1
ECL Pro™
SY10EP89V
Micrel, Inc.
M9999-120505
hbwhelp@micrel.com or (408) 955-1690
Pin Function
D, /D ECL Data Inputs
Q0, Q1, /Q0, /Q1 ECL Data Outputs
VCC Positive Supply
VEE Negative Supply
DESCRIPTION
3.3V and 5V power supply options
3.0GHz typical toggle frequency
310ps typical propagation delay
1.6V (5V) and 1.4V (3.3V) swing
Internal input resistors: pulldown on D, pulldown
and pullup on /D
New differential input common mode range
Available in 8-pin MSOP and SOIC packages
The SY10EP89V is a differential fanout gate specifically
designed to drive coaxial cables. The device is especially
useful in digitial video broadcasting applications; for this
application, since the system is polarity free, each output
can be used as an independent driver. The driver
produces swings 70% larger than a standard ECL output.
When driving a coaxial cable, proper termination is
required at both ends of the line, while maintaining a
800mV (5V) or 700mV (3.3V) swing at the receiving end
of the cable. Because of the larger output swings, the
device cannot be terminated into the standard VCC –2.0V.
All of the DC parameters are tested with a 50 to
VCC –3.0V load. The driver accepts a standard differential
ECL input and can run off of the digital video broadcast
standard –5.0V supply.
FEATURES
5V/3.3V 3GHz
COAXIAL CABLE DRIVER
PIN NAMES
ECL Pro™
SY10EP89V
Rev.: D Amendment: /0
Issue Date: October 2005
ECL Pro is a trademark of Micrel, Inc.
2
ECL Pro™
SY10EP89V
Micrel, Inc.
M9999-120505
hbwhelp@micrel.com or (408) 955-1690
PACKAGE/ORDERING INFORMATION
1Q0
/Q0
Q1
/Q1
8V
CC
D
/D
VEE
7
6
5
2
3
4
8-Pin SOIC (Z8-1)
8-Pin MSOP (K8-1)
Ordering Information(1)
Package Operating Package Lead
Part Number Type Range Marking Finish
SY10EP89VZC Z8-1 Commercial HEP89V Sn-Pb
SY10EP89VZCTR(2) Z8-1 Commercial HEP89V Sn-Pb
SY10EP89VKC K8-1 Commercial HP89 Sn-Pb
SY10EP89VKCTR(2) K8-1 Commercial HP89 Sn-Pb
SY10EP89VZI Z8-1 Industrial HEP89V Sn-Pb
SY10EP89VZITR(2) Z8-1 Industrial HEP89V Sn-Pb
SY10EP89VKI K8-1 Industrial HP89 Sn-Pb
SY10EP89VKITR(2) K8-1 Industrial HP89 Sn-Pb
SY10EP89VZG(3) Z8-1 Industrial HEP89V with NiPdAu
Pb-Free bar line indicator Pb-Free
SY10EP89VZGTR(2, 3) Z8-1 Industrial HEP89V with NiPdAu
Pb-Free bar line indicator Pb-Free
SY10EP89VKG(3) K8-1 Industrial HP89 with NiPdAu
Pb-Free bar line indicator Pb-Free
SY10EP89VKGTR(2, 3) K8-1 Industrial HP89 with NiPdAu
Pb-Free bar line indicator Pb-Free
Notes:
1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC Electricals only.
2. Tape and Reel.
3. Pb-Free package is recommended for new designs.
3
ECL Pro™
SY10EP89V
Micrel, Inc.
M9999-120505
hbwhelp@micrel.com or (408) 955-1690
150150
SY10EP89
V
EE
DC Blocking Capacitors
75
75
75
75
75 Coax
75 Coax
Figure 1. EP89V Termination Configuration
Symbol Rating Value Unit
VCC —V
EE Power Supply Voltage 6V V
VIN Input Voltage (VCC = 0V, VIN not more negative than VEE) –6.0 to 0 V
Input Voltage (VEE = 0V, VIN not more positive than VCC) +6.0 to 0 V
IOUT Output Current –Continuous 50 mA
–Surge 100
TAOperating Temperature Range –40 to +85 °C
TLEAD Lead Temperature (Soldering, 20 sec.) +260 °C
Tstore Storage Temperature Range –65 to +150 °C
θJA Package Thermal Resistance –Still-Air (SOIC) 160 °C/W
(Junction-to-Ambient) –500lfpm (SOIC) 109
–Still-Air (MSOP) 206 °C/W
–500lfpm (MSOP) 155
θJC Package Thermal Resistance (SOIC) 39 °C/W
(Junction-to-Case) (MSOP) 39
Note 1. Permanent Device Damage May Occur If Absolute Maximum Ratings Are Exceeded. This Is A Stress Rating Only And Functional Operation
Is Not Implied At Conditions Other Than Those Detailed In The Operational Sections Of This Data Sheet. Exposure To Absolute Maximum
Ratlng Conditions For Extended Periods May Affect Device Reliability.
ABSOLUTE MAXIMUM RATINGS(1)
4
ECL Pro™
SY10EP89V
Micrel, Inc.
M9999-120505
hbwhelp@micrel.com or (408) 955-1690
TA = –40°CT
A = +25°CT
A = +85°C
Symbol Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit
IEE Power Supply Current 22 28 34 24 32 38 28 34 40 mA
VOH Output HIGH Voltage(3) 2080 2180 2280 2150 2250 2350 2225 2325 2425 mV
VOL Outuput LOW Voltage(3) 620 720 820 630 730 830 670 770 870 mV
VIH Input HIGH Voltage 2070 2410 2170 2490 2240 2580 mV
(Single-Ended)
VIL Input LOW Voltage 1350 1800 1350 1820 1350 1855 mV
(Single-Ended)
VIHCMR Input HIGH Voltage VEE +2.0 VCC VEE +2.0 VCC VEE +2.0 VCC V
Common Mode Range (Diff.)(4)
IIH Input HIGH Current 150 150 150 µA
IIL Input LOW Current D 0.5 0.5 0.5 µA
/D –150 –150 –150
Note 1. 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2. Input and output parameters vary 1:1 with VCC.
Note 3. All loading with 50 to VCC –3.0V.
Note 4. The VIHCMR range is referenced to the most positive side of the differential input signal.
3.3V LVPECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 3.3V, VEE = 0V(2).
TA = –40°CT
A = +25°CT
A = +85°C
Symbol Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit
IEE Power Supply Current 27 34 45 30 37 45 32 39 50 mA
VOH Output HIGH Voltage(3) 3780 3880 3980 3850 3950 4050 3925 4025 4125 mV
VOL Outuput LOW Voltage(3) 2075 2225 2375 2060 2210 2360 2090 2240 2390 mV
VIH Input HIGH Voltage 3770 4110 3870 4190 3940 4280 mV
(Single-Ended)
VIL Input LOW Voltage 3050 3500 3050 3520 3050 3555 mV
(Single-Ended)
VIHCMR Input HIGH Voltage VEE +2.0 VCC VEE +2.0 VCC VEE +2.0 VCC V
Common Mode Range(4)
IIH Input HIGH Current 150 150 150 µA
IIL Input LOW Current D 0.5 0.5 0.5 µA
/D –150 –150 –150
Note 1. 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2. Input and output parameters vary 1:1 with VCC.
Note 3. All loading with 50 to VCC – 3.0V.
Note 4. The VIHCMR range is referenced to the most positive side of the differential input signal.
5.0V PECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 5.0V; VEE = 0V(2).
5
ECL Pro™
SY10EP89V
Micrel, Inc.
M9999-120505
hbwhelp@micrel.com or (408) 955-1690
TA = –40°CT
A = +25°CT
A = +85°C
Symbol Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit
IEE Power Supply Current 22 28 34 24 32 38 28 34 40 mA
VOH Output HIGH Voltage(2) –1220 –1120 –1020 –1150 –1050 –950 –1075 –975 –875 mV
VOL Outuput LOW Voltage(2) –2680 –2580 –2480 –2670 –2570 –2470 –2630 –2530 –2430 mV
VIH Input HIGH Voltage –1230 –890 –1130 –810 –1060 –720 mV
(Single-Ended)
VIL Input LOW Voltage –1950 –1500 –1950 –1480 –1950 –1445 mV
(Single-Ended)
VIHCMR Input HIGH Voltage VEE +2.0 0.0 VEE +2.0 0.0 VEE +2.0 0.0 V
Common Mode Range (Diff.)(3)
IIH Input HIGH Current 150 150 150 µA
IIL Input LOW Current D 0.5 0.5 0.5 µA
/D –150 –150 –150
Note 1. 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2. All loading with 50 to VCC –3.0V.
Note 3. The VIHCMR range is referenced to the most positive side of the differential input signal.
LVECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 0V, VEE = –3.3V.
TA = –40°CT
A = +25°CT
A = +85°C
Symbol Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit
IEE Power Supply Current 27 32 41 30 37 44 32 39 50 mA
VOH Output HIGH Voltage(2) –1220 –1120 –1020 –1150 –1050 –950 –1075 –975 –875 mV
VOL Outuput LOW Voltage(2) –2950 –2800 –2650 –2950 –2850 –2650 –2950 –2800 –2650 mV
VIH Input HIGH Voltage –1230 –890 –1130 –810 –1060 –720 mV
(Single-Ended)
VIL Input LOW Voltage –1950 –1500 –1950 –1480 –1950 –1445 mV
(Single-Ended)
VIHCMR Input HIGH Voltage VEE +2.0 0 VEE +2.0 0 VEE +2.0 0 V
Common Mode Range(3)
IIH Input HIGH Current 150 150 150 µA
IIL Input LOW Current D 0.5 0.5 0.5 µA
/D –150 –150 –150
Note 1. 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2. All loading with 50 to VCC –3.0V.
Note 3. The VIHCMR range is referenced to the most positive side of the differential input signal.
ECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 0V; VEE = –5.2V.
6
ECL Pro™
SY10EP89V
Micrel, Inc.
M9999-120505
hbwhelp@micrel.com or (408) 955-1690
TA = –40°CT
A = +25°CT
A = +85°C
Symbol Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit
fMAX Maximum Toggle Frequency(2) 3——3——3—GHz
tPLH Propagation Delay to 200 380 220 310 400 250 420 ps
tPHL Output Differential
tSKEW Within Device Skew(3) Q, /Q 5.0 20 5 20 20 ps
Device-to-Device Skew 120 120 120
tJITTER Cycle-to-Cycle Jitter 0.5 < 1.0 0.5 < 1.0 0.5 < 1.0 ps
VPP Input Voltage Swing(4) 150 800 1200 150 800 1200 150 1200 mV
(Differential)
trOutput Rise/Fall Times Q, /Q 120 350 130 250 350 150 350 ps
tf(20% to 80%)
Note 1. Measured using a 750mV source, 50% duty cycle clock source. All loading with 50 to VCC –3.0V.
Note 2. fMAX guaranteed for functionality only. VOL and VOH levels are guaranteed at DC only.
Note 3. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are
measured from the cross point of the inputs to the cross point of the outputs.
Note 4. VIL must not go below VCC –3.0V.
AC ELECTRICAL CHARACTERISTICS
VCC = 0V, VEE = –3.0V to –5.5V; VCC = 3.0V to 5.5V, VEE = 0V(1).
7
ECL Pro™
SY10EP89V
Micrel, Inc.
M9999-120505
hbwhelp@micrel.com or (408) 955-1690
8-PIN MSOP (K8-1)
Rev. 01
8
ECL Pro™
SY10EP89V
Micrel, Inc.
M9999-120505
hbwhelp@micrel.com or (408) 955-1690
8-PIN PLASTIC SOIC (Z8-1)
Rev. 03
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.