Part Number 460GT
Revision 1.07 – May 29, 2008
AMCC Proprietary 1
460GT
PowerPC 460GT Embedded Processor
Preliminary Data Sheet
Features
•PowerPC
® 440 processor operating between
667MHz and 1GHz with 32KB I-cache and D-
cache and 256KB L2/SRAM with parity checking
On-chip memory (64KB)
Processor Local Bus (PLB) with 128-bit width
Floating Point unit
Double Data Rate 2/1 (DDR 2 /1) Sync hr on o us
DRAM (SDRAM) interface
One four-channel DMA (Direct Memory Access)
for internal and external peripherals
One single-channel, high-performance DMA for
internal use
External 32-bit peripheral bus (EBC) for up to six
devices. Up to 100MHz
Programmable Interrupt Controller (UIC) with up
to 16 external interrupts
Programmable General Purpose Timers (GPTs)
Two PCI Express 1.1 interfaces—o ne 4-lan e an d
one 1-lane
PCI V2.3 interface. Thirty-two bits at up to 66MHz
Four Ethernet 10/100/1000Mbps half- or full-
duplex interfaces. Operational modes supported
are MII, RMII, GMII, RGMII, and SGMIII with QoS,
Jumbo frames, interrupt coalescing, and TCP/IP
acceleration
Up to four serial (UART) ports (16750 compatible)
Two IIC interfaces (one with boot parameter read
capability)
NAND Flash interface
SPI interface
Serial Rapid I/O (SRIO) port
General Purpose I/O (GPIO) interface
JTAG interface for board level testing
Boot from PCI memory, NOR Flash on the
external peripheral bus, or NAND Flash on the
NAND Flash interface
Option al secur ity feature (PPC460GT-S) with
KASUMI.
Available in RoHS compliant, lead-free package
Description
Designed specifically to address high-end e mbedded
applications, the PowerPC 460GT (PPC460GT)
provides a high-performance, low-power solution that
interfaces to a wide range of peripherals and
incorporates on-chip power management features.
This chip contains a high-performance RISC
processor, a floating point unit, on-chip memory, a
DDR2/1 SDRAM controller, PCI and PCI Express bus
interfaces, control for external ROM and peripherals,
DMA with scatter/gather support, Ethern et ports, serial
ports, IIC interfaces, SPI interface, NAND Flash
interface, SRIO support, an optional security feature
with KASUMI (PPC460GT-S), and general purpose
I/O.
Technology: CMOS Cu-08, 90nm.
Package: 35mm, 728-ball thermally and electrically
enhanced plastic ball grid array (TE-EPBGA). RoHS
compliant package available.
Typical power: Less than 6W at 1GHz.
Supply voltages required: 3.3V, 2.5V (DDR1,
Ethernet), 1.8V (DDR2), 1.2V.
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
2 AMCC Proprietary
Revision 1.07 – May 29, 2008
Contents
Ordering and PVR Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Address Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
PowerPC 440 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Floating Point Unit (FPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
L2 Cache/SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Internal Buses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Security Function (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
PCI Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
PCI Express Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
DDR2/1 SDRAM Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
External Peripheral Bus Controller (EBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Ethernet Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
DMA 4-Channel Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Serial Ports (UART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
IIC Bus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Serial Peripheral Controller (SPI/SCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
NAND Flash Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
General Purpose Timers (GPT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
General Purpose IO (GPIO) Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Universal Interrupt Controller (UIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Signal Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Spread Spectrum Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
DDR2/1 SDRAM I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DDR SDRAM Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
DDR SDRAM Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Strapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Serial EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 3
Preliminary Data Sheet
Figures
Figure 1. Order Part Number Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. PPC460GT Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. 35mm, 728-Ball TE-PBGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 4. Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 5. Input Setup and Hold Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 6. Output Delay and Float Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 7. Input Setup and Hold Timing Waveform for RGMII Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 8. Output Delay and Hold Timing Waveform for RGMII Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 9. DDR SDRAM Simulation Signal Termination Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 10. DDR SDRAM Write Cycle Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 12. DDR SDRAM Memory Data and DQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 13. DDR SDRAM Read Cycle Timing—Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Tables
Table 1. System Memory Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. DCR Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Signals Listed Alphabetically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 4. Signals Listed by Ball Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 5. Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 7. Signal Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 8. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 9. Recommended DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 10. Input Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 11. Typic al DC Powe r Sup pl y Req uirements Using DDR2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 12. Typic al DC Powe r Sup pl y Req uirements Using DDR1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 13. VDD Supply Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 14. DC Power Supply Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 15. Package Thermal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 16. Clocking Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 17. Peripheral Interface Clock Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 18. I/O Specifications—All Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 19. I/O Specifications—400MHz to 1000MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 20. DDR SDRAM Output Driver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 21. DDR SDRAM Write Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 22. I/O Timing—DDR SDRAM TDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 23. I/O Timing—DDR SDRAM TSA, and THA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 24. I/O Timing—DDR SDRAM Write Timing TSD and THD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 25. I/O Timing—DDR SDRAM Read Timing TSD and THD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 26. Strapping Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
4 AMCC Proprietary
Revision 1.07 – May 29, 2008
Ordering and PVR Information
For information on the availability of the following parts, contact your local AMCC sales office. For additional
information on the part number structure see Figure 1.
Each part number contains a revision code. This is the die mask revision number and is included in the part
number for identification purposes only.
The PVR (Processor Version Register) and the JTAG ID register are software accessible (read-only) and contain
information that uniquely identifies the part. Refer to the PowerPC 460 GT Embedded Proce ssor User’s Manual for
details on accessing these registers.
Figure 1. Order Part Number Key
Product Name Order Part Number
(see Notes)Package Revision
Level PVR Value JTAG ID
PPC460GT PPC460GT-SpAfff(f)T 35mm 728-ball TE-EPBGA A 0x130218A0 0x144101E1
PPC460GT PPC460GT-NpAfff(f)T 35mm 728-ball TE-EPBGA A 0x130218A1 0x144101E1
Notes: Characters following the dash (-):
1. S = Security feature present, N = Security feature not present
2. p = Package type: U = lead-free (RoHS compliant), T = contains lead.
3. A = Chip revision level A
4. fff(f) = Processor frequency: = 600 = 667MHz, = 800 = 800MHz, ffff = 1000 = 1GHz
5. T = Case temperature range of 40°C to +85°C.
AMCC Part Number
PPC460GT-SUA1000T
Package
Processor Frequency
Case Temperature Range
Revision Level
Security Feature
Note:
The example P/N above contains the security feature, is lead-free, is capable of running at 1GHz, and is shipped
in a tray (tape-and-reel packaging is not available).
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 5
Preliminary Data Sheet
Block Diagram
Figure 2. PPC460GT Functional Block Diagram
The PPC460GT is a system on a chip (SOC).
Processor Core DCR Bus
32KB
On-chip Peripheral Bus (OPB) - 32 bits, 100 MHz
GPIO
DMA
Processor Local Bus (PLB) - 128 bits, 200 MHz
External
Bus
Controller
Clock
Control
Reset
Power
Mgmt
JTAG Trace
Timers
MMU
Cntrlr
OPB
Arb
D-Cache
32KB
I-Cache (4-Ch)
SRAM
Cntrlr
PPC440
Ethernet
1000 x2
DCRs
ZMII
RGMII
256KB L2 Cache
10/100/
TAH/QoS
10/100/
1000 x2
Bridge x2 Bridge
UART
x4 IIC(x2)
BSC SPI
NAND
Flash
Controller
MAL w/
Int. Coalescing
PCI-Express
Memory
PCI-E1
PCI-E0
Queue
PCI
4 lanes
32-bit
64+8
DDR 1 and 2
SDRAM Cntrlr
33/66 MHz
M0 M1 M4 M6
M10
Arb
S3
S4
M2
M3
S1
S3
M5
Low Latency (LL) Segment
High Bandwidth (HB) Segment
Int
Hand
S2 S0
S0
SRIO
(x1) (x4)
HSS x1/x4
1 lane
HSS x1
OCM
64KB
S2 S7
TRNG/
PKA
S5
M7
S1
HSDMA
Cntrlr
Bridge
M8
S4
M9
GPT
Security
Engine
w/Kasumi
External
16
Interrupts
UIC
SGMII
x3
Sn = Slave n
Mn = Master n
FPU
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
6 AMCC Proprietary
Revision 1.07 – May 29, 2008
Address Maps
The PPC460GT incorpora tes two address maps. Th e first is a fixed processor System Memory Address Map. This
address map defines the possible contents of various address regions which the processor can access. The
second is the DCR Address Map for Device Configuration Registers (DCRs). The DCRs are accessed by software
running on the PPC460GT processor through the use of mtdcr and mfdcr instructions.
Table 1. System Memory Address Map (Part 1 of 3)
Function Sub Function Start Address End Address Size
Local Memory (LL)1
DDR SDRAM 0000 0000 0000 0000 0000 0003 FFFF FFFF 16GB
SRAM (L2 Cache) 0000 0004 0000 0000 0000 0004 0003 FFFF 256KB
On-Chip Memory (OCM) 0000 0004 0004 0000 0000 0004 0004 FFFF 64KB
Reserved 0000 0004 0005 0000 0000 0004 000F FFFF 704KB
Internal PLB Interfaces (LL)1
I2O/DMA 0000 0004 0010 0000 0000 0004 0010 FFFF 64KB
I2O Registers 0000 0004 0010 0000 0000 0004 0010 00FF 256B
Reserved 0000 0004 0010 0100 0000 0004 0010 01FF 256B
HSDMA Registers 0000 0004 0010 0200 0000 0004 0010 02FF 256B
Reserved 0000 0004 0010 0300 0000 0004 0010 FFFF 63.25KB
PKA & TRNG (EIPPKP) 0000 0004 0011 0000 0000 0004 0011 FFFF 64KB
Reserved 0000 0004 0012 0000 0000 0004 0017 FFFF 384KB
Security Function (EIP94) 0000 0004 0018 0000 0000 0004 001F FFFF 512KB
Reserved 0000 0004 0020 0000 0000 0004 BFFF FFFF ~3GB
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 7
Preliminary Data Sheet
Internal OPB Peripherals (LL)
EBC Memory except Bank 0 60000 0004 C000 0000 0000 0004 E7FF FFFF 640MB
Reserved 0000 0004 E800 0000 0000 0004 EF5F FFFF 118MB
General Purpose Timer 0000 0004 EF60 0000 0000 0004 EF60 01FF 512B
Reserved 0000 0004 EF60 0200 0000 0004 EF60 02FF 256B
UART0 0000 0004 EF60 0300 0000 0004 EF60 0307 8B
Reserved 0000 0004 EF60 0308 0000 0004 EF60 03FF 248B
UART1 0000 0004 EF60 0400 0000 0004 EF60 0407 8B
Reserved 0000 0004 EF60 0408 0000 0004 EF60 04FF 248B
UART2 0000 0004 EF60 0500 0000 0004 EF60 0507 8B
Reserved 0000 0004 EF60 0508 0000 0004 EF60 05FF 248B
UART3 0000 0004 EF60 0600 0000 0004 EF60 0607 8B
Reserved 0000 0004 EF60 0608 0000 0004 EF60 06FF 248B
IIC0 0000 0004 EF60 0700 0000 0004 EF60 071F 32B
Reserved 0000 0004 EF60 0720 0000 0004 EF60 07FF 224B
IIC1 0000 0004 EF60 0800 0000 0004 EF60 081F 32B
Reserved 0000 0004 EF60 0820 0000 0004 EF60 08FF 224B
SPI 0000 0004 EF60 0900 0000 0004 EF60 090F 16B
Reserved 0000 0004 EF60 0910 0000 0004 EF60 09FF 240B
OPB Arbiter 0000 0004 EF60 0A00 0000 0004 EF60 0A3F 64B
Reserved 0000 0004 EF60 0A40 0000 0004 EF60 0AFF 192B
GPIO0 Controller 0000 0004 EF60 0B00 0000 0004 EF60 0B7F 128B
Reserved 0000 0004 EF60 0B80 0000 0004 EF60 0BFF 128B
GPIO1 Controller 0000 0004 EF60 0C00 0000 0004 EF60 0C7F 128B
Reserved 0000 0004 EF60 0C80 0000 0004 EF60 0CFF 128B
Ethernet PHY ZMII 0000 0004 EF60 0D00 0000 0004 EF60 0D0F 16B
Reserved 0000 0004 EF60 0D10 0000 0004 EF60 0DFF 240B
EMAC0 Controller 0000 0004 EF60 0E00 0000 0004 EF60 0EFF 256B
EMAC1 Controller 0000 0004 EF60 0F00 0000 0004 EF60 0FFF 256B
Reserved 0000 0004 EF60 1000 0000 0004 EF60 10FF 256B
EMAC2 Controller 0000 0004 EF60 1100 0000 0004 EF60 11FF 256B
EMAC3 Controller 0000 0004 EF60 1200 0000 0004 EF60 12FF 256B
TAHOE0 Accelerator 0000 0004 EF60 1300 0000 0004 EF60 13FF 256B
TAHOE1 Accelerator 0000 0004 EF60 1400 0000 0004 EF60 14FF 256B
RGMII0 Controller 0000 0004 EF60 1500 0000 0004 EF60 150F 16B
Reserved 0000 0004 EF60 1510 0000 0004 FEFF FFFF 240B
RGMII1 Controller 0000 0004 EF60 1600 0000 0004 EF60 160F 16B
Table 1. System Memory Address Map (Part 2 of 3)
Function Sub Function Start Address End Address Size
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
8 AMCC Proprietary
Revision 1.07 – May 29, 2008
Reserved 0000 0004 EF60 1610 0000 0004 FEFF FFFF 262B
Boot ROM 2, 3 EBC Memory Bank 0 0000 0004 FF00 0000 0000 0004 FFFF FFFF 16MB
Internal PLB Interfaces (LL) Reserved 0000 0005 0000 0000 0000 0007 FFFF FFFF 12GB
Local Memory Alias (HB) Aliased DDR SDRAM 0000 0008 0000 0000 0000 000B FFFF FFFF 16GB
PCI/PCIE Space (HB)
PCI Express and SRIO Memory 0000 000C 0000 0000 0000 000C 07FF FFFF 128MB
PCI I/O 0000 000C 0800 0000 0000 000C 0800 FFFF 64KB
PC Express and SRIO Memory 0000 000C 0801 0000 0000 000C 087F FFFF ~8MB
PCI Extra I/O 0000 000C 0880 0000 0000 000C 0BFF FFFF ~56MB
PCI Express Memory and SRIO
Memory 0000 000C 0C00 0000 0000 000C 0EBF FFFF ~44MB
PCI Configuration Registers 0000 000C 0EC0 0000 0000 000C 0EC0 0007 8B
Reserved 0000 000C 0EC0 0008 0000 000C 0EC7 FFFF ~512KB
PCI Local Registers 0000 000C 0EC8 0000 0000 000C 0EC8 11FF 4.75KB
Reserved 0000 000C 0EC8 1200 0000 000C 0ECF FFFF ~512KB
PCI Special Cycle 0000 000C 0ED0 0000 0000 000C 0ED0 0003 4B
Reserved 0000 000C 0ED0 0004 0000 000C 0FFF FFFF ~19MB
PCI Express Interrupt Handler 0000 000C 1000 0000 0000 000C 1000 00FF 256B
PCI, PCI-E and SRIO Memory 0000 000C 1000 0100 0000 000C FEFF FFFF ~3.8MB
PCI Boot ROM (PCI Memory) 0000 000C FF00 0000 0000 000C FFFF FFFF 16MB
PCI, PCI-E and SRIO Memory 0000 000D 0000 0000 0000 000F FFFF FFFF 12GB
Reserved 40000 0010 0000 0000 03FF FFFF FFFF FFFF
Reserved 50400 0000 0000 0000 0FFF FFFF FFFF FFFF
XOR Space (HB) XOR 1000 0000 0000 0000 1FFF FFFF FFFF FFFF
PCI/PCIE Space (HB) PCI, PCI-E and SRIO Memory 2000 0000 0000 0000 FFFF FFFF FFFF FFFF
Notes:
1. DDR SDRAM, SRAM (L2 Cache) and On-Chip Memory (OCM) can be located anywhere in the Local Memory area of the memory
map.
2. The Boot ROM area of the memory map are intended for use by ROM or Flash-type devices. While locating volatile DDR SDRAM and
SRAM in this region is supported, use of these regions for this purpose is not recommended.
3. When the optional boot from PCI Memory is selected, the PCI Boot ROM address space begins at 0000 000C FF00 0000 (16 MB).
4. Never decoded.
5. Unpredictable results on Read and Write operations.
6. Accessed by means of EBC Peripheral Bank Configuration Registers.
Table 1. System Memory Address Map (Part 3 of 3)
Function Sub Function Start Address End Address Size
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 9
Preliminary Data Sheet
Table 2. DCR Address Map
Function Base Address Start Address End Address Size
Total DCR Address Space1000 3FF 1KW (4KB)1
By function:
Reserved 000 00B 12W
Clocking Power On Reset (CPR) 00 0000 110x 00C 00D 2W
System DCRs (SDR) 00 0000 111x 00E 00F 2W
Memory Controller 00 0001 000x 010 011 2W
External Bus Controller (EBC) 00 0001 001x 012 013 2W
Reserved 014 01F 12W
L2 Cache as SRAM 00 0010 xxxx 020 02F 16W
L2 Controller 00 0011 xxxx 030 03F 16W
Memory Queue 00 010x xxxx 040 04F 16W
Reserved 050 05F 16W
I2O/DMA Controller 00 011x xxxx 060 07F 32W
PLB Arbiter 00 1000 xxxx 080 08F 16W
PLB-to-OPB Bridge 00 1001 xxxx 090 09F 16W
Reserved 0A0 0AF 16W
On-Chip Memory (OCM) 00 1011 xxxx 0B0 0BF 16W
Universal Interrupt Controller 0 00 1100 xxxx 0C0 0CF 16W
Universal Interrupt Controller 1 00 1101 xxxx 0D0 0DF 16W
Universal Interrupt Controller 2 00 1110 xxxx 0E0 0EF 16W
Universal Interrupt Controller 3 00 1111 xxxx 0F0 0FF 16W
PCI Express 0 01 000x xxxx 100 11F 32W
PCI Express 1 01 001x xxxx 120 13F 32W
SRIO 01 010x xxxx 140 15F 32W
Power Management 01 011x xxxx 160 167 8W
Reserved 168 17F 24W
Ethernet MAL 01 1xxx xxxx 180 1FF 128W
DMA Controller 10 00xx xxxx 200 23F 64W
Reserved 240 3FF 448W
Notes:
1. DCR addresses are 10 bits (1024 or 1K unique addresses). Each unique address represents a single 32-bit (word) register. One
kiloword (1024W) equals 4KB (4096 B).
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
10 AMCC Proprietary
Revision 1.07 – May 29, 2008
PowerPC 440 Processor
The PowerPC 440 processor (i n 90nm technology) is designed for high-end applications: RAID controllers, SAN,
iSCSI, routers, switches, printers, set-top boxes, and so on. It implements the Book E PowerPC embedded
architecture and uses the 128-bit version of IBM’s on-chip CoreConnect Bus Architecture.
Features include:
Up to 1GHz operation
PowerPC Book E architecture
32KB I-cache, 32KB D-cache
UTLB Word Wide parity on data and tag address parity with exception force
Three logical regions in D-cache: locked, transient, normal
D-cache full line flush capability
41-bit virtual address, 36-bit (64GB) physical address
Superscalar, out-of-order execution
7-stage pipeline
Three execution pipelines
Dynamic branch pre diction
Memory management unit
64-entry, full associative, unified TLB with optional parity
Separate instruction and data micro-TLBs
Storage attributes for write-through, cache-inhibited, guarded, and big or little endian
Debug facilities
Multiple instruction and data range breakpoints
Data value compare
Single step, branch, and trap events
Non-invasive real-time trac e inte r fac e
24 DSP instructions
Single cycle multiply and multiply-accumulate
32 x 32 integer multiply
16 x 16 -> 32-bit MAC
Floating Point Unit (FPU)
The chip has a built-in super scalar FPU that supports both single- and double-precision operations, and offers
single cycle through put on most instructions.
Features include:
Five stages with 2 MFlops/MHz
Hardware support for IEEE 754
Single- and dou ble -p re cis ion
Single-cycle throughput on most instructions
Thirty-two 64-bit floating point registers
L2 Cache/SRAM
The PPC460GT also provides a 256KB L2 cache between the Processor Local Bus and the processor’s D- and
I-caches. This memory unit can be alternatively programmed to function as 256KB of SRAM.
Features include:
Four bank s of 64KB each
Memory cycles supported:
Single beat read and write, 1 to 16 bytes
Quadword Read and Write burst for 12-bit master
Guarded memory accesses on 4KB boundaries
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 11
Preliminary Data Sheet
Sustainable 3.2GB/s peak bandwidth at 200MHz
Use as an L2 cache improves processor performance and reduces the PLB load
Data Array and Tag Array parity
Unified data and instruction cache
Four-way set associative
36-bit addressing
Full LRU replacement algorithm
Write through, look aside
On-Chip Memory (OCM)
The PPC460GT provides 64KB of on-chip memory.
Features include:
Up to 128-bit bus width
128-bit slave attachment, addressable by any PLB master
Transfers by PLB slave cycles:
Single-beat read and write (1 to 8 bytes for 64-bit masters, 1 to 16 bytes fo r 128-bit masters)
4- and 8-word line reads and writes
Double word read and write bursts for 64-bit masters
Quadword read and write burst s for 128-bit masters
Slave-terminated do uble word and quadword fixed length bursts
Master-terminated variable length bursts
Guarded memory access on 4KB boundaries
Data parity checking
Data transfers at PLB bus speeds
Power management
Use as storage area for DMA descriptors and packet data for proce ssing by Ethernet and Security Function.
Internal Buses
The PowerPC 460GT features three standard internal buses: one Processor Local Bus (PLB), one On-chip
Peripheral Bus (OPB), and the Device Control Register bus (DCR). The high performance, high bandwidth
functions such as the PowerPC 440 processor, the DDR SDRAM memory controller, PCI Express, and PCI
connect to the PLB. The OPB hosts lower data rate peripherals. The daisy-chained DCR provide s a lower
bandwidth path for passing status and control information between the processor and the other on-chi p cores.
The PLB has a Crossbar arbiter that supports data tr ansfer between the PLB master and two slave segments
identified as the Lo w Late ncy ( LL) and High Bandwidth ( HB) segmen ts. The LL se gment a llows PLB master s CPU
and I2O, that are adversely affected by latency, to communicate with slave devices with minimal latency. The HB
segment allows PLB masters DMA, PCI and PCI Express to exchange large blocks of data with SDRAM, PCI and
PCI Express without interfering with the low latency PLB masters.
Features include:
PLB4 (128 -b it)
128-bit implementation of the PLB architecture
Separate and simultaneous read and write data paths
64-bit address
Simultaneous control, address, and data phases
Four levels of pipelining
Byte-enable capability supporting unaligned transfers
32- and 64-byte burst transfers
200MHz, maximum 12.8GB/s (simultaneous read and write)
Processor:bus clock ratios of N:1
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
12 AMCC Proprietary
Revision 1.07 – May 29, 2008
•OPB
32-bit data path with dynamic sizing for 32-, 16-, and 8-bit width
32-bit address
–100MHz
DCR
32-bit data path
10-bit address
Security Function (optional)
The built-in security function (PPC460GT-S only) is a cryptographic engine attached to the PLB with built-in DMA
and interrupt controllers.
Features include:
Federal Information Processing Standard (FIPS) 140-2 design
Support for an unlimited number of Security Associations (SA)
Different SA formats for each supported prot oc ol (IPsec/SSL/TLS/sRTP)
Internet Protocol Security (IPSec) features
Full packet transforms (ESP & AH)
Complete header and trailer processing (IPv4 and IPv6)
Multi-mode automatic padding
"Mutable bit" handler for AH, including IPv4 option and IPv6 extension headers
Secure Socket Layer (SSL) and Transport Layer Security (TLS) features
Packet transforms
One-pass hash-then-encrypt for SSL and TLS packet transforms for inbound packet using Stream Cipher
Secure Real-Time Protocol (sR TP) features
Packet transforms
ROC removal and TAG insertion
Variable bypass offset of header length per packet
IPsec/SSL security acceleration engine
DES, 3DES, AES, ARC-4, AES-GCM, and GMAC-AES encryption
MD-5, SHA-1, and SHA-256 hashing, HMAC encrypt-hash and hash-decrypt
KASUMI algorithm support
Public key acceleration for RSA, DSA and Diffie-Hellman
True or pseudo random number generators
Non-deterministic true random numbers
Pseudo random numbers with le ngths of 8B or 16B
ANSI X9.17 Annex C compliant using a DES algorithm
Interrupt controller
Fifteen programmable, maskable interrupts
Initiate commands via an input interrupt
Sixteen programmable interrupts indicating completion of certain operations
All interrupts mapped to one level- or edge-sensitive programmable interrupt output
DMA controller
Autonomous, 4-channel
1024-words (32 bits/word) per DMA transfer
Scatter/gather capability with byte aligned addressing
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 13
Preliminary Data Sheet
PCI Controller
The PCI interface allows connection of PCI devices to the PowerPC processor and local memory. This interface is
designed to Version 2.3 of the PCI Specification and supports 32- bit PCI devices.
Reference Specifications:
PCI Specification Version 2.3
PCI Bus Power Management Interface Specification Version 1.1
Features include:
Frequency to 66MHz
32-bit bus
PCI Host Bus Bridge or an Adapter Device's PCI interface
Internal PCI arbit ra tion fu nct i on , sup por tin g up to four external devices, that can be disabled for use with an
external arbit er
Support for inbound and outbound Message Sig naled Interrupts (MSI)
Simple message passing capability
Asynchronous to the PLB
PCI Power Management 1.1
PCI register set addressable both from on-chip processor and PCI device sides
Ability to boot from PCI bus memory
Error tr acking/status
Supports initiation of transfers of the following types:
Single beat I/O reads and writes
Single beat and burst memory reads and writes
Single beat configuration reads and writes (type 0 and type 1)
Single beat special cycles
Vital Product Data (VPD) support
PCI Express Controller
There are two independent PCI Express interfaces compliant with PCI Express base specification 1.1. One
interface can be configu red as one to fou r lanes while th e other functions as on e-lane only. The four -lane interfa ce
shares a High-Speed SERDES with the Serial Rapid I/O (SRIO) interface. Both can be Root or Endpoint Ports.
Features include:
Two independent PCI Express interfaces
One 4 lanes
One 1 lane
2.5 GB/sec full duplex per lane
Compliant with PCI Express base specification 1.1
Each PCI Express port can be End Point or Root Complex. (Upstream & Downstream)
Applications compliant with MSI rules are limited to one Endp oint port per PPC460GT
Power Management
Supports one virtual channel (VC0) no Traffic Class (TC) filtering
Maximum Payload block size 512 Bytes
Supports up to 512 Bytes maximum Read request size
Requests supported:
up to 4 (x4) or 2 (x1) pos te d ou tb ou n d Write reques ts (memo ry an d m essages)
up to 4 (x4) or 2 (x1) posted inbound Write requests
up to 4 (x4) or 2 (x1) outbound Read requests outstanding on PCI Express
up to 4 (x4) or 2 (x1) inbound Read requests outstanding on PCI Express
Outbound I/O request as a PCI Express Root Port
Inbound I/O request as a PCI Express Endpoint
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
14 AMCC Proprietary
Revision 1.07 – May 29, 2008
Buffering in each PCI Express port for the following transaction types:
2KB Replay buffer: up to 4 in flight transactions
2KB (x4) or 1KB (x1) for Outbound po sted Writes
2KB (x4) or 1KB (x1) for Outbound Reads completion
2KB (x4) or 1KB (x1) for Inbound posted Writes
2KB (x4) or 1KB (x1) for Inbound Reads completion
Parity checking on each buffer
Programmable Outbound Memory (POM) regions: 3 memory, 1 I/O, 1 message, 1 configuration, 1 internal
register
Programmable Inbound Memory (PIM) regions: 4 memory, 1 I/O, 1 expansion ROM
INTx Interrupts support (legacy PCI):
Up to four INTx Termination for Root Ports. A/B/C/D interrupts are wired to the UIC
A/B/C/D INTx types generation for Endpoints
MSI - Message Signaled Interrupts
MSI generation for Endpoint
MSI termination for Root Ports
MSI_X termination for Root Port s
DDR2/1 SDRAM Memory Controller
The Double Data Rate 2/1 (DDR2/1) SDRAM memory controller supports industry standard 184-pin DIMMs, SO-
DIMMs, and other discrete devices. Global memory timings, address and bank sizes, and memory addressing
modes are programmable. This controller interfaces to the PLB through a Memory Queue (MQ) function that
includes six high-speed 1KB FIFO buffers.
The correct I/O supply voltage must be provided for the two types of DDR devices: DDR1 devices require +2.5V
and DDR2 devices re quir e + 1.8V.
Features include:
Registered and non-registered industry standard DIMMs
DDR2 333/40 0 supp o rt
64-and 32 -b it me m or y inte rf ac es with optional 8-bit ECC (SEC/DED)
3.2GB/s peak bandwidth for the 64-bit interface
1.6GB/s peak bandwidth for the 32-bit interface
Four chip (bank) select signa ls supporting four external banks
CAS latencies of 2, 3, 4, 5, 6, and 7
Page mode accesses (up to 32 open p ages) with configurable paging policy
Look-ahead request queue with programmable depth of four commands
Optional optimized command schedu ling (activate/precharge non-conflicting banks while accessing the cur rent
bank)
Up to 16GB in four external banks
Up to two MemClkOut signals
Programmabl e address mapping and timing
Hardware and so ftware initiated self-refresh
Sync DRAM configuration by means of mode register and extended mode register set commands
Power management (self-refresh, suspend, sleep)
Low Latency and High Bandwidth PLB ports
Selectable PLB read response (immediate or deferred)
Programmabl e Low Latency and High Bandwidth arbitration schemes
High Bandwidth port has four 1KB read buffers and two 1KB write buffers
Low Latency port has four 128B read buffers and two 128B write buffers
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 15
Preliminary Data Sheet
External Peripheral Bus Controller (EBC)
The External Bus Controller (EBC) transfers data between the PLB and external memory or peripheral devices
attached to the external peripheral bus. The EBC allows for direct attachment of memory devices such as ROM
and SRAM, DMA device-paced memory devices, and DMA peripheral devices.
Features include:
Up to six ROM, EPROM, SRAM, Flash memory, and slave peripheral I/O banks supported
Up to 100MHz operation
Burst and non-burst devices
32-bit byte -a dd re ss ab le da ta bus
•Data parity
27-bit address
Peripheral Device pacing with external Ready
Latch data on Ready, synchron ou s or asynch ro no u s
Programmable access timing per device
256 Wait States for non-burst
32 Burst Wait States for first access and up to eight Wait States for subsequent accesses
Programmable CSon, CSoff relative to address
Programmable OEon, WEon, WEoff (1 to 4 clock cycles) relative to CS
Programmable address mapping
External DMA Slave Sup po r t
Ethernet Controller
Four 10/100/1000 Ethernet ports are supported.
Features include:
Compliant with ANSI/IEEE Standard 802.3 and IEEE 802.3u supplement
Compliant with IEEE Standard 802.3z (Gigabit Ethernet)
Four 10/100/1000 interfaces running in full- and half-duplex modes providing:
Two Gigabit Media Independent Interface (GMII)
Two Media Independent Interface (MII)
Four Reduced Media Independent Interface (RMII)
Four Serial MII (SMII) at 100/10Mbps.
Four Reduce d Gig ab it MI I (R G MI I)
Three Serial Gigabit Media Independent Interface (SGMII).
Quality of Service (QoS) support on two interfaces
Support of IEEE 802.1p priority queueing for up to 8 priorities
Recognizes TCI field in VLAN-tagged frames where the priority field is coded
Jumbo frame support (9018 bytes)
Support for Ethernet II formatted frames (RFC894)
Support for IEEE formatted frames (RFC1042)
Handles VLAN-tagged frames (IEEE 802.2ac)
TCP/IP Acceleration Hardware (TAH) support on two interfaces
Off loads Gigabit Ethernet protocol processing from the CPU
Checksum verification for TCP/UDP/IP headers in the re ceive path
Checksum generation for TCP/UDP/IP headers in the transmit path
TCP segmentation support in the transmit path
IPv4 and IPv6 support
IPv6 header extension support
Wake On LAN handling
256-bit hash table to filte r multicast frames
DMA capability
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
16 AMCC Proprietary
Revision 1.07 – May 29, 2008
Interrupt coalescence
DMA 4-Channel Controller
The 4-channel DMA contro ller provides a DMA interface between the PLB memories and internal and external
peripheral devic es.
Features include:
Supports the following transfers:
Memory-to-memory
Buffered peripheral to memory
Buffered memory to per iph eral
Scatter/Gather capability for programming multiple DMA operations
8-, 16-, 32-bit peripheral support (OPB and external)
64-bit addressing
128 byte FIFO buffer
Address increment or decrement
Support for:
Internal and external peripherals
Memory ma p pe d per iph er als
Peripherals running on slower frequency buses
Serial Rapid I/O (SRIO)
The Serial Rapid IO (SRIO) interface provides an interface to physical storage devices. It shares the High-Speed
SERDES with the 4-lane PCI-Express interface.
Features include:
Compliant with RapidIO Interconnect Specification, Revision 1.2
Supports operation at 1.25 Gbps, 2.50 Gbps, and 3.125 Gbps
Supports 1X/4X LP-SERIAL implementation of RapidIO (except GSM extensions)
Supports RapidIO Multicast Event (TOD) reception and transmission
Supports RapidIO Error Management Extensions and Software Error Recovery
Supports interoperability class 3 (complex mastering device)
Support s device hot-insertion/extraction
Separate 4KB transmit and receive request/response queues
I20/DMA Controller
The I2O/DMA controller provides one High Speed DMA (HSDMA) interface to the PLB and support for I2O
messaging. The HSDMA provides single-channel direct memory access support to ease the CPU burden. I2O
manages Message Frame Address (MFA) FIFOs or queues in memory in response to I2O register reads and
writes and transfers message frames.
DMA features include:
Programmable Command Pointer FIFO and Completion FIFO size (up to 2048 DMA operations queued)
Separate 512-byte buffering for transmit and receive
1.4GB throughput (local read)
1.0GB throughput (remote read)
Simultaneous fill and drain (PLB read/write pipelining)
Any source PLB address to any destination address
No memory alignment restr ictions on source or destination
32-byte command descriptor block
Maximum transfer size of 16MB
64-bit addressing
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 17
Preliminary Data Sheet
Prefetch indicators for PCI buffer management
Supports initiation of transfer to the following address spaces:
Single beat I/O reads and writes
Single beat and burst memory reads and writes
Single beat configuration reads and writes (type 0 and type 1)
Single beat special cycles
iSCSI CRC32 generation and checking
I2O features include:
I2O pull- and pu sh -m e ssa g ing me tho d s
Dynamic message frame size
Programmable FIFO size (4096 64-bit MFAs maximum)
64- and 32-bit MFA sizes
Three interrupt gathering methods
Registered MFA prefetch and posting
32-bit inbound and outbound doorbell registers
Four 32-b it scr at ch pad regis ter s
Serial Ports (UART)
The Universal Asynchronous Rece iver/Transmitter (UART) interface provides one 8-signal port, or two 4-signal
ports, or four 2-signal ports. The UART performs serial-to-parallel conversion on data received from a peripher al
device or a modem, and parallel-to-serial conversion on data received from the processor.
Features include:
Up to four ports in the following combinations:
One 8-pin (UART0)
Two 4-pin (UART0 and UART1)
Four 2-pin (UART0, UART1, UART2, and UART3)
Selectable internal or external serial clock to allow wide range of baud rates
Register compatibility with 16750 register set
Complete status reporting capability
Fully programmable serial-interfa ce characteristics
Supports DMA using the 4-ch annel internal DMA function
64-byte FIFOs for buffering transmit and receive data
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
18 AMCC Proprietary
Revision 1.07 – May 29, 2008
IIC Bus Controller
The Inter-Integrated Circuit (IIC) interface provides a Philips® I2C compatible interface operating up to 400 KHz
either as a master, a slave, or both, with a Bootstrap Controller (BSC) included. During chip reset, the Bootstrap
Controller can read configuration data from an IIC-compatible memory device (for example, EEPROM). This data
can be used to replace the default conf iguration settings provided by the chip.
Features include:
Two IIC interfaces
Support for Philips Semiconductors I2C Specification, dated 1995
Operation at 10 0kHz or 400kHz
•8-bit data
10- or 7-bit address
Slave transmitter and receiver
Master transmitter and receiver
Multiple bus masters
Two independent 4 x 1 byte data buffers
Twelve memory-mapped, fully programmable configuration registers
One programmable interrupt request signa l
Provides full management of all IIC bus protocols
Programmable error recovery
Port 0 includes an integrated BSC that supports a serial Bootstrap ROM with default override parameters at
initialization
Serial Peripheral Controller (SPI/SCP)
The Serial Peripheral Interface (also known as the Serial Communications Port) is a full-duplex, synchronous,
character-oriented (byte) port that allows the exchange of data with o ther serial devices. The SPI is a master on the
serial port supporting a 3-wire interface (receive, transmit, and clock), and is a slave on the OPB.
Features include:
Three-wire serial port interface
Full-duplex synchronous operation
SPI bus master
Programmable clock rate divider
Clock inversion
Reverse data
Local data loop back for test
NAND Flash Controller
The NAND Flash controller provides a simple interface between the EBC and up to four separate external NAND
Flash devices. It provides both direct command, address, and data access to the external device as well as a
memory-mapped linear region that generates data ac cesses. NAND Flash data is transferred on the peripheral
data bus.
Features include:
One to four banks supported on EBC
Direct interface to:
Discrete NAND Flash devices (up to four devices)
SmartMedia Card socket (22-pins)
Device sizes:
4MB and larger supported for read/write access
4MB to 256MB supported for boot-from-NAND flash (size supported depends on addressing mode)
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 19
Preliminary Data Sheet
(512 + 16)-B or (2K + 64)-B page sizes supported
Boot from NAND supported with execution of up to 4KB of boot code out of block 0
ECC provides single-bit error correction and double-bit error detection in each 256B of stored dat a
Chip select pins are multiplexed with EBC
General Purpose Timers (GPT)
Provides a separate time base counter and additional system timers in addition to those defined in the processor.
Features include:
Time Base Counter (32 bits) driven by the OPB bus clock
Seven 32-bit compare timers
General Purpose IO (GPIO) Controller
Controller functions and GPIO registers are programmed and accessed by means of memory-mapped OPB bus
master accesses.
Features include:
Sixty-four GPIOs multiplexed with other functions. DCRs control whether a GPIO pin acts as a GPIO or is used
for another pu rpose.
Each GPIO output is separately programmable to emulate an open drain driver (that is, drives to zero,
tri-stated if output bit is 1).
Universal Interrupt Controller (UIC)
Universal Interrupt Controllers (UICs) pr ovide control, status, and communications necessary between the extern al
and internal sources of interrupts and the on-chip PowerPC processor.
Note: Processor specific interrupts (for example, page faults) do not use UIC resources.
Features include:
Sixteen external interrupts
Edge triggered or level-sensitive
Positive or negative active
Non-critical or critical interrupt to the on-chip processo r
Programm a ble inte rr up t pr ior ity or de r ing
Programmable critical interrupt vector for faster vector processing
JTAG
Features include:
IEEE 1149.1 Test Access Port
JTAG Boundary Scan Description Language (BSDL)
IBM RISCWatch support
Refer to http://www.amcc.com/Embedded/Partners for a list of AMCC partners supplying probes for use with
this port.
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
20 AMCC Proprietary
Revision 1.07 – May 29, 2008
Package Diagram
Figure 3. 35mm, 728-Ball TE-PBGA Package
35.0
Gold Gate Release
Corresponds to
PCB
Substrate
Mold
Compound
A01 Ball Location
Top View
Bottom View
Notes:
1. All dimensions are in mm.
2. Package is available with lead or
30 24
A
26
AF
BC
DE
FG
HJ
KL
M
AA
N
PR
TU
VW
Y
AB AC
AD AE
Thermal Balls
01 03 05 07 09 11 13 15 17 19
02 04 06 08 10 12 14 16 18 21 23 25
20 22 24 34
27 29 31 33
28 30 32
AP
AJ
AG
AH
AK AL
AM AN
33.0
1.0
728 x 0.60 ± 0.10 Solder Ball
7.0
2.65 max
0.4 - 0.6
3. Package conforms to JEDEC MS-034.
Part
Lot Number (ZZZZZ)
lead-free (RoHS compliant).
Side View
TYP TYP
Logo View
PPC460GT
e1
1YWWBZZZZZ
PPC460GT-nprfff(f)T
®
ccccccc
Number
MMDDQL
Heat Slug
4. Optional solder ball diameter is
0.63 +0.07/
0.13.
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 21
Preliminary Data Sheet
Signal Lists
The following table lists all the external signals in alphabetical order and shows the ball (pin) number on which the
signal appears. Multiple xed signals a re shown with the de fault signal (followin g reset) not in brackets and alternate
signals in brackets. Multip lexed signals app ea r al phabe tically multiple times in the list—once for each signal name
on the ball. The page number listed gives the page in Table 7 on page 60 where the signals in the indicated
interface group be gin. In cases where signals in the same interface group (for example, Ethernet) have different
names to distinguish variations in the mode of operation, the names are separated by a comma with the primary
mode name appearing first. In cases where the signals have the same function but ar e associated with different
ports (for example, UART), the signals are separated by a slash (/). These signals are listed only once, and a ppear
alphabetically by the primary mode or primary port name.
Alphabetical Signal List
Table 3. Signals Listed Alphabetically (Part 1 of 27)
Signal Name Ball Interface Group Page
AGND L01
Power 69
AGND L02
AGND M04
AGND M06
AGND P03
AGND P04
AGND P06
AGND R01
AGND R02
AGND R06
AGND U01
AGND U04
AGND U05
AGND Y01
AGND Y03
AGND Y05
AGND AA04
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
22 AMCC Proprietary
Revision 1.07 – May 29, 2008
AVDD L03
Power 69
AVDD L06
AVDD M03
AVDD M05
AVDD N03
AVDD N06
AVDD P05
AVDD T03
AVDD U02
AVDD U03
AVDD U06
AVDD V03
AVDD V06
AVDD W03
AVDD W06
AVDD Y02
AVDD Y04
AVDD AB04
BA0 AN32
DDR2/1 SDRAM 62BA1 AP31
BA2 AM31
BankSel0 AL28
DDR2/1 SDRAM 62
BankSel1 AP29
BankSel2 AM29
BankSel3 AN29
CAS AL29 DDR2/1 SDRAM 62
ClkEn0 AE29
DDR2/1 SDRAM 62
ClkEn1 AF34
ClkEn2 AE33
ClkEn3 AE31
[DMAAck0]GPIO47[PerAddr06][IRQ14] C31
DMA 66
[DMAAck1]GPIO44[PerCS4][IRQ11] E21
[DMAAck2]GPIO31[PerPar1][IRQ8] A16
[DMAAck3]GPIO36[UART0CTS][UART3Rx] E31
[DMAReq0]GPIO46[PerAddr05][IRQ13] B32
[DMAReq1]GPIO43[PerCS3][NFCE3][IRQ10] A22
[DMAReq2]GPIO30[PerPar0][IRQ7] A20
[DMAReq3]GPIO33[PerPar3][IRQ4] F13
Table 3. Signals Listed Alphabetically (Part 2 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 23
Preliminary Data Sheet
DM0 P31
DDR2/1 SDRAM 62
DM1 U30
DM2 V30
DM3 AB34
DM4 AM25
DM5 AP23
DM6 AN20
DM7 AM17
DM8 AD34
DQS0 P33
DQS0 P32
DDR2/1 SDRAM 62
DQS1 U32
DQS1 U31
DQS2 W31
DQS2 W32
DQS3 AA30
DQS3 AA31
DQS4 AP25
DQS4 AN25
DQS5 AN22
DQS5 AM22
DQS6 AM19
DQS6 AL19
DQS7 AK17
DQS7 AL17
DQS8 AD32
DQS8 AD33
E1OVDD Y14
Power 69
E1OVDD AA15
E1OVDD AD06
E1OVDD AF02
E1OVDD AG05
E1OVDD AJ11
E1OVDD AK02
E1OVDD AK08
E1OVDD AN05
E1OVDD AN09
E2OVDD AK13 Power 69
E2OVDD AN16
Table 3. Signals Listed Alphabetically (Part 3 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
24 AMCC Proprietary
Revision 1.07 – May 29, 2008
EAGND AP12 Power 69
EAVDD AP11
ECC0 AC31
DDR2/1 SDRAM 62
ECC1 AC30
ECC2 AE32
ECC3 AE34
ECC4 AC34
ECC5 AC32
ECC6 AD31
ECC7 AD30
[EOT0/TC0]GPIO48[PerAddr07][IRQ15] D30
DMA 66
[EOT1/TC1]GPIO45[PerCS5][IRQ12] D21
[EOT2/TC2]GPIO32[PerPar2][IRQ9] A14
[EOT3/TC3]GPIO37[UART0RTS][UART3Tx] D33
ExtReset F22 External Peripheral 66
Table 3. Signals Listed Alphabetically (Part 4 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 25
Preliminary Data Sheet
GMC0CD, GMC1RxClk, RMII1RxEr AP05
Ethernet 0 63
GMC0CrS, GMC1TxClk, RMII0CrSDV AL07
GMC0GTxClk, GMC0TxClk AN06
GMC0RxClk, GMC0RxClk AM07
GMC0RxD0, GMC0RxD0, RMII0RxD0, SMII0RxD AL09
GMC0RxD1, GMC0RxD1, RMII0RxD1, SMII1RxD AK09
GMC0RxD2, GMC0RxD2, RMII1RxD0, SMII2RxD AP08
GMC0RxD3, GMC0RxD3, RMII1RxD1, SMII3RxD AJ09
GMC0RxD4, GMC1RxD0 AN08
GMC0RxD5, GMC1RxD1 AL08
GMC0RxD6, GMC1RxD2 AM08
GMC0RxD7, GMC1RxD3 AP07
GMC0RxDV, GMC0RxCtl, RMII1CrSDV AL06
GMC0RxEr, GMC1RxCtl, RMII0RxEr AJ10
GMC0TxClk,, RMII01RefClk, SMIIRefClk AN04
GMC0TxD0, GMC0TxD0, RMII0TxD0, SMII0TxD AM02
GMC0TxD1, GMC0TxD1, RMII0TxD1, SMII1TxD AK04
GMC0TxD2, GMC0TxD2, RMII1TxD0, SMII2TxD AL02
GMC0TxD3, GMC0TxD3, RMII1TxD1, SMII3TxD AL01
GMC0TxD4, GMC1TxD0 AK03
GMC0TxD5, GMC1TxD1 AM01
GMC0TxD6, GMC1TxD2 AH05
GMC0TxD7, GMC1TxD3 AL03
GMC0TxEn, GMC0TxCtl, RMII0TxEn, SMIISync AM05
GMC0TxEr, GMC1TxCtl, RMII1TxEn AJ08
Table 3. Signals Listed Alphabetically (Part 5 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
26 AMCC Proprietary
Revision 1.07 – May 29, 2008
[GMC1CD, GMC3RxClk, RMII3RxEr]GPIO17 AG02
Ethernet 1 64
[GMC1CrS, GMC3TxClk, RMII2CrSDV]GPIO20 AG03
[GMC1GTxClk, GMC2TxClk] AE06
[GMC1RxClk, GMC2RxClk] AF06
[GMC1RxD0, GMC2RxD0, RMII2RxD0]GPIO08 AH04
[GMC1RxD1, GMC2RxD1, RMII2RxD1]GPIO09 AJ05
[GMC1RxD2, GMC2RxD2, RMII3RxD0]GPIO10 AG06
[GMC1RxD3, GMC2RxD3, RMII3RxD1]GPIO11 AJ02
[GMC1RxD4, GMC3RxD0]GPIO12 AJ04
[GMC1RxD5, GMC3RxD1]GPIO13 AH03
[GMC1RxD6, GMC3RxD2]GPIO14 AJ01
[GMC1RxD7, GMC3RxD3]GPIO15 AH01
[GMC1RxDV, GMC2RxCtll, RMII3CrSDV]GPIO21 AD04
[GMC1RxEr, GMC3RxCtl, RMII2RxEr]GPIO18 AG04
GMC1TxClk, RMII23RefClk AC06
[GMC1TxD0, GMC2TxD0, RMII2TxD0]GPIO00 AG01
[GMC1TxD1, GMC2TxD1, RMII2TxD1]GPIO01 AD05
[GMC1TxD2, GMC2TxD2, RMII3TxD0]GPIO02 AE04
[GMC1TxD3, GMC2TxD3, RMII3TxD1]GPIO03 AF01
[GMC1TxD4, GMC3TxD0]GPIO04 AE02
[GMC1TxD5, GMC3TxD1]GPIO05 AE01
[GMC1TxD6, GMC3TxD2]GPIO06 AB05
[GMC1TxD7, GMC3TxD3]GPIO07 AD03
[GMC1TxEn, GMC2TxCtl, RMII2TxEn]GPIO19 AF03
[GMC1TxEr, GMC3TxCtl, RMII3TxEn]GPIO16 AF04
GMCMDClk AJ03
Ethernet 0 63GMCMDIO AK01
GMCRefClk AP09
Table 3. Signals Listed Alphabetically (Part 6 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 27
Preliminary Data Sheet
GND A01
Power 69
GND A02
GND A03
GND A33
GND A34
GND B01
GND B02
GND B03
GND B07
GND B12
GND B23
GND B28
GND B33
GND B34
GND C01
GND C02
GND C03
GND C16
GND C32
GND D04
GND D31
GND E05
GND E10
GND E23
GND E25
GND E28
GND E30
GND F06
GND F16
GND F19
GND F29
GND F30
GND F31
GND F32
Table 3. Signals Listed Alphabetically (Part 7 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
28 AMCC Proprietary
Revision 1.07 – May 29, 2008
GND G02
Power 69
GND G31
GND G33
GND H01
GND J01
GND J03
GND J30
GND J32
GND K02
GND K05
GND K06
GND K30
GND M30
GND M33
GND P14
GND P16
GND P19
GND P21
GND R15
GND R16
GND R19
GND R20
GND T14
GND T15
GND T16
GND T17
GND T18
GND T19
GND T20
GND T21
GND T30
GND U16
GND U17
GND U18
GND U19
Table 3. Signals Listed Alphabetically (Part 8 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 29
Preliminary Data Sheet
GND V16
Power 69
GND V17
GND V18
GND V19
GND W14
GND W15
GND W16
GND W17
GND W18
GND W19
GND W20
GND W21
GND W29
GND Y15
GND Y16
GND Y19
GND Y20
GND AA14
GND AA16
GND AA19
GND AA21
GND AC01
GND AC03
GND AC04
GND AC05
GND AC33
GND AD01
GND AE03
GND AE05
GND AE30
GND AF05
GND AF29
GND AF30
GND AG29
GND AH02
GND AH33
Table 3. Signals Listed Alphabetically (Part 9 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
30 AMCC Proprietary
Revision 1.07 – May 29, 2008
GND AJ06
Power 69
GND AJ13
GND AJ16
GND AJ23
GND AJ25
GND AJ26
GND AJ27
GND AJ29
GND AJ30
GND AJ31
GND AK05
GND AK06
GND AK07
GND AK10
GND AK14
GND AK19
GND AK24
GND AK25
GND AK28
GND AK29
GND AK30
GND AL04
GND AL05
GND AL22
GND AL25
GND AL30
GND AL31
GND AL32
GND AL33
GND AL34
GND AM03
GND AM04
GND AM06
GND AM10
GND AM30
GND AM32
Table 3. Signals Listed Alphabetically (Part 10 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 31
Preliminary Data Sheet
GND AN01
Power 69
GND AN02
GND AN03
GND AN07
GND AN12
GND AN23
GND AN28
GND AN31
GND AN33
GND AN34
GND AP01
GND AP02
GND AP03
GND AP04
GND AP06
GND AP16
GND AP17
GND AP33
GND AP34
Table 3. Signals Listed Alphabetically (Part 11 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
32 AMCC Proprietary
Revision 1.07 – May 29, 2008
GPIO00[GMC1TxD0, GMC2TxD0, RMII2TxD0] AG01
System 68
GPIO01[GMC1TxD1, GMC2TxD1, RMII2TxD1] AD05
GPIO02[GMC1TxD2, GMC2TxD2, RMII3TxD0] AE04
GPIO03[GMC1TxD3, GMC2TxD3, RMII3TxD1] AF01
GPIO04[GMC1TxD4, GMC3TxD0] AE02
GPIO05[GMC1TxD5, GMC3TxD1] AE01
GPIO06[GMC1TxD6, GMC3TxD2] AB05
GPIO07[GMC1TxD7, GMC3TxD3] AD03
GPIO08[GMC1RxD0, GMC2RxD0, RMII2RxD0] AH04
GPIO09[GMC1RxD1, GMC2RxD1, RMII2RxD1] AJ05
GPIO10[GMC1RxD2, GMC2RxD2, RMII3RxD0] AG06
GPIO11[GMC1RxD3, GMC2RxD3, RMII3RxD1] AJ02
GPIO12[GMC1RxD4, GMC3RxD0] AJ04
GPIO13[GMC1RxD5, GMC3RxD1] AH03
GPIO14[GMC1RxD6, GMC3RxD2] AJ01
GPIO15[GMC1RxD7, GMC3RxD3] AH01
GPIO16[GMC1TxEr, GMC3TxCtl, RMII3TxEn] AF04
GPIO17[GMC1CD, GMC3RxClk, RMII3RxEr] AG02
GPIO18[GMC1RxEr, GMC3RxCtl, RMII2RxEr] AG04
GPIO19[GMC1TxEn, GMC2TxCtl, RMII2TxEn] AF03
GPIO20[GMC1CrS, GMC3TxClk, RMII2CrSDV] AG03
GPIO21[GMC1RxDV, GMC2RxCtl, RMII3CrSDV] AD04
GPIO22[NFRdyBusy]C24
GPIO23[NFREn]B24
GPIO24[NFWEn]A24
GPIO25[NFCLE] F26
GPIO26[NFALE] A25
GPIO27[IRQ0] D12
GPIO28[IRQ1] E12
GPIO29[IRQ2] F12
GPIO30[PerPar0][DMAReq2][IRQ7] A20
GPIO31[PerPar1][DMAAck2][IRQ8] A16
Table 3. Signals Listed Alphabetically (Part 12 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 33
Preliminary Data Sheet
GPIO32[PerPar2][EOT2/TC2][IRQ9] A14
System 68
GPIO33[PerPar3][DMAReq3][IRQ4] F13
GPIO34[UART0DCD][UART1CTS][UART2Tx] E34
GPIO35[UART0DSR][UART1RTS][UART2Rx] E32
GPIO36[UART0CTS][DMAAck3][UART3Rx] E31
GPIO37[UART0RTS][EOT3/TC3][UART3Tx] D33
GPIO38[UART0DTR][UART1Tx][IRQ5] D32
GPIO39[UART0RI][UART1Rx][IRQ6] D34
GPIO40[IRQ3] C12
GPIO41[PerCS1][NFCE1]B22
GPIO42[PerCS2][NFCE2]D25
GPIO43[PerCS3][NFCE3][DMAReq1][IRQ10] A22
GPIO44[PerCS4][DMAAck1][IRQ11] E21
GPIO45[PerCS5][EOT1/TC1][IRQ12] D21
GPIO46[PerAddr05][DMAReq0][IRQ13] B32
GPIO47[PerAddr06][DMAAck0][IRQ14] C31
GPIO48[PerAddr07][EOT0/TC0][IRQ15] D30
GPIO49[TrcBS0] H33
GPIO50[TrcBS1] J34
GPIO51[TrcBS2] H34
GPIO52[TrcES0] L30
GPIO53[TrcES1] L31
GPIO54[TrcES2] K33
GPIO55[TrcES3] L32
GPIO56[TrcES4] K34
GPIO57[TrcTS0] L33
GPIO58[TrcTS1] N29
GPIO59[TrcTS2] M31
GPIO60[TrcTS3] L34
GPIO61[TrcTS4] M32
GPIO62[TrcTS5] M34
GPIO63[TrcTS6] N31
Halt H32 System 68
HISRRst B11 DDR2/1 SDRAM 62
IIC0SClk J31
IIC Peripheral 67
IIC0SData H31
[IIC1SClk]SPIClkOut K31
[IIC1SData]SPIDO G34
Table 3. Signals Listed Alphabetically (Part 13 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
34 AMCC Proprietary
Revision 1.07 – May 29, 2008
[IRQ0]GPIO27 D12
Interrupt 67
[IRQ1]GPIO28 E12
[IRQ2]GPIO29 F12
[IRQ3]GPIO40 C12
[IRQ4]GPIO33[PerPar3][DMAReq3] F13
[IRQ5]GPIO38[UART0DTR][UART1Tx] D32
[IRQ6]GPIO39[UART0RI][UART1Rx] D34
[IRQ7]GPIO30[PerPar0][DMAReq2] A20
[IRQ8]GPIO31[PerPar1][DMAAck2] A16
[IRQ9]GPIO32[PerPar2][EOT2/TC2] A14
[IRQ10]GPIO43[PerCS3][NFCE3][DMAReq1] A22
[IRQ11]GPIO44[PerCS4][DMAAck1] E21
[IRQ12]GPIO45[PerCS5][EOT1/TC1] D21
[IRQ13]GPIO46[PerAddr05][DMAReq0] B32
[IRQ14]GPIO47[PerAddr06][DMAAck0] C31
[IRQ15]GPIO48[PerAddr07][EOT0/TC0] D30
MemAddr00 AK34
DDR2/1 SDRAM 62
MemAddr01 AJ33
MemAddr02 AJ32
MemAddr03 AJ34
MemAddr04 AH30
MemAddr05 AH31
MemAddr06 AH32
MemAddr07 AG31
MemAddr08 AH34
MemAddr09 AG32
MemAddr10 AG33
MemAddr11 AF31
MemAddr12 AG34
MemAddr13 AC29
MemAddr14 AF32
MemClkOut0 AP27
DDR2/1 SDRAM 62
MemClkOut0 AN27
MemClkOut1 AK31
MemClkOut1 AK32
Table 3. Signals Listed Alphabetically (Part 14 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 35
Preliminary Data Sheet
MemData00 P30
DDR2/1 SDRAM 62
MemData01 N34
MemData02 R32
MemData03 R30
MemData04 N33
MemData05 N32
MemData06 P34
MemData07 R31
MemData08 R34
MemData09 T34
MemData10 V34
MemData11 T32
MemData12 R33
MemData13 T31
MemData14 U33
MemData15 U34
MemData16 V32
MemData17 V31
MemData18 Y32
MemData19 W30
MemData20 V33
MemData21 W34
MemData22 Y34
MemData23 Y33
MemData24 AA33
MemData25 AA32
MemData26 AB31
MemData27 Y30
MemData28 AA34
MemData29 Y31
MemData30 AB33
MemData31 AB32
Table 3. Signals Listed Alphabetically (Part 15 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
36 AMCC Proprietary
Revision 1.07 – May 29, 2008
MemData32 AM26
DDR2/1 SDRAM 62
MemData33 AP26
MemData34 AK21
MemData35 AN24
MemData36 AL26
MemData37 AK26
MemData38 AL24
MemData39 AM24
MemData40 AL23
MemData41 AM23
MemData42 AM21
MemData43 AN21
MemData44 AK23
MemData45 AP24
MemData46 AP22
MemData47 AL21
MemData48 AL20
MemData49 AM20
MemData50 AL18
MemData51 AM18
MemData52 AK20
MemData53 AP21
MemData54 AP20
MemData55 AP19
MemData56 AP18
MemData57 AN17
MemData58 AL16
MemData59 AP15
MemData60 AK18
MemData61 AN18
MemData62 AM16
MemData63 AK16
MemDCFdbkD AM33 DDR2/1 SDRAM 62
MemDCFdbkR AM34
MemODT0 AP28
DDR2/1 SDRAM 62
MemODT1 AM27
MemODT2 AM28
MemODT3 AL27
Table 3. Signals Listed Alphabetically (Part 16 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 37
Preliminary Data Sheet
MemVRef1A AJ19
DDR2/1 SDRAM 62
MemVRef1B AB29
MemVRef2A AJ22
MemVRef2B T29
[NFALE]GPIO26 A25
NAND Flash 67
[NFCE0]PerCS0 E24
[NFCE1]GPIO41[PerCS1]B22
[NFCE2]GPIO42[PerCS2]D25
[NFCE3]GPIO43[PerCS3][DMAReq1][IRQ10] A22
[NFCLE]GPIO25 F26
[NFRdyBusy]GPIO22 C24
[NFREn]GPIO23 B24
[NFWEn]GPIO24 A24
OVDD B05
Power 69
OVDD B09
OVDD B16
OVDD B19
OVDD B26
OVDD B30
OVDD E02
OVDD E08
OVDD E13
OVDD E22
OVDD E27
OVDD E33
OVDD F11
OVDD F24
OVDD H05
OVDD H30
OVDD J02
OVDD J33
OVDD L29
OVDD P15
OVDD P20
OVDD R14
OVDD R21
PAVDD T06 Power 69
PAVDD AA05
Table 3. Signals Listed Alphabetically (Part 17 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
38 AMCC Proprietary
Revision 1.07 – May 29, 2008
PCI0AD00 D11
PCI 60
PCI0AD01 E11
PCI0AD02 B10
PCI0AD03 A10
PCI0AD04 C10
PCI0AD05 F10
PCI0AD06 D10
PCI0AD07 A09
PCI0AD08 D09
PCI0AD09 A08
PCI0AD10 F09
PCI0AD11 B08
PCI0AD12 C08
PCI0AD13 D08
PCI0AD14 A07
PCI0AD15 F08
PCI0AD16 A05
PCI0AD17 A04
PCI0AD18 D05
PCI0AD19 B04
PCI0AD20 D02
PCI0AD21 F04
PCI0AD22 E03
PCI0AD23 D03
PCI0AD24 E01
PCI0AD25 E04
PCI0AD26 G05
PCI0AD27 G04
PCI0AD28 F02
PCI0AD29 H06
PCI0AD30 F01
PCI0AD31 F05
PCI0C/BE0 C09
PCI 60
PCI0C/BE1 C07
PCI0C/BE2 C05
PCI0C/BE3 F03
PCI0Clk K01
PCI 60PCI0DevSel A06
PCI0Frame E06
Table 3. Signals Listed Alphabetically (Part 18 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 39
Preliminary Data Sheet
PCI0Gnt0/Req G03
PCI 60
PCI0Gnt1 H04
PCI0Gnt2 G01
PCI0Gnt3 H03
PCI0IDSel D01
PCI 60
PCI0Int J04
PCI0IRdy C04
PCI0M66En E09
PCI0Par D07
PCI0PErr B06
PCI0Req0/Gnt J06
PCI 60
PCI0Req1 H02
PCI0Req2 K04
PCI0Req3 J05
PCI0Reset K03
PCI 60
PCI0SErr E07
PCI0Stop C06
PCI0TRdy D06
PCIE0AVReg AA01
PCI Express 0 61
PCIE0CalRN AB02
PCIE0CalRP AB01
PCIE0RefClk AA02
PCIE0RefClk AA03
PCIE0Rx0 W04
PCIE0Rx0 W05
PCIE0Tx0 W02
PCIE0Tx0 W01
Table 3. Signals Listed Alphabetically (Part 19 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
40 AMCC Proprietary
Revision 1.07 – May 29, 2008
PCIE1AVReg[SRIO0AVReg] R05
PCI Express 1 61
PCIE1CalRN[SRIO0CalRN] P01
PCIE1CalRP[SRIO0CalRP] P02
PCIE1RefClk[SRIO0RefClk] R04
PCIE1RefClk[SRIO0RefClk]R03
PCIE1Rx0[SRIO0Rx0] L05
PCI Express 1 61
PCIE1Rx0[SRIO0Rx0] L04
PCIE1Rx1[SRIO0Rx1] N05
PCIE1Rx1[SRIO0Rx1]N04
PCIE1Rx2[SRIO0Rx2] T04
PCIE1Rx2[SRIO0Rx2]T05
PCIE1Rx3[SRIO0Rx3] V05
PCIE1Rx3[SRIO0Rx3]V04
PCIE1Tx0[SRIO0Tx0] M02
PCI Express 1 61
PCIE1Tx0[SRIO0Tx0]M01
PCIE1Tx1[SRIO0Tx1] N02
PCIE1Tx1[SRIO0Tx1]N01
PCIE1Tx2[SRIO0Tx2] T02
PCIE1Tx2[SRIO0Tx2]T01
PCIE1Tx3[SRIO0Tx3]V02
PCIE1Tx3[SRIO0Tx3] V01
Table 3. Signals Listed Alphabetically (Part 20 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 41
Preliminary Data Sheet
[PerAddr05]GPIO46[DMAReq0][IRQ13] B32
External Peripheral 66
[PerAddr06]GPIO47[DMAAck0][IRQ14] C31
[PerAddr07]GPIO48[EOT0/TC0][IRQ15] D30
PerAddr08 A32
PerAddr09 E29
PerAddr10 C30
PerAddr11 B31
PerAddr12 A30
PerAddr13 A31
PerAddr14 D29
PerAddr15 C29
PerAddr16 A29
PerAddr17 D28
PerAddr18 C28
PerAddr19 B29
PerAddr20 C27
PerAddr21 A28
PerAddr22 D26
PerAddr23 F27
PerAddr24 B27
PerAddr25 D27
PerAddr26 A27
PerAddr27 C26
PerAddr28 A26
PerAddr29 C25
PerAddr30 B25
PerAddr31 D24
PerBLast F25 External Peripheral 66
PerClk F23 External Peripheral 66
PerCS0[NFCE0]E24
External Peripheral 66
[PerCS1]GPIO41[NFCE1]B22
[PerCS2]GPIO42[NFCE2]D25
[PerCS3]GPIO43[NFCE3][DMAReq1][IRQ10] A22
[PerCS4]GPIO44[DMAAck1][IRQ11] E21
[PerCS5]GPIO45[EOT1/TC1][IRQ12] D21
Table 3. Signals Listed Alphabetically (Part 21 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
42 AMCC Proprietary
Revision 1.07 – May 29, 2008
PerData00 C21
External Peripheral 66
PerData01 B21
PerData02 A21
PerData03 E20
PerData04 D20
PerData05 C20
PerData06 D18
PerData07 B20
PerData08 E19
PerData09 D19
PerData10 E18
PerData11 C19
PerData12 A19
PerData13 C18
PerData14 B18
PerData15 A18
PerData16 D17
PerData17 B17
PerData18 A15
PerData19 B15
PerData20 E15
PerData21 C15
PerData22 D16
PerData23 D15
PerData24 E16
PerData25 C14
PerData26 E14
PerData27 D14
PerData28 B14
PerData29 A13
PerData30 B13
PerData31 C13
[PerPar0]GPIO30[DMAReq2][IRQ7] A20
External Peripheral 66
[PerPar1]GPIO31[DMAAck2][IRQ8] A16
[PerPar2]GPIO32[EOT2/TC2][IRQ9] A14
[PerPar3]GPIO33[DMAReq3][IRQ4] F13
PerErr D13 External Peripheral 66
PerOE E26 External Peripheral 66
PerR/W D23 External Peripheral 66
Table 3. Signals Listed Alphabetically (Part 22 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 43
Preliminary Data Sheet
PerReady C17 External Peripheral 66
PerWBE0 C23
External Peripheral 66
PerWBE1 A23
PerWBE2 D22
PerWBE3 C22
RAS AP30 DDR2/1 SDRAM 62
Reserved A17
Other 68
Reserved E17
Reserved AM15
Reserved AN15
SGMII0RxClk AK15
Ethernet SGMII 0 65
SGMII0RxClk AL15
SGMII0RxD AN14
SGMII0RxD AP14
SGMII0TxD AM11
SGMII0TxD AN11
SGMII1RxClk AL14
Ethernet SGMII 1 65
SGMII1RxClk AM14
SGMII1RxD AN13
SGMII1RxD AP13
SGMII1TxD AK11
SGMII1TxD AL11
SGMII2RxClk AL13
Ethernet SGMII 2 65
SGMII2RxClk AM13
SGMII2RxD AL12
SGMII2RxD AM12
SGMII2TxD AP10
SGMII2TxD AN10
SGMIITxClk AJ12
SGMIITxClk AK12
Table 3. Signals Listed Alphabetically (Part 23 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
44 AMCC Proprietary
Revision 1.07 – May 29, 2008
SOVDD N30
Power 69
SOVDD T33
SOVDD W33
SOVDD Y21
SOVDD AA20
SOVDD AB30
SOVDD AD29
SOVDD AF33
SOVDD AG30
SOVDD AJ24
SOVDD AK22
SOVDD AK27
SOVDD AK33
SOVDD AN19
SOVDD AN26
SOVDD AN30
SPAGND A11 Power 69
SPAVDD A12
SPIClkOut[IIC1SClk] K31
Serial Peripheral 67SPIDI K32
SPIDO[IIC1SData] G34
Table 3. Signals Listed Alphabetically (Part 24 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 45
Preliminary Data Sheet
[SRIO0AVReg]PCIE1AVReg R05
Serial Rapid IO 65
[SRIO0CalRN]PCIE1CalRN P01
[SRIO0CalRP]PCIE1CalRP P02
[SRIO0RefClk]PCIE1RefClk R04
[SRIO0RefClk]PCIE1RefClk R03
[SRIO0Rx0]PCIE1Rx0 L05
[SRIO0Rx0]PCIE1Rx0 L04
[SRIO0Rx1]PCIE1Rx1 N05
[SRIO0Rx1]PCIE1Rx1 N04
[SRIO0Rx2]PCIE1Rx2 T04
[SRIO0Rx2]PCIE1Rx2 T05
[SRIO0Rx3]PCIE1Rx3 V05
[SRIO0Rx3]PCIE1Rx3 V04
[SRIO0Tx0]PCIE1Tx0 M02
[SRIO0Tx0]PCIE1Tx0 M01
[SRIO0Tx1]PCIE1Tx1 N02
[SRIO0Tx1]PCIE1Tx1 N01
[SRIO0Tx2]PCIE1Tx2 T02
[SRIO0Tx2]PCIE1Tx2 T01
[SRIO0Tx3]PCIE1Tx3 V02
[SRIO0Tx3]PCIE1Tx3 V01
SysClk AD02
System 68SysErr AB03
SysReset AC02
TCK J29
JTAG 68TDI F34
TDO F33
TestEn K29
System 68TherMonA AM09
TherMonB AL10
TmrClk C11 System 68
TMS G32 JTAG 68
[TrcBS0]GPIO49 H33
Trace 68[TrcBS1]GPIO50 J34
[TrcBS2]GPIO51 H34
Table 3. Signals Listed Alphabetically (Part 25 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
46 AMCC Proprietary
Revision 1.07 – May 29, 2008
TrcClk M29
Trace 68
[TrcES0]GPIO52 L30
[TrcES1]GPIO53 L31
[TrcES2]GPIO54 K33
[TrcES3]GPIO55 L32
[TrcES4]GPIO56 K34
[TrcTS0]GPIO57 L33
Trace 68
[TrcTS1]GPIO58 N29
[TrcTS2]GPIO59 M31
[TrcTS3]GPIO60 L34
[TrcTS4]GPIO61 M32
[TrcTS5]GPIO62 M34
[TrcTS6]GPIO63 N31
TRST H29 JTAG 68
UARTSerClk G30
[UART0CTS]GPIO36[DMAAck3][UART3Rx] E31
UART Peripheral 67
[UART0DCD]GPIO34[UART1CTS][UART2Tx] E34
[UART0DSR]GPIO35[UART1RTS][UART2Rx] E32
[UART0DTR]GPIO38[UART1Tx][IRQ5] D32
[UART0RI]GPIO39[UART1Rx][IRQ6] D34
[UART0RTS]GPIO37[EOT3/TC3][UART3Tx] D33
UART0Rx C34
UART0Tx C33
[UART1CTS][UART0DCD]GPIO34[UART2Tx] E34
UART Peripheral 67
[UART1RTS][UART0DSR]GPIO35[UART2Rx] E32
[UART1Rx][UART0RI]GPIO39[IRQ6] D34
[UART1Tx][UART0DTR]GPIO38[IRQ5] D32
[UART2Rx][UART0DSR]GPIO35[UART1RTS]E32
[UART2Tx][UART0DCD]GPIO34[UART1CTS]E34
[UART3Rx][UART0CTS]GPIO36[DMAAck3] E31
[UART3Tx][UART0RTS]GPIO37[EOT3/TC3] D33
Table 3. Signals Listed Alphabetically (Part 26 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 47
Preliminary Data Sheet
VDD F14
Power 69
VDD F15
VDD F17
VDD F18
VDD F20
VDD F21
VDD P17
VDD P18
VDD P29
VDD R17
VDD R18
VDD R29
VDD U14
VDD U15
VDD U20
VDD U21
VDD U29
VDD V14
VDD V15
VDD V20
VDD V21
VDD V29
VDD Y06
VDD Y17
VDD Y18
VDD Y29
VDD AA06
Power 69
VDD AA17
VDD AA18
VDD AA29
VDD AB06
VDD AJ14
VDD AJ15
VDD AJ17
VDD AJ18
VDD AJ20
VDD AJ21
WE AP32 DDR2/1 SDRAM 62
Table 3. Signals Listed Alphabetically (Part 27 of 27)
Signal Name Ball Interface Group Page
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
48 AMCC Proprietary
Revision 1.07 – May 29, 2008
Signals in Ball Assignment Order
In the following table, only the default signal name is shown for each ball. Multiplexed or multifunction signals are
marked with an ast er isk (*). To de term in e wh at other signals or functio ns can be pro g ramm e d to tho se ba lls, look
up the default signal name in Table 3 on page 21.
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 49
Preliminary Data Sheet
Table 4. Signals Listed by Ball Assignment (Part 1 of 9)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
A01 GND B01 GND C01 GND D01 PCI0IDSel
A02 GND B02 GND C02 GND D02 PCI0AD20
A03 GND B03 GND C03 GND D03 PCI0AD23
A04 PCI0AD17 B04 PCI0AD19 C04 PCI0IRdy D04 GND
A05 PCI0AD16 B05 OVDD C05 PCI0/CBE2 D05 PCI0AD18
A06 PCI0DevSel B06 PCI0PErr C06 PCI0Stop D06 PCI0TRdy
A07 PCI0AD14 B07 GND C07 PCI0C/BE1 D07 PCI0Par
A08 PCI0AD09 B08 PCI0AD11 C08 PCI0AD12 D08 PCI0AD13
A09 PCI0AD07 B09 OVDD C09 PCI0C/BE0 D09 PCI0AD08
A10 PCI0AD03 B10 PCI0AD02 C10 PCI0AD04 D10 PCI0AD06
A11 SPAGND B11 HISRRst C11 TmrClk D11 PCI0AD00
A12 SPAVDD * B12 GND C12 GPIO40 * D12 GPIO27 *
A13 PerData29 B13 PerData30 C13 PerData31 D13 PerErr
A14 GPIO32 * B14 PerData28 C14 PerData25 D14 PerData27
A15 PerData18 B15 PerData19 C15 PerData21 D15 PerData23
A16 GPIO31 * B16 OVDD C16 GND D16 PerData22
A17 Reserved B17 PerData17 C17 PerReady D17 PerData16
A18 PerData15 B18 PerData14 C18 PerData13 D18 PerData06
A19 PerData12 B19 OVDD C19 PerData11 D19 PerData09
A20 GPIO30 * B20 PerData07 C20 PerData05 D20 PerData04
A21 PerData02 B21 PerData01 C21 PerData00 D21 GPIO45 *
A22 GPIO43 * B22 GPIO41 * C22 PerWBE3 D22 PerWBE2
A23 PerWBE1 B23 GND C23 PerWBE0 D23 PerR/W
A24 GPIO24 * B24 GPIO23 * C24 GPIO22 * D24 PerAddr31
A25 GPIO26 * B25 PerAddr30 C25 PerAddr29 D25 GPIO42 *
A26 PerAddr28 B26 OVDD C26 PerAddr27 D26 PerAddr22
A27 PerAddr26 B27 PerAddr24 C27 PerAddr20 D27 PerAddr25
A28 PerAddr21 B28 GND C28 PerAddr18 D28 PerAddr17
A29 PerAddr16 B29 PerAddr19 C29 PerAddr15 D29 PerAddr14
A30 PerAddr12 B30 OVDD C30 PerAddr10 D30 GPIO48 *
A31 PerAddr13 B31 PerAddr11 C31 GPIO47 * D31 GND
A32 PerAddr08 B32 GPIO46 * C32 GND D32 GPIO38 *
A33 GND B33 GND C33 UART0Tx D33 GPIO37 *
A34 GND B34 GND C34 UART0Rx D34 GPIO39 *
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
50 AMCC Proprietary
Revision 1.07 – May 29, 2008
E01 PCI0AD24 F01 PCI0AD30 G01 PCI0Gnt2 H01 GND
E02 OVDD F02 PCI0AD28 G02 GND H02 PCI0Req1
E03 PCI0AD22 F03 PCI0C/BE3 G03 PCI0Gnt0/Req H03 PCI0Gnt3
E04 PCI0AD25 F04 PCI0AD21 G04 PCI0AD27 H04 PCI0Gnt1
E05 GND F05 PCI0AD31 G05 PCI0AD26 H05 OVDD
E06 PCI0Frame F06 GND G06 No ball H06 PCI0AD29
E07 PCI0SErr F07 No ball G07 No Ball H07 No Ball
E08 OVDD F08 PCI0AD15 G08 No Ball H08 No Ball
E09 PCI0M66En F09 PCI0AD10 G09 No Ball H09 N o Ball
E10 GND F10 PCI0AD05 G10 No Ball H10 No Ball
E11 PCI0AD01 F11 OVDD G11 No Ball H11 No Ball
E12 GPIO28 * F12 GPIO29 * G12 No Ball H12 No Ball
E13 OVDD F13 GPIO33 * G13 No Ball H13 No Ball
E14 PerData26 F14 VDD G14 No Ball H14 No Ball
E15 PerData20 F15 VDD G15 No Ball H15 No Ball
E16 PerData24 F16 GND G16 No Ball H16 No Ball
E17 Reserved F17 VDD G17 No Ball H17 No Ball
E18 PerData10 F18 VDD G18 No Ball H18 No Ball
E19 PerData08 F19 GND G19 No Ball H19 No Ball
E20 PerData03 F20 VDD G20 No Ball H20 No Ball
E21 GPIO44 * F21 VDD G21 No Ball H21 No Ball
E22 OVDD F22 ExtReset G22 No Ball H22 No Ball
E23 GND F23 PerClk G23 No Ball H23 No Ball
E24 PerCS0 F24 OVDD G24 No Ball H24 No Ball
E25 GND F25 PerBLast G25 No Ball H25 No Ball
E26 PerOE F26 GPIO25 * G26 No Ball H26 No Ball
E27 OVDD F27 PerAddr23 G27 No Ball H27 No Ball
E28 GND F28 No ball G28 No Ball H28 No Ball
E29 PerAddr09 F29 GND G29 No ball H29 TRST
E30 GND F30 GND G30 UARTSerClk H30 OVDD
E31 GPIO36 * F31 GND G31 GND H31 IIC0SData
E32 GPIO35 * F32 GND G32 TMS H32 Halt
E33 OVDD F33 TDO G33 GND H33 GPIO49 *
E34 GPIO34 * F34 TDI G34 SPIDO * H34 GPIO51 *
Table 4. Signals Listed by Ball Assignment (Part 2 of 9)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 51
Preliminary Data Sheet
J01 GND K01 PCI0Clk L01 AGND M01 PCIE1Tx0
J02 OVDD K02 GND L02 AGND M02 PCIE1Tx0
J03 GND K03 PCI0Reset L03 AVDD M03 AVDD
J04 PCI0Int K04 PCI0Req2 L04 PCIE1Rx0 M04 AGND
J05 PCI0Req3 K05 GND L05 PCIE1Rx0 M05 AVDD
J06 PCI0Req0/Gnt K06 GND L06 AVDD M06 AGND
J07 No Ball K07 No Ball L07 No Ball M07 No Ball
J08 No Ball K08 No Ball L08 No Ball M08 No Ball
J09 No Ball K09 No Ball L09 No Ball M09 No Ball
J10 No Ball K10 No Ball L10 No Ball M10 No Ball
J11 No Ball K11 No Ball L11 No Ball M11 No Ball
J12 No Ball K12 No Ball L12 No Ball M12 No Ball
J13 No Ball K13 No Ball L13 No Ball M13 No Ball
J14 No Ball K14 No Ball L14 No Ball M14 No Ball
J15 No Ball K15 No Ball L15 No Ball M15 No Ball
J16 No Ball K16 No Ball L16 No Ball M16 No Ball
J17 No Ball K17 No Ball L17 No Ball M17 No Ball
J18 No Ball K18 No Ball L18 No Ball M18 No Ball
J19 No Ball K19 No Ball L19 No Ball M19 No Ball
J20 No Ball K20 No Ball L20 No Ball M20 No Ball
J21 No Ball K21 No Ball L21 No Ball M21 No Ball
J22 No Ball K22 No Ball L22 No Ball M22 No Ball
J23 No Ball K23 No Ball L23 No Ball M23 No Ball
J24 No Ball K24 No Ball L24 No Ball M24 No Ball
J25 No Ball K25 No Ball L25 No Ball M25 No Ball
J26 No Ball K26 No Ball L26 No Ball M26 No Ball
J27 No Ball K27 No Ball L27 No Ball M27 No Ball
J28 No Ball K28 No Ball L28 No Ball M28 No Ball
J29 TCK K29 TestEn L29 OVDD M29 TrcClk
J30 GND K30 GND L30 GPIO52 * M30 GND
J31 IIC0SClk K31 SPIClkOut * L31 GPIO53 * M31 GPIO59 *
J32 GND K32 SPIDI * L32 GPIO55 * M32 GPIO61 *
J33 OVDD K33 GPIO54 * L33 GPIO57 * M33 GND
J34 GPIO50 * K34 GPIO56 * L34 GPIO60 * M34 GPIO62 *
Table 4. Signals Listed by Ball Assignment (Part 3 of 9)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
52 AMCC Proprietary
Revision 1.07 – May 29, 2008
N01 PCIE1Tx1 P01 PCIE1CalRN R01 AGND T01 PCIE1Tx2
N02 PCIE1Tx1 P02 PCIE1CalRP R02 AGND T02 PCIE1Tx2
N03 AVDD P03 AGND R03 PCIE1RefClk T03 AVDD
N04 PCIE1Rx1 P04 AGND R04 PCIE1RefClk T04 PCIE1Rx2
N05 PCIE1Rx1 P05 AVDD R05 PCIE1AVReg T05 PCIE1Rx2
N06 AVDD P06 AGND R06 AGND T06 PAVDD
N07 No Ball P07 No Ball R07 No Ball T07 No Ball
N08 No Ball P08 No Ball R08 No Ball T08 No Ball
N09 No Ball P09 No Ball R09 No Ball T09 No Ball
N10 No Ball P10 No Ball R10 No Ball T10 No Ball
N11 No Ball P11 No Ball R11 No Ball T11 No Ball
N12 No Ball P12 No Ball R12 No Ball T12 No Ball
N13 No Ball P13 No Ball R13 No Ball T13 No Ball
N14 No Ball P14 GND R14 OVDD T14 GND
N15 No Ball P15 OVDD R15 GND T15 GND
N16 No Ball P16 GND R16 GND T16 GND
N17 No Ball P17 VDD R17 VDD T17 GND
N18 No Ball P18 VDD R18 VDD T18 GND
N19 No Ball P19 GND R19 GND T19 GND
N20 No Ball P20 OVDD R20 GND T20 GND
N21 No Ball P21 GND R21 OVDD T21 GND
N22 No Ball P22 No Ball R22 No Ball T22 No Ball
N23 No Ball P23 No Ball R23 No Ball T23 No Ball
N24 No Ball P24 No Ball R24 No Ball T24 No Ball
N25 No Ball P25 No Ball R25 No Ball T25 No Ball
N26 No Ball P26 No Ball R26 No Ball T26 No Ball
N27 No Ball P27 No Ball R27 No Ball T27 No Ball
N28 No Ball P28 No Ball R28 No Ball T28 No Ball
N29 GPIO58 * P29 VDD R29 VDD T29 MEMVRef2B
N30 SOVDD P30 MemData00 R30 MemData03 T30 GND
N31 GPIO63 * P31 DM0 R31 MemData07 T31 MemData13
N32 MemData05 P32 DQS0 R32 MemData02 T32 MemData11
N33 MemData04 P33 DQS0 R33 MemData12 T33 SOVDD
N34 MemData01 P34 MemData06 R34 MemData08 T34 MemData09
Table 4. Signals Listed by Ball Assignment (Part 4 of 9)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 53
Preliminary Data Sheet
U01 AGND V01 PCIE1Tx3 W01 PCIE0Tx0 Y01 AGND
U02 AVDD V02 PCIE1Tx3 W02 PCIE0Tx0 Y02 AVDD
U03 AVDD V03 AVDD W03 AVDD Y03 AGND
U04 AGND V04 PCIE1Rx3 W04 PCIE0Rx0 Y04 AVDD
U05 AGND V05 PCIE1Rx3 W05 PCIE0Rx0 Y05 AGND
U06 AVDD V06 AVDD W06 AVDD Y06 VDD
U07 No Ball V07 No Ball W07 No Ball Y07 No Ball
U08 No Ball V08 No Ball W08 No Ball Y08 No Ball
U09 No Ball V09 No Ball W09 No Ball Y09 No Ball
U10 No Ball V10 No Ball W10 No Ball Y10 No Ball
U11 No Ball V11 No Ball W11 No Ball Y11 No Ball
U12 No Ball V12 No Ball W12 No Ball Y12 No Ball
U13 No Ball V13 No Ball W13 No Ball Y13 No Ball
U14 VDD V14 VDD W14 GND Y14 E1OVDD
U15 VDD V15 VDD W15 GND Y15 GND
U16 GND V16 GND W16 GND Y16 GND
U17 GND V17 GND W17 GND Y17 VDD
U18 GND V18 GND W18 GND Y18 VDD
U19 GND V19 GND W19 GND Y19 GND
U20 VDD V20 VDD W20 GND Y20 GND
U21 VDD V21 VDD W21 GND Y21 SOVDD
U22 No Ball V22 No Ball W22 No Ball Y22 No Ball
U23 No Ball V23 No Ball W23 No Ball Y23 No Ball
U24 No Ball V24 No Ball W24 No Ball Y24 No Ball
U25 No Ball V25 No Ball W25 No Ball Y25 No Ball
U26 No Ball V26 No Ball W26 No Ball Y26 No Ball
U27 No Ball V27 No Ball W27 No Ball Y27 No Ball
U28 No Ball V28 No Ball W28 No Ball Y28 No Ball
U29 VDD V29 VDD W29 GND Y29 VDD
U30 DM1 V30 DM2 W30 MemData19 Y30 MemData27
U31 DQS1 V31 MemData17 W31 DQS2 Y31 MemData29
U32 DQS1 V32 MemData16 W32 DQS2 Y32 MemData18
U33 MemData14 V33 MemData20 W33 SOVDD Y33 MemData23
U34 MemData15 V34 MemData10 W34 MemData21 Y34 MemData22
Table 4. Signals Listed by Ball Assignment (Part 5 of 9)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
54 AMCC Proprietary
Revision 1.07 – May 29, 2008
AA01 PCIE0AVReg AB01 PCIE0CalRP AC01 GND AD01 GND
AA02 PCIE0RefClk AB02 PCIE0CalRN AC02 SysReset AD02 SysClk
AA03 PCIE0RefClk AB03 SysErr AC03 GND AD03 GPIO07 *
AA04 AGND AB04 AVDD AC04 GND AD04 GPIO21 *
AA05 PAVDD AB05 GPIO06 * AC05 GND AD05 GPIO01 *
AA06 VDD AB06 VDD AC06 GMC1TxClk * AD06 E1OVDD
AA07 No Ball AB07 No Ball AC07 No Ball AD07 No Ball
AA08 No Ball AB08 No Ball AC08 No Ball AD08 No Ball
AA09 No Ball AB09 No Ball AC09 No Ball AD09 No Ball
AA10 No Ball AB10 No Ball AC10 No Ball AD10 No Ball
AA11 No Ball AB11 No Ball AC11 No Ball AD11 No Ball
AA12 No Ball AB12 No Ball AC12 No Ball AD12 No Ball
AA13 No Ball AB13 No Ball AC13 No Ball AD13 No Ball
AA14 GND AB14 No Ball AC14 No Ball AD14 No Ball
AA15 E1OVDD AB15 No Ball AC15 No Ball AD15 No Ball
AA16 GND AB16 No Ball AC16 No Ball AD16 No Ball
AA17 VDD AB17 No Ball AC17 No Ball AD17 No Ball
AA18 VDD AB18 No Ball AC18 No Ball AD18 No Ball
AA19 GND AB19 No Ball AC19 No Ball AD19 No Ball
AA20 SOVDD AB20 No Ball AC20 No Ball AD20 No Ball
AA21 GND AB21 No Ball AC21 No Ball AD21 No Ball
AA22 No Ball AB22 No Ball AC22 No Ball AD22 No Ball
AA23 No Ball AB23 No Ball AC23 No Ball AD23 No Ball
AA24 No Ball AB24 No Ball AC24 No Ball AD24 No Ball
AA25 No Ball AB25 No Ball AC25 No Ball AD25 No Ball
AA26 No Ball AB26 No Ball AC26 No Ball AD26 No Ball
AA27 No Ball AB27 No Ball AC27 No Ball AD27 No Ball
AA28 No Ball AB28 No Ball AC28 No Ball AD28 No Ball
AA29 VDD AB29 MemVRef1B AC29 MemAddr13 AD29 SOVDD
AA30 DQS3 AB30 SOVDD AC30 ECC1 AD30 ECC7
AA31 DQS3 AB31 MemData26 AC31 ECC0 AD31 ECC6
AA32 MemData25 AB32 MemData31 AC32 ECC5 AD32 DQS8
AA33 MemData24 AB33 MemData30 AC33 GND AD33 DQS8
AA34 MemData28 AB34 DM3 AC34 ECC4 AD34 DM8
Table 4. Signals Listed by Ball Assignment (Part 6 of 9)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 55
Preliminary Data Sheet
AE01 GPIO05 * AF01 GPIO03 * AG01 GPIO00 * AH01 GPIO15 *
AE02 GPIO04 * AF02 E1OVDD AG02 GPIO17 * AH02 GND
AE03 GND AF03 GPIO19 * AG03 GPIO20 * AH03 GPIO13 *
AE04 GPIO02 * AF04 GPIO16 * AG04 GPIO18 * AH04 GPIO08 *
AE05 GND AF05 GND AG05 E1OVDD AH05 GMC0TxD6
AE06 GMC1GTxClk * AF06 GMC1RxClk * AG06 GPIO10 * AH06 No ball
AE07 No Ball AF07 No Ball AG07 No Ball AH07 No Ball
AE08 No Ball AF08 No Ball AG08 No Ball AH08 No Ball
AE09 No Ball AF09 No Ball AG09 No Ball AH09 No Ball
AE10 No Ball AF10 No Ball AG10 No Ball AH10 No Ball
AE11 No Ball AF11 No Ball AG11 No Ball AH11 No Ball
AE12 No Ball AF12 No Ball AG12 No Ball AH12 No Ball
AE13 No Ball AF13 No Ball AG13 No Ball AH13 No Ball
AE14 No Ball AF14 No Ball AG14 No Ball AH14 No Ball
AE15 No Ball AF15 No Ball AG15 No Ball AH15 No Ball
AE16 No Ball AF16 No Ball AG16 No Ball AH16 No Ball
AE17 No Ball AF17 No Ball AG17 No Ball AH17 No Ball
AE18 No Ball AF18 No Ball AG18 No Ball AH18 No Ball
AE19 No Ball AF19 No Ball AG19 No Ball AH19 No Ball
AE20 No Ball AF20 No Ball AG20 No Ball AH20 No Ball
AE21 No Ball AF21 No Ball AG21 No Ball AH21 No Ball
AE22 No Ball AF22 No Ball AG22 No Ball AH22 No Ball
AE23 No Ball AF23 No Ball AG23 No Ball AH23 No Ball
AE24 No Ball AF24 No Ball AG24 No Ball AH24 No Ball
AE25 No Ball AF25 No Ball AG25 No Ball AH25 No Ball
AE26 No Ball AF26 No Ball AG26 No Ball AH26 No Ball
AE27 No Ball AF27 No Ball AG27 No Ball AH27 No Ball
AE28 No Ball AF28 No Ball AG28 No Ball AH28 No Ball
AE29 ClkEn0 AF29 GND AG29 GND AH29 No ball
AE30 GND AF30 GND AG30 SOVDD AH30 MemAddr04
AE31 ClkEn3 AF31 MemAddr11 AG31 MemAddr07 AH31 MemAddr05
AE32 ECC2 AF32 MemAddr14 AG32 MemAddr09 AH32 MemAddr06
AE33 ClkEn2 AF33 SOVDD AG33 MemAddr10 AH33 GND
AE34 ECC3 AF34 ClkEn1 AG34 MemAddr12 AH34 MemAddr08
Table 4. Signals Listed by Ball Assignment (Part 7 of 9)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
56 AMCC Proprietary
Revision 1.07 – May 29, 2008
AJ01 GPIO14 * AK01 GMCMDIO * AL01 GMC0TxD3 AM01 GMC0TxD5
AJ02 GPIO11 * AK02 E1OVDD AL02 GMC0TxD2 AM02 GMC0TxD0
AJ03 GM CMDClk * AK03 GMC0TxD4 AL03 GMC0TxD7 AM03 GND
AJ04 GPIO12 * AK04 GMC0TxD1 AL04 GND AM04 GND
AJ05 GPIO09 * AK05 GND AL05 GND AM05 GMC0TxEn
AJ06 GND AK06 GND AL06 GMC0RxDV AM06 GND
AJ07 No ball AK07 GND AL07 GMC0CrS AM07 GMC0RxClk
AJ08 GMC0TxER AK08 E1OVDD AL08 GMC0RxD5 AM08 GMC0RxD6
AJ09 GMC0RxD3 AK09 GMC0RxD1 AL09 GMC0RxD0 AM09 TherMonA
AJ10 GMC0RxER AK10 GND AL10 TherMonB AM10 GND
AJ11 E1OVDD AK11 SGMII1TxD AL11 SGMII1TxD AM11 SGMII0TxD
AJ12 SGMIITxClk AK12 SGMIITxClk AL12 SGMII2RxD AM12 SGMII2RxD
AJ13 GND AK13 E2OVDD AL13 SGMII2RxClk AM13 SGMII2RxClk
AJ14 VDD AK14 GND AL14 SGMII1RxClk AM14 SGMII1RxClk
AJ15 VDD AK15 SGMII0RxClk AL15 SGMII0RxClk AM15 Reserved
AJ16 GND AK16 MemData63 AL16 MemData58 AM16 MemData62
AJ17 VDD AK17 DQS7 AL17 DQS7 AM17 DM7
AJ18 VDD AK18 MemData60 AL18 MemData50 AM18 MemData51
AJ19 MemVRef1A AK19 GND AL19 DQS6 AM19 DQS6
AJ20 VDD AK20 MemData52 AL20 MemData48 AM20 MemData49
AJ21 VDD AK21 MemData34 AL21 MemData47 AM21 MemData42
AJ22 MemVRef2A AK22 SOVDD AL22 GND AM22 DQS5
AJ23 GND AK23 MemData44 AL23 MemData40 AM23 MemData41
AJ24 SOVDD AK24 GND AL24 MemData38 AM24 MemData39
AJ25 GND AK25 GND AL25 GND AM25 DM4
AJ26 GND AK26 MemData37 AL26 MemData36 AM26 MemData32
AJ27 GND AK27 SOVDD AL27 MemODT3 AM27 MemODT1
AJ28 No ball AK28 GND AL28 BankSel0 AM28 MemODT2
AJ29 GND AK29 GND AL29 CAS AM29 BankSel2
AJ30 GND AK30 GND AL30 GND AM30 GND
AJ31 GND AK31 MemClkOut1 AL31 GND AM31 BA2
AJ32 MemAddr02 AK32 MemClkOut1 AL32 GND AM32 GND
AJ33 MemAddr01 AK33 SOVDD AL33 GND AM33 MemDCFdbkD
AJ34 MemAddr03 AK34 MemAddr00 AL34 GND AM34 MemDCFdbkR
Table 4. Signals Listed by Ball Assignment (Part 8 of 9)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 57
Preliminary Data Sheet
AN01 GND AP01 GND
AN02 GND AP02 GND
AN03 GND AP03 GND
AN04 GMC0TxClk * AP04 GND
AN05 E1OVDD AP05 GMC0CD
AN06 GMC0GTxClk AP06 GND
AN07 GND AP07 GMC0RxD7
AN08 GMC0RxD4 AP08 GMC0RxD2
AN09 E1OVDD AP09 GMCRefClk
AN10 SGMII2TxD AP10 SGMII2TxD
AN11 SGMII0TxD AP11 EAVDD
AN12 GND AP12 EAGND
AN13 SGMII1RxD AP13 SGMII1RxD
AN14 SGMII0RxD AP14 SGMII0RxD
AN15 Reserved AP15 MemData59
AN16 E2OVDD AP16 GND
AN17 MemData57 AP17 GND
AN18 MemData61 AP18 MemData56
AN19 SOVDD AP19 MemData55
AN20 DM6 AP20 MemData54
AN21 MemData43 AP21 MemData53
AN22 DQS5 AP22 MemData46
AN23 GND AP23 DM5
AN24 MemData35 AP24 MemData45
AN25 DQS4 AP25 DQS4
AN26 SOVDD AP26 MemData33
AN27 MemClkOut0 AP27 MemClkOut0
AN28 GND AP28 MemODT0
AN29 BankSel3 AP29 BankSel1
AN30 SOVDD AP30 RAS
AN31 GND AP31 BA1
AN32 BA0 AP32 WE
AN33 GND AP33 GND
AN34 GND AP34 GND
Table 4. Signals Listed by Ball Assignment (Part 9 of 9)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
58 AMCC Proprietary
Revision 1.07 – May 29, 2008
Signal Descriptions
The PPC460GT embedded controller is packaged in a 728-ball therma lly enhanced plastic ball grid array (TE-
PBGA). The following tables describe the package level pin-out.
In the table Table 7 on page 60, each I/O signal is listed along with a short description of its function. Active-low
signals (for example, RAS) are marked with an overline. Please see Table 3 on page 21 for the pin (ball) number to
which each signal is assigned.
Multiplexed Signals
Some signals are multiplexed on the same pin so that the pin can be used for different functions. In most cases,
the signal names shown in the following table are not accompanied by signal names that might share the same pin.
If you need to know what, if any, signals are multiplex ed with a part icu l ar signal, loo k up the name in Table 3 on
page 21. It is expected that in any single application a particular pin will always be programmed to serve the same
function. The flexibility of multiplexing allows a single chip to offer a richer pin selection than would otherwise be
possible.
Multipurpose Signals
In addition to multiplexing, some pins such as those ca rr ying the EOTx/TCx sig nals are also multipur pose . Co ntro l
of which function a multipurpo se pin has is determined b y direction, register settings, and so on. Both functio ns are
shown separated by a slash (/).
Table 5. Pin Summary
Group No. of Pins
Total Signal Pins 437
VDD 37
OVDD 23
SOVDD 16
E1OVDD 10
E2OVDD 2
GND 160
PAVDD 2
AVDD 18
AGND 17
EAVDD 1
EAGND 1
SPAVDD 1
SPAGND 1
Total Power Pins 289
Reserved 2
Total Pins 728
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 59
Preliminary Data Sheet
Multimode Signals
In some cases (for example, Ethernet) the function of a pin may var y with different modes of opera tion. When a pin
has multiple signal names assigned to distinguish different modes of operation, all of the names are shown
separated by a comma.
Strapping Pins
One group of pins is used as strapped inputs during system reset. These pins function as strapped inputs only
during reset and are used for other functions during normal operation (see “Strapping” on page 95). Note that
these are not multiplexed pins since the function of the pins is not programmable.
Reserved Pins
The balls marked Reserved on this chip are not functional. Howe ve r, som e of the re se rve d balls ca nn ot be left
unconnected. Connect the balls shown in Table 6 as indicated:
Table 6. Non-Functional Ball Connections
Ball Connection
AM15 1kΩ to GND
AN15 1kΩ to GND
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
60 AMCC Proprietary
Revision 1.07 – May 29, 2008
Table 7. Signal Functional Description (Part 1 of 10)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to OVDD or equivalent.
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ for LVTTL or 8.2kΩ for PCI to OVDD or equivalent.
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
PCI Interface
PCIAD00:31 Address/Data bus (bidirectional). I/O 3.3V PCI
PCIC0:3/BE0:3 PCI Command/Byte Enables.I/O 3.3V PCI
PCI0Clk Provides timing to the PCI interface for PCI transactions. I 3.3V PCI 1
PCI0DevSel Indicates the driving device has decoded its address as the
target of the current access. I/O 3.3V PCI 4
PCI0Frame Driven by the current master to indicate beginning and duration
of an access. I/O 3.3V PCI 4
PCI0IRdy Indicates initiating agent’s ability to complete the current data
phase of the transaction. I/O 3.3V PCI 4
PCI0TRdy Indicates the target agent’s ability to complete the current data
phase of the transaction. I/O 3.3V PCI 4
PCI0Stop Indicates the current target is requesting the master to stop the
current transaction. I/O 3.3V PCI 4
PCI0PErr Reports data parity errors during all PCI transactions except a
Special Cycle. I/O 3.3V PCI 4
PCI0SErr Reports address parity errors, data parity errors on the Special
Cycle command, or other catastrophic system errors. I/O 3.3V PCI 4
PCI0Req0/Gnt Indicates to the PCI arbiter that the specified agent wishes to use
the bus. When the internal arbiter is enabled, input is Req0.
When internal arbiter is disabled, input is Gnt. I3.3V PCI 4
PCI0Req1:3 An indication to the PCI arbiter that the specified agent wishes to
use the bus. Used only when internal PCI arbiter enabled. I3.3V PCI 4
PCI0Gnt0/Req Indicates that the specified agent is granted access to the bus.
When the internal arbiter is enabled, output is Gnt0. When the
internal arbiter is disabled, output is Req. O3.3V PCI
PCI0Gnt1:3 Indicates that the specified agent is granted access to the bus.
Used only when internal PCI arbiter enabled. O3.3V PCI
PCI0IDSel Used as a chip select during configuration read and write
transactions. I3.3V PCI 5
PCI0INT Level sensitive PCI inte rrupt. O 3.3V PCI
PCI0M66En Capable of 66MHz operation. I 3.3V PCI 5
PCI0Par Even parity across PCIAD00:31 and PCIC0:3/BE0:3 buses. I/O 3.3V PCI
PCI0Reset Brings PCI device registers and logic to a consistent state. O 3.3V PCI
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 61
Preliminary Data Sheet
PCI Express Interface (n = 0 and 1)
PCIEnRefClk
PCIEnRefClk Reference Clock: 100MHz differential pair. I 2.5V LVDS
Rcvr w/term
PCIEnAVReg Analog obvservation point for manufacturing test of internal
voltage regulator.
Note: For normal operation, do not terminate. na Analog
PCIEnCalRN
PCIEnCalRP Connect a 1.37kΩ ± 1% external calibration resistor between
these two pins. na Analog
PCIEnRx0:3
PCIEnRx0:3
Differential receive signal pairs.
PCIE0 is a single-channel (Rx0 only) interface.
PCIE1 is a four-channel (Rx0:3) interface.
Lane 0 is LSB.
Note: DC couple only and bias to 0V common mode.
I2.5V LVDS
Rcvr w/term
PCIEnTx0:3
PCIEnTx0:3
Differential transmit signal pairs.
PCIE0 is a single-channel (Tx0 only) interface.
PCIE1 is a four-channel (Tx0:3) interface.
Lane 0 is LSB.
Note: AC couple only.
O2.5V LVDS
Drvr w/term
Table 7. Signal Functional Description (Part 2 of 10)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to OVDD or equivalent.
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ for LVTTL or 8.2kΩ for PCI to OVDD or equivalent.
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
62 AMCC Proprietary
Revision 1.07 – May 29, 2008
DDR2/1 SDRAM Interface
BA0:2 Bank Address supporting up to eight internal banks. O 2.5V (1.8V)
SSTL2 Dr/Rcv
BankSel0:3 Selects up to four external DDR SDRAM banks (a.k.a. ranks). O 2.5V (1.8V)
SSTL2 Dr/Rcv
CAS Column Address Strobe. O 2.5V (1.8V)
SSTL2 Dr/Rcv
ClkEn0:3 Clock Enable. O 2.5V (1.8V)
SSTL2 Dr/Rcv
DM0:7
DM8 Memory write data byte lane masks. DM8 is the byte lane mask
for the ECC byte lane. O2.5V (1.8V)
SSTL2 Dr/Rcv
DQS0:7
DQS0:7
DQS8
DQS8
Differential byte lane data strobe.
Differential byte lane data strobe for ECC. I/O 2.5V (1.8V)
SSTL2 Diff
Dr/Rcv
ECC0:7 ECC check bits 0:7. I/O 2.5V (1.8V)
SSTL2 Dr/Rcv
MemAddr00:14 Memory address bus.
MemAddr14 is the most significant bit (msb). O2.5V (1.8V)
SSTL2 Dr/Rcv
MemData00:63 Memory data bus (MemData32:63 available for DDR2 only).
MemData00 is the most significant bit (msb). I/O 2.5V (1.8V)
SSTL2 Dr/Rcv
MemClkOut0:1
MemClkOut0:1 Subsystem clock outputs. O 2.5V (1.8V)
SSTL2 Dr/Rcv
Diff Driver
MemODT0:3 DDR2 On-die termination enable (not used with DDR1). O 2.5V (1.8V)
SSTL2 Dr/Rcv
RAS Row Address Strobe. O 2.5V (1.8V)
SSTL2 Dr/Rcv
WE Write Enable. O 2.5V (1.8V)
SSTL2 Dr/Rcv
MemVRef1A:B Memory voltage reference 1, A and B input. I Volt ref receiver
(1.25V or 0.9V)
MemVRef2A:B Memory voltage reference 2, A and B input. I Volt ref driver
(1.25V or 0.9V)
MemDCFdbkD Feedback driver for I/O timing measurements. O 2.5V (1.8V)
SSTL2 Dr/Rcv
MemDCFdbkR
Feedback receiver. Connect externally to MemDCFdbkD .
Note: Connect directly to MemDCFdbkR. Use the shortest trace
length possible. Do not include series termination or parallel
termination to Vtt.
I2.5V (1.8V)
SSTL2 Dr/Rcv
HISRRst SDRAM hardware initiated self-refresh reset control. I 3.3V LVTTL 1, 2
Table 7. Signal Functional Description (Part 3 of 10)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to OVDD or equivalent.
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ for LVTTL or 8.2kΩ for PCI to OVDD or equivalent.
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 63
Preliminary Data Sheet
Ethernet 0 Interface
GMCMDClk GMII, MII, RGMII: Management data clock. O 3.3V tolerant
2.5V CMOS
GMCMDIO GMII, MII, RGMII: Transfer command and status information
between MII and PHY. I/O 3.3V tolerant
2.5V CMOS
GMCRefClk GMII, SGMII, RGMII: 125MHz reference clock for
10/100/1000Mbps. I3.3V tolerant
2.5V CMOS 1, 5
GMC0GTxClk,
GMC0TxClk GMII 0: Transmit clock.
RGMII 0: Transmit clock. O3.3V tolerant
2.5V CMOS
GMC0TxClk,
RMII01RefClk,
SMIIRefClk
MII 0: Transmit clock.
RMII 0 & 1: 50MHz reference clock for 10/100 Mbps.
SMII: 125Mhz reference clock for 10/100 Mbps. I3.3V tolerant
2.5V CMOS 1, 5
GMC0TxD1:0,
GMC0TxD1:0,
RMII0TxD1:0,
SMII1:0TxD
GMII/MII 0: Transmit data.
RGMII 0: Transmit data.
RMII 0: Transmit data.
SMII 1:0: Transmit data. O3.3V tolerant
2.5V CMOS
GMC0TxD3:2,
GMC0TxD3:2,
RMII1TxD1:0,
SMII3:2TxD
GMII/MII 0: Transmit data.
RGMII 0: Transmit data.
RMII 1: Transmit data.
SMII 3:2: Transmit data. O3.3V tolerant
2.5V CMOS
GMC0TxD7:4,
GMC1TxD3:0 GMII 0: Transmit data.
RGMII 1: Transmit data. O3.3V tolerant
2.5V CMOS
GMC0TxEn,
GMC0TxCtl,
RMII0TxEn,
SMIISync
GMII/MII 0: Transmit enable.
RGMII 0: Transmit control.
RMII 0: Transmit enable.
SMII: Synchronizing signal. O3.3V tolerant
2.5V CMOS
GMC0TxEr,
GMC1TxCtl,
RMII1TxEn
GMII/MII 0: Transmit error.
RGMII 1: Transmit control.
RMII 1: Transmit enable. O3.3V tolerant
2.5V CMOS
GMC0CD,
GMC1RxClk
RMII1RxEr
GMII/MII 0: Collision detection.
RGMII 1: Receive clock.
RMII 1: Receive error. I3.3V tolerant
2.5V CMOS 1, 5
GMC0CrS,
GMC1TxClk,
RMII0CrSDV
GMII/MII 0: Carrier sense.
RGMII 1: Transmit clock.
RMII 0: Carrier sense/Receive data valid. I/O 3.3V tolerant
2.5V CMOS
GMC0RxClk,
GMC0RxClk GMII/MII 0: Receive clock.
RGMII 0: Receive clock. I3.3V tolerant
2.5V CMOS 1, 5
GMC0RxD1:0,
GMC0RxD1:0,
RMII0RxD1:0,
SMII1:0RxD
GMII/MII 0: Receive data.
RGMII 0: Receive data.
RMII 0: Receive data.
SMII 1:0: Receive data. I3.3V tolerant
2.5V CMOS 5
GMC0RxD3:2,
GMC0RxD3:2,
RMII1RxD1:0
SMII3:2RxD
GMII/MII 0: Receive data.
RGMII 0: Receive data.
RMII 1: Receive data.
SMII 3:2: Receive data. I3.3V tolerant
2.5V CMOS 5
Table 7. Signal Functional Description (Part 4 of 10)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to OVDD or equivalent.
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ for LVTTL or 8.2kΩ for PCI to OVDD or equivalent.
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
64 AMCC Proprietary
Revision 1.07 – May 29, 2008
GMC0RxD7:4,
GMC1RxD3:0 GMII/MII 0: Receive data.
RGMII 1: Receive data. I3.3V tolerant
2.5V CMOS 5
GMC0RxDV,
GMC0RxCtl,
RMII1CrSDV
GMII/MII 0: Receive data valid.
RGMII 0: Receive control.
RMII 1: Carrier Sense/Receive Data Valid I3.3V tolerant
2.5V CMOS 5
GMC0RxEr,
GMC1RxCtl,
RMII0RxEr
GMII/MII 0: Receive error.
RGMII 1: Receive control.
RMII 0: Receive Error. I3.3V tolerant
2.5V CMOS 5
Ethernet 1 Interface
GMC1GTxClk,
GMC2TxClk GMII 1: Transmit clock.
RGMII 2: Transmit clock. O3.3V tolerant
2.5V CMOS
GMC1TxClk,
RMII23RefClk MII 1: Transmit clock.
RMII 2 & 3: 50MHz Reference clock for 10/100Mbps. I3.3V tolerant
2.5V CMOS 1, 5
GMC1TxD1:0,
GMC2TxD1:0,
RMII2TxD1:0
GMII/MII 1: Transmit data.
RGMII 2: Transmit data.
RMII 2: Transmit data. O3.3V tolerant
2.5V CMOS
GMC1TxD3:2,
GMC2TxD3:2,
RMII3TxD1:0
GMII/MII 1: Transmit data.
RGMII 2: Transmit data.
RMII 3: Transmit data. O3.3V tolerant
2.5V CMOS
GMC1TxD7:4,
GMC3TxD3:0 GMII 1: Transmit data.
RGMII 3: Transmit data. O3.3V tolerant
2.5V CMOS
GMC1TxEn,
GMC2TxCtl,
RMII2TxEn
GMII/MII 1: Transmit enable.
RGMII 2: Transmit control.
RMII 2: Transmit enable. O3.3V tolerant
2.5V CMOS
GMC1TxEr,
GMC3TxCtl,
RMII3TxEn
GMII/MII 1: Transmit error.
RGMII 3: Transmit control.
RMII 3: Transmit enable. O3.3V tolerant
2.5V CMOS
GMC1CD,
GMC3RxClk,
RMII3RxEr
GMII/MII 1: Collision detection.
RGMII 3: Receive clock.
RMII 3: Receive error. I3.3V tolerant
2.5V CMOS 1, 5
GMC1Crs,
GMC3TxClk,
RMII2CrSDV
GMII/MII 1: Carrier sense.
RGMII 3: Transmit clock.
RMII 2: Carrier sense/Receive data valid. I/O 3.3V tolerant
2.5V CMOS
GMC1RxClk,
GMC2RxClk GMII/MII 1: Receive clock.
RGMII 2: Receive clock. I3.3V tolerant
2.5V CMOS 1, 5
GMC1RxD2:0,
GMC2RxD2:0,
RMII2RxD1:0
GMII/MII 1: Receive data.
RGMII 2: Receive data.
RMII 2: Receive data. I3.3V tolerant
2.5V CMOS
GMC1RxD3:2,
GMC2RxD3:2,
RMII3RxD1:0
GMII/MII 1: Receive data.
RGMII 2: Receive data.
RMII 3: Receive data. I3.3V tolerant
2.5V CMOS
Table 7. Signal Functional Description (Part 5 of 10)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to OVDD or equivalent.
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ for LVTTL or 8.2kΩ for PCI to OVDD or equivalent.
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 65
Preliminary Data Sheet
GMC1RxD4:7,
GMC3RxD0:3 GMII/MII 1: Receive data.
RGMII 3: Receive data. I3.3V tolerant
2.5V CMOS 5
GMC1RxDV,
GMC2RxCtl,
RMII3CrSDV
GMII/MII 1: Receive data valid.
RGMII 2: Receive control.
RMII 3: Carrier sense/Receive data valid. I3.3V tolerant
2.5V CMOS 5
GMC1RxEr,
GMC3RxCtl,
RMII2RxEr
GMII/MII 1: Receive error.
RGMII 3: Receive control.
RMII 2: Receive error. I3.3V tolerant
2.5V CMOS 5
Ethernet SGMII Gigabit Interface
SGMIITxClk
SGMIITxClk Differential transmit clock: Common 625MHz to PHYs. O 1.8V LVDS
Drvr w/term
SGMII0:2RxClk
SGMII0:2RxClk
Differential receive clock: 625MHz from PHY. The differential
receiver clock is required for SGMII. Clock recovery from the
differential SGMII0:2RxD signals is not supported. I1.8V LVDS
Rcvr w/term
SGMII0:2RxD
SGMII0:2RxD Differential receive data. I 1.8V LVDS
Rcvr w/term
SGMII0:2TxD
SGMII0:2TxD Differential transmit data. O 1.8V LVDS
Drvr w/term
Serial Rapid IO Interface
SRIO0RefClk
SRIO0RefClk Reference Clock: 100MHz differential clock pair. I CML
SRIO0Rx0:3
SRIO0Rx0:3 Differential receive signal pairs. I CML
SRIO0Tx0:3
SRIO0Tx0:3 Differential transmit signal pairs. O CML
SRIO0AVREG Analog observation point for manufacturing test.
Note: For normal operation, do not terminate. na Analog
SRIO0CalRP
SRIO0CalRN Attach a 1.37 kΩ, 1% resistor between these two pins to provide
a reference for both the bias currents and the impedance
calibration circuitry. na Analog
Table 7. Signal Functional Description (Part 6 of 10)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to OVDD or equivalent.
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ for LVTTL or 8.2kΩ for PCI to OVDD or equivalent.
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
66 AMCC Proprietary
Revision 1.07 – May 29, 2008
DMA Interface
DMAAck0:3 External peripheral DMA acknowledge.
Used by the PPC460GT to indicate that data transfers have
occurred. O3.3V LVTTL
DMAReq0:3 External peripheral DMA request.
Used by slave peripherals to indicate they are prepared to
transfer data. I 3.3V LVTTL 5
EOT0:3/TC0:3 End Of Transfer/Terminal Count. I/O 3.3V LVTTL 5
External Peripheral Interface
PerAddr05:31 Peripheral address bus used by the PPC460GT.
PerAddr05 is the most significant bit (msb) on this bus. I/O 3.3V LVTTL
PerData00:31 Peripheral data bus used by the PPC460GT.
PerData00 is the most significant bit (msb) on this bus. I/O 3.3V LVTTL
PerPar0:3 Peripheral data bus parity used by the PPC460GT. I/O 3.3V LVTTL
PerBLast Last burst transfer.
Used by either the peripheral controller or DMA controller to
indicates the last transfer of a memory access. I/O 3.3V LVTTL
PerCS0:5 External peripheral device select. O 3.3V LVTTL
PerOE
Output enable.
Used by either peripheral controller or DMA controller depending
upon the type of transfer involved. When the PPC460GT is the
bus master, it enables the selected device to drive the bus.
O3.3V LVTTL
PerReady Used by a peripheral slave to indicate it is ready to transfer data. I 3.3V LVTTL
Rcvr 1, 2
PerR/W
Read/Write.
Used by the PPC460GT as an output by either the peripheral
controller or DMA controller depending upon the type of transfer
involved. High indicates a read from memory, low indicates a
write to memory.
I/O 3.3V LVT TL
PerWBE0:3 External peripheral data bus byte enables. I/O 3.3V LVTTL
PerErr External Error. Used as an input to record external slave
peripheral errors. I3.3V LVTTL
Rcvr 1, 5
ExtReset Peripheral Reset. Used by synchronous peripheral slaves.
Note: The state of any external signals or clocks cannot be
guaranteed until the ExtReset signal has been de-asserted. O3.3V LVTTL
PerClk Peripheral Clock. Used by synchronous peripheral slaves. O 3.3V LVTTL
Table 7. Signal Functional Description (Part 7 of 10)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to OVDD or equivalent.
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ for LVTTL or 8.2kΩ for PCI to OVDD or equivalent.
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 67
Preliminary Data Sheet
UART Peripheral Interface
The UART interface can be configured as follows:
1. One 8-pin, where n = 0
2. Two 4-pin, where n = 0 & 1
3. Four 2-pin, where n = 0 & 1 & 2 & 3
UARTSerClk This input provides an alternative to the internally generated
serial clock. It is used in cases where the allowable internally
generated clock rates are not satisfactory. I3.3V LVTTL
w/pull-up 1
UARTnRx Receive data. I 3.3V LVTTL
UARTnTx Transmit data. O 3.3V LVTTL
UARTnDCD Data Carrier Detect. I 3.3V LVTTL 6
UARTnDSR Data Set Ready. I 3.3V LVTTL 6
UARTnCTS Clear To Send. I 3.3V LVTTL 6
UARTnDTR Data Terminal Ready. O 3.3V LVTTL
UARTnRTS Request To Send. O 3.3V LVTTL
UARTnRI Ring Indicator. I 3.3V LVTTL
IIC Peripheral Interface (n = 0 and 1)
IICnSClk IIC0 Serial Clock. I/O 3.3V LVT TL 1, 2
IICnSData IIC0 Serial Data. I/O 3.3V LVT TL 2
NAND Flash Interface
NFALE Address Latch Enable. O 3.3V LVTTL
NFCLE Command Latch Enable.
Latches operational command s into the NAND Flash. O3.3V LVTTL
NFRdyBusy Ready/Busy.
Indicates status of device during program erase or page read.
This signal is wire-OR connected from all NAND Flash devices. I3.3V LVTTL
NFREn Read Enable.
Data is latched on the rising edge. O3.3V LVTTL
NFWEn Write Ena ble.
Data is latched on the rising edge. O3.3V LVTTL
NFCE0:3 Chip enable. O 3.3V LVTTL
Serial Peripheral Interface
SPIClkOut Clock output. O 3.3V LVTTL 1
SPIDI Data input. I 3.3V LVTTL
w/pull-up 2
SPIDO Data output. O 3.3V LVTTL
Interrupts Interface
IRQ0:15 External interrupt requests 0 through 15. I 3.3V LVTTL 1, 5
Table 7. Signal Functional Description (Part 8 of 10)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to OVDD or equivalent.
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ for LVTTL or 8.2kΩ for PCI to OVDD or equivalent.
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
68 AMCC Proprietary
Revision 1.07 – May 29, 2008
JTAG Interface
TCK Test Clock. I 3.3V LVTTL
w/pull-up 1
TDI Test Data In. I 3.3V LVTTL
w/pull-up
TDO Test Data Out. O 3.3V LVTTL
TMS Test Mode Select. I 3.3V LVTTL
w/pull-up
TRST Test Reset. During chip power-up, this signal must be low from
the start of VDD ramp-up until at least 32 SysClk cycles after VDD
is stable in order to initialize the JTAG contr oller. I3.3V LVTTL
w/pull-up 5
System Interface
SysClk Main system clock input. I 3.3V tolerant
2.5V CMOS 1
SysErr Set to 1 when a machine check is generated. O 3.3V tolerant
2.5V CMOS
SysReset Main system reset. External logic can drive this pin low (minimum
of 16 cycles) to initiate a system reset. A system reset can also
be initiated by software. I 3.3V tolerant
2.5V CMOS 1, 2
TmrClk Processor timer external input clock. I 3.3V LVTTL
w/pull-up 1
Halt Halt from external debugger. I 3.3V LVTTL
w/pull-up 1
TestEn Test enable.
Note: Do not connect for normal operation. I3.3V LVTTL
w/pull-down
GPIO00:21 General purpose I/O. I/O 3.3V tolerant
2.5V CMOS
GPIO22:63 General purpose I/O. I/O 3.3V LVT TL
TherMonA
TherMonB On-chip thermal monitor (P diffusion).
On-chip thermal monitor (N diffusion). I
OThermal
monitor
Trace Interface
TrcBS0:2 Trace branch execution status. O 3.3V LVTTL
TrcClk Trace data capture clock; runs at 1/4 the frequency of the
processor. O3.3V LVTTL
TrcES0:4 Trace Execution Status is presented every fourth processor clock
cycle. O3.3V LVTTL
TrcTS0:6 Additional info rmation on trace execution and branch status. O 3.3V LVTTL
Other
Reserved To avoid noise pickup problems, Some of these balls must be
connected in the board design as shown Table 6 on page 59.
Otherwise, do not connect voltage, ground, or any signals to
these pins. na na
Table 7. Signal Functional Description (Part 9 of 10)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to OVDD or equivalent.
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ for LVTTL or 8.2kΩ for PCI to OVDD or equivalent.
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 69
Preliminary Data Sheet
Power
VDD +1.25V—Logic voltage. na na
OVDD +3.3V—I/O voltage (except DDR SDRAM, and Ethernet. na na
SOVDD +1.8V (DDR2) or +2.5V (DDR1)—I/O voltage for DDR SDRAM. na na
E1OVDD +2.5V—I/O voltage for Ethernet (except SGMII). na na
E2OVDD +1.8V—I/O Ethernet (SGMII). na na
GND Ground for logic and I/O voltages. na na
AVDD +1.25V—PCI-Express SerDes Analog Supply. na na
PAVDD +2.5V—PCI-Express SerDes PLL Analog Supply. na na
AGND Ground for AVDD and PAVDD.nana
EAVDD +2.5V—Filtered analog voltage for Ethernet PLLs. na na
EAGND Ground for EAVDD.nana
SPAVDD +2.5V—Filtered analog voltage for system PLL. na na
SPAGND Ground for SPAVDD.nana
Table 7. Signal Functional Description (Part 10 of 10)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to OVDD or equivalent.
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ for LVTTL or 8.2kΩ for PCI to OVDD or equivalent.
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
70 AMCC Proprietary
Revision 1.07 – May 29, 2008
Device Characteristics
Table 8. Absolute Maximum Ratings
The absolute maximum ratings below are stress ratings only. Operation at or beyond these maximum ratings can cause
permanent damage to the device. None of the performance spe cification contained in this document are guaranteed when
operating at these maximum ratings.
Characteristic Symbol Value Unit Notes
Internal logic supply voltage VDD 0 to +1.6 V
I/O supply voltage OVDD 0 to +3.6 V
Ethernet I/O supply voltage E1OVDD 0 to +2.7 V
Ethernet SGMII supply voltage E2OVDD 0 to +1.9 V
DDR2 (DDR1) SDRAM I/O supply voltage SOVDD 0 to +1.9 (+2.7V) V
PCI-Express SerDes analog supply voltage AVDD 0 to +1.6 V 1
System PLL analog supply voltage SPAVDD 0 to +2.7 V 1
Ethernet PLL analog supply voltage EAVDD 0 to +2.7 V 1
PCI-Express SerDes PLL analog supply voltage PAVDD 0 to +2.7 V 1
Storage Temperature Range TSTG 55 to +150 °C
Case temperature under bias TC40 to +120 °C2
Notes:
1. The analog voltages (AVDD, EAVDD, SPAVDD, and PAVDD) used for the on-chip functions can be derived from the logic voltages, but
must be filtered before entering the PPC460GT. A separate filter for each analog voltage, as shown below, is recommended:
2. This value is not a specification of the operational temperature range; it is a stress rating only.
VDD
C
AVDD
L
AVDD L – SMT ferrite bead chip, Murata BLM18AG121SN1D
C – 0.1μF ceramic
EAVDD, SPAVDD, and PAVDD
L – SMT ferrite bead chip, Murata BLM15AG102SN1
C – 1μF ceramic
AGND
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 71
Preliminary Data Sheet
Table 9. Recommended DC Operating Conditions (Part 1 of 2)
Device operation beyond the conditions specified is not recommended. Extended operation beyond the recommended
conditions can affect device reliability.
Parameter Symbol Minimum Typical Maximum Unit Notes
Logic Supply Voltage VDD +1.2 +1.25 +1.3 V 4
I/O Supply Voltage OVDD +3.15 +3.3 +3.45 V 4
Ethernet 1 I/O Supply Voltage E1OVDD +2.4 +2.5 +2.6 V 4
Ethernet 2 I/O Supply Voltage (SGMII) E2OVDD +1.7 +1.8 +1.9 V 4
DDR2 (DDR1) SDRAM I/O Supply Voltage SOVDD +1.7 (+2.4) +1.8 (+2.5) +1.9 (+2.6) V 4
PCI-Express SerDes analog Supply Voltage AVDD +1.2 +1.25 +1.3 V 3
System PLL Analog Supply Voltage SPAVDD +2.4 +2.5 +2.6 V 3
Ethernet PLL analog supply voltage EAVDD +2.4 +2.5 +2.6 V 3
PCI-Express SerDes PLL analog supply voltage PAVDD +2.4 +2.5 +2.6 V 3
DDR2 (DDR1) SDRAM Reference Voltage SVREF 0.49SOVDD 0.50SOVDD 0.51SOVDD V3
Input Logic High 3.3V LVTTL and PCI
VIH
+2.0 +3.6 V 1
Input Logic High 2.5V CMOS, 3.3V tolerant +1.7 +3.6 V
Input Logic High 1.8V DDR2 (2.5V DDR1) SVREF + 0.125
(0.15) 2.2 (3.0) V 2
Input Logic High (1.8V SGMII) +1.1 +2.2 V
Input Logic Low 3.3V LVTTL and PCI
VIL
0+0.8V1
Input Logic Low 2.5V CMOS 0 +0.7 V
Input Logic Low 1.8V DDR2 (2.5V DDR1) 0.3 (0.3) SVREF 0.125
(0.18) V2
Input Logic Low (1.8V SGMII) +0.3 +0.8 V
Output Logic High 3.3V LVTTL and PCI
VOH
+2.4 +3.6 V 1
Output Logic High 2.5V CMOS +2.0 +2.7 V
Output Logic High 1.8V DDR2 (2.5V DDR1) SOVDD0.95
(+1.95) SOVDD V
Output Logic High (1.8V SGMII) +1.23 +1.385 +1.534 V
Output Logic Low 3.3V LVTTL and PCI
VOL
0+0.4V1
Output Logic Low 2.5V CMOS 0 +0.4 V
Output Logic Low 1.8V DDR2 (2.5V DDR1) 0 +0.45 V
Output Logic Low (1.8V SGMII) +0.841 +0.961 +1.081 V
Input Leakage Current (no pull-up or pull-down) IIL1 00
μA
Input Leakage Current for pull-down IIL2 0 (LPDL) 200 (MPUL) μA5
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
72 AMCC Proprietary
Revision 1.07 – May 29, 2008
Power Supply Sequencing
All the PPC460GT I/O designs are power supply sequence independent. There is no requirement that the power
supplies power up in any particular order. The following items are power sequence considerations:
Logic power (VDD) is applied before the I/O supply voltages: The I/Os include internal supply sequencing
circuitry which ensures the output of the receiver connected to internal chip logic is 0 until the I/O power is
applied. When the logic power is on and the I/O power supplies are off, the I/O logic connected to the
associated ball neither sinks or sour ces significant curren t unless influenced by an intern al pull-up or pull-down
resistor. While the I/O supply is ramping, the state of the I/O ball is not predictable. This power sequence is not
destructive to the I/Os or internal logic and does n ot cause any functional problems.
I/O power is applied before the logic power is applied: The outp ut driver (con nected the balls) come s up in an
unknown state (driving 1, driving 0, or tri-state) until the internal logic voltage is stable within normal operating
range. This power sequence is not destructive to the I/Os or internal logic and does not cause any functional
problems.
External voltage should not be applied to the chip I/O balls before the associated I/O power supply voltage is
applied to the chip.
A chip power-down cycle must complete (all I/O supply voltages and VDD are below +0.4V) before a new
power-up cycle is started
During a power- up cycle , SysRe set and TRST inputs should be asserted low. SysReset and TRST should
remain asserted until SysClock is stable and at least 32 SysC loc k times after all power supplies are stable
within normal operating range. Failure to follow this reset sequence during the power-up cycle can result in
unpredictable operation of the chip.
Input Leakage Current for pull-up IIL3 150 (LPDL) 0 (MPUL) μA5
Input Max Allowable Overshoot 2.5V CMOS VIMAO25 +3.9 V
Input Max Allowable Overshoot 3.3V LVTTL VIMAO33 +3.9 V
Input Max Allowable Undershoot 2.5V CMOS VIMAU25 0.6 V
Input Max Allowable Undershoot 3.3V LVTTL VIMAU33 0.6 V
Output Max Allowable Overshoot 2.5V CMOS VOMAO25 +3.9 V
Output Max Allowable Overshoot 3.3V LVTTL VOMAO33 +3.9 V
Output Max Allowable Undershoot 2.5V CMOS VOMAU25 0.6 V
Output Max Allowable Undershoot 3.3V LVTTL VOMAU33 0.6 V
Case Temperature TC40 +85 °C6
Notes:
1. PCI drivers meet PCI specifications.
2. SVREF = SOVDD/2. SOVDD = +1.8V for DDR2 memory or +2.5V for DDR1 memory.
3. The analog voltages used for the on-chip PLLs can be derived from the logic voltages, but must be filtered before entering the
PPC460GT. See “Absolute Maximum Ratings” on page 70.
4. LPDL is least positive down level; MPUL is most positive up level.
5. Case temperature, TC, is measured at top center of case surface with device soldered to a circuit board.
Table 9. Recommended DC Operating Conditions (Part 2 of 2)
Device operation beyond the conditions specified is not recommended. Extended operation beyond the recommended
conditions can affect device reliability.
Parameter Symbol Minimum Typical Maximum Unit Notes
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 73
Preliminary Data Sheet
Table 10. Input Capacitance
Parameter Symbol Maximum Unit Notes
Group 1 (3.3V tolerant 2.5V CMOS I/O) CIN1 5.7 pF
Group 2 (1.8V LVDS I/O) CIN2 5.0 pF
Group 3 (2.5V SSTL2 I/O) CIN3 6.4 pF
Group 4 (3.3V LVTTL I/O) CIN5 5.2 pF
Group 5 (PCI I/O) CIN6 5.7 pF
Group 6 (CML I/O) CIN6 5.0 pF
Table 11. Typical DC Power Supply Requirements Using DDR2 Memory
Frequency (MHz) +1.25V Supply
(VDD+AVDD)+1.8V Supply
(SOVDD+E2OVDD)
+2.5V Supply
(E1OVDD+EAVDD+
SPAVDD+PAVDD)
+3.3V Supply
(OVDD)Total Unit Notes
600 4.67 0.67 0.07 0.27 5.68 W 1
800 4.90 0.67 0.07 0.27 5.91 W 1
1000 5.34 0.67 0.07 0.27 6.35 W 1
Notes:
1. Typical power is estimated and is based on a nominal voltage of VDD = +1.25V, TC = 85°C, while running Linux and a test application
that exercises each function with representative traffic.
Table 12. Typical DC Power Supply Requirement s Using DDR1 Memory
Frequency (MHz) +1.25V Supply
(VDD+AVDD)+1.8V Supply
(E2OVDD)
+2.5V Supply
(E1OVDD+EAVDD+
SPAVDD+PAVDD
+SOVDD)
+3.3V Supply
(OVDD)Total Unit Notes
600 4.67 0 1.18 0.27 W 1
800 4.90 0 1.18 0.27 W 1
1000 5.34 0 1.18 0.27 W 1
Notes:
1. Typical power is estimated and is based on a nominal voltage of VDD = +1.25V, TC = 85°C, while running Linux and a test application
that exercises each function with representative traffic.
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
74 AMCC Proprietary
Revision 1.07 – May 29, 2008
Table 13. VDD Supply Power Dissipation
Frequency (MHz) +1.2V +1.25V +1.3V Unit Notes
600 4.46 4.67 4.89 W 1
800 4.70 4.90 5.14 W 1
1000 5.15 5.34 5.60 W 1
Notes:
1. Power is estimated and is based on V DD specified in the table and TC = 85°C, while running Linux and a test application that exercises
each function with representative traffic.
Table 14. DC Power Supply Loads
Parameter Symbol Typical 4Maximum 3, 5Unit Notes
VDD (+1.25V) active operating current IDD 4270 5800 mA
OVDD (+3.3V) active operating current IODD 70 80 mA
E1OVDD (+2.5V) active operating current IE1ODD 30 30 mA
E2OVDD (+1.8V) active operating current IE2ODD 40 40 mA
SOVDD (+1.8V) DDR2 active operating current 2ISODD2 360 370 mA
SOVDD (+2.5V) DDR1 active operating current 2ISODD1 450 470 mA
AVDD (+1.25V) input current 1IADD 50 50 mA 1
EAVDD (+2.5V) active operating current 1IEADD 30 30 mA 1
PAVDD (+2.5V) active operating current 1IUADD 180 180 mA 1
SPAVDD (+2.5V) active operating current 1IUADD 50 50 mA 1
Notes:
1. See “Absolute Maximum Ratings” on page 70 for filter recommendations.
2. SOVDD will be either +2.5V or +1.8V but not both.
3. The maximum current values listed above are not guaranteed to be the highest obtainable. These values are dependent on many
factors including the type of applications running, clock rates, use of internal functional capabilities, external interface usage, case
temperature, and the power supply voltages. Your specific application can produce significantly different results. VDD (logic) current and
power are primarily dependent on the applications running and the use of internal chip functions (DMA, PCI, Ethernet, and so on).
OVDD (I/O) current and power are primarily dependent on the capacitive loading, frequency, and utilization of the external buses.
4. Typical current is estimated at 1GHz with VDD = +1.25V, OVDD = +3.3V, E1OVDD = +2.5V, SOVDD = +2.5V (DDR1) or +1.8V (DDR2),
and TC = +85°C with a typical process.
5. Maximum current is estimated at 1GHz with VDD = +1.3V, OVDD = +3.45V, E1OVDD = +2.6V, SOVDD = +2.6V (DDR1) or +1.9V
(DDR2), and TC = +85°C, and best-case process (which drives worst-case power).
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 75
Preliminary Data Sheet
Thermal Management
The following heat sink was used in the above thermal analysis:
35W x 35L x 15H (mm)
Base thickness = 1.5mm
Fin height = 13.5mm
Fin thickness = 1.0mm
Number of Fins: 11 aluminum
Table 15. Package Thermal Specifications
Thermal resistance values for the TE-PBGA package in a convection environment at ?.?W are as follows:
Parameter Symbol
Airflow
ft/min
(m/sec) Unit Notes
0
(0) 100
(0.51) 200
(1.02) 300
(1.53 400
(2.04) 600
(2.55)
Junction-to-ambient thermal resistance
without heat sink θJA 13.1 11.7 10.9 10.5 10.3 10 3
Junction-to-ambient thermal resistance
with heat sink θJA 10.3 7.3 6.1 5.6 5.4 5.1 3, 6
Resistance Value
Junction-to-case thermal resistance θJC 3.5 °C/W 3
Junction-to-board thermal resistance θJB 7.3 °C/W 3
Notes:
1. Case temperature, TC, is measured at top center of case surface with device soldered to circuit board.
2. TA = TC P×θCA, where TA is ambient temperature and P is power consumption.
3. TCMax = TJMax P×θJC, where TJMax is maximum junction temperature (+125°C) and P is power consumption.
4. The preceding equations assume that the chip is mounted on a board with at least one signal and two power planes.
5. Values in the table were achieved using a JEDEC standard board with the following characteristics: 114.5mm x 101.6mm x 1.6mm, 4
layers. The board has 100 thermal vias (same as the number of thermal balls on the TE-PBGA package).
6. Values for an attached heat sink were achieved with a 35mm x 35mm x 15mm unit (see Thermal Management below), attached with a
0.1mm thickness of adhesive having a thermal conductivity of 1.3W/mK.
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
76 AMCC Proprietary
Revision 1.07 – May 29, 2008
Thermal Monitor
Thermal monitoring of the ch ip is accomplished using the PNP transistor (β 2) provided on the chip. The collector
of the transistor is connected to ground (GND). The emitter (TherMonA) and base (TherMonB) are connected to
chip pins. A voltage measurement (VBE1 and VBE2) across the TherMonA and TherMonB pins at the two current
values I1 and I2 provides the chip tem p er at ur e in °K according to the equation:
T = (q/nk)(V BE2VBE1)/ln(I2/I1) °K where q = 1.602 176 53×10-19, n = 0.99 ± 0.05, and k = 1.380 6505×10-23.
Note: VBE2 and VBE1 should be specified in Volts. I1 and I2 can be any units of measure provided they are the
same. The small values require precision mea su rement and current sources.
Test Conditions
Clock timing and switching characteristics are specified in accordance with operating
conditions shown in Table 9 on page 71. AC specifications are charac ter ize d with
VDD =+1.5V, T
C = +85°C and a 50pF test load as shown in the figure to the right.
TherMonA
TherMonB
PPC460GT
I1, I2 (Max = 300μA)
E
BVBE1, VBE2
Note: The bias voltage VEB should be between +0.5V and +0.7V.
C
Output
Pin
50pF
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 77
Preliminary Data Sheet
Figure 4. Timing Waveform
Table 16. Clocking Specifications
Symbol Parameter Min Max Units Notes
SysClk Input
FCFrequency 66.66 100 MHz
TCPeriod 10 15 ns
TCS Edge stability (cycle-to-cycle jitter) ±0.1 ns
TCH High time 40% of nominal period 60% of nominal period ns
TCL Low time 40% of nominal period 60% of nominal period ns
Note: Input slew rate 1V/ns
PLL VCO
FCFrequency 600 2000 MHz
TCPeriod 0.50 1.66 ns
Processor (CPU) Clock
FCFrequency 400 1000 MHz 1
TCPeriod 1 2.5 ns
MemClkOut and PLB Clock
FCFrequency 133.33 200 MHz
TCPeriod 5 7.5 ns
TCH High time 45% of nominal period 55% of nominal period ns
OPB Clock and PerClk
FCFrequency 33 100 MHz
TCPeriod 10 30 ns
Notes:
1. The maximum supported processor clock frequency for any part is specified in the part number (see “Ordering and PVR Information”
on page 4).
TCL
TCH TC
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
78 AMCC Proprietary
Revision 1.07 – May 29, 2008
Spread Spectrum Clocking
Care must be taken when using a spread spectrum clock generator (SSCG) with the PPC460GT. This controller
uses a PLL for clock generation inside the chip. The accuracy with which the PLL follows the SSCG is referred to
as tracking skew. The PLL bandwidth and phase angle determine how much tracking skew there is between the
SSCG and the PLL for a given frequency deviation and modulation frequency. When using an SSCG with the
PPC460GT the following conditions must be met:
The frequency deviation must not violate the minimum clock cycle time. Therefore, when operating the
PPC460GT with one or more internal clocks at their maximum supported frequency, the SSCG can only lower
the frequency.
The maximum frequency deviation cannot exce ed 1%, and the modulation frequency cannot exceed 40kHz.
In some cases, on-board PPC460GT peripherals impose more stringent requirements.
Use the Peripheral Bus Clock for logic that is synchronous to the peripheral bus since this clock tracks the
modulation.
Use the DDR SDRAM MemClkOut signal since it also tracks the modulation.
For PCI Express, the maximum spread spectrum is -0.5%, modulated between 30kHz and 33kHz. The ports
on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) of each other at
all times. This is specified to allow bit rate clock sources with a ± 300ppm tole r anc e .
Notes:
1. The serial por t baud rates are synchronous to the modulated clock. The serial port has a tolerance of
approximately 1.5% on baud rate before framing errors begin to occur. The 1.5% toleran ce assum es that
the connected device is running at precise baud rates.
2. Ethernet operation is una ffected.
3. IIC operation is unaffected.
Important: It is up to the system designe r to ensure that any SSCG used with the PPC460GT meets the ab ove
requirements and does not adversely affect other aspects of the system.
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 79
Preliminary Data Sheet
I/O Specifications
Table 17. Peripheral Interface Clock Timings (Part 1 of 2)
Parameter Minimum Maximum Units Notes
PCI0Clk frequency 66.66 MHz
PCI0Clk period 15 ns
PCI0Clk high time 40% of nominal period 60% of nominal period ns
PCI0Clk low time 40% of nominal period 60% of nominal period ns
GMCMDClk frequency 2.5 MHz
GMCMDClk period 400 ns
GMCMDClk high time 160 ns
GMCMDClk low time 160 ns
GMCnGTxClk frequecy 2.5 125 MHz
GMCnGTxClk period 8 400 ns
GMCnTxClk frequency 2.5 25 MHz
GMCnTxClk period 40 400 ns
GMCnTxClk high time 35% of nominal period ns
GMCnTxClk low time 35% of nominal period ns
GMCnRxClk frequency 2.5 125 MHz
GMCnRxClk period 8 400 ns
GMCnRxClk high time 35% of nominal period ns
GMCnRxClk low time 35% of nominal period ns
GMCRefClk frequency 125 125 MHz
GMCRefClk period 8 8 ns
GMCRefClk high time 40% of nominal period 60% of nominal period ns
GMCRefClk low time 40% of nominal period 60% of nominal period ns
GMCRefClk rise time 1 ns
GMCRefClk cycle-to-cycle jitter ±0.1 ns
SGMIIRxClk frequency 625 625 MHz
RMIIRefClk frequency 50 50 MHz
RMIIRefClk accuracy ±50 ppm
RMIIRefClk period 20 20 ns
RMIIRefClk high time 35% of nominal period ns
RMIIRefClk low time 35% of nominal period ns
SMIIRefClk frequency 125 125 MHz
SMIIRefClk accuracy 100 ppm
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
80 AMCC Proprietary
Revision 1.07 – May 29, 2008
PerClk frequency 33 100 MHz
PerClk period 10 30 ns
PerClk high time 50% of nominal period 66% of nominal period ns
PerClk low time 33% of nominal period 50% of nominal period ns
SPIClkOut frequency ?? ?? MHz
IICSClk frequency 400 kHz
TmrClk frequency 100 MHz
TmrClk period 10 ns
TmrClk high time 40% of nominal period 60% of nominal period ns
TmrClk low time 40% of nominal period 60% of nominal period ns
TrcClk frequency CPU FC/4 CPU FC/4 MHz
UARTSerClk frequency 1000/(2TOPB1 + 2ns) MHz 1
UARTSerClk period 2TOPB1 + 2 –ns1
UARTSerClk high time TOPB1+1 –ns1
UARTSerClk low time TOPB1+1 –ns1
Notes:
1. TOPB is the period in ns of the OPB clock. The internal OPB clock runs at 1/2 the frequency of the PLB clock.
Table 17. Peripheral Interface Clock Timings (Part 2 of 2)
Parameter Minimum Maximum Units Notes
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 81
Preliminary Data Sheet
Figure 5. Input Setup and Hold Waveform
Figure 6. Output Delay and Float Timing Waveform
Clock
TIS TIH
min min
Inputs
Valid
Valid
Clock
Outputs
Valid
TOHmin
TOVmax
TOVmax
TOHmin
TOVmax
TOHmin
Float (High-Z)
High (Drive)
Low (Drive)
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
82 AMCC Proprietary
Revision 1.07 – May 29, 2008
Figure 7. Input Setup and Hold Timing Waveform for RGMII Signals
Figure 8. Output Delay and Hold Timing Waveform for RGMII Signals
GMCnRxClk
TIS TIH
Inputs
Valid
Valid
TIS TIH
1.25V
1.25V
MIN MIN
MIN
MIN
RGMII 1000Mb timing is with reference to the raising and falling edge of GMCnRxClk.
RGMII 10/100Mb timing is with reference only to the raising edge of GMCnRxClk.
Valid
GMCnTxClk
Outputs
TOH
TOV
Float (High-Z)
High (Drive)
Low (Drive) Valid Valid Valid
TOH
TOV
1.25V
MIN MIN
MAX
MAX
RGMII 1000Mb timing is with reference to the raising and falling edge of GMCnTxClk.
RGMII 10/100Mb timing is with reference only to the raising edge of GMCnTxClk.
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 83
Preliminary Data Sheet
Table 18. I/O Specifications—All Speeds (Part 1 of 3)
Notes:
1. Ethernet interface meets timing requirements as defined by IEEE 802.3 standard.
Signal Input (ns) Output (ns) Output Current (mA) Clock Notes
Setup Time
(TIS min) Hold Time
(TIH min) Valid Delay
(TOV max) Hold Time
(TOH min) I/O H
(minimum) I/O L
(minimum)
PCI Interface
PCI0Reset n/a n/a n/a n/a 0.5 1.5 async
PCI0Clk dc dc na na 66MHz
PCI0AD00:31 2.5 0 5.5 2 0.5 1.5 PCI0Clk
PCI0C0:3/BE0:3 2.4 0 6 2 0.5 1.5 PCI0Clk
PCI0Par 2.5 0 5.5 2 0.5 1.5 PCI0Clk
PCI0Frame 2.8 0 6 2 0.5 1.5 PCI0Clk
PCI0DevSel 2.1 0 6 2 0.5 1.5 PCI0Clk
PCI0IRDY 2.7 0 6 2 0.5 1.5 PCI0Clk
PCI0TRDY 2.9 0 6 2 0.5 1.5 PCI0Clk
PCI0Stop 2.5 0 6 2 0.5 1.5 PCI0Clk
PCI0PErr 2.4 0 6 2 0.5 1.5 PCI0Clk
PCI0SErr 2.1 0 6 2 0.5 1.5 PCI0Clk
PCI0IDSel 2.2 0 n/a n/a na na PCI0Clk
PCI0Req0:3 2.3 0 n/a n/a na na PCI0Clk
PCI0Gnt0:3 n/a n/a 6 2 0.5 1.5 PCI0Clk
PCI0INT n/a n/a 5.8 2 0.5 1.5 async
PCI Express Interface
PCIEnRx0:3
PCIEnRx0:3 PCIEnRefClk
PCIEnTx0:3
PCIEnTx0:3 PCIEnRefClk
Ethernet MII Interface
GMCMDIO n/a n/a n/a n/a 5.51 7.23 GMCMDClk 1
GMC0:1TxD3:0 n/a n/a 7 1 5.51 7.23 GMC0:1TxClk
GMC0:1TxEn n/a n/a 6 1 5.51 7.23 GMC0:1TxClk
GMC0:1TxEr n/a n/a 6 1 5.51 7.23 GMC0:1TxClk
GMC0:1CD 10 10 n/a n/a n/a n/a GMC0:1RxClk
GMC0:1Crs 10 10 n/a n/a n/a n/a GMC0:1RxClk
GMC0:1RxD3:0 6 10 n/a n/a n/a n/a GMC0:1RxClk
GMC0:1RxDV 5 10 n/a n/a n/a n/a GMC0:1RxClk
GMC0:1RxEr 6 10 n/a n/a n/a n/a GMC0:1RxClk
Ethernet GMII Interface
GMCMDIO n/a n/a n/a n/a 5.51 7.23 GMCMDClk 1
GMC0:1TxD7:0 n/a n/a 3 2 5.51 7.23 GMC0:1GTxClk
GMC0:1TxEn n/a n/a 3 2 5.51 7.23 GMC0:1GTxClk
GMC0:1TxEr n/a n/a 2 2 5.51 7.23 GMC0:1GTxClk
GMC0:1CD 2 0 n/a n/a n/a n/a GMC0:1RxClk
GMC0:1Crs 2 0 n/a n/a n/a n/a GMC0:1RxClk
GMC0:1RxD7:0 2 0 n/a n/a n/a n/a GMC0:1RxClk
GMC0:1RxDV 1.9 0 n/a n/a n/a n/a GMC0:1RxClk
GMC0:1RxEr 1.9 0 n/a n/a n/a n/a GMC0:1RxClk
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
84 AMCC Proprietary
Revision 1.07 – May 29, 2008
Ethernet RGMII Interface
GMCMDIO n/a n/a n/a n/a 5.51 7.23 GMCMDClk 1
GMC0:3TxD3:0 n/a n/a 0.5 3.5 5.51 7.23 GMC0:1TxClk
GMC0:3TxCtl n/a n/a 0.5 3.5 5.51 7.23 GMC0:1TxClk
GMC0:3RxD3:0 1 1 n/a n/a n/a n/a GMC0:1RxClk
GMC0:3RxCtl 1 1 n/a n/a n/a n/a GMC0:1RxClk
Ethernet SGMII Interface
SGMII0:2RxD
SGMII0:2RxD tbd tbd n/a n/a n/a n/a SGMII0RxClk
SGMII0:2TxD
SGMII0:2TxD n/a n/a tbd tbd 3.35 3.35 SGMIITxClk
Ethernet SMII Interface
GMCMDIO 10 10 10 1.5 5.51 7.23 GMCMDClk
SMIISync na na 4.8 1 5.51 7.23 SMIIRefClk
SMII0:3TxD n/a n/a 4.9 1 5.51 7.23 SMIIRefClk
SMII0:3RxD 1 1 n/a n/a n/a n/a SMIIRefClk
Ethernet RMII Interface
RMII0:3CrsDV n/a n/a RMIIRefClk
RMII0:3RxD1:0 n/a n/a RMIIRefClk
RMII0:3TxD1:0 n/a n/a 5.51 7.23 RMIIRefClk
RMII0:3TxEn n/a n/a 5.51 7.23 RMIIRefClk
RMII0:3Er n/a n/a RMIIRefClk
Internal Peripheral Interface
IIC0:1SData 5 1.5 5 0 15.75 10.46 IIC0:1SClk
SPIDI 5 1.5 n/a n/a n/a n/a SCPClkOut
SPIDO n/a n/a 7 0 15.75 10.46 SCPClkOut
UARTnDCD n/a n/a n/a n/a na na UARTSerClk
UARTnDSR n/a n/a n/a n/a na na UARTSerClk
UARTnCTS n/a n/a n/a n/a na na UARTSerClk
UARTnRTS n/a n/a n/a n/a 11.08 7.37 UARTSerClk
UARTnDTR n/a n/a n/a n/a 11.08 7.37 UARTSerClk
UARTnRI n/a n/a n/a n/a na na UARTSerClk
UARTnRx n/a n/a n/a n/a na na UARTSerClk
UARTnTx n/a n/a n/a n/a 11.08 7.37 UARTSerClk
Interrupts Interface
IRQ0:15 nananananana
JTAG Interface
TCK n/a n/a n/a n/a na na 40 MHz
TDI 12.5 2 n/a n/a na na TCK
TDO n/a n/a 12.5 3 11.08 7.37 TCK
TMS 12.5 2 n/a n/a na na TCK
TRST n/a n/a n/a n/a na na async
Table 18. I/O Specifications—All Speeds (Part 2 of 3)
Notes:
1. Ethernet interface meets timing requirements as defined by IEEE 802.3 standard.
Signal Input (ns) Output (ns) Output Current (mA) Clock Notes
Setup Time
(TIS min) Hold Time
(TIH min) Valid Delay
(TOV max) Hold Time
(TOH min) I/O H
(minimum) I/O L
(minimum)
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 85
Preliminary Data Sheet
System Interface
SysClk n/a n/a n/a n/a na na
SysReset n/a n/a n/a n/a na na async
SysErr n/a n/a n/a n/a 11.08 7.37 async
TmrClk n/a n/a n/a n/a na na async
Halt n/a n/a n/a n/a na na async
TestEn n/a n/a n/a n/a na na async
Trace Interface
TrcBS0:2 n/a n/a 1.5 1 11.08 7.37 TrcClk
TrcES0:4 n/a n/a 1.6 1 11.08 7.37 TrcClk
TrcTS0:6 n/a n/a 1.7 1 11.08 7.37 TrcClk
Table 18. I/O Specifications—All Speeds (Part 3 of 3)
Notes:
1. Ethernet interface meets timing requirements as defined by IEEE 802.3 standard.
Signal Input (ns) Output (ns) Output Current (mA) Clock Notes
Setup Time
(TIS min) Hold Time
(TIH min) Valid Delay
(TOV max) Hold Time
(TOH min) I/O H
(minimum) I/O L
(minimum)
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
86 AMCC Proprietary
Revision 1.07 – May 29, 2008
Table 19. I/O Specifications—400MHz to 1000MHz
Notes:
1. PerClk rising edge at package pin with a 10pF load trails the internal PLB clock by approximately 1.3ns.
Signal Input (ns) Output (ns) Output Current (mA) Clock Notes
Setup Time
(TIS min) Hold Time
(TIH min) Valid Delay
(TOV max) Hold Time
(TOH min) I/O H
(minimum) I/O L
(minimum)
External Slave Peripheral Interface
DMAReq0:3 4 1 n/a n/a na na PerClk
DMAAck0:3 n/a n/a 5.3 1 11.08 7.37 PerClk
EOT0:3/TC0:3 4 1 5.3 1 11.08 7.37 PerClk
PerAddr02:31 n/a n/a 4.5 1 11.08 7.37 PerClk
PerData00:31 2 1 4.9 1 11.08 7.37 PerClk
PerPar0:3 2 1 4.9 1 11.08 7.37 PerClk
PerWBE0:3 n/a n/a 4.8 1 11.08 7.37 PerClk
PerCS0:5 n/a n/a 5.3 1 11.08 7.37 PerClk
PerR/W n/a n/a 4.5 1 11.08 7.37 PerClk
PerOE n/a n/a 4.5 1 11.08 7.37 PerClk
PerReady 2 1 n/a n/a n/a n/a PerClk
PerBLast n/a n/a 4.5 1 11.08 7.37 PerClk
PerErr 2 1 n/a n/a n/a n/a PerClk
ExtReset n/a n/a n/a n/a 11.08 7.37 async
NAND Flash Interface
NFCE0:3 n/a n/a 5.3 1 11.08 7.37 PerClk
NFCLE n/a n/a 5.3 1 11.08 7.37 PerClk
NFALE n/a n/a 5.3 1 11.08 7.37 PerClk
NFREn n/a n/a 5.3 1 11.08 7.37 PerClk
NFWEn n/a n/a 5.3 1 11.08 7.37 PerClk
NFRdyBusy 2 1 n/a n/a na na PerClk
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 87
Preliminary Data Sheet
DDR2/1 SDRAM I/O Specificat ions
The DDR SDRAM controller times its operation using the internal PLB clock signal and gen erates MemClkOut from
the PLB clock. The PLB clock is an internal signal that cannot be directly observed. However MemClkOut is the
same frequency as the PLB clock signal and is in phase with the PLB clock signal.
Note: MemClkOut can be advanced with respect to the PLB clock by means of the SDRAM0_CLKTR
programming register. In a typical system, users advance MemClkOut by 90°. This depends on the specific
application and requires a thorough understanding of the memory system in general (refer to the DDR
SDRAM Controller chapter in the PowerPC 460GT Embedded Processor User’s Manual).
The following DDR data is generated by means of simulation and includes logic, driver, package RLC, and lengths.
It is not to be used as a circuit design recommendation. Values are calculated over best case and worst case
processes with speed, temperature, and voltage as follows:
Best Case = Fast process: -40°C, +1.3V
Worst Case = Slow process: +105°C, +1.2
Note: In all the following DDR tables and timing diagrams, minimum values are measured under best case
conditions and maximum values are measured under worst case conditions. The signals are terminated as
indicated in the figure below for the DDR timing data in the following sections.
Figure 9. DDR SDRAM Simulation Signal Termination Model
DDR2 SDRAM On-Die Termination Impedance Setting
For all DDR2 applications, the On-Die Termination (ODT) impedance value must be set to 75 ohms in the DIMM
Extended Mode Register (EMR) in order to optimize the data transmission during memory write operations.
10pF
10pF
MemClkOut
MemClkOut
120Ω
50
Ω
30pF
Addr/Ctrl/Data/DQS/DM (DDR1)
VTT = SOVDD/2
PPC460GT
Addr/Ctrl (DDR2)
Note: This diagram ill ustrates the model of the DDR SDRAM interface used when generating simulation timing data.
It is not a recommended physical circuit design for this interface. An actual interface design will depend on many
factors, including the type of memory used and the board layout.
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
88 AMCC Proprietary
Revision 1.07 – May 29, 2008
DDR SDRAM Write Operation
The rising edge of MemClkOut aligns with the first rising edge of the DQS signal on writes. The following data is
generated by means of simulation and includes logic, driver, package RLC, and lengths. Values are calculated
over best case and worst case processes with speed, junction temperature, and voltage as follows:
Note: In the following tables and timing diagrams, minimum values are measured under best case conditions and
maximum values are measured under worst case conditions. The timing numbers in the following sections are
obtained using a si m ulatio n tha t as su me s a mo del as sh own in Figure 9.
Table 20. DDR SDRAM Output Driver Specifications
Signal Path Output Current (mA)
I/O H (maximum) I/O L (maximum)
Write Data
MemData00:63 10 10
ECC0:7 10 10
DM0:8 10 10
MemClkOut 10 10
MemAddr00:13 10 10
BA0:2 10 10
RAS 10 10
CAS 10 10
WE 10 10
BankSel0:1 10 10
ClkEn 10 10
DQS0:8 10 10
MemODT0:1 10 10
Table 21. DDR SDRAM Write Oper ation Conditions
Case Process Speed Junction Temperature (°C) Voltage (V)
Best Fast 40 +1.3
Worst Slow +105 +1.2
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 89
Preliminary Data Sheet
The following diagram illustrates the relationship among the signals involved with a DDR write operation.
Figure 10. DDR SDRAM Write Cycle Timing
Note: The timing data in the following tables is ba se d on simu lat ion run s usin g Einstim e r.
DQS
MemData
PLB Clk
MemClkOut
Addr/Cmd
TSA
THA
TDS
TDS
TSD
THD
TSD
THD
TSA = Setup time for address and command signals to MemClkOut
THA = Hold time for address and command signals from MemClkOut
TDS = Delay from rising/fal ling edge of clock to the rising/falling edge of DQS
TSD = Setup time for data signals (minimum time data is valid before rising/falling edge of DSQ)
THD = Hold time for data signal s (m in i m um ti m e data is valid after rising/falling edge of DSQ)
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
90 AMCC Proprietary
Revision 1.07 – May 29, 2008
Table 22. I/O Timing—DDR SDRAM TDS
Notes:
1. All of the DQS signals are referenced to MemClkOut with the DQS delay line programmed to 1 cycle.
2. Clock speed is 200MHz.
Signal Name TDS (ns)
Minimum Maximum
DQS0 4.9 5.1
DQS1 4.9 5.1
DQS2 4.9 5.1
DQS3 4.9 5.1
DQS4 4.9 5.1
DQS5 4.9 5.1
DQS6 4.9 5.1
DQS7 4.9 5.1
DQS8 4.9 5.1
Table 23. I/O Timing—DDR SDRAM TSA, and THA
Notes:
1. Clock speed is 200MHz. TSA and THA are referenced to MemClkOut rising edge.
2. The timing in this table assumes a single registered DIMM load on the outputs.
3. To obtain adjusted TSA values for lower clock frequencies, use 1/2 of the cycle time for the lower clock frequency.
4. To obtain adjusted THA va lues for lower clock frequencies, use 1/2 of the cycle time for the lower clock frequency.
Signal Name TSA (ns) THA (ns)
Minimum Minimum
MemAddr00:13
+2.3 +2.3
BA0:2
BankSel0:1
ClkEn
CAS
RAS
WE
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 91
Preliminary Data Sheet
DDR SDRAM Read Operation
Data on a read is edge aligned with the DQS. To capture the incoming data on the rising and falling edges, DQS is
delayed by the DDR controller in order to center a DQS edge on valid data.
Figure 11 shows the data read path of a single data bit. Data entering on the left is captured in the Stage 1 Flip
Flops. The four Flip Fl ops in Stage 1 capture a 4-bea t burst on the DDR interface. Data captu red on the rising edge
of DQS is stored in the even numbered Flip Flops. Likewise, data captured on the falling edge of DQS is stored in
the odd numbered Flips Flops. To latch the data in Stage 1, a delayed version of DQS is used. Initialization
software is responsible fo r tuning the DQS delay timing so that DQS is centered on va lid data. Since there is
process variation between parts and possible voltage variations on boards, read tuning is required. Fixed DQS
delay values should not be used on production systems.
The Feedback Data Capture Window in Figure 11 se lects which Flip Flop is used to store the data sampled by
DQS. Each output of this block generates a pulse to an input multiplexer. The series of four pulses selecting the
input multiplexer is initiated by a feedback signal pulse on the input of the Feedback Data Capture Window. The
DDR controller calculates when to assert the feedback signal based on when the data should be present after a
read command.
The width of the feedback pulse is one DDR 1X clock period. The internal DDR 1X clock is the same frequency as
MemClkOut0:1.
The feedback signal to the Feedback Data Capture Window is adjusted for propagation delay by the fine/coarse
delays and is able to automatically track variations in the DDR I/O due to supply voltage and temperature.
Compensation for driver/receiver variations is accomplished by driving and rece ivin g th e feed ba ck sig na l on the
external MemDCFdbkD and MemDCFdbkR pins. When properly tuned, the feedback pulse is aligned to the first
DQS in a 4-beat burst such that the rising edge of DQS is nominally centered on the feedback pulse.
Note: Using minimum trace length, connect MemDCFdbkD directly to MemDCFdbkR
The data captured in Stage 1 is relative to the DQS timing domain and is held for four MemClkOut clock cycles.
Stage 2 samples the data in Stage 1 attempting to capture the data in the DDR 1x domain. The on-time-sample
clock from the Stage 2 Store block samples the Stage 1 data at sample cycle T1, T2, T3 or T4. The sample cycle is
either selected by initialization software or can be automatically selected and adjusted by the DDR controller. The
Stage 1 data is sampled a second time by the over sample clock at a delayed sam ple point. The delay between the
on-time-sample and over sample clocks is the Over-Sampling-Guard-Band.
Table 24. I/O Timing—DDR SDRAM Write Timing TSD and THD
Notes:
1. TSD and THD are measured under worst case conditions.
2. Clock speed for the values in the table is 200MHz.
3. The time values in the table include 1/4 of a cycle at 200MHz.
4. To obtain adjusted TSD and THD values for lower clock frequencies, subtract 1.25 ns from the values in the table and add 1/4
of the cycle time for the lower clock frequency (for example, TSD 1.25 + 0.25TCYC).
Signal Names Reference Signal TSD (ns) THD (ns)
MemData00:07, DM0 DQS0 0.96 0.995
MemData08:15, DM1 DQS1 0.97 0.990
MemData16:23, DM2 DQS2 0.98 0.980
MemData24:31, DM3 DQS3 0.98 0.980
MemData32:39, DM4 DQS4 0.98 0.980
MemData40:47, DM5 DQS5 0.97 0.983
MemData48:55, DM6 DQS6 0.96 0.985
MemData56:63, DM7 DQS7 0.96 0.982
ECC0:7, DM8 DQS8 0.96 0.980
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
92 AMCC Proprietary
Revision 1.07 – May 29, 2008
The feedback pulse is sampled with the data captured by the first DQS in the 4-beat burst. Capturing the data with
the feedback pulse is considered a hit. The DDR controller based on hits or misses by the on-time sample and over
sample clocks adjust t he sam ple cycle in order to track variations in DQS. Burst data from a sampl e hit is passed to
Stage 3.
In Stage 3 data is synchronized to the PLB clock domain and eventually driven on to the PLB bus. The data
captured on the rising and falling DQS edges is unpacked into the correct bit locations on the upper (0:63) and
lower (64:127) PLB bus. When ECC is enable, ECC checking and corrections is done after Stage 3.
Figure 11. DDR SDRAM Read Data Path
DDR SDRAM Read Cycle Timing
The following diagram illustrates the relationship of the signals involved with a DDR read operation.
PLB bus
DQ
Programmed
Delay
Package Mux
Read DQS
C
D
FF: Flip-Flop
Q2
DQS
(Diff) DDR 1X Clock
Mux
Data
(x64)
(x64)
Read FIFO
PLB 1X Clock
Stage 2
Stage 1 Stage 3
FF PLB bus
[0:63]
[64:127]
DQS Rising
DQS Falling
Q3
0
2
(x64)
Coarse Delay
Cycles
Driver
Rec
MemDCFdbkD
MemDCFdbkR
Ext FeedBack
Read Start
Feedback
Data Capture
Window
DDR 1X Clock
Stage 2 Store Oversampling
DQS aligned
CAS Lat Delay
FeedBack
Signal Gen
Fine Delay
T1 T2 T3 T4
Fine Delay
FF
FF 3
1
1
0
3
Edge Sync
Edge Sync
Upper
Lower
Signals
pins FF
Q2_Ovs
FF
FBK signal Delay +1
Compare
DDR 1X Clock
Oversampling
Clock
Read Latency adjust circuit
C
DFF
FF
adjust
FF Q3
2
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 93
Preliminary Data Sheet
Figure 12. DDR SDRAM Memory Data and DQS
In the following examp le, the data strobes (DQS) and the data are sh own to be coincident. There is actually a slight
skew as specified by the SDRAM specifications, and there can be additional skew due to loading and signal
routing. It is recommended that the signa l length for all of the eight DQS signals be matched.
The following example shows the timing relation ship between SDRAM DDR Data at the input pin and storing the
data in Stage 1.
Table 25. I/O Timing—DDR SDRAM Read Timing TSD and THD
1. TSD and THD are measured under worst case conditions.
2. Clock speed for the values in the table is 200MHz.
3. The time values in the table include 1/4 of a cycle at 200MHz (5ns x 0.25 = 1.25 ns).
4. To obtain adjusted TSD and THD values for lower clock frequencies, subtract 0.75 ns from the values in the table and add 1/4
of the cycle time for the lower clock frequency (e.g., TSD - 1.25 + 0.25TCYC).
Signal Names Reference Signal Read Data vs DQS Set up
TSD (ns) Read Data vs DQS Hold
THD (ns)
MemData00:07 DQS0 0.393 0311
MemData08:15 DQS1 0.398 0314
MemData16:23 DQS2 0.397 0307
MemData24:31 DQS3 0.396 0309
MemData32:39 DQS4 0.394 0291
MemData40:47 DQS5 0.395 0291
MemData48:55 DQS6 0.393 0295
MemData56:63 DQS7 0.394 0308
ECC0:7 DQS8 0.389 0306
DQS
MemData
TSD
THD
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
94 AMCC Proprietary
Revision 1.07 – May 29, 2008
Figure 13. DDR SDRAM Read Cycle Timing—Example
DQS at
Data at Pin
D0 D2
High
Low
Feedback
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
Data Out Stage 2
D1 D3
DDR 1X Clock
DDR 2X Clock
Memclk (Diff.)
Data Out Stage 1 (0)
Delayed DQS
Data out Stage 1 (2)
Data Out Stage 1 (1)
Output
DDR 1X Clock cycle
MemCntl Pin
Valid
Store 1st Data
T1 T2 T3 T4
Oversampling Guard Band
in Stage 2
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 95
Preliminary Data Sheet
Initialization
The PPC460GT provides the option for setting initial parameters based on default value s or by reading them from
a slave PROM attached to the IIC0 bus (see “Serial EEPROM” below). Some of the default values can be altered
by strapping on external pins (see “Strapping” below).
Strapping
While the SysReset input pin is low (system reset), the state of certain I/O pins is read to enable certain default
initial conditions prior to PPC460GT start-u p. The actual captu re instant is the neare st reference clock ed ge before
the deassertion of reset. These pins must be strapped using external pull-up (logical 1) or pull-down (logical 0)
resistors to select the desired default conditio n s. Th es e pin s are use d fo r strap functions only during reset.
Following reset they are used for normal functions. The signal names assigne d to the pins for normal operation are
shown in parentheses following the pin number.
The following table lists the strapping pins along with their functions and strappin g options:
Serial EEPROM
During reset, init ia l con d ition s ot he r th an tho se obta in ed from the strapping pins can be read from a ROM device
connected to the IIC0 port. At the de-assertion of reset, if the Bootstrap Controller is enabled, the PPC460GT
sequentially reads 16B from the ROM de vice on the IIC0 p ort and sets t he SDR0_SDSTP0:3 register s accordingly.
The initialization settings and their default values are covered in detail in the PowerPC 460GT Embedded
Processor User’s Manual User’s Manual.
Table 26. Strapping Pin Assignments
Function Option
Pin Strapping
E31
(UART0CTS)E34
(UART0DCD)E32
(UART0DSR)
Serial device is disabled. Each of the six options (A–
F) is a combination of boot source, boot-source
width, and clock frequency specifications. Refer to
the IIC Bootstrap Controller chapter in the
PPC460GT Embedded Processor User’s Manual for
details.
A 000
B 001
C 010
D 011
E 100
F 101
Serial device is enabled. The option being selected is
the IIC0 slave address that will respond with
strapping data.
G (0xA8)110
H (0xA4)111
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
96 AMCC Proprietary
Revision 1.07 – May 29, 2008
Revision Log
Date Version Contents of Modification
10/01/2007 1.00 Initial creation of document.
11/20/2007 1.01
Change all occurrences of PerDataPar to PerPar.
Correct signal-to-ball assignments.
Remove reference to L2 snooping.
Update I/O timing.
Add KASUMI to Security features list.
01/04/2008 1.02
Implement Document Issue 441 including:
- Add RMII.
- Remove tape-and reel shipping option.
- Change available CPU speeds.
01/14/2008 1.03 Change maximum case temperature from +105°C to +85°C.
01/30/2008 1.04 Doc issue 450.
Doc issue 458.
04/14/2008 1.05
Add block diagram from R/C engineering specification.
Reference 802.3 Ethernet spec for GMCMDIO timing.
Remove Confidential status and change Advanced to Preliminary.
Add FPU.
Add power/current estimates.
Add missing items to Contents.
05/05/2008 1.06 Delete SAVDD voltage from analog voltage filter diagram (Doc Issue 503).
Misc. updates including Doc Issue 512 and 526.
05/29/2008 1.07 Add power sequence information (Doc Issue 455).
460GT – PPC460GT Embedded Processor
Revision 1.07 – May 29, 2008
AMCC Proprietary 97
Preliminary Data Sheet
Printed in the United States of America, May 29, 2008
The following are trademarks of AMCC Corporation in the United States, or other countries, or both:
AMCC
Other company, product, and service names may be trademarks or service marks of others.
Preliminary Edition (May 29, 2008)
This document contains information on a new product under development by AMCC.
AMCC reserves the right to change or discontinue this product without notice.
This document is a preliminary edition of the PowerPC 460GT data sheet. Make sure you ar e using the correc t
edition for the level of the product.
While the information contained herein is believed to be accurate, such information is preliminary, and should not
be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness
are made.
The information contained in this document is subject to change or withdrawal at any time without notice
and is being provided on an "AS IS" basis without warranty or indemnity of any kind, whether express or
implied, including without limitation, the implied warranties of non-infringeme nt, merchantability, or
fitness for a particular purpose. Any products, services, or programs discussed in this document are sold
or licensed under AMCC's standard terms and conditions, copies of which may be obtained from your
local AMCC representative. Nothing in this document shall operate as an expressed or implied license or
indemnity under the intellectual property rights of AMCC or third parties.
Without limiting the generality of the foregoing, any performance data contained in this document was
determined in a specific or controlle d environment and not sub mitted to an y formal AMCC test. Theref ore,
the results obtained in other operating environments may vary significantly. Under no circumstances will
AMCC be liable for any damages whatsoever arising out of or resulting from any use of the document or
the information contained herein.
460GT – PPC460GT Embedded Processor Preliminary Data Sheet
98 AMCC Proprietary
Revision 1.07 – May 29, 2008
Applied Micro Circuits Corporation
215 Moffett Park Drive, Sunnyvale, CA 94089
Phone: (408 ) 54 2- 86 0 0 — (8 00 ) 84 0- 6 05 5 — Fa x : (4 08 ) 54 2- 8 60 1
http://www.amcc.com
AMCC reserves the right t o make changes to its products, its data sheets, or related documentation, w ithout notice and
warrants its products solely pursuant to its terms and conditions of sale, only to substantially co mply with the latest available
data sheet. Please consult AMCC’ s Term and Conditions of Sale for its warranties and other terms, conditions and limitations.
AMCC may discontinue any se miconductor produ ct or service wit hout notice, and advises its custom ers to obtain the latest
version of relevant information to verify, before placing orders, that the information is current. AMCC does not assume any
liability arising out of the application or use of any product or circuit described herein, neither does it convey any license
under its patent rights nor the rights of others. AMCC reserves the right to ship devices of higher grade in place of those of
lower grade.
AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL
APPLICATIONS.
AMCC is a registered Trademark of Applied Micro Circuit s Corporation. Copyright © 2007 Applied Micro Circuits Corporation.
All rights reserved.