DS04-27700-5E
FUJITSU SEMICONDUCTOR
DATA SHEET
ASSP For Power Management Applications (Secondary battery)
Lithium Ion Battery Charger
DC/DC Converter IC
(High Precision with Constant-current Function)
MB3813A/MB3833A/MB3843
DESCRIPTION
The FUJITSU MB3813A/33A/43 are pulse width modulation (PWM) DC/DC converter ICs with independent output
voltage and current setting capability.
These products are covered by US Patent Number 6,147,477.
The use of on-chip output setting resistance enables high precision output v oltage control. Also, an output voltage
s witching f eature f or use with either gr aphite-electrode or coke-electrode lithium-ion batteries makes this IC ideal
for internal battery chargers in notebook personal computers and similar applications.
FEATURES
Output setting resistance is on-chip for high precision output voltage : ±1.0%
SEL terminal enables output voltage selection
(Continued)
PACKAGE
Cell count Output voltage Part number
3-cell 12.6 V/12.3 V MB3813A
2-cell 8.4 V/8.2 V MB3833A
1-cell 4.2 V/4.1 V MB3843
16-pin plastic SSOP
(FPT-16P-M05)
MB3813A/MB3833A/MB3843
2
(Continued)
High precision reference voltage source : 2.5 V ± 1.0%
High frequency operating capability : Max 500 kHz
On-chip current detector amplifier with wide in-phase input voltage range : 0 V to VCC
On-chip standby function
On-chip input voltage detector circuit
On-chip soft-start control circuit
On-chip output overshoot protection circuit for rapid load changes
On-chip totem-pole output circuits for P-ch. MOS FET devices
MB3813A/MB3833A/MB3843
3
PIN ASSIGNMENT
(TOP VIEW)
(FPT-16P-M05)
Vin1 : 1
IN1 : 2
IN2 : 3
IN2 : 4
IN1 : 5
FB : 6
CTL : 7
Vin2 : 8
16 : GND
15 : OUT
14 : VCC
13 : CT
12 : RT
11 : CS
10 : SEL
9 : VREF
MB3813A/MB3833A/MB3843
4
PIN DESCRIPTION
Pin no. Symbol I/O Descriptions
1 Vin1 I Input voltage detector block (VLDET) input terminal
2 IN1 I Current detector amplifier (Current Amp.) input terminal
3 IN2 I Output voltage feedback input terminal
4IN2 I Error amplifier (Error Amp.2) inverted input terminal
5IN1 I Error amplifier (Error Amp.1) inverted input terminal
6 FB O Error amplifier (Error Amp.1, 2 common) output terminal
7CTLI
Power supply control terminal
An “L” level signal input to the CTL terminal sets the IC in standby mode.
8 Vin2 I DC/DC converter charging current setting input terminal
9 VREF O Reference voltage output terminal
10 SEL I
Output voltage switching terminal
“L” level output voltage : MB3813A 12.6 V
MB3833A 8.4 V
MB3843 4.2 V
“H” level output voltage : MB3813A 12.3 V
MB3833A 8.2 V
MB3843 4.1 V
11 CS Soft-start capacitor connection terminal
12 RT Triangular wave frequency setting resistor connection terminal
13 CT Triangular wave frequency setting capacitor connection terminal
14 VCC Power supply terminal
15 OUT O Totem-pole output terminal
16 GND Ground terminal
MB3813A/MB3833A/MB3843
5
BLOCK DIAGRAM
+
+
+
+
2
8
5
6
11
+
1
9
+
16
15
14
10
12 13
IN2
R2
R1*1
R3
1 µA
R4
1.26 V
CTL
RT CT VREF
2.5 V
< UVLO block >
< CTL block >
< OSC block > < Ref block >
(2.5 V)
SEL
×25
< Current Amp. block >
< SEL block >
< Error Amp. 1 block >
< Error Amp. 2 block > <PWM Comp. block>
< SOFT block >
< VLDET block >
2.5 V
2.44 V
< OUT block >
100 k
OUT
VCC
GND
2.0 V
1.0 V
bias VCC
4
3
*1:
*2:
MB3813A 10.1 k
MB3833A 5.9 k
MB3843 1.7 k
MB3813A 194 k
MB3833A 120 k
MB3843 100 k
(16 pins)
2.5 k
25 k
*2
FB
IN1
IN1
CS
IN2
Vin2
Vin1
7
MB3813A/MB3833A/MB3843
6
ABSOLUTE MAXIMUM RATINGS
* : When mounted on a 10 by 10 centimeters square dual-sided epoxy base board
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
Parameter Symbol Condition Rating Unit
Min Max
Power supply voltage VCC 20 V
Input voltage VIN Vin1, IN1, IN2 20 V
Control input voltage VCTL 20 V
Select input voltage VSEL 20 V
Output current IO50 mA
Peak output current IODuty 5% (t = fOSC × Duty) 500 mA
Allowable dissipation PDTa +25 °C440* mW
Storage temperature Tstg −55 +125 °C
MB3813A/MB3833A/MB3843
7
RECOMMENDED OPERATING CONDITIONS
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
Parameter Symbol Condition Value Unit
Min Typ Max
Power supply voltage VCC
MB3813A 12 16 18 V
MB3833A 8 16 18 V
MB3843 7 16 18 V
Reference voltage
output current IOR −10mA
Input voltage VIN Vin1, IN1, IN2 0 18 V
VIN Vin2 0 2.5 V
Control input voltage VCTL 018 V
Select input voltage VSEL 018 V
Peak output current IODuty 5% (t = fOSC × Duty) 300 300 mA
Oscillator frequency fOSC 10 200 500 kHz
Soft-start capacitance CS0.1 1.0 µF
Timing resistance RT10 15 100 k
Timing capacitance CT100 330 10000 pF
Operating temperature Ta −30 25 85 °C
MB3813A/MB3833A/MB3843
8
ELECTRICAL CHARACTERISTICS (VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25 °C)
(Continued)
Parameter Symbol Pin
No. Condition Value Unit Remarks
Min Typ Max
Reference
voltage block
(Ref)
Output
voltage VREF 92.475 2.500 2.525 V
Input
stability Line 9
VCC = 12 V to 18 V 1.0 10.0 mV MB3813A
VCC = 8 V to 18 V 1.0 10.0 mV MB3833A
VCC = 7 V to 18 V 1.0 10.0 mV MB3843
Load
stability Load 9 VREF = 0 µA to
500 µA3.0 10.0 mV
Under voltage
lockout circuit
block (UVLO)
Threshold
voltage VTH 9VREF = “L” “H” 1.8 2.0 2.2 V
Hysteresis
voltage VH90.2 0.35 V
Input voltage
detector block
(VLDET)
Threshold
voltage VTH 1 Vin1 = “L” “H”
10.2 11.0 11.8 V MB3813A
6.7 7.3 7.9 V MB3833A
5.8 6.3 6.8 V MB3843
Hysteresis
voltage VH1
1.0 2.0 V MB3813A
0.7 1.4 V MB3833A
0.57 1.2 V MB3843
Input
current IIH 1 Vin1 = 16 V
150 300 µAMB3813A
270 540 µAMB3833A
310 620 µAMB3843
IIL 1 Vin1 = 0 V 1.0 1.0 µA
Soft-start block
(UVLO) Charge
current ICS 11 −1.4 1.0 0.6 µA
Triangular
wave
oscillator block
(OSC)
Oscillator
frequency fOSC 15 CT = 330 pF,
RT = 15 k180 200 220 kHz
Error amplifier
(Error Amp.1) Threshold
voltage VT1
3FB = 1.5 V, SEL = 0 V
12.474 12.60 12.726 V MB3813A
8.316 8.40 8.484 V MB3833A
4.158 4.20 4.242 V MB3843
3FB = 1.5 V,
Ta = 30 °C to +85 °C
12.41 12.60 12.79 V MB3813A
8.27 8.40 8.53 V MB3833A
4.13 4.20 4.26 V MB3843
MB3813A/MB3833A/MB3843
9
(VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25 °C)
* : Standard design value
(Continued)
Parameter Symbol Pin
No. Condition Value Unit Remarks
Min Typ Max
Error
amplifier
(Error
Amp.1)
Threshold
voltage VT2
3FB = 1.5 V, SEL = 5 V
12.177 12.30 12.423 V MB3813A
8.118 8.20 8.282 V MB3833A
4.059 4.10 4.141 V MB3843
3FB = 1.5 V, SEL = 5 V
Ta = 30°C to +85 °C
12.11 12.30 12.49 V MB3813A
8.07 8.20 8.33 V MB3833A
4.04 4.10 4.16 V MB3843
Input
stability
Line 3 VCC = 13 V to 18 V,
output 12.6 V 2.5 10.0 mV MB3813A
Line 3 VCC = 9 V to 18 V,
output 8.4 V 2.5 10.0 mV MB3833A
Line 3 VCC = 7 V to 18 V,
output 4.2 V 2.5 10.0 mV MB3843
Input
current IIN2
3
IN1 = 12.7 V, IN2 = 12.6 V 1.0 2.0 mA MB3813A
IN1 = 8.5 V, IN2 = 8.4 V 1.0 2.0 mA MB3833A
IN1 = 4.3 V, IN2 = 4.2 V 1.0 2.0 mA MB3843
3
Vin1 = 0 V, IN2 = 12.6 V 1.0 1.0 µA MB3813A
Vin1 = 0 V, IN2 = 8.4 V 1.0 1.0 µA MB3833A
Vin1 = 0 V, IN2 = 4.2 V 1.0 1.0 µA MB3843
Input
resistance R1 3
7.0 10.1 13.2 kMB3813A
4.1 5.9 7.7 kMB3833A
1.2 1.7 2.3 kMB3843
R2 5 1.7 2.5 3.3 k
Error
amplifier
(Error
Amp.2)
Input bias
current IB8 Vin2 = 0 V 400 30 nA
Input offset
voltage VIO 5FB = 1.5 V 5mV
MB3813A/MB3833A/MB3843
10
(VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25 °C)
(Continued)
Parameter Symbol Pin
No. Condition Value Unit Remarks
Min Typ Max
Error
amplifiers
(Error Amp.1, 2
common)
Voltage
gain AVDC 100* dB
Frequency
bandwidth BW AV = 0 dB 800* kHz
Output
voltage VOH 62.3 2.5 V
VOL 60.8 0.9 V
Output
source
current ISOURCE 6FB = 1.5 V −120 60 µA
Output sink
current ISINK 6FB = 1.5 V 0.6 2.0 mA
Current
detector
amplifier block
(Current Amp.)
Threshold
voltage
VT1
2IN2 = 3 V to VCC
VT1 = IN1 IN2
Vin2 =
2.5 V 90 100 110 mV
2Vin2 =
0.75 V 20 30 40 mV
VT2
2IN2 = 0 V
VT2 = IN1 IN2
Vin2 =
2.5 V 50 100 150 mV
2Vin2 =
0.75 V 53055mV
Input
current IIN1
2IN1 = 12.7 V, IN2 = 12.6 V 17 34 µA MB3813A
2IN1 = 8.5 V, IN2 = 8.4 V 17 34 µA MB3833A
2IN1 = 4.3 V, IN2 = 4.2 V 17 34 µA MB3843
In-phase
input
voltage
range
VCM 20VCC V
Voltage
gain AV
2IN1 = 12.7 V, IN2 = 12.6 V 21 25 29 V/V MB3813A
2IN1 = 8.5 V, IN2 = 8.4 V 21 25 29 V/V MB3833A
2IN1 = 4.3 V, IN2 = 4.2 V 21 25 29 V/V MB3843
PWM
comparator
block (PWM)
Threshold
voltage
VT0 15 Duty cycle = 0%0.9 1.0 V
VT100 15 Duty cycle = 100%2.0 2.1 V
Output block
(OUT)
ON
resistance RON 15 OUT = 30 mA 12 18
Output
voltage VOL 15 OUT = 100 mA 1.0 1.4 V
Standby
leak current ILO 15 VCC = 18 V, OUT = 18 V,
CTL = 0 V 1.0 1.0 µA
MB3813A/MB3833A/MB3843
11
(Continued)
(VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25 °C)
Parameter Symbol Pin
no. Condition Value Unit Remarks
Min Typ Max
Power
supply
control block
(CTL)
CTL input
voltage VON 7 Active mode 2.0 18 V
Standby
mode VOFF 7 Standby mode 0 0.8 V
Input
current IIH 7CTL = 5 V 100 200 µA
IIL 7CTL = 0 V 1.0 1.0 µA
Output
voltage
selection
block (SEL)
SEL
voltage
VON 10 12.3 V output mode 2.0 18 V MB3813A
VON 10 8.2 V output mode 2.0 18 V MB3833A
VON 10 4.1 V output mode 2.0 18 V MB3843
SEL
voltage
VOFF 10 12.6 V output mode 0 0.8 V MB3813A
VOFF 10 8.4 V output mode 0 0.8 V MB3833A
VOFF 10 4.2 V output mode 0 0.8 V MB3843
Input
current IIH 10 CTL = 5 V 1.0 1.0 µA
IIL 10 CTL = 0 V 1.0 1.0 µA
Input
current when
power sup-
ply OFF
IIL 10 VCC = 0 V, SEL = 5 V 1.0 1.0 µA
General
Standby
current ICCS 14 CTL = 0 V 260 390 µA
Power supply
current ICC 14 at output
voltage “H” level 3.4 5.4 mA
MB3813A/MB3833A/MB3843
12
TYPICAL CHARACTERISTICS
(Continued)
Vin1 = 20.5 V
CTL = VCC
Ta = +25 °C
IOR = 0 mA
Reference voltage vs. Power supply voltage
Reference voltage VREF (V)
Power supply voltage VCC (V)
0 5 10 15 20
5
4
3
2
1
0
Vin1 = VCC
CTL = VCC
Ta = +25 °C
Reference voltage vs. VREF load current
Reference voltage VREF (V)
VREF load current IREF (mA)
01020304050
5
4
3
2
1
0
Reference voltage vs. Temperature
Temperature Ta (°C)
Reference voltage VREF (%)
40 20 0 20 40 60 80 100
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
VCC = Vin1 = 16 V
CTL = 5 V
Reference voltage vs. Control voltage
Control voltage VCTL (V)
Reference voltage VREF (V)
0 5 10 15 20
5
4
3
2
1
0
VCC = 16 V
Ta = +25 °C
IOR = 0 mA
VCC = 16 V
Ta = +25 °C
Control current vs. Control voltage
Control voltage VCTL (V)
Control current ICTL (µA)
0 5 10 15 20
500
400
300
200
100
0
MB3813A/MB3833A/MB3843
13
(Continued)
Error amp. threshold voltage vs. Temperature
Error Amp. threshold voltage VT1 (%)
Temperature Ta (°C)
40 20 0 20 40 60 80 100
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
VCC = Vin1 = 16 V
CTL = 5 V
SEL = 0 V
Error amp. Threshold voltage vs. Temperature
Error Amp. Threshold voltage VT2 (%)
Temperature Ta (°C)
40 20 0 20 40 60 80 100
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
VCC = Vin1 = 16 V
CTL = 5 V
SEL = 5 V
40
30
20
10
0
10
20
30
40
180
135
90
45
0
45
90
135
180
1 k 10 k 100 k 1 M 10 M
Error Amp. gain, phase vs. Frequency
Gain AV (dB)
Phase φ (°)
Frequency f (Hz)
+
+
Error Amp.
240 k
1 µF
10 k
10 k
2.4 k
2 V
4 V
VREF
CT = 100 pF
CT = 270 pF
CT = 330 pF
VCC = V in1 = 16 V
CTL = 5 V
CT = 1500 pF
1 M
100 k
10 k
1 k1 k 10 k 100 k 1 M
Triangular wave frequency vs. RT resistance
RT resistance ()
Triangular wave oscillator frequency fOSC (Hz)
VCC = V in1 = 16 V
CTL = 5 V
RT = 15 k
1 M
100 k
10 k
1 k
10 p 100 p 1 n 10 n 100 n
Triangular wave frequency vs. CT capacitance
Triangular wave oscillator frequency fOSC (Hz)
CT capacitance (F)
MB3813A/MB3833A/MB3843
14
(Continued)
250
240
230
220
210
200
190
180
170
160
150 468101214161820
Triangular wave frequency vs. Power supply voltage
Vin1 = 16 V
CTL = 16 V
RT = 15 k, CT = 330 pF
Power supply voltage VCC (V)
Triangular wave oscillator frequency fOSC (kHz)
Triangular wave frequency vs. Temperature
250
225
200
175
150
40 20 0 20 40 60 80 100
Triangular wave oscillator frequency fOSC (kHz)
Temperature Ta (°C)
VCC = Vin1 = 16 V
CTL = 5 V
RT = 15 k, CT = 330 pF
Triangular wave maximum amplitude voltage
vs. Triangular wave frequency
2.5
1.5
2.0
0.5
1.0
1 k 10 k 100 k 1 M 10 M
VCC = Vin1 = 16 V
CTL = 5 V
Triangular wave maximum amplitude voltage (V)
Triangular wave frequency fOSC (HZ)
Power supply current vs. Power supply voltage
10
8
6
4
2
00 5 10 15 20
Vin1 = VCC
Ta = +25 °C
CTL = 5 V
CTL = 0 V
MB3813A
MB3833AMB3843
Power supply current ICC (mA)
Power supply voltage VCC (V)
MB3813A/MB3833A/MB3843
15
FUNCTIONAL DESCRIPTION
1. Switching Regulator Block
(1) Reference voltage circuit (Ref)
The reference voltage circuit uses the voltage supply from the VCC terminal (pin 14) to generate a temperature
compensated, stable voltage ( 2.50 V) for use as the reference voltage for the internal circuits of the IC chip.
It is also possible to supply a reference voltage output of up to 1 mA to external circuits through the VREF
terminal (pin 9) .
(2) Triangular wave oscillator circuit (OSC)
By connecting the CT ter minal (pin 13) and RT ter minal (pin 12) respectively to a capacitance and resistance
for timing, a triangular oscillator waveform can be generated.
The triangular wa ve is input to the PWM compar ator circuits on the IC . At the same time, it can also be supplied
to an external device from the CT terminal.
(3) Error amplifier circuit (Error Amp.1)
The error amplifier circuit is used to detect the output voltage from the switching regulator and produces the
PWM control signal. No external resistance is required at the error amplifier inversion input ter minal, because
the output voltage setting resistance is connected within the IC. The output voltage settings are defined as :
MB3813A 12.6 V/12.3 V, MB3833A 8.4 V/8.2 V, MB3843 4.2 V/4.1 V, the optimum levels respectively for use
with 3-cell, 2-cell and 1-cell lithium-ion batteries.
Also, by connecting feedback resistance and capacitance between the error amplifier FB terminal (pin 6) and
IN1 terminal (pin 5) , it is possible to set the desired le vel of loop gain to provide stabilized phase compensation
to the system.
The CS ter minal (pin 11) can be connected to a soft-star t capacitor to prevent current surges at star tup. The
soft-start is detected by the error amplifier, which provides a constant soft-start time independent of output load.
(4) Current detector amplifier circuit (Current Amp.)
The current detector amplifier provides 25 × amplification of the v oltage drop between the two ends of the output
sensor resistor (RS) in the switching regulator, that occurs due to the flow of the charging current. This v o ltage
drop is compared to the voltage at the Vin2 terminal (pin 8) in the next stage error amplifier circuit (Error Amp.2) ,
and used to control the charging current.
(5) Power supply control circuit (CTL)
An “L” le vel signal input to the CTL terminal (pin 7) places the IC in standby mode . In standb y mode, all circuits
other than input detection circuits are switched off.
(6) PWM comparator circuit (PMW Comp.)
This is a voltage-pulse width conv ersion circuit that controls the output duty of the error amplifier circuits (Error
Amp.1, 2) according to the output voltage.
During intervals when the triangular wa vef o rm is lower than the eror amplifier output v oltage, an e xternal output
transistor is switched on.
(7) Output circuit (OUT)
The output circuit uses a totem-pole configuration and is capab le of driving an ex ternal P-ch. MOS FET de vice .
MB3813A/MB3833A/MB3843
16
2. Output Voltage Switching Function
The SEL terminal (pin 10) is capable of output levels of 4.2 V or 4.1 V per battery cell.
Output voltage settings by model
3. Protection Functions
(1) Input voltage detector circuit (VIDET)
When the input voltage supply from the AC adapter or other source detected at the Vin1 terminal (pin 1) falls
below 11 V (MB3813A) , or below 7.3 V (MB3833A) , or below 6.3 V (MB3843) , the internal reference voltage
circuit switches off.
(2) Under voltage lockout circuit (UVLO)
Power surges at power-on, or momentar y under-voltage situations can cause abnor mal operation in a control
IC, which ma y lead to damage or deterioration in systems. This circuit prevents abnormal peration during times
of low voltage by using the supply voltage to detect the le vel of the internal ref erence voltage, and switching off
the external output transistor to create a 100% rest interval. Once the supply voltage recovers to a level above
the threshold voltage of the under voltage lockout circuit, operation is restored.
SEL terminal voltage level Model Output voltage Units
LMB3813A 12.6 V
H 12.3 V
LMB3833A 8.4 V
H8.2V
LMB3843 4.2 V
H4.1V
MB3813A/MB3833A/MB3843
17
METHOD OF SETTING THE CHARGING CURRENT
The charging current level (output limit current level) is set at the Vin2 terminal (pin 8) .
METHOD OF SETTING THE SOFT-START TIME
At start up, the capacitor (Cs) connected to the CS terminal (pin 11) begins charging. The error amplifier
compares the soft-start setting voltage, which is proportional to the CS terminal voltage, to the output feedback
v oltage and produces a soft-start by v arying the ON duty at the OUT terminal (pin 15) . The soft-start time can
be determined by the formula below.
Because the CS terminal v oltage is input to the error amplifier, the soft-start time setting is not dependent on
the output current value.
OSCILLATOR FREQUENCY SETTING
The oscillator frequency can be set by connecting a timing capacitor (CT) to the CT terminal (pin 13) and a timing
resistor (RT) to the RT terminal (pin 12) .
ERROR AMP. BLOCK OVERSHOOT PROTECTION CIRCUIT
This built-in circuit responds to rapid fluctuations in charging current such as can occur when inserting or removing
a chargeable battery, by clamping an inverted input signal (IN1 or IN2) from the error amps (Error Amp.1 or
Error Amp.2) to suppress changes in output voltage.
IL (Max.) [A] = Vin2 (V)
25 × RS ()
Charging current level (output limit current level) :
RS : output sensing resistance
Soft-start time (time to output setting voltage VD) :
ts [s] = 2.5 × Cs [µF]
Oscillator frequency : fOSC
fOSC (kHz) := 990000
CT (pF) RT (k)
MB3813A/MB3833A/MB3843
18
CTL, SEL TERMINAL EQUIVALENT CIRCUITS
7
10
CTL VCC
SEL
1.4 V
MB3813A/MB3833A/MB3843
19
APPLICATION EXAMPLE
+
+
+
+
2
8
5
6
11
+
1
9
+
16
14
10
12 13
DC-IN
(16 V)
39000
pF
10
k
39000
pF
10 k
FB
IN2
IN1
IN1 R2
R1
CS
IN2
Vin2
Vin1 R3
1 µA
R4
1.26 V
CTL
15 k
RT CT
330 pF
VREF
2.5 V
< UVLO block >
< CTL block >
< OSC block >
< Ref block >
(2.5 V)
0.1 µF
0
V to 2.5
V
SEL
×25
< Current Amp. block >
< SEL block >
< Error Amp.1 block >
< Error Amp.2 block >
< PWM Comp. block >
< SOFT block >
< VLDET block >
2.5 V
2.44 V
< OUT block >
100 k
47 µF 0.1 µF
33 µHRSVBATT
0.1
220 µF 4.7 µF
OUT MBRS
130LT3
VCC
MTD20P03
GND
2.0 V
1.0 V
bias VCC
4
3
MTD20P03: Product of Motorola Inc.
MBRS130LT3: Product of Motorola Inc.
(16 pins)
15
+
+
+
7
CT
RT
MB3813A/MB3833A/MB3843
20
REFERENCE DATA
(Continued)
Charging voltage vs. Charging current
< MB3813A >
Charging current IL (A)
Charging voltage VBATT (V)
14
12
10
8
6
4
2
00 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Charging voltage vs. Charging current
< MB3833A >
Charging current IL (A)
Charging voltage VBATT (V)
14
12
10
8
6
4
2
00 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Charging voltage vs. Charging current
< MB3843 >
Charging current IL (A)
Charging voltage VBATT (V)
14
12
10
8
6
4
2
00 0.2 0.4 0.6 0.8 1.0 1.2 1.4
MB3813A/MB3833A/MB3843
21
(Continued)
< MB3813A >
15
10
5
0
4
2
0
5
0
0 200 400 600 800 1000 t (ms)
VBATT (V)
VCS (V)
VCTL (V)
VCC = Vin = 16 V
CTL = 5 V
CT = 330 pF
RT = 15 k
Vin2 = 2.5 V
RL = 20
CS = 0.1 µF
< MB3833A >
15
10
5
0
4
2
0
5
0
0 200 400 600 800 1000 t (ms)
VBATT (V)
VCS (V)
VCTL (V)
VCC = Vin = 16 V
CTL = 5 V
CT = 330 pF
RT = 15 k
Vin2 = 2.5 V
RL = 20
CS = 0.1 µF
< MB3843 >
15
10
5
0
4
2
0
5
0
0 200 400 600 800 1000 t (ms)
VBATT (V)
VCS (V)
VCTL (V)
VCC = Vin = 16 V
CTL = 5 V
CT = 330 pF
RT = 15 k
Vin2 = 2.5 V
RL = 20
CS = 0.1 µF
Soft-start operation waveforms
MB3813A/MB3833A/MB3843
22
USAGE PRECAUTION
Printed circuit board gr ound lines should be designed in consideration of common impedance values.
Observe precautions against static electricity.
Containers in which semiconductors are placed should either be protected against static electricity, or be of
conductive material.
After de vices are mounted, use conductive bags or conductiv e containers when storing or transporting printed
circuit boards.
Working surfaces, tools and instruments should be properly rounded.
Wor kers should be grounded by a ground line with 250 k to 1 M resistance in series between the worker
and ground.
Do not apply negative voltages.
The use of negative voltages below 0.3 V may create parasitic transistors on LSI lines, which can cause abnomal
operation.
ORDERING INFORMATION
Part number Package Remarks
MB3813APFV
MB3833APFV
MB3843PFV
16-pin plastic SSOP
(FPT-16P-M05)
MB3813A/MB3833A/MB3843
23
PACKAGE DIMENSION
16-pin plastic SSOP
(FPT-16P-M05) Note 1 ) * : These dimensions do not include resin protrusion.
Note 2 ) Pins width and pins thickness include plating thickness.
Dimensions in mm (inches)
C
1999 FUJITSU LIMITED F16013S-3C-5
5.00±0.10(.197±.004)
*
4.40±0.10 6.40±0.20
(.252±.008)(.173±.004)
*
.049 –.004
+.008
–0.10
+0.20
1.25 (Mounting height)
0.10(.004)
0.65(.026) 0.24±0.08
(.009±.003)
1 8
16 9
"A"
0.10±0.10 (Stand off)
0.17±0.03
(.007±.001)
M
0.13(.005)
(.004±.004)
Details of "A" part
0~8°
(.018/.030)
0.45/0.75
(.020±.008)
0.50±0.20
0.25(.010)
LEAD No.
INDEX
MB3813A/MB3833A/MB3843
FUJITSU LIMITED
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The products described in this document are designed, developed
and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use,
personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death,
personal injury, severe physical damage or other loss (i.e., nuclear
reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile
launch control in weapon system), or (2) for use requiring
extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that Fujitsu will not be liable against you and/or any
third party for any claims or damages arising in connection with
above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You
must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export
of those products from Japan.
F0209
FUJITSU LIMITED Printed in Japan