synchronous control appear in the function charts with the following symbols: Rated speed (1500 RPM) H123 Display text Pre-setting Offset actual value d094 Parameter number Parameter which can be changed Fig. 4-1 Monitoring parameters Representing parameters in the function charts When changing parameters, it should be observed that there are initialization parameters, which only become effective after the T400 has re-started. In addition to technology parameters, there are so-called basic drive parameters for the drive converters used. These should be taken, together with the associated function charts of the documentation of the drive converter used. It should be noted, that the parameters are selected by entering a number (e.g. at the drive converter operator panel). However, for the display, the most significant position is replaced by a letter, which is intended to symbolize as to whether it involves a quantity which can be changed or not changed. Example Value Number "1956" is entered to select technology parameter "H956". Significance range Parameter display (example) can be changed cannot be changed 0 ... 999 Lower parameter range of the drive converter P123 r123 1000 ... 1999 Lower parameter range of the T400 H123 d123 2000 ... 2999 Upper parameter range of the drive converter U123 n123 3000 ... 3999 Upper parameter range of the T400 L123 c123 Table 4-1 Parameter number specification 60 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors 4.1.1 BICO parameters Contrary to (value) parameters, BICO parameters define connections. This means that parameters specify a fixed value at an input, and on the other hand, BICO parameters select the signal source, which is connected to the input. This signal source must be defined in the form of a connector. The BICO parameter appears as a parameter in the symbol of a BICO input (refer to Fig. 4-2). The source and target of a BICO connection must have the same data type. This means that digital quantities (BOOL) cannot, for example, be connected to floating-point inputs. Thus, for the data type used, there are different symbols in the function charts for connectors and BICO inputs. Changes not possible Remedy: Re-wiring work demands memory space if new connections are to be generated, and if it involves connections between various time sectors. If the available memory space can no longer accept connection changes, then this can be identified when the required re-connection is no longer possible (OP1S display jumps to the old connector value). Rest the module (power OFF - ON). Memory space which is not used is enabled when the module restarts. Connector name Connector number BICO parameter S.enable Connecting: BOOLean values B0123 H681 (0123) B (120,3) Status bit_XY PZD_123 S.control word L430 (2541) K (200,8) CU_DoppelXY S.double word P501 (5021) KK (60,2) Data type symbol 16-bit values 32-bit values Floating-point values K2541 KK5021 KR3155 Speed 4.1.2 Number of the connected connector (factory setting) Chart, sector of the source for the factory setting S.speed actual value L321 (3155) KR (330,1) Connectors Fig. 4-2 BICO input name BICO inputs Symbols for connectors and BICO inputs Resources to adapt the software and commissioning Various resources are available to adapt the standard software package to particular applications. The resources essentially differ by the intervention possibilities, which are shown in the following table. The parameter name, displayed at OP1S, is a maximum of 16 characters long, and it is possible to toggle between German and English using initialization parameter H000 (reset is required after a change has been made!). SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 61 Parameters and connectors Name Explanation PMU Input field for all MASTERDRIVES- and DC Master units (with 4-digit display) OP1S Operator device with numerical keypad and 4-line text display; can be directly connected to the PMU. SIMOVIS Start-up- and parameterizing software for the PC (Windows). It provides an oscilloscope function for MASTERDRIVES MC. CFC Graphic engineering tool which is used to generate the standard software package. It is connected to the service interface of the T400. Prerequisite: STEP 7; D7-SYS Service-IBS Simple start-up- and diagnostics tool for PC (DOS). It can also be used as Telemaster for (Serviceremote diagnostics. start-up) Table 4-2 Adaption- and start-up tools Intervention CFC PMU OP1S SIMOVIS Service-IBS View value Any Parameter Parameter Parameter Any Change value Any Parameter Parameter Parameter Any Change connection Any BICO BICO BICO Any Insert block Yes No No No No Delete block Yes No No No No Change execution sequence Yes No No No No Change cycle time for processing Yes No No No No Duplicate software Yes No No No No Duplicate the complete parameter set No No No Yes (Macro) Documentation Charts No No Parameter lists No Table 4-3 Adaption- and start-up tools For several parameter types, as a result of the limited resolution at input or due to conversion operations, rounding-off errors can be expected. Further, in some cases, more decimal places are offered than can actually be set. I/O can be read and changed using CFC online or the simple IBS program (start-up program) (TELEMASTER) via the T400. This allows parameters to be influenced. Changing connections: If a connection between function blocks is required, which is not intended as BICO connection, then this can be simply realized using the basic IBS program (TELEMASTER). In this case, the complete path name (CFC software package) of the source and target are required in the following form: CFC-chart name.Block name.Connector name 62 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors To realize this, the parameter list, in addition to the parameter description, contains the complete I/O designation, which can be used as source or target for a connection. If a connection is changed using the simple IBS, this is not identified as a parameter change, and therefore cannot be read-out with SIMOVIS. This means that it cannot be transferred to any other modules with angular synchronism! Caution: 4.2 Parameter list The parameters used in the standard angular synchronism software package are listed on the following pages. The list has the following format: Parameter Description Data Hxyz (Lxyz) Parameter designation Parameter description for a technology parameter which can be set Parameter with the supplement initialization parameter, means when this parameter is changed, the change only becomes effective after the power supply voltage has been powered-up again. Chart name.Block name.Connection Value, factory setting type Min lower limit Max upper limit Chart chart, sector Parameter description for a visualization parameter (cannot be set). Letters "d" or "c" symbolize the displacement values 1000 ("d") or 3000 ("c"). This should be taken into account when selecting the parameter with OP1(S). Type Initialization parameter dxxx (cxyz) Parameter designation Chart chart, sector Chart name.Block name.Connection Table 4-4 Listing type for input- or display parameters Type abbrev. Type BO BOOL I INT W WORD Significance Logical quantity Integer number; signed Integer number; unsigned; hexadecimal and binary displayed at OP1(S) Example, display on OP1S Value range, OP1S 0 0, 1 -12345 -32768 ...32767 2F03hex 0000 ... FFFF 0010111100000011 (0 ... 65535) DI DINT Double integer number (32 bit); signed 123456789 2147483647 R REAL Floating-point number. Input using OP1(S) is restricted to 6 places before the decimal point and 3 places after the decimal point, whereby the range is limited to 199999.999. 123456.789 2147483.647 SD SDTIME Time in [ms] 200.000 ms 0 ... 2147483.647 ms N2 INT N4 DINT Table 4-5 16-bit fixed point quantity for drive converter comp. Value range: -32768 ... 32767 => -200% ... 200% As for N2; however 32-bit resolution: 16#40000000 = 1073741824 => 100% Data types and range for parameterization with OP1S SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 63 Parameters and connectors Table 4-6 Parameters of the SPA440 standard software package Parameter Description Data H000 0 = German 1 = English Value: 0 Type: I Language select Initialization parameter d001 Software Type IF_CU.DRIVE.PLA Identification of the angular synchronism, standard software package on T400 = 440 Type: I Chart: 40, 3 PAR_GER.SW_TYP.Y d002 Actual software version (2.020) Software Version PAR_GER.SWVERS.Y Type: R Chart: 40, 3 H003 Fault messages are enabled bitwise Error Mask Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 COMBOARD, receive faulted Peer-to-peer, receive faulted Speed controller at its limit Angular controller at its limit External fault (refer to H665) Master speed outside the tolerance (refer to H119) Slave speed outside the tolerance (refer to H118) Error, speed sensing, master (refer to d020) Error, speed sensing, slave (refer to d021) Value: 16#0000 Type: W Chart: 160, 4 F116 F117 F118 F119 F120 F121 F122 F123 F124 Bits 9 ..15 can be optionally assigned. In the default setting, all of the error messages are suppressed to facilitate commissioning. If communications are used, the monitoring function must be re-enabled CONTR.ErrorMask.I2 H004 Warnings are enabled bitwise Warning Mask Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 COMBOARD, data receive faulted Peer-to-peer, data receive faulted Speed controller at its limit Angular controller at its limit External fault (refer to H665) Master speed outside its tolerance (refer to H119) Slave speed outside its tolerance (refer to H118) Error, speed sensing, master (refer to d020) Error, speed sensing, slave (refer to d021) A097 A098 Value: 16#0000 Type: W Chart: 160, 7 A099 A100 A101 A102 A103 A104 A105 Bits 9 ..15 can be optionally assigned. The default suppresses all warning messages! CONTR.WarnMaske.I2 d005 Status of the standard angular synchronous control software package State of Control Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 Angular controller enabled Speed controller on T400 enabled Synchronism reached Angular controller at its limit Speed controller at its limit Master speed outside its tolerance (refer to H119) Slave speed outside its tolerance (refer to H118) Time overflow, basic drive PROFIBUS, data receive faulted Peer-to-peer, data receive faulted Slave has synchronized (10 ms pulse) Master has synchronized (10 ms pulse) Position actual value slave > enable threshold Status displacement determined Warning active Fault active Value: 16#0000 Type: W Chart: 40, 7 CONTR.Statuswort.QS d006 Error Bits Status of the monitored error sources. The assignment corresponds to the mask in H003 Type: W Chart: 160, 4 CONTR.Fehlerzustand.QS 64 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data d007 Status of the monitored warning sources. The assignment corresponds to the mask in H004 Type: W Chart: 160, 6 Warning Bits CONTR.Warnzustand.QS H008 TechBoard ParTyp Initialization parameter H008 is used to define the data type which is used to transfer type R parameters (real) via the USS slave interface. Generally, real parameters must be converted into a 32-bit fixed-point value (e. g. for OP1S). Value: 0 Type: BO Chart: 40,1 0: Transfer in the fixed-point format 1: Transfer in the floating-point format IF_CU.DRIVE.TF H009 T400 = Baseboard Initialization parameter Activates basic drive converter functions if the T400 is used in the SRT400 Value: 0 without a basic drive, and if it should behave with respect to an adjacent T400 Type: BO just like a basic drive. In this case, all of the parameter numbers are shifted Chart: 40,1 (offset) by 1000. This means, that H123 becomes P123. Caution: Only set H009 to 1, if parameterization is still possible, as it is neither possible to operate in the basic drive nor parameterize via the PMU or OP1(S)! 0 1 T400 operates as technology module (in the basic drive or SRT400) T400 behaves just like a basic drive (in the SRT400 as basic drive) IF_CU.DRIVE.BBF H010 Pulses Slave Initialization parameter H011 Pulses Master Initialization parameter H012 Nom. Speed Slave Number of pulses (of a track) per revolution of the incremental encoder at the slave drive. Value: 1024 Type: I Chart: 60, 4 SYNCO2.SlavePulse.X Number of pulses (of a track) per revolution of the incremental encoder at the master drive (=speed sensing 2); Value: 1024 Type: I Chart: 70, 4 SYNCO2.MasterPulse.X Nominal (rated) speed of the slave drive in RPM. This is referred to speed 1.0. A sign reversal of the value corresponds to interchanging the pulse encoder tracks. It is not permissible to use the value 0. Value: 1500.0 Type: R Chart: 60, 4 SYNCO2.SlaveNnenn.X H013 Nom. Speed Master Nominal (rated) speed of the master drive in RPM. This is referred to speed 1.0. A sign reversal of the value corresponds to interchanging the pulse encoder tracks. It is not permissible to use the value 0. It is especially important to enter the right value when using the master encoder signal as master setpoint for the slave. Value: 1500.0 Type: R Chart: 70, 4 SYNCO2.MasterNnenn.X d014 Speed Slave Speed actual value of the slave in RPM; (normalization can be selected with parameter H058) Type: R Chart: 60, 7 SYNCO2.n_Slave.Y d015 Speed Master Speed actual value of the master in RPM (normalization can be selected with parameter H059) Type: R Chart: 70, 7 SYNCO2.n_Master.Y d016 Slave Position Number of quadrupled pulses of the slave drive since the last synchronizing pulse. For a negative direction of rotation, the value is counted down (decremented). Type: R Chart: 60, 7 SYNCO2.Slave.YP d017 Master Position Number of quadrupled pulses of the master drive since the last synchronizing pulse. For a negative direction of rotation, the value is counted down (decremented). Type: R Chart: 70, 6 SYNCO2.Master.YP SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 65 Parameters and connectors Parameter Description H018 Slave speed sensing mode 1 Mode Slave Speed Initialization parameter Data Value: 16#7FE2 Type: W The mode of the speed sensing block for the slave drive is selected using this Chart: 60, 2 parameter; this especially involves the digital filter, the encoder type, the coarse signal type selection and the direction of rotation dependency of the synchronizing pulse (zero encoder pulse), as well as the source of the encoder pulses. The selected mode is highlighted (in bold letters). Refer to the SIMADYN D Reference Manual for an additional description as well as the function block library, function block NAVS, connection MOD. - - - X: the last hexadecimal position = 2 has the following significance: Bit 0 0 1 encoder 1: Two pulse tracks, offset through 90 encoder 2: There is a dedicated track for each direction of rotation Bit 3..1 digital filter with time constant/limiting frequency 500 ns / 2 MHz 000x no filter 001x 010x 011x 100x 500 ns (encoder 1) 2 s (encoder 1) 8 s (encoder 1) 16 s (encoder 1) Rest illegal 125 ns (encoder 2) illegal (encoder 2) illegal (encoder 2) illegal (encoder 2) - - X -: the last but one position = E has the following significance: Bit 4 setting mode for input S 0 1 set YP to SV subtract SV from YP Bit 5 setting mode for input SD 0 1 set YDP to SVD subtract SVD from YDP Bit 6 source of the encoder tracks (can only be selected for terminal XE1) 0 1 T400 from the BASEBOARD Bit 7 source of the zero pulse (can only be selected for terminal XE1) 0 1 from terminal XE1 of the T400 from the BASEBOARD XX - -: the two highest positions = 7F has the following significance: Correcting the standstill limit for 127 sampling cycles SYNCO2.Slave.MOD 66 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H019 Operating mode of master speed sensing 2 Mode MasterSpeed For this particular software package, the only difference between H018 and H019 is in the last but one position (refer below) Value: 16#7F02 Type: W Chart: 70, 4 This parameter is used to set the speed sensing block mode for the master drive, especially the digital filter, the encoder type, the coarse pulse version and the source of the encoder pulses. Initialization parameter In the following text, only those operating modes will be described which are possible when supplied from the factory. Refer to H018 for additional information. - - - X: last position = 2 has the following significance: Digital filter with time constant/limiting frequency 500 ns / 2 MHz Encoder type : pulse encoder with 2 tracks offset through 90 degrees - - X -: last but one position = 0 has the following significance: Zero- and incremental pulses from the terminal, encoder 2 of the T400 Setting mode S=0 : set YP to SV Setting mode SD=0: set YDP to SVD (contrary to parameter H018, however this is not relevant for this particular software package, as YDP is not accessed by the master speed sensing block.) XX - -: the two highest position = 7F have the following significance: Correcting the standstill limit at 127 sampling cycles SYNCO2.Master.MOD d020 Error Code Slave Error code of the slave drive speed sensing. In order to use angular synchronism, the value must be 0. If this value is not 0, an error has been made when parameterizing the speed sensing. Type: W Chart: 60, 7 The cases designated with *) can occur after the software package has been modified in-line with application specific requirements. Significance of the error bits 0 1 2 3 4 5 6 7 Parameters which may not be 0: H010, H012, H044 Sampling time > 20 ms *) H018, illegal filter parameterization Slave without master *) Master and slave in various sampling times *) Several masters use the same encoder *) Master and slave use the same encoder *) Pulse counter overflow SYNCO2.Slave.YFC d021 ErrorCode Master Error code of the master drive speed sensing. In order to use angular synchronism, the value must be 0. If this value is not 0, an error has been made when parameterizing the speed sensing. Type: W Chart: 70, 6 The cases designated with *) can occur after the software package has been modified in-line with application specific requirements. Significance of the error bits 0 1 2 3 4 5 6 7 Parameters which may not be 0: H011, H013, H044 Sampling time > 20 ms *) H018, illegal filter parameterization Slave without master *) Master and slave in various sampling times *) Several masters use the same encoder *) Master and slave use the same encoder *) Pulse counter overflow SYNCO2.Master.YFC SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 67 Parameters and connectors Parameter Description Data H022 Sets the synchronizing type of the slave speed sensing. The value has several functions, however, only the coarse pulse evaluation selection can be modified in this application (refer to Fig. 2-3 ). Value: 0 Type: W Chart: 60, 3 CoarsePulseSlave Bit(s) Value 0 1 3...2 6...4 0 0 00 XYZ 000 Significance Synchronization using the zero pulse For the zero pulse, the pos. is set to the setting value 0.0 Not evaluated Coarse pulse version number (refer to Doc. T400) Example: No. 0 ( coarse pulse is not evaluated; as for mode 1) 011 Example: No. 3 (mode 3; the zero pulse is always evaluated if the coarse pulse has a high signal level) 15...7 any Not evaluated SYNCO2.Slave.SYM H023 CoarsePulseMaster Sets the synchronizing type of the master speed sensing. The value has several functions, however, only the coarse pulse evaluation selection can be modified in this application. Value: 0 Type: W Chart: 70, 3 Significance, refer to H022. SYNCO2.Master.SYM H024 COMBOARD ParTyp Initialization parameter H024 is used to define the data type parameter type R (real = floating point) which is transferred via the COMBOARD interface. 0: Transfer in the fixed-point format 1: Transfer in the floating-point format Value: 0 Type: BO Chart: 40, 1 IF_CU.DRIVE.CF1 d025 Digital inputs 1 .. 8 and their inverse values, combined as a word: State dig. Inputs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BinInput 1 (terminal 53) BinInput 2 (terminal 54) BinInput 3 (terminal 55) BinInput 4 (terminal 56) BinInput 5 (terminal 57) BinInput 6 (terminal 58) BinInput 7 (terminal 59) BinInput 8 (terminal 60) BinInput 1 inverse (terminal 53) BinInput 2 inverse (terminal 54) BinInput 3 inverse (terminal 55) BinInput 4 inverse (terminal 56) BinInput 5 inverse (terminal 57) BinInput 6 inverse (terminal 58) BinInput 7 inverse (terminal 59) BinInput 8 inverse (terminal 60) Type: W Chart: 52, 7 T400_EA.Invert_Bin.QS d026 Control word 1; is sent to the basic drive converter. Control Word1 CU Bit Significance 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 On (main contactor) /OFF2 (voltage-free) /OFF3 (fast stop) Pulse enable Ramp-function generator enable Start ramp-function generator Setpoint enable Acknowledge fault Jogging 1 Jogging 2 Control requested Enable positive direction of rotation Enable negative direction of rotation Motorized potentiometer, raise Motorized potentiometer, lower Fault, external 1 Type W Chart: 220, 4 1=ON 0=OFF 0=OFF 1=enable 1=acknowledge 0 = fault IF_CU.Steuerwort1.QS 68 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data d027 2nd control word for the basic drive. Only bit 9 (enabling the speed controller in the basic drive) is used. Type: W Chart: 220, 8 Control Word2 CU IF_CU.Steuerwort2.QS d028 ... d031 Display R1 ... Display R4 Type: R Four display parameters, type REAL (floating point) to display connectors without their own display parameter. The source is selected using parameters Chart: 470, 8 L028 ... L031. Free_FBs.Display_R.Y1 ... Free_FBs.Display_R.Y4 d032 ... d035 Display B1 ... Display B4 d036, d037 Display I1 ... Display I2 Four display parameters, type BOOL to display connectors without their own display parameter. The source is selected using parameters L032 ... L032. Type: BO Chart: 470, 8 Free_FBs.Display_BO.Q1 ... Free_FBs.Display_BO.Q4 Two display parameters, type integer (16-bit) to display connectors without their own display parameter. The source is selected using parameters L036 and L037. Type: BO Chart: 470, 8 Free_FBs.Display_I.Y1, Free_FBs.Display_I.Y2 d038, d039 Display W1 ... Display W2 Two display parameters, type word (16-bit) to display connectors without their own display parameter. The source is selected using parameters L038 and L039. Type: BO Chart: 470, 8 Free_FBs.Display_W.Y1, Free_FBs.Display_W.Y2 H040 Multiplexer selection of the source for the ratio: MUX ratio 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fixed value 0.0 Fixed value, parameter H043 Analog value 1, smoothed Analog value 2, smoothed Analog value 3, smoothed Analog value 4, smoothed Actual value1 from the basic drive Actual value2 from the basic drive Actual value3 from the basic drive Setpoint1 from the COMBOARD Setpoint2 from the COMBOARD Setpoint3 from the COMBOARD Setpoint4 from the COMBOARD Peer Float1 Peer Float2 Value: Min: Max: Type: Chart: 1 0 14 I 500, 1 MUXsoll.MUX_Uebersetzung.XCS H041 Source for the supplementary ratio. S.Addition.Ratio SYNCO1.UE4PRO.X2 H043 Fixed value for the ratio. Constant Ratio SYNCO1.CONST_UEB.X1 d044 Actual ratio calculated from the fixed value and the relevant ratio Ratio Actual ratio = (d060 * d061) + source (H041) Value: 3047 Type: I Chart: 80,2 Value: 1.0 Type: R Chart: 30,3 Type: R Chart: 80, 4 SYNCO1.UE4PRO.Y d045 Actual value of the ratio numerator Ratio Numerator SYNCO1.PNRAT.NM d046 Actual value of the ratio denominator RatioDenominator SYNCO1.PNRAT.DN H047 Additional ratio: Summand to enter the ratio as follows: Addition. Ratio ratio * rel.ratio + additional ratio SYNCO1.CONST_UEB.X3 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Type: DI Chart: 80, 5 Type: DI Chart: 80, 5 Value: 0.0 Type: R Chart: 80, 1 69 Parameters and connectors Parameter Description Data H048 Multiplexer selection of the source for the relative ratio MUXrelativeRatio 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Value: Min: Max: Type: Chart: Fixed value 0.0 Fixed value, parameter H049 Analog value 1, smoothed Analog value 2, smoothed Analog value 3, smoothed Analog value 4, smoothed Actual value1 from the basic drive Actual value2 from the basic drive Actual value3 from the basic drive Setpoint1 from the COMBOARD Setpoint2 from the COMBOARD Setpoint3 from the COMBOARD Setpoint4 from the COMBOARD Peer Float1 Peer Float2 1 0 14 I 500, 4 MUXsoll.MUX_RelUebersetz.XCS H049 Fixed value for a factor to relatively change the ratio Rel. Ratio Const SYNCO1.CONST_UEB.X2 H050 Multiplexer selection of the source for the displacement setpoint MUXdisplace.Setp 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fixed value 0.0 Fixed value, parameter H066 Analog value 1, smoothed Analog value 2, smoothed Analog value 3, smoothed Analog value 4, smoothed Actual value1 from the basic drive Actual value2 from the basic drive Actual value3 from the basic drive Setpoint1 from the COMBOARD Setpoint2 from the COMBOARD Setpoint3 from the COMBOARD Setpoint4 from the COMBOARD Peer Float1 Peer Float2 Value: 1.0 Type: R Chart: 30, 3 Value: Min: Max: Type: Chart: 1 0 14 I 500, 1 MUXsoll.MUX_Versatz.XCS H051 Source for the displacement setpoint (angular controller). S.Displacem.Setp SYNCO2.Q_Versatz.X H052 Time, in which the displacement setpoint changes by 2048 quadrupled pulses Value: 2.5 ms (2048 quadrupled pulses correspond to the maximum or minimum Min: 0 ms displacement setpoint, i.e. half a revolution, also refer to H054 and H055). Type: SD Chart: 110, 2 SYNCO2.HLG_Versatz.TU SYNCO2.HLG_Versatz.TD RmpUp Displacem H053 RampDownDisplace H054 Max.Displacement Upper displacement setpoint limit (pulses*4) When the displacement calculation is in the retrigger mode (i. e. H091=1), the maximum displacement setpoint should not exceed the "half pulse number (*4) value per revolution (i. e. half a revolution) of the parts to be synchronized" (control margin)! Value: 3050 Type: I Chart: 110, 1 Value: Min: Type: Chart: 2048 0 R 110, 3 Value: Min: Type: Chart: -2048 0 R 110, 3 SYNCO2.HLG_Versatz.LU H055 Min.Displacement Lower displacement setpoint limit (pulses*4) When the displacement calculation is in the retrigger mode (i. e. H091=1), the maximum displacement setpoint should not exceed the "half pulse number (*4) value per revolution (i. e. half a revolution) of the parts to be synchronized" (control margin). SYNCO2.HLG_Versatz.LL d056 DisplacementSetp Displacement setpoint (pulses*4) at the ramp-function generator output (angular controller) Type: R Chart: 110, 4 SYNCO2.HLG_Versatz.Y H057 Source of the control signal to set the displacement ramp-function generator. S.set Displ.Ramp SYNCO2.HLG_Versatz.S 70 Value: 0175 Type: I Chart: 110, 1 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H058 Source for the normalization factor to display the slave drive speed (d014). In the factory setting, this is linked to the rated slave drive speed. Value: 3012 Type: I Chart: 60, 7 Q.Norm. n_Slave SYNCO2.n_Slave.X1 H059 Q.Norm. n_Master Source for the normalization factor to display the master drive speed (d015). In the factory setting, this is linked to the rated master drive speed. SYNCO2.n_Master.X1 d060 Actual ratio before being multiplied by the relative ratio. Ratio 1 SYNCO1.CONST_UEB.Y4 d061 Actual value for the relative ratio. Ratio relative SYNCO1.CONST_UEB.Y5 H062 - H065 Direction of rotation-dependent displacement of the synchronization. DisplaceMas+Sla+ f(n) This is only necessary, if different displacement values are required as a function of the directions of rotation of the master and slave. H062 H063 H064 H065 Displacement setpoint for: Displacement setpoint for: Displacement setpoint for: Displacement setpoint for: Value: 3013 Type: I Chart: 60, 6 Type: R Chart: 80, 2 Type: R Chart: 80, 2 n_Master > 0; n_Master < 0; n_Master > 0; n_Master < 0; Value: 0.0 Type: R Chart: 100, 1 n_Slave > 0 n_Slave > 0 n_Slave < 0 n_Slave < 0 The displacement setpoints correspond to the number of pulses*4 SYNC01.DREFS1.X1 and .X2 SYNC01.DREFS2.X1 and .X2 H066 Fixed displacement setpoint (pulses*4) Const.Displacem. SYNCO1.FixVersatz.X H067 Source for the speed ratio before being multiplied by the relative ratio. S.Ratio SYNCO1.CONST_UEB.X4 H068 Source for the relative ratio before being multiplied by the ratio. S.relative Ratio SYNCO1.CONST_UEB.X5 H070 Multiplexer selection of the source for the master speed setpoint MUX Refer.speed 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Fixed value 0.0 Fixed value, parameter H073 Analog value 1, smoothed Analog value 2, smoothed Analog value 3, smoothed Analog value 4, smoothed Actual value1 from the basic drive Actual value2 from the basic drive Actual value3 from the basic drive Setpoint1 from the COMBOARD Setpoint2 from the COMBOARD Setpoint3 from the COMBOARD Setpoint4 from the COMBOARD Peer Float1 Peer Float2 Speed, master Value: 0.0 Type: R Chart: 30, 3 Value: 3040 Type: I Chart: 80, 1 Type: I Chart: 80, 1 Value: Min: Max: Type: Chart: 15 0 15 I 500, 7 MUXsoll.MUX_Leitsollwert.XCS H071 Source for the master setpoint (speed setpoint for the master and slave) S.ReferenceSpeed SYNCO1.Leitsollwert.X H072 Smoothing time (PT1 element) for the master speed setpoint Tfilt Ref. Speed SYNCO1.SREFSM.T H073 Fixed value, master speed setpoint Const. Ref.Speed SYNCO1.fixLeitsoll.X d074 Actual value of the smoothed master speed setpoint Refer.Speed filt SYNCO1.SREFSM.Y d076 Actual value of the master speed setpoint (before smoothing) Reference Speed SYNCO1.Leitsollwert.Y SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Value: 3070 Type: I Chart: 115, 1 Value: 10 ms Type: SD Chart: 115, 2 Value: 0.0 Type: R Chart: 30,3 Type: R Chart: 115, 3 Type: R Chart: 115, 2 71 Parameters and connectors Parameter Description Data H077 Source for the value of the ratio numerator for the displacement calculation. S.DisplaceNumer. SYNCO2.Displace.NM Value: 5088 Type: I Chart: 100, 4 H078 Source for the value of the ratio denominator for the displacement calculation. S.DisplaceDenom SYNCO2.Displace.DN H079 S.DT1 Acc. Comp. Source for the input quantity of the high-pass filter to generate inertia compensation. SYNCO1.DT1_BAusgleich.X H080 MUX Accel.Comp. Selects the source for the inertia compensation (pre-control value for the speed controller): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fixed value 0.0 From dn/dt generated value Analog value 1, smoothed Analog value 2, smoothed Analog value 3, smoothed Analog value 4, smoothed Actual value1 from the basic drive Actual value2 from the basic drive Actual value3 from the basic drive Setpoint1 from the COMBOARD Setpoint2 from the COMBOARD Setpoint3 from the COMBOARD Setpoint4 from the COMBOARD Peer Float1 Peer Float2 Value: 5089 Type: I Chart: 100, 4 Value: 3129 Type: I Chart: 120, 6 Value: Min: Max: Type: Chart: 1 0 14 I 500, 5 MUXsoll.MUX_BAusgleich.XCS H082 Tfilt Acc.Comp. Smoothing time constant of the derivative action element (DT1 element) to generate the inertia compensation value; higher time values signify a lower influence. Value: 100ms Type: SD Chart: 120, 7 SYNCO1.DT1_BAusgleich.T1 H083 Tdif Accel.Comp. Differentiating time constant of the DT1 element to generate the inertia compensation value; higher values signify a higher influence. SYNCO1.DT1_BAusgleich.TD d085 Actual value of the inertia compensation. DT1 (SpeedSetp.) SYNCO1.DT1_BAusgleich.Y H086 This is used to directly enter numerator and denominator of the ratio. Fine Ratio Numer Constant.DINT_Const.X1 H087 Refer to H086 Fine Ratio Denom Constant.DINT_Const.X2 H088 The source of the ratio is changed-over using H088 enable FineRatio 0 1 Value: 4 ms Type: R Chart: 120, 7 Type: R Chart: 120, 7 Value: 1000 Type: DI Chart: 80, 3 Value: 1000 Type: I Chart: 80, 3 The numerator and denominator are automatically calculated Fine setting (H086, H087) Value: 0 Type: BO Chart: 80, 6 SYNCO1.FEINPZ.I1 H090 Pos.Correct Mode H090 is used to define whether the position can always be corrected or only if there is an active synchronizing command. The position correction is required for a position reset and for the displacement correction. For H090=0, the edge-controlled correction mode only works, if after passing the synchronizing marks, the synchronizing command = 1. Value: 1 Type: BO Chart: 60, 4 0 Displacement correction or reset only as long as the synchronizing command=1 1 Displacement correction is always possible CONTR.LagekorrektLogik.I2 72 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H091 Selects whether synchronization (determining the displacement and displacement correction) should be realized in the "retrigger" mode or "continuously". Value: 0 Type: BO Chart: 100, 6 SynchrRetrigMode 0 = Continuously The displacement is sensed over several revolutions and corrected (parameters H100 and H102 have to be set!) 1 = Retrigger The displacement is only determined over 1 revolution and corrected. Only the actual position since the last synchronizing operation is evaluated. (this may be recommendable for negative ratios and a negative displacement setpoint) SYNCO2.Displace.RTM H092 Synchr.Edge Mode Evaluation modes of the "synchronizing command" (i. e. displacement correction). The synchronizing command must be 1 while synchronizing. H092 is used to define whether the displacement correction should be made continuously or only once. 0 = 1 = Value: 0 Type: BO Chart: 100, 6 Continuous (signal level-controlled) Once (edge controlled) SYNCO2.Displace.ENM H093 CorrectionPulses Number of quadrupled pulses, which are fed to the angular controller to correct the displacement for displacement correction per sampling time. This generates a position difference, which the angular controller corrects. A lower value (e.g. 1) is recommended in order to achieve low-oscillation synchronization. This value must be increased (e. g. to 10) if, for very low-frequency synchronizing pulses (e. g. as a result of a high ratio or small speed), fast synchronization is required Value: 1 Type: R Chart: 100, 7 SYNCO2.Displace.CPN d094 act.Displacement Displacement actual value in quadrupled slave pulses since the displacement Type: R determination was enabled and after both synchronizing pulses have been Chart: 100, 7 received. (Synchronizing command is not required.) It is the actual angular difference between the synchronizing pulses. It is only re-calculated at the instant in time that one (H91=0; setting of H100 and H102) or two (H091=1) synchronizing pulses occur. It contains the set displacement- (d056) as well as the direction of rotationdependent synchronizing displacement setpoints (H062 - H065). In the synchronous status, it is 0 or includes the displacement setpoint. This status is signaled to terminal 46, taking into account a tolerance bandwidth which can be set using H103. SYNCO2.Displace.DV d095 Displ.-Pos.diff Difference "actual displacement minus the position difference actual value" in quadrupled slave pulses. This value is zero (independent of a possibly existing displacement setpoint) if the system is in the angular synchronous status! During synchronizing, this value is not equal to zero, and during synchronization, is always less. Update, as is described for d094. The following is essentially valid: d095 = d094 - d124 Type: R Chart: 100, 7 SYNCO2.Displace.DVD d096 ErrorCode Displ. Error IDs from the displacement sensing. The error ID is deleted when the position difference is reset. Type: W Chart: 100, 7 Bit Hex Significance 0 1 Overflow, number of synchronizing operations 1 ( more than 231 ) 1 2 Overflow, number of synchronizing operations 2 ( more than 231 ) 2 4 Number of synchronizing operations 1 * PR1 > 231 3 8 Number of synchronizing operations 1 * PR2 >231 If one of the bits 0-3 is set, then synchronization was probably erroneous. 8 100 = Displacement position difference cannot be represented with 32 bit, i. e. synchronization must be repeated. SYNCO2.Displace.FC SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 73 Parameters and connectors Parameter Description Data H097 Source for the 2nd digital signal to reset the position and displacement. S.Reset Pos_1 CONTR.Zus_Lage-RS.I1 Value: 0108 Type: I Chart: 90, 1 H098 Source for the 2nd digital signal to enable displacement correction. S.Synchr.Command CONTR.OR_Sync.I1 H100 The synchronizing pulse number is set in the master drive, and corresponds to one revolution in quadrupled pulses. The default for H100 is set for a pulse encoder with 1024 pulses, and is 4 1024 = 4096. SyncPulsesMaster Value: 0173 Type: I Chart: 90, 1 Value: 4096 Type: DI Chart: 100, 5 SYNCO2.Displace.PR2 H101 Source for the signal to end the start synchronizing (refer to H168). S.StopStartSynch CONTR.SyncFlipFlop.R H102 The synchronizing pulse number is set to the slave drive and corresponds to one revolution in quadrupled pulses. The default for H102 is set for a pulse encoder with 1024 pulses, and is 4 1024 = 4096. SyncPulses Slave Value: 0105 Type: BI Chart: 90,6 Value: 4096 Type: DI Chart: 100, 6 SYNCO2.Displace.PR1 H103 Threshold Synchr If the actual displacement is less than this response threshold, then the "synchronism" reached status bit is set to 1. In the other case, it is reset to 0. SYNCO2.CmpSynchr.L H104 Source for the control signal to enable the angular controller. S.Enable Control SYNCO2.AngleControl.EN H105 Minimum number of quadrupled pulses, which must be received after an effective synchronizing pulse, before a new synchronizing pulse may become effective. This is used, for example, to suppress multiple edges due to switch bounce. Caution: The pulse number specified here must be greater than the number of pulses, which are received while the synchronizing pulse is active (active time). This threshold value is also effective for the first synchronization (after power off, power on / restart). Thresh.SyncSlave Value: 20.0 Type: R Chart: 100, 6 Value: 0109 Type: I Chart: 110, 6 Value: Unit: Type: Chart: 500 Pulse R 60, 3 SYNCO2.CmpSPslave.X2 H107 Thresh.SyncMaster Enable threshold, synchronizing, master. The function is as for H105 for the master speed sensing. SYNCO2.CmpSPmaster.X2 H108 S.KP Pos.Contrl. Source for the input quantity of the characteristic to adapt the P gain of the angular controller. SYNCO2.AngleKP.X d109 Actual status of the angular controller enable enable Pos.Cntrl 1: Angular controller enabled 0: Angular controller inhibited Value: 500 Type: R Chart: 70, 2 Value: 3044 Type: I Chart: 110, 1 Value: 0 Type: BO Chart: 90, 7 CONTR.WR-Freigabe.Q H110 The angular controller mode can be changed-over using this parameter: Hold I-Component 0 = Controller operates as PI controller 1 = Controller operates as P controller (the I component is kept constant) Caution: Only changeover from 0 to 1 when the controller is inhibited, as otherwise the I component will not be cancelled! Value: 1 Type: BO Chart: 110, 7 SYNCO2.AngleControl.HI H111 Integral action time of the angular controller (only relevant for H110 = 0) Tn Pos.Control The minimum integral action time corresponds to the sampling time, in which the AngleControl block is configured. Value: 500 ms Type: SD Chart: 110, 7 SYNCO2.AngleControl.TN H112 Absolute value of the maximum output quantity of the angular controller Max. Position SYNCO2.SYNMAX.X 74 Value: 0.3 Type: R Chart: 110, 5 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H113 P gain (angular controller) without adaption or P gain for the largest ratio ue_KP Value: 1.0 Type: R Chart: 110, 3 KP_UE Pos.Contrl SYNCO2.AngleKP.B2 H114 P gain (angular controller) for low ratios ue_KP_0 KP_UE_0 PosCntrl SYNCO2.AngleKP.B1 H115 Limit of the ratio u, which is linearly interpolated up to from ue_KP_0. For u > ue_KP, KP = KP_UE (angular controller). ue_KP Value SYNCO2.AngleKP.A2 H116 ue_KP_0 Value Limit of the ratio u, from which is linearly interpolated up to ue_KP_0. For u < ue_KP_0, KP = KP_UE_0 (angular controller) SYNCO2.AngleKP.A1 H117 Tfilt Pos.Differ Smoothing time constant (PT1 element) for the differential position actual value SYNCO2.LageDifferenz.T H118 dn enable Max. Maximum system deviation between the speed setpoint and actual value of the slave when the angular controller is enabled. The angular controller is only enabled if the system deviation lies below the threshold (N_soll_slave H136 - H118). A low value must be set for a low speed setpoint. Value: 1.0 Type: R Chart: 110, 2 Value: 0.0 Type: R Chart: 110, 3 Value: 0.0 Type: R Chart: 110, 3 Value: 4.0 ms Type: SD Chart: 60, 7 Value 0.1 Type R Chart: 75, 3 SYNCO2.dnFreigabe.X H119 Maximum deviation of the speed actual value of the master to its setpoint. dn Master Max. SYNCO2.dnMaster.X d120 Angular controller output = supplementary speed setpoint Outp.Pos.Control SYNCO2.PT_Angle.Y d121 Actual angular deviation (referred to the slave pulses). A possibly existing displacement setpoint is taken into account: Angular controller, system deviation = displacement setpoint - differential actual value. (The differential position actual value includes the displacement setpoint as "steady-state component") Diff.Pos.Control Value 0.1 Type R Chart: 75, 3 Type: R Chart: 110, 7 Type: R Chart: 110, 5 SYNCO2.AngleControl.YE d122 Integral component of the angular controller output Type: R IntegralComp.Pos SYNCO2.AngleControl.YI d123 KP Pos.Control Actual P gain of the angular controller. This value must be multiplied by 104, so that small KP values do not have to be entered using the OP1S. Type: R Chart: 110, 3 SYNCO2.AngleKP.Y d124 Pos.Diff. filt Smoothed differential angular actual value, smoothed with H117. This is independent of the displacement determination or the synchronizing pulses; this means that it provides no information about the position with respect to one another (synchronism). On the other hand, d094 is the displacement actual value between two synchronizing pulses. Unit: Pulse Type: R Chart: 60, 8 After successful synchronization, this value is 0 or contains the selected displacement setpoint! SYNCO2.LageDifferenz.Y H125 Upper limit of the speed setpoint at the ramp-function generator n_max Ramp Gen. SYNCO1.HLG_Speed.LU H126 Lower limit of the speed setpoint at the ramp-function generator n_min Ramp Gen. SYNCO1.HLG_Speed.LL H127 Time, in which the speed setpoint may change from 0 to rated speed. n Ramp Up Time SYNCO1.HLG_Speed.TU SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Value: 1.0 Type R Chart: 115, 5 Value: -1.0 Type R Chart: 115, 5 Value: 0 ms Type R Chart: 115, 6 75 Parameters and connectors Parameter Description Data H128 Time, in which the speed setpoint may change from the rated speed to 0. n Ramp Down Time SYNCO1.HLG_Speed.TD Value: 0 ms Type R Chart: 115, 6 H129 Speed setpoint after the ramp-function generator. SpeedSetpRampOut SYNCO1.HLG_Speed.Y H130 Supplementary speed setpoint, which is added to the master setpoint in the jog mode. Jog Setpoint CONTR.TIPPEN.X H131 Source for the 1st control signal to enable the angular controller. S.enablePosCtrll CONTR.Steuerbits.I1 H132 Upper speed setpoint limit for the speed controller on T400. Caution: H132 must be > H133 Max. n_Setpoint SYNCO2.NsollLimit.LU H133 Min. n_Setpoint Lower speed setpoint limit for the speed controller on T400 Caution: H132 must be > H133 SYNCO2.NsollLimit.LL H134 Max. n-Controller Upper limit of the speed controller output on T400 Caution: H134 must be > H135 SYNCO2. SpeedControl.LU H135 Min. n-Controller Lower limit of the speed controller output on T400 Caution: H134 must be > H135 SYNCO2.SpeedControl.LL d136 Actual speed setpoint after smoothing and multiplication with the ratio. Speed Setpoint SYNCO1.SREFR.Y d137 Actual speed setpoint sum after limiting (setpoint for the speed controller on T400). Speed Setp. ltd. Value: 0 ms Type R Chart: 115, 7 Value: 0.0 Type: R Chart: 115, 1 Value: 0172 Type: I Chart: 90, 5 Value: 1.0 Type: R Chart: 120, 2 Value: -1.0 Type: R Chart: 120, 2 Value: 1.0 Type: R Chart: 120, 6 Value: -1.0 Type: R Chart: 120, 6 Type: R Chart: 115, 3 Type: R Chart: 120, 2 SYNCO2.NsollLimit.Y H138 Smoothing time constant for the angular controller output Tfilt Pos.Cntrl SYNCO2.PT_Angle.T H139 Source for the 2nd control signal to enable the angular controller. S.enablePosCtrl2 CONTR.WR-Freigabe.I1 H140 The speed controller can be either computed on the T400 or in the basic drive. ModeSpeedControl 0 The T400 outputs the speed setpoint, taking into account the limits on the basic drive. The speed controller blocks on the T400 are no longer processed. 1 Speed controller is on the T400. The torque setpoint is transferred to the basic drive. Value: 0 ms Type R Chart: 110, 7 Value: 0193 Type: I Chart: 90, 5 Value: 0 Type: BO Chart: 120, 5 CONTR.SCONI.I H141 KP Speed Control Upper Y value of the 2-point characteristic for the KP adaption of the speed controller. P gain for large speed setpoints or if H143 = H144. SYNCO2.SpeedKP.B2 H142 KP_O SpeedContrl Lower Y value of the 2-point characteristic for the KP adaption of the speed controller. P gain for low speed setpoints. SYNCO2.SpeedKP.B1 H143 n_KP Threshold Limit value of the speed setpoint which is interpolated up to, starting from n_KP_0. The P gain = KP for n > n_KP SYNCO2.SpeedKP.A2 H144 n_KP_0 Threshold Limit value of the speed setpoint which is interpolated from up to n_KP. For n < n_KP_0, the P gain = n_KP_0 SYNCO2.SpeedKP.A1 76 Value: 10.0 Type: R Chart: 120, 2 Value: 10.0 Type: R Chart: 120, 2 Value: 0.0 Type: R Chart: 120, 3 Value: 0.0 Type: R Chart: 120, 2 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H145 Integral action time of the speed controller Tn SpeedControl SYNCO2. SpeedControl. TN Value: 200ms Type R Chart: 120, 5 H146 Smoothing time (PT1 element) for the slave speed actual value, which is used for the closed-loop speed control Tfilt Speed SYNCO2.NslaveFilter.T d147 Control word 1 for the basic drive Control Word 1 IF_CU.Sammeln.Y1 d148 Control word 2 for the basic drive Control Word 2 IF_CU.Sammeln.Y4 H149 Pulse extension for the synchronizing pulse of the master-speed sensing. (for diagnostics) T SyncPulsMaster CONTR.Puls_SS_Master.T d150 Speed controller output Outp.SpeedContrl SYNCO2.SpeedControl.Y d151 Setpoint/actual value deviation of the speed controller DifferSpeedCntrl SYNCO2.SpeedControl.YE d152 Actual setpoint for the basic drive: SetpSpeed;Torque H140 = 1 torque setpoint (d150) H140 = 0 speed setpoint Value: 4.0ms Type: R Chart: 60, 7 Type: W Chart: 230, 7 Type: W Chart: 230, 7 Value: 10 ms Type: SD Chart: 70, 6 Type: R Chart: 120, 7 Type: R Chart: 120, 4 Type: R Chart: 115, 7 SYNCO2.SetpSwitch.Y d153 Effective P gain of the speed controller KP Speed Control SYNCO2.SpeedKP.Y H154 Source for the slave position for synchronizing enable of the position sensing of the slave drive. S.SlaveSynchrPos SYNCO2.CmpSPslave.X1 H155 Ratio Resolution Initialization connection Resolution when calculating the numerator- and denominator components from the ratio. H155 specifies the numerator of the ratio. The value should not exceed 100000. Examples: H155 10000 10000 1000 Ratio 1.2351 0.0333 0.0333 Numer. 10000 10000 1000 Type: R Chart: 120, 3 Value: 3186 Type: I Chart: 60, 3 Value: 10000 Type: R Chart: 80, 4 Denominator 12351 333 33 SYNCO1.PNRAT.RR H156 Source for the main setpoint of the angular controller. S.Ref_Pos_1 SYNCO2.AngleControl.W1 H157 Source for the supplementary setpoint of the angular controller. S.Ref_Pos_2 SYNCO2.AngleControl.W2 H158 Source for the actual value of the angular controller. S.Act_Pos_1 SYNCO2.AngleControl.X1 H159 Source for the supplementary actual value of the angular controller. S.Act_Pos_2 SYNCO2.AngleControl.X2 H160 Offset value of analog output 1 (terminal 97; also refer to H161) Aout 1 Offset T400_EA.AnaOut_1.OFF H161 Scaling factor for analog output 1 (terminal 97) Aout 1 Scalefact Output voltage = (input value + offset) * 5 V / scaling factor T400_EA.AnaOut_1.SF H162 Offset value of analog output 2 (terminal 98; also refer to H163) Aout 2 Offset T400_EA.AnaOut_2.OFF SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Value: 3056 Type: I Chart: 110, 5 Value: 3000 Type: I Chart: 110, 5 Value: 3124 Type: I Chart: 110, 5 Value: 3000 Type: I Chart: 110, 5 Value: 0.0 Type: R Chart: 51, 3 Value: 1.0 Type: R Chart: 51, 4 Value: 0.0 Type: R Chart: 51, 3 77 Parameters and connectors Parameter Description Data H163 Scaling factor for analog output 2 (terminal 98) Aout 2 Scalefact Output voltage = (input value + offset) * 5 V / scaling factor Value: 1.0 Type: R Chart: 51, 4 T400_EA.AnaOut_2.SF H164 Erase EEPROM Task to re-establish the factory setting. All of the changes are deleted. Beforehand, H165 must be set to 165. Deleting is started when H164 = 1. If data is deleted, it cannot be re-done (retrieved)! Value: 0 Type: BO Chart: 40, 1 CONTR. EEPROM_T400. ERA H165 Key EEPROM Password to prevent the change memory being accidentally erased (EEPROM). H165 must be set to 165 before erasing. CONTR. EEPROM_T400. KEY d166 State EEPROM Indicates whether the standard software package is unchanged (factory settings), or whether parameters were changed (change memory not empty). d166 = 1 Value: 0 Type: I Chart: 40, 1 Type: BO Chart: 40, 3 change memory empty factory setting CONTR. EEPROM_T400. EPE H167 Source for the 1st digital signal to reset position and offset. S.Pos.Reset_1 CONTR.Steuerbits.I3 H168 When the start synchronization is enabled (H169 = 1), after the power supply is switched-on and after the power-on delay has expired (according to H168), a synchronizing command is output once. DelayStartSynchr Value: 0173 Type: I Chart: 90, 1 Value: 1000 ms Type: SD Chart: 90, 6 CONTR. Start_Sync. T H169 Enables start synchronization (refer to H168) EnableStartSynch 0 1 Not enabled Enabled Value: 0 Type: BO Chart: 90,5 CONTR.EnableAutoSync.I H170 Multiplexer selection of the digital source to reset the displacement setpoint MUX Displ.Reset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Fixed value 0 Fixed value 1 Control word from CU bit 0 Digital input 3 (terminal 55) Digital input 4 (terminal 56) Digital input 5 (terminal 57) Digital input 6 (terminal 58) Digital input 7 (terminal 59) Digital input 8 (terminal 60) Control word 2 CB bit 0 Control word 2 CB bit 1 Control word 2 CB bit 2 Control word 2 CB bit 3 Control word 2 CB bit 4 Control word 2 CB bit 5 Control word 2 CB bit 6 Control word 2 CB bit 7 Control word, peer bit 0 Control word, peer bit 1 Control word, peer bit 2 Control word, peer bit 3 Control word, peer bit 4 Control word, peer bit 5 Control word, peer bit 6 Control word, peer bit 7 Control word 2 CB bit 0 Control word 2 CB bit 1 Control word 2 CB bit 2 Control word 2 CB bit 3 Control word 2 CB bit 4 Control word 2 CB bit 5 Control word 2 CB bit 6 Control word 2 CB bit 7 Value: 0 Type: BO Chart: 520, 2 MUX_B.MUX_VersatzReset.XCS 78 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H171 Multiplexer selection of the digital source to enable jog operation. MUX enable Jog Selected as for H170 except: 2 1 Value: 0 Type: BO Chart: 520, 3 control word from the basic drive, bit MUX_B.MUX_TippFreigabe.XCS H172 Multiplexer selection of the digital source to enable the angular controller. MUX en.Pos.Cntrl Selected as for H170 except: 2 2 control word from the basic drive, bit Value: 0 Type: BO Chart: 520, 5 MUX_B.MUX_WReglerFreig.XCS H173 Multiplexer selection of the digital source to reset position and displacement. MUX Reset Posit. Selected as for H170 except: 2 3 control word from the basic drive, bit Value: 0 Type: BO Chart: 520, 6 MUX_B.MUX_LageReset.XCS H174 MUX Synchr.Cmd Multiplexer selection of the digital source for the synchronizing command. This enables displacement errors to be corrected. Selected as for H170 except: 2 4 control word from the basic drive, bit Value: 0 Type: BO Chart: 520, 8 MUX_B.MUX_SyncSignal.XCS d175 Actual value for the control signal to reset the position difference. Displacem. Reset CONTR.Steuerbits.Q4 d176 Actual value for the control input jog enable Enable Jog CONTR.Steuerbits.Q7 d177 Actual value for the control input angular controller enable EnableSpeedCntrl CONTR.Steuerbits.Q1 d178 Actual value for the control input reset position (H167) Reset Position CONTR.Steuerbits.Q3 d179 Actual value for the control input (H191) synchronizing command Synchron.Command CONTR.Steuerbits.Q2 H180 Source for the digital signal to enable slave drive synchronization. S.EnableSynSlave SYNCO2.Slave.SP H181 Source for the digital signal to reset the slave drive position. S.ResetSlavePos. SYNCO2.Slave.R H182 Source for the numerator of the speed ratio. S.Slave Numerat. SYNCO2.Slave.NM H183 Source for the denominator of the speed ratio. S.Slave Denomin. SYNCO2.Slave.DN H184 Source for the digital signal to enable the differential position correction of the slave drive. As long as the signal at this input is 1, the position difference is corrected as follows at each processing cycle: S.Corr.Pos.Diff. Type: BO Chart: 60, 2 Type: BO Chart: 115, 2 Type: BO Chart: 90, 6 Type: BO Chart: 90, 2 Type: BO Chart: 90, 2 Value: 0154 Type: I Chart: 60, 4 Value: 0097 Type: I Chart: 60, 4 Value: 5088 Type: I Chart: 60, 4 Value: 5089 Type: I Chart: 60, 4 Value: 0098 Type: I Chart: 60, 4 Position difference (new) = position difference (old) - position differencecorrection value (prerequisite, H018 is in the factory setting) CONTR.LagekorrektLogik.I1 H185 S.Reset PosDiff2 Source for the 2nd digital signal to reset the determined position difference (slave drive). CONTR.PosDiff_Reset.I1 H186 Source for the slave drive position to generate the absolute value and sign. S.Abs.Pos.Slave SYNCO2.Pos_Slave_Abs.X SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Value: 0108 Type: I Chart: 60, 1 Value: 3016 Type: I Chart: 60, 1 79 Parameters and connectors Parameter Description Data H187 Source for the 1st digital signal to reset the determined position difference (slave drive). Value: 0170 Type: I Chart: 60, 1 S.ResetPos.Diff1 CONTR.Steuerbits.I4 H188 Source for the signal to enable synchronization of the master speed sensing. S.EnableSynMaster SYNCO2.Master.SP H189 Source for the signal to set the master position actual value to zero. S.ResetMasterPos SYNCO2.Master.R H190 Source for the position actual value to enable synchronization of the master speed sensing. S.MasterSynchPos SYNCO2.CmpSPmaster.X1 H191 S.Synchr.Comd2 Source for the control signal synchronizing command to enable the displacement correction. CONTR.Steuerbits.I2 H192 S.n_Slave Compar Source for the input signal of the comparator to monitor the slave speed. If the slave speed reaches the setpoint speed, then the angular controller can be enabled. Value: 0190 Type: I Chart: 70, 4 Value: 0097 Type: I Chart: 70, 4 Value: 3017 Type: I Chart: 70, 1 Value: 0174 Type: I Chart: 90, 1 Value: 3018 Type: I Chart: 75, 2 SYNCO2.CMP_nSlave.X H193 S.n_ref SlaveCmp Source for the setpoint of the slave speed. (comparator to enable the angular controller) Value: 3136 Type: I Chart: 75, 2 SYNCO2.CMP_nSlave.M H195 Source for the input signal of the comparator to monitor the master speed. S.n_MasterCompar SYNCO2.CMP_nMaster.X H196 Source for the master speed setpoint. (comparator to check the plausibility of the master speed) S.n_ref MastComp SYNCO2.CMP_nMaster.M H197 Source for the numerator of the fine ratio. S.FineRatioNumer SYNCO1.FEIN_NM.X2 H198 Source for the denominator of the fine ratio. S.FineRatioDenom SYNCO1.FEIN_DN.X2 H199 Source for the position of the master drive to generate the absolute value and sign. S.Abs.Pos.Master SYNCO2.Pos_Master_Abs.X H200 Source for the main setpoint of the speed controller (without limiting). S.1 n(ref-act) SYNCO2.SpeedControl.W1 H201 Source for the supplementary setpoint of the speed controller (without limiting). S.2 n(ref-act) SYNCO2.SpeedControl.W2 H202 Source for the 1st actual value of the speed controller. S.3 n(ref-act) SYNCO2.SpeedControl.X1 H203 Source for the 2nd actual value of the speed controller. S.4 n(ref-act) SYNCO2.SpeedControl.X2 H204 Source for the input quantity of the KP adaption characteristic of the speed controller. S.KP (speedCtrl) SYNCO2.SpeedKP.X H205 Source for the main setpoint of the speed controller (before limiting). S.n(ref,speed) SYNCO2.SumNsoll.X1 80 Value: 3019 Type: I Chart: 75, 2 Value: 3076 Type: I Chart: 75, 2 Value: 5086 Type: I Chart: 80, 5 Value: 5087 Type: I Chart: 80, 5 Value: 3017 Type: I Chart: 70, 6 Value: 3137 Type: I Chart: 120, 3 Value: 3000 Type: I Chart: 120, 3 Value: 3146 Type: I Chart: 120, 3 Value: 3000 Type: I Chart: 120, 3 Value: 3129 Type: I Chart: 120, 1 Value: 3129 Type: I Chart: 120, 1 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H206 Source for the supplementary setpoint of the speed controller (before limiting). Value: 3120 Type: I Chart: 120, 1 S.n(addit.) SYNCO2.SumNsoll.X2 H207 Source for the jog setpoint. S.Jog Ref.Speed SYNCO1.Tippen-Schalter.X2 H208 Source for the signal to enable the jog setpoint. When enabled, the jog setpoint is added to the speed setpoint. S.enable Jog CONTR.Steuerbits.I7 H209 Value: 3120 Type: I Chart: 115, 1 Value: 3120 Type: I Chart: 115, 1 Pulse extension for the synchronizing pulse of the slave speed sensing. (for diagnostics). CONTR.Puls_SS_Slave.T Value: 10 ms Type: SD Chart: 60, 7 H210 Scaling factor SF for analog input 1 (setting, refer to d212). AI 1 Scalefactor T400_EA.AnaIn_1.SF Value: 1.0 Type: R Chart: 50, 3 H211 Offset for analog input 1 (setting, refer to d212). AI 1 Offset T400_EA.AnaIn_1.OFF d212 Actual measured value at the analog input 1 (AI1). This analog input is sensed in the fastest time sector (T1). The measured value is obtained as follows: T SyncPulseSlave AI 1 act. value Value: 0.0 Type: R Chart: 50, 4 Type: R Chart: 50, 5 d212 = terminal voltage * scaling factor / 5 V + offset d212 = terminal voltage * H210 / 5 V + H211 T400_EA.AnaIn_1.Y H213 Scaling factor SF for analog input 2 (setting, refer to d215). AI 2 Scalefactor T400_EA.AnaIn_2.SF H214 Offset value for analog input 2 (setting, refer to d215). AI 2 Offset T400_EA.AnaIn_2.OFF d215 Actual measured value at analog input 2 (AI2). This analog input is sensed in time sector T2. The measured value is obtained as follows: AI 2 act. value Value: 1.0 Type: R Chart: 50, 3 Value: 0.0 Type: R Chart: 50, 4 Type: R Chart: 50, 5 d215 = terminal voltage * scaling factor / 5 V + offset d215 = terminal voltage * H213 / 5 V + H214 T400_EA.AnaIn_2.Y H216 Scaling factor SF for analog input 3 (setting, refer to d218). AI 3 Scalefactor T400_EA.AnaIn_3.SF H217 Offset value for analog input 3 (setting, refer to d218). AI 3 Offset T400_EA.AnaIn_3.OFF d218 Actual measured value at analog input 3 (AI3). This analog input is sensed in time sector T2. The measured value is obtained as follows: AI 3 act. value Value: 1.0 Type: R Chart: 50, 3 Value: 0.0 Type: R Chart: 50, 4 Type: R Chart: 50, 5 d218 = terminal voltage * scaling factor / 5 V + offset d218 = terminal voltage * H216 / 5 V + H217 T400_EA.AnaIn_3.Y H219 Scaling factor SF for analog input 4 (setting, refer to d221). AI 4 Scalefactor T400_EA.AnaIn_4.SF H220 Offset value for analog input 4 (setting, refer to d221). AI 4 Offset T400_EA.AnaIn_4.OFF d221 Actual measured value at analog input 4 (AI4). This analog input is sensed in time sector T2. The measured value is obtained as follows: AI 4 act. value Value: 1.0 Type: R Chart: 50, 3 Value: 0.0 Type: R Chart: 50, 4 Type: R Chart: 50, 5 d221 = terminal voltage * scaling factor / 5 V + offset d221 = terminal voltage * H219 / 5 V + H220 T400_EA.AnaIn_4.Y SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 81 Parameters and connectors Parameter Description Data H222 Smoothing time constant for the 1st analog input. A value of 0 de-activates the filter. Value: 500 Type: R Unit: ms Chart: 50, 5 AI 1 Filter Time T400_EA.AE1_FILT.T d223 Analog value 1 after smoothing with smoothing time constant H222. AI 1 filtered T400_EA.AE1_FILT.Y H224 Smoothing time constant for the 2nd analog input. A value of 0 de-actives the filter. AI 2 Filter Time T400_EA.AE2_FILT.T d225 Analog value 2 after smoothing with the smoothing time constant H224. AI 2 filtered T400_EA.AE2_FILT.Y H226 Smoothing time constant for the 3rd analog input. A value of 0 de-activates the filter. AI Filter Time T400_EA.AE3_FILT.T d227 Analog value 3 after smoothing with the smoothing time constant H226. AI 3 filtered T400_EA.AE3_FILT.Y H228 Smoothing time constant for the 4th analog input. A value of 0 de-activates the filter. AI 4 Filter Time T400_EA.AE4_FILT.T d229 Analog value 4 after smoothing with the smoothing time constant H228. AI 4 filtered T400_EA.AE4_FILT.Y H230 ... H233 4 sources for digital signals to set the 4 analog inputs to zero. S.set AE1 zero ... S.set AE4 zero T400_EA.AE1_FILT.S ... T400_EA.AE4_FILT.S H234 Source for the position difference for the displacement calculation. S.Position Diff1 SYNCO2.Displ_Ist.X1 H235 Source for a correction value of the position difference for the displacement calculation. S.Position Diff2 SYNCO2.Displ_Ist.X2 H236 Source for the signal to reset the displacement calculation. S.ResetDisplacem SYNCO2.Displace.R H237 Source for the displacement setpoint (this checks whether synchronism has been reached). S.Setp Displace1 SYNCO2.DisplacmentSetp.X1 H238 S.Setp Displace2 Source for the value to correct the displacement setpoint (this checks whether synchronism has been reached). SYNCO2.DisplacmentSetp.X2 H239 S.Ratio n_ref Source for the ratio to calculate the slave setpoint speed from the master setpoint. SYNCO1.SREFR.X2 H240 1st source for the setpoint speed of the slave for the ramp-function generator. S.Slave n_ref_1 SYNCO1.SSUM.X2 H241 2nd source for the setpoint speed of the slave for the ramp-function generator. (this is used for the jog setpoint) S.Slave n_ref_2 SYNCO1.SSUM.X1 H242 Source for the setting value of the integral component of the speed controller. S.SV Int(speed) SYNCO2.SpeedControl.SV 82 Type: R Value: 0.0 Type: R Unit: ms Chart: 50, 5 Type: R Value: 0.0 Type: R Unit: ms Chart: 50, 5 Type: R Chart: 50, 6 Value: 0.0 Type: R Unit: ms Chart: 50, 5 Type: R Chart: 50, 6 Type: I Value: 0000 Chart: 50, 4 Value: 3118 Type: I Chart: 80, 4 Value: 3062 Type: I Chart: 80, 4 Value: 0097 Type: I Chart: 80, 4 Value: 3051 Type: I Chart: 80, 4 Value: 3062 Type: I Chart: 80, 4 Value: 3044 Type: I Chart: 115, 2 Value: 3136 Type: I Chart: 115, 4 Value: 3176 Type: I Chart: 115, 4 Value: 3137 Type: I Chart: 120, 4 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H243 Source for the signal to set the integral component of the speed controller. S.Set Int(speed) SYNCO2.SpeedControl.S Value: 0000 Type: I Chart: 120, 4 H244 Source for the pre-control value of the speed controller. S.Precontrol SYNCO2.EnVorstSpeed.X2 H245 Source for the signal to enable the pre-control of the speed controller. S.enable PreCtrl SYNCO2.EnVorstSpeed.I d246 Status word 1 from the basic drive (in the factory setting; i. e. at H558 = 2571). Status Word1 CU Value: 3080 Type: I Chart: 120, 5 Value: 0140 Type: I Chart: 120, 5 Type: W Chart: 180, 1 IF_CU.Q_ZWort1.Y d300 Word 1 for output at the peer-to-peer interface. Peer W1 send IF_Peer.Peer_Zustand_W1.Y H303 Multiplexer selection of the source for the value, output as PZD 1, at the peer- Value: 2 to-peer interface Min: 0 Max: 10 0 Fixed value 0 Type: I 1 Fixed value H306 Chart: 570, 2 2 Status word 1 from peer-to-peer (refer to H310 ... H325) 3 Status word, angular synchronism 4 Control word 1 from the COMBOARD (PZD 1, receive) 5 Control word 2 from the COMBOARD (PZD 4, receive) 6 Status word 1 basic drive (PZD 1 receive) 7 Status word 2 basic drive (PZD 4 receive) 8 Control word 1 peer-to-peer (PZD 1 receive) 9 Control word 1 for the basic drive 10 Control word 2 for the basic drive MUX word 1 Peer Type: W Chart: 300, 6 MUX_Peer.MUX_Peer_W1.XCS H304 MUX float1 Peer Multiplexer selection of the source for output as 1st floating-point value at the peer-to-peer interface 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Fixed value 0.0 Actual setpoint for the basic drive (speed or torque) Displacement setpoint Ratio Master speed setpoint Relative ratio Inertia compensation Speed setpoint (limited) Slave speed (smoothed) Speed controller output System deviation, speed controller KP speed controller Speed setpoint after the ramp-function generator Angular controller output System deviation, angular controller KP angular controller Displacement actual value Displacement - differential position actual value Position difference (smoothed) Speed actual value slave Position actual value slave Speed actual value master Position actual value master Actual value1 from the basic drive Actual value2 from the basic drive Actual value3 from the basic drive Setpoint1 from the COMBOARD Setpoint2 from the COMBOARD Setpoint3 from the COMBOARD Setpoint4 from the COMBOARD Floating-point value1 from peer-to-peer Floating-point value2 from peer-to-peer Fixed value H307 Value: Min: Max: Type: Chart: 1 0 32 I 570, 6 MUX_Peer.MUX_Peer_W2.XCS SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 83 Parameters and connectors Parameter Description Data H305 Multiplexer selection of the source for output as 2nd floating-point value at the peer-to-peer interface. Value: Min: Max: Type: Chart: MUX float2 Peer 0 .. 31 as for H304 32 Fixed value H308 0 0 32 I 570, 7 MUX_Peer.MUX_Peer_W3.XCS H306 W1 Peer constant H307 W2 Peer constant H308 W3 Peer constant H309 Peer enable Initialization parameter Fixed value to output via peer-to-peer. MUX_Peer.Festwert_Peer.X Value 0 Type: W Chart: 570, 1 Fixed value to output via peer-to-peer. (word1 + word2 as floating-point value) MUX_Peer.MUX_Peer_W2.X32 Value 0.0 Type: R Chart: 570, 3 Fixed value to output via peer-to-peer. (word4 + word5 as floating-point value) MUX_Peer.MUX_Peer_W3.X32 Value 0.0 Type: R Chart: 570, 6 Enables communications via the peer-to-peer interface and also its monitoring. Value: 1 Type: BO Chart: 300, 1 0 1 Inhibited Enabled IF_Peer. Enable_Peer.I H310 ... H325 Select sources for the bits of status word 1 of the peer-to-peer interface. S.PeerState1_B0 ... S.PeerState1_B15 H310 H311 H312 H313 H314 H315 H316 H317 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 H318 H319 H320 H321 H322 H323 H324 H325 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 Type I Chart: 310, 5 - 6 IF_Peer.Zustandswort1.I1 ... I15 d327 Status Word Peer Status word to output at the peer-to-peer interface. The status word is combined by selecting sources H310 ... H325. Type: W Chart: 310, 7 IF_Peer.Zustandswort1.QS d329 ... d333 5 process data from the peer-to-peer interface. PZD1 Peer ... PZD5 Peer IF_Peer.Peer_Empf_W1.Y IF_Peer.PZD2_PZD3.YWL ... YWH IF_Peer.PZD4_PZD5.YWL ... YWH H334 Source for the control word for output at the peer-to-peer interface. S.ContrlWordPeer IF_Peer.STW_NOP.X H335 Source for the 2nd PZD for output at the peer-to-peer interface. S.Peer PZD2 IF_Peer.PZD2_3_out.XWL H336 Source for the 3rd PZD for output at the peer-to-peer interface. S.Peer PZD3 IF_Peer.PZD2_3_out.XWH H337 Source for the 1st double word for output at the peer-to-peer interface (PZD2 + PZD3). S.Peer DW1 Type: W Chart: 300, 2 Type: I Chart: 310, 1 Type: I Chart: 300, 5 Type: I Chart: 300, 5 Type: I Chart: 300, 5 IF_Peer.PZD2_3_out.XDI H338 S.Peer Float1 Source for the 1st floating-point value for output at the peer-to-peer interface (PZD2 + PZD3). IF_Peer.PZD2_3_out.XR H339 Selects the data to be output as PZD2 + PZD3: Peer Sendtype1 0: PZD2, PZD3 as single words 1: DW1 double word 1 (H337) 2: Float1 (H338) Value: 3304 Type: I Chart: 300, 5 Value: 0 Type: I Chart: 300, 6 IF_Peer.PZD2_3_out.SEL H340 Source for the 4th PZD for output at the peer-to-peer interface. S.Peer PZD4 IF_Peer.PZD45_out.XWL 84 Type: I Chart: 300, 5 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H341 Source for the 5th PZD for output at the peer-to-peer interface. S.Peer PZD5 IF_Peer.PZD45_out.XWH Type: I Chart: 300, 5 H342 Source for the 2nd double word for output at the peer-to-peer interface (PZD4 + PZD5). S.Peer DW2 Type: I Chart: 300, 5 IF_Peer.PZD45_out.XDI H343 S.Peer Float2 Source for the 2nd floating-point value for output at the peer-to-peer interface (PZD4 + PZD5). IF_Peer.PZD45_out.XR H344 Selects the data to be output as PZD4 + PZD5: Peer Sendtype2 0: PZD4, PZD5 as single words 1: DW2 double word 2 (H342) 2: Float2 (H343) Value: 3305 Type: I Chart: 300, 5 Value: 0 Type: I Chart: 300, 6 IF_Peer.PZD45_out.SEL H345 S.Peer PZD1 Source for the 1st PZD for output at the peer-to-peer interface. IF_Peer.Peer_Zustand_W1.X d346 Receive data from the peer-to-peer interface, word 1. Peer ControlWord IF_Peer.STW_NOP.Y H360 Time in which a valid telegram must be received after the device has been powered-up. If a telegram was not received after T > H360 has expired, fault F117 is generated (if this was not suppressed using H003). tmaxPeer PowerOn Value: 2303 Type: I Chart: 300, 5 Type: W Chart: 310, 1 Value: 20 s Type: SD Chart: 300, 6 IF_Peer.StartTimeout.T H361 tmax Peer OpMode Monitoring time during operation. If no data are received within the time interval, parameterized using H361, fault F117 is generated (if this is not suppressed with H003). Value: 100 ms Type: SD Chart: 300, 1 IF_Peer. Empf_PEER.TMX H362 Mask Peer tmax The status word of the receive block of the peer-to-peer interface is masked Value 16#FFFF using H362. If the result of this bitwise AND logic operation is not equal to 0, Type: W then a communications error is assumed. If the error remains for longer than Chart: 300, 4 the time parameterized in H360, the power-on monitoring signals a fault (refer to H360). IF_Peer.Filter.I2 H363 Baud rate for peer-to-peer communications. Baud Rate Peer Permissible values: 9600, 19200, 38400, 93750, 187500 IF_Peer.PEER_Zentral.BDR d364 Peer RecStateYTS Status output of the receive block CRV as information for the fault signal `F117' Value: 19200 Type: DI Chart: 300, 1 Type: W Chart: 300, 4 IF_Peer.Empf_PEER.YTS H381 ... H388 S.PZD1 CU ... S.PZD8 CU Selects 8 sources for output as PZD to the basic drive converter. The source must either be a word- or integer type. Factory setting: H381 = 2026 H382 = 2500 H383 = 2502 H384 = 2027 H385 = 2504 H386 = 2506 H387 = 2510 H388 = 2508 Type: I Chart: 410, 5 Control word 1 (Chart220) Setpoint1 CU N2 Setpoint2 CU N2 Control word 2 (Chart220) Setpoint3 CU N2 Setpoint4 CU N2 Setpoint CU DW high Setpoint5 CU N2 IF_CU.Sammeln.X1 ... X8 H401 CB actval1 norm. Normalization factor for the 1st actual value for output in the N2 format at the communications interface. Output value = 100% * source(H822) / H401 Value 1.0 Type: R Chart: 440, 2 IF_COM.Istwert_W2.NF SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 85 Parameters and connectors Parameter Description Data H403 Normalization factor for the 2nd actual value for output in the N2 format at the communications interface. Value 1.0 Type: R CB actval2 norm. Output value = 100% * source(H823)/ H403 IF_COM.Istwert_W3.NF H405 CB actval3 norm. Normalization factor for the 3rd actual value for output in the N2 format at the communications interface. Value 1.0 Type: R Value 1.0 Type: R Output value = 100% * source(H824) / H405 IF_COM.Istwert_W5.NF H407 CB actval4 norm. Normalization factor for the 4th actual value for output in the N2 format at the communications interface. Output value = 100% * source(H825) / H407 IF_COM.Istwert_W6.NF H409 Enables communications via PROFIBUS and its monitoring. ComBoard enable 0 1 Initialization parameter H410 ... H425 S.CB state1 B0 ... S.CB state1 B15 Inhibited Enabled Value: 1 Type: BO Chart: 400, 1 IF_COM.Enable_ComBoard.I Sources for the bits of status word 1 to output at COMBOARD. All of the status bits are connected to constant 0 in the factory setting. H410 H411 H412 H413 H414 H415 H416 H417 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 H418 H419 H420 H421 H422 H423 H424 H425 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 Value 0 Type BO Chart: 430, 1 - 2 IF_COM.Zustandswort1.I1 ... I16 H426 ... H441 S.CB state2 B0 ... S.CB state2 B15 Sources for the bits of status word 2 to output at COMBOARD. All of the status bits are connected to constant 0 in the factory setting. H426 H427 H428 H429 H430 H431 H432 H433 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 H434 H435 H436 H437 H438 H439 H440 H441 Value 0 Type BO Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 IF_COM.Zustandswort2.I1 ... I16 H442 MUX word1 CB Multiplexer selection of the source for the value output, at the COMBOARD interface as PZD 1 0 1 2 3 4 5 6 7 8 9 10 Fixed value 0 Fixed value H443 Status word 1 from the COMBOARD Status word angular synchronism Control word 1 from the COMBOARD (PZD 1, receive) Control word 2 from the COMBOARD (PZD 4, receive) Status word 1 basic drive (PZD 1, receive) Status word 2 basic drive (PZD 4, receive) Control word 1 peer-to-peer (PZD 1, receive) Control word 1 for the basic drive Control word 2 for the basic drive Value: Min: Max: Type: Chart: 0 0 10 I 560, 3 MUX_CB.MUX_COM_W1.XCS H443 Fixed value for output at the communications interface as PZD1. word1 CB constan MUX_CB.Festwerte_CB.X1 86 Value: 0 Type: W Chart: 560, 2 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H444 Multiplexer selection of the source for the value output, at the COMBOARD interface as PZD 4 Value: Min: Max: Type: Chart: MUX word4 CB 0 1 2 3 4 5 6 7 8 9 10 Fixed value 0 Fixed value H445 Status word 2 from the COMBOARD Status word angular synchronism Control word 1 from the COMBOARD (PZD 1, receive) Control word 2 from the COMBOARD (PZD 4, receive) Status word 1 basic drive (PZD 1, receive) Status word 2 basic drive (PZD 4, receive) Control word 1 peer-to-peer (PZD 1, receive) Control word 1 for the basic drive Control word 2 for the basic drive 0 0 10 I 5600, 7 MUX_CB.MUX_COM_W4.XCS H445 Fixed value for output at the communications interface, as PZD 4. word4 CB constan MUX_CB.Festwerte_CB.X2 H446 Multiplexer selection of the source for the value output at COMBOARD, as PZD 2. MUX word2 CB 0 .. 31 Refer to H304 32 Fixed value H470 Value: 0 Type: W Chart: 560, 6 Value: Min: Max: Type: Chart: 1 0 32 I 550, 3 Value: Min: Max: Type: Chart: 0 0 32 I 550, 4 Value: Min: Max: Type: Chart: 0 0 32 I 550, 6 Value: Min: Max: Type: Chart: 0 0 32 I 550, 7 MUX_CB.MUX_CB_W2.XCS H447 MUX word3 CB Multiplexer selection of the source for the value output at COMBOARD, as PZD 3. 0 .. 31 Refer to H304 32 Fixed value H471 MUX_CB.MUX_CB_W3.XCS H448 MUX word5 CB Multiplexer selection of the source for the value output at COMBOARD, as PZD 5. 0 .. 31 Refer to H304 32 Fixed value H472 MUX_CB.MUX_CB_W5.XCS H449 MUX word6 CB Multiplexer selection of the source for the value output as PZD 6 at COMBOARD. 0 .. 31 Refer to H304 32 Fixed value H473 MUX_CB.MUX_CB_W6 XCS d450 1st setpoint from the communications module. CB Setp_1 rec. IF_COM.Sollwert_W2.Y H451 Normalization factor for the 1st setpoint from the communications module. CB Setp_1 norm. d450 = H451 * source(H813) / 100% IF_COM.Sollwert_W2.NF d452 2nd setpoint from the communications module. CB Setp_2 rec. IF_COM.Sollwert_W3.Y H453 Normalization factor for the 2nd setpoint from the communications module. CB Set_2 norm. d452 = H453 * source(H814) / 100% IF_COM.Sollwert_W3.NF d454 3rd setpoint from the communications module. CB Setp_3 rec. IF_COM.Sollwert_W5.Y H455 Normalization factor for the 3rd setpoint from the communications module. CB Setp_3 norm. d454 = H455 * source(H815) / 100% IF_COM.Sollwert_W5.NF d456 4th setpoint from the communications module. CB Setp_4 rec. IF_COM.Sollwert_W6.Y SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Type: R Chart: 410, 7 Value 1.0 Type: R Chart: 410, 6 Type: R Chart: 410, 7 Value 1.0 Type: R Chart: 410, 6 Type: R Chart: 410, 7 Value 1.0 Type: R Chart: 410, 6 Type: R Chart: 410, 7 87 Parameters and connectors Parameter Description Data H457 Normalization factor for the 4th setpoint from the communications module. CB setp_4 norm. d456 = H457 * source(H816) / 100% Value 1.0 Type: R Chart: 410, 6 IF_COM.Sollwert_W6.NF d458 Send data of the communications interface, word 1 Word 1 CB Send IF_COM.Sammeln2.Y3 d459 Send data of the communications interface, word 4 Word 4 CB Send IF_COM.Sammeln2.Y4 d460 Process data, which interprets control word1 from the communications module. Connected with PZD1 from CB in the factory setting. ControlWord 1 CB Type: W Type: W Type: W Chart: 420, 1 IF_COM.Verteil2.Y3 d461 ControlWord 2 CB Process data, which interprets control word1 from the communications module. Connected with PZD4 from CB in the factory setting. Type: W Chart: 420, 5 IF_COM.Verteil2.Y4 H462 tmax CB PowerOn Time, in which a valid telegram must be received after the device has been powered-up. If a telegram was not received after T > H462 has expired, fault F116 is generated (if this was not suppressed using H003). Value: 20000 ms Type: SD Chart: 400, 5 IF_COM.StartTimeout.T H463 tmax CB OpMode Monitoring time during operation. If no data are received within the time interval, parameterized using H463, fault F116 is generated (if this is not suppressed with H003). Value: 100 ms Type: SD Chart: 400, 1 IF_COM. Empf-COM.TMX H464 Mask tmax CB The status word of the receive block of the peer-to-peer interface is masked Value 16#FFFF using H464. If the result of this bitwise AND logic operation is not equal to 0, Type: W then a communications error is assumed. If the error remains for longer than Chart: 400, 4 the time parameterized in H462, the power-on monitoring signals a fault (refer to H462). IF_COM.Filter.I2 d465 CB receive state Status display of receive block CRV as information for the fault message `F116' Type: W Chart: 400, 3 IF_COM.Empf-COM.YTS d466 1st status word for the communications module (as PZD1). Status Word1 CB IF_COM.Zustandswort1.QS d467 2nd status word for the communications module (as PZD4). Status Word2 CB IF_COM.Zustandswort2.QS H470 Fixed value for output via COMBOARD (as actual value1) W2 CB constant H471 W3 CB constant H472 W5 CB constant H473 W6 CB constant MUX_CB.MUX_CB_W2.X32 Fixed value for output via COMBOARD (as actual value2) MUX_CB.MUX_CB_W3.X32 Fixed value for output via COMBOARD (as actual value3) MUX_CB.MUX_CB_W5.X32 Fixed value for output via COMBOARD (as actual value4) MUX_CB.MUX_CB_W6.X32 H480 Slave address of the COMBOARD. CB Slave address This parameter is only relevant for operation without basic drive. For operation with basic drive, the COMBOARD is parameterized from the basic drive. Type: W Chart: 430, 4 Type: W Chart: 430, 7 Value 0.0 Type: R Chart: 550, 1 Value 0.0 Type: R Chart: 550, 3 Value 0.0 Type: R Chart: 550, 5 Value 0.0 Type: R Chart: 550, 7 Value 3 Type: I Chart: 400, 6 IF_COM.ComBoardConfig.MAA 88 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H481 ... H493 Parameterizing the COMBOARD. The settings are made depending on the COMBOARD type used (refer to the User Documentation of the COMBOARD; H482 = 2 sets PPO type 2 for Profibus) Value 0 except H482 = 2 Type: I Chart: 400, 6 - 8 CB Parameter 1 .... CB Parameter 13 These parameters are only relevant when using the system without basic drive. When used with the basic drive, the COMBOARD is parameterized from the basic drive. IF_COM.ComBoardConfig. P01 ... P13 H495 CB Param.valid The COMBOARD settings are set valid. In operation, H495 must be set to 1. After a parameter change (H480 .. H493), H495 is first set to 0 and then to 1, in order to update the parameters on COMBOARD. Value 1 Type: BO Chart: 400, 6 This parameter is only relevant for operation without a basic drive. When a basic drive is used, the COMBOARD is parameterized from the basic drive. IF_COM.ComBoardConfig.SET d496 CB state SRT400 Status of the COMBOARD. This is only relevant for operation without basic Type: W drive. When used with the basic drive, 16#7CB3 is displayed (i.e. "Basic drive Chart: 400, 8 available"). IF_COM.ComBoardConfig.YTS H498 S.Setp DW_CU Source for the setpoint for output as double word (N4 normalization) at the basic drive (normalization H499). Type: I Chart: 230, 1 IF_CU.SollwertN4CU.X H499 CU DW norm. Normalization factor for the setpoint for output as double word at the basic drive. In the factory setting, the high word is output as PZD7: Double word = 100 % * source(H498) / H499 Value 1.0 Type: R Chart: 230, 2 IF_CU.SollwertN4CU.NF H500 Source for the 1st setpoint for output at the basic drive (normalization H501). S.CU setp_1 IF_CU.Sollwert_W2.X H501 Normalization factor for the 1st setpoint for output at the basic drive. In the factory setting, output as PZD2: CU setp_1 norm. PZD2 = 100 % * source(H500) / H501 Type: I Chart: 230, 1 Value 1.0 Type: R Chart: 230, 2 IF_CU.Sollwert_W2.NF H502 Source for the 2nd setpoint for output to the basic drive (normalization H503). S.CU setp_2 IF_CU.Sollwert_W3.X H503 Normalization factor for the 2nd setpoint for output at the basic drive. In the factory setting, output as PZD3: CU setp_2 norm. PZD3 = 100 % * source(H502) / H503 Type: I Chart: 230, 1 Value 1.0 Type: R Chart: 230, 2 IF_CU.Sollwert_W3.NF H504 Source for the 3rd setpoint for output at the basic drive (normalization H505). S.CU setp_3 IF_CU.Sollwert_W5.X H505 Normalization factor for the 3rd setpoint for output at the basic drive. In the factory setting, output as PZD5: CU setp_3 norm. PZD5 = 100 % * source(H504) / H505 Type: I Chart: 230, 1 Value 1.0 Type: R Chart: 230, 2 IF_CU.Sollwert_W5.NF H506 Source for the 4th setpoint for output at the basic drive (normalization H507). S.CU setp_4 IF_CU.Sollwert_W6.X H507 Normalization factor for the 4th setpoint for output at the basic drive. In the factory setting, output as PZD6: CU setp_4 norm. PZD6 = 100 % * source(H506) / H507 Type: I Chart: 230, 1 Value 1.0 Type: R Chart: 230, 2 IF_CU.Sollwert_W6.NF H508 Source for the 5th setpoint for output at the basic drive (normalization H509). S.CU setp_5 IF_CU.Sollwert_W8.X SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Type: I Chart: 230, 1 89 Parameters and connectors Parameter Description Data H509 Normalization factor for the 5th setpoint for output at the basic drive. In the factory setting, output as PZD8: Value 1.0 Type: R Chart: 230, 2 CU setp_5 norm. PZD8 = 100 % * source(H508) / H509 IF_CU.Sollwert_W8.NF H510 ... H525 Sources for the bits of control word 1 for outputs at the basic drive. S.Bit0 CTW1 CU ... S.Bit15 CTW1 CU Par. Bit Factory Significance H510 H511 H512 H513 H514 H515 H516 H517 H518 H519 H520 H521 H522 H523 H524 H525 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 On (main contactor) 1=ON /OFF2 (powered-down) 0=OFF /OFF3 (fast stop) 0=OFF Pulse enable Ramp-function generator enable Start, ramp-function generator Setpoint enable 1=enable Acknowledge fault 1=acknowledge Jogging 1 Jogging 2 Control requested Enable positive direction of rotation Enable negative direction of rotation Motorized potentiometer, raise Motorized potentiometer, lower Fault, external 1 0 = fault Type I Chart: 220, 1... 2 IF_CU.Steuerwort1.I1 ... I15 IF_CU.Q_ext_Error.I H526 ... H541 S.Bit0 CTW2 ... S.Bit15 CTW2 Sources for the bits of control word 2 for output at the basic drive. Only bit 9 (speed controller enable) is used. H526 H527 H528 H529 H530 H531 H532 H533 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 H534 H535 H536 H537 H538 H539 H540 H541 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 Type I Chart: 220, 5 0546 IF_CU.Steuerwort2. I1 ... I16 H542 Mask CU ready Using this mask, a bit of status word 1 from the basic drive can be selected, which then signals the operational readiness of the basic drive. Status word 1 of the basic drive is AND'ed bitwise with H542. If at least the 1st bit of the result word is set, the following is valid: "Basic drive ready". This is the prerequisite for the speed controller enable. Value 16#0004 Type: W Chart: 90, 5 IF_CU.BereitBitMaske.I2 H543 TestEnable CU n For test purposes, the speed controller can be enabled in the basic drive, bypassing the enable logic. IF_CU.n-Reg_Freigabe.I2 H544 MUX Speed enable Multiplexer selection of the source to enable the speed controller in the basic drive. In order that the speed controller is enabled, the basic drive must be ready (refer to H542) 0 1 2 3 4 5 6 Fixed value 0 Fixed value 1 Bit 9 from control word 2 from the COMBOARD Bit 10 from control word 1 from the COMBOARD Bit 9 from control word 1 from peer-to-peer Digital input 8 (terminal 60) Bit 15 from the control word from the basic drive Value 0 Type: BO Chart: 90, 7 Value: Min: Max: Type: Chart: 1 0 5 BO 560, 3 MUX_CU.Mux_Enable_nRegl.XCS 90 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description d545 ... d548 Computer utilization level of the standard software package, assigned Type: R according to time sectors. T1 is the fastest (highest priority), T5 is the slowest Chart: 40, 7 time sector. CPU load T1 to T4 d549 Total CPU load It is important that the total CPU load are not utilized more than 100% , as otherwise they will not be processed in the configured time intervals. d545 d546 d547 d548 d549 Utilization of T1 Utilization of T2 Utilization of T3 Utilization of T4 Total CPU load IF_CU.LoadMeasure.YC1 ... YC4, H550 CU actval1 norm. Data IF_CU.LoadMeasure.Y Normalization factor for the 1st actual value channel (factory setting: PZD2) of the receive data from the basic drive d551 = H550 * PZD2 / 100% Value 1.0 Type: R Chart: 170, 7 IF_CU.Istwert_W2.NF d551 Actual value1 basic drive (factory setting: PZD2) after normalization CU actval1 IF_CU.Istwert_W2.Y H552 Normalization factor for the 2nd actual value channel (factory setting: PZD3) of the receive data from the basic drive CU actval2 norm. d553 = H552 * PZD3 / 100% Type: R Chart: 170, 7 Value 1.0 Type: R Chart: 170, 7 IF_CU.Istwert_W3.NF d553 Actual value2 basic drive (factory setting: PZD3) after normalization CU actval2 IF_CU.Istwert_W3.Y H554 Normalization factor for the 3rd actual value channel (factory setting: PZD5) of the receive data from the basic drive CU actval3 norm. d555 = H554 * PZD5 / 100% Type: R Chart: 170, 7 Value 1.0 Type: R Chart: 170, 7 IF_CU.Istwert_W5.NF d555 Actual value3 basic drive (factory setting: PZD5) after normalization CU actval3 IF_CU.Istwert_W5.Y d556 Optional control word; e.g. to control angular synchronism via SIMOLINK e basic drive e T400. CTW from CU Type: R Chart: 170, 7 Type: W Chart: 180, 6 IF_CU.STW_SPA.Y H557 S.CTW from CU Source for an optional control word. Factory setting, PZD6 from the basic drive. The selected source is split-up into status bits and inverse status bits (connectors 0550 and onwards). Value: 2576 Type: I Chart: 180, 1 IF_CU.STW_SPA.X H558 S.StatusWord1 CU Source for status word1 from the basic drive. The selected source is split-up into status bits and inverse status bits (connectors 0510 and onwards). IF_CU.Q_ZWort1.X H559 S.StatusWord2 CU Source for the status word1 from the basic drive. The selected source is splitup into status bits (connectors 0480 and onwards). IF_CU.Zustand2CU.IS Value: 2571 Type: I Chart: 180, 1 Value: 2571 Type: I Chart: 180, 1 d560 Receive word 1 from the basic drive (PZD1) = status word 1 CU Status Word 1 IF_CU.Verteilung.X1 d561 Receive word 4 from the basic drive (PZD4) = status word 2 CU Status Word 2 IF_CU.Verteilung.X4 d562 Status of the receive channel from the basic drive CU Rec.State IF_CU.Empf_BASE.YTS H563 Source of the 1st actual value from the basic drive, which should be converted Value: 2572 from the N2 format into the floating-point format (normalization factor H550). Type: I Chart: 170, 4 IF_CU.Istwert_W2.X S.actval_1 CU SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Type: I Type: I Type: W Chart: 150, 4 91 Parameters and connectors Parameter Description Data H564 Source of the 2nd actual value from the basic drive, which should be converted from the N2 format into the floating-point format (normalization factor H552). Value: 2573 Type: I Chart: 170, 4 S.actval_2 CU IF_CU.Istwert_W3.X H565 S.actval_3 CU Source of the 3rd actual value from the basic drive, which should be converted from the N2 format into the floating-point format (normalization factor H554). Value: 2575 Type: I Chart: 170, 4 IF_CU.Istwert_W5.X H567 S.DW high CU Source of the double word (high word) from the basic drive, which should be converted from the N4 format into the floating-point format (normalization factor H558). Value: 2582 Type: I Chart: 170, 3 IF_CU.W_DW.XWH H568 S.DW low CU Source of the double word (low word) from the basic drive, which should be converted from the N4 format into the floating-point format (normalization factor H558). Value: 2581 Type: I Chart: 170, 3 IF_CU.W_DW.XWL H569 S.DW CU Source of the double word from the basic drive, which is to be directly converted into the floating-point format. IF_CU.CU_DI_R.X d570 CU DW_R Result of the double word e floating-point conversion (received from the basic drive) Value: 5567 Type: I Chart: 170, 5 Type: R Chart: 170, 7 IF_CU.CU_DI_R.Y d571 .. d584 PZD1 CU rec.... PZD14 CU rec. H587 S.N4 CU Actual value of the first 14 process data from the basic drive. In the factory setting, only PZD1 (status word 1) is evaluated. IF_CU.Verteilung.Y1 ... Y8 IF_CU.Verteil2CU.Y1 ... Y6 Source of the double word from the basic drive, which is to be converted from the N4 format into the floating-point format. IF_CU.CU_N4_R.X H588 CU N4 norm. Normalization factor for the conversion from N4 into the floating-point format. For H588 = 1.0, N4 = 100% (16#40000000) is emulated as 1.0. IF_CU.CU_N4_R.NF d589 CU N4_R Type: W Chart: 170, 2 Result of the double word (N4 normalization) -> floating-point conversion (received from the basic drive) Value: 5567 Type: I Chart: 170, 5 Value: 1.0 Type: R Chart: 170, 7 Type: R Chart: 170, 7 IF_CU.CU_N4_R.Y H590 Q.CU_I_R Source of the actual value from the basic drive which is to be directly converted into the floating-point format (i.e. PZD= 1234 => d591 = 1234.0 ). IF_CU.CU_I_R.X d591 Actual value from the basic drive after conversion into a floating-point value. CU I_R IF_CU.CU_I_R.Y H592 Source for the status word from the basic drive. From this, mask H542 selects a status bit, which is used to enable the speed controller. S.en.Speed CU1 IF_CU.BereitBitMaske.I1 H593 Source for an additional condition to enable the speed controller. S.en.Speed CU2 IF_CU.Enable_n_Regler.I2 d601 ... d604 Input value of the bi-directional I/O of the T400. (For the case, where the terminals are used as inputs; i.e. driver H637 ... H640 inactive) Pin46 input ... Pin49 input Parameter T400 terminal 1 signifies: d601 d602 d603 d604 Terminal 46 Terminal 47 Terminal 48 Terminal 49 Synchronism reached Angular controller at its limit Angular controller enabled Fault present Value: 2577 Type: I Chart: 170, 4 Type: R Chart: 170, 7 Value: 2571 Type: I Chart: 90, 5 Value: 0547 Type: I Chart: 90, 6 Type: BO Chart: 53, 3 .. 7 T400_EA.BinOut.Q1 ... Q4 92 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data d607 Actual value of the 1st coarse pulse input (terminal 84) on the T400. Pin84 Coarse P1 T400_EA.BinOut.Q7 Type: BO Chart: 52, 7 d608 Actual value of the 2nd coarse pulse input (terminal 65) on the T400. Pin65 Coarse P2 T400_EA.BinOut.Q8 H609 This parameter is available, for compatibility reasons, to earlier software releases. From version V2.02 onwards, the digital inputs are available inverted and not inverted, and can be selected using BICO connections. BinInp Inverters The digital inputs can be individually inverted using H609. In this case, every bit from H609 is EXOR'd with the appropriate input bit. Type: BO Chart: 52, 7 Value 16#0000 Type: W Not included in the charts! 1-bits result in an inversion. For example: H609 = 16#0005 = 0000 0101b inputs 1 and 3 are inverted T400_EA.Invert_BinInp.I2 d610 ... d617 Digital inputs of the T400. BinInput1 Pin53 d610 d611 d612 d613 d614 d615 d616 d617 Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 (terminal 53) (terminal 54) (terminal 55) (terminal 56) (terminal 57) (terminal 58) (terminal 59) (terminal 60) Type BO Chart: 52, 3 T400_EA.BinInput.Q1 ... Q8 H618 Selects the source for the 1st analog output of the T400 (terminal 97). MUX AnalogOutp 1 0 .. 31 as for H304 32 DT1 (n_set) (inertia compensation from n_set) MUX_AnaOut.MUX_DAC_1.XCS H619 Selects the source for the 2nd analog output of the T400 (terminal 98). MUX AnalogOutp 2 0 .. 31 as for H304 32 DT1 (n_set) (inertia compensation from n_set) MUX_AnaOut.MUX_DAC_2. XCS H620 S.Analog Outp1 H621 S.set DAC1 zero Source for the signal for output at the 1st analog output of the T400. Value: Min: Max: Type: Chart: 1 0 31 I 510, 4 Value: Min: Max: Type: Chart: 0 0 31 I 510, 6 T400_EA.Filt_DAC1.X Value: 3618 Type: I Chart: 51, 2 Source of the signal to set the output value to zero for the 1st analog output of the T400. If H160 = 0.0 (DA1 offset), this allows the analog output to be inhibited (output voltage = 0V) or enabled. Value: 0000 Type: I Chart: 51, 2 T400_EA.Filt_DAC1.S H622 S.Analog Outp2 H623 S.set DAC2 zero Source for the signal for output at the 2nd analog output of the T400. T400_EA.Filt_DAC2.X Value: 3619 Type: I Chart: 51, 2 Source of the signal to set the output value to zero for the 2nd analog output of the T400. If H162 = 0.0 (DA2 offset), this allows the analog output to be inhibited (output voltage = 0V) or enabled. Value: 0000 Type: I Chart: 51, 2 T400_EA.Filt_DAC2.S H631 S.BiDir Out1 Source for the digital signal for output at terminal 46. The output driver is activated with H637 = 1. T400_EA.BinOut.I1 H632 S.BiDir Out2 Source for the digital signal for output at terminal 47. The output driver is activated with H638 = 1. T400_EA.BinOut.I2 H633 S.BiDir Out3 Source for the digital signal for output at terminal 48. The output driver is activated with H639 = 1. T400_EA.BinOut.I3 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Value: 0105 Type: I Chart: 53, 1 Value: 0116 Type: I Chart: 53, 1 Value: 0109 Type: I Chart: 53, 5 93 Parameters and connectors Parameter Description Data H634 Source for the digital signal for output at terminal 49. The output driver is activated with H640 = 1. Value: 0003 Type: I Chart: 53, 5 S.BiDir Out4 T400_EA.BinOut.I4 H635 S.Bin.Output1 Source for the digital signal for output at terminal 51. T400_EA.BinOut.I6 H636 Source for the digital signal for output at terminal 52. S.Bin.Output2 T400_EA.BinOut.I5 H637 ... H640 Activates the driver for the bi-directional I/O of the T400. ( 1: Driver active; 0: Only the input can be used) enable BiDir1 ... enable BiDir4 Initialization parameter H637: Terminal 46 H639: Terminal 48 H638: H640: Value: 0004 Type: I Chart: 53, 1 Value: 0000 Type: I Chart: 53, 1 Type: BO Chart: 53, 2 - 6 Terminal 47 Terminal 49 T400_EA.BinOut.DI1 ... DI4 H650 Selects the source for bit 0 in control word 1 to the basic drive MUX CTW1 Bit0 0 1 2 3 4 5 Fixed value 0 Fixed value 1 Bit 0 from control word 1 from the COMBOARD Bit 0 from control word 1 of the peer-to-peer interface Digital input 1 (terminal 53) Control word from the basic drive, bit 5 Value: 0 Type: I Chart: 530, 2 MUX_CU.Mux_STW1_B0.XCS H651 Selects the source for bit 1 in control word 1 to the basic drive MUX CTW1 Bit1 0 1 2 3 4 5 Fixed value 0 Fixed value 1 Bit 1 from control word 1 from the COMBOARD Bit 1 from control word 1 of the peer-to-peer interface Digital input 2 (terminal 54) Control word from the basic drive, bit 6 Value: 1 Type: I Chart: 530, 2 MUX_CU.Mux_STW1_B1.XCS H652 Selects the source for bit 2 in control word 1 to the basic drive MUX CTW1 Bit2 0 1 2 3 4 5 Fixed value 0 Fixed value 1 Bit 2 from control word 1 from the COMBOARD Bit 2 from control word 1 of the peer-to-peer interface Digital input 3 (terminal 55) Control word from the basic drive, bit 7 Value: 1 Type: I Chart: 530, 2 MUX_CU.Mux_STW1_B2.XCS H653 Selects the source for bit 3 in control word 1 to the basic drive MUX CTW1 Bit3 0 1 2 3 4 5 Fixed value 0 Fixed value 1 Bit 3 from control word 1 from the COMBOARD Bit 3 from control word 1 of the peer-to-peer interface Digital input 4 (terminal 56) Control word from the basic drive, bit 8 Value: 1 Type: I Chart: 530, 2 MUX_CU.Mux_STW1_B3.XCS H654 Selects the source for bit 4 in control word 1 to the basic drive MUX CTW1 Bit4 0 1 2 3 4 5 Fixed value 0 Fixed value 1 Bit 4 from control word 1 from the COMBOARD Bit 4 from control word 1 of the peer-to-peer interface Digital input 5 (terminal 57) Control word from the basic drive, Bit 9 Value: 1 Type: I Chart: 530, 6 MUX_CU.Mux_STW1_B4.XCS 94 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data H655 Selects the source for bit 5 in control word 1 to the basic drive MUX CTW1 Bit5 0 1 2 3 4 5 Value: 1 Type: I Chart: 530, 6 Fixed value 0 Fixed value 1 Bit 5 from control word 1 from the COMBOARD Bit 5 from control word 1 of the peer-to-peer interface Digital input 6 (terminal 58) Control word from the basic drive, Bit 10 MUX_CU.Mux_STW1_B5.XCS H656 Selects the source for bit 6 in control word 1 to the basic drive MUX CTW1 Bit6 0 1 2 3 4 5 Fixed value 0 Fixed value 1 Bit 6 from control word 1 from the COMBOARD Bit 6 from control word 1 of the peer-to-peer interface Digital input 7 (terminal 59) Control word from the basic drive, Bit 11 Value: 1 Type: I Chart: 530, 6 MUX_CU.Mux_STW1_B6.XCS H657 Selects the source for bit 7 in control word 1 to the basic drive MUX CTW1 Bit7 0 1 2 3 4 5 Fixed value 0 Fixed value 1 Bit 7 from control word 1 from the COMBOARD Bit 7 from control word 1 of the peer-to-peer interface Digital input 8 (terminal 60) Control word from the basic drive, Bit 12 Value: 0 Type: I Chart: 530, 6 MUX_CU.Mux_STW1_B7.XCS H658 Selects the source for bit 8 in control word 1 to the basic drive MUX CTW1 Bit8 0 1 2 3 4 Fixed value 0 Fixed value 1 Bit 8 from control word 1 from the COMBOARD Bit 8 from control word 1 of the peer-to-peer interface Coarse pulse input, encoder 2 (terminal 84) Value: 0 Type: I Chart: 540, 2 MUX_CU.Mux_STW1_B8.XCS H659 Selects the source for bit 9 in control word 1 to the basic drive MUX CTW1 Bit9 0 1 2 3 4 Fixed value 0 Fixed value 1 Bit 9 from control word 1 from the COMBOARD Bit 9 from control word 1 of the peer-to-peer interface Coarse pulse input, encoder 1 (terminal 65) Value: 0 Type: I Chart: 540, 2 MUX_CU.Mux_STW1_B9.XCS H660 Selects the source for bit 10 in control word 1 to the basic drive MUX CTW1 Bit10 0 1 2 3 Fixed value 0 Fixed value 1 Bit 10 from control word 1 from the COMBOARD Bit 10 from control word 1 of the peer-to-peer interface Value: 1 Type: I Chart: 540, 2 MUX_CU.Mux_STW1_B10.XCS H661 Selects the source for bit 11 in control word 1 to the basic drive MUX CTW1 Bit11 0 1 2 3 4 Fixed value 0 Fixed value 1 Bit 11 from control word 1 from the COMBOARD Bit 11 from control word 1 of the peer-to-peer interface Word 6 bit 13 from the basic drive Value: 1 Type: I Chart: 540, 2 MUX_CU.Mux_STW1_B11.XCS H662 Selects the source for bit 12 in control word 1 to the basic drive MUX CTW1 Bit12 0 1 2 3 4 Fixed value 0 Fixed value 1 Bit 12 from control word 1 from the COMBOARD Bit 12 from control word 1 of the peer-to-peer interface Word 6 bit 14 from the basic drive Value: 1 Type: I Chart: 540, 6 MUX_CU.Mux_STW1_B12.XCS SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 95 Parameters and connectors Parameter Description Data H663 Selects the source for bit 13 in control word 1 to the basic drive MUX CTW1 Bit13 0 1 2 3 Value: 0 Type: I Chart: 540, 6 Fixed value 0 Fixed value 1 Bit 13 from control word 1 from the COMBOARD Bit 13 from control word 1 of the peer-to-peer interface MUX_CU.Mux_STW1_B13.XCS H664 Selects the source for bit 14 in control word 1 to the basic drive MUX CTW1 Bit14 0 1 2 3 Fixed value 0 Fixed value 1 Bit 14 from control word 1 from the COMBOARD Bit 14 from control word 1 of the peer-to-peer interface Value: 0 Type: I Chart: 540, 6 MUX_CU.Mux_STW1_B14.XCS H665 MUX CTW1 Bit15 (external fault) Selects the source for bit 15 (external fault) in control word 1 to the basic drive (`1' = no fault) 0 1 2 3 4 5 6 Fixed value 0 Fixed value 1 Bit 15 from control word 1 from the COMBOARD Bit 15 from control word 1 of the peer-to-peer interface Fault (refer to H003) Alarm (refer to H004) Digital input 8 (terminal 60) Value: 1 Type: I Chart: 540, 6 MUX_CU.Mux_STW1_B15.XCS d666 Value, which is output at analog output 1. Analog output 1 T400_EA.Filt_DAC1.Y d667 Value, which is output at analog output 2. Analog output 2 T400_EA.Filt_DAC2.Y H668 Smoothing time constant for analog output 1 T_Filter_DAC1 T400_EA.Filt_DAC1.T H669 Smoothing time constant for analog output 2 T_Filter_DAC2 T400_EA.Filt_DAC2.T H700 Enables the serial interface 1 of the T400 for operation as USS slave. Further, switch S1/8 should be set into the ON position. Online operation with CFC or with the basic IBS (start-up) is then no longer possible! USS enable Type: R Chart: 51, 3 Type: R Chart: 51, 3 Value: 0 ms Type: R Chart: 51, 2 Value: 0 ms Type: R Chart: 51, 2 Value: 1 Type: BO Chart: 450, 1 USS slave is only required for operator control and visualization, if the T400 is to be operated without basic drive (in the SRT400). Prerequisite for OP1S: Software version from V2.2 IF_USS.Enable.I H701 Data transfer rate for the USS interface. Baud rate USS Example OP1S: Value: 9600 Type: DI Chart: 450, 1 9600 or 19200 IF_USS.Slave_ZB.BDR H703 USS Address H704 USS 4-Wire Station address, USS interface. Value: 0 Type: I Chart: 450, 1 IF_USS.Slave_ZB.MAA Difference between 2-wire (half duplex) and 4-wire operation (full duplex) for the USS interface. Value Significance Required for 0 1 for OP1S for SIMOVIS RS485 2-wire (half duplex) RS232 4-wire (full duplex) Value: 0 Type: BO Chart: 450, 1 For end nodes on the USS bus (RS485), terminating resistors must be used to terminate the bus. The appropriate resistors are switched-in using switches S1/1 and S1/2 on the T400; the resistors are switched-in in the ON setting. IF_USS.Slave_ZB. WI4 96 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data d705 Status of the central block of the USS interface (@USS_S). USS rec. state This value is only of significance, if the T400 is operated without basic drive, and parameterization should be realized via the serial interface 1 of the T400 in the USS protocol (refer to H700 to H704). Type: W Chart: 450, 4 IF_USS.Slave_ZB.YTS d706 ... d707 Two pieces of process data, received from the USS interface. PZD1 USS ... PZD2 USS IF_USS.USS_Dummy.Y1 ... Y2 H708 ... H709 Sources for 2 words, which are output at the USS interface. S.PZD1 USS Slave ... S.PZD2 USS Slave IF_USS.USS_Dummy.X1 ... X2 d801 ... d810 PZD1 CB rec. ... PZD10 CB rec. 10 process data when receiving data from the communications module. Depending on the PPO type used, not all PZD are used. These values are then undefined! Type: W Chart: 450, 6 Value: 2000 Type: I Chart: 450, 5 Type: W Chart: 410, 3 IF_COM.Verteilung.Y1 ... Y8 IF_COM.Verteil2.Y1 ... Y2 H811 S.Control W1 CB H812 S.Control W2 CB H813 ... H816 S.setp_1 CB ... S.setp_4 CB Selects the source for the 1st control word from the communications module. IF_COM.Verteil2.X3 Selects the source for the 2nd control word from the communications module. IF_COM.Verteil2.X4 Selects, from 4 sources, for setpoints from the communications interface, those which are to be converted from the N2 format into the floating-point format. Factory setting: H813 = 2802 H814 = 2803 H815 = 2805 H816 = 2806 Value: 2801 Type: I Chart: 420, 1 Value: 2804 Type: I Chart: 420, 1 Type: I Chart: 410, 5 PZD2 PZD3 PZD5 PZD6 IF_COM.Sollwert_W2.X, _W3.X, _W5.X, _W6.X H817 S.setp. I_R CB Selects the source, which is to be converted from integer to floating-point. IF_COM.Sollw_IR.X H818 Result of the conversion from integer to floating-point (refer to H817). Setp. I_R CB IF_COM.Sollw_IR.Y H819 ... H820 Selects from high and low word, a double word (format N4), which is to be converted into the floating-point-format. Normalization using H841. S.DW high CB ... S.DW low CB Factory setting: H819 = 2809 PZD9 H820 = 2810 PZD10 Type: R Chart: 410, 2 Type: I Chart: 410, 4 IF_COM.Sollw_DW.XWH IF_COM.Sollw_DW.XWL H821 Result of the N4 to floating-point conversion (refer to H818, H819, H841). CB setp. DW IF_COM.Sollw_N4.Y H822 ... H825 Selects from 4 sources, which are output at the communications interface as actual values. They are converted from the floating-point format into the N2 format. S.actval_1 CB ... S.actval_4 CB Value: 2807 Type: I Chart: 410, 1 Type: R Chart: 410, 7 Type: I Chart: 440, 1 Factory setting: H822 = 3446 H823 = 3447 H824 = 3448 H825 = 3449 Output, multiplexer MuxWord2 CB Output, multiplexer MuxWord3 CB Output, multiplexer MuxWord5 CB Output, multiplexer MuxWord6 CB IF_COM.Istwert_W2.X, _W3.X, _W5.X, _W6.X H826 S.actval R_I CB H828 S.actval_5 CB Selects the source, which should be converted from floating-point to integer. IF_COM.Ist_RI.X Selects the source, which should be converted from floating-point to double word. IF_COM.Ist_R_N4.X SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Value: 3000 Type: I Chart: 440, 6 Value: 3000 Type: I Chart: 440, 1 97 Parameters and connectors Parameter Description Data H829 Normalization for H828. For H829 = 1.0, the input value is emulated as 1.0 for 100% in the N4 format. Value: 1.0 Type: R Chart: 440, 2 Actval5 CB norm. IF_COM.Ist_R_N4.NF H831 ... H840 S.PZD1 CB ... S.PZD10 CB Selects from 10 sources for output as PZD via the communications interface. The source must be a word or integer type. Only as many PZD are transferred as the selected PPO type makes provision for! Factory setting: H831 = 2442 H832 = 2822 H833 = 2823 H834 = 2444 H835 = 2824 H836 = 2825 H837 = 2827 H838 = 2000 H839 = 2828 H840 = 2829 Type: I Chart: 410, 5 Multiplexer Mux Word1 CB (chart 560) Actual value1 CB Actual value2 CB Multiplexer Mux Word4 CB (chart 560) Actual value3 CB Actual value4 CB Actual value R_I CB Constant 0 Actual value5 high CB Actual value5 low CB IF_COM.Sammeln.X1 ... X8 IF_COM.Sammeln2.X1 ... X2 H841 CB DW norm. Normalization factor for the N4 to floating-point conversion (refer to H818, H819, H821). For H841, 100% (16#40000000) is converted into 1.0. IF_COM.Sollw_N4.NF H900 ... H913 S.F125 ... S.F131 S.A106 ... S.A112 Sources for optional digital quantities, which should initiate a fault or alarm in the basic drive. Source H900 H901 H902 H903 H904 H905 H906 Fault F125 F126 F127 F128 F129 F130 F131 Source H907 H908 H909 H910 H911 H912 H913 Alarm A106 A107 A108 A109 A110 A111 A112 Value: 1.0 Type: R Chart: 410, 6 Type: I Chart: 160, 1 160, 4 CONTR.Fehlerzustand.I10 ... I16 CONTR.Warnzustand.I10 ... I16 d921 ... d930 PZD1 CB out ... PZD10 CB out Actual value which should output up to 10 process data via the communications module. IF_COM.Sammeln.Y1 ... Y8 IF_COM.Sammeln2.Y1 ... Y2 H960 ... H965 6 fixed values, integer type (16 bit, signed) Constant I1 ... Constant I6 Constant.INT_Const.X1 ... X6 H971 ... H974 4 fixed value, word type (16 bit) Constant W1 ... Constant W4 Constant.WORD_Const.X1 ... X4 H981 ... H984 4 fixed values, double word type (32 bit signed). Constant DI1 ... Constant DI4 Constant.DINT_Const.X3 ... X6 H990 ... H997 8 fixed values, floating-point type. Constant R1 ... Constant R8 Constant.Const_Float.X1 ... X8 d998, d999 SIMADYN D, SIMOVIS SW ID Type: W Chart: 440, 6 Value: 0 Type: I Chart: 30,6 Value: 16#0000 Type: W Chart: 30,6 Value: 0 Type: DI Chart: 30,8 Value: 0.0 Type: R Chart: 30,5 Identification parameters for SIMOVIS to identify the standard software package. Chart: 40,3 Constant.SIMADYN_D.Y L028 ... L031 S.Display R1 ... S.Display R4 Four sources for display parameters, REAL type (floating-point) to display connectors without their own display parameters. The display is realized using parameters d028 ... d031. Type: I Chart: 470, 7 Free_FBs.Display_R.X1 ... Free_FBs.Display_R.X4 98 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data L032 ... L035 Four sources for display parameters, BOOL type to display connectors without their own display parameters. The display is realized using parameters d032 ... d035. Type: BO Chart: 470, 7 S.Display B1 ... S.Display B4 Free_FBs.Display_BO.I1 ... Free_FBs.Display_BO.I4 L036, L037 S.Display I1, S.Display I2 Two sources for display parameters, type integer (16 bit) to display connectors without their own display parameters. The display is realized using parameters d036 and d037. Type: BO Chart: 470, 7 Free_FBs.Display_I.X1, Free_FBs.Display_I.X2 L038, L039 S.Display W1, S.Display W2 Two sources for display parameters, type word (16 bit) to display connectors without their own display parameters. The display is realized using parameters d038 and d039. Type: BO Chart: 470, 7 Free_FBs.Display_W.X1, Free_FBs.Display_W.X2 L098 Enables position sensing via pulse encoder (NAVS). Reset required after value change! Value ! Type BO Chart 60, 5 L099 Enables position sensing via absolute value encoder (AENC). Reset required after value change! Value 0 Type BO Chart 60, 7 L100 - L302 Differential position sensing with absolute value encoder: Setting parameters for the absolute value encoder and diagnostic parameters. Detailed description, refer to Section 3.2.3. L400 Length buffer Value: Length of Trace-buffer (in double words) for offline-trace with "symTrace-D7" Min. Max. 2048 0 256000 Type I Typ: B Typ: W TRACE.Trace_Kopplung.TBL c401 Coupling Trace 0: No interconnection to the trace blocks 1: Interconnection to the trace blocks is activ. TRACE.Trace_Kopplung.QTS c402 Status Trace Status-word of trace. Description in "symTrace-D7" (Help-> Help subjects->Function blocks error messages) TRACE.Trace_Kopplung.YTS L605 S.DW_W1 Sources for a double word quantity, which should be split-up into two words. Free_FBs.DW_W1.X L606, L607 Sources for the summands of the 1st integer adder. S.ADDI_1 X1 S.ADDI_1 X2 Free_FBs.ADDI_1.X1 L608, L609 Sources for the inputs of the 1st integer subtractor. S.SUBI_1 X1 S.SUBI_1 X2 Free_FBs.SUBI_1.X1 ... X2 L646 Sources for an integer quantity, which should be converted into floating-point. S.I_R_1 Free_FBs.I_R1.X L647 Sources for a floating-point quantity, which should be converted into integer. S.R_I1 Free_FBs.R_I1.X L698, L699 Sources for the setting- and reset input of an RS flipflop (R dominant). (free block). S.S RS-FlipFlop1 S.R RS-FlipFlop1 Free_FBs.RS_FF2.S Value 5000 Type I Chart 490, 4 Value 2000 Type I Chart 470, 1 Value 2000 Type I Chart 470, 1 Value 2000 Type I Chart 490, 4 Value 3000 Type I Chart 490, 4 Type I Chart 460, 1 ... R SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 99 Parameters and connectors Parameter Description Data L700 ... L702 Three sources for the inputs of the 1st free AND block. S.AND1_I1 ... S.AND1_I3 Type I Chart 460, 1 Free_FBs.AND1.I1 ... I3 L703 ... L705 Three sources for the inputs of the 2nd free AND block. S.AND2_I1 ... S.AND2_I3 Free_FBs.AND2.I1 ... I3 L706 , L707 S.Switch1_0 ... S.Switch1_1 L708 S.Switch1_sel 2 sources for the inputs of the 1st free changeover. The output is selected using L708. Type I Chart 460, 4 Type I Chart 460, 1 Free_FBs.Switch1.X1 ... X2 Source for the signal to a signal. 0: Source(L706) 1: Source(L707) Type I Chart 460, 1 Free_FBs.Switch1.I L709 Source for the 1st free edge detecting block. S.Edge1 Free_FBs.Edge1.I L710 ... L712 3 sources for the inputs of the 1st free OR block. S.OR1_I1 ... S.OR1_I3 Free_FBs.OR1.I1 ... I3 L713 ... L715 3 sources for the inputs of the 2nd free OR block. S.OR2_I1 ... S.OR2_I3 Free_FBs.OR2.I1 ... I3 L716 , L717 S.Switch2_0 ... S.Switch2_1 L718 S.Switch2_sel 2 sources for the inputs of the 2nd free changeover. The output is selected using L718. S.OnDelay1 L729 T_OnDelay1 L730 S.OffDelay1 L731 T_OffDelay1 Source for the signal to a signal. 0: Source(L716) 1: Source(L717) Source for the 1st power-on delay. Free_FBs.OnDelay1.I 1st power-on delay time. Free_FBs.OnDelay1.T Source for the 1st power-off delay time. Free_FBs.OffDelay1.I 1st power-off delay time. Value 0000 Type I Chart 460, 4 Value 0000 Type I Chart 490, 7 Value 100 ms Type SD Chart 490, 7 Free_FBs.OffDelay1.T S.Not1, S.Not2 Free_FBs.Not1.I ... Not2.I L734, L735 Sources for the setting- and reset input of an RS flipflop (R dominant). (free block). S.set_PT1_zero Type I Chart 460, 4 Value 100 ms Type SD Chart 490, 7 Sources for the 2nd logical inverter. L738 Type I Chart 460, 4 Value 0000 Type I Chart 490, 7 L732, L733 S.S RS-FlipFlop2 S.R RS-FlipFlop2 Type I Chart 460, 1 Free_FBs.Switch2.X1 ... X2 Free_FBs.Switch2.I L728 Value I Chart 430, 6 Type I Chart 460, 7 Type I Chart 460, 4 Free_FBs.RS_FF1.S ... R Source for the digital signal to set the output of the free lowpass filter to zero. Behavior of the setting function: Setting 0 e1: Setting 1 e0: Output is immediately set to zero Output goes to the input value corresponding to L741 Value 0000 Type I Chart 480, 1 Free_FBs.FreePT1.S L739 QualityFact.Filt L740 S.PT1_input 100 Quality of the bandstop filter. Practical values lie in the range 1.0 ... 10.0. Free_FBs.SperrFilt.Q Source of the input signal for the lowpass 1st order filter (free block). Free_FBs.FreePT1.X Value 2.0 Type I Chart 480, 4 Value 3000 Type I Chart 480, 2 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data L741 Filter time constant of the 1st order lowpass filter. Value 20 ms Type SD Chart 480, 2 Tfilt PT1 L742 S.Band-Stop filt L743 S.FilterFrequenc Free_FBs.FreePT1.T Source of the input signal for a bandstop filter (free block). Free_FBs.SperrFilt.X Source of the input signal for the bandstop frequency (in Hz) of the bandstop filter. Value 3000 Type I Chart 480, 3 Value 3002 Type I Chart 480, 3 Free_FBs.SperrFilt.FG L744, L745 Sources for the input signals of a comparator. S.Compare_X, S.Compare_Y Free_FBs.Compare.X1 ... X2 L746 Source for the upper limit of a free limiting block. S.Limit_max L747 S.Limit_input L748 S.Limit_min Free_FBs.Begrenzer.LU Source for the signal to be limited of a free limiting block. Free_FBs.Begrenzer.X Source for the lower limit of a free limiting block. Free_FBs.Begrenzer.LL L749 Source for the input signal of a comparator with hysteresis (free block). S.Compare2 Free_FBs.Comp2.X L750 Source for the range limit of the comparator with hysteresis (free block). S.Compare2 Range L751 Compare2 Hyst L752 S.Compare2 Mid L753 S.Curve_X Free_FBs.Comp2.L Hysteresis of the comparator with hysteresis (free block). Free_FBs.Comp2.HY Source for the comparator center of range with hysteresis (free block). Type I Chart 480, 6 Value 3001 Type I Chart 480, 6 Value 3000 Type I Chart 480, 6 Value 3000 Type I Chart 480, 6 Value 3000 Type I Chart 480, 1 Value 3001 Type I Chart 480, 1 Value 0.1 Type I Chart 480, 2 Free_FBs.Comp2.M Value 3003 Type I Chart 480, 1 Source for the input signal of a characteristic with 2 points. If the signal is less than X1, the output = Y1; if it is greater than X2, the output = Y2. The characteristic is approximately linear between these two points. Value 3000 Type I Chart 480, 1 Free_FBs.Kennlin.X L754, L755 Value pair for the lefthand characteristic point (lower X coordinate). Curve_X1, Curve_Y1 Free_FBs.Kennlin.A1 ... B1 L756, L757 Value pair for the righthand characteristic point (higher X coordinate). Curve_X2, Curve_Y2 Free_FBs.Kennlin.A2 ... B2 L760 S.FreeWord Source for a 16-bit value, which is to be split-up into individual bits (connectors 0760 to 0775) Free_FBs.Free_W_B_1.IS L761... L763 S.DW_high, S.DW_low, DW norm. L764, L765 S.Word Word norm. 2 sources for a double word, which are to be converted into a floating-point value. L763 is the normalization; i. e. the output value for an input value of 16#40000000. Value 0.0 Type I Chart 480, 2 - 3 Value 1.0 Type I Chart 480, 2 - 3 Value 2000 Type I Chart 490, 1 Type I Chart 490, 5 - 7 Free_FBs.DW_inp.XWH ... XWL Free_FBs.Free_N4_R.NF Source and normalization for a 16-bit value, which is to be converted into a floating-point value. L765 is the normalization; i. e. the output value for input value 16#4000. Type I Chart 490, 4 - 5 Free_FBs.Free_N2_R.X, Free_FBs.Free_N2_R.NF SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 101 Parameters and connectors Parameter Description Data L766, L767 Source for a floating-point value, which is to be converted into type N2. L767 is the normalization; i. e. the input value for output = 16#4000. Type I Chart 490, 6 - 7 S.Float Float norm. Free_FBs.Float_N2.X, Free_FBs.Float_N2.NF L786 ... L788 Source for the summands of a free adder. S.ADD1 X1 ... S.ADD1 X3 Free_FBs.ADD1.X1 ... X3 L789 ... L791 Source for the summands of a free adder. S.ADD2 X1 ... S.ADD2 X3 Free_FBs.ADD2.X1 ... X3 L792 ... L793 Source for the inputs of a free subtractor (X1 - X2). S.SUB1 X1 ... S.SUB1 X2 Free_FBs.SUB1.X1 ... X3 L794 ... L795 Source for the inputs of a free subtractor (X1 - X2). S.SUB2 X1 ... S.SUB2 X2 Free_FBs.SUB2.X1 ... X3 L796 ... L798 Source for the inputs of a free multiplier. S.MUL1 X1 ... S.MUL1 X3 Free_FBs.MUL1.X1 ... X3 L799 ... L801 Source for the inputs of a free multiplier. S.MUL2 X1 ... S.MUL2 X3 Free_FBs.MUL2.X1 ... X3 L802 ... L803 Source for the inputs of a free divider (X1 / X2). S.DIV1 X1 ... S.DIV1 X2 Free_FBs.DIV1.X1 ... X2 L804 ... L805 Source for the inputs of a free divider (X1 / X2). S.DIV2 X1 ... S.DIV2 X2 Free_FBs.DIV2.X1 ... X2 L810 Source for free word-to-binary converter. S.Free_W_B_2 Free_FBs.Free_W_B_2.IS L812 ... L813 Source for the inputs of a free integer divider (X1 / X2). S.DIVI_1 X1 ... S.DIVI_1 X2 Free_FBs.DIVI_1.X1 ... X2 L814 ... L815 Source for the inputs of a free integer multiplier. S.MULI_1 X1 ... S.MULI_1 X2 Free_FBs.MULI_1.X1 ... X2 L816, L817 Source for free word-to-double-word converter. S.W_DW1 high S.W_DW1 low Free_FBs.WDW1.XWH ... XWL L818 Source of the input quantity of the freely available integrator. S.Integrator X L819 Integrator LU L820 Integrator LL L821 S.Integrator SV L822 Integrator T 102 Free_FBs.Integrator.X Upper limit value of the freely available integrator Free_FBs.Integrator.LU Lower limit value of the freely available integrator Free_FBs.Integrator.LL Source for the setting value of the freely available integrator Free_FBs.Integrator.SV Integration time constant of the freely available integrator Free_FBs.Integrator.TI Value 3000 Type I Chart 470, 3 Value 3000 Type I Chart 470, 3 Value 3000 Type I Chart 470, 3 Value 3000 Type I Chart 470, 3 Value 3001 Type I Chart 470, 5 Value 3001 Type I Chart 470, 5 Value 3001 Type I Chart 470, 5 Value 3001 Type I Chart 470, 5 Value 2000 Type I Chart 490, 1 Value 2001 Type I Chart 470, 1 Value 2001 Type I Chart 470, 1 Value 2000 Type I Chart 490, 4 Value 3000 Type I Chart 480, 5 Value 1.0 Type R Chart 480, 6 Value -1.0 Type R Chart 480, 6 Value 3000 Type R Chart 480, 5 Value 1000 ms Type SD Chart 480, 6 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors Parameter Description Data L823 Source for the setting signal of the freely available integrator. Free_FBs.Integrator.S Value 0000 Type I Chart 480, 5 2 sources for the inputs of the 3rd free changeover switch. The output is selected using L826. Type I Chart 460, 5 S.Integrator set L824 , L825 S.Switch3_0 ... S.Switch3_1 L826 S.Switch3_sel Free_FBs.Switch3.X1 ... X2 Source for the signal to a signal. 0: Source(L824) 1: Source(L825) Free_FBs.Switch3.I L827, L828 S.Switch4_0 ... S.Switch4_1 L829 S.Switch4_sel 2 sources for the inputs of the 4th free changeover switch. The output is selected using L829. Value 0000 Type I Chart 460, 5 Type I Chart 460, 7 Free_FBs.Switch4.X1 ... X2 Source for the signal to a signal. 0: Source(L827) 1: Source(L828) Free_FBs.Switch4.I L830 ... .L832 Sources of the 1st AND-OR logic in Chart 425. Output is B1830. S.AND_OR1_1 ... S.AND_OR1_3 Free_FBs.andOR1.I1 Free_FBs.ANDor1.I1 ... I2 L833 ... .L835 Sources of the 2nd AND-OR logic in Chart 425. Output is B1833. S.AND_OR2_1 ... S.AND_OR2_3 Free_FBs.andOR2.I1 Free_FBs.ANDor2.I1 ... I2 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Value 0000 Type I Chart 460, 7 Type I Chart 460, 6 Type I Chart 460, 6 103 Parameters and connectors 4.3 TC 0000 0001 0003 0004 0005 0020 0021 0097 0098 0100 0101 0102 0103 0104 0105 0106 0108 0109 0110 0111 0112 0113 0114 0115 0116 0134 0140 0148 0149 0150 0152 0153 0154 0160 0161 0162 0170 0171 0172 0173 0174 0175 0176 0177 0179 0186 0188 0189 0190 0192 0193 0194 0195 Connector list Chart 30,2 30,2 160,7 160,8 160,7 60,8 70,7 90,3 90,3 90,7 90,7 100.7 100.7 100.7 100,8 100,8 90,7 90,7 100,3 100,3 100,3 100,3 100,3 100,3 110,7 120,8 120,5 70,7 70,7 60,7 60,4 60,4 60,4 75,6 75,6 75,6 520,2 520,4 520,5 520,7 520,8 60,2 115,3 90,6 90,2 60,2 70,3 70,3 70,3 75,4 75,5 75,4 75,4 104 Path Name Constant.FALSE.Q Constant.TRUE.Q CONTR.ErrorMask.Q CONTR.WarnMaske.Q CONTR.Stoerung.Q CONTR.ErrorNAVSslave.Q CONTR.ErrorNAVSMaster.Q CONTR.Zus_Lage-RS.Q CONTR.OR_Sync.Q CONTR.SyncFlipFlop.QN CONTR.SyncFlipFlop.Q SYNCO2.CmpSynchr.QU SYNCO2.CmpSynchr.QM SYNCO2.CmpSynchr.QL SYNCO2.DisplValid.Q SYNCO2.Displace.DC CONTR.Lage_RS.Q CONTR.WR-Freigabe.Q SYNCO1.SignNmaster.QU SYNCO1.SignNmaster.QE SYNCO1.SignNmaster.QL SYNCO1.SignNslave.QU SYNCO1.SignNslave.QE SYNCO1.SignNslave.QL SYNCO2.AngleLimit.Q SYNCO2.SpeedCtrlLimit.Q CONTR.SCONI.Q SYNCO2.Master.SS CONTR.Puls_SS_Master.Q SYNCO2.Slave.SS SYNCO2.CmpSPslave.QL SYNCO2.CmpSPslave.QE SYNCO2.CmpSPslave.QU SYNCO2.dnErrSlave.Q SYNCO2.dnError.Q SYNCO2.dnErrMaster.Q MUX_B.MUX_VersatzReset.Q MUX_B.MUX_TippFreigabe.Q MUX_B.MUX_WReglerFreig.Q MUX_B.MUX_LageReset.Q MUX_B.MUX_SyncSignal.Q CONTR.Steuerbits.Q4 CONTR.Steuerbits.Q7 CONTR.Steuerbits.Q1 CONTR.Steuerbits.Q2 SYNCO2.Pos_Slave_Abs.SN SYNCO2.CmpSPmaster.QL SYNCO2.CmpSPmaster.QE SYNCO2.CmpSPmaster.QU SYNCO2.CMP_nSlave.QU SYNCO2.CMP_nSlave.QM SYNCO2.CMP_nSlave.QL SYNCO2.CMP_nMaster.QU Significance BOOL constant FALSE BOOL constant TRUE Fault Alarm No fault Error, speed sensing slave Error, speed sensing master Position reset Synchronizing command Automatic start synchronization, inverse Automatic start synchronization Displacement > synchronism threshold (H103) Displacement within threshold range Displacement < synchronism threshold (H103) (negative) Synchronism reached Displacement determined Angular controller inhibit Status of the angular controller enable n_slave > 0 n_slave = 0 n_slave < 0 n_master > 0 n_master = 0 n_master < 0 Angular controller at its limit Speed controller at its limit Speed controller enable Position master drive set when synchronized Pulse extension, position master set when synchronized Slave position set when synchronized Position, slave < 0 0 < slave position < threshold Slave position > threshold (H105) Speed deviation, slave Speed deviation Speed deviation, master Output, multiplexer displacement reset Output, multiplexer jog enable Output, multiplexer angular controller enable Output, multiplexer reset position Output, multiplexer synchronizing command Reset position difference Jog enable Inverter enable Sync command Slave position negative Position master < 0 0 < position master threshold (H107) Position master > threshold (H107) nslave > range Slave speed within the permissible range nslave < range nmaster > range SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors TC 0196 0197 0199 0209 0211 0212 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0360 0361 0362 0400 0401 0402 0403 0405 0480 0481 0482 0483 0484 0485 0486 0487 0488 Chart 75,5 75,4 70,8 60,7 72,2 72,2 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 310,4 300,7 300,4 300,4 400,4 400,4 400,4 400,4 400,7 180,8 180,8 180,8 180,8 180,8 180,8 180,8 180,8 180,8 Path Name SYNCO2.CMP_nMaster.QM SYNCO2.CMP_nMaster.QL SYNCO2.Pos_Master_Abs.SN CONTR.Puls_SS_Slave.Q IN_AENC.S_AENC.QF IN_AENC.M_AENC.QF IF_Peer.Steuerwort1.Q1 IF_Peer.Steuerwort1.Q2 IF_Peer.Steuerwort1.Q3 IF_Peer.Steuerwort1.Q4 IF_Peer.Steuerwort1.Q5 IF_Peer.Steuerwort1.Q6 IF_Peer.Steuerwort1.Q7 IF_Peer.Steuerwort1.Q8 IF_Peer.Steuerwort1.Q9 IF_Peer.Steuerwort1.Q10 IF_Peer.Steuerwort1.Q11 IF_Peer.Steuerwort1.Q12 IF_Peer.Steuerwort1.Q13 IF_Peer.Steuerwort1.Q14 IF_Peer.Steuerwort1.Q15 IF_Peer.Steuerwort1.Q16 IF_Peer.invSteuerwort.Q1 IF_Peer.invSteuerwort.Q2 IF_Peer.invSteuerwort.Q3 IF_Peer.invSteuerwort.Q4 IF_Peer.invSteuerwort.Q5 IF_Peer.invSteuerwort.Q6 IF_Peer.invSteuerwort.Q7 IF_Peer.invSteuerwort.Q8 IF_Peer.invSteuerwort.Q9 IF_Peer.invSteuerwort.Q10 IF_Peer.invSteuerwort.Q11 IF_Peer.invSteuerwort.Q12 IF_Peer.invSteuerwort.Q13 IF_Peer.invSteuerwort.Q14 IF_Peer.invSteuerwort.Q15 IF_Peer.invSteuerwort.Q16 IF_Peer.Timeout_Peer.Q IF_Peer.Empf_PEER.QTS IF_Peer.Send_PEER.QTS IF_COM.Empf-COM.QTS IF_COM.E_init_inv.Q IF_COM.Send_COM.QTS IF_COM.S_init_inv.Q IF_COM.Timeout_CB.Q IF_CU.Zustand2CU.Q1 IF_CU.Zustand2CU.Q2 IF_CU.Zustand2CU.Q3 IF_CU.Zustand2CU.Q4 IF_CU.Zustand2CU.Q5 IF_CU.Zustand2CU.Q6 IF_CU.Zustand2CU.Q7 IF_CU.Zustand2CU.Q8 IF_CU.Zustand2CU.Q9 Significance Master speed in the permissible range nmaster < range Position master negative Extended pulse, slave position set when synchronized Fault word of the absolute value encoder sensing, slave Fault word of the absolute value encoder sensing, master Peer CTW.0 Peer CTW.1 Peer CTW.2 Peer CTW.3 Peer CTW.4 Peer CTW.5 Peer CTW.6 Peer CTW.7 Peer CTW.8 Peer CTW.9 Peer CTW.10 Peer CTW.11 Peer CTW.12 Peer CTW.13 Peer CTW.14 Peer CTW.15 Peer CTW.0 inverse Peer CTW.1 inverse Peer CTW.2 inverse Peer CTW.3 inverse Peer CTW.4 inverse Peer CTW.5 inverse Peer CTW.6 inverse Peer CTW.7 inverse Peer CTW.8 inverse Peer CTW.9 inverse Peer CTW.10 inverse Peer CTW.11 inverse Peer CTW.12 inverse Peer CTW.13 inverse Peer CTW.14 inverse Peer CTW.15 inverse Timeout peer Peer receive initialized Peer send initialized CB receive initialized CB receive not initialized CB send initialized CB send not initialized Timeout CB CU status2.0 CU status2.1 CU status2.2 CU status2.3 CU status2.4 CU status2.5 CU status2.6 CU status2.7 CU status2.8 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 105 Parameters and connectors TC 0489 0490 0491 0492 0493 0494 0495 0500 0501 0502 0503 0504 0505 0506 0507 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 Chart 180,8 180,8 180,8 180,8 180,8 180,8 180,8 150,5 150,5 150,5 150,5 150,5 150,5 150,5 150,5 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 220,3 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 180,4 90,8 Path Name IF_CU.Zustand2CU.Q10 IF_CU.Zustand2CU.Q11 IF_CU.Zustand2CU.Q12 IF_CU.Zustand2CU.Q13 IF_CU.Zustand2CU.Q14 IF_CU.Zustand2CU.Q15 IF_CU.Zustand2CU.Q16 IF_CU.Empf_BASE.QTS IF_CU.Send_BASE.QTS IF_CU.Empf_BASE.QT IF_CU.DRIVE.BS IF_CU.CU_Einit_inv.Q IF_CU.CU_Sinit_inv.Q IF_CU.CU_Timeout_inv.Q IF_CU.CU_RDY_INV.Q IF_CU.Zustandswort1.Q1 IF_CU.Zustandswort1.Q2 IF_CU.Zustandswort1.Q3 IF_CU.Zustandswort1.Q4 IF_CU.Zustandswort1.Q5 IF_CU.Zustandswort1.Q6 IF_CU.Zustandswort1.Q7 IF_CU.Zustandswort1.Q8 IF_CU.Zustandswort1.Q9 IF_CU.Zustandswort1.Q10 IF_CU.Zustandswort1.Q11 IF_CU.Zustandswort1.Q12 IF_CU.Zustandswort1.Q13 IF_CU.Zustandswort1.Q14 IF_CU.Zustandswort1.Q15 IF_CU.Zustandswort1.Q16 IF_CU.Q_ext_Error.Q IF_CU.Zustand1_inv.Q1 IF_CU.Zustand1_inv.Q2 IF_CU.Zustand1_inv.Q3 IF_CU.Zustand1_inv.Q4 IF_CU.Zustand1_inv.Q5 IF_CU.Zustand1_inv.Q6 IF_CU.Zustand1_inv.Q7 IF_CU.Zustand1_inv.Q8 IF_CU.Zustand1_inv.Q9 IF_CU.Zustand1_inv.Q10 IF_CU.Zustand1_inv.Q11 IF_CU.Zustand1_inv.Q12 IF_CU.Zustand1_inv.Q13 IF_CU.Zustand1_inv.Q14 IF_CU.Zustand1_inv.Q15 IF_CU.Zustand1_inv.Q16 IF_CU.n-Reg Freigabe.Q 0547 0550 0551 0552 0553 560,4 180,7 180,7 180,7 180,7 MUX_CU.Mux_Enable_nRegl.Q IF_CU.SteuerwortSPA440.Q1 IF_CU.SteuerwortSPA440.Q2 IF_CU.SteuerwortSPA440.Q3 IF_CU.SteuerwortSPA440.Q4 106 Significance CU status2.9 CU status2.10 CU status2.11 CU status2.12 CU status2.13 CU status2.14 CU status2.15 CU receive initialized CU send initialized CU timeout CU in operation CU receive not initialized CU send not initialized CU no timeout CU not operational CU status1.0 CU status1.1 CU status1.2 CU status1.3 CU status1.4 CU status1.5 CU status1.6 CU status1.7 CU status1.8 CU status1.9 CU status1.10 CU status1.11 CU status1.12 CU status1.13 CU status1.14 CU status1.15 External fault in control word for CU CU status1.0 inverse CU status1.1 inverse CU status1.2 inverse CU status1.3 inverse CU status1.4 inverse CU status1.5 inverse CU status1.6 inverse CU status1.7 inverse CU status1.8 inverse CU status1.9 inverse CU status1.10 inverse CU status1.11 inverse CU status1.12 inverse CU status1.13 inverse CU status1.14 inverse CU status1.15 inverse Speed controller CU; enabling the speed controller in the basic drive Output, multiplexer speed controller enable for the basic drive CTW from CU.0 CTW from CU.1 CTW from CU.2 CTW from CU.3 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors TC 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0570 0571 0572 0573 0574 0575 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0601 0602 0603 0604 0607 0608 0610 0611 0612 0613 0614 0615 0616 0617 0620 0621 0622 0623 0624 0625 0626 0627 0631 0632 0633 0634 0635 Chart 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 180,7 53,4 53,4 53,8 53,8 52,8 52,8 52,4 52,4 52,4 52,4 52,4 52,4 52,4 52,4 52,4 52,4 52,4 52,4 52,4 52,4 52,4 52,4 53,4 53,4 53,8 53,8 52,8 Path Name IF_CU.SteuerwortSPA440.Q5 IF_CU.SteuerwortSPA440.Q6 IF_CU.SteuerwortSPA440.Q7 IF_CU.SteuerwortSPA440.Q8 IF_CU.SteuerwortSPA440.Q9 IF_CU.SteuerwortSPA440.Q10 IF_CU.SteuerwortSPA440.Q11 IF_CU.SteuerwortSPA440.Q12 IF_CU.SteuerwortSPA440.Q13 IF_CU.SteuerwortSPA440.Q14 IF_CU.SteuerwortSPA440.Q15 IF_CU.SteuerwortSPA440.Q16 IF_CU.STWSPAibit.Q1 IF_CU.STWSPAibit.Q2 IF_CU.STWSPAibit.Q3 IF_CU.STWSPAibit.Q4 IF_CU.STWSPAibit.Q5 IF_CU.STWSPAibit.Q6 IF_CU.STWSPAibit.Q7 IF_CU.STWSPAibit.Q8 IF_CU.STWSPAibit.Q9 IF_CU.STWSPAibit.Q10 IF_CU.STWSPAibit.Q11 IF_CU.STWSPAibit.Q12 IF_CU.STWSPAibit.Q13 IF_CU.STWSPAibit.Q14 IF_CU.STWSPAibit.Q15 IF_CU.STWSPAibit.Q16 T400_EA.BinOut.Q1 T400_EA.BinOut.Q2 T400_EA.BinOut.Q3 T400_EA.BinOut.Q4 T400_EA.BinOut.Q7 T400_EA.BinOut.Q8 T400_EA.BinInput.Q1 T400_EA.BinInput.Q2 T400_EA.BinInput.Q3 T400_EA.BinInput.Q4 T400_EA.BinInput.Q5 T400_EA.BinInput.Q6 T400_EA.BinInput.Q7 T400_EA.BinInput.Q8 T400_EA.BinInput.Q9 T400_EA.BinInput.Q10 T400_EA.BinInput.Q11 T400_EA.BinInput.Q12 T400_EA.BinInput.Q13 T400_EA.BinInput.Q14 T400_EA.BinInput.Q15 T400_EA.BinInput.Q16 T400_EA.Klemme46inv.Q T400_EA.Klemme47inv.Q T400_EA.Klemme48inv.Q T400_EA.Klemme49inv.Q T400_EA.Klemme84inv.Q Significance CTW from CU.4 CTW from CU.5 CTW from CU.6 CTW from CU.7 CTW from CU.8 CTW from CU.9 CTW from CU.10 CTW from CU.11 CTW from CU.12 CTW from CU.13 CTW from CU.14 CTW from CU.15 CTW from CU.0 inverse CTW from CU.1 inverse CTW from CU.2 inverse CTW from CU.3 inverse CTW from CU.4 inverse CTW from CU.5 inverse CTW from CU.6 inverse CTW from CU.7 inverse CTW from CU.8 inverse CTW from CU.9 inverse CTW from CU.10 inverse CTW from CU.11 inverse CTW from CU.12 inverse CTW from CU.13 inverse CTW from CU.14 inverse CTW from CU.15 inverse Terminal 46 Terminal 47 Terminal 48 Terminal 49 Coarse pulse 1 (terminal 84) Coarse pulse 2 (terminal 65) BinInput 1 (terminal 53) BinInput 2 (terminal 54) BinInput 3 (terminal 55) BinInput 4 (terminal 56) BinInput 5 (terminal 57) BinInput 6 (terminal 58) BinInput 7 (terminal 59) BinInput 8 (terminal 60) BinInput 1 (terminal 53) inverse BinInput 2 (terminal 54) inverse BinInput 3 (terminal 55) inverse BinInput 4 (terminal 56) inverse BinInput 5 (terminal 57) inverse BinInput 6 (terminal 58) inverse BinInput 7 (terminal 59) inverse BinInput 8 (terminal 60) inverse Terminal 46 inverse Terminal 47 inverse Terminal 48 inverse Terminal 49 inverse Coarse pulse 1 (terminal 84) inverse SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 107 Parameters and connectors TC 0636 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0698 0699 0700 0703 0708 0709 0710 0713 0728 0730 0732 0733 0734 0735 0743 0744 0745 0746 0748 0749 0750 0751 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0770 0771 0772 0773 0774 0775 Chart 52,8 530,3 530,3 530,3 530,3 530,7 530,7 530,7 530,7 540,3 540,3 540,3 540,3 540,7 540,7 540,7 540,7 460,2 460,2 460,2 460,5 490,8 490,8 460,2 460,5 490,8 490,8 460,8 460,8 460,5 460,5 480,8 480,8 480,8 480,8 480,8 480,3 480,3 480,3 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 108 Path Name T400_EA.Klemme65inv.Q MUX_CU.Mux_STW1_B0.Q MUX_CU.Mux_STW1_B1.Q MUX_CU.Mux_STW1_B2.Q MUX_CU.Mux_STW1_B3.Q MUX_CU.Mux_STW1_B4.Q MUX_CU.Mux_STW1_B5.Q MUX_CU.Mux_STW1_B6.Q MUX_CU.Mux_STW1_B7.Q MUX_CU.Mux_STW1_B8.Q MUX_CU.Mux_STW1_B9.Q MUX_CU.Mux_STW1_B10.Q MUX_CU.Mux_STW1_B11.Q MUX_CU.Mux_STW1_B12.Q MUX_CU.Mux_STW1_B13.Q MUX_CU.Mux_STW1_B14.Q MUX_CU.Mux_STW1_B15.Q Free_FBs.RS_FF2.Q Free_FBs.RS_FF2.QN Free_FBs.AND1.Q Free_FBs.AND2.Q Free_FBs.Edge1.QN Free_FBs.Edge1.QP Free_FBs.OR1.Q Free_FBs.OR2.Q Free_FBs.OnDelay1.Q Free_FBs.OffDelay1.Q Free_FBs.Not1.Q Free_FBs.Not2.Q Free_FBs.RS_FF1.Q Free_FBs.RS_FF1.QN Free_FBs.Compare.QE Free_FBs.Compare.QU Free_FBs.Compare.QL Free_FBs.Begrenzer.QU Free_FBs.Begrenzer.QL Free_FBs.Comp2.QU Free_FBs.Comp2.QM Free_FBs.Comp2.QL Free_FBs.Free_W_B_1.Q1 Free_FBs.Free_W_B_1.Q2 Free_FBs.Free_W_B_1.Q3 Free_FBs.Free_W_B_1.Q4 Free_FBs.Free_W_B_1.Q5 Free_FBs.Free_W_B_1.Q6 Free_FBs.Free_W_B_1.Q7 Free_FBs.Free_W_B_1.Q8 Free_FBs.Free_W_B_1.Q9 Free_FBs.Free_W_B_1.Q10 Free_FBs.Free_W_B_1.Q11 Free_FBs.Free_W_B_1.Q12 Free_FBs.Free_W_B_1.Q13 Free_FBs.Free_W_B_1.Q14 Free_FBs.Free_W_B_1.Q15 Free_FBs.Free_W_B_1.Q16 Significance Coarse pulse 2 (terminal 65) inverse Output multiplexer, control word1 bit 0 Output multiplexer, control word1 bit1 Output multiplexer, control word1 bit2 Output multiplexer, control word1 bit3 Output multiplexer, control word1 bit4 Output multiplexer, control word1 bit5 Output multiplexer, control word1 bit6 Output multiplexer, control word1 bit7 Output multiplexer, control word1 bit8 Output multiplexer, control word1 bit9 Output multiplexer, control word1 bit10 Output multiplexer, control word1 bit11 Output multiplexer, control word1 bit12 Output multiplexer ,control word1 bit13 Output multiplexer, control word1 bit14 Output multiplexer, control word1 bit15 RSFF1_Q (output, free RS flipflop) RSFF1_QN (inv. output free RS flipflop) AND1_Q (output, free AND logic gate) AND2_Q (output, free AND logic gate) Edge detector: falling edge identified Edge detector: rising edge identified Q_OR1 (output, free OR logic gate) Q_OR2 (output, free OR logic gate) Output, power-on delay Output, power-off delay Not1_Q (output, free inverter) Not2_Q (output, free inverter) RSFF2_Q (output, free RS flipflop) RSFF2_QN (inv. output free RS flipflop) Output, free comparator: X = Y Output, free comparator: X > Y Output, free comparator: X < Y Output, free limiter: upper limit reached Output, free limiter: lower limit reached Output, free comparator: input quantity > range Output, free comparator: input quantity in range Output, free comparator: input quantity < range FreeWord_0 FreeWord_1 FreeWord_2 FreeWord_3 FreeWord_4 FreeWord_5 FreeWord_6 FreeWord_7 FreeWord_8 FreeWord_9 FreeWord_10 FreeWord_11 FreeWord_12 FreeWord_13 FreeWord_14 FreeWord_15 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors TC 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0817 0818 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0860 0861 0862 0863 0864 Chart 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 480,7 480,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,3 420,7 420,7 420,7 420,7 420,7 Path Name IF_COM.Steuerwort1.Q1 IF_COM.Steuerwort1.Q2 IF_COM.Steuerwort1.Q3 IF_COM.Steuerwort1.Q4 IF_COM.Steuerwort1.Q5 IF_COM.Steuerwort1.Q6 IF_COM.Steuerwort1.Q7 IF_COM.Steuerwort1.Q8 IF_COM.Steuerwort1.Q9 IF_COM.Steuerwort1.Q10 IF_COM.Steuerwort1.Q11 IF_COM.Steuerwort1.Q12 IF_COM.Steuerwort1.Q13 IF_COM.Steuerwort1.Q14 IF_COM.Steuerwort1.Q15 IF_COM.Steuerwort1.Q16 Free_FBs.Integrator.QU Free_FBs.Integrator.QL IF_COM.Steuerwort2.Q1 IF_COM.Steuerwort2.Q2 IF_COM.Steuerwort2.Q3 IF_COM.Steuerwort2.Q4 IF_COM.Steuerwort2.Q5 IF_COM.Steuerwort2.Q6 IF_COM.Steuerwort2.Q7 IF_COM.Steuerwort2.Q8 IF_COM.Steuerwort2.Q9 IF_COM.Steuerwort2.Q10 IF_COM.Steuerwort2.Q11 IF_COM.Steuerwort2.Q12 IF_COM.Steuerwort2.Q13 IF_COM.Steuerwort2.Q14 IF_COM.Steuerwort2.Q15 IF_COM.Steuerwort2.Q16 IF_COM.STW1_inv.Q1 IF_COM.STW1_inv.Q2 IF_COM.STW1_inv.Q3 IF_COM.STW1_inv.Q4 IF_COM.STW1_inv.Q5 IF_COM.STW1_inv.Q6 IF_COM.STW1_inv.Q7 IF_COM.STW1_inv.Q8 IF_COM.STW1_inv.Q9 IF_COM.STW1_inv.Q10 IF_COM.STW1_inv.Q11 IF_COM.STW1_inv.Q12 IF_COM.STW1_inv.Q13 IF_COM.STW1_inv.Q14 IF_COM.STW1_inv.Q15 IF_COM.STW1_inv.Q16 IF_COM.STW2_inv.Q1 IF_COM.STW2_inv.Q2 IF_COM.STW2_inv.Q3 IF_COM.STW2_inv.Q4 IF_COM.STW2_inv.Q5 Significance CB control W1.0 CB control W1.1 CB control W1.2 CB control W1.3 CB control W1.4 CB control W1.5 CB control W1.6 CB control W1.7 CB control W1.8 CB control W1.9 CB control W1.10 CB control W1.11 CB control W1.12 CB control W1.13 CB control W1.14 CB control W1.15 Free integrator at the upper limit value Free integrator at the lower limit value CB control W2.0 CB control W2.1 CB control W2.2 CB control W2.3 CB control W2.4 CB control W2.5 CB control W2.6 CB control W2.7 CB control W2.8 CB control W2.9 CB control W2.10 CB control W2.11 CB control W2.12 CB control W2.13 CB control W2.14 CB control W2.15 CB CTW1.0 inverse CB CTW1.1 inverse CB CTW1.2 inverse CB CTW1.3 inverse CB CTW1.4 inverse CB CTW1.5 inverse CB CTW1.6 inverse CB CTW1.7 inverse CB CTW1.8 inverse CB CTW1.9 inverse CB CTW1.10 inverse CB CTW1.11 inverse CB CTW1.12 inverse CB CTW1.13 inverse CB CTW1.14 inverse CB CTW1.15 inverse CB CTW2.0 inverse CB CTW2.1 inverse CB CTW2.2 inverse CB CTW2.3 inverse CB CTW2.4 inverse SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 109 Parameters and connectors TC 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1830 1833 2000 2001 2002 2003 2004 2005 2006 2007 2010 2011 2020 2021 2025 2026 2027 2096 2246 2303 2306 2327 2329 2330 2331 2332 2333 2346 Chart 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 420,7 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 490,2 460,8 460,8 30,2 30,2 30,2 160,6 160,8 40,7 160,4 160,6 60,4 70,5 60,7 70,7 52,8 220,4 220,8 100.8 180,2 570,3 570,2 310,8 300,7 300,7 300,7 300,7 300,7 310,2 110 Path Name IF_COM.STW2_inv.Q6 IF_COM.STW2_inv.Q7 IF_COM.STW2_inv.Q8 IF_COM.STW2_inv.Q9 IF_COM.STW2_inv.Q10 IF_COM.STW2_inv.Q11 IF_COM.STW2_inv.Q12 IF_COM.STW2_inv.Q13 IF_COM.STW2_inv.Q14 IF_COM.STW2_inv.Q15 IF_COM.STW2_inv.Q16 Free_FBs.Free_W_B_2.Q1 Free_FBs.Free_W_B_2.Q2 Free_FBs.Free_W_B_2.Q3 Free_FBs.Free_W_B_2.Q4 Free_FBs.Free_W_B_2.Q5 Free_FBs.Free_W_B_2.Q6 Free_FBs.Free_W_B_2.Q7 Free_FBs.Free_W_B_2.Q8 Free_FBs.Free_W_B_2.Q9 Free_FBs.Free_W_B_2.Q10 Free_FBs.Free_W_B_2.Q11 Free_FBs.Free_W_B_2.Q12 Free_FBs.Free_W_B_2.Q13 Free_FBs.Free_W_B_2.Q14 Free_FBs.Free_W_B_2.Q15 Free_FBs.Free_W_B_2.Q16 Free_FBs.andOR1.Q Free_FBs.andOR2.Q Constant.INT_Const.Y7 Constant.INT_Const.Y8 Constant.WORD_Const.Y5 CONTR.ErrorMask.QS CONTR.WarnMaske.QS CONTR.Statuswort.QS CONTR.Fehlerzustand.QS CONTR.Warnzustand.QS SYNCO2.SlavePulse.Y SYNCO2.MasterPulse.Y SYNCO2.Slave.YFC SYNCO2.Master.YFC T400_EA.Invert_Bin.QS IF_CU.Steuerwort1.QS IF_CU.Steuerwort2.QS SYNCO2.Displace.FC IF_CU.Q_ZWort1.Y MUX_Peer.MUX_Peer_W1.Y MUX_Peer.Festwert_Peer.Y IF_Peer.Zustandswort1.QS IF_Peer.Peer_Empf_W1.Y IF_Peer.PZD2_PZD3.YWL IF_Peer.PZD2_PZD3.YWH IF_Peer.PZD4_PZD5.YWL IF_Peer.PZD4_PZD5.YWH IF_Peer.STW_NOP.Y Significance CB CTW2.5 inverse CB CTW2.6 inverse CB CTW2.7 inverse CB CTW2.8 inverse CB CTW2.9 inverse CB CTW2.10 inverse CB CTW2.11 inverse CB CTW2.12 inverse CB CTW2.13 inverse CB CTW2.14 inverse CB CTW2.15 inverse FreeWord2_0 FreeWord2_1 FreeWord2_2 FreeWord2_3 FreeWord2_4 FreeWord2_5 FreeWord2_6 FreeWord2_7 FreeWord2_8 FreeWord2_9 FreeWord2_10 FreeWord2_11 FreeWord2_12 FreeWord2_13 FreeWord2_14 FreeWord2_15 AND_OR1 (output, AND-OR logic) AND_OR2 (output, AND-OR logic) Constant, word 0 Constant, word 1 Constant, word 16#FFFF Error status (for the basic drive) Alarm status (for the basic drive) Status word, angular synchronism Error bits Alarm bits Encoder pulses, slave Encoder pulses, master Error code, slave-speed sensing Error code, master Status binary input (binary inputs and inverse values) Control word1 CU Control word2 CU Error identification, displacement calculation Status word 1CU Output, multiplexer for 1st PZD send peer-to-peer Fixed value for PZD1 send peer-to-peer Status word, peer PZD1 from peer PZD2 from peer PZD3 from peer PZD4 from peer PZD5 from peer Control word peer SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors TC 2442 2443 2444 2445 2460 2461 2466 2467 2500 2502 2504 2506 2508 2509 2510 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2605 Chart 560,4 560,2 560,7 560,6 420,2 420,6 430,4 430,8 230,4 230,4 230,4 230,4 230,4 230,5 230,5 170,7 170,7 170,7 170,7 170,7 170,7 170,7 170,7 170,7 170,7 170,7 170,7 170,7 170,7 490,6 Path Name MUX_CB.MUX_COM_W1.Y MUX_CB.Festwerte_CB.Y1 MUX_CB.MUX_COM_W4.Y MUX_CB.Festwerte_CB.Y2 IF_COM.Verteil2.Y3 IF_COM.Verteil2.Y4 IF_COM.Zustandswort1.QS IF_COM.Zustandswort2.QS IF_CU.Sollwert_W2.Y IF_CU.Sollwert_W3.Y IF_CU.Sollwert_W5.Y IF_CU.Sollwert_W6.Y IF_CU.Sollwert_W8.Y IF_CU.DW_W_CU.YWL IF_CU.DW_W_CU.YWH IF_CU.Verteilung.Y1 IF_CU.Verteilung.Y2 IF_CU.Verteilung.Y3 IF_CU.Verteilung.Y4 IF_CU.Verteilung.Y5 IF_CU.Verteilung.Y6 IF_CU.Verteilung.Y7 IF_CU.Verteilung.Y8 IF_CU.VerteilCU_CB.Y1 IF_CU.VerteilCU_CB.Y2 IF_CU.VerteilCU_CB.Y3 IF_CU.VerteilCU_CB.Y4 IF_CU.VerteilCU_CB.Y5 IF_CU.VerteilCU_CB.Y6 Free_FBs.DW_W1.YWH 2606 490,6 Free_FBs.DW_W1.YWL 2607 2608 2647 470,2 Free_FBs.ADDI_1.Y 470,2 Free_FBs.SUBI_1.Y 490,5 Free_FBs.R_I1.Y 2706 2707 2766 450,7 IF_USS.USS_Dummy.Y1 450,7 IF_USS.USS_Dummy.Y2 490,8 Free_FBs.Float_N2.Y 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2812 2813 2814 2822 2823 2824 2825 2827 410,7 410,7 410,7 410,7 410,7 410,7 410,7 410,7 410,7 410,7 470,2 470,2 470,2 440,3 440,3 440,3 440,3 440,7 IF_COM.Verteilung.Y1 IF_COM.Verteilung.Y2 IF_COM.Verteilung.Y3 IF_COM.Verteilung.Y4 IF_COM.Verteilung.Y5 IF_COM.Verteilung.Y6 IF_COM.Verteilung.Y7 IF_COM.Verteilung.Y8 IF_COM.Verteil2.Y1 IF_COM.Verteil2.Y2 Free_FBs.DIVI_1.Y Free_FBs.DIVI_1.MOD Free_FBs.MULI_1.Y IF_COM.Istwert_W2.Y IF_COM.Istwert_W3.Y IF_COM.Istwert_W5.Y IF_COM.Istwert_W6.Y IF_COM.Ist_RI.Y Significance Output, multiplexer word1 CB Fixed value for CB word 1 Output, multiplexer word4 CB Fixed value for CB word 4 CB CTW1 (control word1 from CB) CB CTW2 (control word2 from CB) Status word1 CB Status word2 CB Setpoint1 CU N2 Setpoint2 CU N2 Setpoint3 CU N2 Setpoint4 CU N2 Setpoint5 CU N2 Setpoint6 low CU Setpoint6 high CU PZD1 from CU PZD2 from CU PZD3 from CU PZD4 from CU PZD5 from CU PZD6 from CU PZD7 from CU PZD8 from CU PZD9 from CU PZD10 from CU PZD11 from CU PZD12 from CU PZD13 from CU PZD14 from CU DW_W1 high (output, double word word converter high word) DW_W1 low (output, double word word converter low word) ADDI_Y (output, free adder type int) SUBI_Y (output, free subtractor type int) R_I1 (output, floating-point integer converter) PZD1 USS PZD2 USS R_N2 (output, floating-point N2 converter) PZD1 from CB PZD2 from CB PZD3 from CB PZD4 from CB PZD5 from CB PZD6 from CB PZD7 from CB PZD8 from CB PZD9 from CB PZD10 from CB DIVI_1 Y (output, free divider type int) DIVI_1 (modulo output, free divider type int) MULI_1Y (output, free multiplier type int) Actual value1 CB Actual value2 CB Actual value3 CB Actual value4 CB Actual value R_I CB SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 111 Parameters and connectors TC 2828 2829 2960 2961 2962 2963 2964 2965 2971 2972 2973 2974 3000 3001 3002 3003 3004 3012 3013 3014 3015 3016 3017 3018 3019 3040 3043 3044 3047 3048 3049 3050 3051 3056 3060 3061 3062 3066 3070 3073 3074 3076 3080 3085 3091 3094 3095 3117 3118 3120 3121 3122 3123 3124 3129 Chart 440,4 440,4 30,6 30,6 30,6 30,6 30,6 30,6 30,6 30,6 30,6 30,6 30,2 30,2 30,2 30,2 30,2 60,5 70,4 60,8 60,7 60,8 60,8 60,8 60,7 500,3 30,7 80,4 80,1 500,5 30,7 500,4 110,2 110,4 80,2 80,2 100,7 30,7 500,8 30,7 115,7 115,2 500,7 120,8 100,8 100,8 100,8 60,8 60,8 110,8 110,5 110,7 110,4 60,8 115,7 112 Path Name IF_COM.Ist_DW_W.YWH IF_COM.Ist_DW_W.YWL Constant.INT_Const.Y1 Constant.INT_Const.Y2 Constant.INT_Const.Y3 Constant.INT_Const.Y4 Constant.INT_Const.Y5 Constant.INT_Const.Y6 Constant.WORD_Const.Y1 Constant.WORD_Const.Y2 Constant.WORD_Const.Y3 Constant.WORD_Const.Y4 Constant.Float_Const.Y1 Constant.Float_Const.Y2 Constant.Float_Const.Y3 Constant.Float_Const.Y4 Constant.Float_Const.Y5 SYNCO2.SlaveNnenn.Y SYNCO2.MasterNnenn.Y SYNCO2.n_Slave.Y SYNCO2.Master.Y SYNCO2.Slave.YP SYNCO2.Master.YP SYNCO2.Slave.Y SYNCO2.Master.Y MUXsoll.MUX_Uebersetzung.Y SYNCO1.CONST_UEB.Y1 SYNCO1.UE4PRO.Y SYNCO1.CONST_UEB.Y3 MUXsoll.MUX_RelUebersetz.Y SYNCO1.CONST_UEB.Y2 MUXsoll.MUX_Versatz.Y SYNCO2.Q_Versatz.Y SYNCO2.HLG_Versatz.Y SYNCO1.CONST_UEB.Y4 SYNCO1.CONST_UEB.Y5 SYNCO1.DREFSS.Y SYNCO1.FixVersatz.Y MUXsoll.MUX_Leitsollwert.Y SYNCO1.fixLeitsoll.Y SYNCO1.SREFSM.Y SYNCO1.Leitsollwert.Y MUXsoll.MUX_BAusgleich.Y SYNCO1.DT1_BAusgleich.Y SYNCO2.Displace.CVP SYNCO2.Displace.DV SYNCO2.Displace.DVD SYNCO2.Slave.YDP SYNCO2.YDP_neg.Y SYNCO2.PT_Angle.Y SYNCO2.AngleControl.YE SYNCO2.AngleControl.YI SYNCO2.AngleKP.Y SYNCO2.LageDifferenz.Y SYNCO1.HLG_Speed.Y Significance Actual value5 high CB Actual value5 low CB Fixed value I1 (16 bit, signed) Fixed value I2 Fixed value I3 Fixed value I4 Fixed value I5 Fixed value I6 Fixed value W1 (16 bit, unsigned) Fixed value W2 Fixed value W3 Fixed value W4 Floating-point constant 0.0 Floating-point constant 1.0 Floating-point constant 2.0 Floating-point constant 0.5 Floating-point constant -1.0 Rated speed, slave Rated speed, master Speed, slave Speed, master Position, slave Position, master Speed, slave normalized Speed, master normalized Output multiplexer ratio Fixed value ratio Ratio with supplementary ratio and relative ratio Fixed value supplementary ratio Output multiplexer relative ratio Fixed value relative ratio Output multiplexer displacement setpoint Displacement setpoint before the ramp-function generator Displacement setpoint after the ramp-function generator Value for ratio (without rel. ratio; without supplementary ratio) Value for relative ratio Direction of rotation-dependent displacement Fixed value displacement Output, multiplexer master setpoint Fixed value, master setpoint Master setpoint, smoothed Master setpoint Output, multiplexer inertia compensation DT1 (n_set) Correction pulses (to correct the position difference) Displacement actual value Displacement - position difference Inverse position difference Position difference Angular controller output System deviation of the angular controller I component of the angular controller KP angular controller Position difference smoothed speed septpoint after the ramp-function generator SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Parameters and connectors TC 3130 3136 3137 3145 3146 3150 3151 3152 3153 3176 3186 3199 3223 3225 3227 3229 3234 3304 3305 3330 3332 3446 3447 3448 3449 3450 3452 3454 3456 3551 3553 3555 3570 3589 Chart 115,2 115,4 120,2 120,6 60,8 120,8 120,4 115,8 120,7 115,7 60,2 70,8 50,6 50,6 50,6 50,6 100,5 570,6 570,8 300,3 300,3 550,3 550,5 550,6 550,8 410,7 410,7 410,7 410,7 170,7 170,7 170,7 170,7 170,7 Path Name CONTR.TIPPEN.Y SYNCO1.SREFR.Y SYNCO2.NsollLimit.Y SYNCO2.SpeedControl.YI SYNCO2.NslaveFilter.Y SYNCO2.SpeedControl.Y SYNCO2.SpeedControl.YE SYNCO2.SetpSwitch.Y SYNCO2.SpeedKP.Y SYNCO1.Tippen-Schalter.Y SYNCO2.Pos_Slave_Abs.Y SYNCO2.Pos_Master_Abs.Y T400_EA.AE1_FILT.Y T400_EA.AE2_FILT.Y T400_EA.AE3_FILT.Y T400_EA.AE4_FILT.Y SYNCO2.Displ_Ist.Y MUX_Peer.MUX_Peer_W2.Y MUX_Peer.MUX_Peer_W3.Y IF_Peer.PZD2_PZD3.YR IF_Peer.PZD4_PZD5.YR MUX_CB.MUX_CB_W2.Y MUX_CB.MUX_CB_W3.Y MUX_CB.MUX_CB_W5.Y MUX_CB.MUX_CB_W6.Y IF_COM.Sollwert_W2.Y IF_COM.Sollwert_W3.Y IF_COM.Sollwert_W5.Y IF_COM.Sollwert_W6.Y IF_CU.Istwert_W2.Y IF_CU.Istwert_W3.Y IF_CU.Istwert_W5.Y IF_CU.CU_DI_R.Y IF_CU.CU_N4_R.Y 3591 3604 170,7 IF_CU.CU_I_R.Y 490,5 Free_FBs.I_R1.Y 3618 3619 3666 3667 3706 3716 3740 3742 3747 3753 3763 510,4 510,7 51,3 51,3 460,2 460,4 480,2 480,5 480,8 480,3 490,7 3765 490,5 Free_FBs.Free_N2_R.Y 3786 3789 3792 3794 3796 3799 3802 470,4 470,4 470,2 470,4 470,6 470,6 470,6 MUX_AnaOut.MUX_DAC_1.Y MUX_AnaOut.MUX_DAC_2.Y T400_EA.Filt_DAC1.Y T400_EA.Filt_DAC2.Y Free_FBs.Switch1.Y Free_FBs.Switch2.Y Free_FBs.FreePT1.Y Free_FBs.SperrFilt.Y Free_FBs.Begrenzer.Y Free_FBs.Kennlin.Y Free_FBs.Free_N4_R.Y Free_FBs.ADD1.Y Free_FBs.ADD2.Y Free_FBs.SUB1.Y Free_FBs.SUB2.Y Free_FBs.MUL1.Y Free_FBs.MUL2.Y Free_FBs.DIV1.Y Significance Jog setpoint (fixed value) Setpoint speed, slave Speed setpoint limited Integral component of the speed controller Speed, slave smoothed Speed controller output Speed controller system deviation Setpoint for the basic drive (n_set or Mset) KP speed controller Jog setpoint Absolute position actual value of the slave Absolute value (position, master) AE1 smoothed AE2 smoothed AE3 smoothed AE4 smoothed Differential position value to determine the displacement Output multiplexer for 1st floating-point value, send peer Output multiplexer for 2nd floating-point value, send peer Peer float 1 (receive) Peer float 2 (receive) Output, multiplexer word2 CB Output, multiplexer word3 CB Output, multiplexer word5 CB Output, multiplexer word6 CB Setpoint1 CB Setpoint2 CB Setpoint3 CB Setpoint4 CB Actual value1 CU Actual value2 CU Actual value3 CU CU DW_R (double word as floating-point value) CU N4_R (double word in the N4 normalization floating-point) CU actual value_I_R I_R1 (output, integer floating-point converter) Output, multiplexer DAC1 Output, multiplexer DAC2 Analog output 1 Analog output 2 Switch1 (output, free changeover switch) Switch2 (output, free changeover switch) PT1_out (output, free lowpass filter) Output, bandstop Output, free limiter Output, free 2-point characteristic DW_float (output, double word floating-point converter) Word_float (output, word floating-point converter) ADD_1 (output, free adder) ADD_2 (output, free adder) SUB_1 (output, free subtractor) SUB_2 (output, free subtractor) MUL_1 (output, free multiplier) MUL_2 (output, free multiplier) DIV_1 (output, free divider) SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 113 Parameters and connectors TC 3804 3818 3819 3821 3825 3827 3990 3991 3992 3993 3994 3995 3996 3997 4114 4115 4116 4125 4214 4215 4216 4225 4300 5000 5001 5086 5087 5088 5089 5330 5332 5567 Chart 470,6 410,7 480,7 410,7 460,6 460,8 30,5 30,5 30,5 30,5 30,5 30,5 30,5 30,5 72,2 72,2 72,2 72,2 72,2 72,2 72,2 72,2 72,5 30,2 30,2 80,4 80,4 80,7 80,7 300,7 300,7 170,6 5814 5816 470,2 Free_FBs.MULI_1.YDI 490,6 Free_FBs.WDW1.Y 5981 5982 5983 5984 30,8 30,8 30,8 30,8 114 Path Name Free_FBs.DIV2.Y IF_COM.Sollw_IR.Y Free_FBs.Integrator.Y IF_COM.Sollw_N4.Y Free_FBs.Switch3.Y Free_FBs.Switch4.Y Constant.Const_Float.Y1 Constant.Const_Float.Y2 Constant.Const_Float.Y3 Constant.Const_Float.Y4 Constant.Const_Float.Y5 Constant.Const_Float.Y6 Constant.Const_Float.Y7 Constant.Const_Float.Y8 IN_AENC.S_AENC.Y IN_AENC.S_AENC.YP IN_AENC.S_AENC.YRC IN_AENC.S_POS.Y IN_AENC.M_AENC.Y IN_AENC.M_AENC.YP IN_AENC.M_AENC.YRC IN_AENC.M_POS.Y IN_AENC.DELTA_Pos.Y Constant.DINT_Const.Y8 Constant.DINT_Const.Y7 Constant.DINT_Const.Y1 Constant.DINT_Const.Y2 SYNCO1.FEIN_NM.Y SYNCO1.FEIN_DN.Y IF_Peer.PZD2_PZD3.YDI IF_Peer.PZD4_PZD5.YDI IF_CU.W_DW.Y Constant.DINT_Const.Y3 Constant.DINT_Const.Y4 Constant.DINT_Const.Y5 Constant.DINT_Const.Y6 Significance DIV_2 (output, free divider) Setpoint I_R CB Output, free integrator Setpoint DW CB Switch3 (output, free changeover switch) Switch4 (output, free changeover switch) Fixed value1 R1 (floating-point) Fixed value1 R2 (floating-point) Fixed value1 R3 (floating-point) Fixed value1 R4 (floating-point) Fixed value1 R5 (floating-point) Fixed value1 R6 (floating-point) Fixed value1 R7 (floating-point) Fixed value1 R8 (floating-point) Speed actual value AENC1, slave Position counter AENC1, slave Revolution counter AENC1, slave Position actual value AENC1, slave [length units] Speed actual value AENC2, master Position counter AENC2, master Revolution counter AENC2, master Position actual value AENC2, master [length units] Differential position master - slave [length units] Double word, constant 0 Double word, constant 1 Fixed value fine ratio, numerator Fixed value fine ratio, denominator Ratio, numerator Ratio, denominator Peer DW1 (receive) Peer DW2 (receive) Output of the word double word conversion for PZD from the CU MULI_1 (double word output, free multiplier type int) W_DW1 (output, word double word converter) Fixed value DI1 (double word) Fixed value DI2 Fixed value DI3 Fixed value DI4 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Start-up 5 Start-up WARNING Only start to commission the system, if adequate and effective measures have been made to ensure that the system and drive can be safely electrically and mechanically used. Ensure that all of the safety- and EMERGENCY OFF signals are connected and effective and that the drive can be powered-down at any time. 5.1 Commissioning, general The principal commissioning sequence is shown as follows: Commissioning the basic drive Parameterization, basic drive f. oper. w/ the T400 Commission the open-loop control Parameterize the setpoint input Commission the closed-loop technology control Fig. 5-1 Commissioning sequence We recommend that the sequence, shown in Fig. 5-1, is maintained when starting-up the equipment, so that possible problems which occur, can be more easily pinpointed. Commissioning, basic drive The basic drive should be commissioned according to the Operating Instructions of the drive converter (e.g. Lit.[1]). Parameterization, basic drive for use with T400 In order to be able to use the SPA440 standard software package, the parameters, listed in Table 2-1 and Table 2-2 must be set on the basic drive for the setpoint/actual value channels and for the CU control. All of the enable signals, used in the standard software package, are listed in Table 5-1, and should be switched-in or set according to the particular application. SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 115 Start-up Control Parameter Explanation Enable: * Synchronizing H174 * Angular controller H172, H118 External and internal enable * Speed controller H140 = 1 Speed controller activated on T400 * COMBOARD H409 Enable COMBOARD communications * Peer-to-peer H309 Enable peer communications * Jog H171 Enable Jog Reset: * Position (master/slave) H173 H170 * Displacement calculation Table 5-1 Control signals The enabling and appropriate input for particular functions must be set. Notes Flowcharts An oscilloscope should be used to evaluate the control quality and, if required, to check the pulse encoder signals. Further, the displacement can be easily visualized by plotting the synchronizing marks (zero pulses) in 2 channels. When setting displacement values, a storage oscilloscope or a stroboscope is extremely helpful. The flowcharts in Fig. 5-1 show the sequence when commissioning the three main functions - speed controller, angular controller and synchronization. Information on the following flowcharts: n 116 Signficance: Additional information under n) at the transition to the particular flowchart SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Start-up 5.2 Commissioning, closed-loop speed control Start First time that the basic driveis commissioned - motor data, drive converter data - if required, log-on the T400 CU signals an error? ja Basic drive interface - setpoint channels according to Table 2.1 - actual value channels according to Table 2.2 F080, F070 Speed sensing - H010 encoder pulses, slave - H011 encoder pulses, master - H012 rated speed, slave - H013 rated speed, master - H018 operating mode, slave speed sensing - H019 operating mode, master speed sensing - H022 coarse pulse mode, slave - H023 coarse pulse mode, master Check hardware b Power-down equipment a Power-down the equipment and power-up again (accept initialization parameter) Enable errors and alarms - H003 fault mask - H004 alarm mask Define sources for setpoints - H040 speed ratio - H048 relative ratio - H050 offset setpoint - H070 master setpoint - H080 inertia compensation Define sources for control signals - H170 offset reset - H171 jog enable - H172 ang. controller enable = 0 (actually, inhibit) - H173 reset position - H174 synchronizing command Select process data to the basic drive - H510 ... H525 control word 1 - H526 ... H544 control word 2 - H501 ... H509 normalization PZD1, 2, 3, 5 and 8 Scaling of the analog inputs used - H210 ... H220 scaling and offsets - H222 ... H228 smoothing times A Fig. 5-2 Start-up, closed-loop speed control (start-A): Speed actual value sensing, setpoint SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 117 Start-up A ON Enter master setpoint, approx. 0.05 (e.g. via fixed value) Drive rotates? e Yes No No Setpoint, ON command, all enable signals available? No Yes Speed actual value present? (d014) CU torque limits high enough? OFF No Yes e Speed sign correct? A Slowly increase the torque limit until the drive rotates or the maximum value is reached No Yes Yes No OFF Check tracks A, B ; if required interchange A Speed and torque sign the same? Drive overloaded, locked, blocked? Yes Yes f Drive rotates in the required direction? A No OFF ja g B Fig. 5-3 118 No Power-down unit Power down Remove cause d A Commissioning the closed-loop speed control (A-B): Drive rotates, torque SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Start-up B Does the speed actual value d014 and setpoint d136 coincide? Yes h Yes No Check: pulse encoder setting; torque limits Setpoint limiting? No Does the slave drive run smoothly ? Yes No Optimize the speed controller Yes Yes Required torque selected? Satisfactory result attainable ? No No Increase the torque limits by between 5% to 10% until the required torque is reached OFF i Rated or maximum speed reached? No Yes Set the ramp-up and ramp-down times of the speed ramp-function generator of the basic drive (e.g. CUMC: P462, P464) Increase the speed setpoint by 0.05 .. 0.1 up to max. speed C Fig. 5-4 Commissioning the closed-loop speed control (B-C): Speed controller optimization, torque limit SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 119 Start-up C Speed control subsequently optimized? No Optimize controller Yes Does jog function ? No Setpoints, check ON/OFF control Yes Fixed ratio? ja No For each requested ratio, approach the maximum demanded operating speed Yes Master speed = slave speed d015 = u * d014 ? No Sources for the ratio correct? (H040, H048) No Setpoints, check ON/OFF control Yes Yes Change the ratio or reduce the master setpoint Setpoint speed = master setpoint / u d136 = d076 / d044 ? Yes Refer to the KP adaption, speed controller (Section 3.5.4) Is synchronism used at very low speeds? No For safety, check the pulse encoder signals k Speed control start-up completed Fig. 5-5 120 Commissioning the closed-loop speed control (C-end): Ratio SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Start-up The fault/error causes specified here represent help when troubleshooting the closed-loop speed control; however, other causes are conceivable. The following table provides an overview of frequently required basic drive parameters when troubleshooting. Also refer to the setpoint- and actual value channels in Table 2-1 and Table 2-2. Parameter T400 log-on COMBOARD log-on Configuration, serial interface Configuration, CB1 /CBP Control word 1 Control word 2 Status word 1 Status word 2 Closed-loop control mode (V/Hz, ..) Speed limit values n_max n_min Torque limit values M_max / M1 M_min / M2 Maximum current Speed ramp-funct. gener. ramp-up time ramp-down time Reference speed Reference torque Establish factory setting Motor identification routine Table 5-2 CU 2 CU MC P090 P091 P682 ... P695 ... r550 r551 r552 r553 P163 P452 P453,P457 P492 P498 Automatic Automatic P700 ... P711 ... r550 r551 r552 r553 P367 P452 P453 P263 P264 P128 P462 P464 P353 P354 P462 P464 P485 P052 P052 CU VC DC-Master r650 r652 r653 r654 P642, P632 P643, P633 List of important parameters for troubleshooting in the basic drive a) Basic drive signals fault F080: T400 correctly inserted, correct slot? T400 defective? SPA440 standard software package on T400? Does T400 have to be logged-on? CB correctly inserted, correct slot? CB defective? b) Basic drive signals fault F070: If parameterized (P91=3), correct interface module type? SCB1/2 inserted correctly for the selected protocol (P682)? Correct slot? Hardware defective? If required, replace the module c) Drive does not rotate when an ON command is output and a setpoint is present: Check whether all of the required control word enable signals are present (setpoint-, inverter-, ramp-function generator enabled, clockwise/counterclockwise direction of rotation, etc.): Control word = 16#9C7F Setpoint available (d074)? Ratio correctly entered (d136)? Setpoint channel correctly set in the basic drive? Correct frequency limits? d) Drive does not rotate, although all of the enable signals present: Can the drive be operated V/Hz-controlled or closed-loop frequency controlled? SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 121 Start-up If required, establish the factory setting and carry-out a motor identification routine. e) No speed actual value: Wiring correct (ground connections)? For the slave drive: Are the speed encoder cables correctly connected to the CU (for VC: Connector X132)? For the master drive: T400 connecting cables O.K.? Power supply voltage at the pulse encoder? Are all of the signals available with respect to ground and do they have the correct phase position (oscilloscope!)? Yes: Defective technology module? Replace the technology module No: Check the pulse encoder and cables f) Polarity of the torque setpoint- and speed actual value different: Prerequisite: The motor is not driven: If the drive converter and pulse encoder are correctly connected, for a positive torque setpoint, the motor must turn clockwise (when viewing the drive side), and a positive speed actual value must be obtained. Otherwise, tracks A and B of the pulse encoder must be interchanged (slave), or a negative value entered at H012 (rated speed, slave) (this is accepted by powering-down and powering-up the unit!). Note: For motors running under no-load conditions or under low conditions, fluctuations can occur, also in the polarity (sign). g) The drive does not rotate in the required direction: Power-down the unit, change the phase sequence at the motor/drive converter (point f) check!), Reverse the direction of rotation, speed actual value by - interchanging pulse encoder track A/B or, - reverse the polarity at H012 (rated speed, slave) h) Setpoint limiting is effective: The quotient of the master setpoint (d074) and the ratio (d044) may not exceed or fall below the setpoint limits, min/max frequency. i) Poor optimization: Execute the motor identification run and optimize the speed controller. Are all of the units which are used O.K.? Have all of the cables (especially the pulse encoder cables) been carefully routed and shielded, especially the long encoder cables? Does the subordinate (lower level) closed-loop torque control operate perfectly (test parameterization, motor data, etc.)? Is the driven load mechanically O.K. (no play, elasticity, etc.)? Is the pulse encoder mechanically O.K.? k) Checking the pulse encoder signals: The pulse encoder signals must be perfectly received (no noise) when using the angular synchronous control. We therefore urgently recommend that the following measurements are made using an oscilloscope (directly at the terminals of the T400; refer to Function Charts 60 and 70): 1) At all speeds, the phase shift between tracks A and B of an encoder must be 1 s. 2) Noise spikes (duration > 0.5 s) may not be present in the vicinity of the switching threshold of the pulse encoder input circuit, i.e. not in the 122 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Start-up range B: U/V 10 B 3 Fig. 5-6: Signals of an incremental encoder with HTL signal level 3) If a synchronizing pulse is used, we recommend that an oscillogram plot is made of it. 5.3 Commissioning the angular control The fault causes, specified here are intended to help troubleshoot the angular control; however, other causes are conceivable. a) The differential position actual value quickly moves away from 0 after the actual value sensing has been enabled (angular controller): The pre-control has been correctly set, if the differential position actual value only very slowly drifts away from zero without the angular controller intervening. The prerequisites for this are: - the master drive runs smoothly (speed controller optimization), - the master setpoint corresponds to the master drive speed, - the slave drive runs smoothly (speed controller optimization), - when the master setpoint is entered as analog signal, the adaption is correct b) If the differential position actual value is too high, possible causes could be: - Speed controller goes to its limit? Yes: correctly select the torque limits, remove the overload condition - Angular controller goes to its limit? Yes: ensure that frequency limit > [speed setpoint (d136) + angular controller limit (H112)] ! - If required adapt the enable threshold of the angular controller, H118 c) Check the ratio which has been set and the data on the present ratio. If possible, check, for example, the synchronizing pulses and a connected process or material web. For example, does it continually move away from the required position? SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 123 Start-up Start Set the largest ratio which is used (or fixed) Set the angular controller limit to H112 = 0.0 Set "reset position" constant to 0 ; source H173 = 0 ON Enter the largest possible speed master setpoint Enable the angular controller: H173 = 1 Inhibit the ang.controller, H173 = 0 The position difference d124 only drifts slowly away? No a Yes Pre-control has been optimized Inhibit the angular controller, H173 = 0 Set the angular controller limit H112 to the required value (generally between 0.1 and 0.3) Switch the angular controller into the P controller mode: H110 = 1 Set the KP gain H113 to 0.0 Position difference smoothing, H117 = 4 ms A Fig. 5-7: 124 Commissioning the angular control (start-A): Basic setting SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Start-up A Enable angular controller: H173 = 1 Optimize the angular controller (as PI controller: H110 = 0) - KP: H113 - integral action time Tn: H111 (refer to the next section) Position difference d124 within the required tolerance? a No Yes No Are different ratios used? Yes P-gain adaption (ratio) - enter the largest/smallest ratio in H115 / H116 - after optimization, enter the associated KP values in H113 / H114 a Position difference d124 within the required tolerance? No Yes All of the different ratios can be set? No Yes All required speeds can be set? No Yes Define the "reset position" source, H173 Angular controller commissioning completed Fig. 5-8 Commissioning the angular control (A-end): Ratio SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 125 Start-up 5.3.1 Information regarding optimizing the angular controller Procedure: 1. If there are low to average demands placed on the control quality: Set the experience value: A KP of between 2 and 6 provides, for many applications, adequate precision and dynamic performance. 2. For average up to high demands on the dynamic performance, or if the experience value does not result in a satisfactory result: - Enter a master setpoint of 0 - Increase the P gain in steps of 2 until the slave drive starts to oscillate. The speed actual value can be monitored at analog output 1 (terminals 97 / 99). If the slave drive remains absolutely steady for a P gain > 2, then it is necessary to excite oscillation by deflecting the motor from its quiescent position. This can be realized, for example, by entering a jog setpoint (H130, approx. 0.01; enable H171). - Reduce the P gain H113 in steps of between 0.5 to 1 until oscillation stops. Then multiply the value which was reached, by 0.5 to 0.7 and save H113. 3. For high demands placed on the control quality: - For high demands placed on the control quality, the speed actual value must be extremely accurate, e. g. via analog output 1 (terminals 97 / 99) trace the signal using a fast plotter or a storage oscilloscope. In this case, the speed actual value is compensated by offset value H160 and the analog output gain can be adapted using H161 so that the speed ripple can be easily monitored. - For average slave drive speeds, excite using the jog setpoint (parameter H130 = 0.01), and monitor the transfer characteristic. The simplest solution is to write an enable signal using a switch connected to a digital input. Vary the P gain until a good result is achieved. - Under certain circumstances, the optimization result can be improved by increasing the position difference smoothing (H117). However, generally the default value of 4 ms should be used. 4. Angular errors - If the master setpoint is inaccurate, (e. g. if fed via an analog input or if incorrectly adapted (rated speed)), the P control results in an angular error which is dependent on the P gain. If this error causes disturbances, the angular controller must be parameterized as PI controller (H110 = 0). The integral action time should be set using parameter H111. Starting with high values of Tn (approx. 5 s), the system should be optimized and Tn changed towards lower values. - If the ratio was incorrectly set, an enabled integral component would "drift away", i. e. would go to its limit. 126 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Start-up 5.4 Commissioning synchronization Prerequisite When commissioning the synchronization, the speed- and angular control must have been completely commissioned. The synchronizing function must be inhibited (H174 = 0) if synchronization is not required. Start Set parameters (refer to Section 3.3.1) - H091 ... H093 offset modes and correction pulse No. - H100, H102 pulse numbers, master and slave - H103 threshold for synchronism reached - H174 source for synchronizing command Offset setpoint = 0.0 (H050 = 0) Inhibit synchronizing (H174 = 0) ON Enable the speed- and angular controllers Inhibit speed- and angular controller Operate the master- and slave drive at approx. 30% of the rated speed OFF Number of synchronizing pulses the same (do they slowly drift apart)? No a No b Yes Inhibit synchronizing (H174 = 1) Slave drive runs smoothly? A Fig. 5-9 Commissioning synchronizing (start-A) SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 127 Start-up Caution The synchronizing function is only possible when the synchronizing pulses are perfect (e. g. zero pulses). The cable routing should be checked so that it provides immunity against noise and disturbances, and is sufficiently shielded; the synchronizing pulse shapes must be checked using an oscilloscope. Start Number of synchronizing pulses the same and they do no drift apart (1) ? No c Yes Offset value d094 in the required range? No Wait, if required increase the correction pulse number H093 (e. g. from 1 to 2) No Yes |d095| Offset - position difference < 32765 ? Are offset values required ? No Yes Wait Yes e Enter offset values (refer to Section 3.4.2) Are the offset values reached (1) ? If synchronizing hasn't been realized after approx. 30 s (|d095|>32765), then an excessive system deviation has built-up d Yes End Fig. 5-10 (1) Monitor the signals using an oscilloscope or connect the synchronizing pulses to a stroboscope Commissioning synchronizing (A-end) The synchronizing troubleshooting information represents a help when troubleshooting; however, other causes are conceivable. a) The number of synchronizing pulses from the master and slave are not equal in any time unit: - 128 Check the master setpoint Check the ratio (u nset slave nact SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Start-up - master d015) Check the synchronizing pulses/signal encoder b) The slave drive does not run smoothly after synchronizing has been enabled: - If possible, reduce the correction pulse number H093 (minimum = 1), Check the synchronizing pulse trains Check the speed- and angular controller optimization; if required, reoptimize. Check the master drive; if required, re-optimize the master drive Investigate the mechanical system for play, torsional oscillations etc. c) The number of synchronizing pulses from the master and slave are not equal after synchronizing has been enabled, in any time unit: - Check the synchronizing pulses/signal encoder - Check the displacement parameters (H050 to H067 and H090 to H107) Especially check the synchronizing pulse numbers d) Synchronization has not been completed (absolute displacement actual value - position difference > 32765) - Refer to c) - If displacement d094 has an increasing trend, then the correcting influence of the synchronizing is probably too low slightly increase H093 (e.g. from 1 to 2); commence again at the start e) Displacement setpoints are not reached: - 5.5 Check the parameterization (H050 to H067 and H090 to H107) (displacement setpoint limiting reached?) Check the mechanical design and if required change Check the response threshold H103 Trace function with "symTrace-D7" With "symTrace-D7", a product from the company "sympat", it is possible to establish a connection to an application based on D7-SYS (e.g. the axial winder SPW420). With "symTrace-D7" you are able to trace every value in your CFC-application.The trace offers you two different options: online and offline trace. With the online trace you can trace values in intervals of a few ten-milliseconds. This is only practical for slowly changing values, e.g. the diameter actual value. If you want to trace quickly-changing values you need the offline trace. With this option you can trace values within the shortest cycle-time. Therefore the values must be saved in a buffer. Some special function blocks have been placed in the project for that reason. You will find them in the plan "TRACE". With the parameter L400 you are able to change the length of the tracebuffer. The standard setting is 2048 (double words). Furtheron with the c401 and c402 two display parameters show you the state of the trace coupling (-> see parameter list). For more information please read the online help in "symTrace-D7". SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 129 Literature 6 Literature 1. Instruction Manual for SIMOVERT Master Drives -- Vector Control (VC), types of construction A to D, Order No.: 6SE7080-0Ad20, 1995. 2. Instruction Manual for SIMOVERT Master Drives -- Communications module CB1, Order No.: 6SE7087-6CX84-0AK0, 1994. 3. Configuring Communications D7-SYS- SIMADYN D Manual, Order No. 6DD1987-1AA1, Oct. 1997. 4. Hardware - SIMADYN D Manual, Order No. 6DD1987-1BA1, 1997. 5. SIMADYN D, Function Block Library, Reference Manual, Order No. 6DD1987-1CA1, October 97. 130 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Appendix 7 Appendix Para. Factory set Units Start-up value Significance Type H000 0 Language selection I d001 440 Software type (identification) i Software version d002 2.1 H003 16#0000 H004 16#0000 d005 I Fault message enable W Alarm message enable W Status word, angular synchronism W d006 Error bits W d007 Alarm bits W H008 0 TechBoard parameter type (1= floating point) BO H009 0 T400 = baseboard BO H010 1024 Pulse H011 1024 Pulse Encoder pulse number, master (pulse number) I H012 1500.0 RPM Rated speed, slave R H013 1500.0 RPM d014 d015 Encoder pulse number, slave (pulse number) I Rated speed, master R Speed actual value, slave / H012 R Speed actual value, master / H013 R d016 Pulse Position actual value, slave R d017 Pulse Position actual value, master R H018 16#7FE2 Slave speed sensing mode W H019 16#7F02 Master speed sensing mode W d020 Error code, slave speed sensing W d021 Error code, master speed sensing W W H022 16#0000 Coarse pulse mode, slave sensing H023 16#0000 Coarse pulse mode, master sensing W H024 0 COMBOARD parameter type (1= floating point) BO d025 Status of the digital inputs W d026 Control word1 for the basic drive converter W d027 Control word2 for the basic drive converter W d028 .. d039 H040 1 H041 3047 H043 1.0 d044 d045 d046 H047 Free visualization parameter. Selecting the source using parameters L028 .. L039 I Multiplexer selection, ratio I Source for the supplementary ratio I Fixed value, ratio R Actual ratio R Pulse Ratio, numerator R Pulse Ratio, denominator R Fixed value, supplementary ratio R 0.0 H048 1 Multiplexer, relative ratio I H049 1.0 Fixed value, relative ratio R Multiplexer, displacement setpoint I H050 1 H051 3050 H052 2.5 H053 2.5 H054 +2048 H055 -2048 d056 H057 0175 ms ms Pulse Source for the displacement setpoint I Ramp-up time, displacement setpoint SD Ramp-down time, displacement setpoint SD Maximum value, displacement setpoint (positive) R Pulse Maximum value, displacement setpoint (negative) R Pulse Actual displacement setpoint R Source, setting signal for the displacem.ramp-function gener. I SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 131 Appendix Para. Factory set Units Start-up value Significance Type H058 3012 Source for the normalization factor, slave speed I H059 3013 Source for the normalization factor, master speed I d060 Ratio_1 (refer to Chart 80) R d061 Relative ratio R H062 0.0 Pulse Synchronizing displacem. setpoint n_master 0, n_slave 0 R H063 0.0 Pulse Synchronizing displacem. setpoint n_master < 0, n_slave 0 R H064 0.0 Pulse Synchronizing displacem. setpoint n_master 0, n_slave < 0 R H065 0.0 Pulse Synchronizing displacem. setpoint n_master < 0, n_slave < 0 R H066 0.0 Pulse Fixed value, displacement setpoint R I H067 3040 Source for the ratio H068 3048 Source for the relative ratio I H070 15 Multiplexer for the master speed setpoint R H071 3070 Source for the master speed setpoint I H072 10 H073 0.0 ms Smoothing, master speed setpoint SD Fixed value, master speed setpoint R d074 Actual master speed setpoint, smoothed R d076 Master speed setpoint (before smoothing) R H077 5088 Source for numerator (ratio to determine the displacement) I H078 5089 Source for the denominator (ratio to determine the displacement) I H079 3129 Source for input DT1 (inertia compensation) I H080 1 H082 100 ms Multiplexer selection, inertia compensation H083 4 ms d085 Smoothing time, inertia compensation I SD Differentiating time, inertia compensation R Output DT1 (inertia compensation) R H086 1000 Fine setting, ratio, numerator DI H087 1000 Fine setting, ratio, denominator DI H088 0 Enable fine setting, ratio BO H090 1 Position correction mode BO H091 0 RETRIGGER synchronizing BO Synchronizing command, edge-controlled BO H092 0 H093 1.0 Pulse Correction pulse number R d094 Pulse Displacement actual value R d095 Pulse Displacement actual value - differential position actual value R Error identification, displacement sensing W d096 H097 0108 Source 2 for reset, position and displacement I H098 0101 Source for the synchronizing command 2 I H100 4096 H101 0105 H102 4096 H103 20.0 H104 0109 H105 Pulse Synchronizing pulse number, master DI Source to end start synchronization I Pulse Synchronizing pulse number, slave DI Pulse Response threshold "synchronism reached" R Source for controller enable I 500 Pulse Enable threshold, synchronizing, slave R H107 500 Pulse Enable threshold, synchronizing, master R H108 3044 Source for the input KP characteristic angular controller I d109 H110 132 1 Angular controller enable status BO Angular controller as P controller BO SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Appendix Para. Factory set Units ms Start-up value Significance H111 500 H112 0.3 Limit value, angular controller R H113 1.0 P gain, angular controller KP_UE R H114 1.0 P gain, angular controller KP_UE_0 R H115 0.0 Limit value ue_KP R H116 0.0 Limit value ue_KP_0 R H117 4.0 Smoothing, differential position actual value SD H118 0.1 Source for the angular controller enable (n_slave) R H119 0.1 ms d120 d121 Pulse d122 d123 d124 Pulse Integral action time, angular controller Type SD Source for monitoring the master speed R Output, angular controller R System deviation, angular controller R I component, angular controller R KP angular controller R Differential position actual value, smoothed R H125 1.0 Upper limit, speed ramp-function generator R H126 -1.0 Lower limit, speed ramp-function generator R H127 0 ms Ramp-up time, speed setpoint R H128 0 ms Ramp-down time, speed setpoint R ms Speed setpoint after the ramp-function generator R Jog setpoint (fixed value) R d129 H130 0.0 H131 0172 H132 1.0 H133 -1.0 H134 1.0 H135 -1.0 d136 d137 H138 0 H139 0193 ms Source, angular controller enable 1 I Speed setpoint limiting positive R Speed setpoint limiting negative R Speed controller output limiting positive R Speed controller output limiting negative R Actual speed setpoint R Speed setpoint limited R Smoothing time constant, angular controller output R Source, angular controller enable 2 I Compute speed controller on T400 BO H140 0 H141 10.0 P gain, speed controller KP R H142 10.0 P gain, speed controller KP_O R H143 0.0 Limit value n_KP R H144 0.0 H145 200 ms H146 4.0 ms d147 d148 H149 10 ms Limit value n_KP_0 R Integral action time, speed controller R Smoothing, speed actual value R Control word 1 for the basic drive W Control word 2 for the basic drive W Pulse extension, synchronizing pulse master SD d150 Speed controller output R d151 System deviation, speed controller R d152 Actual basic drive setpoint (n or M) R d153 KP speed controller R H154 3186 H155 10000 Source, slave position (synchronizing enable) I Resolution for the ratio R H156 H157 3056 Source, actual value1 for the angular controller I 3000 Source, actual value2 for the angular controller I H158 3124 Source, setpoint1 for the angular controller I H159 3000 Source, setpoint2 for the angular controller I H160 0.0 Offset, analog output 1 R SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 133 Appendix Para. Factory set Units Start-up value Significance Type H161 1.0 Scaling, analog output 1 H162 0.0 Offset, analog output 2 R H163 1.0 Scaling, analog output 2 R H164 0 H165 0 Erase change memory Key, change memory d166 Status, change memory H167 0173 H168 1000 Source, position reset 1 ms R BO I BO I Delay start synchronization SD BO H169 0 Enable start synchronization H170 0 Multiplexer, displacement reset I H171 0 Multiplexer, jog enable I H172 0 Multiplexer, angular controller enable I H173 0 Multiplexer, reset position I H174 0 Multiplexer, synchronizing command I d175 Actual value, displacement reset BO d176 Actual value, jog enable BO d177 Actual value, angular controller enable (control signal) BO d178 Actual value, reset position BO d179 Actual value, synchronizing command BO H180 0154 Source, enable synchronization, slave I H181 0097 Source, reset the slave position I H182 5088 Source, numerator of the ratio (slave) I H183 5089 Source, denominator of the ratio (slave) I H184 0098 Source, enable position difference correction I H185 0108 Source to reset, position difference 1 I H186 3016 Source, slave position for absolute value I H187 0170 Source to reset, position difference 2 I H188 0190 Source, enable synchronization, master I H189 0097 Source, reset the master position actual value I H190 3199 Source, position (synchronizing enable, master) I H191 0174 Source, synchronizing command I H192 3014 Source, actual speed (plausibility, slave speed) I H193 3136 Source, setpoint speed (plausibility, slave speed) I H195 3015 Source, actual speed (plausibility, master speed) I H196 3076 Source, setpoint speed (plausibility, master speed) I H197 5086 Source, fine ratio, numerator I H198 5087 Source, fine ratio, denominator I H199 3017 Source, position (absolute position, master) I H200 3137 Source, setpoint speed 1 (speed controller) I H201 3000 Source, setpoint speed 2 (speed controller) I H202 3146 Source, actual speed 1 (speed controller) I H203 3000 Source, actual speed 2 (speed controller) I H204 3129 Source, input KP characteristic (speed controller) I H205 3129 Source, setp. speed 1, ramp-funct.gen. (speed controller) I H206 3120 Source, setp. speed 2, ramp-funct.gen. (speed controller) I H207 3130 Source, jog setpoint I H208 0171 Source, jog enable I H209 10.0 Pulse extension, slave synchronizing pulse I H210 1.0 Scaling, analog input 1 R H211 0.0 Offset, analog input 1 R 134 ms SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Appendix Para. Factory set Units d212 H213 1.0 H214 0.0 d215 Start-up value Significance Type Actual value, analog input 1 R Scaling, analog input 2 R Offset, analog input 2 R Actual value, analog input 2 R H216 1.0 Scaling, analog input 3 R H217 0.0 Offset, analog input 3 R d218 H219 1.0 H220 0.0 d221 H222 500 ms 0 ms Offset, analog input 4 R Smoothing time, analog input 1 Smoothing time, analog input 2 Actual value, analog input 2, smoothed 0 ms d227 H228 R Actual value, analog input 1, smoothed d225 H226 R Scaling, analog input 4 Actual value, analog input 4 d223 H224 Actual value, analog input 3 Smoothing time, analog input 3 Actual value, analog input 3, smoothed 0 d229 ms Smoothing time, analog input 4 R SD R SD R SD R SD Actual value, analog input 4, smoothed R H230 0000 Source, zero setting function, analog input 1 I H231 0000 Source, zero setting function, analog input 2 I H232 0000 Source, zero setting function, analog input 3 I H233 0000 Source, zero setting function, analog input 4 I H234 3118 Source, position difference (displacement calculation) I H235 3062 Source, position difference correction (displacem. calculation) I H236 0097 Source, resetting the displacement calculation I H237 3051 Source, displacement setpoint 1 I H238 3062 Source, displacement setpoint 2 I H239 3044 Source, ratio (n_set) I H240 3136 Source, slave setpoint speed 1 I H241 3176 Source, slave setpoint speed 2 I H242 3137 Source f.the setting value of the I comp.(speed controller) I H243 0000 Source, setting signal I component of the speed controller I H244 3080 Source for the pre-control value of the speed controller I H245 0140 Source, enable pre-control (speed controller) I d246 Status word 1 CU d300 Peer word 1 send W H303 2 Multiplexer for peer word 1 send I H304 1 Multiplexer for peer float 1 send I H305 0 Multiplexer for peer float 2 send I H306 0 Fixed value for peer word 1 send W H307 0.0 Fixed value for peer float 1 send R H308 0.0 Fixed value for peer float 2 send H309 1 R Enable peer-to-peer BO H310H325 Sources for status word1, bits 0-15 BO d327 Status word1 peer W d329d333 PZD1 peer to PZD5 peer W H334 2329 Source for control word (send peer) I H335 2000 Source PZD2 (send peer) I SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 135 Appendix Para. Factory set Units Start-up value Significance Type H336 2000 Source PZD3 (send peer) I H337 5000 Source, double word 1(send peer) I H338 3304 Source, float 1 (send Peer) I H339 2 Send type for PZD2 + PZD3 (send peer) I H340 2000 Source PZD4 (send peer) I H341 2000 Source PZD5 (send peer) I H342 5000 Source, double word 2 (send peer) I H343 3305 Source, float 2 (send peer) I Send type for PZD4 + PZD5 (send peer) I H344 2 H345 2303 d346 H360 20000 ms H361 100 ms H362 16#FFFF H363 19200 d364 Baud Source PZD1 (send peer) I Peer control word (receive) W Power-on no time limit peer SD Time limit peer in operation SD Mask peer status W Baud rate peer-to-peer DI Peer status, receive block W H381 2026 Source, PZD1 for the basic drive I H382 2500 Source, PZD2 for the basic drive I H383 2502 Source, PZD3 for the basic drive I H384 2027 Source, PZD4 for the basic drive I H385 2504 Source, PZD5 for the basic drive I H386 2506 Source, PZD6 for the basic drive I H387 2510 Source, PZD7 for the basic drive I H388 2508 Source, PZD8 for the basic drive I H401 1.0 Normalization, COMBOARD actual value1 send R H403 1.0 Normalization, COMBOARD actual value2 send R H405 1.0 Normalization, COMBOARD actual value3 send R H407 1.0 Normalization, COMBOARD actual value4 send H409 1 Enable COMBOARD communications BO H410H425 0 Status word 1 bits 0-15 fixed values BO H426H441 0 Status word 2 bits 0-15 fixed values BO H442 0 Multiplexer COMBOARD word 1 send I H443 0 Fixed value COMBOARD word 1 send W H444 0 Multiplexer COMBOARD word 4 send I R H445 0 Fixed value COMBOARD word 4 send W H446 1 Multiplexer COMBOARD word 2 send I H447 0 Multiplexer COMBOARD word 3 send I H448 0 Multiplexer COMBOARD word 5 send I H449 0 Multiplexer COMBOARD word 6 send I COMBOARD setpoint1 receive R d450 H451 1.0 d452 H453 1.0 d454 H455 1.0 COMBOARD normalization setpoint1 receive R COMBOARD setpoint2 receive R COMBOARD normalization setpoint2 receive R COMBOARD setpoint3 receive R COMBOARD normalization setpoint3 receive R COMBOARD setpoint4 receive R COMBOARD normalization setpoint4 receive R d458 COMBOARD word 1 send W d459 COMBOARD word 4 send W d456 H457 136 1.0 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Appendix Para. Factory set Units Start-up value Significance Type d460 COMBOARD control word 1 receive d461 COMBOARD control word 2 receive W W H462 20000 ms Power-on time limit COMBOARD SD H463 100 ms Time limit COMBOARD operational SD H464 16#FFFF Mask COMBOARD receive status W d465 Receive status COMBOARD W d466 Status word1 COMBOARD W d467 Status word2 COMBOARD W H470 0.0 Fixed value, COMBOARD send word 2 R H471 0.0 Fixed value, COMBOARD send word 3 R H472 0.0 Fixed value, COMBOARD send word 5 R H473 0.0 Fixed value, COMBOARD send word 6 R H480 3 Slave address COMBOARD (only for SRT400) I H481 0 COMBOARD parameter 1 (only for SRT400) I H482 2 COMBOARD parameter 2 (only for SRT400) I H483.. H493 0 COMBOARD parameter 3..13 (only for SRT400) I H495 1 COMBOARD parameters valid (only for SRT400) BO Status COMBOARD for operation in the SRT400 W d496 H498 3000 H499 1.0 H500 3152 H501 H502 Source, setpoint for double word output I Setpoint normalization according to H498 R Source for the 1st setpoint to the basic drive I 1.0 Normalization, 1st setpoint for the basic drive R 3000 Source for the 2nd setpoint for the basic drive I nd H503 1.0 H504 3120 Source for the 3rd setpoint for the basic drive Normalization, 2 setpoint for the basic drive I H505 1.0 Normalization, 3rd setpoint for the basic drive R H506 3153 Source for the 4th setpoint for the basic drive I th R H507 1.0 Normalization, 4 setpoint for the basic drive H508 3080 Source for the 5th setpoint for the basic drive I H509 1.0 Normalization, 5th setpoint for the basic drive R H510 0650 Source, control word 1 for the basic drive, bit0 BO H511 0651 Source, control word 1 for the basic drive, bit1 BO H512 0652 Source, control word 1 for the basic drive, bit2 BO H513 0653 Source, control word 1 for the basic drive, bit3 BO H514 0654 Source, control word 1 for the basic drive, bit4 BO H515 0655 Source, control word 1 for the basic drive, bit5 BO H516 0656 Source, control word 1 for the basic drive, bit6 BO H517 0657 Source, control word 1 for the basic drive, bit7 BO H518 0658 Source, control word 1 for the basic drive, bit8 BO H519 0659 Source, control word 1 for the basic drive, bit9 BO H520 0660 Source, control word 1 for the basic drive, bit10 BO H521 0661 Source, control word 1 for the basic drive, bit11 BO H52 0662 Source, control word 1 for the basic drive, bit12 BO H523 0663 Source, control word 1 for the basic drive, bit13 BO H524 0664 Source, control word 1 for the basic drive, bit14 BO H525 0665 Source, control word 1 for the basic drive, bit15 BO H526H541 0 Source, control word 2 for the basic drive, bits0 .. 15 (with the exception of H535) BO Source, control word 2 for the basic drive, bit9 BO Mask to identify CU operational readiness W H535 0546 H542 16#0004 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 R 137 Appendix Para. Factory set Units Start-up value Significance Type H543 0 Test enable for the speed controller in the basic drive H544 1 Multiplexer for speed controller enable I d545 Computation utilization for T1 (fastest time sector) R d546 Computation utilization for T2 R d547 Computation utilization for T3 R d548 Computation utilization for T4 R d549 Computation utilization for total CPU load R Normalization actual value1, receive from the basic drive R H550 1.0 d551 H552 1.0 d553 H554 1.0 BO Actual value1, receive from the basic drive R Normalization actual value2, receive from the basic drive R Actual value2, receive from the basic drive R Normalization actual value3, receive from the basic drive R d555 Actual value3, receive from the basic drive R d556 Control word from the basic drive W Source, control word from the basic drive W H557 H558 2571 H559 2574 Source for status word 1 from the basic drive Source for status word 2 from the basic drive I I d560 Status word 1 from the basic drive W d561 Status word 2 from the basic drive W d562 Receive status, basic drive interface W H563 2572 Source for actual value1 from the basic drive I H564 2573 Source for actual value2 from the basic drive I H565 2575 Source for actual value3 from the basic drive I H567 2582 Source for double word (high) from the basic drive I H568 2581 Source for double word (low) from the basic drive I H569 5567 Source for double word from the basic drive I d570 Double word from the basic drive, normalized R d571d585 14 process data from the basic drive W H587 5567 H588 1.0 d589 H590 2577 d591 Source for double word for type conversion (N4 eR) I Normalization factor for H587 R Double word from CU after type conversion (N4eR) R Source for PZD for type conversion (IeR) I Result of type conversion (IeR) from H590 R H592 2571 Source to evaluate the operational readiness I H593 0547 Source for operational readiness, basic drive I d601 Digital output, terminal 46 "synchronism reached" BO d602 Digital output, terminal 47 "angular controller at its limit" BO d603 Digital output, terminal 48 "angular controller enabled" BO d604 Digital output, terminal 49 "fault" BO d607 Coarse pulse input 1, terminal 84 BO Coarse pulse input 2, terminal 65 BO d608 H609 Mask to invert digital inputs W d610 Digital input 1, terminal 53 BO d611 Digital input 2, terminal 54 BO d612 Digital input 3, terminal 55 BO d613 Digital input 4, terminal 56 BO d614 Digital input 5, terminal 57 BO d615 Digital input 6, terminal 58 BO d616 Digital input 7, terminal 59 BO d617 Digital input 8, terminal 60 BO 138 16#0000 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Appendix Para. Factory set Units Start-up value Significance Type H618 1 Multiplexer for analog output 1 I H619 0 Multiplexer for analog output 2 I H620 3618 Source for analog output 1 I H621 0000 Source to inhibit, analog output 1 I H622 3619 Source for analog output 2 I H623 0000 Source to inhibit, analog output 2 I H631 0105 Source for the bi-directional digital output 1 I H632 0116 Source for the bi-directional digital output 2 I H633 0109 Source for the bi-directional digital output 3 I H634 0003 Source for the bi-directional digital output 4 I H635 0004 Source for the digital output 1 I H636 0000 Source for the digital output 2 I H637 1 Enable bi-directional digital output 1 I H638 1 Enable bi-directional digital output 2 I H639 1 Enable bi-directional digital output 3 I H640 1 Enable bi-directional digital output 4 I H650 0 Multiplexer for control word 1, bit 0 I H651 1 Multiplexer for control word 1, bit 1 I H652 1 Multiplexer for control word 1, bit 2 I H653 1 Multiplexer for control word 1, bit 3 I H654 1 Multiplexer for control word 1, bit 4 I H655 1 Multiplexer for control word 1, bit 5 I H656 1 Multiplexer for control word 1, bit 6 I H657 0 Multiplexer for control word 1, bit 7 I H658 0 Multiplexer for control word 1, bit 8 I H659 0 Multiplexer for control word 1, bit 9 I H660 1 Multiplexer for control word 1, bit 10 I H661 1 Multiplexer for control word 1, bit 11 I H662 1 Multiplexer for control word 1, bit 12 I H663 0 Multiplexer for control word 1, bit 13 I H664 0 Multiplexer for control word 1, bit 14 I H665 1 Multiplexer for control word 1, bit 15 I Analog output 1 R d666 d667 H668 Analog output 2 R Smoothing time constant, analog output 1 R 0 ms H669 0 ms H700 1 H701 9600 H703 0 Address USS slave H704 0 USS slave, 4-wire operation BO d705 Status USS slave W d706 PZD1 receive USS W d707 PZD2 receive USS W Smoothing time constant, analog output 2 R Enable USS slave BO Baud rate USS slave DI I H708 2000 Source for 1st PZD send USS I H709 2000 Source for 2nd PZD send USS I d801 - d810 PZD1 to PZD10 from COMBOARD W H811 2801 Source for control word 1 from CB I H812 2804 Source for control word 2 from CB I H813 2802 Source for setpoint 1 from CB I H814 2803 Source for setpoint 2 from CB I SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 139 Appendix Para. Factory set Units Start-up value Significance Type H815 2805 Source for setpoint 3 from CB I H816 2806 Source for setpoint 4 from CB I H817 2807 Source for setpoint integer e REAL from CB I Result integer e REAL from CB R I d818 H819 2809 Source, high word of the double word from CB H820 2810 Source, low word of the double word from CB I Double word from CB (N4 format) as REAL value R Source for the 1st actual value at CB I d821 H822 3446 nd H823 3447 Source for the 2 H824 3448 Source for the 3rd actual value at CB I H825 3449 Source for the 4th actual value at CB I H826 3000 Source for the actual value (REAL e integer) at CB I H828 3000 H829 1.0 H831 H832 actual value at CB th I Source for the 5 actual value at CB(word o.double word) I Normalization for H828 (REAL e N4) R 2442 Source for PZD1 at CB I 2822 Source for PZD2 at CB I H833 2823 Source for PZD3 at CB I H834 2444 Source for PZD4 at CB I H835 2824 Source for PZD5 at CB I H836 2825 Source for PZD6 at CB I H837 2827 Source for PZD7 at CB I H838 2000 Source for PZD8 at CB I H839 2828 Source for PZD9 at CB I H840 2829 Source for PZD10 at CB I H841 1.0 Normalization for double word from CB R H900 0000 Source for fault message F125 I H901 0000 Source for fault message F126 I H902 0000 Source for fault message F127 I H903 0000 Source for fault message F128 I H904 0000 Source for fault message F129 I H905 0000 Source for fault message F130 I H906 0000 Source for fault message F131 I H907 0000 Source for alarm A106 I H908 0000 Source for alarm A107 I H909 0000 Source for alarm A108 I H910 0000 Source for alarm A109 I H911 0000 Source for alarm A110 I H912 0000 Source for alarm A111 I H913 0000 Source for alarm A112 d921 - d930 PZD1 to PZD10 for output at CB I W H960 0 Fixed value 1, integer type I H961 0 Fixed value 2, integer type I H962 0 Fixed value 3, integer type I H963 0 Fixed value 4, integer type I H964 0 Fixed value 5, integer type I H965 0 Fixed value 6, integer type H971 16#0000 Fixed value 1, word type W H972 16#0000 Fixed value 2, word type W H973 16#0000 Fixed value 3, word type W H974 16#0000 Fixed value 4, word type W 140 I SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Appendix Para. Factory set Units Start-up value Significance Type H981 0 Fixed value 1, double word type W H982 0 Fixed value 2, double word type W H983 0 Fixed value 3, double word type W H984 0 Fixed value 4, double word type W H990 0.0 Fixed value 1, REAL type R H991 0.0 Fixed value 2, REAL type R H992 0.0 Fixed value 3, REAL type R H993 0.0 Fixed value 4, REAL type R H994 0.0 Fixed value 5, REAL type R H995 0.0 Fixed value 6, REAL type R H996 0.0 Fixed value 7, REAL type R H997 0.0 Fixed value 8, REAL type R d998 134 Identification of SIMADYN D components I d999 121 Identification of software for SIMOVIS I L028 3234 Source for the 1st display parameter, REAL type (d028) I L029 3330 Source for the 2nd display parameter, REAL type (d029) I rd L030 3332 Source for the 3 display parameter, REAL type (d030) L031 3819 Source for the 4th display parameter, REAL type (d031) I L032 0193 Source for the 1st display parameter, BOOL type (d032) I L033 0196 Source for the 2nd display parameter, BOOL type (d033) I rd I L034 0105 Source for the 3 display parameter, BOOL type (d034) I L035 0116 Source for the 4th display parameter, BOOL type (d035) I L036 2500 Source for the 1st display parameter, integer type (d036) I L037 2502 Source for the 2nd display parameter, integer type (d037) I L038 2605 Source for the 1st display parameter, word type (d038) I L039 2606 Source for the 2nd display parameter, word type (d039) I L098L112, c114c119, L120L123, c125, L200L212, c214c219, L220L223, c225, c300, L301L302 L400 new parameters, refers to Chapter 3.2.3 2048 c401 c402 Length buffer I Coupling Trace BO Status Trace W L605 5000 Source, double word quantity (conversion into 2 words) I L606 2000 Source, input 1 for integer adder 1 I L607 2000 Source, input 2 for integer adder 1 I L608 2000 Source, input 1 for integer subtractor 1 I L609 2000 Source, input 2 for integer subtractor 1 I L646 2000 Source for integer e REAL conversion I L647 3000 Source for REAL e integer conversion I L698 0000 Source for setting input; flipflop 1 I L699 0000 Source for reset input; flipflop 1 I SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 141 Appendix Para. Factory set Units Start-up value Significance st Type L700 0001 Source, 1 input AND logic gate 1 I L701 0001 Source, 2nd input AND logic gate 1 I L702 0001 Source, 3rd input AND logic gate 1 I L703 0001 Source, 1st input AND logic gate 2 I L704 0001 Source, 2nd input AND logic gate 2 I L705 0001 Source, 3rd input AND logic gate 2 I L706 3000 Source, input 0 of changeover switch 1 I L707 3000 Source, input 1 of changeover switch 1 I L708 0000 Source, select input of changeover switch 1 I L709 0000 Source of the 1st edge evaluation block I L710 0000 Source, 1st input OR logic gate 1 I L711 0000 Source, 2nd input OR logic gate 1 I rd L712 0000 Source, 3 input OR logic gate 1 I L713 0000 Source, 1st input OR logic gate 2 I L714 0000 Source, 2nd input OR logic gate 2 I L715 0000 Source, 3rd input OR logic gate 2 I L716 3000 Source, input 0 of changeover switch 2 I L717 3000 Source, input 1 of changeover switch 2 I L718 0000 Source, select input of changeover switch 2 I L728 0000 Source, power-on delay 1 I L729 100.0 Duration, power-on delay 1 SD L730 0000 L731 100.0 L732 0000 ms ms Source, power-off delay 1 I Duration, power-off delay 1 SD Source for the 1st inverter nd inverter I L733 0000 Source for the 2 L734 0000 Source for setting input; flipflop 2 I L735 0000 Source for reset input; flipflop 2 I L738 0000 Source to inhibit the 1st PT1 element I L739 2.0 Quality of the bandstop filter R L740 3000 L741 20.0 L742 3000 Source for the input signal of the bandstop filter I L743 3002 Source for the bandstop frequency of the bandstop filter I L744 3000 Source for the X input of the comparator I L745 3000 Source for the Y input of the comparator I L746 3001 Source for the upper limit value of the limiter I L747 3000 Source for the input quantity of the limiter I L748 3001 Source for the lower limit value of the limiter I L749 3000 Source for the input, comparator with hysteresis I L750 3001 Source for the range, comparator with hysteresis I L751 0.1 Hysteresis of the comparator with hysteresis R Source for the 1st PT1 element ms Filter time constant for the 1st PT1 element I I SD L752 3003 Source for comparison value comparator with hysteresis I L753 3000 Source for input, free 2-point characteristic I L754 0.0 X1 value 2-point characteristic R L755 0.0 Y1 value 2-point characteristic R L756 1.0 X2 value 2-point characteristic R L757 1.0 Y2 value 2-point characteristic R L760 2000 Source for word 1 (word e bits) I L761 2000 Source for high word (double word e REAL) I L762 2000 Source for low word (double word e REAL) I 142 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Appendix Para. Factory set L763 1.0 L764 2000 L765 1.0 L766 3000 Units Start-up value Significance Normalization factor for L761, L762 Type R Source for word e REAL conversion I Normalization to L764 R Source for REAL e N2 conversion I Normalization to L766 R L767 1.0 L786 3000 Source, 1st input, REAL adder 1 I L787 3000 Source, 2nd input, REAL adder 1 I L788 3000 Source, 3rd input, REAL adder 1 I st L789 3000 Source, 1 input, REAL adder 2 I L790 3000 Source, 2nd input, REAL adder 2 I L791 3000 Source, 3rd input, REAL adder 2 I L792 3000 Source, 1st input, REAL subtractor 1 I nd L793 3000 Source, 2 L794 3000 Source, 1st input, REAL subtractor 2 I L795 3000 Source, 2nd input, REAL subtractor 2 I L796 3001 Source, 1st input, REAL multiplier 1 I nd input, REAL subtractor 1 I L797 3001 Source, 2 input, REAL multiplier 1 I L798 3001 Source, 3rd input, REAL multiplier 1 I L799 3001 Source, 1st input, REAL multiplier 2 I L800 3001 Source, 2nd input, REAL multiplier 2 I rd L801 3001 Source, 3 input, REAL multiplier 2 I L802 3001 Source, 1st input, REAL divider 1 I L803 3001 Source, 2nd input, REAL divider 1 I L804 3001 Source, 1st input, REAL divider 2 I nd L805 3001 Source, 2 L810 2000 Source for word 2 (word e bits) I L812 2001 Source, 1st input, integer divider 1 I L813 2001 Source, 2nd input, integer divider 1 I L814 2001 Source, 1st input, integer multiplier 1 I nd input, REAL divider 2 input, integer multiplier 1 I L815 2001 Source, 2 L816 2000 Source, high word (word e double word) I I L817 2000 Source, low word (word e double word) I L818 3000 Source, input free integrator I L819 1.0 Upper limit, integrator R L820 -1.0 Lower limit, integrator R L821 3000 L822 1000 L823 0000 Source for the integrator setting signal I L824 3000 Source, input 1 of the changeover switch 3 I L825 3000 Source, input 2 of the changeover switch 3 I L826 0000 Source, select input of changeover switch 3 I L827 3000 Source, input 1 of the changeover switch 4 I L828 3000 Source, input 2 of the changeover switch 4 I L829 0000 Source, select input of changeover switch 4 I L830 0000 Source, AND-OR logic 1 (OR) I L831 0000 Source, AND-OR logic 1 (AND 1) I L832 0001 Source, AND-OR logic 1 (AND 2) I L833 0000 Source, AND-OR logic 2 (OR) I L834 0000 Source, AND-OR logic 2 (AND 1) I L835 0001 Source, AND-OR logic 2 (AND 2) I Source, setting value integrator ms Integration time, integrator SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 I SD 143 Appendix 144 SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 Changes 8 Changes Edition 11/98 1. Parameters d129, H138, H668, H669 supplemented in the Documentation 2. Factory setting, parameters H544, H651-H656, H660-H662 3. Pulse ratio no longer used (this is now automatically generated) 4. Definition, speed ratio inverted Edition 06/99 1. 2. 3. 4. 5. 6. 7. 8. 9. Edition 05/01 1. For release V2.1: Angular synchronism can also be implemented using 2 absolute value encoders by comparing the two position actual values Can be freely wired using BICO technology (many new parameters!). Digital input quantities, also available inverted. Bi-directional outputs can be de-activated. Possible to inhibit analog inputs and outputs. Freely-available blocks. The ratio resolution can be changed. Different data types for the peer-to-peer interface. Double words can be received and sent. Monitoring parameters are not identical with version 2.01 (are in some instances used as parameter which can be changed). SPA440 angular synchronous control - SIMADYN D - Manual 6DD1903-0BB0 Edition 05.01 145 Function charts for the standard software package Angular Synchronous Control SPA440 Contents Chart General Contents General symbols Control symbols Constants General parameter and status word 10 20 25 30 40 T400 Analog inputs Analog outputs Binary inputs Binary outputs and bidirectional I/O 50 51 52 53 Speed and position sensing Slave drive Master drive Absolut encoders Plausibility check Speed ratio 60 70 72 75 80 Control Control bits Displacement (offset) calculation Angle controller Master speed setpoint Speed controller on T400 90 100 110 115 120 Inverter interface Communication status Faults and alarms Process data receiption Status words Control words Process data transmission 150 160 170 180 220 230 1 General Contents 2 3 Contents Chart Communication Peer to peer settings and PZD Peer to peer control and status word COMBOARD general settings COMBOARD reception COMBOARD control words COMBOARD status words COMBOARD transmission USS slave 300 310 400 410 420 430 440 450 Free function blocks Logical gates Arithmetic and display parameter Miscellaneous functions Type conversion 460 470 480 490 Multiplexer setpoint channels Analog outputs Binary control Control word 1 (part 1) Control word 1 (part 2) CB actual values CB status words Peer to peer 500 510 520 530 540 550 560 570 4 5 6 FPlan_english.vsd 05.01 7 Function diagram Angular Synchr. Control SPA440 8 - 10 - Symbol Explanations Parameter name (factory setting) Hxyz Miscellaneous Logic and arithmetic Technology parameters Symbol technology parameter e.g. H231 Explanations Symbol OR operation Inputs and outputs may be of binary or vector data type 1 Explanations Selection 0 Parameter name H123 (fact.) KR (chart) dsiplay parameter e.g. d123 & R Q 3/4 Q R-S-Flip-Flop e.g. with 5 inputs 2 AND operation Inputs and outputs may be of binary or vector data type S Multiplexer 1 Parameter Name dxyz set reset 3 4 Selection Connection to a floatingpoint source (fact.) which can be modified with H123 1 Switch selection with 2 inputs 0 Logical inversion 1 X2 Parameter name H123 (fact.) K (chart) Connection to a integer source (fact.) which can be modified with H123 Multiplication X1 Y X1 Y + - Y = X1 * X2 Operational amplifier Dividor Parametername H234 (fact.) B (chart) Connection to a boolean source (fact.) which can be modified with H234 X1 Y= X2 Sign determination 1 X Y Y = sign ( X ) 0 X2 X2 Excample: Adder parameter name (factory setting) X X1 Y Y = X1 + X2 Y Edge detector Generats a pulse for the positive edge of X S.Setpoint speed parameter number H123 (3412) KR (120,7) Data type symbol: B BOOL K 16bit KK 32bit KR floating point A+ Absolute value X Y A- Y=|X| B+ (chart, sector) for the factory setting BN+ Negation X -1 Y Y= -X 1 Allgemeines Allgemeine Symbole 2 3 4 N- Pluse encoder Here: 2 tracks A, B and zero pulse N; interface RS422 coarse pulse 5 6 FPlan_english.vsd 05.01 7 Function diagram Angular Synchr. Control SPA440 8 - 20 - Symbol Explanations Symbol T PT1 Explanations Td DT1 Explanations X1 Low pass filter T time constant Y Y1 input T Symbol High pass filter T = smoothing time constant Td = derivative action time constant output Curve defined by 2 points (X1,Y1) and (X2,Y2) Y2 symmetrical to the Y-axis input at the upper limit y upper limit Limiter x input output lower limit input at the lower limit signalling if the input quantity exceeds the limits X2 Xmin setting value set hysteresis interval limit Limiter function X X>Y X>Y Y=X X=Y X enable threshold (B0154) [60,3] Bit 12 Displacement updated (B0106) [100,8] Bit 13 Warning (B0004) [160,8] Bit 14 Fault (B0003) [160,6] Bit 15 This operation can not be canceled ! 1 2 General General parameter and status word 3 Bit 1 Running synchron (B0105) [100,8] Restore factory settings: All parameter changes are deleted and set to the original factory setting. Bit 0 Enable speed controller (B0140) [120,5] Angle controller limitation (B0116) [110,8] State EEPROM d166 Set H165 = 165 H164 = 1 Status of angle controller (B0109) [90,7] 4 5 6 FPlan_english.vsd 05.01 State of Control d005 K2005 Status word angular synchr. 7 Function diagram Angular Synchr. Control SPA440 8 - 40 - AE1 Scalefactor (1.0) H210 10 V Terminal 90 Terminal 91 12 bit + - PT1 PT1 5V Q.setAE1_Null 5V Q.setAE2_Null PT1 PT1 T400 Analog inputs 2 KR3225 Q.setAE3_Null KR3227 AE4 act. value d221 4 T1 1,2 ms AE2 T2 4,8 ms AE3 T2 4,8 ms AE4 T2 4,8 ms AE2 smoothed AE3 smoothed AE4 smoothed d229 KR3229 PT1 3 AE1 AE4 Filter Time (0 ms) H228 D Q.setAE4_Null cykle time set output zero A 5V Task AE3 smoothed d227 AE3 act. value d218 H232 (0000) B (30,2) AE4 Offset (0.0) H220 Input AE3 Filter Time (0 ms) H226 PT1 5V Task cycle time: set output zero D Hardware filter 500 s 1 AE3 Offset (0.0) H217 12 bit + - AE2 smoothed d225 A AE4 Scalefactor (1.0) H219 10 V AE2 Iact. value d215 H231 (0000) B (30,2) 12 bit + - AE2 Filter Time (0 ms) H224 PT1 Hardware filter 500 s Terminal 95 AE2 Offset (0.0) H214 AE1 smoothed set output zero D AE3 Scalefactor (1.0) H216 Terminal 94 H230 (0000) B (30,2) A Hardware filter 500 s 10 V KR3223 PT1 12 bit + - AE1 smoothed d223 AE1 act. value d212 D AE2 Scalefactor (1.0) H213 10 V AE1 Filter Time (500 ms) H222 A Hardware filter 500 s Terminal 92 Terminal 93 AE1 Offset (0.0) H211 H233 (0000) B (30,2) AE4 smoothed set output zero 5 6 FPlan_english.vsd 05.01 7 Function diagram Angular Synchr. Control SPA440 8 - 50 - T_Filter_DAC1 (0 ms) H668 Analog output 1 d666 10 V 5V S. Analog Outp1 KR3666 H620 (3618) KR (510,4) 12 Bit D PT1 Terminal 97 A 10 V Terminal 99 S.set DAC1 zero H621 (0000) B (30,2) set output zero T_Filter_DAC2 (0 ms) H669 H160 (0.0) Aout 1 Offset H161 (1.0) Aout 1 Scalefact -10 V Analog output 2 d667 10 V 5V KR3667 S.Analog Outp2 H622 (3619) KR (510,7) 12 Bit D PT1 Terminal 98 A 10 V Terminal 99 S.set DAC2 zero 1 T400 Analog outputs H623 (0000) B (30,2) set output zero 2 3 H162 (0.0) Aout 2 Offset H163 (1.0) Aout 2 Scalefact 4 -10 V 5 6 FPlan_english.vsd 05.01 7 Function diagram Angular Synchr. Control SPA440 8 - 51 - Binary inputs (T3) Coarse pulse inputs (T3) BinInput1 Pin53 d610 24V Terminal 53 1 B0620 24V Terminal 84 5V BinInput 1 inv. 1 1 BinInput 2 B0621 BinInput 2 inv. B0612 BinInput 3 B0622 BinInput 3 inv. B0613 BinInput 4 B0623 BinInput 4 inv. B0607 Coarse pulse 1 B0635 Coarse pulse 1 inv. B0608 Coarse pulse 2 B0636 Coarse pulse 2 inv. Pin65 Coarse P2 d608 24V B0611 5V Terminal 65 5V 1 BinInput3 Pin55 d612 24V Terminal 55 5V 1 BinInput4 Pin56 d613 24V Terminal 56 5V State dig.Inputs d025 Bit 0 BinInput 1 1 Terminal 57 5V 1 Bit 2 BinInput 3 B0614 BinInput 5 B0624 BinInput 5 inv. Bit 3 BinInput 4 Bit 4 BinInput 5 Bit 5 BinInput 6 BinInput6 Pin58 d615 24V Terminal 58 5V 1 Bit 6 BinInput 7 Bit 7 BinInput 8 B0615 BinInput 6 Bit 8 BinInput 1 inv B0625 BinInput 6 inv. Bit 9 BinInput 2 inv Bit 10 BinInput 3 inv BinInput7 Pin59 d616 24V Terminal 59 5V 1 Bit 11 BinInput 4 inv B0616 BinInput 7 B0626 BinInput 7 inv. Bit 12 BinInput 5 inv Bit 13 BinInput 6 inv Bit 14 BinInput 7 inv BinInput8 Pin60 d617 24V Terminal 60 5V 2 1 3 K2025 Bit 1 BinInput 2 BinInput5 Pin57 d614 24V T400 Binary inputs BinInput 1 BinInput2 Pin54 d611 Terminal 54 1 24V B0610 5V Pin84 Coarse P1 d607 Bit 15 BinInput 8 inv B0617 BinInput 8 B0627 BinInput 8 inv. 4 5 6 FPlan_english.vsd 05.01 7 Function diagram Angular Synchr. Control SPA440 8 - 52 - Bidirectional input/output enable BiDir1 (1) H637 enable BiDir3 (1) H639 Pin46 Input d601 1 B0601 Terminal 46 B0631 Terminal 46 inv S.BiDir Out 1 Pin48 Input d603 1 B0603 Terminal 48 B0633 Terminal 48 inv S.BiDir Out 3 H631 (0105) B (100,8) Terminal 46 enable BiDir2 (1) H638 H633 (0109) B (90,7) enable BiDir4 (1) H640 Pin47 Input d602 1 Terminal 48 B0602 Terminal 47 B0632 Terminal 47 inv S.BiDir Out 2 Pin49 Input d604 1 B0604 Terminal 49 B0634 Terminal 49 inv S.BiDir Out 4 H632 (0116) B (110,7) Terminal 47 H634 (0003) B (160,6) Terminal 49 Binary outputs Warning: Terminal 45 24V S.Bin.Output1 Supply voltage for output drivers H637 ... H640 are initialization parameters. Modification takes places after the next power on. H635 (0004) B (160,8) Terminal 51 If bidirectional outputs are enabled as output the corresponding input value is inverted! E.g.: H640 = 1 (R) d604 displays the inverse level to terminal 49 S.Bin.Output2 H636 (0000) B (30,2) Terminal 52 1 2 T400 Binayry outputs and bidirectional outputs 3 4 5 6 FPlan_english.vsd 05.01 7 Function diagram Angular Synchr. Control SPA440 8 - 53 - Mode Slave Speed Bit 6 (11) H018 incremental encoder Pulses Slave (1024) H010 0 81 82 83 84 A B N Pulses per revolution Mode Slave Speed Bits 0..5, 8..15 H018 CoarsePulsSlave (0) H022 Nom. Speed Slave Coarse pulse Mode Slave Speed Bit 7 (1) H018 Track A Track B Coarse pulses handling Zero pulse H181 (0097) B (90,3) H180 (0154) B (60,4) B0186 PT1 correction pulses [100, 6] n_Slave norm. KR3146 Speed slave smoothed KR3016 Position slave Position sensing Slave Position d016 Enable synchronization Actual value position T SyncPulseSlave (10 ms) H209 position > threshold x B0153 0 Position set for synchr. pulse B0152 0.0 T B0209 SyncSlave 10ms B0150 SyncImpuls Slave Position difference correcting value 1 Pos.Correct Mode (1) H090 position difference [60.8] Displacem. Reset d175 S.Corr.Pos.Diff. B0175 1 S.Slave Denomin H183 (5089) KK (80,7) L099=0 Enable, abs. enc Correct position difference H184 (0098) B (90,3) S.Slave Numerat. H182 (5088) KK (80,7) 1 Position difference calculation Position difference Speed ratio Numerator Denominator 3 4 Tfilt Pos.Differ (4 ms) H117 d124 Pos.Diff. filt -1 Enable, position sensing with incr. encoders 0 KR3124 PT1 1 KR3118 KR3117 L098=1 1 2 Speed and position sensing Slave KR3018 0 actual value displacement [100, 5] S.Reset PosDiff2 H185 (0108) B (90,7) Speed slave Reset position < 0 S.ResetPos.Diff1 H187 (0170) B (520,2) KR3014 Tfilt Speed (4.0ms) H146 B0154 H154 (3186) KR (60,2) slave position negativ Speed S.EnableSynSlave y KR3186 H058 (3012) KR (60,5) Mode Synchronization S.SlaveSynchrPos Absolut pos. slave Speed Slave d014 S.Norm. n_Slave S.ResetSlavePos. Thresh.SyncSlave (500.0) H105 H186 (3016) KR (60,7) Error position sensing slave B0020 K2020 Nominal speed 1 S.Abs.Pos.Slave 1 KR3012 (1500.0) H012 0 Error Code Slave d020 Error code Pulses 1 from inverter Position sensing slave drive pulses slave K2010 5 6 FPlan_english.vsd 05.01 position difference smoothed position difference inv. position difference Position difference from absolut encoders [72,8] 7 Function diagram Angular Synchr. Control SPA440 8 - 60 - Position sensing master drive H059 (3013) KR (70,4) KR3013 Nom.Speed Master (1500.0) H013 Terminal A+ AB+ BN+ NCoarse pulse 62 86 63 87 64 88 65 + - Speed Master d015 Q.Norm. n_Master KR3015 Speed Position Coarse pulse handling KR3019 n_Master normalized KR3017 Position master Master Position d017 Pulses + + - S.Abs.Pos.Master Synchronization Abs. value master position H199 (3017) KR (70,7) KR3199 Example: RS422 encoder B0199 H023 (0) CoarsePulsMaster ThreshSyncMaster (500.0) H107 Mode MasterSpeed (16#7F02) H019 Mode 0 S.MasterSynchPos x 0.0 B0189 H188 (0190) B (70,3) B0188 Position master < 0 Enable synchronization depending on the master position Enable synchronization B0149 SyncMaster 10ms B0148 SyncImpuls master Errorcode master d021 S.ResetMasterPos H189 (0097) B (90,3) T Position set for synchronization S.EnablSynMaster H190 (3017) KR (70,7) Position master negativ T SyncPulsMaster (10 ms) H149 master pos > threshold B0190 y Speed master Nominal speed 1 Error code B0021 Error position sensing master K2021 Error code master Reset Pulses per revolution Pulses Master (1024) H011 1 2 Speed and position sensing Master 3 4 K2011 Pulses master 5 6 FPlan_english.vsd 05.01 7 Function diagram Angular Synchr. Control SPA440 8 - 70 - Position difference from incremental encoders [60, 7] L100 ... L106 L108 ... L112 Sensing Absolut encoder Y YP YRC SLAVE c114 KR4115 c116 c125 KR4116 YSP YF * B0211 QF YFC Terminals 76 - 79 Tfilt position diff. (4 ms) d124 H117 Pos.Diff. filt KR4114 c115 0 1 L120 + PT1 * KR4300 L301 L123 L122 c118 KR4125 + L121 0 c300 - + KR3124 Position diff.. filtered KR3118 Position diff. 1 L302 L099 Enable Abs-Enc c119 Enable absolut encoders: L098=0 and L099=1 L200 ... L206 L208 ... L212 Sensing Absolut encoder c214 Y c215 YP c216 YRC MASTER YSP KR4214 KR4215 KR4216 QF YF * B0212 YFC Terminals 72 -75 c225 0 1 L220 KR4225 + L221 L223 L222 c218 Settings, absolut encoders + c219 Only useful for linear axis! (no range overflow) 1 2 Sensing, absolut encoders Master and Slave 3 Slave c114 c115 c116 c118 c119 4 M aster c214 c215 c216 c218 c219 Speed actual value P o sitio n co unter Number o f ro tatio ns Erro r co de Erro r status 5 Slave L100 L101 L102 L103 L104 L105 L106 L107 L108 L109 L110 L111 L112 L120 L121 L122 L123 M aster L200 L201 L202 L203 L204 L205 L206 L207 L208 L209 L210 L211 L212 L220 L221 L222 L223 6 FPlan_english.vsd 05.01 Reso lutio n per turn Number o f turns P receding zero bits A larm bit po sitio n Clo ck frequency Enco der type Data co ding Co ntro l wo rd Gearbo x ratio No rmalizatio n po sitio n No rmalizatio n speed P o sitio n o ffset Upper limit speed Offset, number o f ro tatio ns Scaling, po sito n actual value Selectio n M UL/DIV Scaling, po sito n actual value 7 Function diagram Angular Synchr. Control SPA440 8 - 72 - dn enable Max. (0.1) H118 0.1 H192 (3018) KR (60,8) nSlave > Range B0192 X>Y S.n_Slave Compar X X=Y B0193 X Range B0195 X>Y X Speed deviation 0.1 B0162 S.n_Master Compar B0161 H196 (3076) KR (115,2) 1 2 Speed and position sensing Plausibility check 3 4 5 6 FPlan_english.vsd 05.01 7 Function diagram Angular Synchr. Control SPA440 8 - 75 - Addition. Ratio (0.0) H047 S. Addition.Ratio KR3047 H041 (3047) KR (80,1) Ratio 1 d060 S.Ratio Ratio Resolution (10000) H155 KR3060 H067 (3040) KR (500,3) S.relative Ratio enable FineRatio (0) H088 Ratio relative d061 H068 (3048) KR (500,5) KR3061 Ratio Numerator d045 Ratio d044 0 Calculation of speed ratio components KK5088 Ratio numerator KK5089 Ratio denominator 1 relative ratio d046 RatioDenominator KR3044 actual ratio S.FineRatioNumer Fine Ratio Numer (1000.0) H086 KK5086 H197 (5086) KK (80,4) fixed value numerator S.FineRatioDenom Fine Ratio Denom (1000.0) H087 1 2 Speed and position sensing Speed ratio 3 KK5087 H198 (5087) KK (80,4) fixed value denominator 4 5 6 FPlan_english.vsd 05.01 7 Function diagram Angular Synchr. Control SPA440 8 - 80 - Reset position and displacement S.Pos.Reset_1 DelayStartSynchr. (1000ms) H168 Reset Position d178 H167 (0173) B (520,7) EnableStartSynch (0) H169 S.Pos.Reset_2 1 H097 (0108) B (90,7) B0097 T Automatic synchronization after power on 0 Position + displacement reset S Q B0101 StartSynchr R Q B0100 inv.StartSynchr S.StopStartSynch H101 (0105) B (100,8) Enable displacement correction Synchron.Command d179 S.enablePosCtr11 S.Synchr.Comd2 B0179 H191 (0174) B (520,8) S.enablePosCTR12 S.Synchr.Command H098 (0101) B (90,7) 1 B0098 synchroning command Enable angle controller EnableSpeedCntrl d177 H131 (0172) B (520,5) B0177 enable Pos.Cntrl d109 & H139 (0193) B (75,5) B0109 status of angle controller B0108 angle controller inhibit Enable inverter speed controller Mask CU ready (16#0004) H542 TestEnable CU n (0) H543 S.en.Speed CU2 H593 (0547) B (560,4) & S.en.Speed CU1 H592 (2571) K (170,3) n-controller CU & 1 B0546 16 bit bitwise ANDed (at least one bit = 1 of the AND operation) 1 Control Conrol bits 2 3 4 5 6 FPlan_english.vsd 05.01 7 Function diagram Angular Synchr. Control SPA440 8 - 90 - SyncPulsesMaster (4096) H100 S.Position Diff1 H234 (3118) KR (60,7) S.Position Diff2 Displ.- Pos.diff d095 Displacement - position KR3234 H235 (3062) KR (100,3) Direction depending displacement actual value position difference Position slave [60,8] y n_Slave norm. [60,8] x B0110 n_Slave > 0 B0111 n_Slave = 0 B0112 SyncImpuls Master[70,8] Master has synchronized SyncImpuls Slave [60,7] Slave has synchronized B0113 n_Master > 0 B0114 n_Master = 0 B0115 n_Master < 0 Ratio numerator S.DisplaceDenom H078 (5089) KK (80,7) Ratio denominator S.ResetDisplacem H236 (0097) B (90,3) KR3062 1 KR3091 Correction pulses act.Displacement d094 Actual value displacement KR3094 Actual value displacement Displacement determined B0106 Displacement determined H091 (0) SynchrRetrigMode 0 DisplaceMas-Sla+ H063 (0.0) Correction pulses Reset displacement 0 DisplaceMas+Sla+ H062 (0.0) Error code displacem. K2096 Enable displacement correction S.DisplaceNumer. H077 (5088) KK (80,7) difference KR3095 ErrorCode Displ. d096 n_Slave < 0 y x Displacement - position difference Displacement calculation Position master [70,8] Synchronization command [90,8] n_Master normalized [70,8] SyncPulses Slave CorrectionPulses (4096) (1.0) H102 H093 direction depending displacement 1 H092 (0) Synchr.Edge Mode Threshold Synchr (20.0) H103 0.0 DisplaceMas+SlaH064 (0.0) Synchronism reached & B0105 DisplaceMas- SlaH065 (0.0) Actual value displacement [100,8] X S.Setp Displace1 H237 (3051) KR (110,2) X>Y B0102 Displacement > setpoint X=Y B0103 Displacement within threshold XY B0744 Compare X>Y X=Y B0743 Compare X=Y XY S.Compare2 L749 (3000) KR (30,2) X X=Y B0749 B0750 L747 (3000) KR (30,2) Compare2 X>Y x S.Limit_min Compare2 X=Y B0747 B0746 Limit_max KR3747 Limit_out B0748 Limit_min L748 (3000) KR (30,2) X