PRELIMINARY
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
Collector current I
C
....................................…
1
0
0
A
Collector-emitter voltage VCES ......................
1
2
0
0
V
Maximum junction temperature Tjmax ..............
1
7
5
°C
Flat base Type
Copper base plate (non-plating)
Tin plating pin terminals
RoHS Directive compliant
sevenpack (3φ Inverter+Chopper Brake)
Recognized under UL1557, File E323585
APPLICATION
AC Motor Control, Motion/Servo Control, etc.
OUTLINE DRAWING & INTERNAL CONNECTION
Dimension in mm
TERMINAL
t=0.8
SECTION A
INTERNAL CONNECTION
GWP(12)
W(3)
EWP(11)
NTC
TH1(7)
TH2(8)
GWN(10)
EWN(9)
GVP(16)
V(2)
EVP(15)
GVP(14)
EVP(13)
GUP(20)
U(1)
EUP(19)
GUN(18)
EUN(17)
P(21)
N(22)
B(4)
GB(6)
EB(5)
Tolerance otherwise specified
Division of Dimension Tolerance
0.5 to 3 ±0.2
over 3 to 6 ±0.3
over 6 to 30 ±0.5
over 30 to 120 ±0.8
over 120 to 400 ±1.2
Publication Date : December 2013
1
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/DIODE
Symbol Item Conditions Rating Unit
V
CES
Collector-emitter voltage
G-E short-circuited
1200
V
VGES
Gate-emitter voltage
C-E short-circuited
± 20
V
I
C
Collector current DC, T
C
=107 °C
(Note2, 4)
100 A
ICRM Pulse, Repetitive
(Note3)
200
P
tot
Total power dissipation
T
C
=25 °C (Note2, 4)
625
W
IE
(Note1)
Emitter current
DC
(Note2)
100
A
I
ERM
(Note1)
Pulse, Repetitive
(Note3)
200
BRAKE PART IGBT/DIODE
Symbol Item Conditions Rating Unit
V
CES
Collector-emitter voltage
G-E short-circuited
1200
V
VGES
Gate-emitter voltage
C-E short-circuited
± 20
V
IC
Collector current
DC, TC=113 °C (Note2, 4)
50
A
ICRM Pulse, Repetitive
(Note3)
100
P
tot
Total power dissipation
TC=25 °C (Note2, 4)
340
W
VRRM
Repetitive peak reverse voltage
G-E short-circuited
1200
V
I
F
Forward current
DC (Note2)
50
A
IFRM
Pulse, Repetitive
(Note3)
100
MODULE
Symbol
Item
Conditions
Rating
Unit
Visol Isolation voltage Terminals to base plate, RMS, f=60 Hz, AC 1 min 4000 V
T
jmax
Maximum junction temperature
Instantaneous event (overload)
175
°C
TCmax
Maximum case temperature
(Note4)
125
Tjop
Operating junction temperature
Continuous operation (under switching)
-40 ~ +150
°C
Tstg Storage temperature - -40 ~ +125
ELECTRICAL CHARACTERISTICS (Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/DIODE
Symbol Item Conditions Limits Unit
Min. Typ. Max.
I
CES
Collector-emitter cut-off current
VCE=VCES, G-E short-circuited
-
-
1.0
mA
IGES
Gate-emitter leakage current
VGE=VGES, C-E short-circuited
-
-
0.5
μA
V
GE(th)
Gate-emitter threshold voltage I
C
=10 mA, V
CE
=10 V 5.4 6.0 6.6 V
VC E sat
(Terminal)
Collector-emitter saturation voltage
I
C
=100 A, V
GE
=15 V, T j=25 °C - 1.80 2.25
V
Refer to the figure of test circuit
T
j
=125 °C
-
2.00
-
(Note5)
Tj=150 °C
-
2.05
-
VC E sat
(Chip)
I
C
=100 A, T
j
=25 °C - 1.70 2.15
V
V
GE
=15 V, T j=125 °C - 1.90 -
(Note5)
T
j
=150 °C
-
1.95
-
Cies
Input capacitance
VCE=10 V, G-E short-circuited
-
-
10
nF
C
oes
Output capacitance - - 2.0
Cres Reverse transfer capacitance - - 0.17
Q
G
Gate charge
VCC=600 V, IC=100 A, VGE=15 V
-
210
-
nC
td(on)
Turn-on delay time
VCC=600 V, IC=100 A, VGE15 V,
-
-
300
ns
t
r
Rise time - - 200
td(off) Turn-off delay time RG=6.2 Ω, Inductive load - - 600
t
f
Fall time
-
-
300
Publication Date : December 2013
2
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
ELECTRICAL CHARACTERISTICS (cont.; Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/DIODE
Symbol Item Conditions Limits Unit
Min.
Typ.
Max.
VEC (Note1)
(Terminal)
Emitter-collector voltage
IE=100 A, G-E short-circuited,
Tj=25 °C
-
2.60
3.40
V
Refer to the figure of test circuit T
j
=125 °C - 2.16 -
(Note5)
T j=150 °C - 2.10 -
VEC (Note1)
(Chip)
I
E
=100 A,
T
j
=25 °C
-
2.50
3.30
V
G-E short-circuited,
Tj=125 °C
-
2.06
-
(Note5)
T
j
=150 °C - 2.00 -
trr
(Note1)
Reverse recovery time V
CC
=600 V, I
E
=100 A, V
GE
15 V, - - 300 ns
Q
rr
(Note1)
Reverse recovery charge
R
G
=6.2 Ω, Inductive load
-
2.7
-
μC
Eon
Turn-on switching energy per pulse
VCC=600 V, IC=IE=100 A,
-
5.9
-
mJ
E
off
Turn-off switching energy per pulse V
GE
15 V, R
G
=6.2 Ω, T
j
=150 °C, - 9.7 -
Err
(Note1)
Reverse recovery energy per pulse Inductive load - 9.7 - mJ
RCC'+EE' Internal lead resistance
Main terminals-chip, per switch,
- - 0.8
T
C
=25 °C
(Note4)
rg
Internal gate resistance
Per switch
-
0
-
Ω
BRAKE PART IGBT/DIODE
Symbol Item Conditions
Limits
Unit
Min. Typ. Max.
I
CES
Collector-emitter cut-off current
VCE=VCES, G-E short-circuited
-
-
1.0
mA
IGES
Gate-emitter leakage current
VGE=VGES, C-E short-circuited
-
-
0.5
μA
VGE(th)
Gate-emitter threshold voltage
IC=5 mA, VCE=10 V
5.4
6.0
6.6
V
VC E sat
(Terminal)
Collector-emitter saturation voltage
I
C
=50 A, V
GE
=15 V, T j=25 °C - 1.80 2.25
V
Refer to the figure of test circuit
T
j
=125 °C
-
2.00
-
(Note5)
Tj=150 °C
-
2.05
-
VC E sat
(Chip)
IC=50 A,
Tj=25 °C
-
1.70
2.15
V
V
GE
=15 V, T j=125 °C - 1.90 -
(Note5)
T
j
=150 °C
-
1.95
-
Cies
Input capacitance
VCE=10 V, G-E short-circuited
-
-
5.0
nF
Coes
Output capacitance
-
-
1.0
Cres Reverse transfer capacitance - - 0.08
Q
G
Gate charge
VCC=600 V, IC=50 A, VGE=15 V
-
105
-
nC
td(on)
Turn-on delay time
VCC=600 V, IC=50 A, VGE15 V,
-
-
300
ns
tr
Rise time
-
-
200
td(off) Turn-off delay time RG=13 Ω, Inductive load - - 600
t
f
Fall time
-
-
300
IRRM
Repetitive peak reverse current
VR=VRRM, G-E short-circuited
-
-
1.0
mA
VF
(Terminal)
Forward voltage
IF=50 A,
Tj=25 °C
-
2.60
3.40
V
Refer to the figure of test circuit T j=125 °C - 2.16 -
(Note5)
T
j
=150 °C
-
2.10
-
VF
(Chip)
IF=50 A,
Tj=25 °C
-
2.50
3.30
V
Tj=125 °C
-
2.06
-
(Note5)
T j=150 °C - 2.00 -
t
rr
Reverse recovery time
VCC=600 V, IE=50 A, VGE=±15 V,
-
-
300
ns
Qrr
Reverse recovery charge
RG=13 Ω, Inductive load
-
1.3
-
μC
Eon
Turn-on switching energy per pulse
VCC=600 V, IC=IE=50 A,
-
3.2
-
mJ
Eoff Turn-off switching energy per pulse VGE15 V, RG=13 Ω, T j=150 °C, - 5.0 -
E
rr
Reverse recovery energy per pulse
Inductive load
-
4.4
-
mJ
rg
Internal gate resistance
-
-
0
-
Ω
Publication Date : December 2013
3
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
ELECTRICAL CHARACTERISTICS (cont.; Tj=25 °C, unless otherwise specified)
NTC THERMISTOR PART
Symbol Item Conditions Limits Unit
Min.
Typ.
Max.
R25
Zero-power resistance
TC=25 °C
(Note4)
4.85
5.00
5.15
ΔR/R Deviation of resistance R
100
=493 Ω, T
C
=100 °C
(Note4)
-7.3 - +7.8 %
B(25/50) B-constant Approximate by equation
(Note6)
- 3375 - K
P
25
Power dissipation
T
C
=25 °C (Note4)
-
-
10
mW
THERMAL RESISTANCE CHARACTERISTICS
Symbol Item Conditions
Limits
Unit
Min.
Typ.
Max.
Rth(j-c)Q
Thermal resistance
Junction to case, per Inverter IGBT
(Note4)
- - 0.24 K/W
R
th(j-c)D
Junction to case, per Inverter DIODE (Note4)
-
-
0.37
Rth(j-c)Q
Junction to case, per Brake IGBT (Note4)
-
-
0.44
K/W
Rth(j-c)D
Junction to case, per Brake DIODE (Note4)
-
-
0.66
Rth(c- s ) Contact thermal resistance
Case to heat sink, per 1 module,
- 15 - K/kW
Thermal grease applied (Note4, 7)
MECHANICAL CHARACTERISTICS
Symbol Item Conditions Limits Unit
Min. Typ. Max.
Mt
Mounting torque
Main terminals
M 5 screw
2.5
3.0
3.5
N·m
Ms Mounting torque Mounting to heat sink M 5 screw 2.5 3.0 3.5 N·m
ds Creepage distance Terminal to terminal 17 - - mm
Terminal to base plate
20.1
-
-
da Clearance
Terminal to terminal
10
-
-
mm
Terminal to base plate 14.8 - -
m mass - - 370 - g
ec
Flatness of base plate
On the centerline X, Y (Note8)
±0
-
+100
μm
Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (DIODE).
2. Junction temperature (T j) should not increase beyond Tjmax rating.
3. Pulse width and repetition rate should be such that the device junction temperature (T j) dose not exceed T jmax rating.
4. Case temperature (TC) and heat sink temperature (T s) are defined on the each surface (mounting side) of base plate and heat sink
just under the chips. Refer to the figure of chip location.
5. Pulse width and repetition rate should be such as to cause negligible temperature rise.
6.
)
TT
/()
R
R
ln(B)/( 502550
25
5025 11 =
,
R25: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K]
R50: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K]
7. Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K).
8. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.
Y
X
+:Convex
-:Concave
+:Convex
-:Concave
mounting side
mounting side
mounting side
9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs.
"φ2.6×10 or φ2.6×12 B1 tapping screw"
The length of the screw depends on the thickness (t1.6~t2.0) of the PCB.
Publication Date : December 2013
4
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
RECOMMENDED OPERATING CONDITIONS
Symbol Item Conditions
Limits
Unit
Min.
Typ.
Max.
VCC (DC) Supply voltage Applied across P-N terminals - 600 850 V
VGEon Gate (-emitter drive) voltage
Applied across GB-EB/
13.5 15.0 16.5 V
G*P-E*P/G*N-E*N(*=U, V, W) terminals
RG External gate resistance Per switch
Inverter IGBT
6.2
-
62
Ω
Brake IGBT
13
-
130
CHIP LOCATION (Top view)
Dimension in mm, tolerance: ±1 mm
Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: DIODE (*=U/V/W), DiBr: Brake DIODE, Th: NTC thermistor
TEST CIRCUIT AND WAVEFORMS
V
CC
-V
GE
+V
GE
-V
GE
+
v
CE
v
GE
0
i
E
i
C
P
N
*
G*P
E*P
G*N
E*N
Load
R
G
*: U, V, W
t
t
f
t
r
t
d(on)
i
C
10%
90 %
90 %
v
GE
0 V
0 A
0
t
d(off)
t
I
rr
Q
rr
=0.5×I
rr
×t
rr
0.5×I
rr
t
t
rr
i
E
0 A
I
E
Switching test circuit and waveforms trr, Qrr characteristics test waveform
0.1×I
CM
I
CM
V
CC
v
CE
i
C
t
0
t
i
0.1×V
CC
0.1×V
CC
V
CC
I
CM
v
CE
i
C
t
0
0.02×I
CM
t
i
I
EM
v
EC
i
E
t
0 V
ti
t
V
CC
0 A
IGBT Turn-on switching energy
IGBT Turn-off switching energy
DIODE Reverse recovery energy
Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)
Publication Date : December 2013
5
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
TEST CIRCUIT
V
Short-
circuited
21
1
22
I
C
20
19
18
17
V
GE
=15V
V
Short-
circuited
21
2
22
I
C
16
15
14
13
V
GE
=15V
V
Short-
circuited
21
3
22
I
C
12
11
10
9
V
GE
=15V
V
GE
=15V
Short-
circuited
21
1
22
I
C
20
19
18
17
V
V
GE
=15V
Short-
circuited
21
2
22
I
C
16
15
14
13
V
VGE=15V
Short-
circuited
21
3
22
IC
12
11
10
9
V
VGE=15V
21
4
22
IC
6
5
V
Gate-emitter
short-circuited
GVP-EVP GVN-EVN,
GWP-EWP, GWN-EWN,
GB-EB
Gate-emitter
short-circuited
GUP-EUP, GUN-EUN,
GWP-EWP, GWN-EWN,
GB-EB
Gate-emitter
short-circuited
GUP-EUP, GUN-EUN,
GVP-EVP, GVN-EVN,
GB-EB
UP / UN IGBT
VP / VN IGBT
WP / WN IGBT
Brake IGBT
VCEsat characteristics test circuit
V
Short-
circuited
21
1
22
I
E
20
19
18
17
Short-
circuited
V
Short-
circuited
21
2
22
I
E
16
15
14
13
Short-
circuited
V
Short-
circuited
21
3
22
I
E
12
11
10
9
Short-
circuited
Short-
circuited
21
1
22
I
E
20
19
18
17
V
Short-
circuited
Short-
circuited
21
2
22
I
E
16
15
14
13
V
Short-
circuited
Short-
circuited
21
3
22
IE
12
11
10
9
V
Short-
circuited
21
4
22
I
E
6
5
V
Gate-emitter
short-circuited
GVP-EVP GVN-EVN,
GWP-EWP, GWN-EWN,
GB-EB
Gate-emitter
short-circuited
GUP-EUP, GUN-EUN,
GWP-EWP, GWN-EWN,
GB-EB
Gate-emitter
short-circuited
GUP-EUP, GUN-EUN,
GVP-EVP, GVN-EVN,
GB-EB
UP / UN DIODE VP / VN DIODE WP / WN DIODE
Brake DIODE
VEC / VF characteristics test circuit
Publication Date : December 2013
6
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
Tj=25 °C
(Chip)
VGE=15 V
(Chip)
COLLECTOR CURRENT I
C
(A)
0
50
100
150
200
0246810
COLLECTOR-EMITTER SATURATION VOLTAGE VCEsat (V)
0
0.5
1
1.5
2
2.5
3
3.5
050 100 150 200
COLLECTOR-EMITTER VOLTAGE V
CE
(V)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
Tj=25 °C
(Chip)
G-E short-circuited
(Chip)
COLLECTOR-EMITTER SATURATION VOLTAGE V
CEsat
(V)
0
2
4
6
8
10
6 8 10 12 14 16 18 20
EMITTER CURRENT IE (A)
10
100
1000
0.5 11.5 22.5 33.5 4
GATE-EMITTER VOLTAGE V
GE
(V)
EMITTER-COLLECTOR VOLTAGE V
EC
(V)
Tj=150
°C
T
j
=125
°C
Tj=25 °C
Tj=125 °C
Tj=25 °C
IC=200 A
I
C
=100 A
IC=40 A
VGE=20 V
12 V
11 V
10 V
9 V
15 V
Tj=150 °C
Publication Date : December 2013
7
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=6.2 Ω, INDUCTIVE LOAD
---------------: Tj=150 °C, - - - - -: Tj=125 °C
VCC=600 V, VGE=±15 V, IC=100 A, INDUCTIVE LOAD
---------------: Tj=150 °C, - - - - -: Tj=125 °C
SWITCHING TIME (ns)
1
10
100
1000
10 100 1000
SWITCHING TIME (ns)
10
100
1000
110 100
COLLECTOR CURRENT I
C
(A)
EXTERNAL GATE RESISTANCE R
G
(Ω)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
V
CC
=600 V, V
GE
=±15 V, R
G
=6.2 Ω,
INDUCTIVE LOAD, PER PULSE
---------------: Tj=150 °C, - - - - -: Tj=125 °C
V
CC
=600 V, V
GE
=±15 V, I
C
/I
E
=100 A,
INDUCTIVE LOAD, PER PULSE
---------------: Tj=150 °C, - - - - -: Tj=125 °C
SWITCHING ENERGY (mJ)
0.1
1
10
10 100 1000
1
10
100
REVERSE RECOVERY ENERGY (mJ)
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
1
10
100
110 100
COLLECTOR CURRENT I
C
(A)
EMITTER CURRENT IE (A)
EXTERNAL GATE RESISTANCE R
G
(Ω)
Eon
Eoff
Err
tr
tf
td(off)
td(on )
td(on )
tr
tf
td(off)
Eon
E
off
Err
Publication Date : December 2013
8
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
CAPACITANCE CHARACTERISTICS
(TYPICAL)
FREE WHEELING DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
G-E short-circuited, Tj=25 °C
VCC=600 V, VGE=±15 V, RG=6.2 Ω, INDUCTIVE LOAD
---------------: Tj=150 °C, - - - - -: Tj=125 °C
CAPACITANCE (nF)
0.01
0.1
1
10
100
0.1 110 100
trr (ns), Irr (A)
10
100
1000
10 100 1000
COLLECTOR-EMITTER VOLTAGE V
CE
(V)
EMITTER CURRENT I
E
(A)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
VCC=600 V, IC=100 A, Tj=25 °C
Single pulse, TC=25 °C
Rth(j-c)Q=0.24 K/W, Rth(j-c)D=0.37 K/W
GATE-EMITTER VOLTAGE V
GE
(V)
0
5
10
15
20
050 100 150 200 250 300
NORMALIZED TRANSIENT THERMAL RESISTANCE Zth(j-c)
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 110
GATE C HARGE Q
G
(nC)
TIME (S)
Irr
trr
Cies
Coes
Cres
Publication Date : December 2013
9
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
BRAKE PART
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
CLAMP DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
VGE=15 V
(Chip)
G-E short-circuited
(Chip)
COLLECTOR-EMITTER SATURATION VOLTAGE V
CEsat
(V)
0
0.5
1
1.5
2
2.5
3
3.5
020 40 60 80 100
FORWARD VOLTAGE VF (V)
10
100
1000
0.5 11.5 22.5 33.5 4
COLLECTOR CURRENT I
C
(A)
FORWARD CURRENT I
F
(A)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=13 Ω, INDUCTIVE LOAD
---------------: Tj=150 °C, - - - - -: Tj=125 °C
VCC=600 V, IC=50 A, VGE=±15 V, INDUCTIVE LOAD
---------------: Tj=150 °C, - - - - -: Tj=125 °C
SWITCHING TIME (ns)
1
10
100
1000
110 100
SWITCHING TIME (ns)
10
100
1000
10 100 1000
COLLECTOR CURRENT I
C
(A)
EXTERNAL GATE RESISTANCE R
G
(Ω)
Tj=150 °C
Tj=125 °C
Tj=25 °C
Tj=150 °C
Tj=25 °C
td(on )
tr
tf
td(off)
td(on )
tr
tf
td(off)
Tj=125 °C
Publication Date : December 2013
10
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
BRAKE PART
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
V
CC
=600 V, V
GE
=±15 V, R
G
=13 Ω,
INDUCTIVE LOAD, PER PULSE
---------------: Tj=150 °C, - - - - -: Tj=125 °C
V
CC
=600 V, I
C
/I
F
=50 A, V
GE
=±15 V,
INDUCTIVE LOAD, PER PULSE
---------------: Tj=150 °C, - - - - -: Tj=125 °C
SWITCHING ENERGY (mJ)
0.01
0.1
1
10
110 100
0.1
1
10
100
REVERSE RECOVERY ENERGY (mJ)
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
1
10
100
10 100 1000
COLLECTOR CURRENT I
C
(A)
FORWARD CURRENT IF (A)
EXTERNAL GATE RESISTANCE R
G
(Ω)
BRAKE DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
VCC=600 V, VGE=±15 V, RG=13 Ω, INDUCTIVE LOAD
---------------: Tj=150 °C, - - - - -: Tj=125 °C
Single pulse, TC=25 °C
Rth(j-c)Q=0.44 K/W, Rth(j-c)D=0.66 K/W
t
rr
(ns), I
rr
(A)
10
100
1000
110 100
NORMALIZED TRANSIENT THERMAL RESISTANCE Zth(j-c)
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 110
FORWARD CURRENT I
F
(A)
TIME (S)
Eon
Eoff
Irr
trr
Err
E
on
E
off
Err
Publication Date : December 2013
11
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
NTC thermistor part
TEMPERATURE CHARACTERISTICS
(TYPICAL)
RESISTANCE R (kΩ)
0.1
1
10
100
-50 -25 025 50 75 100 125
TEMPERATURE T C)
Publication Date : December 2013
12
< IGBT MODULES >
CM100RX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more
reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors
may lead to personal injury, fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi
semiconductor product best suited to the customer's application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.
All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are subject
to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It
is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product
listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi
Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these
inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means,
including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).
When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before making
a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes
no responsibility for any damage, liability or other loss resulting from the information containedherein.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or systems
for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or
in part these materials.
If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other than
the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of
destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor
for further details on these materials or the products contained therein.
© 2013 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.
Publication Date : December 2013
13