Data Sheet No. PD-6.033E IR2132 3-PHASE BRIDGE DRIVER Features Product Summary n Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune n Gate drive supply range from 10 to 20V n Undervoltage lockout for all channels n Over-current shutdown turns off all six drivers n Independent half-bridge drivers n Matched propagation delay for all channels n Outputs out of phase with inputs Description The IR2132 is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with 5V CMOS or LSTTL outputs. A ground-referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also derived from this resistor. An open drain FAULT signal indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 600 volts. VOFFSET 600V max. IO+/- 200 mA / 420 mA VOUT 10 - 20V ton/off (typ.) 675 & 425 ns Deadtime (typ.) 0.8 s Packages Typical Connection CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-165 IR2132 Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to V S0. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 50 through 53. Symbol VB1,2,3 VS1,2,3 VHO1,2,3 VCC VSS VLO1,2,3 VIN VFLT VCAO VCAdVS/dt PD RJA TJ TS TL Parameter Definition High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Low Side and Logic Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage (HIN1,2,3 , LIN1,2,3 & ITRIP) FAULT Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Allowable Offset Supply Voltage Transient Package Power Dissipation @ TA +25C (28 Lead DIP) (28 Lead SOIC) (44 Lead PLCC) Thermal Resistance, Junction to Ambient (28 Lead DIP) (28 Lead SOIC) (44 Lead PLCC) Junction Temperature Storage Temperature Lead Temperature (Soldering, 10 seconds) Value Min. Max. -0.3 VB1,2,3 - 25 VS1,2,3 - 0.3 -0.3 VCC - 25 -0.3 VSS - 0.3 VSS - 0.3 VSS - 0.3 VSS - 0.3 -- -- -- -- -- -- -- -- -55 -- 525 VB1,2,3 + 0.3 VB1,2,3 + 0.3 25 VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.5 1.6 2.0 83 78 63 150 150 300 Units V V/ns W C/W C Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to V S0. The VS offset rating is tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54. Symbol VB1,2,3 VS1,2,3 VHO1,2,3 VCC VSS VLO1,2,3 VIN VFLT VCAO VCATA Parameter Definition High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Low Side and Logic Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage (HIN1,2,3 , LIN1,2,3 & ITRIP) FAULT Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Ambient Temperature Value Min. Max. VS1,2,3 + 10 Note 1 VS1,2,3 10 -5 0 VSS VSS VSS VSS -40 VS1,2,3 + 20 600 VB1,2,3 20 5 VCC VSS + 5 VCC 5 5 125 Units V C Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS). B-166 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL IR2132 Dynamic Electrical Characteristics VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF and TA = 25C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 3 through 5. Symbol Parameter Definition ton toff tr tf t itrip t bl tflt tflt,in tfltclr DT SR+ SR- Turn-On Propagation Delay Turn-Off Propagation Delay Turn-On Rise Time Turn-Off Fall Time ITRIP to Output Shutdown Prop. Delay ITRIP Blanking Time ITRIP to FAULT Indication Delay Input Filter Time (All Six Inputs) LIN1,2,3 to FAULT Clear Time Deadtime Operational Amplifier Slew Rate (+) Operational Amplifier Slew Rate (-) Value Figure Min. Typ. Max. Units Test Conditions 11 12 13 14 15 -- 16 -- 17 18 19 20 500 300 -- -- 400 -- 335 -- 6.0 0.4 4.4 2.4 675 425 80 35 660 400 590 310 9.0 0.8 6.2 3.2 850 550 125 55 920 -- 845 -- 12.0 1.2 -- -- VIN = 0 & 5V VS1,2,3 = 0 to 600V ns s V IN, VITRIP = 0 & 5V VITRIP = 1V VIN, VITRIP = 0 & 5V VIN = 0 & 5V VIN, VITRIP = 0 & 5V VIN = 0 & 5V V/s Static Electrical Characteristics VBIAS (VCC , VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3. Symbol VIH VIL VIT,TH+ VOH VOL I LK IQBS IQCC IIN+ IINI ITRIP+ IITRIPVBSUV+ VBSUVVCCUV+ VCCUVRon,FLT Parameter Definition Logic "0" Input Voltage (OUT = LO) Logic "1" Input Voltage (OUT = HI) ITRIP Input Positive Going Threshold High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic "1" Input Bias Current (OUT = HI) Logic "0" Input Bias Current (OUT = LO) "High" ITRIP Bias Current "Low" ITRIP Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold FAULT Low On-Resistance Figure Min. Value Typ. Max. Units Test Conditions 21 22 23 24 25 26 27 28 29 30 31 32 33 2.2 -- 400 -- -- -- -- -- -- -- -- -- 7.5 -- -- 490 -- -- -- 15 3.0 450 225 75 -- 8.35 -- 0.8 580 100 100 50 30 4.0 650 400 150 100 9.2 34 7.1 7.95 8.8 35 8.3 9.0 9.7 36 8.0 8.7 9.4 37 -- 55 75 V mV A mA A nA VIN = 0V, IO = 0A VIN = 5V, IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 0V VIN = 5V ITRIP = 5V ITRIP = 0V V CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-167 IR2132 Static Electrical Characteristics -- Continued VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25C unless otherwise specified. The VIN, VTH and I IN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3. Parameter Definition Symbol Figure Min. Value Typ. Max. Units Test Conditions IO+ Output High Short Circuit Pulsed Current 38 200 250 -- IO- Output Low Short Circuit Pulsed Current 39 420 500 -- VOS ICACMRR PSRR Operational Amplifer Input Offset Voltage CA- Input Bais Current Op. Amp. Common Mode Rejection Ratio Op. Amp. Power Supply Rejection Ratio 40 41 42 43 -- -- 60 55 -- -- 80 75 30 4.0 -- -- mV nA VOH,AMP VOL,AMP ISRC,AMP Op. Amp. High Level Output Voltage Op. Amp. Low Level Output Voltage Op. Amp. Output Source Current 44 45 46 5.0 -- 2.3 5.2 -- 4.0 5.4 20 -- V mV ISRC,AMP Op. Amp. Output Sink Current 47 1.0 2.1 -- Operational Amplifier Output High Short Circuit Current Operational Amplifier Output Low Shor t Circuit Current 48 -- 4.5 6.5 49 -- 3.2 5.2 IO+,AMP IO-,AMP mA dB mA VO = 0V, VIN = 0V PW 10 s VO = 15V, VIN = 5V PW 10 s VS0 = VCA- = 0.2V VCA- = 2.5V VS0=VCA-=0.1V & 5V VS0 = VCA- = 0.2V VCC = 10V & 20V VCA- = 0V, VS0 = 1V VCA- = 1V, VS0 = 0V VCA- = 0V, VS0 = 1V VCAO = 4V VCA- = 1V, VS0 = 0V VCAO = 2V VCA- = 0V, VS0 = 5V VCAO = 0V VCA- = 5V, VS0 = 0V VCAO = 5V Lead Assignments 28 Lead DIP 44 Lead PLCC w/o 12 Leads 28 Lead SOIC (Wide Body) IR2132 IR2132J Part Number IR2132S B-168 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL IR2132 Functional Block Diagram Lead Definitions Lead Symbol Description HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase LIN1,2,3 Logic inputs for low side gate driver output (LO1,2,3), out of phase FAULT VCC Indicates over-current or undervoltage lockout (low side) has occurred, negative logic ITRIP Input for over-current shutdown CAO Output of current amplifier CA- Negative input of current amplifier VSS Logic ground VB1,2,3 High side floating supplies Low side and logic fixed supply HO1,2,3 High side gate drive outputs VS1,2,3 High side floating supply returns LO1,2,3 Low side gate drive outputs VS0 Low side return and positive input of current amplifier CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-169 IR2132 Device Information Process & Design Rule Transistor Count Die Size Die Outline Thickness of Gate Oxide Connections First Layer Second Layer Contact Hole Dimension Insulation Layer Passivation (1) Passivation (2) Method of Saw Method of Die Bond Wire Bond Leadframe Package Remarks: HVDCMOS 4.0 m 700 126 X 175 X 26 (mil) Material Width Spacing Thickness Material Width Spacing Thickness Material Thickness Material Thickness Material Thickness Method Material Material Die Area Lead Plating Types Materials * Patent Pending B-170 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL 800A Poly Silicon 4 m 6 m 5000A Al - Si (Si: 1.0% 0.1%) 6 m 9 m 20,000A 8 m X 8 m PSG (SiO 2) 1.5 m PSG (SiO 2) 1.5 m Proprietary* Proprietary* Full Cut Ablebond 84 - 1 Thermo Sonic Au (1.0 mil / 1.3 mil) Cu Ag Pb : Sn (37 : 63) 28 Lead PDIP & SOIC / 44 Lead PLCC EME6300 / MP150 / MP190 IR2132 HIN1,2,3 LIN1,2,3 ITRIP IR2132 FAULT HO1,2,3 LO1,2,3 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit HIN1,2,3 LIN1,2,3 HIN1,2,3 50% 50% 50% 50% LIN1,2,3 ton tr toff tf LO1,2,3 90% 50% 90% 50% HO1,2,3 HO1,2,3 LO1,2,3 DT 10% 10% DT Figure 3. Deadtime Waveform Definitions Figure 4. Input/Output Switching Time Waveform Definitions 50% LIN1,2,3 VCC 50% ITRIP VS0 + CA- - CAO FAULT 50% VSS 50% LO1,2,3 50% tfltclr t flt VSS titr ip Figure 5. Overcurrent Shutdown Switching Time Waveform Definitions Figure 6. Diagnostic Feedback Operational Amplifier Circuit CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-171 IR2132 15V 15V VCC 3V CA0V VS0 CA- CAO - VS0 VSS CAO - 50 pF VSS + T1 T2 3V VCC + + 20k 0.2V 1k 90% V 0V 10% V V SR+ = SR- = T2 T1 Figure 7. Operational Amplifier Slew Rate Measurement VOS = VCAO 21 - 0.2V Figure 8. Operational Amplifier Input Offset Voltage Measurement VCC VS0 15V VCC CAVS0 + CA- - CAO VSS CAO + + VSS 20k 0.2V 1k Measure VCAO1 at VS0 = 0.1V VCAO2 at VS0 = 5V Measure VCAO1 at VCC = 10V VCAO2 at VCC = 20V VCAO1 - VCAO2 PSRR = -20*LOG (10V) (21) Figure 10. Operational Amplifier Power Supply Rejection Ratio Measurements (VCAO1-0.1V) - (VCAO2-5V) (dB) CMRR = -20 *LOG 4.9V 1.50 1.50 1.20 1.20 Turn-On Delay Time (s) Turn-On Delay Time (s) Figure 9. Operational Amplifier Common Mode Rejection Ratio Measurements Max. 0.90 Typ. 0.60 Min. 0.30 0.90 Max. Typ. 0.60 Min. 0.30 0.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 11A. Turn-On Time vs. Temperature B-172 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 11B. Turn-On Time vs. Voltage 20 1.00 1.00 0.80 0.80 0.60 0.40 Turn-Off Delay Time (s) Turn-Off Delay Time (s) IR2132 Max. Typ. Min. 0.20 Max. 0.60 Typ. 0.40 Min. 0.20 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 250 250 200 200 150 Max. Typ. 50 20 Max. 150 100 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 13A. Turn-On Rise Time vs. Temperature Figure 13B. Turn-On Rise Time vs. Voltage 125 125 100 100 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 18 50 0 75 50 Max. 25 16 Figure 12B. Turn-Off Time vs. Voltage Turn-On Rise Time (ns) Turn-On Rise Time (ns) Figure 12A. Turn-Off Time vs. Temperature 100 14 V BIAS Supply Voltage (V) Typ. 75 Max. 50 Typ. 25 0 0 -50 -25 0 25 50 75 100 Temperature (C) Figure 14A. Turn-Off Fall Time vs. Temperature 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 14B. Turn-Off Fall Time vs. Voltage CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-173 IR2132 1.50 ITRIP to Output Shutdown Delay Time (s) ITRIP to Output Shutdown Delay Time (s) 1.50 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) Figure 15A. ITRIP to Output Shutdown Time vs. Temperature 18 20 1.50 ITRIP to FAULT Indication Delay Time (s) ITRIP to FAULT Indication Delay Time (s) 16 Figure 15B. ITRIP to Output Shutdown Time vs. Voltage 1.50 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 1.20 0.90 0.60 Max. Typ. Min. 0.30 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 14 16 18 Figure 16A. ITRIP to FAULT Indication Time vs. Temperature Figure 16B. ITRIP to FAULT Indication Time vs. Voltage 25.0 25.0 20.0 15.0 Max. 10.0 20 VCC Supply Voltage (V) LIN1,2,3 to FAULT Clear Time (s) LIN1,2,3 to FAULT Clear Time (s) 14 V BIAS Supply Voltage (V) Typ. Min. 5.0 0.0 20.0 15.0 Max. 10.0 Typ. Min. 5.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 17A. LIN1,2,3 to FAULT Clear Time vs. Temperature B-174 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage 2.50 2.50 2.00 2.00 1.50 Max. 1.00 Typ. Deadtime (s) Deadtime (s) IR2132 1.50 Max. 1.00 Typ. 0.50 Min. 0.00 -50 0.50 Min. 0.00 -25 0 25 50 75 100 125 10 12 Temperature (C) Figure 18A. Deadtime vs. Temperature 18 20 10.0 8.0 Amplifier Slew Rate + (V/s) 8.0 Amplifier Slew Rate + (V/s) 16 Figure 18B. Deadtime vs. Voltage 10.0 Typ. 6.0 Min. 4.0 2.0 Typ. 6.0 Min. 4.0 2.0 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 14 16 18 20 V CC Supply Voltage (V) Figure 19A. Amplifier Slew Rate (+) vs. Temperature Figure 19B. Amplifier Slew Rate (+) vs. Voltage 5.00 5.00 4.00 Amplifier Slew Rate - (V/s) 4.00 Amplifier Slew Rate - (V/s) 14 V BIAS Supply Voltage (V) Typ. 3.00 Min. 2.00 Typ. 3.00 Min. 2.00 1.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 20A. Amplifier Slew Rate (-) vs. Temperature 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 20B. Amplifier Slew Rate (-) vs. Voltage CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-175 5.00 5.00 4.00 4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) IR2132 3.00 Min. 2.00 1.00 3.00 Min. 2.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 5.00 5.00 4.00 4.00 3.00 2.00 18 20 3.00 2.00 1.00 Max. 0.00 Max. 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 16 18 20 Figure 22B. Logic "1" Input Threshold vs. Voltage 750 750 ITRIP Input Positive Going Threshold (mV) 600 14 VCC Supply Voltage (V) Figure 22A. Logic "1" Input Threshold vs. Temperature ITRIP Input Positive Going Threshold (mV) 16 Figure 20B. Logic "0" Input Threshold vs. Voltage Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) Figure 21A. Logic "0" Input Threshold vs. Temperature 1.00 14 VCC Supply Voltage (V) Max. Typ. 450 Min. 300 150 600 Max. Typ. 450 Min. 300 150 0 0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 23A. ITRIP Input Positive Going Threshold vs. Temperature B-176 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL 10 12 14 16 18 VCC Supply Voltage (V) Figure 23B. ITRIP Input Positive Going Threshold vs. Voltage 20 1.00 1.00 0.80 0.80 High Level Output Voltage (V) High Level Output Voltage (V) IR2132 0.60 0.40 0.20 0.60 0.40 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 16 18 20 Figure 24B. High Level Output vs. Voltage 1.00 1.00 0.80 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) Figure 24A. High Level Output vs. Temperature 0.60 0.40 0.20 0.60 0.40 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 14 16 18 20 V BIAS Supply Voltage (V) Figure 25A. Low Level Output vs. Temperature Figure 25B. Low Level Output vs. Voltage 500 500 400 400 Offset Supply Leakage Current (A) Offset Supply Leakage Current (A) 14 V BIAS Supply Voltage (V) 300 200 100 300 200 100 Max. Max. 0 0 -50 -25 0 25 50 75 100 Temperature (C) Figure 26A. Offset Supply Leakage Current vs. Temperature 125 0 100 200 300 400 500 600 V B Boost Voltage (V) Figure 26B. Offset Supply Leakage Current vs. Voltage CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-177 100 100 80 80 VBS Supply Current (A) VBS Supply Current (A) IR2132 60 40 60 40 Max. 20 20 Max. Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 10.0 10.0 8.0 8.0 6.0 4.0 Max. Typ. 20 4.0 Max. Typ. 0.0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 14 16 18 20 V CC Supply Voltage (V) Figure 28A. VCC Supply Current vs. Temperature Figure 28B. VCC Supply Current vs. Voltage 1.25 1.25 1.00 1.00 Logic "1" Input Bias Current (mA) Logic "1" Input Bias Current (mA) 18 6.0 2.0 0.0 0.75 0.50 16 Figure 27B. VBS Supply Current vs. Voltage V CC Supply Current (mA) VCC Supply Current (mA) Figure 27A. VBS Supply Current vs. Temperature 2.0 14 VBS Floating Supply Voltage (V) Max. Typ. 0.25 0.00 0.75 0.50 Max. Typ. 0.25 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 29A. Logic "1" Input Current vs. Temperature B-178 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL 10 12 14 16 18 V CC Supply Voltage (V) Figure 29A. Logic "1" Input Current vs. Voltage 20 1.25 1.25 1.00 1.00 Logic "0" Input Bias Current (mA) Logic "0" Input Bias Current (mA) IR2132 0.75 0.50 Max. 0.25 0.75 0.50 Max. 0.25 Typ. Typ. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 500 500 400 400 300 Max. 100 18 20 300 200 Max. 100 Typ. 0 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 14 16 18 20 VCC Supply Voltage (V) Figure 31A. "High" ITRIP Current vs. Temperature Figure 31B. "High" ITRIP Current vs. Voltage 250 500 200 400 "Low" ITRIP Bias Current (A) "Low" ITRIP Bias Current (nA) 16 Figure 30B. Logic "0" Input Current vs. Voltage "High" ITRIP Bias Current (A) "High" ITRIP Bias Current (A) Figure 30A. Logic "0" Input Current vs. Temperature 200 14 V CC Supply Voltage (V) 150 100 Max. 50 300 200 Max. 100 0 0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 32A. "Low" ITRIP Current vs. Temperature 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 32B. "Low" ITRIP Current vs. Voltage CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-179 11.0 11.0 10.0 10.0 9.0 VBS Undervoltage Lockout - (V) VBS Undervoltage Lockout + (V) IR2132 Max. Typ. 8.0 Min. 7.0 9.0 Max. 8.0 Typ. Min. 7.0 6.0 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 50 75 100 125 Figure 33. VBS Undervoltage (+) vs. Temperature Figure 34. VBS Undervoltage (-) vs. Temperature 11.0 11.0 10.0 9.0 Max. Typ. Min. 8.0 7.0 10.0 Max. 9.0 Typ. 8.0 Min. 7.0 6.0 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (C) 25 50 75 100 125 Temperature (C) Figure 35. VCC Undervoltage (+) vs. Temperature Figure 36. VCC Undervoltage (-) vs. Temperature 250 FAULT- Low On Resistance (ohms) 250 FAULT- Low On Resistance (ohms) 25 Temperature (C) V CC Undervoltage Lockout - (V) VCC Undervoltage Lockout + (V) Temperature (C) 200 150 100 Max. 50 200 150 100 Max. Typ. 50 Typ. 0 0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 37A. FAULT Low On Resistance vs. Temperature B-180 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 37B. FAULT Low On Resistance vs. Voltage 500 500 400 400 Output Source Current (mA) Output Source Current (mA) IR2132 Typ. 300 Min. 200 100 300 200 Typ. 100 0 Min. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) Figure 38A. Output Source Current vs. Temperature 16 18 20 Figure 38B. Output Source Current vs. Voltage 750 750 625 Output Sink Current (mA) Typ. 600 Output Sink Current (mA) 14 VBIAS Supply Voltage (V) Min. 450 300 500 375 Typ. 250 Min. 150 125 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 16 18 20 Figure 39B. Output Sink Current vs. Voltage 50 50 40 40 Amplifier Input Offset Voltage (mV) Amplifier Input Offset Voltage (mV) Figure 39A. Output Sink Current vs. Temperature Max. 30 20 10 0 -50 14 VBIAS Supply Voltage (V) 30 Max. 20 10 0 -25 0 25 50 75 100 125 Temperature (C) Figure 40A. Amplifier Input Offset vs. Temperature 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 40B. Amplifier Input Offset vs. Voltage CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-181 10.0 10.0 8.0 8.0 CA- Input Bias Current (nA) CA- Input Bias Current (nA) IR2132 6.0 Max. 4.0 2.0 6.0 Max. 4.0 2.0 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) Figure 41A. CA- Input Current vs. Temperature 16 18 20 Figure 41B. CA- Input Current vs. Voltage 100 100 80 Typ. 60 Min. 80 Amplifier CMRR (dB) Amplifier CMRR (dB) 14 V CC Supply Voltage (V) 40 20 60 Typ. Min. 40 20 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 14 16 18 20 V CC Supply Voltage (V) Figure 42A. Amplifier CMRR vs. Temperature Figure 42B. Amplifier CMRR vs. Voltage 100 100 80 80 Typ. 60 Min. Amplifier PSRR (dB) Amplifier PSRR (dB) Typ. 60 Min. 40 20 40 20 0 0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 43A. Amplifier PSRR vs. Temperature B-182 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL 10 12 14 16 18 V CC Supply Voltage (V) Figure 43B. Amplifier PSRR vs. Voltage 20 IR2132 6.00 Amplifier High Level Output Voltage (V) Amplifier High Level Output Voltage (V) 6.00 5.70 5.40 Max. Typ. 5.10 Min. 4.80 4.50 5.70 5.40 Max. Typ. 5.10 Min. 4.80 4.50 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) Figure 44A. Amplifier High Level Output vs. Temperature 18 20 100 Amplifier Low Level Output Voltage (mV) Amplifier Low Level Output Voltage (mV) 16 Figure 44B. Amplifier High Level Output vs. Voltage 100 80 60 40 Max. 20 0 80 60 40 Max. 20 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) 14 16 18 20 VCC Supply Voltage (V) Figure 45A. Amplifier Low Level Output vs. Temperature Figure 45B. Amplifier Low Level Output vs. Voltage 10.0 Amplifier Output Source Current (mA) 10.0 Amplifier Output Source Current (mA) 14 V CC Supply Voltage (V) 8.0 6.0 Typ. 4.0 Min. 2.0 8.0 6.0 4.0 Typ. 2.0 Min. 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 46A. Amplifier Output Source Current vs. Temperature 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 46B. Amplifier Output Source Current vs. Voltage CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-183 5.00 5.00 4.00 4.00 Amplifier Output Sink Current (mA) Amplifier Output Sink Current (mA) IR2132 3.00 Typ. 2.00 Min. 1.00 0.00 3.00 2.00 Typ. Min. 1.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) Figure 47A. Amplifier Output Sink Current vs. Temperature 16 18 20 Figure 47B. Amplifier Output Sink Current vs. Voltage 15.0 Output High Short Circuit Current (mA) 15.0 Output High Short Circuit Current (mA) 14 VCC Supply Voltage (V) 12.0 9.0 Max. 6.0 Typ. 3.0 12.0 9.0 6.0 Max. 3.0 Typ. 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 Temperature (C) Figure 48A. Amplifier Output High Short Circuit Current vs. Temperature 18 20 15.0 Output Low Short Circuit Current (mA) Output Low Short Circuit Current (mA) 16 Figure 48B. Amplifier Output High Short Circuit Current vs. Voltage 15.0 12.0 9.0 6.0 14 V CC Supply Voltage (V) Max. Typ. 3.0 12.0 9.0 6.0 Max. 3.0 Typ. 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 49A. Amplifier Output Low Short Circuit Current vs. Temperature B-184 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 49B. Amplifier Output Low Short Circuit Current vs. Voltage IR2132 50 50 480V 480V 45 40 Junction Temperature (C) Junction Temperature (C) 45 320V 35 160V 30 0V 25 40 320V 35 160V 30 0V 25 20 1E+2 1E+3 1E+4 20 1E+2 1E+5 1E+3 Frequency (Hz) 1E+4 1E+5 Frequency (Hz) Figure 50. IR2132 TJ vs. Frequency (IRF820) , VCC = 15V RGATE = 33 Figure 51. IR2132 TJ vs. Frequency (IRF830) , VCC = 15V RGATE = 20 100 140 480V 320V Junction Temperature (C) 60 480V 320V 40 80 160V 60 0V 40 0V 20 1E+2 100 160V 1E+3 1E+4 20 1E+2 1E+5 1E+3 Frequency (Hz) 1E+4 1E+5 Frequency (Hz) Figure 52. IR2132 TJ vs. Frequency (IRF840) , VCC = 15V RGATE = 15 Figure 53. IR2132 TJ vs. Frequency (IRF450) , VCC = 15V RGATE = 10 0.0 -3.0 VS Offset Supply Voltage (V) Junction Temperature (C) 120 80 Typ. -6.0 -9.0 -12.0 -15.0 10 12 14 16 18 20 V BS Floating Supply Voltage (V) Figure 54. Maximum VS Negative Offset vs. VBS Supply Voltage CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-185