DS04-27703-4Ea
FUJITSU MICROELECTRONICS
DATA SHEET
Copyright©2003-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved
2003.8
ASSP
For Power Supply Applications (Lithium ion battery charger)
DC/DC Converter IC for Charging
MB3875/MB3877
DESCRIPTION
The MB3875 and MB3877 are ch arging DC/DC converte r ICs suitable for down-conversion, which uses pulse
width modulation (PWM) for controlling the output voltage and current independently.
These ICs c an d yn ami ca ll y c ontr o l the sec on dary bat tery s char ge c ur rent by detec ti ng a voltage dro p in an AC
adapter in order to keep its power constant (dynamically-controlled charging).
The charging method enables quick charging, for example, with the AC adapter during operation of a notebook PC.
With an on-chip output voltage setting resistor which allows the output voltage to be set at high precision, these
ICs are best suited as internal battery chargers for notebook PCs.
The MB3875 and MB3877 support 3-cell and 4-cell batteries, respectively.
These products are covered by US Patent Number 6,147,477.
FEATURES
Detec ting a voltage drop in th e AC adapte r and d ynami call y co ntrol ling the char ge cur rent (Dynami call y-con-
trolled charging)
High efficiency : 95 %
Wide range of operating supply voltages: 7 V to 25 V
Output voltage precision (Output voltage setting resistor integrated): 0 ± 0.8 % (Ta = + 25 °C) (Continued)
PACKAGE
24-pin plastic SSOP
(FPT-24P-M03)
MB3875/3877
2
(Continued)
High precision reference voltage source: 4.2 V ± 0.8 %
Support for frequency setting using an external resistor
(Frequency setting capacitor integrated) :100 kHz to 500 kHz
On-chip current detector amplifier with wide in-phase input voltage range : 0 V to VCC
On-chip standby current function: 0 µA (Typ )
On-chip soft-start function
Internal totem-pole output stage supporting P-channel MOS FETs devices
PIN ASSIGNMENT
(TOP VIEW)
(FPT-24P-M03)
1
2
3
4
5
6
7
8
9
10
11
12
INC2 :
IN3 :
FB2 :
OUTC2 :
VREF :
INE2 :
+INE2 :
+INE1 :
FB1 :
OUTC1 :
INE1 :
INC1 :
24
23
22
21
20
19
18
17
16
15
14
13
: +INC2
: GND
: CS
: VCC (O)
: OUT
: VH
: VCC
: RT
: INE3
: FB3
: CTL
: +INC1
MB3875/3877
3
PIN DESCRIPTION
Pin No. Symbol I/O Descriptions
1 –INC2 I Current detection amplifier (Current Amp. 2) input pin.
2 IN3 I DC/DC output voltage (charge voltage) input pin.
3 FB2 O Error amplifier (Error Amp. 2) output pin.
4 OUTC2 O Current detection amplifier (Current Amp. 2) output pin.
5 VREF O Reference voltage output pin.
6 –INE2 I Error amplifier (Error Amp. 2) inverted input pin.
7 +INE2 I Error amplifier (Error Amp. 2) non-inverted input pin.
8 +INE1 I Error amplifier (Error Amp. 1) non-inverted input pin
9 FB1 O Error amplifier (Error Amp. 1) output pin.
10 OUTC1 O Current detection amplifier (Current Amp. 1) output pin.
11 –INE1 I Error amplifier (Error Amp. 1) inverted input pin.
12 –INC1 I Current detection amplifier (Current Amp. 1) input pin.
13 +INC1 I Current detection amplifier (Current Amp. 1) input pin.
14 CTL I Power supply control pin.
Setting the CTL pin low places the IC in the standby mode.
15 FB3 O Error amplifier (Error Amp. 3) output pin.
16 –INE3 I Error amplifier (Error Amp. 3) inverted input pin.
17 RT Triangular-wave oscillation frequency setting resistor connection pin.
18 VCC Power supply pin for reference power supply and control circuit.
19 VH O Power supply pin for FET drive circuit (VH = Vcc 5 V).
20 OUT O High-side FET gate drive pin.
21 VCC(O) Output circuit power supply.
22 CS Soft-start capacitor connection pin.
23 GND Ground pin.
24 +INC2 I Current detection amplifier (Current Amp. 2) input pin.
MB3875/3877
4
BLOC K DIAGRAM
+
+
11
10
13
12
8
+
+
6
4
24
1
7
× 25
× 25
+
+
+
3
20
21
19
+
+
+
2
16
22
17 5 23
14
18
<Current Amp.1> <Error
Amp.1>
9
VREF
<Current Amp.2> <Error
Amp.2>VREF
<Error
Amp.3>VREF
VREF
VREF
(4.2 V)
R1
R2
50 k
1 µA
15 <SOFT>
2.5 V
1.5 V
<OUT>
<UVLO>
<OSC>
<VH>
<REF> <CTL>
<PWM
Comp.>
Drive
VCC
(VCC 5 V)
(VCC UVLO)
VCC
VCC VCC
CTL
215 k
35 k
0.91 V
(0.77 V)
VREF
ULVO
bias
INC2
IN3
FB2
OUTC2
VREF
INE2
+INE2
+INE1
FB1
OUTC1
INE1
INC1
+INC2
GND
CS
VCC (O)
OUT
VH
RT
INE3
FB3
+INC1
MB3875 100 k
MB3877 150 k
:
(45 pF)
Bias voltage
block
MB3875/3877
5
ABSOLUTE MAXIMUM RAGINGS
*: The package is mounted on the dual-sided epoxy board (10 cm × 10 cm).
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
RECOMMENDED OPERATING CONDITIONS
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
representatives beforehand.
Parameter Symbol Conditions Rating Unit
Min Max
Power supply voltage VCC VCC,VCC(O) 28 V
Output current IOUT ——60mA
Peak output current IOUT Duty 5% (t =1 / fOSC × Duty) 500 mA
Power dissipation PDTa +25°C 740* mW
Storage temperature Tstg –55 +125 °C
Parameter Symbol Conditions Value Unit
Min Typ Max
Power supply voltage VCC VCC,VCC(O) 7 25 V
Reference voltage output
current IREF —–10mA
VH pin output current IVH —030mA
Input vo lta ge
VIN IN3 0 17 V
VINE –INE1,–INE2,+INE1,+INE2 0 VCC – 1.8 V
VINC +INC1,+INC2,–INC1,–INC2, 0 VCC V
CTL pin input voltage VCTL —025V
Output current IOUT —–4545mA
Peak output current IOUT Duty 5% (t =1 / fOSC × Duty) –450 450 mA
Oscillator frequency fOSC 100 290 500 kHz
Timing resistor RT 33 47 130 k
Soft-start capacitor CS 2200 100000 pF
VH pin capacitor CVH ——0.11.0µF
Reference voltage output
capacitor CREF ——0.11.0µF
Operating temperature Ta –30 +25 +85 °C
MB3875/3877
6
ELECTRICAL CHARACTERISTICS (MB3875: Ta = +25°C, VCC = 16 V, VCC (O) = 16 V, VREF = 0 mA)
(MB3877: Ta = +25°C, VCC = 19 V, VCC (O) = 19 V, VREF = 0 mA)
*: Standard design value. (Continued)
Parameter Symbol Pin No. Conditions Value Unit Remarks
Min Typ Max
Output voltage VREF 5Ta = +25°C 4.167 4.200 4.233 V
Ta = –30°C to +85°C 4.158 4.200 4.242 V
Input stability Line 5 VCC = 7 V to 25 V 3 10 mV
Load stability Load 5 VREF = 0 mA to –1 mA 1 10 mV
Short-circuit
output current IOS 5 VREF = 1 V –25 –15 –5 mA
Threshold
voltage
VTLH
18
VCC =VCC (O),
VCC = 6.3 6.6 6.9 V
VTHL VCC =VCC (O),
VCC = 5.3 5.6 5.9 V
Hysteresis width VH18 VCC =VCC (O) 0.7 1.0 1.3 V
Threshold
voltage
VTLH
5VREF = 2.6 2.8 3.0 V
VTHL VREF= 2.4 2.6 2.8 V
Hysteresis width VH5 0.05 0.20 0.35 V
Charge current ICS 22 –1.3 –0.8 0.5 µA
Oscillation
frequency fOSC 20 RT = 47 k260 290 320 kHz
Frequency tem-
perature stability f/fdT 20 Ta = –30°C to +85°C 1* %
Ref erence vo ltage
block (Ref)
Under voltag e
lockout protection
circuit block (UVLO)
Soft-start
block
(SOFT)
Triangular waveform
oscillator circuit
block (OSC)
MB3875/3877
7
(MB3875: Ta = +25°C, VCC = 16 V, VCC (O) = 16 V, VREF = 0 mA)
(MB3877: Ta = +25°C, VCC = 19 V, VCC (O) = 19 V, VREF = 0 mA)
*: Standard design value. (Continued)
Parameter Symbol Pin No Conditions Value Unit Remarks
Min Typ Max
Input offset
voltage VIO 6,7,8,11 FB1 = FB2 = 2 V 1 5 mV
Input bias
current IB6,7,8,11 –100 –30 nA
Common
mode input
voltage range VCM 6,7,8,11 0 VCC–1.8 V
Voltage gain AV3,9 DC 100* dB
Frequency
bandwidth BW3,9 AV = 0 dB 2.0* MHz
Output voltage VFBH 3,9 3.9 4.1 V
VFBL 3,9 20 200 mV
Output source
current ISOURCE 3,9 FB1 = FB2 = 2 V –2.0 –0.6 mA
Output sink
current ISINK 3,9 FB1 = FB2 = 2 V 150 300 µA
Threshold
voltage VTH 2
FB3 = 2 V,
Ta = +25 °C 12.500 12.600 12.700 V MB3875
16.666 16.800 16.934 V MB3877
FB3 = 2 V,
Ta = –30 °C to +85 °C12.474 12.600 12.726 V MB3875
16.632 16.800 16.968 V MB3877
Input cu rren t
IINE3H 2IN3 = 12.6 V 84 150 µAMB3875
IN3 = 16.8 V 84 150 µAMB3877
IINE3L 2VCC = 0 V, IN3 = 12.6 V 0 1 µAMB3875
VCC = 0 V, IN3 = 16.8 V 0 1 µAMB3877
Input resi st or R12—
70 100 130 kMB3875
105 150 195 kMB3877
R216 35 50 65 k
Voltage gain AV15 DC 100* dB
Frequency
bandwidth BW 15 AV = 0 dB 2.0* MHz
Output voltage VFBH 15 3.9 4.1 V
VFBL 15 20 200 mV
Output source
current ISOURCE 15 FB3 = 2 V –2.0 –0.6 mA
Output sink
current ISINK 15 FB3 = 2 V 150 300 µA
Er ro r a mplif ier blo ck
(Error Amp.1, 2)
Error amplifier block
(Error Am p.3)
MB3875/3877
8
(MB3875: Ta = +25°C, VCC = 16 V, VCC (O) = 16 V, VREF = 0 mA)
(MB3877: Ta = +25°C, VCC = 19 V, VCC (O) = 19 V, VREF = 0 mA)
*: Standard design value. (Continued)
Parameter Symbol Pin No. Conditions Value Unit Remarks
Min Typ Max
Input current
I+INCH 13, 24
+INC1= +INC2=12.7 V
–INC1= –INC2=12.6 V —1020µAMB3875
+INC1= +INC2=16.9 V
–INC1= –INC2=16.8 V —1020µAMB3877
I–INCH 1, 12
+INC1= +INC2=12.7 V
–INC1= –INC2=12.6 V —0.10.2µAMB3875
+INC1= +INC2=16.9 V
–INC1= –INC2=16.8 V —0.10.2µAMB3877
I+INCL 13, 24 +INC1= +INC2= 0.1 V
–INC1= –INC2= 0 V –130 –65 µA
I–INCL 1, 12 +INC1= +INC2= 0.1V
–INC1= –INC2= 0 V –140 –70 µA
Current detection
voltage
VOUTC1 4, 10
+INC1= +INC2=12.7 V
–INC1= –INC2=12.6 V 2.25 2.5 2.75 V MB3875
+INC1= +INC2=16.9 V
–INC1= –INC2=16.8 V 2.25 2.5 2.75 V MB3877
VOUTC2 4, 10
+INC1= +INC2=12.63V
–INC1= –INC2=12.6 V 0.50 0.75 1.00 V MB3875
+INC1= +INC2=16.83V
–INC1= –INC2=16.8 V 0.50 0.75 1.00 V MB3877
VOUTC3 4, 10 +INC1= +INC2= 0.1 V
–INC1= –INC2= 0 V 1.25 2.50 3.75 V
VOUTC4 4, 10 +INC1= +INC2= 0.03 V
–INC1= –INC2= 0 V 0.125 0.750 1.375 V
Common mode
input voltage range VCM 1, 12,
13, 24 —0V
CC V
Voltage gain AV4, 10
+INC1= +INC2=12.7 V
–INC1= –INC2=12.6 V 22.5 25 27.5 V/V MB3875
+INC1= +INC2=16.9 V
–INC1= –INC2=16.8 V 22.5 25 27.5 V/V MB3877
Frequency
bandwidth BW 4, 10 AV = 0 dB 2.0* MHz
Output voltage VOUTCH 4, 10 3.9 4.1 V
VOUTCL 4, 10 20 200 mV
Output source
current ISOURCE 4, 10 OUTC1 = OUTC2 = 2 V –2.0 –0.6 mA
Output sink
current ISINK 4, 10 OUTC1 = OUTC2 = 2 V 150 300 µA
Current detection amplifier block
(Current Amp.1,2)
MB3875/3877
9
(Continued) (MB3875 : Ta = +25°C, VCC = 16 V, VCC (O) = 16 V, VREF = 0mA)
(MB3877 : Ta = +25°C, VCC = 19 V, VCC (O) = 19 V, VREF = 0mA)
*: Standard design value.
Parameter Symbol Pin No. Conditions Value Unit Remarks
Min Typ Max
Threshold voltage
VTL 3,9,15 Duty cycle = 0 % 1.4 1.5 V
VTH 3,9,15 Duty cycle = 100 % 2.5 2.6 V
Output source
current ISOURCE 20
OUT = 11 V
Duty 5 %
(t = 1/fosc × Duty ) –200* mA MB3875
OUT = 14 V
Duty 5 %
(t = 1/fosc × Duty ) –200* mA MB3877
Output sink current ISINK 20
OUT = 16 V
Duty 5 %
(t = 1/fosc × Duty ) 200* mA MB3875
OUT = 19 V
Duty 5 %
(t = 1/fosc × Duty ) 200* mA MB3877
Output ON resistor ROH 20 OUT = 45 mA 8.0 16
ROL 20 OUT = 45 mA 6.5 13
Rise time tr1 20 OUT = 3300 pF
(Equivalent to Si4435DY) 70* ns
Fall time tf2 20 OUT = 3300 pF
(Equivalent to Si4435DY) 60* ns
CTL input voltage VON 14 Active mode 2—25V
VOFF 14 Standby mode 0—0.8V
Input current ICTLH 14 CTL = 5 V 100 200 µA
ICTLL 14 CTL = 0 V —01µA
Output voltage VH 19 VCC = VCC(O)
= 7 V to 25 V,
VH = 0 to 30 mA VCC–5.5 VCC–5.0 VCC–4.5 V
Standby current ICCS 18 VCC = VCC(O),
CTL = 0 V —010µA
Power supply current ICC 18 VCC = VCC(O),
CTL = 5 V —6.09.0mA
MB3875
—6.59.5mA
MB3877
PWM comp arator
block
(PWM Comp.)
Out put bloc k
(OUT)
General Bias
voltage
block (VH)
Control block
(CTL)
MB3875/3877
10
TYPICAL CHARACTERISTICS
(Continued)
10
8
6
4
2
00 5 10 15 20 25
Ta = +25 °C
VCC = 16 V (MB3875)
VCC = 19 V (MB3877)
VREF = 0 mA
Power supply current ICC (mA)
Power supply voltage VCC (V)
Power supply current vs. power supply voltage
Power supply voltage VCC (V)
Reference voltage vs. power supply voltage
Referenc e voltag e VREF (V)
Reference voltage VREF (V)
Refe rence volt age vs. VREF load current
Reference voltage vs. CTL pin voltage
Reference voltage VREF (V)
CTL pin voltage VCTL(V) Control pin voltage VCTL (V)
CTL pin current vs. CTL pin voltage
CTL pin current ICTL (µA)
10
8
6
4
2
00 5 10 15 20 25
Ta = +25 °C
CTL = 5 V Ta = +25 °C
CTL = 5 V
VREF = 0 mA
10
8
6
4
2
00 5 10 15 20 25
10
8
6
4
2
00 5 10 15 20 25 30
Ta = +25 °C
VCC = 16 V (MB3875)
VCC = 19 V (MB3877)
CTL = 5 V
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
40 20 0 20 40 60 80 100
VCC = 16 V (MB3875)
VCC = 19 V (MB3877)
CTL = 5 V
VREF = 0 mA
10
8
6
4
2
00 5 10 15 20 25
Ta = +25 °C
VCC = 16 V (MB3875)
VCC = 19 V (MB3877)
Reference voltage vs. ambient temperature
Reference voltage VREF (%)
Ambient temperature Ta (°C)
VREF load current IREF (mA)
MB3875/3877
11
(Continued)
1 M
100 k
10 k
10 k 100 k 1 M
Ta = +25 °C
V
CC
= 16 V (MB3875)
V
CC
= 19 V (MB3877)
CTL = 5 V
350
340
330
320
310
300
290
280
270
260
250 0 5 10 15 20 25
Ta = +25 °C
CTL = 5 V
RT = 47 k
Triangular wave oscillator frequency vs.
timing resistor
Triangular wave oscillator frequency fOSC(Hz)
Timing resi stor RT ()
Triangular wave oscillator frequency fOSC(kHz)
Triangular wave oscillator frequency vs.
power supply voltage
Power supply voltage VCC (V)
Ambient temperature Ta (°C)
350
340
330
320
310
300
290
280
270
260
250
40 20 0 20 40 60 80 100
VCC = 16 V (MB3875)
VCC = 19 V (MB3877)
CTL = 5 V
RT = 47 k
5.0
4.0
3.0
2.0
1.0
0.0
40 20 0 20 40 60 80 100
1.0
2.0
3.0
4.0
5.0
VCC = 16 V (MB3875)
VCC = 19 V (MB3877)
CTL = 5 V
Triangular wave oscillator frequency vs.
ambient temperature
Triangular wave oscillator frequency fOSC(kHz)
Error amplifier threshold voltage vs.
ambient temper at ure
Error amplifier threshold voltage VTH(%)
Ambient temperature Ta (°C)
MB3875/3877
12
(Continued)
Power dissipation vs. ambient temperature
Power dissipation PD (mW)
Ambient temperature Ta (°C)
Error amplifier gain and phase vs. frequency
Gain AV (dB)
Frequency f (Hz)
Current detection amplifier gain and phase vs. frequency
Gain AV (dB)
Frequency f (Hz)
Ta = +25 °C
φ
AV
40
20
0
20
40
100 1 k 10 k 100 k 1 M 10 M
180
90
0
90
180
VCC = 16 V (MB3875)
VCC = 19 V (MB3877)
− +
+
8
(7) (3)
(6)
2.088 V
11
10 k
2.4 k
240 k
10 k
4.2 V
9OUT
IN
Phase φ (deg)
+
1
24 4
(13)
(12) (10)
100 kOUT
× 25
0.1 V
: MB3875 12.6 V
MB3877 16.8 V
Current Amp.2
(Current Amp.1)
VCC = 16 V (MB3875)
VCC = 19 V (MB3877)
40
20
0
100 1 k 10 k 100 k 1 M
20
40
180
90
0
90
180
Ta = +25 °C
AV
φ
Phase φ (deg)
800
740
700
600
500
400
300
200
100
0
40 20 0 20 40 60 80 100
MB3875/3877
13
FUNCTIONAL DESCRIPTION
1. DC/DC Converter Unit
(1) Reference voltage block (Ref)
The reference v oltage generator uses the voltage supplied from the Vcc terminal (pin 18) to generate a temper-
ature-compensated, stable voltage ( := 4.2 V) used as the ref erence supply voltage for the IC’ s internal circuitry.
The reference voltage can be output, up to 1 mA, to an external device through the VREF terminal (pin 5).
(2) Triangular wave oscilla tor block(OSC)
The tr iangular wave oscillat or generates a tr iangular wavefor m with a freque ncy setting res istor connect ed to
the internal frequency setting capacitor via the R T terminal (pin 17).
The triangular wave is input to the PWM comparator on the IC.
(3) Error amplifier block (Error Amp. 1)
This error amplifier (Error Amp. 1) detects a voltage drop in the AC adapter and outputs a PWM control signal.
In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB1
terminal (pin 9) to the -INE1 terminal (pin 11) of the error amplifier, enabling stable phase compensation to the
system.
(4) Error amplifier block (Error Amp. 2)
This error amplifier (Error Amp. 2) detects the output signal from the current detector amplifier
(Current Amp. 2), compares it with the +INE2 terminal (pin 7), and outputs a PWM control signal to control the
char ge current.
In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB2
ter minal (pin 3) to the -INE2 ter minal ( pin 6) of the error amplifier, enabling stable phase comp ensation to the
system.
(5) Error amplifier block (Error Amp. 3)
This erro r am pl ifi er (Er ror A mp. 3) detects the ou tpu t voltage from th e DC/DC conver ter and outpu ts the PW M
cont rol s ignal. The error amp lifier inver ting input pin is connected to the outpu t voltage se tting resist or in the
IC, eliminatin g the need for an exter nal resis tor for setting the outpu t voltage. The MB3875 and MB3 877 are
set to output voltage of 12.6 V (for a 3-cell battery) and 16.8 V (for a 4-cell battery), respectively; these ICs are
suitable for use in equipment that uses a lithium-ion battery.
In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB3
terminal (pin 15) to the -INE3 terminal (pin 16) of the error amplifier , enab ling stable phase compensation to the
system.
Connecting a soft-start capacitor to the CS terminal (pin 22) prevents surge currents when the IC is turned on.
Using an error amplifier for soft-start detection makes the soft-start time constant, independent of the output load.
(6) Current detector amplifier block (Current Amp. 2)
The current detection amplifier (Current Amp. 2) detects a voltage drop which occurs between both ends of the
output sens e re sistor (RS) d ue to th e fl ow of th e c har ge cur re nt, using the +INC2 termi nal ( pi n 2 4) and INC2
terminal (pin 1). Then it outputs the signal amplified by 25 times to the error amplifier (Error Amp. 2) at the next
stage.
MB3875/3877
14
(7) PWM comparator block (PWM Comp.)
The PWM comparator circuit is a voltage-pulse width converter for controlling the output duty of the error
amplifiers (Error Amp. 1 to Error Amp. 3) depending on their output voltage.
The PW M comparator ci rcuit compares the tria ngular wave generated by the tr iangular wave os cillator to the
error amplifier output voltage and turns on the external output transistor during the interval in which the triangular
wave voltage is lower than the error amplifier output voltage.
(8) Output block (OUT)
The output circuit uses a totem-pole configuration capable of driving an external P-channel MOS FET.
The outpu t “L” level sets the output ampl itude to 5 V (typic al) using the voltage generated by the bias voltage
blo ck ( VH ) .
This results in increasing conversion efficiency and suppressing the withstand voltage of the connected external
transistor in a wide range of input voltages.
(9) Control block (CTL)
Setting the CTL terminal (pin 14) low places the IC in the standby mode. (The supply current is 10 µA at maximum
in the standby mode.)
(10) Bias voltage block (VH)
The bias voltage circuit outputs Vcc 5 V (typical) as the minimum potential of the output circuit. In the standby
mode, this circuit outputs the potential equal to Vcc.
2. Protection Functions
Low-Vcc malfunction preventive circuit (UVLO)
The transient state or a momentary decrease in supply voltage or internal reference voltage (VREF), which
occurs when the power supply is tur ned on, may cause malfun ctions in the control IC, resulting in bre akdown
or degradation of the sys tem. To prevent such m alf unction, th e low-Vcc mal functi on preventive circu it detects
a supply voltage or internal reference voltage drop and fixes the OUT ter minal (pin 20) to the “H” level. The
system restores voltage supply when the supply voltage or internal reference voltage reaches the threshold
voltage of the low-Vcc malfunction preventive circuit.
3. Soft-Start Function
Soft-start block (SOFT)
Connecting a capacitor to the CS terminal (pin 22) prev ents surge currents when the IC is turned on. Using an
error a mpl ifier for soft-start detecti on makes t he sof t -sta rt time const ant, ind epe nde nt o f the output loa d of the
DC/DC converter.
MB3875/3877
15
METHOD OF SETTING THE CHARGING CURRENT
The charge current (output control current) value can be set with the voltage at the +INE2 terminal.
If a current exceeding the set value attempts to flow , the charge voltage drops according to the set current value.
Battery charge current setting voltage
+INE2 (V) = 25 × I1 (A) × RS ()
METHOD OF SETTING THE SOFT-START TIME
Upon activation, the IC starts charging the capacitor (Cs) connected to the CS terminal (pin 22).
The erro r amplifi er causes soft-sta rt operation to be performe d with t he output voltage in pro port ion to the CS
pin voltage regardless of the load current of the DC/DC converter.
Soft-start time ts (Time taken for the output voltage to reach 100 %)
ts (s) := 4.2 × CS (µF)
METHOD OF SETTING THE TRIANGULAR W AVE OSCILLA T OR FREQUENCY SETTING
The trianguar wave oscillator frequency can be set by the timing resistor (RT) connected the RT terminal (pin 17).
Triangular wave oscillator frequency fOSC
fOSC (kHz ) := 14444 / RT (k)
MB3875/3877
16
AC ADAPTER VOLTAGE DETECTION
With an exter nal resist or connec ted to the + INE1 ter minal , the IC en ters the dy namical ly-control led chargi ng
mode to reduce the charge current to keep AC adapter power constant when the partial potential point A of the
AC adapter voltage (Vcc) becomes lower than the voltage at the -INE1 terminal.
AC adapter detected voltage setting Vth
Vth (V) = (R1 + R2) / R2 × INE1
INE1 setting voltage range : 1.176 V to 4.2 V (equivalent to 7 V to 25 V for Vcc)
OPERATION TIMING DIAGRAM
+
11
8
VCC R1
R2
+INE1
INE1
A
<Error Amp.1>
2.5 V
1.5 V
Error Amp.2
Error Amp.3
Error Amp.1
FB2
FB3
FB1
OUT
Constant voltage
control
AC adapter dynamically-
controlled charging Constant current control AC adapter dynami cally-
contr oll ed cha rgi ng
MB3875/3877
17
NOTE ON AN EXTERNAL REVERSE-CURRENTPREVENTIVE DIODE
Inse r t a r everse-curr ent preventive diode (D) at on e of t he three lo catio ns mar ked * t o prevent reverse cur rent
from the battery.
Pay attention to the voltage/current characteristics of the reverse-current prev entive diode (D) not to let it exceed
the overcharge stop voltage.
VCC(O)
OUT
VIN
(16 V/19 V)
VH
I1 RS
BATT
12.6 V/16.8 V
20
21
19
A B
D
D
D
Battery 1
MB3875/3877
18
APPLICATION EXAMPLE
+
+
+
+
× 25
× 25
+
+
+
+
+
+
<Current Amp.1> <Error
Amp.1>VREF
<Current Amp.2> <Error
Amp.2>VREF
<Error
Amp.3>VREF
VREF
VREF
(4.2 V)
1
50 k
1 µA
<SOFT>
2.5 V
1.5 V
<OUT>
<UVLO>
<OSC> <REF> <CTL>
<PWM
Comp.>
Drive
V
CC
(V
CC
5 V)
(V
CC
UVLO)
V
CC
V
CC
V
CC
CTL
215 k
35 k
0.91 V
(0.77 V)
VREF
ULVO
bias
INC2
IN3
FB2
VREF
INE2
+INE1
FB1
OUTC1
INE1
INC1
+INC2
GND
CS
V
CC
(O)
OUT
VH
RT
R
T
INE3
FB3
+INC1
MB3875
MB3877
Vin = 16 V
Vin = 19 V
MB3875
MB3877
MB3875
MB3877
100 k
150 k
0
82 k
16 V/19 V
19 V
12.6 V
16.8 V
1 :
2 :
3 :
4 :
+
+
+
11
10
13
12
8
9
150 k
R9
100 k
R8
C10 3900 pF
C8
3900 pF
R10
22 k
R4
2
R5
330 k
R6
68 k
R11
30 k
6
4
24
1
7
OUTC2
A
B+INE2
R12
22 k
R14
1.3 k
R16
200 k
VIN
3
Q2
SW1
30 k
R13
110
R15
200 k
R3
C6
3900 pF
C
S
2200 pF
150 k
R7
3
2
16
22
15
523
(45 pF)
47 k
C9
0.1 µF
C7
0.1 µF
17
14
18
C5
0.1 µFC1
22 µF
C2
100 µFC3
100 µF
Q1
L1
27 µH
R
S
BATT
4
0.033
D1
20
21
19
A B
<VH>
Bias voltage
block
Battery
MB3875/3877
19
PARTS LIST
Note: VISHAY SILICONIX : VISHAY Intertechrology, Inc.
MOTOROLA : Motorola Japan Ltd.
SUMIDA : SUMIDA ELECTRIC CO., Ltd.
COMPONET ITEM SPECIFICATION VENDOR PARTS NO.
QI
Q2 FET
FET Si4435DY
2N7002 VISHAY SILICONIX
VISHAY SILICONIX Si4435DY
2N7002
D1 Diode MBRS130LT3 MOTOROLA MBRS130LT3
L1 Coil 27µH 3.4A, 34mSUMIDA CDRH127-27uH
C1
C2
C3
CS
C5
C6
C7
C8
C9
C10
OS Condensor
OS Condensor
OS Condensor
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
22µF
100µF
100µF
2200pF
0.1µF
3900pF
0.1pF
3900pF
0.1µF
3900pF
25V(10%)
16V(10%)
25V(10%)
16V(10%)
25V(10%)
10%
16V
10%
25V
10%
16V
10%
——
RS
RT
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
0.033
47k
200k
0
82k
330k
68k
150k
100k
150k
22k
30k
22k
30k
1.3k
110
200k
1.0%
1.0%
1.0%
Jumpe r lin e
0.5%
0.5%
0.5%
1.0%
1.0%
1.0%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
5%
——
MB3875/3877
20
REFERENCE DATA
MB3875
Note: KIKUSUI : KIKUSUI Electronics Corp.
Vin = 16 V
Vin = 19 V
10 m 100 m 1 10
100
98
96
94
92
90
88
86
84
82
80
Vin = 16 V
R4 = 0
Vin = 19 V
R4 = 82 k
100
98
96
94
92
90
88
86
84
82
800 2 4 6 8 10121416
Dead Battery MODE DCC MODE
DCC : Dynamically-Controlled Charging
0
18
16
14
12
10
8
6
4
2
012345
Dead Battery MODE DCC MODE
DCC : Dynamically-Controlled Charging
0
18
16
14
12
10
8
6
4
2
012345
Conversion efficiency vs. charge current
(Fixed vo ltage mode) Conversion eff iciency vs. charge voltage
(Fixed current mode)
BATT charge current IBATT(A)
Conversion efficiency η(%)
BATT charge voltage=12.6V fOSC=288.78kHz
efficiency η(%)=(VBATT × IBATT)/(Vin × Iin) × 100
Conversion efficiency η(%)
BATT= Electronic load
(Product of KIKUSUI PLZ-150W)
BATT charge voltage VBATT(V)
BATT voltage vs. BATT charge current BATT voltage vs. BATT charge current
BATT voltage VBATT(V)
BATT voltage VBATT(V)
BATT charge current IBATT(A)
BATT charge current IBATT(A)
Vin=16v
BATT: Electronic load
(Product of KIKUSUI PLZ-150W)
Vin=19v
BATT: Electronic load
(Product of KIKUSUI PLZ-150W)
MB3875/3877
21
(Continued)
20
15
10
5
0
20
15
10
5
0
0 80 120 160 200
t (ms)
40
BATT (V)
CTL (V)
5 V
5 V 20 ms
20
15
046810
t (µs)
2
10
5
0
5
OUT (V)
1 µs
5 V
20
15
10
5
0
20
15
10
5
0
0 80 120 160 200
t (ms)
40
BATT (V)
CTL (V)
5 V
5 V 20 ms
20
15
046810
t (µs)
2
10
5
0
5
OUT (V)
1 µs
5 V
Soft-star t operating wavefo rms
Vin = 16 V
Load: BATT = 20
INE1 = 0 V
DC/DC converter switching waveforms
Vin = 16 V
FOSC = 288.8 kHz
Load: BATT = 2A
Soft-start operating waveforms
Vin = 19 V
Load: BATT = 20
INE1 = 0 V
DC/DC converter switching waveforms
Vin = 19 V
FOSC = 288.8 kHz
Load: BATT = 2A
MB3875/3877
22
MB3877
Note: KIKUSUI : KIKUSUI Electronics Corp.
Vin = 19 V
100
98
96
94
92
90
88
86
84
82
80
10 m 100 m 1 10
100
98
96
94
92
90
88
86
84
82
80024681012141618
Vin = 19 V
R4 = 82 k
Dead Battery MODE DCC MODE
DCC : Dynamically-Controlled Charging
0
0
2
4
6
8
10
12
14
16
18
20
12345
Conversion efficiency vs.charge current
BATT charge current IBATT(A)
Conver si on effici enc y η(%)
BATT charge voltage=12.6V fOSC=288.78kHz
efficiency η(%)=(VBATT × IBATT)/(Vin × Iin) × 100
Conversion efficiency vs. charge voltage
Conversion efficiency η(%)
BATT= Electronic load
(Product of KIKUSUI PLZ-150W)
BATT charge voltage VBATT(V)
BATT voltage vs. BATT charge current
BATT voltage VBATT(V)
BATT charge current IBATT(A)
Vin=19v
BATT: Electronic load
(Product of KIKUSUI PLZ-150W)
MB3875/3877
23
(Continued)
20
10
0
0 80 120 160 200
t (ms)
40
BATT (V)
20
15
10
5
0
CTL (V)
10 V
5 V 20 ms
20
15
046810
t (µs)
2
10
5
0
5
OUT (V)
1 µs
5 V
Soft-start operating waveforms
Vin = 19 V
Load: BATT = 50
INE1 = 0 V
DC/DC converter switching waveforms
Vin = 19 V
FOSC = 287.4 kHz
Load: BATT = 2 A
MB3875/3877
24
NOTES ON USE
Take account of common impedance when designing the earth line on a printed wiring board.
Take measures against static electricity.
- For semiconductors, use antistatic or conductive containers.
- When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.
- The work table, tools and measuring instruments must be grounded.
- The worker must put on a grounding device containing 250 k to 1 M resistors in series.
Do not apply a negative voltage
- Applying a negative voltage of 0.3 V or less to an LSI may generate a parasitic transistor, resulting in
malfunction.
ORDERING INFORMATION
Part number Package Remarks
MB3875PFV
MB3877PFV 24-pin plastic SSOP
(FPT-24P-M03)
MB3875/3877
25
PACKAGE DIMENSION
24-pin plastic SSOP
(FPT-24P-M03)
Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) MAX) .
Note 2) *2 : These dim ensio ns do not incl ude resi n pro tr usi on .
Note 3) Pins width and pins thickness include plating thickness.
Note 4) Pins width do not include tie bar cutting remainder.
Dimensions in mm (inches) .
Note : The values in parentheses are reference values.
C
2003 FUJITSU LIMITED F24018S-c-4-5
7.75±0.10(.305±.004)
5.60±0.10 7.60±0.20
(.220±.004) (.299±.008)
*1
*2
0.10(.004)
112
1324
0.65(.026) –0.07
+0.08
0.24
.009 +.003
–.003 M
0.13(.005)
INDEX
0.17±0.03
(.007±.001)
"A"
0.25(.010)
0.10±0.10
(.004±.004)
(Stand off)
Details of "A" part
(Mounting height)
1.25 +0.20
–0.10
–.004
+.008
.049
0~8˚
0.50±0.20
(.020±.008)
0.60±0.15
(.024±.006)
0.10(.004)
MB3875/3877
26
MEMO
MB3875/3877
27
MEMO
FUJITSU MICROELECTRONICS LIMITED
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387
http://jp.fujitsu.com/fml/en/
For further information please contact:
North and South America
FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen,
Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/
Korea
FUJITSU MICROELECTRONICS KOREA LTD.
206 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://www.fmk.fujitsu.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD.
151 Lorong Chuan, #05-08 New Tech Park,
Singapore 556741
Tel: +65-6281-0770 Fax: +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.
Rm.3102, Bund Center, No.222 Yan An Road(E),
Shanghai 200002, China
Tel: +86-21-6335-1560 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fmc/
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road
Tsimshatsui, Kowloon
Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269
http://cn.fujitsu.com/fmc/tw
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporat-
ing the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS
or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or
other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual
property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising
in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current
levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of
the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
Edited Strategic Business Development Dept.