H04-004-07
Fuji Electric Co.,Ltd.
Matsumoto Factory
SPECIFICATION
Device Name :
Type Name :
Spec. No. :
IGBT - IPM
6MBP75RTJ060
MS6M 0673
1
22
MS6M 0673
Jan. 29 ‘03 N.Matsuda
K.Yamada
T.Fujihira
Nishiura a
Jan. 29 ‘03
Jan.-29 -‘03
H04-004-06
R e v i s e d R e c o r d s
Date
Classi-
fication Ind. Content
Applied
date Drawn Checked Approved
enactment Issued
date
MS6M 0673 2
22
K.Yamada
Jan.-29-’03 T.FujihiraN.Matsuda A.Nishiura
K.Yamada
May.-19-’03 T.FujihiraN.Matsuda
Revision aReliability Test Items
a
T.Miyasaka
H04-004-03
22
MS6M 0673
a
3
1. Package Outline Drawings
a
P
N
W
V
U
B
109
109109
109
95
9595
95
13.8
13.813.8
13.8
3.22
3.223.22
3.22
88
8888
88
74
7474
74
20
2020
2020
2020
2017
1717
17
10
1010
10 2
22
2
0.5
0.50.5
0.5
24
2424
24 26
2626
26 26
2626
260.5
0.50.5
0.5
8
88
8
22
2222
22
±0.3
±0.15
±1
±0.3
±0.3
-0.3
+1.0
6-M5
4-φ5.5
4-φ5.54-φ5.5
4-φ5.5
-0.2
+1.0
17
1717
17
-0.3
+1.0
-0.3
+0.6
0.5
3.22
2
2
2 2 2
4.5
φ2.5
0.1 max
10
8
1
2
(φ11.5)
(12)
2-φ2.5
2-φ2.52-φ2.5
2-φ2.519-0.5
19-0.519-0.5
19-0.5
6
66
6
10
1010
10
6
66
6
10
1010
10
6
66
6
10
1010
10 12
1212
12
2
22
2
66.44
66.4466.44
66.44
±0.3
±1
±0.3
±0.15 ±0.15
±0.2 ±0.2 ±0.2 ±0.25
±0.1
17
1717
17 7
77
7
9
99
922
2222
22
31
3131
31
12.5
12.512.5
12.5
±0.3
±0.1
±0.1
±0.1
±0.3
Details of control terminals
Indication of Lot No.
Odered No. in monthly
Manufactured month
Last digit of manufactured year
(Jan.Sep.:19,Oct.:O,Nov.:N,Dec.:D)
Lot No.
Dimensions in mm
1
11
1
Package type : P621
H04-004-03
22
MS6M 0673
a
4
2Pin Descriptions
Main circuit
Description
Positive input supply voltage.
Output (U).
Output (V).
Output (W).
Negative input supply voltage.
No contact.
Control circuit
Symbol Description
GNDU High side ground (U).
ALMU Alarm signal output (U).
VinU Logic input for IGBT gate drive (U).
VccU High side supply voltage (U).
GNDV High side ground (V).
ALMV Alarm signal output (V).
VinV Logic input for IGBT gate drive (V).
VccV High side supply voltage (V).
GNDW High side ground (W).
ALMW Alarm signal output (W).
VinW Logic input for IGBT gate drive (W).
VccW High side supply voltage (W).
GND Low side ground.
Vcc Low side supply voltage.
VinDB No contact.
VinX Logic input for IGBT gate drive (X).
VinY Logic input for IGBT gate drive (Y).
VinZ Logic input for IGBT gate drive (Z).
ALM Low side alarm signal output.
B
W
N
Symbol
P
U
V
H04-004-03
22
MS6M 0673
a
5
3. Block Diagram
Pre-drivers include following functions
1.Amplifier for driver
2.Short circuit protection
3.Under voltage lockout circuit
4.Over current protection
5.IGBT chip over heating protection
U
V
W
Vcc
VinX
GND
VinY
VinZ
ALM
B
N
VinDB
VccW
ALMW
GNDW
VccV
ALMV
GNDV
P
VccU
ALMU
GNDU
VinU
VinV
VinW
Pre-Driver
Pre-Driver
Pre-Driver
Pre-Driver
Pre-Driver
Pre-Driver
Vz
RALM 1.5k
RALM 1.5k Vz
RALM 1.5k Vz
Vz
Vz
Vz
RALM 1.5k
Over heating protection
circuit
NC
U
V
W
Vcc
VinX
GND
VinY
VinZ
ALM
B
N
VinDB
VccW
ALMW
GNDW
VccV
ALMV
GNDV
P
VccU
ALMU
GNDU
VinU
VinV
VinW
Pre-DriverPre-Driver
Pre-DriverPre-Driver
Pre-DriverPre-Driver
Pre-DriverPre-Driver
Pre-DriverPre-Driver
Pre-DriverPre-Driver
Vz
RALM 1.5k
RALM 1.5k Vz
RALM 1.5k Vz
Vz
Vz
Vz
RALM 1.5k
Over heating protection
circuit
NC
H04-004-03
22
MS6M 0673
a
6
4Absolute Maximum Ratings
Tc25 unless otherwise specified.
Symbol Min. Max. Units
Bus Voltage DC VDC 0 450 V
(between terminal P and N) Surge VDC(surge) 0 500 V
Short operating Vsc 200 400 V
Collector-Emitter Voltage *1 Vces 0 600 V
DC Ic - 75 A
Collector Current 1ms Icp - 150 A
Duty=75.0% *2 -Ic - 75 A
Collector Power Dissipation One transistor *3 Pc - 198 W
Supply Voltage of Pre-Driver *4 Vcc -0.5 20 V
Input Signal Voltage *5 Vin -0.5 Vcc+0.5 V
Input Signal Current Iin - 3 mA
Alarm Signal Voltage *6 VALM -0.5 Vcc V
Alarm Signal Current *7 ALM - 20 mA
Junction Temperature Tj - 150
Operating Case Temperature Topr -20 100
Storage Temperature Tstg -40 125
Isolating Voltage
(Terminal to base, 50/60Hz sine wave 1min.) *8
Terminal (M5)
Mounting (M5)
Note
*1 Vces shall be applied to the input voltage between terminal P and U or or W,
N and U or V or W
*2 125/FWD Rth(j-c)/(Ic×VF MAX)=125/0.855/(75×2.6)×100=75.0%
*3 Pc=125/IGBT Rth(j-c)=125/0.63=198W [Inverter]
*4 VCC shall be applied to the input voltage between terminal No.4 and 1, 8 and 5,
12 and 9, 14 and 13
*5 Vin shall be applied to the input voltage between terminal No.3 and 1, 7 and 5, 11 and 9,
16,17,18 and 13.
*6 VALM shall be applied to the voltage between terminal No.2 and 1, No6 and 5,
No10 and 9, No.19 and 13
*7 IALM shall be applied to the input current to terminal No.2,6,10 and 19
*8 50/60Hz sine wave 1minute.
V
Items
Viso - AC2500
NmScrew Torque - - 3.5
Inverter
H04-004-03
22
MS6M 0673
a
7
5. Electrical Characteristics
Tj25℃,Vcc15V unless otherwise specified.
5.1 Main circuit
Symbol Min. Typ. Max. Units
Collector Current CE600V
at off signal input Vin terminal open.
Collector-Emitter Ic=75A Terminal - - 2.4
saturation voltage Chip - 2.0 - V
-Ic=75A Terminal - - 2.6
Chip - 1.6 - V
Turn-on time ton VDC300VTj=1251.2 - -
Turn-off time toff Ic75A Fig.1Fig.6 - - 3.6 us
VDC300V
IF75A  Fig.1Fig.6
internal wiring
Maximum AvalancheEnergy PAV inductance50nH 40 - - mJ
Main circuit wiring
inductance54nH
5.2 Control circuit
Symbol Min. Typ. Max. Units
Supply current Switching Frequency
Supply current Iccn Tc-20125 Fig.7
ON 1.00 1.35 1.70
OFF 1.25 1.60 1.95
Input Zener Voltage Vz Rin20k-8.0- V
Tc-20℃ Fig.2 1.1 - -
Alarm Signal Hold Time tALM Tc25℃ Fig.2 - 2.0 - ms
Tc125℃ Fig.2 - - 4.0
Current Limit Resistor RALM Alarm terminal 1425 1500 1575 Ω
trr
mA
0.3--
VF
--1.0
Vin(th)Input signal threshold voltage
of N-side pre-driver
of P-side pre-driver (one unit) Iccp
V
mA
mA--18
--65
: 015kHz
Item Conditions
Item Conditions
(A non-repetition)
Reverse recovery time
Forward voltage of FWD
ICES
VCE(sat)
Inverter
H04-004-03
22
MS6M 0673
a
8
5.3 Protection Section Vcc=15V)
Symbol Conditions Min. Typ. Max. Units
Over Current Protection Level Ioc Tj=125113 - - A
of Inverter circuit
Over Current Protection Delay time tdoc Tj=125-5-us
SC Protection Delay time tsc Tj=125 Fig.4 - - 8 us
IGBT Chips Over Heating TjOH Surface 150 - -
Protection Temperature Level of IGBT Chips
Over Heating Protection Hysteresis TjH - 20 -
Over Heating Protection TcOH VDC=0V, Ic=0A 110 - 125
Protection Temperature Level Case Temperature
Over Heating Protection Hysteresis TcH - 20 -
Under Voltage Protection Level VUV 11.0 - 12.5 V
Under Voltage Protection Hysteresis VH 0.2 0.5 -
6. Thermal Characteristics (Tc=25℃)
Item Symbol Min. Typ. Max. Units
Junction to Case Inverter IGBT Rth(j-c) - - 0.63 /W
Thermal Resistance *9 FWD Rth(j-c) - - 0.855
Case to Fin Thermal Resistance with Compound Rth(c-f) - 0.05 -
7. Noise Immunity Vdc=300VVcc=15VTest Circuit Fig 5.
Item Conditions Min. Typ. Max. Units
Common mode Pulse width 1us,polarity ±,10 minuets ±2.0 - - kV
rectangular noise Judgeno over-current, no miss operating
Common mode Rise time 1.2us,Fall time 50usInterval 20s,10 times ±5.0 - - kV
lightning surge Judgeno over-current, no miss operating
8. Recommended Operating Conditions
Item Symbol Min. Typ. Max. Units
DC Bus Voltage VDC - - 400 V
Power Supply Voltage of Pre-Driver Vcc 13.5 15.0 16.5 V
Screw Torque (M5) - 2.5 - 3.0 Nm
9. Weight
Item Symbol Min. Typ. Max. Units
Weight Wt - 450 - g
*9( For 1device Case is under the device )
Item
H04-004-03
22
MS6M 0673
a
9
90%
On
ton
Vin
Ic
trr
Vin(th)
Vin(th)
90%
50%
toff
10%
/Vin
Vge (Inside IPM)
Fault (Inside IPM)
/ALM
Gate Off
on
Gate On
2ms(typ.)
off
normal
tALM
tALMMax. tALMMax.
off
FaultOver-current,Over-heat or Under-voltage
on
①②
alarm
Figure 1. Switching Time Waveform Definitions
Figure 2. Input/Output Timing Diagram
Figure 3. Over-current Protection Timing Diagram
on
/Vin
Ic
/ALM tdoc
Ioc
off
alarm
on
tdoc
Necessary conditions for alarm reset (refer to to in figure2.)
This represents the case when a failure-causing Fault lasts for a period more than tALM.
The alarm resets when the input Vin is OFF and the Fault has disappeared.
This represents the case when the ON condition of the input Vin lasts for a period more
than tALM. The alarm resets when the Vin turns OFF under no Fault conditions.
This represents the case when the Fault disappears and the Vin turns OFF within tALM.
The alarm resets after lasting for a period of the specified time tALM.
When a collector current over the OC level flows and the OFF command is input within
a period less than the trip delay time tdoc, the current is hard-interrupted and no alarm
is output.
When a collector current over the OC level flows for a period more than the trip delay
time tdoc, the current is soft-interrupted. If this is detected at the lower arm IGBTs,
an alarm is output.
Period :
Period :
H04-004-03
22
MS6M 0673
a
10
VccU
DC
15V
+
IPM
P
U
V
W
N
20k
VinU
GNDU
SW1
Vcc
DC
15V
20k
VinX
GND
SW2
Cooling
Fin
Earth
AC200V
4700p
Noise
CT
Figure 5. Noise Test Circuit
AVcc
Vin
GND
Icc P
U
V
W
N
P.G
+8V
fsw
IPM
DC
15V
Figure 7. Icc Test Circuit
Figure.4 Definition of tsc
Ic Ic Ic
IALM IALM
IALM
tSC
Vcc
Vin
GND
DC
15V
DC
300V
N
+
L
IPM
Ic
P
HCPL-
4504
20k
Vcc
Vin
GND
DC
15V
DC
300V
N
+
L
IPM
Ic
P
HCPL-
4504
20k
Figure 6. Switching Characteristics Test Circuit
H04-004-03
22
MS6M 0673
a
11
Input Output
(Vin) (IGBT)
Low ON
High OFF
10. Truth table
10.1 IGBT Control
The following table shows the IGBT ON/OFF status with respect to the input signal Vin.
The IGBT turn-on when Vin is at “Low” level under no alarm condition.
10.2 Fault Detection
(1) When a fault is detected at the high side, only the detected arm stops its output.
At that time the IPM dosen’t any alarm.
(2) When a fault is detected at the low side, all the lower arms stop their outputs and the IPM
outputs an alarm of the low side.
*Depend on input logic.
U-phase V-phase W-phase Low side ALM-U ALM-V ALM-W ALM
OC OFF * * * L H H H
UVOFF***LHHH
TjOHOFF***LHHH
OC * OFF * * H L H H
UV * OFF * * H L H H
TjOH * OFF * * H L H H
OC * * OFF * H H L H
UV * * OFF * H H L H
TjOH * * OFF * H H L H
OC * * * OFF H H H L
UV***OFFHHHL
TjOH***OFFHHHL
Case TcOH * * * OFF H H H L
Temperature
High side U-
phase
High side V-
phase
High side W-
phase
Low side
IGBT Alarm Output
Fault
H04-004-03
22
MS6M 0673
a
12
11. Cautions for design and application
1. Trace routing layout should be designed with particular attention to least stray capacity
between the primary and secondary sides of optical isolators by minimizing the wiring
length between the optical isolators and the IPM input terminals as possible.
フォトカプラとIPMの入力端子間の配線は極力短くし、フォトカプラの一次側と二次側の浮遊容量を小さくした
パターンレイアウトにして下さい。
2. Mount a capacitor between Vcc and GND of each high-speed optical isolator as close to
as possible.
高速フォトカプラのVcc-GND間に、コンデンサを出来るだけ近接して取り付けて下さい。
3. For the high-speed optical isolator, use high-CMR type one with tpHL, tpLH 0.8µs.
高速フォトカプラはtpHL,tpLH0.8us、高CMRタイプをご使用ください。
4. For the alarm output circuit, use low-speed type optical isolators with CTR 100%.
アラーム出力回路は、低速フォトカプラCTR100%のタイプをご使用ください。
5. For the control power Vcc, use four power supplies isolated each. And they should be
designed to reduce the voltage variations.
制御電源Vccは、絶縁された4電源を使用してください。また、電圧変動を抑えた設計として下さい。
6. Suppress surge voltages as possible by reducing the inductance between the DC bus P
and N, and connecting some capacitors between the P and N terminals.
P-N間の直流母線は出来るだけ低インダクタンス化し、P-N端子間にコンデンサを接続するなどしてサージ
電圧を低減して下さい。
7. To prevent noise intrusion from the AC lines, connect a capacitor of some 4700pF between
the three-phase lines each and the ground.
ACラインからのノイズ侵入を防ぐために、3相各線-アース間に4700pF程のコンデンサを接続して下さい。
8. At the external circuit, never connect the control terminal GNDU to the main terminal
U-phase, GNDV to V-phase, GNDW to W-phase, and GND to N-phase. Otherwise,
malfunctions may be caused.
制御端子①GNDUと主端子U相、制御端子⑤GNDVと主端子V相、制御端子⑨GNDWと主端子W相、
制御端子⑬GNDと主端子Nを外部回路で接続しないで下さい。誤動作の原因になります。
9. Take note that an optical isolator’s response to the primary input signal becomes slow
if a capacitor is connected between the input terminal and GND.
入力端子-GND間にコンデンサを接続すると、フォトカプラ一次側入力信号対する応答時間が長くなります
のでご注意ください。
H04-004-03
22
MS6M 0673
a
13
+100μm
0
Heat sink
Mounting holes
10. Taking the used isolator’s CTR into account, design with a sufficient allowance to decide
the primary forward current of the optical isolator.
フォトカプラの一次側電流は、お使いのフォトカプラのCTRを考慮し十分に余裕をもった設計にして下さい。
11. Apply thermal compound to the surfaces between the IPM and its heat sink to reduce
the thermal contact resistance.
接触熱抵抗を小さくするために、IPMとヒートシンクの間にサーマルコンパウンドを塗布して下さい。
12. Finish the heat sink surface within roughness of 10µm and flatness (camber) between screw
positions of 0 to +100µm. If the flatness is minus, the heat radiation becomes worse due to
a gap between the heat sink and the IPM. And, if the flatness is over +100µm, there is a danger
that the IPM copper base may be deformed and this may cause a dielectric breakdown.
ヒートシンク表面の仕上げは、粗さ10um以下、ネジ位置間
での平坦度(反り)は、0100umとして下さい。平坦度がマ
イナスの場合、ヒートシンクとIPMの間に隙間ができ放熱が
悪化します。また、平坦度が+100um以上の場合IPMの銅
ベースが変形し絶縁破壊を起こす危険性があります。
13. This product is designed on the assumption that it applies to an inverter use. Sufficient
examination is required when applying to a converter use. Please contact Fuji Electric Co.,Ltd
if you would like to applying to converter use.
本製品は、インバータ用途への適用を前提に設計されております。コンバータ用途へ適用される場合は、
十分な検討が必要です。もし、コンバータへ適用される場合は御連絡ください。
14. Please see the 『Fuji IGBT-IPM R SERIES APPLICATION MANUAL and Fuji IGBT
MODULES N SERIES APPLICATION MANUAL.
『富士IGBT-IPM Rシリーズ アプリケーションマニュアル』及び『IGBTモジュール Nシリーズ アプリケーショ
マニュアル』を御参照ください
H04-004-03
22
MS6M 0673
a
14
AC200
V
U
V
W
B
N
P
IPM
IPMIPM
IPM
+
Vc c
+
0.1uF
20 kΩ
10uF
5V 1k
IF
Vc c
+
0.1uF
20 kΩ
10uF
5V 1k
IF
Vc c
5V 1k
+
0.1uF
20kΩ
10uF
IF
0.1uF
20kΩ10uFIF
0.1uF
20 kΩ10uFIF
0.1uF
20 kΩ10uF
IF
5V 1k
Vc c
AC200
V
U
V
W
B
N
P
IPM
IPMIPM
IPM
+
Vc c
+
0.1uF
20 kΩ
10uF
5V 1k
IF
Vc c
+
0.1uF
20 kΩ
10uF
5V 1k
IF
Vc c
5V 1k
+
0.1uF
20kΩ
10uF
IF
0.1uF
20kΩ10uFIF
0.1uF
20 kΩ10uFIF
0.1uF
20 kΩ10uF
IF
5V 1k
Vc c
The alarm signal should be connected to Vcc when it it is not used.
不使用のーム端子は、 制御電源Vcc に接してい。
12. Example of applied circuit 応用回路例
13. Package and Marking 梱包仕様
Please see the MT6M4140 which is packing specification of P610 & P611 & P621 package
P610,611,62 梱包仕様書 T6M4140を御参照ください。
14. Cautions for storage and transportation 保管、運搬上の注意
Store the modules at the normal temperature and humidity (5 to 35°C, 45 to 75%).
常温常湿(535℃、4575%)で保存して下さい。
Avoid a sudden change in ambient temperature to prevent condensation on the module
surfaces.
モジュールの表面が結露しなよう、急激な温度変化を避けて下さい。
Avoid places where corrosive gas generates or much dust exists.
腐食性ガスの発生場所、粉塵の多い場所は避けて下さい。
Store the module terminals under unprocessed conditions
モジュールの端子は未加工の状態で保管すること。.
Avoid physical shock or falls during the transportation.
運搬時に衝撃を与えたり落下させなで下さい。
15. Scope of application 適用範囲
This specification is applied to the IGBT-IPM (type: 6MBP75RTJ060).
本仕様書は、IGBT-IPM (型式:6MBP75RTJ060)に適用する
16. Based safety standards 準拠安全規格
UL1557
H04-004-03
22
MS6M 0673
a
19
a
18. Reliability Test Items
Test
cate-
gories
Test items Test methods and conditions
Reference
norms
EIAJ
ED-4701
Number
of sample
Accept-
ance
number
1 Terminal strength Pull force : 40 N (main terminal) Test Method 401 5( 1 : 0 )
端子強度 10 N (control terminal) Method
(Pull test) Test time : 10 ±1 sec.
2 Mounting Strength Screw torque : 2.5 ~ 3.5 Nm (M5) Test Method 402 5( 1 : 0 )
締付け強度 Test time : 10 ±1 sec. method
3 Vibration Range of frequency : 10500 Hz Test Method 403 5( 1 : 0 )
振動 Sweeping time : 15 min. Condition code B
Acceleration : 100 m/s2
Sweeping direction : Each X,Y,Z axis
Test time : 6 hr. (2hr./direction)
4 Shock Maximum acceleration : 5000 m/s2Test Method 404 5( 1 : 0 )
衝撃 Pulse width 1.0 ms Condition code B
Direction : Each X,Y,Z axis
Test time : 3 times/direction
5 Solderabitlity Solder temp. : 235 ±5 Test Method 303 5( 1 : 0 )
はんだ付け Immersion duration : 5.0 ±0.5 sec. Condition code A
Test time : 1 time
Each terminal should be Immersed in solder
within 1~1.5mm from the body.
6 Resistance to Solder temp. : 260 ±5 Test Method 302 5( 1 : 0 )
soldering heat Immersion time : 10 ±1sec. Condition code A
はんだ耐熱性 Test time : 1 time
Each terminal should be Immersed in solder
within 1~1.5mm from the body.
1 High temperature Storage temp. : 125 ±5 Test Method 201 5( 1 : 0 )
storage 高温保 Test duration : 1000 hr.
2 Low temperature Storage temp. : -40 ±5 Test Method 202 5( 1 : 0 )
storage 低温保 Test duration : 1000 hr.
3 Temperature Storage temp. : 85 ±2 Test Method 103 5( 1 : 0 )
humidity storage Relative humidity : 85 ±5% Test code C
高温高湿保存 Test duration : 1000hr.
4 Unsaturated Test temp. : 120 ±2 Test Method 103 5( 1 : 0 )
pressure cooker Atmospheric pressure : 1.7x105 Pa Test code E
プレッシャークッカー Test humidity : 85 ±5%
Test duration : 96 hr.
5 Temperature Test temp. : Minimum storage temp. -40 ±5Test Method 105 5( 1 : 0 )
cycle Maximum storage temp. 125 ±5
温度サイクル Normal temp. 5 ~ 35
Dwell time : Tmin ~ TN ~ Tmax ~ TN
1hr. 0.5hr. 1hr. 0.5hr.
Number of cycles : 100 cycles
6 Thermal shock +0 Test Method 307 5( 1 : 0 )
熱衝撃 Test temp. : High temp. side 100 -5 method
+5 Condition code A
Low temp. side 0 -0
Fluid used : Pure water (running water)
Dipping time : 5 min. par each temp.
Transfer time : 10 sec.
Number of cycles : 10 cycles
Mechanical Tests
Environment Tests Mechanical Tests
Environment Tests
H04-004-03
22
MS6M 0673
a
20
a
Test
cate-
gories
Test items Test methods and conditions
Reference
norms
EIAJ
ED-4701
Number
of sample
Accept-
ance
number
1 High temperature Test temp. : Ta = 125 ±5Test Method 101 5( 1 : 0 )
reverse bias (Tj 150 )
高温逆ハアス Bias Voltage : VC = 0.8×VCES
Bias Method : Applied DC voltage to C-E
Vcc = 15V
Test duration : 1000 hr.
2 Temperature Test temp. : 85 ±2 Test Method 102 5( 1 : 0 )
humidity bias Relative humidity : 85 ±5 % Condition code C
高温高湿ハアス Bias Voltage : VC = 0.8×VCES
Vcc = 15V
Bias Method : Applied DC voltage to C-E
Test duration : 1000 hr.
3 Intermitted ON time : 2 sec. Test Method 106 5( 1 : 0 )
operating life OFF time : 18 sec.
(Power cycle) Test temp. : Tj=100 ±5deg
断続動作 Tj 150 , Ta=25 ±5
Number of cycles : 15000 cycles
Endurance TestsEndurance Tests
Item Characteristic Symbol Failure criteria Unit Note
Lower limit Upper limit
Electrical Leakage current ICES - USL×2 mA
characteristic Saturation voltage VCE(sat) - USL×1.2 V
Forward voltage VF - USL×1.2 V
Thermal IGBT th(j-c) -USL×1.2
/W
resistance FWD th(j-c) -USL×1.2
/W
Over Current Protection Ioc LSL×0.8 USL×1.2
Alarm signal hold time tALM LSL×0.8 USL×1.2 ms
Over heating Protection TcOH LSL×0.8 USL×1.2
Isolation voltage Viso Broken insulation -
Visual Visual inspection
inspection Peeling - The visual sample -
Plating
and the others
LSL : Lower specified limit.
USL : Upper specified limit.
Note :
Each parameter measurement read-outs shall be made after stabilizing the components
at room ambient for 2 hours minimum, 24 hours maximum after removal from the tests.
And in case of the wetting tests, for example, moisture resistance tests, each component
shall be made wipe or dry completely before the measurement.
19. Failure Criteria
H04-004-03
22
MS6M 0673
a
21
1. This product shall be used within its absolute maximum rating (voltage, current, and temperature).
This product may be broken in case of using beyond the ratings.
製品の絶対最大定格(電圧,電流,温度等)の範囲内御使用下さい。絶対最大定格を超えて使用すると、素子
破壊する場合があります。 
2. Connect adequate fuse or protector of circuit between three-phase line and this product to prevent
the equipment from causing secondary destruction.
万一の不慮の事故で素子が破壊した場合考慮し、商用電源と本製品の間に適切な容量のヒーズ又はブレーカーを
必ず付けて2次破壊を防いでください。
3. When studying the device at a normal turn-off action, make sure that working paths of the turn-off
voltage and current are within the RBSOA specification. And ,when studying the device duty at
a short-circuit current non-repetitive interruption, make sure that the paths are also within the
avalanche proof(PAV) specification which is calculated from the snubber inductance, the IPM
inner inductance and the turn-off current. In case of use of IGBT-IPM over these specifications,
it might be possible to be broken.
通常のターンオフ動作における素子責務の検討の際には、ターンオフ電圧・電流の動作軌跡がRBSOA仕様内にある
ことを確認し下さい。また、非繰返しの短絡電流遮断における素子責務の検討に際しては、スナバーインダクタンスと
IPM内部インダクタンス及びターンオフ電流から算出されるアバランシェ耐量(PAV)仕様内である事を確認して下さい。
これらの仕様を越えて使用すると、素子が破壊する場合がります。
4. Use this product after realizing enough working on environment and considering of product's reliability
life. This product may be broken before target life of the system in case of using beyond the product's
reliability life.
製品の使用環境を十分に把握し、製品の信頼性寿命が満足できるか検討の上、本製品を適用して下さい。製品の信頼性
寿命を超えて使用した場合、装置の目標寿命より前に素子が破壊する場合があります
5. If the product had been used in the environment with acid, organic matter, and corrosive gas
(For example : hydrogen sulfide, sulfurous acid gas), the product's performance and appearance
can not be ensured easily.
酸・有機物・腐食性ガス(硫化水素,亜硫酸ガス等)を含む環境下で使用された場合、製品機能・外観などの保証
致しかねます。
6. The thermal stress generated from rise and fall of Tj restricts the product lifetime.
You should estimate the Tj from power losses and thermal resistance, and design the inverter lifetime
within the number of cycles provided from the power cycle curve. (Technical Rep. No.: MT6M4057)
製品の寿命は接合温度の上昇と下降によって起こる熱ストレスで決まります。損失と熱抵抗からTjを推定しパワー
サイクル寿命カーブで決まるサイクル数以下で、インバータの寿命を設計して下さい(技術資料№:MT6M4057)
 
7. Never add mechanical stress to deform the main or control terminal.
The deformed terminal may cause poor contact problem.
主端子及び制御端子に応力を与えて変形させないで下さい。 端子の変形により、接触不良などを引き起こす場合が
あります。
Warnings
H04-004-03
22
MS6M 0673
a
22
8. Never add mechanical stress to deform the main or control terminal.
The deformed terminal may cause poor contact problem.
主端子及び制御端子に応力を与えて変形させないで下さい。 端子の変形により、接触不良などを引き起こす場合が
あります。
9. If excessive static electricity is applied to the control terminals, the devices can be broken.
Implement some countermeasures against static electricity.
制御端子に過大な静電気が印加された場合、素子が破壊する場合があります。取り扱い時は静電気対策
実施して下さい
1. Fuji Electric is constantly making every endeavor to improve the product quality and reliability.
However, semiconductor products may rarely happen to fail or malfunction. To prevent accidents
causing injury or death, damage to property like by fire, and other social damage resulted from
a failure or malfunction of the Fuji Electric semiconductor products, take some measures to keep
safety such as redundant design, spread-fire-preventive design, and malfunction-protective design.
富士電機は絶えず製品の品質と信頼性の向上に努めています。しかし半導体製品は故障が発生したり、誤動作する
場合があります。富士電機製半導体製品の故障または誤動作が、結果として人身事故・火災等による財産に対する
損害や社会的な損害を起こさないよう冗長設計・延焼防止設計・誤動作防止設計など安全確保のための手段を
講じて下さい
2. The application examples described in this specification only explain typical ones that used the Fuji
Electric products. This specification never ensure to enforce the industrial property and other rights,
nor license the enforcement rights.
本仕様書に記載してある応用例は、富士電機製品を使用した代表的な応用例を説明するものであり本仕様書に
よって工業所有権、の他権利の実施に対する保障または実施権の許諾を行うのではありません。
3. The product described in this specification is not designed nor made for being applied to the equipment
or systems used under life-threatening situations. When you consider applying the product of this
specification to particular used, such as vehicle-mounted units, shipboard equipment, aerospace
equipment, medical devices, atomic control systems and submarine relaying equipment or systems,
please apply after confirmation of this product to be satisfied about system construction and required
reliability.
本仕様書に記載された製品は、人命にかかわるよう状況下で使用される機器あるいはシステムに用いられること
目的として設計・製造されたものではありません。本仕様書の製品を車両機器、船舶、航空宇宙、医療機器、原子力
制御、海底中継機器あるいはシステムなど、特殊用途へのご利用をご検討の際は、システム構成及び要求品質に
満足することをご確認の上ご利用下さい。
Caution
If there is any unclear matter in this specification, please contact Fuji Electric Co., Ltd.