HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
This document is a general product description and is subject to change with out notice. Hynix Semiconductor does not assume an y
responsibility for use of circuits described. No patent licenses are implied.
Rev. 0.5 /Apr. 2006
128Mb DDR SDRAM
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 2
Revision History
Revision
No. History Draft Date Remark
0.1 Define Preliminary Specification Sep. 2003
0.2 Insert CL3 in Speed Grade(-J) Oct. 2003
0.3 Editorial Changes Jul. 2004
0.4
1) Changed Document Title from 128M to 128Mb
2) Changed Pa rameter name from Ambient Temperature to Operating
Temperature in ABSOLUTE MAXIMUM RATINGS
3) Updated High, Low Current Level of Output Driver Strength in DC
OPERATING CONDITIONS
4) Corrected 6th note and Added 7th note in DC OPERATING
CONDITIONS
5) Editorial Changes
Aug. 2004
0.5 State Diagram modified Apr. 2006
DESCRIPTION
The Hynix HY5DU28422ET, HY5DU28822ET and HY5DU281622ET are a 134,217,728-bit CMOS Double Data
Rate(D D R) Synchronous DRAM , ideally su ited for the main memory a ppl ic a t ions which require s l arge memor y density
and high bandwidth.
The Hynix 128Mb DDR SDRAMs offer fully synchronous operations referenced to both rising and falling edges of the
clock. While all addresses and control inputs are latched on the rising edges of the CK (falling edges of the /CK), Data,
Data strobes and W rite da ta masks inputs ar e sampled on both rising and falling edges of it. The data paths are inter-
nally pipelined and 2-bit prefetched to achiev e v ery high bandwidth. All input an d output volt age lev els ar e compatib le
with SSTL_2.
FEATURES
•VDD, VDDQ = 2.5V +/- 0.2V
All inputs and outputs are compatible with SSTL_2
interface
Fully differential clock inputs (CK, /CK) operation
Double data rate interface
Source synchronous - data transaction aligned to
bidirectional data strobe (DQS)
Data outputs on DQS edges when read (edged DQ)
Data inputs on DQS centers when write (centered
DQ)
On chip DLL align DQ and DQS transition with CK
transition
DM mask write data-in at the both rising and falling
edges of the data strobe
tRAS Lock-out function supported
All addresses and control inputs except data, data
strobes and data masks latched on the rising edges
of the clock
Programmable /CAS latency 2 / 2.5 / 3 supported
Programmable burst length 2 / 4 / 8 with both
sequential and interleave mode
Internal four bank operations with single pulsed
/RAS
Auto refresh and self refresh supported
4096 refresh cycles / 64ms
JEDEC standard 400mil 66pin TSOP-II with 0.65mm
pin pitch
Full and Half strength driver option controlled by
EMRS
ORDERING INFORMATION
* X means speed grade
Part No. Configuration PACKAGE
HY5DU28422ET-X* 32Mx4 400mil
66pin
TSOP-II
HY5DU28822ET-X* 16Mx8
HY5DU281622ET-X* 8Mx16
Rev. 0.5 / Apr. 2006 3
OPERATING FREQUENCY
Grade CL2 CL2.5 CL3 Remark
(CL-tRCD-tRP)
- J 133MHz 166MHz 166MHz DDR333 (2.5-3-3)
/ 166MHz (3-3-3)
- M 133MHz 133MHz - DDR266 (2-2-2)
- K 133MHz 133MHz - DDR266A (2-3-3)
- H 100MHz 133MHz - DDR266B (2.5-3-3)
- L 100MHz 125MHz - DDR200 (2-2-2)
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 4
PIN CONFIGURATION(TSOP)
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
VDD
DQ0
VDDQ
DQ1
DQ2
VSSQ
DQ3
DQ4
VDDQ
DQ5
DQ6
VSSQ
DQ7
NC
VDDQ
LDQS
NC
VDD
NC
LDM
/WE
/CAS
/RAS
/CS
NC
BA0
BA1
A10/AP
A0
A1
A2
A3
VDD
VSS
DQ15
VSSQ
DQ14
DQ13
VDDQ
DQ12
DQ11
VSSQ
DQ10
DQ9
VDDQ
DQ8
NC
VSSQ
UDQS
NC
VREF
VSS
UDM
/CK
CK
CKE
NC
NC
A11
A9
A8
A7
A6
A5
A4
VSS
VDD
DQ0
VDDQ
NC
DQ1
VSSQ
NC
DQ2
VDDQ
NC
DQ3
VSSQ
NC
NC
VDDQ
NC
NC
VDD
NC
NC
/WE
/CAS
/RAS
/CS
NC
BA0
BA1
A10/AP
A0
A1
A2
A3
VDD
VSS
DQ7
VSSQ
NC
DQ6
VDDQ
NC
DQ5
VSSQ
NC
DQ4
VDDQ
NC
NC
VSSQ
DQS
NC
VREF
VSS
DM
/CK
CK
CKE
NC
NC
A11
A9
A8
A7
A6
A5
A4
VSS
VDD
NC
VDDQ
NC
DQ0
VSSQ
NC
NC
VDDQ
NC
DQ1
VSSQ
NC
NC
VDDQ
NC
NC
VDD
NC
NC
/WE
/CAS
/RAS
/CS
NC
BA0
BA1
A10/AP
A0
A1
A2
A3
VDD
VSS
NC
VSSQ
NC
DQ3
VDDQ
NC
NC
VSSQ
NC
DQ2
VDDQ
NC
NC
VSSQ
DQS
NC
VREF
VSS
DM
/CK
CK
CKE
NC
NC
A11
A9
A8
A7
A6
A5
A4
VSS
x16 x8 x4x4 x8 x16
400mil X 875mil
66pin TSOP -II
0.65mm pin pitch
ROW AND COLUMN ADDRESS TABLE
ITEMS 32Mx4 16Mx8 8Mx16
Organization 8M x 4 x 4banks 4M x 8 x 4banks 2M x 16 x 4banks
Row Address A0 - A11 A0 - A11 A0 - A11
Column Address A0-A9, A11 A0-A9 A0-A8
Bank Address BA0, BA1 BA0, BA1 BA0, BA1
Auto Precharge Flag A10 A10 A10
Refresh 4K 4K 4K
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 5
PIN DESCRIPTION
PIN TYPE DESCRIPTION
CK, /CK Input Clock: CK and /CK are differential clock inputs. All ad dress and control input signals are
sampled on the crossing of the positive edge of CK and negative edge of /CK. Output
(read) data is referenced to the crossings of CK and /CK (both directions of crossi ng).
CKE Input
Clock Enable: CKE HIGH activates, and CKE LOW deactiv ates internal clock signals, and
device input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER
DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row
ACTIVE in any bank). CKE is synchronous for POWER DOWN entry and exit, and for SELF
REFRESH entry. CKE is asynchronous for SELF REFRESH exit, and fo r output di sable. CKE
must be maintained high throughout READ and WRITE accesses. Input buff ers, excluding
CK, /CK and CKE are disabled during POWER DOWN. Input buffers, excluding CKE are
disabled during SELF REFRESH. CKE is an SSTL_2 input, but will detect an LVCMOS LOW
level after VDD is applied.
/CS Input Chip Select: Enables or disables all inputs except CK, /CK, CKE, DQS and DM. All com-
mands are masked when CS is registered high. CS provides for external bank selection on
systems with multiple banks. CS is cons idered part of the command cod e.
BA0, BA1 Input Bank Addr es s In put s: B A0 and BA1 def ine to which bank an ACTIVE, R ead, W rite or PRE-
CHARGE command is being applied.
A0 ~ A11 Input
Address Input s: Provid e the row ad dress f or ACTIVE co mmands, and the colu mn address
and AUT O PR ECHARGE bit f o r READ/WRITE comman ds, to select one lo ca tion ou t of the
memory array in the respective bank. A10 is sampled during a precharge command to
determine whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10
HIGH). If only one bank is to be precharged, the bank is selected by BA0, BA1. The
address inputs also provide the op code during a MODE REGISTER SET command. BA0
and BA1 define which mod e register is loaded durin g the MODE REGISTER SET command
(MRS or EMRS).
/RAS, /CAS, /WE Input Command Inputs: /RAS, /CAS and /WE (along with /CS) define the command being
entered.
DM
(LDM, UDM) Input
Input Data Mask: DM is an input mask signal for w r ite data. Input d ata is masked when
DM is sampled HIGH along with that inpu t data during a WRITE access. DM is sample d
on both ed ges of D QS . Al thou gh D M pi ns are input only, the DM loading matches the DQ
and DQS loading. For the x16, LDM corresponds to the data on DQ0-Q7; UDM corre-
sponds to the data on DQ8-Q15.
DQS
(LDQS, UDQS) I/O Data Strobe: Output with read data, input with write data. Edge aligned with read data,
centered in write data. Used to capture write data. For the x16, LDQS corresponds to the
data on DQ0-Q7; UDQS corresponds to the data on DQ8-Q15.
DQ I/O Data input / output pin: Data bus
VDD/VSS Supply Power supply for internal circuits and input buffe rs.
VDDQ/VSSQ Supply Power supply for output buffers for noise immunity.
VREF Supply Reference voltage for inputs for SSTL interface.
NC NC No connection.
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 6
Command
Decoder
CLK
/CLK
CKE
/CS
/RAS
/CAS
/WE
DM
Address
Buffer
ADD
Bank
Control 8Mx4/Bank0
Column Decoder
Column Address
Counter
Sense AM P
2-bit Prefetch Unit
8Mx4/Bank1
8Mx4/Bank2
8Mx4/Bank3
Mode
Register Row
Decoder
Input Buffer Output Buffer
DLL
Block
Mode
Register
Data Strobe
Transmitter
Data Strobe
Receiver
DQS
CLK
/CLK
DS
Write Data Register
2-bit Prefetch Unit DS
DQ [0:3]
84
4
8
CLK_DLL
BA0, BA1
FUNCTIONAL BLOCK DIAGRAM (32Mx4)
4Banks x 8Mbit x 4 I/O Double Data Rate Synchronous DRAM
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 7
Command
Decoder
CLK
/CLK
CKE
/CS
/RAS
/CAS
/WE
DM
Address
Buffer
ADD
Bank
Control 4Mx8/Bank0
Column Decoder
Column Address
Counter
Sense AM P
2-bit Prefetch Unit
4Mx8/Bank1
4Mx8/Bank2
4Mx8/Bank3
Mode
Register Row
Decoder
Input Buffer Output Buffer
DLL
Block
Mode
Register
Data Strobe
Transmitter
Data Strobe
Receiver
DQS
CLK
/CLK
DS
Write Data Register
2-bit Prefetch Unit DS
DQ [0:7]
16 8
8
16
CLK_DLL
BA0,BA1
FUNCTIONAL BLOCK DIAGRAM (16Mx8)
4Banks x 4Mbit x 8 I/O Double Data Rate Synchronous DRAM
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 8
FUNCTIONAL BLOCK DIAGRAM (8Mx16)
4Banks x 2Mbit x 16 I/O Double Data Rate Synchronous DRAM
Command
Decoder
CLK
/CLK
CKE
/CS
/RAS
/CAS
/WE
LDM
Address
Buffer
ADD
Bank
Control 2Mx16/Bank0
Column Decoder
Column Address
Counter
Sense AM P
2-bit Prefetch Unit
2Mx16/Bank1
2Mx16/Bank2
2Mx16/Bank3
Mode
Register Row
Decoder
Input Buffer Output Buffer
DLL
Block
Mode
Register
Data Strobe
Transmitter
Data Strobe
Receiver
LDQS, UDQ S
CLK
/CLK
LDQS
UDQS
Write Data Register
2-bit Prefetch Unit DS
DQ[0:15]
32 16
16
32
CLK_DLL
BA0, BA1
UDM
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 9
SIMPLIFIED COMMAND TRUTH TABLE
Command CKEn-1 CKEn CS RAS CAS WE ADDR A10/
AP BA Note
Extended Mode Register SetH XLLLL OP code 1,2
Mode Register Set H XLLLL OP code 1,2
Device Deselect HX
HXXX X1
No Operation LHHH
Bank Active H X L L H H RA V 1
Read H X LHLHCALV1
Read with Autoprecharge H1,3
Write HXLHLLCA
LV1
Write with Au to precharge H1,4
Precharge All Banks HXLLHLX
HX1,5
Precharge selected Bank LV1
Read Burst Stop H X L H H L X 1
Auto Refresh H HLLLH X 1
Self Refresh
EntryH LLLLH
X
1
Exit L H HXXX 1
LHHH
Precharge Power
Down Mode
Entry H L HXXX
X
1
LHHH 1
Exit L H HXXX 1
LHHH 1
Active Power
Down Mode Entry H L HXXX
X
1
LVVV 1
Exit L H X 1
Note:
1. LDM/UDM states are Don’t Care. Refer to below Write Mask Truth Tab le.
2. OP Code(Operand Code) consists of A0~A11 and BA0~BA1 used for Mode Register setting during Extended MRS or MRS.
Before entering Mode Register Set mode, all banks must be in a precharge state and MRS command can be issued after tRP
period from Precharge command.
3. If a Read with Autoprecharge command is detected by memory component in CK(n), then there will be no command presented
to activated bank until CK(n+BL/2+ tRP).
4. If a Write with Autoprecharge command is detected by memory component in CK(n), then the re wil l be no command presented
to activated bank until CK(n+BL/2+1+tDPL+tRP). Last Data-In to Precharge delay(tDPL) which is also called Write Recovery Time
(tWR) is needed to guarantee that the last data has been completely written.
5. If A10/AP is High when Precharge command being issued, BA0/BA1 are ignored and all banks are selected to be
precharged.
( H=Logic High Level, L=Logic Low Level, X=Don’t Care, V=Valid Data Input, OP Code=Operand Code, NOP=No Operation )
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 10
WRITE MASK TRUTH TABLE
Function CKEn-1 CKEn /CS, /RAS, /CAS, /WE DM ADDR A10/AP BA Note
Data Write H X X L X 1
Data-In Mask H X X H X 1
Note:
1. Write Mask command masks burst write data with reference to LDQS/UDQS(Data Strobes) and it is not related with read data.
In case of x16 data I/O, LDM and UDM control lower byte(DQ0~7) and Upper byte(DQ8~15) respectively.
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 11
OPERATION COMMAND TRUTH TABLE-I
Current
State /CS /RAS /CAS /WE Address Command Action
IDLE
HXXX X DSEL NOP or power down3
LHHH X NOP NOP or power down3
LHHL X BST ILLEGAL4
L H L H BA, CA, AP READ/READAP ILLEGAL4
L H L L BA, CA, AP WRITE/WRITEAP ILLEGAL4
L L H H BA, RA ACT Row Activ ation
LLHLBA, AP PRE/PALL NOP
LLLH X AREF/SREF Auto Refresh or Self Refresh5
L L L L OPCODE MRS Mode Register Set
ROW
ACTIVE
HXXX X DSEL NOP
LHHH X NOP NOP
LHHL X BST ILLEGAL4
L H L H BA, CA, AP READ/READAP Begin read: op tional AP6
L H L L BA, CA, AP WRITE/WRITEAP Begin write: opt ion al AP6
LLHHBA, RA ACT ILLEGAL4
LLHLBA, AP PRE/PALL Precharge7
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
READ
H X X X X DSEL Continue burst to end
L H H H X NOP Continue burst to end
L H H L X BST Terminate burst
L H L H BA, CA, AP READ/READAP Term burst, new read:optional AP8
L H L L BA, CA, AP WRITE/WRITEAP ILLEGAL
LLHHBA, RA ACT ILLEGAL4
L L H L BA, AP PRE/P A LL Term burst, precharge
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
WRITE
H X X X X DSEL Continue burst to end
L H H H X NOP Continue burst to end
LHHL X BST ILLEGAL4
L H L H BA, CA, AP READ/READAP Term burst, new read:optional AP8
L H L L BA, CA, AP WRITE/WRITEAP Term burst, new write:optional AP
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 12
OPERATION COMMAND TRUTH TABLE-II
Current
State /CS /RAS /CAS /WE Address Command Action
WRITE
LLHHBA, RA ACT ILLEGAL4
L L H L BA, AP PRE/P A LL Term burst, precharge
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
READ
WITH
AUTOPRE-
CHARGE
H X X X X DSEL Continue burst to end
L H H H X NOP Continue burst to end
LHHL X BST ILLEGAL
L H L H BA, CA, AP READ/READAP ILLEGAL10
L H L L BA, CA, AP WRITE/WRITEAP ILLEGAL10
LLHHBA, RA ACT ILLEGAL4,10
LLHLBA, AP PRE/PALL ILLEGAL4,10
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
WRITE
AUTOPRE-
CHARGE
H X X X X DSEL Continue burst to end
L H H H X NOP Continue burst to end
LHHL X BST ILLEGAL
L H L H BA, CA, AP READ/READAP ILLEGAL10
L H L L BA, CA, AP WRITE/WRITEAP ILLEGAL10
LLHHBA, RA ACT ILLEGAL4,10
LLHLBA, AP PRE/PALL ILLEGAL4,10
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
PRE-
CHARGE
H X X X X DSEL NOP-Enter IDLE after tRP
L H H H X NOP NOP-Enter IDLE after tRP
LHHL X BST ILLEGAL4
L H L H BA, CA, AP READ/READAP ILLEGAL4,10
L H L L BA, CA, AP WRITE/WRITEAP ILLEGAL4,10
LLHHBA, RA ACT ILLEGAL4,10
L L H L BA, AP PRE/PALL NOP-Enter IDLE after tRP
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 13
OPERATION COMMAND TRUTH TABLE-III
Current
State /CS /RAS /CAS /WE Address Command Action
ROW
ACTIVATING
H X X X X DSEL NOP - Enter ROW ACT after tRCD
L H H H X NOP NOP - Enter ROW ACT after tRCD
LHHL X BST ILLEGAL4
L H L H BA, CA, AP READ/READAP ILLEGAL4,10
L H L L BA, CA, AP WRITE/WRITEAP ILLEGAL4,10
LLHHBA, RA ACT ILLEGAL4,9,10
LLHLBA, AP PRE/PALL ILLEGAL4,10
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
WRITE
RECOVERING
HXXX X DSEL NOP - Enter ROW ACT after tWR
L H H H X NOP NOP - Enter ROW ACT after tWR
LHHL X BST ILLEGAL4
L H L H BA, CA, AP READ/READAP ILLEGAL
L H L L BA, CA, AP WRITE/WRITEAP ILLEGAL
LLHHBA, RA ACT ILLEGAL4,10
LLHLBA, AP PRE/PALL ILLEGAL4,11
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
WRITE
RECOVERING
WITH
AUTOPRE-
CHARGE
H X X X X DSEL NOP - Enter precharge after tDPL
L H H H X NOP NOP - Enter precharge after tDPL
LHHL X BST ILLEGAL4
L H L H BA, CA, AP READ/READAP ILLEGAL4,8,10
L H L L BA, CA, AP WRITE/WRITEAP ILLEGAL4,10
LLHHBA, RA ACT ILLEGAL4,10
LLHLBA, AP PRE/PALL ILLEGAL4,11
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
REFRESHING
H X X X X DSEL NOP - Enter IDLE after tRC
L H H H X NOP NOP - Enter IDLE after tRC
LHHL X BST ILLEGAL11
L H L H BA, CA, AP READ/READAP ILLEGAL11
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 14
OPERATION COMMAND TRUTH TABLE-IV
Note:
1. H - Logic High Level, L - Logic Low Level, X - Don’t Care, V - Valid Data Input,
BA - Bank Address, AP - AutoPrecharge Address, CA - Column Address, RA - Row Address, NOP - NO Operation.
2. All entries assum e that CKE was active(high level) during the precedi ng clock cycle.
3. If both banks are idle and CKE i s inactive(low level), the n in p ower down mode.
4. Illegal to bank in spec ifi e d stat e. Fu nction may be legal in the bank indicated by Bank Address(BA) depending on the state of
that bank.
5. If both banks are idle and CKE i s inactive(low level), then self refresh mode.
6. Illegal if tRCD is not met.
7. Illegal if tRAS is not met.
8. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
9. Illegal if tRRD is not met.
10. Illegal for single bank, but legal for other banks in multi-bank devices.
11. Illegal for all banks.
Current
State /CS /RAS /CAS /WE Address Command Action
WRITE
L H L L BA, CA, AP WRITE/WRITEAP ILLEGAL11
LLHHBA, RA ACT ILLEGAL11
LLHLBA, AP PRE/PALL ILLEGAL11
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
MODE
REGISTER
ACCESSING
H X X X X DSEL NOP - Enter IDLE after tMRD
L H H H X NOP NOP - Enter IDLE after tMRD
LHHL X BST ILLEGAL11
L H L H BA, CA, AP READ/READAP ILLEGAL11
L H L L BA, CA, AP WRITE/WRITEAP ILLEGAL11
LLHHBA, RA ACT ILLEGAL11
LLHLBA, AP PRE/PALL ILLEGAL11
LLLH X AREF/SREF ILLEGAL11
LLLLOPCODE MRS ILLEGAL11
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 15
CKE FUNCTION TRUTH TABLE
Note:
When CKE=L, all DQ and DQS must be in Hi-Z state.
1. CKE and /CS must be kept high for a minimum of 200 stable input clocks before issuing any command.
2. All command can be stored after 2 clocks from low to high transition of CKE.
3. Illegal if CLK is suspended or stopped during the power down mode.
4. Self refresh can be entered only from the all banks idle state.
5. Disabling CLK may cause malfunction of any bank which is in active state.
Current
State CKEn-
1CKEn /CS /RAS /CAS /WE /ADD Action
SELF
REFRESH1
HXXXXXX INVALID
L H H X X X X Exit self refresh, enter idle after tSREX
L H L H H H X Exit self refresh, enter idle after tSREX
L H L H H L X ILLEGAL
L H L H L X X ILLEGAL
LHLLXXX ILLEGAL
L L X X X X X NOP, continue self refresh
POWER
DOWN2
HXXXXXX INVALID
L H H X X X X Exit power down, enter idle
L H L H H H X Exit power down, enter idle
L H L H H L X ILLEGAL
L H L H L X X ILLEGAL
LHLLXXX ILLEGAL
L L X X X X X NOP, continue power down mode
ALL BANKS
IDLE4
H H X X X X X See operation command truth ta bl e
HLLLLHX Enter self refresh
H L H X X X X Exit power down
H L L H H H X Exit power down
H L L H H L X ILLEGAL
H L L H L X X ILLEGAL
H L L L H X X ILLEGAL
HLLLLLX ILLEGAL
L LXXXXX NOP
ANY STATE
OTHER
THAN
ABOVE
H H X X X X X See operation command truth ta bl e
HLXXXXX ILLEGAL5
LHXXXXX INVALID
L LXXXXX INVALID
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 16
SIMPLIFIED STATE DIAGRAM
Power
On
Precharg
e
PREALL
MRS
EMRS Id le Auto
Refresh
Self
Refresh
REFS
REFSX
REFA
Power
Applied
Active
Power
Down
Row
Active
Precharg
e
Power
Down
ACT
CKEL
CKEH
Burst
Stop
Read
Read A
Write
Write A
Precharg
e
PREALL
CKEH
CKEL
Write
Write
Read
Read
Read AWrite A
Write A Read A
Read
Read A
PRE
PREPRE
Autom atic S eq u en c e
Command Sequence
PRE
PR E ALL = P recharge A ll B anks
M R S = M o d e R egister S et
EM R S = Extend ed M ode Reg ister
Set
REFS = Enter Self Refresh
REFSX = Exit Self Refresh
REFA = Auto Refresh
C K E L = E nter P o w er D ow n
C K E H = Exit Pow er D ow n
ACT = Active
Write A = W rite with Autoprecharge
R ead A = Read w ith A uto precharge
PRE = Precharge
MRS
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 17
POWER-UP SEQUENCE AND DEVICE INITIALIZATION
DDR SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those
specified may result in undefined operation. Power must first be applied to VDD, then to VDDQ, and finally to VREF
(and to the system VTT). VT T must be applied after VD DQ to a voi d device latch-up , which may cause perman ent dam-
age to the device. VREF can be applied anytime after VDDQ, but is expected to be nominally coincident with VTT.
Except for CKE, inputs are not recognized as v alid until after VREF is applied. CKE is an SSTL_2 input, but will detect an
LVCMOS LOW level after VDD is applied. Maintaining an LVCMOS LOW level on CKE during power-up is required to
guarantee that the DQ and DQS outputs will be in the High-Z state, where they will remain until driven in normal oper-
ation (by a read access). After all power supply and reference voltages are stable, and the clock is stable, the DDR
SDRAM requires a 200us delay prior to applying an executable command.
Once the 200us delay has been satisfied, a DESELECT or NOP command should be applied, and CKE should be
brought HIGH. Following the NOP command, a PRECHARGE ALL command should be applied. Next a EXTENDED
MODE REGISTER SET command should be issued for the Extended Mode Register, to enable the DLL, then a MODE
REGISTER SET command should be issued for the Mode Register, to reset the DLL, and to program the operating
parameters. After the DLL reset, tXSRD(DLL locking time) should be satisfied for read command. After the Mode Reg-
ister set command, a PRECHARGE ALL command should be applied, placing the device in the all banks idle state.
Once in the idle state, two AUTO REFRESH cycles must be performed. Additionally, a MODE REGISTER SET command
for the Mode Register, with the reset DLL bit deactivated low (i.e. to program operati ng parameters without resetting
the DLL) must be performed. Following these cycles, the DDR SDRAM is ready for normal operation.
1. Apply power - VDD, VDDQ, VTT, VREF in the following power up sequencing and attempt to maintain CKE at LVC-
MOS low state. (All the other input pins may be undefined.)
VDD and VDDQ are driven from a single power converter output.
VTT is limited to 1.44V (reflecting VDDQ(max)/2 + 50mV VREF variation + 40mV VTT variation.
VREF tracks VDDQ/2.
A minimum resistance of 42 Ohms (22 ohm se ries r esistor + 22 ohm parallel resistor - 5% toler ance) limits the
input current from the VTT supply into any pin.
If the above criteria cannot be met by the system design, then the following sequencing and voltage relation-
ship must be adhered to during power up.
2. Start clock and maintain stable clock for a minimum of 200usec.
3. After stable power and clock, apply NOP condition and take CKE high.
4. Issue Extended Mode Register Set (EMRS) to enable DLL.
5. Issue Mode Register Set (MRS) to reset DLL and set device to idle state with bit A8=high. (An additional 200
cycles(tXSRD) of clock are required for locking DLL)
6. Issue Precharge commands for all banks of the device.
Voltage description Sequencing Voltage relationship to avoid latch-up
VDDQ After or with VDD < VDD + 0.3V
VTT After or with VDDQ < VDDQ + 0.3V
VREF After or with VDDQ < VDDQ + 0.3V
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 18
7. Issue 2 or more Auto Refresh commands.
8. Issue a Mode Register Set command to initialize the mode register with bit A8 = Low.
Power-Up Sequence
CODECODE CODE CODECODE
CODECODE CODE CODECODE
CODE CODECODECODECODE
NOP PRE MRSEMRS PRENOP MRSAREF ACT RD
VDD
VDDQ
VTT
VREF
/CLK
CLK
CKE
CMD
DM
ADDR
A10
BA0, BA1
DQS
DQ'S
LVCMOS Low Lev e l
tIS tIH
tVTD
T=200usec tRP tMRD tRP tRFC tMRD
tXSRD*
READ
Non-Read
Command
Power UP
VDD and C K stable Precharge All EMRS Set MRS Set
Reset DLL
(wit h A 8=H)
Precharge All 2 or more
Auto Refresh
MRS Set
(with A8=L)
* 200 cycle(tXSRD) of CK are required (for DLL locking) before Read Command
tMRD
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 19
MODE REGISTER SET (MRS)
The mode register is used to store the various operating modes such as /CAS latency, addressing mode, burst length,
burst type, test mode, DLL reset. The mode register is programed via MRS command. This command is issued by the
low signals of /RAS, /CAS, /CS, /WE and BA0. This command can be issued only when all banks are in idle state and
CKE must be high at least one cycle before the Mode Re gister Set Comm and can be issued. Two cycles are required to
write the data in mode register. During the MRS cycle, any command cannot be issued. Once mode register field is
determined, the information will be held until reset by another MRS command.
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 0 Operating Mode CAS Latency BT Burs t Lengt h
A2 A1 A0 Burst Length
Sequential Interleave
0 0 0 Reserved Reserved
001 2 2
010 4 4
011 8 8
1 0 0 Reserved Reserved
1 0 1 Reserved Reserved
1 1 0 Reserved Reserved
1 1 1 Reserved Reserved
A3 Burst Type
0 Sequential
1Interleave
A6 A5 A4 CAS Latency
000 Reserved
001 Reserved
010 2
011 3
100 Reserved
101 1.5
110 2.5
111 Reserved
BA0 MRS Type
0MRS
1EMRS
A12~A9 A8 A7 A6~A0 Operating Mode
0 0 0 Valid Normal Operation
0 1 0 Valid Normal Operation/ Reset DLL
001VS Vendor specific Test Mode
--- All other states reserved
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 20
BURST DEFINITION
BURST LENGTH & TYPE
Read and write accesses to th e DDR SD RAM are bu rst orien ted, wi th the burst length being programmable. The burst
length determines the maximum number of column locations that can be accessed for a given Read or Write com-
mand. Burst lengths of 2, 4, or 8 locations are available for both the sequential and the interleaved burst types.
Reserved states should not be used, as unknown operation or incompatibility with future versions may result.
When a Read or Write command is issued, a block of columns equal to the burst length is effectively selected. All
accesses for that burst take place within this block, meaning that the burst wraps within the block if a boundary is
reached. The block is uniquely selected by A1-Ai when the burst length is set to two, by A 2 -Ai when the burst length
is set to four and by A 3 -Ai when the burst length is set to eight (where Ai is the most significant column address bit
for a given configuration). The remaining (least significant) address bit(s) is (are) used to select the starting location
within the block. The programmed burst length applies to both Read and Write bursts.
Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the
burst type and is selected via bit A3. The ordering of accesses within a burst is determined by the burst length, the
burst type and the starting column address, as shown in Burst Definitionon Table
Burst Length Starting Address (A2,A1,A0) Sequential Interleave
2XX0 0, 1 0, 1
XX1 1, 0 1, 0
4
X00 0, 1, 2, 3 0, 1, 2, 3
X01 1, 2, 3, 0 1, 0, 3, 2
X10 2, 3, 0, 1 2, 3, 0, 1
X11 3, 0, 1, 2 3, 2, 1, 0
8
000 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7
001 1, 2, 3, 4, 5, 6, 7, 0 1, 0, 3, 2, 5, 4, 7, 6
010 2, 3, 4, 5, 6, 7, 0, 1 2, 3, 0, 1, 6, 7, 4, 5
011 3, 4, 5, 6, 7, 0, 1, 2 3, 2, 1, 0, 7, 6, 5, 4
100 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3
101 5, 6, 7, 0, 1, 2, 3, 4 5, 4, 7, 6, 1, 0, 3, 2
110 6, 7, 0, 1, 2, 3, 4, 5 6, 7, 4, 5, 2, 3, 0, 1
111 7, 0, 1, 2, 3, 4, 5, 6 7, 6, 5, 4, 3, 2, 1, 0
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 21
CAS LATENCY
The Read latency, or CAS latency, is the delay, in clock cycles, between the registration of a Read command and the
availability of the first burst of output data. The latency can be programmed 2 / 2.5 / 3 clocks.
If a Read comma nd is registered at clock ed ge n, and the latency is m clocks, the data is av aila ble nominally coinciden t
with clock edge n + m.
Reserved states should not be used as unknown operation or incompatibility with future versions may result.
DLL RESET
The DLL must be enabled f or normal oper ation. DLL enable is requ ired during pow er up init ializa tion, an d upon re turn-
ing to normal operation after having disabled the DLL fo r the purpose of debug or evaluation. The DLL is automatically
disabled when entering self refresh operation and is automatically re-enabled upon exit of self refresh operation. Any
time the DLL is enabled, 200 clock cycles must occur to allow time for the internal clock to lock to the externally
applied clock before an any command can be issued.
OUTPUT DRIVER IMPEDANCE CONTROL
The normal drive strength for all outputs is specified to be SSTL_2, Class II. Hynix also supports a half strength driver
option, intended for lighter load and/or point-to-point environments. Selection of the half strength driver option will
reduce the output drive strength by 50% of that of the full strength driver. I-V curves for both the full strength driver
and the half strength driver are included in this document.
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 22
EXTENDED MODE REGISTER SET (EMRS)
The Extended Mode Register controls functions beyond those controlled by the Mode Register; these additional func-
tions include DLL enable/disable, output driver strength se lection(optional). These functions are controlled via the bits
shown below. The Extended Mode Register is programmed via the Mode Register Set comm and (BA0=1 and BA1=0)
and will retain the stored information until it is programmed again or the device loses power.
The Extended Mode Register must be loaded when all banks are idle and no bursts are in progress, and the controller
must wait the specified time before initiating any subsequent operation. Violating either of these requirements will
result in unspecified operation.
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 1 Operating Mode 0* DS DLL
A0 DLL enable
0Enable
1Disable
BA0 MRS Type
0MRS
1EMRS
A1 Output Driver
Impedance Control
0 Full Strength Driver
1 Half Strength Driver
* This part do not support/QFC function, A2 must be programmed to Zero.
An~A3 A2~A0 Operating Mode
0Valid Normal Operation
__
All other states reserved
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 23
ABSOLUTE MAXIMUM RATINGS
Note: Operation at above absolute maximum rating can adversely affect device reliability
DC OPERATING CONDITIONS (TA=0 to 70 oC, Voltage referenced to VSS = 0V)
Note:
1. VDDQ must not exceed the level of VDD.
2. VIL (min) is acceptable -1.5V AC pulse width with < 5ns of duration.
3. VREF is expected to be equal to 0.5*VDDQ of the transmitting device, and to track variations in the dc level of the same.
Peak to peak noise on VREF may not exceed +/- 2% of the dc value.
4. VID is the magnitude of the difference between the inpu t level on CK and the input level on /CK.
5. The ratio of the pull-up current to the pull-down current is specified for the same temperature and voltage, over the
entire temperature and voltage range, for device drain to source voltages from 0.25V to 1.0V. For a given output, it
represents the maximum difference between pullup and pulldown drivers due to process variation. The full variation
in the ratio of the maximum to minimum pullup and pulldown current will not exceed 1/7 for device drain to source
voltages from 0.1 to 1.0.
6. VIN=0 to VDD, All other pins ar e not tested under VIN =0V.
7. DQs are disabled, VOUT=0 to VDDQ.
Parameter Symbol Rating Unit
Operating Temperature (Ambient) TA0 ~ 70 oC
Storage Te mperature TSTG - 55 ~ 125 oC
Voltage on Any Pin relative to VSS VIN, VOUT -0.5 ~ 3.6 V
Voltage on VDD relative to VSS VDD -0.5 ~ 3.6 V
Voltage on VDDQ relative to VSS VDDQ -0.5 ~ 3.6 V
Output Short Circuit Current IOS 50 mA
Power Dissipation PD1W
Soldering TemperatureTime TSOLDER 260 10 oC sec
Parameter Symbol Min Typ. Max Unit Note
Power Supply Voltage VDD 2.3 2.5 2.7 V
Power Supply Voltage VDDQ 2.3 2.5 2.7 V 1
Input High Voltage VIH VREF + 0.15 - VDDQ + 0.3 V
Input Low Voltage VIL -0.3 - VREF - 0.15 V 2
Termination Voltage VTT VREF - 0.04 VREF VREF + 0.04 V
Refer ence Voltage VREF 0.49*VDDQ 0.5*VDDQ 0.51*VDDQ V 3
Input Voltage Level, CK and CK inputs VIN(DC) -0.3 - VDDQ+0.3 V
Input Differential Voltage, CK and CK inputs VID(DC) 0.36 - VDDQ+0.6 V 4
V-I Matching: Pullup to Pulldown Current Ratio VI(RATIO) 0.71 - 1.4 - 5
Input Leakage Current ILI -2 - 2 uA 6
Output Leakage Current ILO -5 - 5 uA 7
Normal Strength
Output Driver
(VOUT=VTT±0.84)
Output High Current
(min VDDQ, min VREF, min VTT) IOH -16.8 - - mA
Output Low Current
(min VDDQ, max VR EF, max VTT) IOL 16.8 - - mA
Half Strength
Output Driver
(VOUT=VTT±0.68)
Output High Current
(min VDDQ, min VREF, min VTT) IOH -13.6 - - mA
Output Low Current
(min VDDQ, max VR EF, max VTT) IOL 13.6 - - mA
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 24
IDD SPECIFICATION AND CONDITIONS (TA=0 to 70 oC, Voltage referenced to VSS = 0V)
32Mx4 / 16Mx8 / 8Mx16
Parameter Symbol Test Condition Speed Unit Note
-J -M -K -H -L
Operating Current IDD0
One bank; Active - Precharge;
tRC=tRC(min); tCK=tCK(min); DQ,DM and
DQS inputs cha nging twice per c lock cycle;
address and control inputs changing once
per clock cycle
110 100 90 mA
Operating Current IDD1
One bank; Active - Read - Precharge;
Burst=2; tRC=tRC(min); tCK=tCK(min);
address and control inputs changing once
per clock cycle
110 100 90 mA
Precharge Power
Down Standby
Current IDD2P All banks idle; Power down mod e; CKE=Low ,
tCK=tCK(min) 20 15 15 mA
Idle Standby Cu r r ent IDD2F
/CS=High, All banks idle; tCK=tCK(min);
CKE=High; address and control inputs
changing once per clock cycle.
VIN=VREF for DQ, DQS and DM
50 45 40 mA
Active Power Down
Standby Current IDD3P One bank active; Power down mode;
CKE=Low, tCK=tCK(min) 20 20 20 mA
Active Standby
Current IDD3N
/CS=HIGH; CKE=HIGH; One bank; Active-
Precharge; tRC=tRAS(max); tCK=tCK(min);
DQ, DM and DQS inputs changing twice per
clock cycle; Address and other control inputs
changing once per clock cycle
60 50 40 mA
Operating Current IDD4R
Burst=2; Reads; Continuous burst; One bank
active; Address and control inputs changing
once per clock cycle; tCK=tCK(min);
IOUT=0mA
160 150 140 mA
Operating Current IDD4W
Burst=2; Writes; Continuous burst; One
bank active; Ad dress and control inputs
changing once per clock cycle;
tCK=tCK(min); DQ, DM and DQS inputs
changing twice per clock cycle
160 150 140 mA
Auto Refresh Current IDD5 tRC=tRFC(min) - 8*tCK for DDR200 at
100Mhz, 10*tCK for DDR2 66A & DDR266B at
133Mhz; distributed refresh 180 170 160 mA
Self Refresh Current IDD6 CKE=<0.2V; External clock on;
tCK=tCK(min) 222mA
Operating Current -
Four Bank Operation IDD7 Four bank interleaving with BL=4, Refer to
the following page for detailed test condition 250 230 200 mA
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 25
DETAILED TEST CONDITIONS FOR DDR SDRAM IDD1 & IDD7
IDD1: Operat ing current: One bank operation
1. Only one bank is accessed with tRC(min), Burst Mode, Address and Control inputs on NOP edge are
changing once per clock cycle. lout = 0mA
2. Timing patterns
- DDR200(100Mhz, CL=2): tCK = 10ns, CL2, BL=2, tRCD = 2*tCK, tRAS = 5*tCK
Read: A0 N R0 N N P0 N A0 N - repeat the same timing with random address changing
- DDR266B(133Mhz, CL=2.5): tCK = 7.5ns, CL=2.5, BL=2, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 6*tCK
Read: A0 N N R0 N P0 N N N A0 N - repeat the same timing with random address changing
50% of data changing at every burst
- DDR266A (133Mhz, CL=2): tCK = 7.5ns, CL=2, BL=2, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 6*tCK
Read: A0 N N R0 N P0 N N N A0 N - repeat the same timing with random address changing
50% of data changing at every burst
- DDR266(133Mhz, CL=2): tCK = 7.5ns, CL=2, BL=2, tRCD = 2*tCK, tRC = 8*tCK, tRAS = 6*tCK
Read: A0 N R0 N N N P0 N A0 N - repeat the same timing with random address changing
50% of data changing at every burst
- DDR333(166Mhz, CL=2.5): tCK = 6ns, CL=2, BL=2, tRCD = 3*tCK, tRC = 10*tCK, tRAS = 7*tCK
Read: A0 N N R0 N N N P0 N N A0 N - repeat the same timing with random address changing
50% of data changing at every burst
Legend: A=Activate, R=Read, W=Write, P=Precharge, N=NOP
IDD7: Operat ing current: Four bank operation
1. Four banks are being interleaved with tRC(min), Burst Mode, Address and Control inputs on NOP edge are not
changing. lout = 0mA
2. Timing patterns
- DDR200(100Mhz, CL=2): tCK = 10ns, CL2, BL=4, tRRD = 2*tCK, tRCD= 3*tCK, Read with Autoprecharge
Read: A0 N A1 R0 A2 R1 A3 R2 A0 R3 A1 R0 - repeat the same timing with random address changing
50% of data changing at every burst
- DDR266B(133Mhz, CL=2.5): tCK = 7.5ns, CL=2.5, BL=4, tRRD = 2*tCK, tRCD = 3*tCK Read with autoprecharge
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing
50% of data changing at every burst
- DDR266A (133Mhz, CL=2): tCK = 7.5ns, CL2=2, BL=4, tRRD = 2*tCK, tRCD = 3*tCK
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing
50% of data changing at every burst
- DDR333(166Mhz, CL=2.5): tCK = 6ns, CL=2.5, BL=4, tRRD = 2*tCK, tRCD = 3*tCK, Read with autoprecharge
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing
50% of data changing at every burst
Legend: A=Activate, R=Read, W=Write, P=Precharge, N=NOP
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 26
AC OPERATING CONDITIONS (TA=0 to 70 oC, Voltage referenced to VSS = 0V)
Note:
1. VID is the magnitude of the difference between the input level on CK and the input on /CK.
2. The value of VIX is expected to equal 0.5*V DDQ of the transmitting device and must track variations in the DC level of the same.
AC OPERATING TEST CONDITIONS (TA=0 to 70oC, Vo ltage referenced to VSS = 0V)
Parameter Symbol Min Max Unit Note
Input High (Logic 1) Voltage, DQ, DQS and DM signals VIH(AC) VREF + 0.31 V
Input Low (Logic 0) Voltage, DQ, DQS and DM signals VIL(AC) VREF - 0.31 V
Input Differential V o ltage, CK and /CK inputs VID(AC) 0.7 VDDQ + 0.6 V 1
Input Cross in g Point V o ltage, CK and /CK inputs VIX(AC) 0.5*VDDQ-0.2 0.5*VDDQ+0.2 V 2
Parameter Value Unit
Refer ence Voltage VDDQ x 0.5 V
Termination Voltage VDDQ x 0.5 V
AC Input High Level Voltage (VIH, min) VREF + 0.31 V
AC Input Low Level Voltage (VIL, max) VREF - 0.31 V
Input Timing Measurement Reference Level Voltage VREF V
Output Timing Meas urement Refer e n ce Level Voltage VTT V
Input Signal maximum peak swing 1.5 V
Input minimum Signal Slew Rate 1 V/ns
Termination Resistor (RT)50Ω
Series Resistor (RS)25Ω
Output Load Capacitance for Access Time Measurement (CL)30 pF
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 27
AC Overshoot/Undershoot Specification for Address and Control Pins
This specification is intended for devices with no clamp protection and is guaranteed by design
Overshoot/Undershoot Specification for Data, Strobe, and Mask Pins
Parameter Specification
DDR333 DDR200/266
Maximum peak amplitude allowed for overshoot (See Figure 1): 1.5V 1.5V
Maximum peak amplitude allowed for undershoot (See Figure 1): 1.5V 1.5V
The area between the overshoot signal and VDD must be less than or equal to (See Figure 1): 4.5V - ns 4.5V - ns
The area between the undershoot signal and GND must be less than or equal to (See Figure 1): 4.5V - ns 4.5V - ns
Parameter Specification
DDR333 DDR200/266
Maximum peak amplitude allowed for overshoot (See Figure 2): 1.2V 1. 2 V
Maximum peak amplitude allowed for undershoot (See Figure 2): 1.2V 1.2V
The area between the overshoot signal and VDD must be less than or equal to (See Figure 2): 2.4V - ns 2.4V - ns
The area between the undershoot signal and GND must be less than or equal to (See Figure 2): 2.4V - ns 2.4V - ns
Figure 1: Address and Control AC Overshoot and Undershoot Definition
Figure 2: DQ/DM/DQS AC Overshoot and U ndershoot Definition
VDD
0123456
0
1
2
3
4
5
-1
-2
-3
Volts(V)
Time(ns)
Undershoot
GND
Max. area = 2.4V-ns
Overshoot
Max. amplitude = 1.2V
VDD
0123456
0
1
2
3
4
5
-1
-2
-3
Volts(V)
Time(ns)
Undershoot
GND
Max. area = 4.5V-ns
Overshoot
Max. amplitude = 1.5V
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 28
AC CHARACTERISTICS I (AC operating conditions unless otherwise noted) <DDR333, DDR266(2-2-2)>
Parameter Symbol DDR333 DDR266(2-2-2) Unit Note
Min Max Min Max
Row Cycle Time tRC 60 - 60 - ns
Auto Refresh Row Cycle Time tRFC 72 - 75 - ns
Row A ctive Tim e tRAS 42 70K 45 120K ns
Active to Read with Auto Precharge Delay tRAP 18 - 15 - ns 16
Row Address to Column Address D elay tRCD 18 - 15 - ns
Row Active to Row Active Delay tRRD 12 - 15 - ns
Column Address to Column Address Delay tCCD 1-1-CK
Row Precharge Time tRP 18 - 15 - ns
Write Rec ove ry Time tWR 15 - 15 - ns
Write to Read Command Delay tWTR 1-1-CK
Auto Precharge Write Recovery + Precharge Time tDAL (tWR/tCK)
+
(tRP/tCK) -(tWR/tCK)
+
(tRP/tCK) -CK15
System Clock Cycle Time
CL = 3
tCK
612 --ns
CL = 2.5 6 12 7.5 12 ns
CL = 2 7.5 12 7.5 12 ns
Clock High Level Width tCH 0.45 0.55 0.45 0.55 CK
Clock Low Level Width tCL 0.45 0.55 0.45 0.55 CK
Data-Out edge to Clock edge Skew tAC -0.7 0.7 -0.75 0.75 ns
DQS-Out edge to Clock edge Skew tDQSCK -0.6 0.6 -0.75 0.75 ns
DQS-Out ed ge t o Dat a -Out edge Sk e w tDQSQ -0.45-0.5ns
Data-Out hold time from DQS tQH tHP
-tQHS -tHP
-tQHS -ns1, 10
Clock Half Period tHP min
(tCL,tCH) -min
(tCL,tCH) -ns1,9
Data Hold Skew Factor tQHS - 0.55 - 0.75 ns 10
Valid Data Output Window tDV tQH-tDQSQ tQH-tDQSQ ns
Data-out high-impedance window from CK, /CK tHZ -0.7 0.7 -0.75 0.75 ns 17
Data-out low - impedance window from CK, /CK tLZ -0.7 0.7 -0.75 0.75 ns 17
Input Setup Time (fast slew rate) tIS 0.75 - 0.9 - ns 2,3,5,6
Input Hold Time (fast slew rate) tIH 0.75 - 0.9 - ns 2,3,5,6
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 29
Input Setup Time (slow slew rate) tIS 0.8 - 1.0 - ns 2,4,5,6
Input Hold Time (slow slew rate) tIH 0.8 - 1.0 - ns 2,4,5,6
Input Pulse Width tIPW 2.2 2.2 ns 6
Write DQS High Level Width tDQSH 0.35 - 0.35 - CK
Write DQS Low Level Width tDQSL 0.35 - 0.35 - CK
Clock to First Rising edge of DQS-In tDQSS 0.75 1.25 0.72 1.28 CK
Data-In Setup Time to D QS-In (DQ & DM ) tDS 0.45 - 0.5 - ns 6,7, 11~13
Data-in Hold Time to DQS-In (DQ & DM) tDH 0.45 - 0.5 - ns 6,7, 11~13
DQ & DM Input Pulse Width tDIPW 1.75 - 1.75 - ns
Read DQS Preamble Time tRPRE 0.9 1.1 0.9 1.1 CK
Read DQS Postamble Time tRPST 0.4 0.6 0.4 0.6 CK
Write DQS Preamble Setup Time tWPRES 0-0-CK
Write DQS Preamble Hold Time tWPREH 0.25 - 0.25 - CK
Write DQS Postamble Time tWPST 0.4 0.6 0.4 0.6 CK
Mode Register Set Delay tMRD 2-2-CK
Exit Self Refresh to Any Execute Command tXSC 200 - 200 - CK 8
Average Periodic Refresh Interval tREFI - 15.6 - 15.6 us
Parameter Symbol DDR333 DDR266(2-2-2) Unit Note
Min Max Min Max
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 30
AC CHARACTERISTICS II (AC operating conditions unless otherwise noted) <DDR266A/B, DDR200>
Parameter Symbol DDR266A DDR266B DDR200 Unit Note
Min Max Min Max Min Max
Row Cycle Time tRC 65 - 65 - 70 - ns
Auto Refresh Row Cycle Time tRFC 75 - 75 - 80 - ns
Row A ctive Tim e tRAS 45 120K 45 120K 50 120k ns
Active to Read with Auto Precharge Delay tRAP 20 - 20 - 20 - ns 16
Row Address to Column Address D elay tRCD 20 - 20 - 20 - ns
Row Active to Row Active Delay tRRD 15 - 15 - 15 - ns
Column Address to Column Address Delay tCCD 1-1-1-CK
Row Precharge Time tRP 20 - 20 - 20 - ns
Write Rec ove ry Time tWR 15 - 1 5 - 15 - ns
Write to Read Command Delay tWTR 1-1-1-CK
Auto Precharge Write Recovery +
Precharge Time tDAL (tWR/tCK)
+
(tRP/tCK) -(tWR/tCK)
+
(tRP/tCK) -(tWR/tCK)
+
(tRP/tCK) -CK15
System Clock Cycle
Time
CL = 2.5 tCK 7.5127.5128.012ns
CL = 2 7.5 12 10 12 10 12 ns
Clock High Level Width tCH 0.45 0.55 0.45 0.55 0.45 0.55 CK
Clock Low Level Width tCL 0.45 0.55 0.45 0.55 0.45 0.55 CK
Data-Out edge to Clock edge Skew tAC -0.75 0.75 -0.75 0.75 -0.8 0.8 ns
DQS-Out edge to Clock edge Skew tDQSCK -0.75 0.75 -0.75 0.75 -0.8 0.8 ns
DQS-Out ed ge t o Dat a -Out edge Sk e w tDQSQ - 0.5 - 0.5 - 0.6 ns
Data-Out hold time from DQS tQH tHP
-tQHS -tHP
-tQHS -tHP
-tQHS -ns1, 10
Clock Half Period tHP min
(tCL,tCH) -min
(tCL,tCH) -min
(tCL,tCH) -ns1,9
Data Hold Skew Factor tQHS - 0.75 - 0.75 - 0.75 ns 10
Valid Data Output Window tDV tQH-tDQSQ tQH-tDQSQ tQH-tDQSQ ns
Data-out high-impedance window from CK,
/CK tHZ -0.75 0.75 -0.75 0.75 -0.8 0.8 ns 17
Data-out low - impedance window from CK,
/CK tLZ -0.75 0.75 -0.75 0.75 -0.8 0.8 ns 17
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 31
-continued-
Parameter Symbol DDR266A DDR266B DDR200 Unit Note
Min Max Min Max Min Max
Input Setup Time (fast slew rate) tIS 0.9 - 0.9 - 1.1 - ns 2,3,5,6
Input Hold Time (fast slew rate) tIH 0.9 - 0.9 - 1.1 - ns 2,3,5,6
Input Setup Time (slow slew rate) tIS 1.0 - 1.0 - 1.1 - ns 2,4,5,6
Input Hold Time (slow slew rate) tIH 1.0 - 1.0 - 1.1 - ns 2,4,5,6
Input Pulse Width tIPW 2.2 2.2 2.5 - ns 6
Write DQS High Level Width tDQSH 0.35 - 0.35 - 0.35 - CK
Write DQS Low Level Width tDQSL 0.35 - 0.35 - 0.35 - CK
Clock to First Rising edge of DQS-In tDQSS 0.75 1.25 0.75 1.25 0.75 1.25 CK
Data-In Setup Time to D QS-In (DQ & DM ) tDS 0.5 - 0.5 - 0.6 - ns 6,7,
11~13
Data-in Hold Time to DQS-In (DQ & DM) tDH 0.5 - 0.5 - 0.6 - ns
DQ & DM Input Pulse Width tDIPW 1.75 - 1.75 - 2 - ns
Read DQS Preamble Time tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 CK
Read DQS Postamble Time tRPST 0.4 0.6 0.4 0.6 0.4 0.6 CK
Write DQS Preamble Setup Time tWPRES 0-0-0-CK
Write DQS Preamble Hold Time tWPREH 0.25 - 0.25 - 0.25 - CK
Write DQS Postamble Time tWPST 0.4 0.6 0.4 0.6 0.4 0.6 CK
Mode Register Set Delay tMRD 2-2-2-CK
Exit Self Refresh to Any Execute Command tXSC 200 - 200 - 200 - CK 8
Average Periodic Refresh Interval tREFI -15.6-15.6-15.6us
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 32
Note:
1. This calculation accounts for tDQSQ(max), the pulse width distortion of on-chip circuit and jitter.
2. Data sampled at the rising edges of the clock: A0~A11, BA0~BA1, CKE, /CS, /RAS, /CAS, /WE.
3. For command/address input slew rate>=1.0V/ns
4. For command/address input slew r a t e >=0.5V/ns and <1.0V/ns
This Derating Table is used to increase tIS/tIH in case where the input slew-rate is below 0.5V/ns.
Input Setup / Hold Slew- rate Derating Table.
5. CK, /CK slew rates are>=1.0V/ns
6. These parameters guarantee device timing, but they are not necessarily tested on each device, and they may be guaranteed by
design or tester correlation.
7. Data latched at both rising and falling edges of Data Strobes(LDQS/UDQS): DQ, LDM/UDM.
8. Mini mum of 200 c y c les of stable input cloc ks after Self Refresh Exit command, where CKE is held high, is re quired to complete
Self Refresh Exit and lock the internal DLL circu it of DDR SDRAM.
9. Min (t CL, tCH) refers to the smaller of the actual clock low ti me and the actual clock high time as provided to the device (i.e. this
value can be greater than the minimum specification limits for tCL and tCH).
10. tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL). tQHS consist s of
tDQSQmax, the pulse width distortion of on-chip clock circuits, data pin to pin skew and output patte rn effects and p-channel t o
n-channel variation of the output drivers.
11. This derating table is used to increase tDS/tDH in case where the input slew-rate is below 0.5V/ns.
Input Setup / Hold Slew- rate Derating Table.
12. I/O Setup/Hold Pl ateau Der ating. This d erati ng table is used to increase tDS/tDH in case where the input level is flat below VREF
+/-310mV for a duration of up to 2ns.
13. I/O Setup/Hold Delta Inverse Slew Rate Derating. This derating table is used to increase tDS/tDH in case where the DQ and
DQS slew rates differ. The Delta Inverse Slew Rate is calculated as (1/SlewRate1)-(1/SlewRate2). For example, if slew rate 1=
0.5V/ns and Slew Rate2=0.4V/n then the Delta Inverse Slew Rate=-0.5ns/V.
Input Setup / Hold Slew-rate Delta tIS Delta tIH
V/ns ps ps
0.5 0 0
0.4 +50 0
0.3 +100 0
Input Setup / Hold Slew-rate Delta tDS Delta tDH
V/ns ps ps
0.5 0 0
0.4 +75 +75
0.3 +150 +150
I/O Input Level Delta tDS Delta tDH
mV ps ps
+280 +50 +50
(1/SlewRate1)-(1/SlewRate2) Delta tDS Delta tDH
ns/V ps ps
000
+/-0.25 +50 +50
+/- 0.5 +100 +100
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 33
14. DQS, DM and DQ input slew rate is specifi e d t o prevent double clocking of data and preserve setu p a nd hold times. Signal
transitions through the DC region must be monotonic.
15. tDAL = (tDPL / tCK) + (tRP / tCK). For each of the terms above, if not already an integer, round to the next highest integer.
tCK is equal to the actual system clock cycle time.
Example: For DDR266B at CL=2.5 and tCK = 7.5 ns,
tDAL = (15 ns / 7.5 ns) + (20 ns / 7.5 ns) = (2.00) + (2.67)
Round up each non-integer to the next highest i nteger: = (2) + (3), tDAL = 5 clocks
16. For the parts which do not has internal RAS lockout circuit, Active to Read with Auto precharge delay should be
tRAS - (BL/2) x tCK.
17. tHZ and tLZ transitions occur in the same access time windo ws as valid data trasitions. These parameters are not referenced
to a specific voltage level but specify when the device output is no longer driving (HZ), or begins driving (LZ).
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 34
VREF
VTT
RT=50Ω
Zo=50Ω
CL=30pF
Output
CAPACITANCE (TA=25oC, f=100MHz)
Note:
1. VDD = min. to max., VDDQ = 2.3V to 2.7V, VODC = VDDQ/2, VOpeak-to-peak = 0.2V
2. Pins not under test are tied to GND.
3. These values are guaranteed by design and are tested on a sample basis only.
OUTPUT LOAD CIRCUIT
Parameter Pin Symbol Min Max Unit
Input Clock Capacitance CK, /CK CI1 2.0 3.0 pF
Delta Input Clock Capacitance CK, /CK Delta CI1 -0.25pF
Input Capacita n ce All other input-only pins CI1 2.0 3.0 pF
Delta Input Capacit ance All other input-only pins D e lta C I2 -0.5pF
Input / Output Capacitance DQ, DQS, DM CIO 4.0 5.0 pF
Delta Input / Output Capa citance DQ, DQS, DM Delta CIO -0.5pF
HY5DU28422ET
HY5DU28822ET
HY5DU281622ET
Rev. 0.5 /Apr. 2006 35
10.26 (0.404)
10.05 (0.396)
11.94 (0.470)
11.79 (0.462)
22.33 (0.879)
22.12 (0.871)
1.194 (0.0470)
0.991 (0.0390)
0.65 (0.0256) BSC 0.35 (0.0138)
0.25 (0.0098)
0.15 (0.0059)
0.05 (0.0020)
BASE PLANE
SEATING PLANE
0.597 (0.0235)
0.406 (0.0160) 0.210 (0.0083)
0.120 (0.0047)
0 ~ 5 Deg.
Unit : mm(Inch)
PACKAGE INFORMATION
400mil 66pin Thin Small Outline Package
Note: Package do not mold protrusion. Allowable protrusion of both sides is 0.4mm.