LM19 www.ti.com SNIS122E - MAY 2001 - REVISED MARCH 2013 LM19 2.4V, 10A, TO-92 Temperature Sensor Check for Samples: LM19 FEATURES 1 * * * * * 2 Rated for Full -55C to +130C Range Available in a TO-92 Package Predictable Curvature Error Suitable for Remote Applications UL Recognized Component APPLICATIONS * * * * * * * * * Cellular Phones Computers Power Supply Modules Battery Management FAX Machines Printers HVAC Disk Drives Appliances KEY SPECIFICATIONS * * * * * * * Accuracy at +30C 2.5 C (max) Accuracy at +130C & -55C 3.5 to 3.8 C (max) Power Supply Voltage Range +2.4V to +5.5V Current Drain 10 A (max) Nonlinearity 0.4 % (typ) Output Impedance 160 (max) Load Regulation - 0A < IL< +16 A DESCRIPTION The LM19 is a precision analog output CMOS integrated-circuit temperature sensor that operates over a -55C to +130C temperature range. The power supply operating range is +2.4 V to +5.5 V. The transfer function of LM19 is predominately linear, yet has a slight predictable parabolic curvature. The accuracy of the LM19 when specified to a parabolic transfer function is 2.5C at an ambient temperature of +30C. The temperature error increases linearly and reaches a maximum of 3.8C at the temperature range extremes. The temperature range is affected by the power supply voltage. At a power supply voltage of 2.7 V to 5.5 V the temperature range extremes are +130C and -55C. Decreasing the power supply voltage to 2.4 V changes the negative extreme to -30C, while the positive remains at +130C. The LM19's quiescent current is less than 10 A. Therefore, self-heating is less than 0.02C in still air. Shutdown capability for the LM19 is intrinsic because its inherent low power consumption allows it to be powered directly from the output of many logic gates or does not necessitate shutdown at all. 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright (c) 2001-2013, Texas Instruments Incorporated LM19 SNIS122E - MAY 2001 - REVISED MARCH 2013 www.ti.com Typical Application Output Voltage vs Temperature VO = (-3.88x10-6xT2) + (-1.15x10-2xT) + 1.8639 or where: T is temperature, and VO is the measured output voltage of the LM19. Figure 1. Full-Range Celsius (Centigrade) Temperature Sensor (-55C to +130C) Operating from a Single Li-Ion Battery Cell Temperature (T) Typical VO +130C +303 mV +100C +675 mV +80C +919 mV +30C +1515 mV +25C +1574 mV 0C +1863.9 mV -30C +2205 mV -40C +2318 mV -55C +2485 mV Connection Diagram Figure 2. TO-92 Package Number LP These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 2 Submit Documentation Feedback Copyright (c) 2001-2013, Texas Instruments Incorporated Product Folder Links: LM19 LM19 www.ti.com SNIS122E - MAY 2001 - REVISED MARCH 2013 Absolute Maximum Ratings (1) Supply Voltage +6.5V to -0.2V Output Voltage (V+ + 0.6 V) to -0.6 V Output Current 10 mA Input Current at any pin (2) 5 mA -65C to +150C Storage Temperature Maximum Junction Temperature (TJMAX) +150C ESD Susceptibility (3) 2500 V Human Body Model Machine Model Lead Temperature (1) (2) (3) TO-92 Package 250 V Soldering (3 seconds dwell) +240C Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The specified specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. When the input voltage (VI) at any pin exceeds power supplies (VI < GND or VI > V+), the current at that pin should be limited to 5 mA. The human body model is a 100 pF capacitor discharged through a 1.5 k resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin. Operating Ratings (1) TMIN TA TMAX Specified Temperature Range 2.4 V V+ 2.7 V -30C TA +130C 2.7 V V+ 5.5 V -55C TA +130C + Supply Voltage Range (V ) Thermal Resistance, JA (2) (1) (2) +2.4 V to +5.5 V TO-92 150C/W Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The specified specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. The junction to ambient thermal resistance (JA) is specified without a heat sink in still air. Submit Documentation Feedback Copyright (c) 2001-2013, Texas Instruments Incorporated Product Folder Links: LM19 3 LM19 SNIS122E - MAY 2001 - REVISED MARCH 2013 www.ti.com Electrical Characteristics Unless otherwise noted, these specifications apply for V+ = +2.7 VDC. Boldface limits apply for TA = TJ = TMIN to TMAX ; all other limits TA = TJ = 25C; Unless otherwise noted. Parameter Conditions Typical (1) LM19C Limits (2) Temperature to Voltage Error VO = (-3.88x10-6xT2) + (-1.15x10-2xT) + 1.8639V (3) Units (Limit) TA = +25C to +30C 2.5 C (max) TA = +130C 3.5 C (max) TA = +125C 3.5 C (max) TA = +100C 3.2 C (max) TA = +85C 3.1 C (max) TA = +80C 3.0 C (max) TA = 0C 2.9 C (max) TA = -30C 3.3 C (min) TA = -40C 3.5 C (max) TA = -55C 3.8 C (max) Output Voltage at 0C +1.8639 V Variance from Curve 1.0 C Non-Linearity (4) -20C TA +80C 0.4 Sensor Gain (Temperature Sensitivity or Average Slope) to equation: VO=-11.77 mV/CxT+1.860V -30C TA +100C -11.77 Output Impedance (7) Load Regulation Line Regulation (8) mV/C (min) mV/C (max) 0 A IL +16 A (5) (6) 160 (max) (5) (6) -2.5 mV (max) +3.7 mV/V (max) +11 mV (max) 7 A (max) 0 A IL +16 A +2. 4 V V+ +5.0V +5.0 V V+ +5.5 V Quiescent Current Change of Quiescent Current +2. 4 V V+ +5.0V 4.5 + +5.0V V +5.5V 4.5 9 A (max) +2. 4 V V+ +5.0V 4.5 10 A (max) +2. 4 V V+ +5.5V +0.7 A -11 nA/C 0.02 A Temperature Coefficient of Quiescent Current Shutdown Current (1) (2) (3) (4) (5) (6) (7) (8) 4 % -11.0 -12.6 + V +0.8 V Typicals are at TJ = TA = 25C and represent most likely parametric norm. Limits are ensured to AOQL (Average Outgoing Quality Level). Accuracy is defined as the error between the measured and calculated output voltage at the specified conditions of voltage, current, and temperature (expressed inC). Non-Linearity is defined as the deviation of the calculated output-voltage-versus-temperature curve from the best-fit straight line, over the temperature range specified. Negative currents are flowing into the LM19. Positive currents are flowing out of the LM19. Using this convention the LM19 can at most sink -1 A and source +16 A. Load regulation or output impedance specifications apply over the supply voltage range of +2.4V to +5.5V. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance. Line regulation is calculated by subtracting the output voltage at the highest supply input voltage from the output voltage at the lowest supply input voltage. Submit Documentation Feedback Copyright (c) 2001-2013, Texas Instruments Incorporated Product Folder Links: LM19 LM19 www.ti.com SNIS122E - MAY 2001 - REVISED MARCH 2013 Typical Performance Characteristics Temperature Error vs. Temperature Thermal Response in Still Air 5 MAX Limit 4 ERROR ( C) 3 2 Typical 1 0 -1 -2 MIN Limit -3 -4 -5 -100 -50 0 50 100 150 TEMPERATURE (C) LM19 TRANSFER FUNCTION The LM19's transfer function can be described in different ways with varying levels of precision. A simple linear transfer function, with good accuracy near 25C, is VO= -11.69 mV/C x T + 1.8663 V (1) Over the full operating temperature range of -55C to +130C, best accuracy can be obtained by using the parabolic transfer function VO = (-3.88x10-6xT2) + (-1.15x10-2xT) + 1.8639 (2) solving for T: (3) A linear transfer function can be used over a limited temperature range by calculating a slope and offset that give best results over that range. A linear transfer function can be calculated from the parabolic transfer function of the LM19. The slope of the linear transfer function can be calculated using the following equation: m = -7.76 x 10-6x T - 0.0115 where * T is the middle of the temperature range of interest and m is in V/C. (4) For example for the temperature range of Tmin = -30 to Tmax = +100C: T = 35C and m = -11.77 mV/C The offset of the linear transfer function can be calculated using the following equation: b = (VOP(Tmax) + VOP(T) - m x (Tmax+T))/2 where * * VOP(Tmax) is the calculated output voltage at Tmax using the parabolic transfer function for VO. VOP(T) is the calculated output voltage at T using the parabolic transfer function for VO. (5) Using this procedure the best fit linear transfer function for many popular temperature ranges was calculated in Table 1. As shown in Table 1 the error that is introduced by the linear transfer function increases with wider temperature ranges. Submit Documentation Feedback Copyright (c) 2001-2013, Texas Instruments Incorporated Product Folder Links: LM19 5 LM19 SNIS122E - MAY 2001 - REVISED MARCH 2013 www.ti.com Table 1. First Order Equations Optimized For Different Temperature Ranges Temperature Range Linear Equation VO= Maximum Deviation of Linear Equation from Parabolic Equation (C) +130 -11.79 mV/C x T + 1.8528 V 1.41 +110 -11.77 mV/C x T + 1.8577 V 0.93 -30 +100 -11.77 mV/C x T + 1.8605 V 0.70 -40 +85 -11.67 mV/C x T + 1.8583 V 0.65 -10 +65 -11.71 mV/C x T + 1.8641 V 0.23 +35 +45 -11.81 mV/C x T + 1.8701 V 0.004 +20 +30 -11.69 mV/C x T + 1.8663 V 0.004 Tmin (C) Tmax (C) -55 -40 Mounting The LM19 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface. The temperature that the LM19 is sensing will be within about +0.02C of the surface temperature to which the LM19's leads are attached. This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature measured would be at an intermediate temperature between the surface temperature and the air temperature. To ensure good thermal conductivity the backside of the LM19 die is directly attached to the GND pin. The tempertures of the lands and traces to the other leads of the LM19 will also affect the temperature that is being sensed. Alternatively, the LM19 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM19 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to ensure that moisture cannot corrode the LM19 or its connections. The thermal resistance junction to ambient (JA) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. For the LM19 the equation used to calculate the rise in the die temperature is as follows: TJ = TA + JA [(V+ IQ) + (V+ - VO) IL] where * IQ is the quiescent current and ILis the load current on the output. (6) Since the LM19's junction temperature is the actual temperature being measured care should be taken to minimize the load current that the LM19 is required to drive. Table 2 summarizes the rise in die temperature of the LM19 without any loading, and the thermal resistance for different conditions. Table 2. Temperature Rise of LM19 Due to Self-Heating and Thermal Resistance (JA) TO-92 TO-92 no heat sink small heat fin JA TJ - TA JA TJ - TA (C/W) (C) (C/W) (C) Still air 150 TBD TBD TBD Moving air TBD TBD TBD TBD 6 Submit Documentation Feedback Copyright (c) 2001-2013, Texas Instruments Incorporated Product Folder Links: LM19 LM19 www.ti.com SNIS122E - MAY 2001 - REVISED MARCH 2013 Capacitive Loads The LM19 handles capacitive loading well. Without any precautions, the LM19 can drive any capacitive load less than 300 pF as shown in Figure 3. Over the specified temperature range the LM19 has a maximum output impedance of 160 . In an extremely noisy environment it may be necessary to add some filtering to minimize noise pickup. It is recommended that 0.1 F be added from V+ to GND to bypass the power supply voltage, as shown in Figure 4. In a noisy environment it may even be necessary to add a capacitor from the output to ground with a series resistor as shown in Figure 4. A 1 F output capacitor with the 160 maximum output impedance and a 200 series resistor will form a 442 Hz lowpass filter. Since the thermal time constant of the LM19 is much slower, the overall response time of the LM19 will not be significantly affected. Figure 3. LM19 No Decoupling Required for Capacitive Loads Less than 300 pF Table 3. LM19 with Filter for Noisy Environment and Capacitive Loading greater than 300 pF R () C (F) 200 1 470 0.1 680 0.01 1k 0.001 Either placement of resistor as shown above is just as effective. Figure 4. LM19 with Filter for Noisy Environment and Capacitive Loading greater than 300 pF Submit Documentation Feedback Copyright (c) 2001-2013, Texas Instruments Incorporated Product Folder Links: LM19 7 LM19 SNIS122E - MAY 2001 - REVISED MARCH 2013 www.ti.com Applications Circuits V+ VTEMP R3 VT1 R4 VT2 LM4040 V+ VT R1 4.1V U3 0.1 PF R2 (High = overtemp alarm) + U1 - VOUT VOUT LM7211 VT1 = (4.1)R2 R2 + R1||R3 VT2 = (4.1)R2||R3 R1 + R2||R3 LM19 VTemp U2 Figure 5. Centigrade Thermostat Figure 6. Conserving Power Dissipation with Shutdown Figure 7. Suggested Connection to a Sampling Analog to Digital Converter Input Stage Most CMOS ADCs found in ASICs have a sampled data comparator input structure that is notorious for causing grief to analog output devices such as the LM19 and many op amps. The cause of this grief is the requirement of instantaneous charge of the input sampling capacitor in the ADC. This requirement is easily accommodated by the addition of a capacitor. Since not all ADCs have identical input stages, the charge requirements will vary necessitating a different value of compensating capacitor. This ADC is shown as an example only. If a digital output temperature is required please refer to devices such as the LM74. 8 Submit Documentation Feedback Copyright (c) 2001-2013, Texas Instruments Incorporated Product Folder Links: LM19 LM19 www.ti.com SNIS122E - MAY 2001 - REVISED MARCH 2013 REVISION HISTORY Changes from Revision D (March 2013) to Revision E * Page Changed layout of National Data Sheet to TI format ............................................................................................................ 8 Submit Documentation Feedback Copyright (c) 2001-2013, Texas Instruments Incorporated Product Folder Links: LM19 9 PACKAGE OPTION ADDENDUM www.ti.com 6-Jul-2014 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) LM19CIZ/LFT4 ACTIVE TO-92 LP 3 2000 Green (RoHS & no Sb/Br) CU SN N / A for Pkg Type LM19CIZ/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) CU SN N / A for Pkg Type Op Temp (C) Device Marking (4/5) LM19 CIZ -55 to 130 LM19 CIZ (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 6-Jul-2014 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE OUTLINE LP0003A TO-92 - 5.34 mm max height SCALE 1.200 SCALE 1.200 TO-92 5.21 4.44 EJECTOR PIN OPTIONAL 5.34 4.32 (1.5) TYP SEATING PLANE (2.54) NOTE 3 2X 4 MAX (0.51) TYP 6X 0.076 MAX SEATING PLANE 2X 2.6 0.2 3X 12.7 MIN 3X 3X 0.55 0.38 0.43 0.35 2X 1.27 0.13 FORMED LEAD OPTION STRAIGHT LEAD OPTION OTHER DIMENSIONS IDENTICAL TO STRAIGHT LEAD OPTION 3X 2.67 2.03 4.19 3.17 3 2 1 3.43 MIN 4215214/B 04/2017 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Lead dimensions are not controlled within this area. 4. Reference JEDEC TO-226, variation AA. 5. Shipping method: a. Straight lead option available in bulk pack only. b. Formed lead option available in tape and reel or ammo pack. c. Specific products can be offered in limited combinations of shipping medium and lead options. d. Consult product folder for more information on available options. www.ti.com EXAMPLE BOARD LAYOUT LP0003A TO-92 - 5.34 mm max height TO-92 0.05 MAX ALL AROUND TYP FULL R TYP METAL TYP (1.07) 3X ( 0.85) HOLE 2X METAL (1.5) 2X (1.5) 2 1 (R0.05) TYP 3 2X (1.07) (1.27) SOLDER MASK OPENING 2X SOLDER MASK OPENING (2.54) LAND PATTERN EXAMPLE STRAIGHT LEAD OPTION NON-SOLDER MASK DEFINED SCALE:15X 0.05 MAX ALL AROUND TYP ( 1.4) 2X ( 1.4) METAL 3X ( 0.9) HOLE METAL (R0.05) TYP 2 1 (2.6) SOLDER MASK OPENING 3 2X SOLDER MASK OPENING (5.2) LAND PATTERN EXAMPLE FORMED LEAD OPTION NON-SOLDER MASK DEFINED SCALE:15X 4215214/B 04/2017 www.ti.com TAPE SPECIFICATIONS LP0003A TO-92 - 5.34 mm max height TO-92 13.7 11.7 32 23 (2.5) TYP 0.5 MIN 16.5 15.5 11.0 8.5 9.75 8.50 19.0 17.5 6.75 5.95 2.9 TYP 2.4 3.7-4.3 TYP 13.0 12.4 FOR FORMED LEAD OPTION PACKAGE 4215214/B 04/2017 www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2017, Texas Instruments Incorporated Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Texas Instruments: LM19CIZ LM19CIZ/LFT4 LM19CIZ/NOPB