Prelimina ry Data Sheet
Ma y 2001
TM XF28155 Super Mapp er
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
1 Features
Versatile IC supports 155/51 Mbits/s SONET/SDH
interface solutions for T3/E3, DS2, T1/E 1/J1, a nd
DS0/E0/J0 applications.
Implem entation sup ports both linear (1 + 1, unpro-
tected) and ring (UPSR) network topologies.
Provides f ull termination of up to 21 E1, 28 T1, or
28 J1.
Low power 3.3 V supply.
–40 °C to +85 °C industrial tem perature range.
456-pin ball grid array (PBGA) package.
Complies with
Bellcore*
, ITU,
ANSI
, ET SI and Jap-
anese TTC standards: GR-253-CORE, GR-499,
(ATT) TR-62411, ITU-T G.707, G.704, G.706, G.783,
G.96 2, G.964, G.9 65, Q.542, T1.105, JT-G704 ,
JT-G706, JT-G707, JT-I431-a, ET S 300 417-1-1,
ETS 300 011, T1.107, T1.404.
1.1 SO N E T/S D H Inte rf a ce
Termination of a single 155 Mbits/s STS-3/STM-1 or
single 51 Mbits/s STS-1 /S TM-0.
Built-in clock and data recove ry circui t at
155 Mbits/s STS-3/STM-1 interface (can be des e-
lected if ex ternal clock rec over y i s provided).
Supports ove rh ead processing for all transport and
path overhead bytes.
Optional insertion and extraction of overhead bytes
via a serial transport overhead access channel. Con-
figurable as dedicated DCC channels.
Softwar e controlled line ar 1 + 1 protec tion via dedi-
cated interface to protect ion card .
Full path termination an d SPE extraction/inse rtion.
SONET/SDH compliant condition and al arm repo r t-
ing.
Built-in diagnostic loopback modes.
8 kHz line frame sync output.
*
Bellcore
is now
Tel co rdi a Techno l og ie s
.
Telcordia Technologies
is a
trademark of Telcordia Technologies, Inc.
ANSI
is a registered trademark of American National Standards
Institute, Inc.
1.2 STS/ST M Poin ter In terpreter
Interprets STS/AU/TU-3 pointers.
S ynch roniz es 8 kH z f ram e and 2 kHz superframe to
system/shelf timing reference by setting the transmit
STS-3/STM-1 pointers to a fixed value of 522.
Monitors/terminates SPE path overhead.
1. 3 Tele c o m Bu s Int e rfa ce
Telecom bus interface to mate devices including
cloc k, data[8], parity, SPE-, J0 - , J1-, and V1 timing
indicator.
Line and p ath RDI and REI signals passed to mate
devices.
Three Su per Mapper devices, two configured as
mate devices, provide full ter min ation of an
STS-3/STM-1. A three-chip soluti on to terminate
84 DS 1s /J1s or 63 E1s .
1. 4 VT Te rm in a tio n /G e nera t ion (x28/x 21 )
Monitors/terminates VT path overhead for
28 VT1.5/TU-11 or 21 VT2/TU-12.
Synchronizes VT/TU SPE to system/shelf timing ref-
erence b y setting the transmit VT/TU pointers to fix ed
values for asynchronous mapping or by dyna mically
chan ging the transmit VT/TU pointers for byte syn-
chron ous mapping.
Fixed pointer generation in transmit s ide for asyn-
chron ous mapping.
Dynamic pointer generation in transmi t side for byte -
synchronous mapping.
1.5 M a pping /M ul t iplex in g Mo de s ( x 28 /x 21 )
Maps DS3 clear channel or framed signal into STS-1
or TUG-3.
Maps T1/E1/J1 into VT/TU (including DS1 into
TU-12).
Supp orts asy nchronous, byt e-s ynchronous, an d bit-
synchronous mapping.
2Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
1 Features (continued)
Suppo rts UP S R applications via the de dicat ed ring
int erfac e and an external tributary selector.
Supports all valid T1/E1/J1 multiplexing structures
into STS-1 and STS-3/STM-1:
STS-3/STS-1/SPE/VTG/VTx
STM-1/AU-3/TUG-2/TU-1x/VC-1x
STM-1/AU-4/TUG-3/TUG-2/TU-1x/VC-1x
Allows grooming of VTs/TUs in granularity of TUG-2s
within the STS-3/STM-1 signal.
Suppo rts J2 trace identifier mo n ito ring/inse rtion.
Configurable VT/TU slot selection f or DS1, E1, and
J1 insertion and drop.
Automatic receive m onitor functions include VT/TU
RDI-V, REI-V, BIP-2 errors, AIS-V, L OP-V.
Complies with GR-253-CORE, GR-499, ITU-T
G.707, G.704, G.783, T1.105, JT-G707, ETS 300
417-1-1.
1. 6 M13 F ea t ur es
Configurable mult iplexer/demultiplexer for 28 DS1
signals, 21 E1 signals, or 7 DS2 signals to/from a
DS3 signal.
Operates in ei the r M23 o r C-bit parity mode.
Provisionable time slot select ion for DS 1, E1, and
DS2 insertion or drop.
Full alarm monitoring and generation (LOS, BPV,
EXZ, OOF, SEF, AIS, RAI, FEAC, P-bit and C-bit pa r-
ity errors, FEBE).
HDLC transmitter with 128-byte data buffer and
HDLC rec eiver with 128-byte data FIFO for the C-bit
parit y path maintenance data lin k.
DS3, DS 2, DS1, and E1 loopback and loopback
request generation.
Complies wi th T1.102, T1. 107, T1.231, T 1.4 03,
T1.404, GR 499, G.747, and G.775.
1.7 DS3/DS2/DS1/E1 Cross Connect
Highly configurable interconnect for up to 28 DS1 or
21 E1 s ignal s to/from the framer, external pins, M13,
or VT mappers.
Suppor t s up to seven DS2 signals to/from the ex te r-
nal pins or M13.
Sources may be broadcast, looped back, or routed
to/from a test-pattern generator or monitor.
Any DS1 or E1 channel may be routed through the
jit ter at tenuator.
DS3 may be configured for the M13 to interconnect
with the SPE, or external I/O to int erc onnec t with the
M13 or SPE.
1.8 Jitter Attenuation
PLL-free receive operat ion using built-in digital jitter
attenuator (in VT/VC mode or M13 mode).
Configurable to meet jitter and MTIE requirements.
1.9 PDH Interfaces
One DS3, 7x DS2.
x28/x21 framed or unframed DS1 or E1 interfaces.
One additional dedicated protection channel for
DS2/DS1/E1.
1.10 T1/E1/J1 Framing Features (x28/x21)
x28/x21 T1/E1/J1 channels .
Line coding: B8ZS, HDB3, ZCS, AM I, a nd
CM I (JJ20- 11).
T1 framing m odes : ESF, D4,
SLC
®-96, T1 DM DDS,
and SF (Ft only).
E1 framing: G.704 basic and CRC-4 multiframe con-
sistent with G.706.
J1 framing modes: J ESF (Japan).
Supports T1 and E1 unframed and transparent trans-
mission format.
T1 signaling modes: transparent;
register and system access for ESF 2-state, 4-state,
and 16-state; D4 2-s ta te , 4-state, and 16-state;
SLC
-96 2-state, 4-state, and 16-state; J-ESF han-
dling groups maintenance and signaling ; VT 1.5
SPE 2, 4, 16 state.
E1 signaling modes: t ransparent;
register and system access for entire TS16 multi-
frame structure as per ITU G.732.
Signaling debounce and change of state in terrupt.
V5.2 Sa7 processing.
3Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
1 Features (continued)
Alarm reporting and performance monitoring per
AT&T,
ANSI
, ITU-T, and ETSI st andards.
Facility d ata link fea tur e s :
HDLC or transparent acc es s for either ESF o r
DDS + FDL fra me formats .
Register/stack access for
SLC
-96 transmit and re-
ceive data.
Extended superframe (ESF): automatic transmis-
sion of the ES F performance report messages
(PRM). Automatic transmission of the
ANSI
T1.403 ESF performance report messages. Auto-
matic de tection and tr ansmission of the
ANSI
T1.403 ESF FDL bit-oriented codes.
Regi ster/stack access for all CEPT Sa-bits trans-
mit and receive data.
HDLC features :
HDLC or transparent mode.
Programmable logical channel assignment: any
time slot, any bit for ISDN D-channel, al so inser t s/
extracts C-channels for V5.1, V5.2 interfaces.
64 logical channels in both transmit and receive di-
rection (any f r aming format).
Maximum channel data rate: 64 kbits/s.
Minimum channel data rate: 4 kbits/s (DS1-FDL or
E1 Sa bit).
128-byte FIFO per channel in both transmit and re-
ceive direction.
Tx to Rx loopback supported.
System interfaces:
Concentration highway interface: Single clock and
fr ame syn c signals; programmable clock rates at
2.048 MH z, 4.096 MHz , 8.192 MHz, and
16.384 MHz; programmable data rates at 2.048
Mbits/s,
4.096 Mbit s /s, and 8.192 Mbits/s; program mable
clock edges and bit/by te offsets.
Parallel system bus interface at 19.4 4 MHz for
data and signaling: single clock and frame sync
signals.
Time-division multiplex data rate serial interface at
1.544 MH z or 2.048 MHz. Twenty-eight receive
data, cloc k, and frame sync sig nals. T went y-eight
transmit data signals with a global clock and frame
sync.
Network serial multiplexed interface mini mal pin
count seri al inter face at 51 .84 MHz op timized for
data and IMA applications.
1.11 System Test and Maintenance
A variety of loopback mod es im ple men ted on
SONET/SDH s id e as well as on framer level.
Built-in test pa ttern generator and monitor config-
urabl e for simultaneously testing E1, DS1, DS2, and
DS3 (one chan nel each).
Microprocessor Inter face
20-bit address and 16-bit data interface w ith 16 MHz
to 66 MHz read and write access.
Compatible wit h most industry-standard processors.
Chip Testing an d Maintena nce
IEEE
* 1149.1 JTAG boundary scan.
Interface to Other Agere ME Devices
Seamless interface to t he following Agere Systems
devices:
TADM042G5.
*
IEEE
is a registered trademark of the Institute of Electrical and
Electr onics En gineer s, I n c .
4Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
Ta ble of Conte nts
By Major Sections
Contents Page
Features ...................................................................................................................................................................1
Pr oduc t Descri p ti o n ............ ....................................................................... ...............................................................5
Preface ...................................................................................................................................................................5
In te r face Speci fi c a tions ........... .................................................... .............................................................................8
Pin Information .......................................................................................................................................................8
Ele c trical Characteristics ......................................................................................................................................33
Timing Characteristics .........................................................................................................................................37
Order ing Information ............................................................................................................................................61
Register Description ...............................................................................................................................................62
Microprocessor Interface and Global Control and Status Reg i st ers ... ... ..................... ... .... ... ...... ... .... ... ..... .... ... ...62
TMUX Registers ............... ....................................................................................................................................75
SPE Mapper Re gisters ............................... ................................. ............... ........... ............... .............................133
VT/TU Mapper Registers ...................................................................................................................................153
M13/M23 MUX/DeMUX Registers .....................................................................................................................196
28-Channel Framer Registers .............................................. .......................... ....................................................239
Cross Connect (XC) Registers ...........................................................................................................................321
Digital Jitter Attenuation Controller Registers .... ................... .......................... .......................... .........................331
Test-Pattern Generation/Detecti on Registers .....................................................................................................336
Fu nctional Descriptions ........... .............. .............. .............. .............. ............... .............. ........................................354
Microprocessor Interface Functional Description .................. ..................... ..... .......................... .........................354
TMUX Functional Description ...................... ....... ..... ....... ....... ..... ....... ..... ....... ....... .. .......... .. ...............................359
SPE Mapper F unct ional Descri ption .. .................. ........................ .......................... ..................... .......................396
VT/TU Mapper F unc t ional Descri ption . ..................... ..................... . ................ ..................... . .............................425
M13/M23 MUX/DeMUX Block Functional Description .......................................................................................455
28-Channel Framer Block Functional Description ............................................................................. .................475
Cross Connect (X C) Block Functional Description .............. .. ....... ..... ..... ....... .. ..... ....... ..... .. ....... ..... .. .................542
Digital J itter Attenuation Controller Functional D escription ............ . ....................... ..................... . ......................570
Test-Patter n Generation/Detection Functional Description ......................................................... ....... . ...............574
Philosophies .......................................................................................................................................................582
Applications ..........................................................................................................................................................588
Change History .. .... ..... .......... ......... ..... ......... .......... .... .......... ......... ..... .......... ......... ..... ...... ..................................604
5Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Product Description
2 Preface
Ta ble of Conte nts
Contents Page
1 Features ............................................................................................................................................................... 1
1. 1 SONET /SDH Interface .............................................................................................. ..................................... 1
1. 2 STS/STM Poin te r Inter p re ter ....................................... .......................................... ........................................ 1
1. 3 Tele co m Bus Inter face ................................................. .................................................................................. 1
1.4 VT Termination/Generation (x28/x21) .... ..... ....... ..... .. .......... .. ....... ..... ....... ..... .. ....... ..... ....... ..... ....................... 1
1. 5 Mapping/Mul tiplex ing M o des (x28 /x21) ................................................. ........................................................ 1
1. 6 M13 Featur e s .... ......... .................................................... ................................................................................ 2
1.7 DS3/ DS2/DS1/E1 Cross Connect .......... ..... ..... .. ..... .. .......... .. ..... .. ..... .. .......... .. ..... .. ..... ....... ..... .. ..................... 2
1.8 Jit ter Attenuation .................................... ................... ............ .............. ................. .......................................... 2
1. 9 PDH Interf a ce s .... ........................................... ................................................................................................ 2
1.10 T1/E1/J1 Framing Features (x28/x21) ......................................................................................................... 2
1.11 System Test and Maintenance ............ ...................................... .......................... ........................................ 3
2 Preface ................................................................................................................................................................. 5
2. 1 Majo r Categories ......................... ........................................................ ........................................................... 6
2.2 Naming Convention for Registers and Parameters ........ ..... ... ....................... ... ....................... ...................... 6
2. 3 Over view ........ .................................................... ..................................................... ....................................... 7
Figures Page
Figure 1. Functional Diagram of Super Mapper ....................... ....... ..... ....... .. .......... ....... ....... .. .......... ....................... 7
6Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
2 Preface (continued)
The objective of this data sheet is t o define the func-
tionality of the Super Mapper for hardware and soft-
ware dev elopers. The inf ormation contained in this data
sheet is prelimin ary, and may change without notice;
the reader mu st therefore asce rtain that the latest ver-
sion is u sed whe n a product is under development.
The latest version of this data s heet c an b e accessed
at: http://www.lucent.com/m icro/n etcom/produc ts/
pdh.html#super_mapper.
2.1 M aj or Ca t e go ries
This data sheet is divided into six major categories with
sub-sections as follows:
Features
Product Desc r ipt ion
Features
Preface
Overview
Interface Specifications
Pin Information
Electrical Characteristics
Timing Characteristics
Ordering Information
Register Descriptions
Microprocessor Interface Registers
TMUX Registers
SPE Mapper Registers
VT/UT Mapper Registers
M13/M23 MUX/deMUX Registers
28-Channel Framer Registers
Cross Connect (XC) Registers
Digital Jitter Attenuation Registers
Test Pattern Generation/Detection Registers
Functional Descriptions
Microprocessor Interface Description
TMUX Registers Description
SPE Mapper Registers Description
VT/UT Mapper Registers Description
M13/M23 MUX/deMUX Registers Description
28-Channel Framer Registers Description
Cross Connec t (XC) Registers Description
Digital Jitter Attenuation Registers Description
Test Pattern Generation/Det ection Registers De-
scription
Applications
Applicatio n Block Diagrams and Descriptions
2.2 N aming Conventio n fo r Registers and
Parameters
Ther e are many pro visioning register s for controlling
the Super Mapper . A naming convention for all regis-
ters and parameters (bit name s) is followed throughout
this dat a s heet. A prefix is attached to the base name
of each register or parameter, depending on which
functional section the register or parameter is associ-
ated with:
SMPR_, for the Microproc essor Interface
TMUX_, for the TMUX
SPE_, for the SPE Mapper
VT_, for the VT/VC Mapper
M13_, for the M13/M23 MUX/deMUX
FRM_, for the 28-Channel Framer
XC_, for the Cross Connect
DJA_, for the Digital Jitter Attenuator
TPG_ a nd TPM_, for the Test-Pat tern Generator/
Detection
A su ffix is appended to the base name of three com-
mon param eters :
_IS, for i nterr upt s i gnal.
_IM, for interrupt m as k.
_SWRS, fo r software reset.
7Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
2 Preface (continued)
2. 3 Overview
The SONET/SDH Super Mapper device integrates the S ONE T/ S DH line, path, and tributary termination functions
with M13 multip lex functions and the primary rate framing fun ction. It is d esigned to drive an OC-3/ST M-1 optical
signal directly or to a llow for modular growth in termina l o r add /drop applications.
It provides a versatile interface for all STS-3/STM- 1 and ST S-1 termination applications in point-to-point sc ena rios
and for ring applic ations. This chip can be used in tributary shelf applications for up to 28 T1 or J1 or 21 E1 line
cards prov iding all possible mappings into SON ET /SDH. Because of the flexib ility of the mappings, s oftware
upgrades f rom M13 mapped connections t o VT/TU mapped connec tions a re possible. This device ca n also be
use d for DS3/DS2 applications.
A single Super Mapper is capable of pr oc es sing the aggregate bandwidth of one ST S-1 or DS3. By communicating
to two other mate devic es via the telecom bus inter face, the Super Mapper is capable of term inat ing a full
STS-3/STM-1 signal.
5-8923(F)
Figure 1 . Functional D i agr am of Sup er Mapper
TMUX
SPE/
AU-3
MAPPER
M13
MUX
VT/VC
MAPPER
TEST
PATTERN
GEN/MON
FRAMER
BANK
DIGITAL
JITTER
ATTENUATOR
T1/E1
DS2
DS3
CROSS
CONNECT
OVERHEAD
STS-1/
STS-3
MSP
MPU INTERFACE
AND CONTROL
MPU INTERFACE
TE LECO M BUS
MAPPI N G &
DS3
T1/E1/J1
SYS TEM INTERFACE
DS0/E0
DS1 (X29)
DS2 (X7)
DS1XCLK
DS1/E1
DS3/STS1
TPOAC
RPOAC
TTOAC
RTOAC
LOPOHOUT
LOPOHIN
TCB AND TDL
LINERX
LINETX
MISC
DS2AISCLK
SYS TERMINATION MULTIPLEXING FRAMING
STM-1
AU-3
1 + 1
CLK
SYNC
RCB AND RDL
E1XCLK
(NSMI MODE)
(NSMI MODE)
/ E1 ( X22 )
(XN)
BUS
8Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
Interface Specifications
3 Pin Informa ti on
Ta ble of Conte nts
Contents Page
3 Pin Information ..................................................................................................................................................... 8
3.1 456-Pin PBGA Pin Diagram ......................... ....... ............ ....... .......... ....... ......... .......... ....... ............................. 9
3. 2 Pin Assignment s ..... ............................ ....................................................................... .................................... 9
3. 3 Pin Descriptio n s . ............................................... ........................................................................................... 15
3.3 .1 High -speed I/O Pin Description s ........................................................................................................ 15
3.3 .2 Protection Switch I/O Pin Description ................................................................................................ 16
3.3.3 Telecom Bus (Low-speed I/O) Pin Description ...... . ....................... ..................... . .................. . ........... 16
3.3 .4 TOAC and POAC ............................................................................................................................... 19
3.3 .5 Miscellane ous Signals ........................................................................................................................ 20
3.3 .6 DS3 Port ............................................................................................................................................. 20
3.3 .7 M13 Multip lexer/Demultiplexer Receive Section ................................................................................ 22
3.3.8 Low-Order Path Overhead Access Channel ...................................................................................... 23
3.3 .9 Framer PLL ........................................................................................................................................ 27
3. 3. 1 0 Test Pins ..... ................................. .................................................... ................................................ 30
3. 4 Outline Diagram ......................................... .................................................................................................. 32
3.4 .1 456-Pin PBGA .................................................................................................................................... 32
List o f Fig ures
Figure 2 . Pin Diagram of 456-Pin PBGA (Bott om View).................... ..... ..... ... .................. ..... ... ................................ 9
Fig ure 3. Protection Switch..................................................................................................................................... 16
Fig ure 4. DS1/E1 to DXC Bl ock Diag ram............................................................................................................... 23
List of Ta bles
Table 1 . Pin Assignments for 456-Pin PBGA by Pin Number Orde r ........................ ... .................. ..... ..................... 9
Table 2. Pin Assign ments for 456-Pin PBGA by Signal Name ....... ............................ .......... ................................. 12
Tabl e 3. Hi g h -sp e ed I/ O Pin Descriptio n s ............................................................................................................. 15
Tabl e 4. Protecti o n Switch I/O Pin Descri p tion ...................................................................................................... 16
Table 5 . Telecom Bus (Low-spe ed I/O) Pin Description ........................................................................................ 17
Tabl e 6. T OA C and POAC ........................................... ......................................................................................... 19
Table 7. Mi s ce llaneous Signals ................................................. ............................................................................ 20
Table 8. DS3 Port .................................................................................................................................................. 21
Table 9 . DS3 Port, C-Bit, and Datalink Access ....... ................ ................... ..................... ...................................... 22
Table 1 0. M 13 Multiplexer/Demultiplexer Receive Section ................................................................................... 22
Tab le 11. Low-Ord er Path Overhead Access C hannel ......................................................................................... 23
Table 1 2. M ultifunction System Interface Transmit Path Direction ........................................................................ 24
Table 13. Framer PLL ............................................................................................................................................ 27
Table 1 4. Microprocessor Interfaces ..................................................................................................................... 28
Table 15. General Pu rpose Interface .................................................................................................................... 29
Table 16. Test Pins ................................................................................................................................................ 30
Table 17. CDR Power ............................................................................................................................................ 30
Tabl e 18. L VDS Control Pin s .......................... ....................................................................... .. .............................. 30
9Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
3.1 456-Pin PBGA Pin Diagram
5-8931(F)
Figure 2. Pin Di a gr a m of 456-Pin PBGA (Bott om View)
3.2 P in Assignm ents
r
Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Or der
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Na me
A1 VDD A21 VSS B15 LINETXDATA2 C9 LINERXSYNC24
A2 VSS A22 VDD B16 LINETXSYNC4 C10 LINERXCLK25
A3 LINERXDATA17 A23 LINETXSYNC12 B17 LINETXSYNC5 C11 LINERXCLK26
A4 LINERXDATA18 A24 LINETXSYNC13 B18 LINETXSYNC6 C12 LINERXCLK27
A5 VDD A25 VSS B19 LINETXCLK7 C13 LINERXDATA28
A6 VSS A26 VDD B20 LINETXDATA8 C14 LINETXSYNC2
A7 LINERXDATA21 B1 VSS B21 LINETXSYNC10 C15 LINETXCLK3
A8 LINERXSYNC23 B2 LINERXCLK15 B22 LINETXDATA10 C16 LINETXCLK4
A9 LINERXCLK24 B3 LINERXSYNC18 B23 LINETXDATA11 C17 LINETXCLK5
A10 VDD B4 LINERXSYNC19 B24 LINETXDATA12 C18 LINETXDATA6
A11 VSS B5 LINERXSYNC20 B25 LINETXCLK13 C19 LINETXSYNC8
A12 LINERXDATA27 B6 LINERXDATA20 B26 VSS C20 LINETXCLK9
A13 LINERXSYNC29 B7 LINERXSYNC22 C1 LINERXSYNC15 C21 LINETXCLK10
A14 LINETXDATA1 B8 LINERXCLK23 C2 LINERXDATA14 C22 LINETXCLK11
A15 LINETXSYNC3 B9 LINERXDATA24 C3 LINERXCLK17 C23 LINETXCLK12
A16 VSS B10 LINERXDATA25 C4 LINERXCLK18 C24 LINETXCLK14
A17 VDD B11 LINERXDATA26 C5 LINERXCLK19 C25 LINETXSYNC15
A18 LINETXCLK6 B12 LINERXSYNC28 C6 LINERXCLK20 C26 LINETXDATA14
A19 LINETXDATA7 B13 LINERXCLK29 C7 LINERXCLK21 D1 LINERXSYNC14
A20 LINETXSYNC9 B14 LINETXCLK1 C8 LINERXDATA22 D2 LINERXDATA13
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
17
18
19
20
23
24
25
26
11
21
22
A1
BALL
CORNER
10 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Na me
D3 LINERXCLK14 E21 LINETXDATA13 J25 LINETXDATA21 N1 LINERXDATA3
D4 VSS E22 VDD J26 LINETXCLK21 N2 LINERXCLK3
D5 LINERXDATA19 E23 LINETXDATA16 K1 VDD N3 LINERXSYNC4
D6 LINERXSYNC21 E24 LINETXCLK16 K2 LINERXSYNC7 N4 LINERXSYNC3
D7 LINERXCLK22 E25 LINETXSYNC17 K3 LINERXCLK7 N5 SCAN_EN
D8 LINERXDATA23 E26 VDD K4 LINERXDATA6 N11 VSS
D9 LINERXSYNC25 F1 VSS K5 LINERXSYNC16 N12 VSS
D10 LINERXSYNC26 F2 LINERXSYNC12 K22 DS3NEGDATAIN N13 VSS
D11 LINERXSYNC27 F3 LINERXCLK12 K23 LINETXSYNC23 N14 VSS
D12 LINERXCLK28 F4 LINERXDATA11 K24 LINETXCLK22 N15 VSS
D13 LINERXDATA29 F5 LINERXDATA15 K25 LINETXDATA22 N16 VSS
D14 LINETXSYNC1 F22 LINETXSYNC14 K26 VDD N22 DS3DATAOUTCLK
D15 LINETXCLK2 F23 LINETXSYNC18 L1 VSS N23 LINETXDATA26
D16 LINETXDATA3 F24 LINETXCLK17 L2 LINERXSYNC6 N24 LINETXDATA25
D17 LINETXDATA4 F25 LINETXDATA17 L3 LINERXCLK6 N25 LINETXCLK26
D18 LINETXDATA5 F26 VSS L4 LINERXDATA5 N26 LINETXSYNC26
D19 LINETXSYNC7 G1 LINERXSYNC11 L5 VDD P1 LINERXSYNC2
D20 LINETXCLK8 G2 LINERXDATA10 L11 VSS P2 LINERXCLK2
D21 LINETXDATA9 G3 LINERXCLK11 L12 VSS P3 LINERXDATA1
D22 LINETXSYNC11 G4 LINERXCLK10 L13 VSS P4 LINERXDATA2
D23 VSS G5 VSS L14 VSS P5 IDDQ
D24 LINETXCLK15 G22 VSS L15 VSS P11 VSS
D25 LINETXSYNC16 G23 LINETXCLK19 L16 VSS P12 VSS
D26 LINETXDATA15 G24 LINETXCLK18 L22 VDD P13 VSS
E1 VDD G25 LINETXSYNC19 L23 LINETXSYNC24 P14 VSS
E2 LINERXDATA12 G26 LINETXDATA18 L24 LINETXCLK23 P15 VSS
E3 LINERXCLK13 H1 LINERXDATA9 L25 LINETXDATA23 P16 VSS
E4 LINERXSYNC13 H2 LINERXCLK9 L26 VSS P22 DS3NEGDATAOUT
E5 VDD H3 LINERXSYNC10 M1 LINERXSYNC5 P23 LINETXSYNC27
E6 LINERXSYNC17 H4 LINERXSYNC9 M2 LINERXDATA4 P24 LINETXSYNC28
E7 VSS H5 LINERXDATA16 M3 LINERXCLK5 P25 LINETXCLK27
E8 TDLDATA H22 RDLDATA M4 LINERXCLK4 P26 LINETXDATA27
E9 TDLCLK H23 LINETXDATA20 M5 SCAN_MODE R1 RLSDATA7
E10 DS2AISCLK H24 LINETXDATA19 M11 VSS R2 LINERXSYNC1
E11 VDD H25 LINETXCLK20 M12 VSS R3 RLSDATA6
E12 TCBDATA H26 LINETXSYNC20 M13 VSS R4 LINERXCLK1
E13 TCBCLK J1 LINERXCLK8 M14 VSS R5 TCK
E14 TCBSYNC J2 LINERXSYNC8 M15 VSS R11 VSS
E15 RCBDATA J3 LINERXDATA8 M16 VSS R12 VSS
E16 VDD J4 LINERXDATA7 M22 DS3POSDATAIN R13 VSS
E17 RCBCLK J5 LINERXCLK16 M23 LINETXCLK25 R14 VSS
E18 RCBSYNC J22 DS3DATAINCLK M24 LINETXCLK24 R15 VSS
E19 RDLCLK J23 LINETXSYNC22 M25 LINETXSYNC25 R16 VSS
E20 VSS J24 LINETXSYNC21 M26 LINETXDATA24 R22 DS3POSDATAOUT
Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order (continued)
11Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Na me
R23 LINETXCLK28 W5 TMSN AB19 RXDATAEN AD11 RPSC155N
R24 LINETXCLK29 W22 TXDATAEN AB20 VDD AD12 REF14
R25 LINETXDATA28 W23 DATA4 AB21 MODE2_PLL AD13 TPSC155N
R26 LINETXSYNC29 W24 DATA7 AB22 VDD AD14 ECSEL
T1 VSS W25 DATA5 AB23 ADDR19 AD15 TSTSFTLD
T2 RLSDATA4 W26 DATA6 AB24 INTN AD16 DS1XCLK
T3 RLSDATA3 Y1 TLSDATA2 AB25 DATA15 AD17 MPMODE
T4 RLSDATA5 Y2 TLSDATA3 AB26 VDD AD18 DSN
T5 VDD Y3 TLSDATA1 AC1 RLSSYNC52 AD19 ADDR3
T11 VSS Y4 TLSDATA4 AC2 RLSC52 AD20 ADDR7
T12 VSS Y5 VSS AC3 TLSC52 AD21 ADDR10
T13 VSS Y22 VSS AC4 VSS AD22 VDDD_PLL
T14 VSS Y23 DATA8 AC5 TPOACSYNC AD23 VSSS_PLL
T15 VSS Y24 DATA11 AC6 AUTO_AIS1 AD24 CLKIN_PLL
T16 VSS Y25 DATA9 AC7 RHSCP AD25 ADDR16
T22 VDD Y26 DATA10 AC8 THSSYNCP AD26 ADDR15
T23 LINETXDATA29 AA1 VSS AC9 VDDA_CDR AE1 VSS
T24 RSTN AA2 TLSCLK AC10 RPSC155P AE2 TTOACDATA
T25 PMRST AA3 TLSPAR AC11 REF10 AE3 RPOACCLK
T26 VSS AA4 TLSDATA0 AC12 TPSC155P AE4 TPOACCLK
U1 VDD AA5 RTOACSYNC AC13 LOPOHCLKIN AE5 LOSEXT
U2 RLSDATA1 AA22 ADDR13 AC14 LOPOHDATAIN AE6 AUTO_AIS2
U3 RLSDATA0 AA23 DATA12 AC15 ETOGGLE AE7 RHSDN
U4 RLSDATA2 AA24 DATA14 AC16 TSTMUX0 AE8 THSCN
U5 TDI AA25 DATA13 AC17 E1XCLK AE9 THSDN
U22 PHASEDETDOWN AA26 VSS AC18 CSN AE10 RPSD155N
U23 DTN AB1 VDD AC19 ADDR0 AE11 CTAPTH
U24 PAR1 AB2 TLSSPE AC20 ADDR4 AE12 RESLO
U25 PAR0 AB3 TLSV1 AC21 ADDR8 AE13 TPSD155N
U26 VDD AB4 TLSJ0J1V1 AC22 ADDR12 AE14 BYPASS
V1 RLSSPE AB5 VDD AC23 VSS AE15 EXDNUP
V2 RLSPAR AB6 TTOACCLK AC24 ADDR17 AE16 TSTMUX1
V3 RLSJ0J1V1 AB7 VSS AC25 APS_INTN AE17 MPCLK
V4 RLSCLK AB8 TRSTN AC26 ADDR18 AE18 ADSN
V5 TDO AB9 IC3STATEN AD1 RTOACCLK AE19 ADDR1
V22 PHASEDETUP AB10 CTAPRH AD2 TLSSYNC52 AE20 ADDR5
V23 DATA0 AB11 VDD AD3 RTOACDATA AE21 ADDR9
V24 DATA3 AB12 VSSA_CDR AD4 RPOACDATA AE22 ADDR11
V25 DATA1 AB13 CTAPRP AD5 TPOACDATA AE23 VDDS_PLL
V26 DATA2 AB14 LOPOHVALIDIN AD6 AUTO_AIS3 AE24 MODE1_PLL
W1 TLSDATA6 AB15 LOPOHCLKOUT AD7 RHSFSYNCN AE25 ADDR14
W2 TLSDATA7 AB16 VDD AD8 RHSCN AE26 VSS
W3 TLSDATA5 AB17 LOPOHDATAOUT AD9 THSSYNCN AF1 VDD
W4 RLSV1 AB18 LOPOHVALIDOUT AD10 RPSD155P AF2 VSS
Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order (continued)
12 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Na me
AF3 TTOACSYNC AF9 THSDP A15 TSTMODE AF21 VSS
AF4 RPOACSYNC AF10 VDD A16 VSS AF22 VDD
AF5 VDD AF11 VSS A17 VDD AF23 VSSA_PLL
AF6 VSS A12 REWSHI A18 RWMN AF24 MODE0_PLL
AF7 RHSDP AF13 TPSD155P A19 ADDR2
AF8 THSCP AF14 TSTPHASE AF20 ADDR6
Table 2. P in Assignments for 456-Pin PBGA by Signal Name
Signal Name Pin Signal Name Pin Signal Name Pin Sig nal Name Pin
ADDR0 AC19 CTAPRP AB13 ECSEL AD14 LINERXCLK24 A9
ADDR1 AE19 CTAPTH AE11 ETOGGLE AC15 LINERXCLK25 C10
ADDR2 AF19 DATA0 V23 EXDNUP AE15 LINERXCLK26 C11
ADDR3 AD19 DATA1 V25 IC3STATEN AB9 LINERXCLK27 C12
ADDR4 AC20 DATA2 V26 IDDQ P5 LINERXCLK28 D12
ADDR5 AE20 DATA3 V24 INTN AB24 LINERXCLK29 B13
ADDR6 AF20 DATA4 W23 LINERXCLK1 R4 LINERXDATA1 P3
ADDR7 AD20 DATA5 W25 LINERXCLK2 P2 LINERXDATA2 P4
ADDR8 AC21 DATA6 W26 LINERXCLK3 N2 LINERXDATA3 N1
ADDR9 AE21 DATA7 W24 LINERXCLK4 M4 LINERXDATA4 M2
ADDR10 AD21 DATA8 Y23 LINERXCLK5 M3 LINERXDATA5 L4
ADDR11 AE22 DATA9 Y25 LINERXCLK6 L3 LINERXDATA6 K4
ADDR12 AC22 DATA10 Y26 LINERXCLK7 K3 LINERXDATA7 J4
ADDR13 AA22 DATA11 Y24 LINERXCLK8 J1 LINERXDATA8 J3
ADDR14 AE25 DATA12 AA23 LINERXCLK9 H2 LINERXDATA9 H1
ADDR15 AD26 DATA13 AA25 LINERXCLK10 G4 LINERXDATA10 G2
ADDR16 AD25 DATA14 AA24 LINERXCLK11 G3 LINERXDATA11 F4
ADDR17 AC24 DATA15 AB25 LINERXCLK12 F3 LINERXDATA12 E2
ADDR18 AC26 DS1XCLK AD16 LINERXCLK13 E3 LINERXDATA13 D2
ADDR19 AB23 DS2AISCLK E10 LINERXCLK14 D3 LINERXDATA14 C2
ADSN AE18 DS3DATAINCLK J22 LINERXCLK15 B2 LINERXDATA15 F5
APS_INTN AC25 DS3DATAOUTCLK N22 LINERXCLK16 J5 LINERXDATA16 H5
AUTO_AIS1 AC6 DS3NEGDATAIN K22 LINERXCLK17 C3 LINERXDATA17 A3
AUTO_AIS2 AE6 DS3NEGDATAOUT P22 LINERXCLK18 C4 LINERXDATA18 A4
AUTO_AIS3 AD6 DS3POSDATAIN M22 LINERXCLK19 C5 LINERXDATA19 D5
BYPASS AE14 DS3POSDATAOUT R22 LINERXCLK20 C6 LINERXDATA20 B6
CLKIN_PLL AD24 DSN AD18 LINERXCLK21 C7 LINERXDATA21 A7
CSN AC18 DTN U23 LINERXCLK22 D7 LINERXDATA22 C8
CTAPRH AB10 E1XCLK AC17 LINERXCLK23 B8 LINERXDATA23 D8
Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order (continued)
13Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
Signal Name Pin Signal Name Pin Signal Name Pin Sig nal Name Pin
LINERXDATA24 B9 LINETXCLK7 B19 LINETXDATA19 H24 LOPOHCLKOUT AB15
LINERXDATA25 B10 LINETXCLK8 D20 LINETXDATA20 H23 LOPOHDATAIN AC14
LINERXDATA26 B11 LINETXCLK9 C20 LINETXDATA21 J25 LOPOHDATAOUT AB17
LINERXDATA27 A12 LINETXCLK10 C21 LINETXDATA22 K25 LOPOHVALIDIN AB14
LINERXDATA28 C13 LINETXCLK11 C22 LINETXDATA23 L25 LOPOHVALIDOUT AB18
LINERXDATA29 D13 LINETXCLK12 C23 LINETXDATA24 M26 LOSEXT AE5
LINERXSYNC1 R2 LINETXCLK13 B25 LINETXDATA25 N24 MODE0_PLL AF24
LINERXSYNC2 P1 LINETXCLK14 C24 LINETXDATA26 N23 MODE1_PLL AE24
LINERXSYNC3 N4 LINETXCLK15 D24 LINETXDATA27 P26 MODE2_PLL AB21
LINERXSYNC4 N3 LINETXCLK16 E24 LINETXDATA28 R25 MPCLK AE17
LINERXSYNC5 M1 LINETXCLK17 F24 LINETXDATA29 T23 MPMODE AD17
LINERXSYNC6 L2 LINETXCLK18 G24 LINETXSYNC1 D14 PAR0 U25
LINERXSYNC7 K2 LINETXCLK19 G23 LINETXSYNC2 C14 PAR1 U24
LINERXSYNC8 J2 LINETXCLK20 H25 LINETXSYNC3 A15 PHASEDETDOWN U22
LINERXSYNC9 H4 LINETXCLK21 J26 LINETXSYNC4 B16 PHASEDETUP V22
LINERXSYNC10 H3 LINETXCLK22 K24 LINETXSYNC5 B17 PMRST T25
LINERXSYNC11 G1 LINETXCLK23 L24 LINETXSYNC6 B18 RCBCLK E17
LINERXSYNC12 F2 LINETXCLK24 M24 LINETXSYNC7 D19 RCBDATA E15
LINERXSYNC13 E4 LINETXCLK25 M23 LINETXSYNC8 C19 RCBSYNC E18
LINERXSYNC14 D1 LINETXCLK26 N25 LINETXSYNC9 A20 RDLCLK E19
LINERXSYNC15 C1 LINETXCLK27 P25 LINETXSYNC10 B21 RDLDATA H22
LINERXSYNC16 K5 LINETXCLK28 R23 LINETXSYNC11 D22 REF10 AC11
LINERXSYNC17 E6 LINETXCLK29 R24 LINETXSYNC12 A23 REF14 AD12
LINERXSYNC18 B3 LINETXDATA1 A14 LINETXSYNC13 A24 RESHI AF12
LINERXSYNC19 B4 LINETXDATA2 B15 LINETXSYNC14 F22 RESLO AE12
LINERXSYNC20 B5 LINETXDATA3 D16 LINETXSYNC15 C25 RHSCN AD8
LINERXSYNC21 D6 LINETXDATA4 D17 LINETXSYNC16 D25 RHSCP AC7
LINERXSYNC22 B7 LINETXDATA5 D18 LINETXSYNC17 E25 RHSDN AE7
LINERXSYNC23 A8 LINETXDATA6 C18 LINETXSYNC18 F23 RHSDP AF7
LINERXSYNC24 C9 LINETXDATA7 A19 LINETXSYNC19 G25 RHSFSYNCN AD7
LINERXSYNC25 D9 LINETXDATA8 B20 LINETXSYNC20 H26 RLSC52 AC2
LINERXSYNC26 D10 LINETXDATA9 D21 LINETXSYNC21 J24 RLSCLK V4
LINERXSYNC27 D11 LINETXDATA10 B22 LINETXSYNC22 J23 RLSDATA0 U3
LINERXSYNC28 B12 LINETXDATA11 B23 LINETXSYNC23 K23 RLSDATA1 U2
LINERXSYNC29 A13 LINETXDATA12 B24 LINETXSYNC24 L23 RLSDATA2 U4
LINETXCLK1 B14 LINETXDATA13 E21 LINETXSYNC25 M25 RLSDATA3 T3
LINETXCLK2 D15 LINETXDATA14 C26 LINETXSYNC26 N26 RLSDATA4 T2
LINETXCLK3 C15 LINETXDATA15 D26 LINETXSYNC27 P23 RLSDATA5 T4
LINETXCLK4 C16 LINETXDATA16 E23 LINETXSYNC28 P24 RLSDATA6 R3
LINETXCLK5 C17 LINETXDATA17 F25 LINETXSYNC29 R26 RLSDATA7 R1
LINETXCLK6 A18 LINETXDATA18 G26 LOPOHCLKIN AC13 RLSJ0J1V1 V3
Table 2. P in Assignments for 456-Pin PBGA by Signal Name (continued)
14 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
Signal Name Pin Signal Name Pin Signal Name Pin Sig nal Name Pin
RLSPAR V2 TLSPAR AA3 VDD AB11 VSS N12
RLSSPE V1 TLSSPE AB2 VDD AB16 VSS N13
RLSSYNC52 AC1 TLSSYNC52 AD2 VDD AB22 VSS N14
RLSV1 W4 TLSV1 AB3 VDD AB26 VSS N15
RPOACCLK AE3 TMSN W5 VDD AF1 VSS N16
RPOACDATA AD4 TPOACCLK AE4 VDD AF5 VSS P11
RPOACSYNC AF4 TPOACDATA AD5 VDD AF10 VSS P12
RPSC155N AD11 TPOACSYNC AC5 VDD AF17 VSS P13
RPSC155P AC10 TPSC155N AD13 VDD AF22 VSS P14
RPSD155N AE10 TPSC155P AC12 VDD AF26 VSS P15
RPSD155P AD10 TPSD155N AE13 VDDA_CDR AC9 VSS P16
RSTN T24 TPSD155P AF13 VDDD_PLL AD22 VSS R11
RTOACCLK AD1 TRSTN AB8 VDDS_PLL AE23 VSS R12
RTOACDATA AD3 TSTMODE AF15 VSS A2 VSS R13
RTOACSYNC AA5 TSTMUX0 AC16 VSS A6 VSS R14
RWN AF18 TSTMUX1 AE16 VSS A11 VSS R15
RXDATAEN AB19 TSTPHASE AF14 VSS A16 VSS R16
SCAN_EN N5 TSTSFTLD AD15 VSS A21 VSS T1
SCAN_MODE M5 TTOACCLK AB6 VSS A25 VSS T11
TCBCLK E13 TTOACDATA AE2 VSS B1 VSS T12
TCBDATA E12 TTOACSYNC AF3 VSS B26 VSS T13
TCBSYNC E14 TXDATAEN W22 VSS D4 VSS T14
TCK R5 VDD A1 VSS D23 VSS T15
TDI U5 VDD A5 VSS E7 VSS T16
TDLCLK E9 VDD A10 VSS E20 VSS T26
TDLDATA E8 VDD A17 VSS F1 VSS Y5
TDO V5 VDD A22 VSS F26 VSS Y22
THSCN AE8 VDD A26 VSS G5 VSS AA1
THSCP AF8 VDD E1 VSS G22 VSS AA26
THSDN AE9 VDD E5 VSS L1 VSS AB7
THSDP AF9 VDD E11 VSS L11 VSS AB20
THSSYNCN AD9 VDD E16 VSS L12 VSS AC4
THSSYNCP AC8 VDD E22 VSS L13 VSS AC23
TLSC52 AC3 VDD E26 VSS L14 VSS AE1
TLSCLK AA2 VDD K1 VSS L15 VSS AE26
TLSDATA0 AA4 VDD K26 VSS L16 VSS AF2
TLSDATA1 Y3 VDD L5 VSS L26 VSS AF6
TLSDATA2 Y1 VDD L22 VSS M11 VSS AF11
TLSDATA3 Y2 VDD T5 VSS M12 VSS AF16
TLSDATA4 Y4 VDD T22 VSS M13 VSS AF21
TLSDATA5 W3 VDD U1 VSS M14 VSS AF25
TLSDATA6 W1 VDD U26 VSS M15 VSSA_CDR AB12
TLSDATA7 W2 VDD AB1 VSS M16 VSSA_PLL AF23
TLSJ0J1V1 AB4 VDD AB5 VSS N11 VSSS_PLL AD23
Table 2. P in Assignments for 456-Pin PBGA by Signal Name (continued)
15Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
3.3 P in Descriptions
3.3.1 High-speed I/O Pin Descriptions
The high spe ed I/O co nsists of five LVDS signals (10 pins) that connect the Su per Mapper to an external OC-3
optics device. I t e xchanges an STS-3 or STM-1 signal between the TMUX and an OC-3 transceiver. The Super
Mapper is capable of recovering a clock f rom the receive data, or can accept a clock recovered externally by the
optics device. I f internal c lock recove r y i s used, the Super Mapper uses TH SCP/N as a reference.
The high-speed I/O may also r un at 52.8 4 Mbits /s in applicati ons that terminate an STS-1 or EC-1 s ignal. In this
case, the (electri cal) line signals are typically terminat ed by a line int erfa c e unit (LIU) chip. The operating speed of
the high-speed I/O is determined by T MUX_RCV_TX _MODE.
Table 3. Hi gh-speed I/O Pin Descriptions
Pin Symbol Type I/O Description
AF7,
AE7 RHSDP
RHSDN LVDS I Receive High-speed Data. 155.52 M bits/s serial data input in STS-1 or
STM-1 format, or 51.84 Mbits/s data in STS-1 format. If RHSD is not used
(in a slave Super Mapper, for example) the P input should be pulled high
through a 1 k resistor and the N input pulled low through a 1 k resistor.
RHSD is ty picall y provided by and OC-3 receiver, an STS-1 line interfac e
unit or an h igher order (e.g. ST S-12) demultiplexing ch ip.
AC7,
AD8 RHSCP
RHSCN LVDS I Receive High-speed Clock. 155.52 or 51.84 MHz clock for STS-3 or
STS-1 input data. Typically supplied by an external OC-3 opto-electonic
device, or an STS-1/EC1 line interface unit, synchronous with R H SD. I f
the internal clock recovery (CDR) feat ure is enabled, R HC is not required
and should be c onnected to t hrough 1 k resistors to VDD (RHCP input)
and VSS (RHCN input).
AF8,
AE8 THSCP
THSCN LVDS I Transmit High-speed Clo ck. Transmit 155.52 MHz or 51.84 MHz clock.
Maste r clock for the transmit sections of the TMUX, telecom bus, SPE ,
and VT mappers. THSC is also used as a reference clock for the receive
CDR, if it is being used.
AC8,
AD9 THSSYNCP
THSSYNCN LVDS I Transmit High-speed Frame Synchroniz ation. An optional input that
may be used to specify the position of the transmit STS-3, STM-1, or
STS-1 frame. THSSYNC m ark s the position of bit 1 of the A1 byte, i.e.,
the first bit of the overhead in the THSD output. If THSSYNC is not used,
the P input should be pulled high through a 1 k res istor, and the N input
pulled low through a 1 k resistor. A typical application f or this pin may be
to synchronize a group of Super Mappers, so that their ST S-3 outputs
may be multiplexed into an STS-12 signal.
AF9,
AE9 THSDP
THSDN LVDS O Transmit High-speed Data. Transmit output for STS-3, STM-1, or STS-1
serial data. Ty pically connected to an OC-3 module or an LIU, if operating
in STS-1 mode. May also be connected to a higher order multiplexing
devi ce, STS-12 for example.
16 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
3.3.2 Protection Switch I/O Pin Description
The prote ction switch I/O provides additional copies of the high-speed interf ace signals so that various protection
schemes may be implemented. The protecti on interf ace ma y be used when the high-speed interface is operating in
both STS-3 and STS-1 modes. If the protection port is not used, the input clo ck and dat a may be left unconnected,
tied to power ( P inputs), or ground (N i nput s ) through 1 kresistors. Unused protection outputs should be l ef t
unconnected.
Table 4. Pr otection Switch I/ O Pin Descri ption
Figure 3 . Protection Sw itch
3.3.3 Telecom Bus (Low-speed I/O) Pin Description
The telecom bus on the Super Mapper is us ed for interconnecting STS-1 signals. It has two eight-bit data buses,
one for upstream data and one for downstream data, plus clock and frame indication signals for each bus. T he tele-
com bus can operate at 19.44 MHz (space for three S TS-1 signals ) or 6.48 MHz (space for 1 STS-1 signal) .
Super Mappers in OC - 3 applicati ons are typi cally connected together using the telecom bus, and the bus is config-
ured to operate at 19.44 MHz.
Pin Symbol Type I/O Description
AD10,
AE10 RPSD155P
RPSD155N LVDS I Receive Protection Data. Receive side high-speed serial data input
from protection board.
AC10,
AD11 RPSC155P
RPSC155N LVDS I Receive Protection Clock. Receive side high-speed cl ock input from
pro tection board .
AF13,
AE13 TPSD155P
TPSD155N LVDS O Transmit Protection Data. Transmit side high-speed serial data output
to protection board.
AC12,
AD13 TPSC155P
TPSC155N LVDS O Transmit Protection Clock. Transmit side high-speed clock output t o
pro tection board .
STS-3 TRANSMIT
FRAMER
STS-3 RECEIVE
FRAMER
RPSMUXSEL1
HIGH-SPEED
PROTECTION
INPUTS
TPSMUXSEL2
HIGH-SPEED
PROTECTION
OUTPUTS
TPSMUXSEL3
HI GH-SPEE D I/O
17Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
Table 5. Telecom Bus (Low-speed I/O) P in Description
Pin Symbol Type I/O Description
R1, R3, T4, T2 ,
T3, U4, U2, U3 RLSDATA[7:0] I/O Receive Low-speed Data (7:0), Pa rallel Data Bus. Used
to connect the downstream ST S-1 signa ls from the master
to the slave devices. In master mode, RLSDATA is an out-
put bus, eight bits wide. It contains all the received data for
distribution to the two slave devices. Connect to
RLS DATA(7:0) on the slave devi ces. In slave mode, thes e
pins are inputs and should be connect ed to the
RLSD ATA(7:0) outputs on the master. RLSD ATA contains
three byte-interleaved STS-1 time slots. The slot use d b y
each SPE mapper in the slaves and the master device, is
determ ined by programing the SPE_RS TS3_TMSLOT reg-
ister bits.
V4 RLSCLK I/O Receive Low-speed Clock. Th is is a 19.44 M Hz or
6.48 MHz clock for the recei ve low speed data b i ts. In
19.44 MHz m ast er m ode, this is a 19.44 MHz clock output
for distribution to the two slave devices. Connect to
RLSCLK on the slav es. RLSCLK is an input signal on sla ve
devices.
Note: As outputs, these pins have 6 mA drive c apability.
V2 RLSPAR I/O Receive Lo w-speed Parity . Receive data parity bit, ma y be
configured for odd or even parity generat ed on
RLSDATA(7:0). The defaul t is odd parity; it may be set to
even by setting bit 2 of the register at 0x4001B an output in
master mode and an input in slave mode. Connect the
RSLPA R (out put) on the master to T he RLS PAR (input)
pins on the slaves.
V1 RLSSPE I/O Receive Low-speed SPE Marker. Receive synchronous
payl oad envelop e timing indicator. It is high, while there is
SPE data on the RLSDATA(7:0) output bus. Connect to
RLSSPE on the slaves. RLSSPE is an input on slave
devices.
V3 RLSJ0J1V1 I/O Receive Low-speed J0/J1/ V1 Marker. On the master
device, this is an output that is high while J0-1, J1
(1, 2 and 3) and V1 (1, 2 and 3) bytes are pre sent on the
RLSD ATA b us. Connect to RLSJ0J1V1 on the slav es, which
is an inp u t.
W4 RLSV1 I/O Receive Low-speed V1 Marker. Receive V1 timing indica-
tor. On the master this is an output that is high while the V1
byt es (1, 2 and 3) are present on RLSD ATA(7:0) output bus .
Connect to RLSV1 on the slaves.
18 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
Table 5. Telecom Bus (Low-speed I/O) Pin Description (continued)
Pin Symbol Type I/O Description
W2, W1, W3, Y4,
Y2, Y1, Y3, AA4 TLSDATAI[7:0] I/O Transmit Low-speed Data (7:0). This i s a parallel data
bus. It is used to connect the upstream STS-1 signals from
the slave devices to the master device. In master mo d e,
TLSDATA is an input bus, eight bits wide. It contains all the
transmit STS-1 data from the slave devices. In slave mode,
these pins are outputs and should be conne ct e d t o t he
TLSDATA(7:0) inputs on the master. TLSDATA contains
three byte-interleaved STS-1 time slots. The slot used by
each SPE mapper in the slaves and the master device, is
determ ined by programing the SPE_TSTS3_TMSLOT reg-
ister bits.
AA2 TLSCLK I/O Transm it Low-speed Clock. This is a 19 .44 M H z or
6.48 MHz clock for the TLSDATA(7:0) bits. TLSCLK is an
output on a master Super Mapper and an input on a slave.
Note: As outputs, these pins have 6 mA drive c apability.
AA3 TLSPAR I/O Transmit Low-speed Parity. This parity bit is generated on
the TLSDATA(7:0) bits output f rom slav e devices and input
to the master Super Mapper. May be configured for odd or
even parity generation or for checking.
AB2 TLSSPE I/O Transm it Low-speed SPE Marker. High while the STS-1
payloads are present on th e TLSDAT A(7:0) bus. Low while
the STS-1 overhead is present on the TLSDATA(7:0) bus.
An output from the master and input on the slaves.
AB4 TLSJ0J1V1 I/O Transm it Low-speed J 0/J1/V1 Marker. Transmit J0, J1, or
V1, timing i ndicat or. High while the J0, J1 or V1 bits are
present on the TLSDATA(7:0) bus. An output on the master
and input on slaves.
AB3 TLSV1 I/O Transmit Low-speed V1 Marker 3. Tr ansmit V1 timing indi-
cator. High while the V1 bits are present on the
TLSDATA(7:0) bus. An output on the master and input on
slaves.
AC2 RLSC52 I/O Receive Low-speed Clock. When in output (master)
mode, it is the receive side of the 51.84 MHz clock output,
synchronous to the receive high-speed input clock (data).
When in input (slave) mode, it receive s a 51.84 MHz clock
input, s y nc hronous to the receive high-speed input clock
(data).
Note: As outputs, these pins have 6 mA drive c apability.
AC1 RLSSYNC52 I/O Receive Low-speed Sync. When in output (master) mode,
it is the receive side frame sync output sy nchronous to a
51.84 MH z o utp ut. When in input mode, it is the receive
side frame sync i nput sy nchronous to a 51.84 MHz inp ut.
19Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
Table 5. Telecom Bus (Low-speed I/O) Pin Description (continued)
3.3.4 TOAC and POAC
The transport and path overhead acces s channels (TOAC an d POAC) allow parts of the S ONE T/SDH overhead to
be examined externally (receive direction) or overwritten (transmit direction) through serial data ports. Each port
has clock and data lines and synchronization signal that marks the last bit of the frame so that the rest of the over-
head bytes can be ident ified.
The receive TOAC and POAC channels contain all of the respective overheads bytes. The transmit channels con-
tain spa ce for all the overhea d bytes, but whether they ar e actually transmitted depend on how the d evice is pro-
grammed. Some overhead bytes can not be modified; others may be m odified on ly through t he CPU port; some
may be modified only through the overhead access channels; and some may be modified either through the CPU
port, or through the overhead access channels.
Pin Symbol Type I/O Description
AC3 TLSC52 I/O Transm it Low-speed Clock. When in output (master) mode,
it is the transmit side 51.84 MHz clock output synchronous to
transmit high-speed input clock. When in input mode, it
receives a 51.84 M Hz clock input synchronous to transmit
high-speed input c lock
Note: TLSCLK is used as the master clock for the T1/E1
framer and should therefore be provided even if the
TMUX SPE a n d VT mappers are not used.
AD2 TLSSYNC52 I/O Transm it Low-speed Syn c. When in out put (mast er) mode,
it is the transmit side fra me sync output synchronous to
51.84 MHz output. When in input (slave) mode, it receiv es the
transmit s ide frame sync input synchronous to 51.84 MHz
input.
Table 6. TOAC and POAC
Pin Symbol Type I/O Description
AD1 RTOACCLK OReceive TOAC Clock. Receive side serial access channel
clock output for the transport overhead bytes.
AD3 RTOACDATA ORecei ve T OAC Data. Rec eive side seria l access cha nnel
data output for the transport overhead byt es .
AA5 RTOACSYNC ORe cei ve TO AC Synchr oni z at ion . Receive side sync output
for TOAC channel. Act ive-high during the LSB of the last
byte.
AB6 TTOACCLK OTran s mit TOAC C l o ck. Transmit side ser ial access channel
clock output for the transport overhead bytes.
AE2 TTOACDATA I
Pull down Transmit TOAC Data. Transm it side se rial a c cess channel
data input for the transport overhead bytes.
AF3 TTOACSYNC OTransmit TOAC Synchronization. Transmit side sync out-
put for T OA C channel. Activ e-high during the LSB of the last
byte.
Path Overhead Access Channel (POAC)
AE3 RPOACCLK OReceive POAC Clock. Receive side serial access channel
clock output for the path overhead bytes.
AD4 RPOACDATA OReceive POAC Data. Receive side serial acc ess channel
data output for the path overhead bytes.
20 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
3.3.5 Miscellaneous Signa ls
Table 7 . Miscellaneous S ig nal s
3.3.6 DS3 Port
If a DS3 output is required in a Super Mapper application and the DS3 signal has been reco vered (demapped) from
an STS-1, the n it is necessary to s mooth the DS3 r ecovered clock. The DS3 clock extracted from the STS-1 clock
will have considerable jitter introduced when th e SON ET overhead is re moved and pointer adj ustments are made.
A phase locked loop is recommended for this purpose. The Super Mapper con tains a phase comparator, that can
be used in conjunction with an external low-pass filter and voltage controlled crystal oscillator to implement the
PLL.
Pin Symbol Type I/O Description
AF4 RPOACSYNC OReceive PO AC Synchr onization. Receive side sync output
for POAC channel. Act ive-high during the last bit of the last
byte of the PO AC fr ame.
AE4 TPOACCLK OTransmit PO A C Clock. Transmit side serial access channel
clock output for the path overhead bytes.
AD5 TPOACDATA I
Pull down Transmit POAC Data. Transmit side serial access channel
data input for the path overhead byte s.
AC5 TPOACSYNC OTransmit POAC Synchronization. Transmit side sync out-
put for POAC channe l. Active-high during the last bit of the
la st b y te.
Pin Symbol Type I/O Description
AE5 LOSEXT I
Pull up Loss o f S ignal External. Exte rnal loss of signal input. If
external clock and data recovery is used on the high-speed
I/O port, it may be connected t o thi s input which can be con-
figured to assert the LOS regi ster bit normally ass ociated
with t he internal LOS detecti on in the internal CDR bloc k. The
polarity of LOS may be programmed active-high or low.
AD6, AE6,
AC6 AUTO_AIS I/O AIS En able (3:1). Control signal for automatic AIS insertion
on each STS1. The STS-1 AIS is applied down stream on the
telecom bus, i.e., it is an output from masters and an input to
slaves. Active-high.
Input when slave mode.
Output when master m ode
If not used, leave open.
AD7 RHSFSYNCN OReceive High-speed Frame Synchronization. Receive side
frame sync output indicating the fram e location of the high-
speed data input. May be used as a 8 kHz tim ing reference
for networ k synchronization to the receive high-s peed data
input (STS-3 or STS-1).
Table 6. TOAC and POAC (continued)
21Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
Table 8. DS3 Port
Pin Symbol Type I/O Description
V22 PHASEDETUP OPhase Detector Up. Phase error signal out to external filter
a nd VCXO. This ou tput will generate an error signal when
the VCXO output is slower than the reference signal.
U22 PHASEDETDOWN OPhase Detector Down . Phase error signal out to externa l fil-
ter and VCXO . This output will generate an error si gnal when
the VCXO output is faster that the reference s ignal.
R22 DS3POSDATAOUT OPositi ve Data Output. Se ria l DS 3 positive data out to LIU
w hen the DS3 output port is operating in dual rail-mode.
N onretu rn to zero DS3 data output whe n the DS3 output is
opera ting in single ended mode.
P22 DS3NEGDATAOUT ON egative Data Output. Ser ial DS3 negative data output to
LIU when the DS3 port is operating in dual r ai l mode. In sin-
g le rail mode, this outpu t is not used and may be left uncon-
nected.
N22 DS3DATAOUTCLK I
Pull
down
D S3 Data Out Clock. 44.736 MHz DS3 cl ock in put. If the
Super Mapper is being used to map DS3 data to and from
ST S-1, the n this clock will be suppli ed b y t he externa l VCXO
that is as sociated with the DS3 c lock recovery PLL. In other
D S3 modes (e.g., M13) this i nput will be supplied by an
external crystal oscillator , usually as sociated with a DS3 LIU .
If the DS3 port is n ot us ed, this input may be tied to ground
or left op en, since it is equi pped with an i nternal pull-down
resistor.
M22 DS3POSDATAIN I
Pull
down
Positi ve Data Input. If the DS3 port is configured in dual-rail
mode, then this input is serial positive data from an external
DS3 LIU. If the DS3 port is configured in single-rail mode,
then this input is serial nonreturn-to zero data from th e exter-
nal LIU.
K22 DS3NEGDATAIN I
Pull
down
N egative Data I n. In dual rail mode, this is negative data
from an e xternal DS3 LIU. In single rail mode, it may be con-
nected to the bipolar violation output of the external DS3 LIU ,
left unconnected, or ti ed to ground.
J22 DS3DATAINCLK I
Pull
down
D S3 Data In Clo ck. This is a 44.736 MH z clock input from
the clock recovery in the external DS3 LIU.
22 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
Table 9. DS3 Port, C-Bit, and Datalink Access
3.3.7 M13 Multiplexer/Demultiplexer Receive Section
Two grou ps of signals are defined in this s ection. The first group are reference clocks, used internally in the jitter
attenuation and AI S generation processes. Note that these a r e typically supplied by free-running crystal oscillators.
The outputs below provide access to the received C-bits and data link bits extracted from the received DS3 frame.
These operate in the same way if the sourc e of the DS3 s ignal is from an SPE or from the external DS3 port.
Pin Symbol Type I/O Description
E14 TCBSYNC OTransmit C-Bit Sync. In the C-bit parity mode, 10 C-bits may
opti onally be input for multiplexing into the transmit DS3 frame
throug h the TCBDATA input. The TCBSYNC ou tput is low, except
duri ng the rising edge of TCBCLK th at is us ed to i nput C2.
E13 TCBCLK OTransmit C-Bit Clock. A gapped clock (nom inally 93.983 kH z) for
accepting selected C-bits on input M13_CBDATA.
E12 TCBDATA I
Pull down Transmit C-Bit Data. In the C-bit parity mode, the network require-
m ents bi t (C2), a nd th e unused C- bits (C4, C5, C6, C16, C 17, C 18,
C 19, C20, and C21) may optionally b e input for multiplexing in to the
transmit DS3 frame through this input.
E9 TDLCLK OTransmit Da ta Link Cl ock. A gapped clock (nominally 28.195 kHz)
for accepting path maintenance data link C-bits on input TDLDATA.
E8 TDLDATA I
Pull down Transmit Data Link Data. The path maintenance data link C-bits
(C13, C14, and C15) ma y opt ionally be input f or multiple xing into the
transmit DS3 frame through this input.
Table 1 0. M13 Multiplexer/Demultiplexer Receive Section
Pin Symbol Type I/O Description
AC17 E1XCLK I
Pulldown E 1 Reference Clock. This clock is used as a reference for the jitter
attenuator when it is operating in the E1 mode. It must have a fre-
quency of 2.048 MHz, 32.768 MHz, or 65.536 MHz and a stability of
50 ppm. It is also used to generate an E1 AIS (all ones). May be left
unconnected, or tied to ground, if no E1 options are being used.
AD16 DS1XCLK I
Pulldown DS 1 Reference Clock. This clock is used as a reference for the jit ter
attenuato r when it is op erating in the DS1 or the J1 mode. It must
have a frequency of 1.544 MHz, 24.704 MHz, or 49.408 MHz and a
st ability o f ±32 ppm. T his clo ck sign a l is also used to g enerate DS1
AIS signals. Ma y be left unconnected or tied to ground, if not, no DS1
options are being used.
E10 DS2AISCLK I
Pulldown DS 2 Reference Clock. A 6.312 MHz ±30 ppm inpu t. In the M23
mode, this clock is used to gener ate DS2 AIS . M ay b e left uncon-
n ected or tied to ground if no DS2 options are being used. Not e that
C-bit parity mode does no require a DS2 reference c l ock.
E18 RCBSYNC OReceive C-Bit Sync. Ten C-bits are o utput on RCD after they are
demultiplexed from the received DS3 signal. The RCS outp ut is low,
except d uring the ri sing edge of RCD that is used to output C2.
23Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
3.3.8 Low-Order Path Overhead Access Chann el
Each V T has a low-order path overhead, and thi s interface allows access to all LOPOH bits for all VTs. Note that
the purpose of doing this is s lightly different form the t ransport and path overhead a ccess. These are use d to c ross
couple the bits between links in a prot ection scheme, rather than provide access for examination or modific ation of
the overhead, although that is possibl e too.
Table 11. Low-Or der P ath Overhead Access Channel
Figure 4. DS1/E1 to DXC Block Diagram
Pin Symbol Type I/O Description
E17 RCBCLK OReceive C-Bit Clock. A gapped clock (nominally 93.983 kHz) f or out-
putting selected C-bits on RCD.
E15 RCBDATA OReceive C-Bit Data. The receiv ed network requirements bit (C2) and
the received unused C-bits (C4, C5, C6, C16, C 17, C18, C19, C20,
and C 21) are output afte r they are demultiplexed from the received
DS3 signal.
E19 RDLCLK OReceiv e Data Link Clock. A gapped clock (nominally 28.195 kHz )
for outputting path maintenance data li nk C-bits on RDLD.
H22 RDLDATA OReceive Data Link Data. The received path maintenance data link
C-bits (C13, C14, and C15) that are demultiplexed from the received
DS3 signal.
Pin Symbol Type I/O Description
Transmit Direction
AC13 LOPOHCLKIN I Pull down 6.48 MHz Low Order Path Overhead Clock.
AC14 LOPOHDATAIN I Pull down Low-Order Path Overhead Data. (O-bits, V5, J2,
Z6/N2, Z7, and K4 byte. )
AB14 LOPOHVALIDIN I Pull down Valid LOPOH_DATA.
Receive Direction
AB15 LOPOHCLKOUT O6.48 MHz Low Orde r Path Overhead Clock.
AB17 LOPOHDATAOUT OLow-Order Path Overhead Data. (O-bits,V5, J2,
Z6/N2, Z7/K4 byte.)
AB18 LOPOHVALIDOUT OValid VTMPR_LOPOH_DATA Output.
Table 1 0. M13 Multiplexer/Demultiplexer Receive Section (continued)
VT MAPPER VT MAPPER
LOPOH
OUTPUTS
LOPOH
INPUTS
LOPOH
OUTPUTS
LOPOH
INPUTS
TELE CO M B US
DS1/E1 TO DXC
24 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
Table 12. Multifunction System Interface Transmit Path Direction
Pin Symbol Type I/O Description
C13, A12,
B11, B10, B9,
D8, C8, A7,
B6, D5, A4,
A3, H5, F5,
C2, D2, E2,
F4, G2, H1,
J3, J4, K4, L4,
M2, N 1 , P4 ,
P3
LINERXDATA[28:1] I
Pull down Line Receive Data (2 8:1). Configurabl e inputs to the
internal cross connect. The use depends on the appli-
cation. Generally, these inputs are used for the recei ved
pos itive-rail or single-rail DS1/ E1 line data input. If oper-
a ting in dual rail mode, the negative rail will be ex pected
on LINERXSYNC(28:1). Us ing d ual rail mode implies
that the internal B8ZS or HDB 3 decoders are enabled,
a nd line c ode violation s can be detected and counted
inside th e Super Mapper.
These data inputs may be assigned, using the cross
con nec t block, to the DS1 or E1 inputs on the VT map-
per, M13 or DS1/E1 framers. It is also possible to u se
the inputs for DS2 data, i n which case they may be
assigned to the M23 multiplexer inputs.
D13 LINERXDATA29 I
Pull down Receive Data 29. Configurable input to the internal
cross connect. May be used as an additional line
receive data input, for a protect ion channel. Other pos-
sibl e uses are as fo llows:
Globa l transmit line clock input. Externally supplied
1.54 4 MHz or 2.048 MHz low jitter clock phase-locked
to the TDM s ystem cloc k. Used for t ransmit line c lock on
the DS1/E1 fr amers. This is not normally used, because
the DS1/ E1 framer has a PLL which can generate a
1.544 MHz clock from the TDM system clock ( CHI
clock). This applies i n PSB and CHI modes.
Receive data input. If NSMI mode is used, this will be a
51.84 Mbits/s serial data input.
D12, C12 ,
C11, C10, A9,
B8, D7, C7,
C6, C5, C4,
C3, J5, B2,
D3, E3, F3,
G3, G4, H2,
J1, K3, L3,
M3, M4, N2,
P2, R4
LINERXCLK[28:1] I/O
Pull down Receive Clock (28:1). Conf igurable inputs/outputs t o
the internal cross connect. Typically a line clock associ-
ated with the corresponding LINERXDATA input. It can
therefore be running at DS1, E1 or DS2 rate. The c ross
connect is us ed to assign these inputs to the VT map-
per, M13 or DS1 /E1 framers.
B13 LINERXCLK29 I/O
Pull down Receive Clock 29. May be used as add itional receive
clock input for a DS1/E1 protection chann el. Also has
special u se as a m aste r clock. In C HI mode, it is the
receive clock input (2.048 MHz, 4.096 MHz, 8.192 MHz,
or 16.384 MHz). In PSB m ode, it is the rec eive clock
input (19.44 MHz). In NSMI mode, it is the receiv e clock
outp ut. (51 .84 MHz).
25Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
Pin Symbol Type I/O Description
B12, D11,
D10, D9, C9,
A8, B7, D6,
B5, B4, B3,
E6, K5, C1,
D1, E4, F2,
G1, H3, H4,
J2, K2, L2,
M1, N3, N4,
P1, R2
LINERXSYNC[28:1] ILine Recei ve Synchrono us 28:1. Multifunction inpu t.
C hannel assignment may be co nfig ured through the
internal cross connect. Can be used as the negative rail
of a DS1/E1 signal in conjunction with LINERX-
DATA(28:1), when operating in dual-rail mode. In CHI
mode these inputs are used for receive TDM highways
that may run at 2.048, 4.096, or 8.192 Mbits/s. In p a ral -
lel system b us mode the receive syst em data b us inputs
are assigned to LINERXSYNC 16:1. The PSB is a 16-
bit wide bus that operates at 19.44 MHz.
A13 LINERXSYNC29 I/O Line Receive Synchronous 29. Multifunction input.
C hannel assignment may be co nfig ured through the
internal cross connect. Can be used as the negative rail
of a DS1/E1 signal in conjunction with LINERXDATA 29,
w hen operatin g i n d ual-ra il mode.
In CHI and PSB modes this input is used as the rece ive
system frame synchronizat ion input . In NSMI mode, it is
the receive frame sync output
R25, P26,
N23, N2 4,
M26, L25,
K25, J25,
H23, H2 4,
G 26, F25,
E23, D26,
C26, E21,
B24, B 23,
B22, D21,
B20, A 19,
C18, D1 8,
D17, D1 6,
B15, A14
LINETXDATA[28:1] I/O Line Transmit Data (28:1) Co nfigurable out puts f rom
the internal cross connect. Used for transmit positive-
rai l or sin gle-rail DS1/E 1 line d ata outputs. May be co n-
nected to the DS1/E1 outputs from the VT mapper , M13
MUX or DS1/E1 frame line outputs. May also be used
as a DS2 output.
T23 LINETXDATA29 OLin e Tr ansmit Dat a 29. Configur able output from the
internal cross connect. A n extr a DS1 or E1 transmit port
that may b e used for protectio n o r as a timing reference
output.
Table 12. Multifunction System Interface Transmit Path Direction (continued)
26 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
Pin Symbol Type I/O Description
R23, P25,
N25, M23,
M24, L24,
K24, J26,
H25, G 23,
G 24, F24,
E24, D24,
C24, B25,
C23, C22 ,
C21, C20 ,
D20, B19,
A18, C17,
C16, C15 ,
D15, B14
LINETXCLK[28:1] I/O Line Transmit Clock (28:1). Configurable outputs from
the internal cross connect. Can be used as the clock
signals for LINET XDATA(28:1) in DS1, E1, and DS2
modes.
R24 LINETXCLK29 I/O L ine Tran smit Clo ck 29. Configurable output to the
internal cross connect for the protection or timing refer-
ence channel. Also used as the transmit glo bal system
clock input f or CHI (2.048 MHz, 4.096 MHz, 8.192 MHz,
or 16.384 MHz ), PSB (19.44 MHz), and NS MI (5 1.84
MHz) modes.
P24, P 23,
N26, M25,
L23, K23, J23,
J24, H26,
G 25, F23,
E25, D25,
C25, F22,
A24, A 23,
D22, B21,
A20, C19,
D19, B18,
B17, B 16,
A15, C14,
D14
LINETXSYNC[28:1] I/O Line Transmit Synchronous (28:1). C onfigura ble
inputs/outputs to the internal cross connect. An output
w hen used as the negative rail of a DS1 or E1 output
port operating in dual-rail mode. In CHI m ode, these
pins may be used as output TDM highwa ys. I n PSB
mode, bits 16:1 are used for the transmit data bus, and
bits 28: 17 are not used. These pins m ay also be used
as DS 2 I/O to the M12 block as follows: 7:1Tx data
out. 14:8 Tx clock in. 21 :16Rx data in. 28:22Rx
clock in.
R26 LINETXSYNC29 I/O Line Tran s mit Sync hronous 29. Configurable input/
output to the internal cross connect. An output when
used as the negative rail of a DS1 or E1 output port
operat ing in dual-r ail mode . In CHI and PSB modes, it is
use d as the transmit s ys tem frame synchronization
input. In NSMI mode, it is the transmit system frame
sync out put.
AB19 RXDATAEN ONSMI Receive Enable. Receive data enable for NSMI
mode.
W22 TXDATAEN ONMSI T ran smit Enable. Tr ansmit data enabl e fo r NSMI
mode.
Table 12. Multifunction System Interface Transmit Path Direction (continued)
27Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
3.3.9 Framer PLL
The DS1/E1 framer has a phase-locked loop that may be used to generate a transmit line clock at 1.544 MHz or
2.048 MHz. The reference signal for this PLL may be chosen from a number of possible sources, all ty pically syn-
chronized to the system clock (CHI transmit/receive clock for example.) In order to ensure reliable performance
,this PL L has its own is olated po wer pins. The PLL also has a number o f tes t control pins that are used for factory
testing on ly .
The PLL is active when framer bit PLL_BYPAS = 0. When PLL_BYPAS = 1, the PLL is b ypassed and an external
clock at the s y stem interface is us ed as the line clock. An exampl e would be when the framers are programmed for
a CHI interface at 2.048 MHz and the fram es are programmed for E1, the PLL may be by passed and the CHI sys-
tem clock may be used as the line clock.
Table 13 . Framer PLL
Pin Symbol Type I/O Description
AD22 VDDD_PLL VDD Digital VDD for PLL.
AE23 VDDS_PLL VDD Analog VDD for PLL.
AF23 VSSA_PLL VSS Analog VSS for PLL.
AD23 VSSS_PLL VSS Digital VSS for PLL.
AD24 CLKIN_PLL I
Pull down Clock In PLL. Phase l ocked-loop reference clock input. Fre-
quency should be consistent with the MODE_PLL pins in the
PLL M ode1 table below. A 1.544 MHz clo ck for DS1 transmit
outputs i s generated synch ronous to this clock.
AB21 MODE2_PLL I/O PLL Mode 2. Control bit that should be tied to the appropriate
state depending on the frequency of CLKIN_PLL consistent
with th e PLL Mode1 ta ble below. This pin is al so us ed during
factory te sting as an output.
AF24 MODE0_PLL I
Pull down PLL Mode 0. PLL control input 0.
AE24 MODE1_PLL I
Pull down PLL Mod e 1 . PLL control input 1. The PLL mode inputs should
be hardwired to the logic levels shown in the table below,
depending o n the freque n cy of the refer ence s upplied to
CLKIN_PLL.
Mode2
0
0
0
0
1
1
1
1
Mode1
0
0
1
1
0
0
1
1
Mode0
0
1
0
1
0
1
0
1
CLKIN_PLL
Reserved
51.84 MHz
26.624 MHz
19.44 MHz
16.348 MHz
8.194 MHz
4.096 MHz
2.048 MHz
28 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
Table 14. Micropro cessor Interfaces
Pin Symbol Type I/O Description
AE17 MPCLK IProcessor Clock. This is the syn chronous m icroproc ess or
clock (when MP M ODE=1). The maximum clock frequenc y is
6 6 M Hz. T his clock is requ ired to p roper ly sample address,
data, and control signals from the microprocessor in both
asynchronous and synchronous modes of operatio n. This
clock must be within the range of 16 MH z66 MHz.
AD17 MPMODE IContr ol Port Mode. If the microprocessor interface is syn -
chronous, CPM should be set to 1. If the microprocessor
interface is asynchronous, CPM should be set to 0.
AC18 CSN I
Pul l up Chip Select. Active-low chip select. For synchronous mode,
it should b e stable beyond a certain setup time before the ris-
ing clock edge when AS is active. For asynchronous mo de, it
should be st able before DS is asserted.
AE18 ADSN IAdd ress St robe. Active-low address strobe that is a 1 PCK
cycle wide pulse for synchronous mode and active for the
entire read/write cycle for asynchronous mode. Addres s bus
signals, A(19:0), are transparentl y latched into Super Mapper
when AS is low. The address bus should remain valid for the
duration of AS.
AF18 RWN IRead/Write Cycle Selectio n. RW is set high for a read oper-
ation, or set l ow for write operat ion .
AD18 DSN IData Strobe. DS is not used for synchrono us mode. For
asynchronous mode, write operat ion, DS become s a ctive
after data is st able. F o r read operation, it is si mi l ar t o AS.
AB23, AC26,
AC24, AD25,
AD26, AE25,
AA22, AC22,
AE22, AD21,
AE21, AC21,
AD20, AF20,
AE20, AC20,
AD19, AF19,
AE19, AC19
ADDR[19:0] IAddress (19:0). A19 is the mos t significant and A0 the least
sig nificant bi t for ad dress ing a ll the in terna l SM reg i ste rs dur-
ing CPU access cycles.
Note: The Super Mapper is little endian, the lea s t significant
byte is stored in the lowest address and the most s ig-
nificant byte is stored i n the highest address. Care
must be exercised in connection to microprocess ors
that use bi g- endian byte or der ing.
AB25, AA24,
AA25, AA23,
Y24, Y 26,
Y25, Y 23,
W24, W 26,
W25, W 23,
V24, V 26,
V25, V 23
DATA[15:0] I/O Data (15:0). Data bus for all transfers between the CPU and
the internal SM registers. The pins are inputs dur ing write
cycles and outputs during read cycles. DATA15 is the MSB
and DATA0 is the LSB.
U2 4 , U 2 5 PA R [1:0 ] I/O CPU Port Parity (1:0). Byte-wide parity bits for data. C PP[1]
is the parity for D[15:8] an d CPP[0] is the parity for D[7:0].
29Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
Table 1 5 . General Pu rpose Interface
Pin Symbol Type I/O Description
U23 DTN O
Open Drain Data Transfer Acknowledge. In synchronous CPU mode,
DTA goes low at 4t h cycle for write or 5th cycle for read,
resulting in a fixed 2 wait-states for writes and 3 wait-states
for reads. In asynchronous µP mode, after qualification of AS
and DS by TLSC52 c lock, DTA goes low for two TLSC52
clock cycles for writes and three TLSC52 clock cycles for
reads. DTA goes high, along with the rising edge of AS.
AB24 INTN O
Open Drain Interrupt. S uper Mapper interrupt request, active-low. An
open drain output should be connec ted to an external pull-up
resistor.
AC25 APS_INTN O
Open Drain APS I nterr upt. A utomatic protection s witch i nterrupt request,
active-low. An open drain ou t put should be connected to an
external pull-up resistor.
Pin Symbol Type I/O Description
T24 RSTN I
Pull up Reset. Global reset, act ive-l ow. Initializes all internal registers
to their default s tate.
T25 PMRST I/O
Pull down Performance Monitor Reset. May be configured as an input
and then used to directly reset all the co unters associ ated with
DS1/E1 performance monitor ing. If an internal PM reset is
used, PMRST is configured as an output that indicates when a
PM reset occurred.
R5 TCK ITest Clock. This signal provides timing for the boundary s can
and TA P controller. This signal s hould be stati c, except during
boundary scan testing.
U5 TDI I
Pull up Test Data In. Data input for the boundary scan; sampled on
th e risin g edge of TCK .
W5 TMSN I
Pull up Test Mode S elect (Activ e-Low). Controls boundary scan test
operations. TMS is sampled on the rising edge of TCK.
AB8 TRSTN I
Pull down Test Re set (Active-Low). This signal i s an asynchronous
reset for the TAP controller.
V5 TDO OTest Da ta Out. Updated on the falling edge of TCK. The TDO
output is high impedance, except when sc anning out test data.
AB9 IC3STATEN I
Pull up Global Output Enable. All output and bidirectional buffers will
be high impedance when this input is low. Normally pulled high
internally.
Table 14. Micropro cessor Interfaces (continued)
30 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
3.3.10 Test Pins
These pins are for fa ctory test purposes o nly and must be connected as stated below for normal operation. They
are used to establish special conf igurati ons f or testing, inserting test data, etc. For normal oper ati on they should be
left unconne cted; each is equipped with a pull-up or pull-down to the inactive (normal operation) state.
Table 16. Test Pins
Table 17. CDR Power
Pin Symbol Type I/O Description
N5 SCAN_EN I
Pull down Test Only. Scan enable (active-high).
M5 SCAN_MODE I
Pull down Test Only. Serial scan input for testing (active-high).
P5 IDDQ I
Pull up Test Only. IDDQ input (active-high).
AE14 BYPASS I
Pull down T est Only. Enables functional bypassing of the clock synthesis
with a test clock (active-high).
AF14 TSTPHASE I
Pull down Test Only. Controls bypass of 32 PLL-generated phases with
32 low-speed phases, generated b y test logic (ac tive-high).
AD14 ECSEL I
Pull down Test Only. Enables ext ernal test control of 155 M Hz clock
phase selection through ETOGGLE and EXDNUP inputs
(active-high).
AC15 ETOGGLE I
Pulldown Test Only. Moves 155 MHz clock sel ecti on one ph ase per pos-
itive pulse > 20ns. Active + pulse.
AE15 EXDNUP I
Pulldown Test Only. Direction of phase changes.
0 = down
1 = up.
AF15 TSTMODE I
Pulldown Test Only. E nables CDR test mode.
AD15 TSTSFTLD I
Pulldown Test Only. E nables CDR test mode shift register.
AE16 ,
AC16 TSTMUX[1:0] OTest Only. CDR test mode output
Pin Symbol Type I/O Description
AC9 VDDA_CDR IAna log Power. Is olated analog power suppl y VDD for CDR.
AB12 VSSA_CDR IAnalog Ground. Isolated analog power supply VSS for CDR.
Table 18. LVDS Control Pins
Pin Symbol Type I/O Description
AF12
AE12 RESHI
RESLO IResistor 1, 2. A 100 1% resistor is sh ould be connected be tween
these two pins as a refer ence for the LVDS input buffer te rmination.
AC11 REF10 IVoltag e Reference 1. 1.0 V reference voltage input .
AD12 REF14 IVo ltag e Reference 2. 1.4 V reference voltage input .
31Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
3 Pin Information (continued)
Pin Symbol Type I/O Description
AB10 CTAPRH ——
Center Tap 1. For RHSD P /N and RHSC P/ N. Optional, 0.1 µF
capacitor connected betwe en CTAP pin and ground, to improve the
common mode rej ec tion of the LVDS in put buffers.
AE11 CTAPTH ——
Center Tap 2. For THSD P/N and THSC P/N. Optional, 0.1 µF
capacitor connected betwe en CTAP pin and ground, to improve the
common mode rej ec tion of the LVDS in put buffers.
AB13 CTAPRP ——
Center Tap 3. For RPSD155 P/N and RPSC155 P/N. Optional,
0.1 µF capacit or connected between CTAP pin and groun d, to
improve the common m ode rejection of the LVDS input buffers.
Table 18. LVDS Control Pins (continued)
32 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
3 Pin Information (continued)
3.4 Ou tl in e D iagr a m
3.4.1 456-Pin PBGA
Dimensions are in millimeters.
5-6216(F)r.1
0.56 ± 0.06 1.17 ± 0.05 2.33 ± 0.21
SE ATING PLANE
SOLDER BALL
0.60 ± 0.10
0.20
PWB
MOLD
COMPOUND
35.00 ± 0.20
35.00
± 0.20
+0.70
0.00
30.00
+0.70
0.00
30.00
A1 BALL
IDENTIFIER ZON E
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
G
25 SPACES @ 1.2 7 = 3 1. 75
P
N
M
L
K
J
H
1 2 3 4 5 6 7 8 9 10 12 14 16 18 22 24 2620
11 13 15 17 2119 23 25
F
E
D
C
B
A
CENTER ARRAY
FOR THERMAL
ENHANCEMENT
(OPTIONAL)
25 SPACES
@ 1.27 = 31.75
A1 BAL L
CORNER
0.75 ± 0.15
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
33Agere Systems Inc.
4 Elect r ic al Char acter isti cs
Ta ble of Conte nts
Contents Page
4 Electrical Characteristics .................................................................................................................................... 33
4. 1 Absolute Maximum Ratings ................................................................................................. ........................ 34
4.2 Handling Precauti ons ............................................................ .............. ................... ....... ............................... 34
4. 3 Operat ing Condi tions ... ......................................................... ....................................................................... 34
4.4 Logic Interface Characteristics ........ ....... .......... ....... ....... ....... ....... ..... ....... ....... ....... ....... ............................... 35
4. 5 LVDS Interface Char a cte r isti cs ..... ...................................................................................... ......................... 36
List o f Fig ur es
Figure 5. Single-Ended Input Spe cification ....... ............ ................... .............. ................... ....... .............................. 35
List of Ta bles
Table 1 9. Absolute Maximum Ratings ................................................................................................................... 34
Table 20. Handling Precaution ......................... ............ ....... ................... ....... ................... ....... .............................. 34
Table 21. Recommended Operating Co nditions ...................... ....... .............. .......... ... ........................................... 34
Table 22. Logi c Interf ace Characteristics............... ..... ... .......................................... ... .......................................... 35
Tabl e 23. L VDS In te r face Chara c te ristic s ............................................................ ................................................. 36
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
34 Agere Sy stem s Inc.
4 Elect r ic al Char acter isti cs (continued)
4.1 Absolute Maximum Ratings
Stresses in excess of th e absolute maximum ratings ca n caus e permanent da mage to the device. These are abso-
lute str es s r atings only. Func tional op eration of the device is not impli ed at thes e or any other condit ions in excess
of t hose given in the operational sections of the data sheet. Exposure to absolute maximum ratings f o r extended
period s can ad versely affect devic e reliab ilit y.
4.2 Han d lin g Pr ec au t ions
Although protectio n circuitry has been designed into th i s device, proper precautio ns should be taken to avoid expo-
sure to electrostatic discharge (ESD) during handling and mounting. Agere employs a human-body model (HBM)
and charged-device model (CDM) for ESD-susceptibility testing and prot e ction design evaluation . ESD voltage
thresholds are dependent on the circuit parameters used in the defined model. No industry -wide standard has
been adopted fo r the C D M. However, a standard HBM (resistance = 1500 , capacitanc e = 100 pF) is widely used
and, therefore, can be used for compari son purposes. The HBM ES D threshold presented here was obtained by
using these circuit para meters :
4.3 Ope r at i ng Co nditio n s
The fo llowing tables list the voltages req uired for proper operation of the TMXF28155 device, along with their toler-
ances.
Table 21. Recommended Operating Condi tions
* Internal reference voltage is used if SMPR_LVDS_REF_SEL = 1 (Table 70); or else exte rna l voltag e is us ed .
Table 19. Absolute Maximum Rati ngs
Parameter Symbol Min Max Unit
dc Supply Voltage Range VDD 0.5 4.6 V
Power Dissipation PD——mW
Storage Temperature Range Tstg 65 125 °C
Ambient Operating Temperature Range TA40 85 °C
Maxim um Voltage (digital input pins) ——5.25 V
Minimum Voltage (digital input pins) —–0.3 V
Table 20. Handling Precaution
Device Voltage
TMXF28155 2000 V
Parameter Symbol Min Typ Max Unit
Power VDD 3.14 3.3 3.47 V
Ground VSS 0.0 V
Input Voltage, Hig h VIH VDD 1.0 5.25 V
Input Voltage, Low VIL VSS 1.0 V
1.0 V, LV DS Reference* LVDS _REF10 1.0 V
1.4 V:,LV D S Reference* LVDS_REF14 1.4 V
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
35Agere Systems Inc.
4 Elect r ic al Char acter isti cs (continued)
4. 4 Log ic Int e r fac e Char ac t e ri stic s
Table 22. Logic Interface Char acteristics
The input specification for the remaining (nonbalanced) inputs are specified in Figure 5.
5-6032(F)r.2
Figure 5. Single-Ended Input Specification
Parameter Symbol Test Cond i tions Min Max Unit
Input Leak age IL——1.0 µA
Output Current:
Low
High IOL
IOH
2
2mA
mA
Output Volt age:
Low
High VOL
VOH
VSS
VDD 0.5 0.5
5.25 V
V
Input Capacit ance C I 1.5 pF
V
IH
tF
tR
VIL
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
36 Agere Sy stem s Inc.
4 Elect r ic al Char acter isti cs (continued)
4.5 LVDS Interface Characteristics
3.3 V ± 5% VDD, 0125 °C, sl o wfast process.
Table 23. LVDS Interface Characteristics
.
* Buffer will not produce output transition when input is open-circuited.
Parameter Symbol Test Co nd itions Min Typ Max Un it
Input Buffer Parameters
Input Voltage Range, VIA or VIB VI|VGPD| < 925 m V, d c1 MHz 0.0 1.2 2.4 V
Input Differential Threshold VIDTH |VGPD| < 925 mV, 311 M H z 100 100 mV
Input Differential Hysteresis V HYST (+VIDTH) (VIDTH)——*mV
Receiver Differential Input
Impedance RIN With built-in termination,
center-tapped 80 100 120
Output Buffer Parameters
Output Volt age:
Low (VOA or VOB)
High (VOA or VOB)VOL
VOH RLOAD = 100 ±1%
RLOAD = 100 ±1%
0.925
1.475
V
V
Output Di fferential Voltage |V OD|R
LOAD = 100 ±1% 0.25 0.40 V
Output Offset Voltage VOS RLOAD = 100 ±1% 1.125 1.275 V
Output Impedance, Single Ended ROVCM = 1.0 V and 1.4 V 40 50 60
RO Mismat ch Between A and B ROVCM = 1.0 V and 1.4 V —— 10 %
Change in Different ial Voltage
Between Complementary
States
|VOD|R
LOAD = 100 ±1% —— 25 mV
Change in Output O ffset Voltage
Between Complementary
States
VOS RLOAD = 100 ±1% —— 25 mV
Output Current ISA, ISB Driver shorted to VSS —— 24 mA
Output Current ISAB Drivers sh orted together —— 12 mA
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
37Agere Systems Inc.
5 Timing Character is ti cs
Ta ble of Conte nts
Contents Page
5 Timing Characteristics ........................................................................................................................................ 37
5. 1 TMUX Bl oc k Ti mi ng ........................ ....................................................................... ...................................... 39
5. 2 DS3 Timing .................................................................... .............................................................................. 43
5. 3 M13 Timin g .... .............. ......................................................... .................................... ................................... 44
5. 4 VT M a pper Timin g ............................... .................................................... .................................................... 45
5.4.1 V T Mappe r Lower-Order Path Overhead I nterface Timing ............................ . ......................... .......... . 45
5. 5 Conce n tra tion High w a y (CHI ) Tim ing .... ...................................................................................................... 46
5. 6 Para l lel Syste m Bus Timing ................. .................................................... .................................................... 47
5.7 NSMI Timing Mode 1 .......................................... ................................. ............ ............................................ 49
5.8 SMI Timing M ode 2 (8 pin) .. .......................... ............................................................................................... 49
5. 9 Fra me r On l y Mode Timin g .......................................................................... ................................................. 51
5.10 Fram erLIU Mode Timing ........................................................................................................................ 53
5.1 1 Microprocessor Interface Timin g ................................................................................................................ 54
5.11.1 Synchronous Mode .... .. ............ .............. ....... ............ ....... ................. ......... ....... ............ ................... 54
5.12 Asynchronous Mode .................................................................................................................................. 56
5.1 3 General Purpose Interface Timing ............................................................................................................. 60
6 Ordering Information............................................................................................................................................ 61
Figures Page
Fig ure 6. Generic Clock Timing.............................................................................................................................. 39
Fig ure 7. Generic Interface Data Timing ................................................................................................................ 41
Fig ure 8. VT Mapper Transmit Path Overhe ad Detailed Timing ............................................................................ 45
Figure 9 . VT Mapper Rec eive Path O v erhead Det aile d Timing ............................... .......................... ... ................. 45
Figure 10. CHI Transmit I/O Timing........................................................................................................................ 46
Fi gure 11. CHI Receiv e I/ O Timi n g......................................................................................................................... 47
Fi gure 12. Pa r a l lel Syste m Bus Inte r fa ce Tra n smi t I/O Timing....................................... ............................ ............ 48
Figure 13. Parallel System Bus Interface Receive I/O Timing................................................................................ 48
Figure 14. Microprocessor Interface Synchronous Wri te Cycle (MPMODE (Pin AD17) = 1) .................................54
Figure 15. Microprocesso r Interface Synchronous Read Cycle (MPMODE (Pin AD17) = 1).................................55
Figure 1 6. Microprocessor Interface Asynchrono us Write Cycle Description (M PMODE (Pin AC18) = 0) .. ..........57
Figure 17. Micro processo r Interface Asynchronous Read Cycle (MPMODE (Pin AC18) = 0) ...............................59
Tables Page
Table 2 4. High-speed Input Clock Specifications .................................................................................................. 39
Table 2 5. Output Clock Specifications ................................................................................................................... 40
Table 26. I nput Timing Specifications . ....... ....... ....................................................................... ..............................41
Table 27. Output Timing Specifications ................................................................................................................. 42
Table 2 8. DS3 Input Clock Specifications .............................................................................................................43
Table 29. I nput Timing Specifications . ....... ....... ....................................................................... ..............................43
Table 30. Output Timing Specifications ................................................................................................................. 43
Table 3 1. M 13 Clock Specifications ...................................................................................................................... 44
Table 32. I nput Timing Specifications . ....... ....... ....................................................................... ..............................44
Table 33. Output Timing Specifications ................................................................................................................. 44
Table 34. VT Mapper Receive Path Overhead Detailed Timing ...... ....... ..... ... .............................. ....... . ................. 45
Tabl e 35. CHI Transm it Timi ng Characteristics .. ................................................................................................... 46
Table 3 6. CHI Receive T iming Characteristics ......................................................................................................47
Table 3 7. PSB Interface Transmit Ti ming Characteristics ..................................................................................... 47
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
38 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
Table of Conten ts (continued)
Tables Page
Table 3 8. PSB Interface R eceive Timing Characteristics ...................................................................................... 48
Table 3 9. NSMI (Mode 1) Input Clock Specif ications ............................................................................................ 49
Table 40. Input Tim ing Sp ec ifications ... ................................... ... ................................ . .......................................... 49
Table 41. Output Timing Specifications ................................................................................................................. 49
Tabl e 42. SMI ( Mo d e 2) Inpu t Clock Specific at ions .... ................... ........................................................................ 49
Table 43. Input Tim ing Sp ec ifications ... ................................... ... ................................ . .......................................... 50
Table 44. Output Timing Specifications ................................................................................................................. 50
Table 45. Framer Only Mode Clock S pec if icat ions . ......................... .......... ... ......................... . .............................. 51
Table 46. Framer Mode Only Input Timing Specifications ..................................................................................... 52
Table 47. Framer Mode Only Output Timing Specifications .................................................................................. 52
Table 48. FramerLIU M ode Clock Sp ecifications . ................ ...................... .................. . ............. . ................... .... 53
Table 49. FramerLIU M ode Input Timing Specifications .. .............................. ... ......................... ....... . ................ 54
Table 50. FramerLIU M ode Output Timing Specifications ............ . ..................................... ....... . ....................... 54
Table 51. M icroproc es sor Interface Synchro nous Write Cycle Specifications ..................... ... ......................... . ....55
Table 52. M icroproc es s or Interface Synchronous Read Cycle Specifications ............................ ... ....................... 56
Table 5 3. M icroprocessor Interface Asynchronous Write Cycle Sp ecifi cations .....................................................58
Table 5 4. M icroprocessor Interface Asynchronous Read Cycle Specifications .................................................... 60
Table 55. Input Tim ing Sp ec ifications ... ................................... ... ................................ . .......................................... 60
Table 56. Output Timing Specifications ................................................................................................................. 61
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
39Agere Systems Inc.
5 Timing Character is ti cs (continued)
5.1 TM U X Bl ock Timin g
The TMUX (STS-N/STM-1) timing parameters can be grouped separately for clocks, inputs, and outputs. Table 24
sho ws the input clock specifications for this d evice. The rise and fall times refer to the transition times fr om 1 0 % to
90% of f ull sw i ng.
For defi n itions of the signal nam es, see the pin descriptions secti on at the beginni ng o f this data sheet.
Table 24. High-speed Input Clock Specifications
Not e: When the true an d comp le m ent inp ut s a re f lo at ing, the input buffer wil l not oscillate.
5-9077(F)
Figure 6. Gen e ric Clock Timing
Symbol Parameter Signal Nam e 155 Clock 51 Clock Unit
Min Nom Max Min Nom Max
fCK Operating
Frequency THSCP/N 155.52 ±30 ppm —— 51.84 ±50 ppm MHz
RHSCP/N 155.52 ±30 ppm —— 51.84 ±50 ppm MHz
RPSC155P/N 155.52 ±30 ppm MHz
tCK Clock
Period THSCP/N 6.43 ±0.4% —— 19.29 ±0.4% ns
RHSCP/N 6.43 ±0.5% —— 19.29 ±0.5% ns
RPSC155P/N 6.43 ±0.5% —— ns
tCLKHI Clock
Pulse High
Time
THSCP/N 2.5 3.9 7.8 11.6 ns
RHSCP/N 2.5 3.9 7.8 11.6 ns
RPSC155P/N 2.5 3.9 ns
tR Ris e Tim e THSCP/N ——1.5 ——5.0 ns
RHSCP/N ——1.5 ——5.0 ns
RPSC155P/N ——1.5 ns
tF Fall Time THSCP/N ——1.5 ——5.0 ns
RHSCP/N ——1.5 ——5.0 ns
RPSC155P/N ——1.5 ns
tCLKHI
tF
tR
tCK
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
40 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
The output cl ock specifications are shown in Table 25, where the symbols match the waveform diagram above.
Table 25. Output Clock Specifications
* The specificatio ns for the table are with al l l oopbacks disabled.
Note: Any of the telecom signals being us ed as inputs (slave Super Ma pper) need to meet these same output
clock specificatio ns.
Signal Name Refer ence CLK*Frequency Clock Pulse High
Time (tCLKHI) Test
Condition Max Rise
Time (tR) Max Fall
Time (tF)
TLSCLK TH SCP/N 19.44 MHz 24.4327.00 n s C L = 50 pF 3.5 ns 3.5 ns
TTOACCLK T HSCP/N 5.184 M H z 91.62101. 3 n s C L = 15 pF 3.5 ns 3.5 ns
RLSCLK RHS CP/N or
Internal CDR Clock 19.44 MH z 24.4327.00 ns CL = 50 pF 3.5 ns 3. 5 ns
RTOACCLK RHSCP/N or
Internal CDR Clock 5.184 MH z 91.62101.3 ns CL = 15 pF 3.5 ns 3. 5 ns
TPSC155P /N THSCP/N 15 5.5 MH z 3.1193.31 1 n s C L = 15 pF 1.5 ns 1.5 ns
TP OACCLK THSCP/N 5.184 MHz 91.62101. 3 n s C L = 15 pF 3.5 ns 3.5 ns
RPOACCLK RHSCP /N 5.184 MHz 91.62101. 3 ns CL = 15 pF 3.5 n s 3.5 ns
TLS C 52 T H SCP/N 51.84 MHz 9.16210.13 n s C L = 30 pF 3.0 ns 3.0 ns
RLSC52 RHSCP/N 51.84 MHz 9.16210.13 n s C L = 30 pF 3.0 ns 3.0 ns
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
41Agere Systems Inc.
5 Timing Character is ti cs (continued)
Tabl e 26 . In put Timing Specificat ions
Figure 7. Generic Interface Data Timi ng
Input Name Reference CLK Min S etup Time (tS) Min Hold Time (tH)
Transmit S igna ls
THSSYNC THSC 2. 0 ns 0.0 ns
TLSDATA[7:0] TLSCLK 5.0 ns 0.0 ns
TLSPAR TLSCLK 5.0 ns 0.0 ns
TLSSPE TLSCL K 5.0 ns 0.0 n s
TLSJ0J1V1 TLSCLK 5.0 ns 0.0 ns
TLSV1 TLSCLK 5.0 ns 0.0 ns
TLSSYNC52 TLS C52 4.0 ns 0.0 ns
TTOACDATA TTOACCLK 1 0.0 ns 0.0 ns
TPOACDATA TPOACCLK 10.0 ns 0.0 ns
Receive Signals
RHSDP/N RHSCP/N ↑↓ 2.0 ns 0.0 n s
RPSD155P/N RPSC155P/N 2.0 ns 0.0 ns
RLSDATA[7:0] RLSCLK 5.0 ns 0.0 ns
RLSPAR RLSCLK 5.0 ns 0.0 n s
RLSSPE RLSCLK 5.0 ns 0.0 ns
RLSJ0J1V1 RLSCLK 5.0 ns 0.0 ns
RLSV1 RLSCLK 5.0 ns 0.0 n s
R LSSYNC52 RLSC52 4.0 ns 0.0 ns
Miscellaneous Signals
LOSEXT NA ASYNC ASYNC
AUTO_AIS[3:1] NA ASYNC ASYNC
CLOCK
DATA
CLOCK
DATA
tSU tH
tPD
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
42 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
Tabl e 27. Output Timi ng Specifications
* Propagation delay skew, tPLH tPHL, is ±200 ps.
Output Name Reference CL K Te st
Conditions Pr opagation Delay* Unit
tPD
Min Max
Transmi t Signals
THSDP/N T HSCP/N CL = 15 pF 0.6 2.9 ns
TPSD155P/N TPSC155P/N CL = 15 pF 0.6 2.9 ns
TLSDATA[7:0] TLSCLK CL = 50 pF 4.0 12.0 ns
TLSPAR TLSCLK CL = 50 pF 4.0 12.0 ns
TLSSPE TLSCLK CL = 50 pF 4.0 12.0 ns
TLSJ0J1V1 TLSCLK CL = 50 pF 4.0 12.0 ns
TLSV1 TLSCLK CL = 50 pF 4.0 12.0 ns
TLSSYNC52 T LSC52 CL = 30 pF 0.0 6.0 ns
TTOACSYNC TTOACCLK ↑↓ CL = 15 pF 10.0 30.0 ns
TPOACS YNC TPOACCLK ↑↓ CL = 15 pF 10.0 30.0 ns
Receive Signals
RLSDATA[7:0] RLSCLK CL = 50 pF 4.0 12.0 ns
RLSPAR RLSCLK CL = 50 pF 4.0 12.0 ns
RLSSPE RLSCLK CL = 50 pF 4.0 12.0 ns
RLSJO J1V1 RLSCLK CL = 50 pF 4.0 12.0 ns
RLSVI RLSCLK CL = 50 pF 4.0 12.0 ns
RLSSYNC52 RLSC52 CL = 30 pF 0.0 6.0 ns
RTOACSYNC RTOACCLK ↑↓ CL = 15 pF 10.0 30.0 ns
RTOACDATA RTOACCLK ↑↓ CL = 15 pF 10.0 30.0 ns
RPOACSYNC RPOAC CLK ↑↓ CL = 15 pF 1 0.0 30.0 ns
RPOACDATA RPOACCLK ↑↓ CL = 15 pF 10.0 30.0 ns
RH SFSYNCN RLSCLK CL = 30 pF 0.0 8.0 ns
Miscellaneous Signals
AUTO_AIS[3:1] NA ASYNC ASYNC
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
43Agere Systems Inc.
5 Timing Character is ti cs (continued)
5.2 DS3 Timi n g
Table 28. DS3 Input Clock Specifications
Tabl e 29 . In put Timing Specificat ions
Tabl e 30. Output Timi ng Specifications
Symbol Pa r ameter Signal Na me Mi n Max Unit
fCK Clock Frequ enc y DS3DATAINCLK
DS3DATAOUTCLK
44.736 MHz ±50 pp m
tCK Clock Period DS3DATAINCLK
DS3DATAOUTCLK
22.353
22.353 ns
tCLKHI Clock Pul se High Time DS 3DATAINCLK
DS3DATAOUTCLK 6
616
16 ns
tRRise Time DS3DATAINCLK
DS3DATAOUTCLK 02ns
tFFall T ime DS3DATAINCLK
DS3DATAOUTCLK 02ns
Input Name Reference CLK Min Setup Time (tS) Min Hold Time (tH)
D S3POSDATA IN DS3DATAINCLK ↑↓ 40
DS3NEG DATA IN DS3DATAINCLK ↑↓ 40
Outp ut Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
DS3POSDATAOUT DS3DA TAOUTCLK ↑↓ CL = 15 pF 2 6 ns
DS3NEGD ATAOUT DS3DATAOUTCLK ↑↓ CL = 15 pF 2 6 ns
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
44 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
5. 3 M13 T im i ng
Table 31. M13 Cl ock Speci fication s
Tabl e 32 . In put Timing Specificat ions
Tabl e 33. Output Timi ng Specifications
Symbol Parameter Signal Name Min Nom Max Unit
fCK Clock
Frequency TCBCLK
TDLCLK
E1XCLK
DS1XCLK
DS2AISCLK
RCBCLK
RDLCLK
2.048
1.544
93.983 gapped
28.195 gapped
32.768
24.704
6.312
93.983
28.195
65.536
49.408
kHz
kHz
MHz
MHz
MHz
kHz
kHz
tCLKHI Clock Pulse
High Time TCBCLK
TDLCLK
RCBCLK
RDLCLK
212.19
212.19
212.19
212.19
223.53
223.53
223.53
223.53
250.77
250.77
250.77
250.77
ns
tRRise Tim e TCBC LK
TDLCLK
E1XCLK
DS1XCLK
DS2AISCLK
RCBCLK
RDLCLK
0
0
0
0
0
0
0
3
3
3
3
3
3
3
ns
tFFall Time TCBCLK
TDLCLK
E1XCLK
DS1XCLK
DS2AISCLK
RCBCLK
RDLCLK
0
0
0
0
0
0
0
3
3
3
3
3
3
3
ns
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
TCBDATA T CB CLK 50 0ns
TDLDATA TDLCLK 50 0ns
O ut put N a me Refere nc e C LK Test C onditions Prop ag a t ion Del ay tPD Unit
Min Max
TCBSYNC TCBCLK CL = 15 pF 2 10 ns
RCBSYNC RCBCLK CL = 15 pF 2 10 ns
RCBDATA RCBCLK CL = 15 pF 2 10 ns
RDLDATA RDLCLK CL = 15 pF 2 10 ns
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
45Agere Systems Inc.
5 Timing Character is ti cs (continued)
5.4 VT M a pper Ti min g
5.4.1 VT Mapper Lower-Order Path Overhead Interface Timing
Table 34. VT Mapper Receive Path Overhead Detailed Timing
5-9078(F)
Figure 8. VT Mapper Transmit Path Overhead Detailed Timing
5-9079(F)
Figure 9. VT Mapper Receive Path Overhead Detailed Timing
Symbol Parameter Min Max Unit
fCK Clock Frequ enc y 6.48 6.48 M Hz
tCK Clock Per iod 154 154 ns
tCLKHI Clock Pulse High Time 50 75 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tSD LOPOH Data Se tup Time 5 ns
tHD LOPOH Data Hold Time 0 ns
tSV LOPOH Valid Signal Setup Time 5 ns
tHV LOPOH Valid Signal Hold Time 0 ns
tPDV Clock to LO POH Valid Signal Out 0 5 ns
tPDD Clock to LOPOH Da ta Out 0 5 ns
LOPOHCLKIN
LOPOHVALIDIN
LOPOHDATAIN
t
HV
t
SV
t
SD
t
HD
t
CK
tPDV
tPDD
LOPOHCLKOUT
LOPOHVALIDOUT
LOPOHDATAOUT
tCK
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
46 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
5.5 Co nc entra tion Highway (CH I) Timing
Table 35 and Table 36 with Figure 10 and Figure 11, respectively, illustrate the detailed CHI timing for clock, da ta,
and frame synchronization.
Table 35. CHI Transmit Timing Characteristics
*f
CK can be either 2.048 M H z , 4.096 MHz, 8.192 MHz, or 16.384 MHz.
5-9080(F)
Figure 10. CHI Transmit I/O Timing
Symbol Parameter Min Max Unit
fCK C lock Frequency* 2.048 16.3 84 MHz
tCK C lock Per iod 488.2 61.04 n s
tRClock Rise Time 0 3 ns
tFC lo ck Fall Time 0 3 n s
tSFrame Sy nc Setup Tim e 35 ns
tHFrame Sy nc Hold Tim e 0 ns
tPD C lock to CHI Data Delay 25 ns
LINETXCLK29
LINETXSYNC29
LINETXSYNC[28:1]
tS
CLOCK
FRAME SYNC
DATA
tH
tCK
tPD
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
47Agere Systems Inc.
5 Timing Character is ti cs (continued)
Table 36. CHI Receive Ti ming Characteristics
*fCK can be either 2.048 M H z , 4.096 MHz, 8.192 MHz, or 16.384 MHz.
5-9081(F)
Figure 11. CHI Receive I/O Timin g
5.6 Pa r al le l Sy ste m Bus T im in g
Table 37 and Table 38 with Figure 12 and Figure 13, respec tively, show the transmit an d recei ve tim ing. In the
transmit direct ion (to the system interf ace) the frame sync is sampled and the data is clo cked out on the rising edge
of the clock. In the receive direction (from the switch) the data and frame sync are sampled on the rising edge of
th e clock.
Table 37. PSB Interface Transmit Timing Characterist ics
Symbol Parameter Min Max Unit
fCK Clock Frequ ency * 2.048 16.384 MHz
tCK Clock Period 488.2 61.04 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tSSYNC Frame S y nc Setup Time 30 ns
tHSYNC Frame Sync Hold Time 0 ns
tSDATA CHI Dat a Se tup Time 25 ns
tHDATA CHI Data Hold Time 0 ns
Symbol Parameter Min Max Unit
fCK Clock Frequency 19.44 19.44 MHz
tCK Clock Period 51.44 51.44 ns
tRClock Ri se T ime 0 3 ns
tFClock Fall Time 0 3 ns
tSFrame Sync Setup Time 8 ns
tHFrame Sync Hold Ti me 0 ns
tPD Clock to PSB Out De lay 3 10 ns
tHDATA
LINERXCLK29
LINERXSYNC29
LINERXSYNC[28:1]
CLOCK
F RAME SYNC
DATA
tSSYNC tHSYNC
tSDATA
tCK
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
48 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
5-9082(F)
Figure 1 2. Para llel System Bus I nterface Transmit I/O Timin g
Table 38. PSB Interface Receive Timing Characteristics
5-9083(F)
Figure 13. Parallel System Bus Interface Recei ve I/O Timing
Symbol Parameter Min Max Unit
fCK C lock Frequency 19.44 19.44 MH z
tCK C lock Per iod 51.44 51.44 ns
tRC lock Rise Time 0 3 ns
tFC lock Fall Time 0 3 ns
tSSYNC Frame Sync Setup Time 8 ns
tHSYNC Frame Sync Hold Time 0 ns
tSDATA PSB to Clock Setup Time 8 ns
tHDATA PSB Hold Time from Clock 0 ns
DEV #0, TS #1, DEV #0, TS #1,
tPD
STUFFED TS STUFFED TS
6 (3) STUFFED TS IN DS1 (E1)
tHtS
LINETXCLK29
LINETXSYNC29
LINETXSYNC[16:1]
CLOCK
FRAM E SYNC
DATA LINK #0 LINK #1
tCK
DATA SAM P LED
tSDATA tHDATA
DEV #0, TS #1, DEV #0, TS #1,
STUFFED TS STUFFED TS
tHSYNCtSSYNC
LINERXCLK29
LINERXSYNC29
LINERXSYNC[16:1]
CLOCK
FRAME SYNC
DATA LINK #0 LINK #1
tCK
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
49Agere Systems Inc.
5 Timing Character is ti cs (continued)
5.7 NSM I T im ing M ode 1 (6 P i n)
Tabl e 39. NSMI (Mode 1) Input Clock Spec ific ations
Tabl e 40 . In put Timing Specificat ions
Tabl e 41. Output Timi ng Specifications
5. 8 SMI T imi n g Mo d e 2 (8 Pi n)
Tabl e 42. SMI ( Mode 2) Input Clock Sp eci fications
Symbol Parameter Signal Nam e Min Nom Max Un it
tCK Clock
Frequency LINE_TXCLK29
LINE_RXCLK29
51.84/44.73 6 ±50 ppm
51.84/44.73 6 ±50 ppm
MHz
MHz
tCKHI Clock Pu lse
High Time LINE_TXCLK29
LINE_RXCLK29 6
6
12
12 ns
ns
tRRise Time LINE_TXCLK29
LINE_RXCLK29
3
3ns
ns
tFFall Time LINE_TXCLK29
LINE_RXCLK29
3
3ns
ns
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINE_ R XDATA29 LINE_R XCL K2 9 50ns
LINE_RXSYNC29 LINE_RXCLK29 50ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINE_TXDATA29 L INE_TXCLK29 CL = 15 pF 0 3 .5 ns
LINE_T XSYNC29 LINE_TXCLK29 CL = 15 pF 0 3.5 ns
RXDATAEN LINE_TXCLK29 CL = 15 pF 0 3.5 ns
TXDATAEN LINE_TXCLK29 CL = 15 pF 0 3.5 ns
Symbol Parameter Signal Name Min Nom Max Unit
tCK Clock
Period LINE_TXCLK29
LINE_RXCLK29
RXDATAEN
44.736 MHz ±50 ppm
TBD
TBD
19.29
19.29
TBD
TBD
TBD
TBD
ns
ns
ns
tCKHI Cl ock Pu lse
High Time LINE_TXCLK29
LINE_RXCLK29
RXDATAEN
6
6
TBD
1/3 tck
1/3 or 1/2 tck
TBD
TBD
TBD
TBD
ns
ns
ns
tRRise Time LINE_TXCLK29
LINE_RXCLK29
RXDATAEN
0
0
0
3
3
3
ns
ns
ns
tFFall Time LINE_TXCLK29
LINE_RXCLK29
RXDATAEN
0
0
0
3
3
3
ns
ns
ns
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
50 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
Tabl e 43 . In put Timing Specificat ions
Tabl e 44. Output Timi ng Specifications
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINE_ R XDATA29 LINE_R XCL K2 9 50ns
LINE_RXSYNC29 LINE_RXCLK29 50ns
Output Name Reference CLK Test Conditions Propagation De lay tPD Unit
Min Max
LINE_TXDATA29 LINE_TXCLK29 CL = TBD pF 0 3.5 ns
LINE_TXSYNC29 LINE _TXCLK 29 CL = TBD pF 0 3.5 ns
TXDATAEN RXDATAEN CL = TBD pF 0 3.5 ns
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
51Agere Systems Inc.
5 Timing Character is ti cs (continued)
5. 9 Fram e r O nly Mod e Timing
Table 4 5. Framer Only Mode Clock Specifications
Symbol Pa r a met er Signal Na me Min Nom Max Unit
tCK Clock
Frequency TLSC52
LINERXDATA29
LINERXCLK[28:1]
LINERXCLK29
LINETXCLK[28:1]
LINETXCLK29
50 ppm
130 ppm
50 ppm
130 ppm
50 ppm
50 ppm
50 ppm
50 ppm
130 ppm
50 ppm
50 ppm
50 ppm
50 ppm
51.84
1.544
or 2.048
1.544
2.048
or 4.096
or 8.192
or 16.384
1.544
or 2.048
or 4.096
or 8.192
or 16.384
50 ppm
130 ppm
50 ppm
130 ppm
50 ppm
50 ppm
50 ppm
50 ppm
130 ppm
50 ppm
50 ppm
50 ppm
50 ppm
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
tCKHI Clock Pulse
H igh Time TLSC52
LINERXDATA29
LINERXCLK[28:1]
LINERXCLK29
LINETXCLK[28:1]
LINETXCLK29
6
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
12
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tRRise Time TLSC52
LINERXDATA29
LINERXCLK[28:1]
LINERXCLK29
LINETXCLK[28:1]
LINETXCLK29
0
0
0
0
0
0
0
0
0
0
0
0
0
3
3
3
3
3
3
3
3
3
3
3
3
3
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
52 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
Table 45. Framer Only Mode Clock Specifications (continued)
Tabl e 46. Frame r Mode Only Input Ti ming S pe c ificatio ns
Table 47. Framer Mode Only Output Tim in g Specification s
Symbol P a ramete r Sign al Na me Min Nom Max Uni t
tFFall Time TLSC52
LINERXDATA29
LINERXCLK[28:1]
LINERXCLK29
LINETXCLK[28:1]
LINETXCLK29
0
0
0
0
0
0
0
0
0
0
0
0
0
3
3
3
3
3
3
3
3
3
3
3
3
3
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXDATA[28:1] LINERXCLK[28: 1] 25 0ns
LINERXSYNC[28:1 ] LINERXCLK[ 28: 1] 30 0ns
LINERXSY NC29 LINERXCLK29 30 0ns
LINETXS YNC 29 LINETXCLK 29 35 0ns
Outp ut Name Reference CLK Test Con ditions Propagation Delay tPD Unit
Min Max
LINET XDATA[28:1] LINETXCLK[28:1] CL = TBD pF 2 5 TBD ns
LINETXDATA29 LINE TXCLK29 CL = TBD pF 25 TBD ns
LINETXS Y NC[2 8:1] LINETXCLK[28:1] CL = TBD pF TBD TBD ns
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
53Agere Systems Inc.
5 Timing Character is ti cs (continued)
5.10 Framer L IU Mo d e T im in g
Table 48. Framer—LIU Mode Clock S pecifica tions
Symbol Parameter Signal Name Min Nom Max Unit
tCK Clock
Frequency TLSC52
LINERXCLK[28:1]
LINERXCLK29
LINETXCLK[28:1]
LINETXCLK29
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
51.84
TBD
2.048
or 4.096
or 8.192
or 16.384
TBD
or 2.048
or 4.096
or 8.192
or 16.384
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
MHz
TBD
MHz
MHz
MHz
MHz
TBD
MHz
MHz
MHz
MHz
tCKHI Clock Pulse
H igh Time TLSC52
LINERXDATA29
LINERXCLK[28:1]
LINERXCLK29
LINETXCLK[28:1]
LINETXCLK29
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tRRise Time TLSC52
LINERXDATA29
LINERXCLK[28:1]
LINERXCLK29
LINETXCLK[28:1]
LINETXCLK29
0
0
0
0
0
0
0
0
0
0
0
0
0
3
3
3
3
3
3
3
3
3
3
3
3
3
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tFFall Time TLSC52
LINERXDATA29
LINERXCLK[28:1]
LINERXCLK29
LINETXCLK[28:1]
LINETXCLK29
0
0
0
0
0
0
0
0
0
0
0
0
0
3
3
3
3
3
3
3
3
3
3
3
3
3
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
54 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
Tabl e 49. Frame r LI U Mode In put Timing Specific a tions
Table 50. Framer—LIU M od e Output Timing Specifications
5.11 Microprocessor Interface Timing
5.11.1 Synchronous Mode
The synchronous microprocessor interface m ode is selected whe n MPMODE (pin AD17) = 1. Interface timing for
the synchronous mode write cycle is given in Figure 14 and in Table 51 and for the read cycle in Figure 15 and in
Table 52.
Note: In addition to the MP U_CLK, the VT mapper block also requires TLSC 52,TLSSYNC52, RLSC52,
RLSSYNC52 signals to access specific portions of the register map. T he user needs to make sure that the
VT_RDY bit is set be fore VT_MAPPER reads/writes can o ccur.
5-7659(F)a
Figure 14. Microprocessor Inte rface Synchronous W rite Cycle (MPMODE (Pin AD17) = 1)
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXDATA[28:1] LINERXCLK[28:1] TBD 35 35 ns
LINERXDATA29 LINERX CLK 29 TBD 35 35 ns
LINERXSYNC[28:1] LINERXCLK[28:1] TBD 35 35 ns
LIN ERXSYNC29 LINERXCLK29 TBD 35 35 ns
Output Name Reference CLK Test Con ditions Propagation Delay tPD Unit
Min Max
LINETXDATA[28:1] LINETXCLK[28:1] CL = TBD pF 35 35 ns
LINETXDATA29 LINETXCLK29 CL = TBD pF 35 35 ns
LINETXS Y NC[2 8:1] LINETXCLK[28:1] CL = TB D pF 35 35 ns
LINETXSYNC29 LINETXCLK29 CL = TBD pF 35 35 ns
MPCLK
ADDR[9:0]
CSN
ADSN
RWN
DATA[15:0]
DTN
(66 M Hz MA X )
(INPUT)
tADSNVS
tWS
tDTNVPD
tWS
tCSNVS
tWS
tCLK T1 T2 T3 Tn 2 Tn 1Tn
tAIPD
tAPD
tAPD
tAPD
tAPD
tDTNIPD
HIGH ZHIGH Z tADSNVDTF
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
55Agere Systems Inc.
5 Timing Character is ti cs (continued)
MPCLK 16 MHz minimum to 66 MHz maximum frequency.
ADDR [19:0] The address wil l be available throughout the entire cycle.
DATA [15:0] Data will be avail a ble during cycle T1.
RWN (Input) The rea d ( H ) w r ite (L) sig nal is always high except during a write cycle.
CSN (Input) Chip select i s an active-l ow signal.
DTN (Output) Data transfer acknowledge is active-low for o ne clock and then driven high before entering a high-
imped ance st ate. (This i s done wit h an I /O pad usi ng the input as feedback to qualify the 3-state
term.) D TN will become 3-stated when CSN is high. Typically DT N is active 4 or 5 MPCLK cycles
after ADSN is low.
AD SN (Inpu t ) A d d r ess s t r obe is active -low . ADSN must be 1 MPCLK clock period wide.
Table 5 1. Microprocessor Interface Syn chronous Write Cycle Sp ecificati ons
(See Figure 14 on page 54 for the tim ing diagram.)
5-7660(F).a
Figure 15. Mi croprocessor Interface Synchronous Read Cycl e (MP MODE (Pin AD17) = 1 )
Sym bol Parame te r Set up ( ns)
(Min) Hold (n s)
(Min) Delay (ns)
(Max) Delay (ns)
(Min)
TCLK MPCLK 1 6 MHz Min66 M H z M ax Frequency ——
tWS ADDR, RWN, DATA (write) Valid to M P CLK 3.5 0
tAPD MPCLK to ADDR, RWN, DATA, CSN (write) Invalid 5
tCSNVS CSN Valid to MPCLK 3.5 0
tADSNVS ADSN Valid to MPCLK 5.5 0
tAIPD MPCLK to ADSN Invali d 5
tDTNVPD MPCLK to DTN Valid ——16 4
tDTNIPD MPCLK to DTN Invalid ——16 4
TADSNVDTF AD SN Valid to D T Fallin g ——1000
MPCLK
ADDR[9:0]
CSN
ADSN
RWN
(66 MHz MAX)
tADSNSU tSNIPD
tCSNSU
tAVS
T0 T1 T2 Tn 4Tn 3Tn 2Tn 1 Tn
DTN
DATA[15:0]
(OUTPUT)
tDAIPD
tDVPD tDIPD
tADSNVDTF HIGH Z
HIGH Z
tAPD
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
56 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
MPCLK 16 MHz minimum to 66 MHz maximum frequency.
ADDR [19:0] The address will be available throughout the entire cycle , and must be stable before ADSN turns
high.
DATA [15:0] Read da ta is stable in Tn 1.
RWN (Input) The rea d (H) write (L) signal is always high during the read cycle.
CSN (Input) Chip select i s an active-l ow signal.
DTN (Output) Data transfer acknowledge on the host bus interface is initiated on T6. This signal is active for one
clock and then driven hig h b efore entering a high-impedance st ate. (This is done w ith an I/O pad
using the input as feedback to qualify the 3-state term.) DT will bec ome 3-s tated when CS is high.
Typically DTN is active 4 or 5 MPCLK cycles after ADSN is low.
AD SN ( Input ) Ad dr e s s st r obe is ac tive -low . ADSN must b e on e MP C LK clock period wide.
Table 52. Microprocessor Interface Syn chronous Read Cycle Specifications
(See Figure 15 on page 55 for the tim ing diagram.)
5.12 Asyn chronous Mode
The asynchronous microprocessor interface mode is selected when MPMODE (pin AC18) = 0. I n terface timing for
the asynchronous mode write cycle is given in Figure 16 and in Table 53, and for the read cycle in Figure 17 and in
Table 54 (see pages 5960).
Symbol Parameter Setup (ns)
(Min) Hold (ns)
(Min) Delay (ns)
(Max)
tCLK MP C LK 16 MH z Min66 MH z Max Frequency ———
tAVS ADDR Valid to MPCLK 3.5 0
tAPD MPCLK to ADDR Inva lid 5
tCSNSU CSN Active to MPCLK 3.5 0
tADSNSU ADSN Valid to MPCLK 5.5 0
tSNIPD MPCLK to ADSN Inactive 5
tDVPD MPCLK to DTN Valid —— 8
tDIPD MPCLK to DT N Invalid —— 8
tDAIPD MPCLK to DATA 3-state —— 8
tADSNVDTF AD SN Valid to DT Falling ——1000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
57Agere Systems Inc.
5 Timing Character is ti cs (continued)
5-7661(F).ar.1
Figure 16. Micr o processor Interface Asynchronous Write Cycle Description (MPMODE (Pi n AC18) = 0)
ADDR [19:0] Address is asynchronou sly passed from the host bus to the internal bus. The address will be avail-
able throug hout the entire cycle.
DATA [15:0] Write data is async hronous ly pas s ed from the hos t bus to the internal bus. Data will be available
throughout the entire cycle.
RWN (Input) The rea d ( H ) w r ite (L) sig nal is always high except during a write cycle.
CSN (Input) Chip select i s an active-l ow signal.
DTN (Output)Data transfer acknowl edge (ac tive-low). DTN is driven asynchronously based on the arrival of CSN.
DTN is driven high until the internal transaction is d one. DTN is driven high again when eithe r ADSN
or DSN is deasserted. DTN will become 3-stated when CSN is high.
AD SN ( Input ) Ad dr e s s st r obe is ac tive -low . ADSN must be a minimum of one MPCLK clock period wide.
DSN (Input ) Data strobe is active-low.
ADDR[19:0]
CSN
ADSN
DSN
RWN
DATA[15:0]
DTN
(INPUT)
tAVADSF
tDVDSF
tCSFDTR tDSFDTF
tADSRDTR tCSRDT3
tDSRDI
tDSRRWR
tDSNRAI
tADSRAI
tAICSR
tRWFDSF
tAVDSF
HIGH Z HIGH Z
tCSFDSF
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
58 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
Table 5 3. Microprocessor Interface Asynchronous Write Cycle Specifications
(See Figure 16 on page 57 for the timing di agram.)
* Simulation results.
Falling edge s of ADSN a nd DSN dete r mine falling edge of DTN.
DTN fall is variable, depending on the block selected for access, and may be longer than the typical maxi mum sp ecifi ed .
§ Rising edge of ADSN deter mines r ising edge of DTN.
Note: Specifications are valid for 50 MHz MPCLK with MPMODE = 0. Address strobe (ADSN) and chip select
(CSN) may be connect ed and driv en from the same sourc e. In thi s configuration, the setup and hold times
for ADSN must be satisfied.
Symbol Parameter Min Interval (ns) Max Interval (ns)
tCSFDSF CSN Fall to DSN Fall 0
tAICSR ADDR Invalid to CS N Rise 0
tAVADSF ADDR Valid to AD SN Fall 0
tADSRAI ADSN Rise to ADDR Invalid 0
tAVDSF ADDR Valid to DSN Fall 0
tDSNRAI DSN Rise to ADDR Invalid 0
tRWFDSF RWN Fall to DSN Fall 0*
tDSRRWR DSN Rise to RWN Rise 0*
tDVDSF DATA Valid to DSN Fall 0*
tDSRDI DSN Rise to DATA Invalid 0*
tCSFDTR CSN Fall to DTN Rise 20
tDSFDTF DSN Fall to DTN Fall 120 280†‡
tADSRDTR ADSN Rise to DTN Rise 20§
tCSRDT3 CSN Rise to DTN 3-state 10
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
59Agere Systems Inc.
5 Timing Character is ti cs (continued)
5-7662(F).ar.1
Figure 17. Microprocessor Interface Asynchr onous Read Cycle (MPMODE (Pi n A C18) = 0)
ADDR [19:0] Address is asynchronou sly passed from the host bus to the internal bus. The address will be avail-
able throug hout the entire cycle.
D ATA [15:0] Read data on the internal b us is only vali d f or one clock cycle; therefore, a latch is necessary to meet
the correct timing on t he host bus.
RWN (Input) The rea d (H) write (L) signal is always high during a read cycle.
CSN (Input) Chip select i s an active-l ow signal.
DTN (Output)Data transfer acknowl edge (ac tive-low). DTN is driven asynchronously based on the arrival of CSN,
DSN, and ADSN. DTN is driven high while the internal bus transaction is in progress. There is no
need to pro vide synchronization to outgoing signals in this mode. DTN is driv en high and then placed
in a high-impedance state when either ADSN or DSN is deasserted. DTN will become 3-stated when
CSN is high.
AD SN ( Input ) Ad dr e s s st r obe is ac tive -low .
DSN (Input ) Data strobe is active-low.
ADDR[19:0]
CSN
ADSN
DSN
DTN
DATA[15:0]
tADSRD3
tCSRDT3
tADSRDTR
tCSFDSF
RWN
tAVADSF
tAVDSF
tAICSR
tADSRAI
tDSNRAI
tDTVDV
tDSFDTF
tCSFDTR
HIGH Z
HIGH Z
HIGH Z
HIGH Z
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
60 Agere Sy stem s Inc.
5 Timing Char act er istics (continued)
Table 54. Microprocessor Interface Asynchronous Read Cycl e Speci fications
(See Figure 17 on page 59 for the tim ing diagram.)
Notes:
1 DSN can be asserted up to 20 ns (1 clk at 50 MHz) previous to CSN.
2 ADDR can b e a sse r ted up t o 60 n s (3 c lk at 5 0 MHz) into c ycle fr om A S DN.
3 DTN fall is variable depending on the block selected for access and may be longer than typical maximum specified.
4 Le ad ing edg es o f A D SN a nd DS N det erm ine the fallin g ed ge of D TN .
5 Rising edge of ADSN determines t he rising edge of DTN.
6 Data toggle 20 ns (1 clk at 50 MHz) previous to CS N.
Note: Specifications are valid for 50 MHz MPCLK with MPMODE = 0. Address strobe (ADSN) and chip select
(CSN) may be connect ed and driv en from the same sourc e. In thi s configuration, the setup and hold times
for ADSN must be satisfied.
5.13 General Purpose Interface Timing
Tabl e 55 . In put Timing Specificat ions
Symbol Para meter Min Interval (ns) Max Interval (ns)
tCSFDSF CSN Fall to DSN Fall 01
tAICSR ADDR Invalid to CS N Rise 0
tAVADSF ADDR Valid to ADSN Fall 0 602
tADSRAI ADSN Rise to ADDR Invalid 0
tAVDSF ADDR Valid to DSN Fall 0
tDSNRAI DSN Rise to ADDR Invalid 0
tCSFDTR CSN Fall to DTN Rise 20
tDSFDTF DSN Fall to DTN Fall 100 2803, 4
tADSRDTR ADSN Rise to DTN R ise 20 5
tCSRDT3 CSN Rise to DTN 3-state 10
tDTVDV DTN Valid to DATA Valid 06
tADSRD3 AD SN Rise to DATA 3-state 20
Input Name Ref e renc e CLK Min Setup Time (tS) Min Hold Time (tH)
JTAG Signals
TDI TCLK 15.0 ns 2.0 ns
TMSN TCLK 15.0 ns 2.0 ns
TRSTN NA ASYNC ASYNC
SCAN_EN NA ASYNC ASYNC
SCAN_MODE NA ASYNC ASYNC
Miscellaneous Signals
RSTN NA ASYNC ASYNC
PMRST NA ASYNC ASYNC
IC3STATEN NA ASYNC ASYNC
IDDQ NA ASYNC ASYNC
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
61Agere Systems Inc.
5 Timing Character is ti cs (continued)
Tabl e 56. Output Timi ng Specifications
* Propagation delay skew, tPLH tPHL, is ±200 ps.
6 Ordering Information
Outp ut Name Reference CLK Test Conditions Propagation Delay* (tPD) Unit
Min Max
Transmi t Signals
TDO TLCK CL = 25 pF 3.0 20.0 ns
Miscellaneous Signals
PMRST NA ASYNC ASYNC
Device Code Package Temperature Comcode
TMXF281553BAL-2-DB 456-pin PB GA 40 °C to 85 °C 108700055
62 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
Register Description
7 Micro processor Interface and Global Control and Status Registers
Ta ble of Conte nts
Contents Page
7 Microprocessor Interface and Global Co ntrol and Status Regis ters .... ................ .... ... ... ........... ... .... ... ..... .... ... .... 6 2
7.1 Super Mapper Global Control and S tatus Registers .. ....................... ............ ............ ......... ............ .............. 63
7. 2 Microprocessor Inter fa ce Reg i ste r Map........................................................................................................ 73
Tables Page
Table 5 7. SMPR_VCR, S uper Mapper V ers ion Control R egister (RO) . . ............. . ................ ................ . ................63
Table 5 8. SMPR_SYM R[4], Super Mapper Symbol Register4 SMPR (RO) .................... .................. ................... 63
Table 5 9. SMPR_SYMR[3], Super M apper Sym bol Regis ter3 (RO) ............ ..... ..................... . .................. . ...........63
Table 6 0. SMPR_SYMR[2], Super M apper Sym bol Regis ter2 (RO) ...................................... . .................. . ...........63
Table 6 1. SMPR_SYMR[1], Super M apper Sym bol Regis ter1 (RO) ...................................... . .................. . ...........64
Table 6 2. SMPR_SYMR[0], Super M apper Sym bol Regis ter0 (RO) ...................................... . .................. . ...........64
Table 6 3. SMPR_ISR, Super Mapper Interrupt S ta tus Register (RO) .... ............. . ................................ ................. 64
Table 64. SMPR_IMR, Super Mapper Interrupt Mask Register (RW) ................ ..... .. ..... ..... .. ..... .. ....... ..... ..... .. ...... 65
Table 6 5. SMPR_GTR, Global Trigger Regi ster (RW) ................... .......................... .......................... ................... 66
Table 6 6. SMPR_MSRR, Block So ftware Reset Register (RW) ........................................................................... 66
Table 67. SMPR_GCR, Global Control Register (RW) ... ............................ .......................................................... 68
Tabl e 68. SMPR_TSCR, T MUX, and SPEMPR Cont rol Regis ter (RW) .... ............................................................ 69
Table 6 9. SMPR_FCR, Framer Control Register (RW) ......................................................................................... 69
Table 70. SMPR_CLCR, CDR and LVDS Control Register (RW) ... ..... ... .. .. ................. .. ..... ..... .. .. ..... ..... .. ..... ..... ... 70
Table 7 1. SMPR_CPCR, Clock an d Power Control Register (RW) ...................................................................... 71
Table 72. SMPR_PMRCHR, PM Reset Count High Register (RW) .......... .. ... .. .. ..... .. ... .. ..... .. ..... .. ... .. .. ..... ... .. .. ..... .71
Table 73. SMPR_PMRCLR, PM Res et Count Low Register (RW) ............. ..... .. ..... .. ..... ..... .. ..... .. ..... .. ..... ..... .. ..... . 72
Tabl e 74. SMPR_SR, Scra tch Regi ster (RW) ..... .............................................................. .................................... 72
Table 7 5. SMPR_TX_LINE_EN1 ........................................................................................................................... 72
Table 7 6. Microprocessor Interface Register Map ................................................................................................. 73
63Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
7 Microprocessor Interface and Global Control and Status Registers (continued)
7.1 Super Mapper Global Control and Status Registers
This section gives a brief de scription of each register bit and i ts functi onality. The abbrev i ations after each register
indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/writ e (R/W) .
Table 57. SMPR_VCR, Super Mapper Version Control Register (RO)
Table 58. SMPR_SYMR[4], Super Ma pp e r Symbol Regist e r4 SMPR (RO)
Table 59. SMPR_SYMR[3], S uper Mapper Symbol Register3 (RO)
Table 60. SMPR_SYMR[2], S uper Mapper Symbol Register2 (RO)
Address Bit Name Function Reset Default
0x00000 15:11 Reserved . 0x0000
10:8 SMPR_VERSION[2:0] Super Mapper Version Number. SMPR version
register will change each time the device is changed.
7:0 SMPR_ID[7:0] SMPR ID Nu m b er.
Address Bit Name Function Res et Defau lt
0x00001 15:8 T Super Mapper Symbol Bit. 0x544D
7:0 M Super Mapper Symbol Bit.
Address Bit Name Function Res et Defau lt
0x00002 15:8 X Super Mapper Symbol Bit. 0x5846
7:0 F Super Mapper Symbol Bit.
Address Bit Name Function Res et Defau lt
0x00003 15:8 2 Super Mapper Symbol Bit. 0x3238
7:0 8 Super Mapper Symbol Bit.
64 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 61. SMPR_SYMR[1], S uper Mapper Symbol Register1 (RO)
Table 62. SMPR_SYMR[0], S uper Mapper Symbol Register0 (RO)
Table 63. SMPR_ISR, Super Mapper Interrupt Status Register (RO)
Address Bit Name Function Reset Default
0x00004 15:8 1 S uper Mapper Symbol Bit. 0x3135
7:0 5 Super Mapper Symbol Bit.
Address Bit Name Function Reset Default
0x00005 15:8 5 S uper Mapper Symbol Bit. 0x350D
7:0 CR Super Mapper Symbol Bit.
Address Bit Name F un ction Re set
Default
0x00008 15 SMPR_APS_IS APS Interrupt. Active-high signal indicating an interrupt event
has occurred in the automatic protection switch (APS) block,
w hich is within the TMUX block.
0x0000
14:10 Reserved.
9SMPR_PARITY_IS
Microprocessor Interface Data Bus Parity Error Interrupt.
Act ive-high signal indicating a µP data b us parity error has
occurred. Summary of errors detected in PAR[1] and PAR[0]
parity detectors.
8 SMPR_PMRESET_IS Perform ance Monitor Reset Interru pt. Active-high signal
indicat ing a 1 second event has occurred.
7SMPR_TPG_IS
TPG Interrupt. Active-high signal indicating an interrupt event
has occurred in the test pattern generation block.
6 SMPR_DJA_IS DJA Interrupt. Active-high signal indicating an interrupt event
has occurred in the digital jitter attenuation block.
5SMPR_FRM_IS
FRM Interrupt. Active-high signal indicat ing an interrupt
event has oc c urred in the f ra mer block. However, on device
powerup, this bit is erroneously set. A device initialization rou-
tine containing the f ollowing sequence should clear t he inter-
rupt:
Power up the framer block by selecting one of the clock
options in addres s 0x00012.
Set and clear the framer software reset bit, bit of address
0x0000E.
Power down the framer block in address 0x00012.
4SMPR_XC_IS
XC Interrupt. Active-high signal indicating an interrupt event
has occurred in the cross connect block.
3 SMPR_M13_IS M13 Interrupt. Active-high signal indicating an interrupt event
has occurred in the M13 multiplexer/demultiplexer block.
2 SMPR_VTMPR_IS VT MPR In te rrupt. A ctive-high signal indicating an i n terrupt
event has oc curred in the VT mapper block.
1 SMPR_SPEMPR_IS SPEMPR Interrupt. Active-high signal indicating an interrupt
event has occurred in the SPE mapper block.
0 SMPR_TMUX_IS TMUX Interrupt. Active-high signal indicating an interrupt
event has occurred in the TMUX blo ck.
65Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 64. SMPR_IMR , Super Mapper Interrupt Mask Register (RW)
Address Bit Name F un ction Re set
Default
0x00009 15 SMPR_APS_IM APS Interrupt Mask. When this bit is set to 1, the composite
interrupt bit will be inhibited from contrib uting to the interrupt
pin APS_INTN.
0x83FF
14:10 Reserved.
9 SMPR_PARITY_IM Microprocessor Interface Data Bus Parity Error Interrupt
Mask. When this bit is set to 1, the composite interrupt bit will
be inhibited from contributing to the interrupt pin INTN.
8 SMPR_PMRESET_IM Perf ormance Monitor Reset Interrupt Mask. When t his bit
is set to 1, the composit e i nterrupt bit will be inhibited from
con tributing to the interru pt pin INTN.
7SMPR_TPG_IM
TPG Interrupt Mask. When this bit is set to 1, the composite
interrupt bit will be inhibited from contrib uting to the interrupt
pin INTN.
6 SMPR_DJA_IM DJ A Interrupt Mask. When this bit is set to 1, the composite
interrupt bit will be inhibited from contrib uting to the interrupt
pin INTN.
5 SMPR_FRM_IM FRM Interrupt Mask. When this bit is set to 1, the composite
interrupt bit will be inhibited from contrib uting to the interrupt
pin INTN.
4SMPR_XC_IM
XC Interrupt Mas k. When this bit is set to 1, the composite
interrupt bit will be inhibited from contrib uting to the interrupt
pin INTN.
3 SMPR_M13_IM M13 Interrupt Mask. When this bit is set to 1, the composite
interrupt bit will be inhibited from contrib uting to the interrupt
pin INTN.
2 SMPR_VTMPR_IM VTMPR Interrupt Mask. When this bit is set to 1, the co m-
posite interrupt bit will be inhibited from contrib uting to the
inte rrupt p in INTN.
1 SMPR_SPEMPR_IM SPEMPR Int err upt Mask. When this bit is set t o 1, the com-
posite interrupt bit will be inhibited from contrib uting to the
inte rrupt p in INTN.
0 SMPR_TMUX_IM TMUX I nterrupt Mask. When this bit is set to 1, the compos-
ite interrupt bit wil l be inhibited from contributing to the inter-
r upt pin INTN.
66 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 65. SMPR_GTR, G lobal Trigger Register (RW)
Table 66. SMPR_MSRR, Bloc k Software Reset Register (RW)
Address Bit Name Function Reset Default
0x0000D 15:10 Reserved. 0x0000
9 SMPR_BER_INSRT Bit Error Rate Inserti on. When this bit is set to 1,
this bit indicates to th e S uper Mapper that a bit error
has to b e inserted in the appropriate frame.
8 SMPR_PMRESET Perform a nce Monitor Reset. When this bit is set to
1, the PM RESET signal will transition from a logic 0
to a l o g ic 1 s t a te. It will stay at a logi c 1 state for a
minim um of 100 ns. (Self-clearing.)
7:1 Reserved.
0 SMPR_SWRS Super Mapper Software Reset. When this bit is set
to 1, i t will create a software reset of the device. This
reset has t he same effect as the hardware reset. All
microproces s or registers are reset to their default
stat es and all inte rnal data path state machine are
reset. (S elf-c lear ing.)
Address Bit Name F un ction Re set
Default
0x0000E 15:8 Reserved. 0x0000
7 SMPR_TPG_SWRS T PG Block So ftware Reset. When this bit is set to 1, it will
create a software reset for the test-pattern generation macro.
This res et has the same effects as the h ardware reset and
chip-lev el software reset. All microprocessor registers within
the macro are reset to th eir default states. All internal data
path state machine within the block are also reset.
6 SMPR_DJA_SWRS D JA B lock Software Rese t. When this bit is set to 1, it will
create a software reset for the digital jitter attenuation bloc k.
This res et has the same effects as the h ardware reset and
chip-lev el software reset. All microprocessor registers within
the macro are reset to th eir default states. All internal data
path state machine within the block are also reset.
5 SMPR_FRM_SWRS FRM Blo ck Software Reset. When this b it is set to 1, it w ill
create a software reset for the framer block. This reset has the
same effects as the hardware reset and chip-level software
reset. All microprocessor registers within the bloc k are reset
to their default states. All inter nal data path s tate machine
w ith in the block are also reset.
67Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 66. SMPR_MSRR, Block Software Reset Register (RW) (continued)
Address Bit Nam e Function Res et
Default
0x0000E 4 SMPR_XC_SWRS XC Block S oftware Reset. When this bit is set to 1, it will
create a software reset f or the cross connect block. This
reset has the same effects as the hardware reset and chip-
level software reset. All microprocessor registers within the
block are reset to their def ault states. All internal data path
state machine within t he block are also reset .
0x0000
3 SMPR_M13_SWRS M13 Block Software Reset. When this bit is set to 1, it will
create a software reset for the M13 multiplexer/demulti-
plexer block. This reset has the same effects as the hard-
ware reset and chip-level software reset.
All microprocessor registers w ithin the block are reset to
their default states. All internal data path state machine
within the block are also reset.
2 SMPR_VTMPR_SWRS VTMPR B lock Software Reset. When this bit is se t to 1 ,
it will create a software reset for the VTMPR block. This
reset has the same effects as the hardware reset and
chip-level software reset. All microprocessor registers
within the block are reset to their default states. All inter-
nal data path state machine within the block are also
reset.
1 SMPR_SPEMPR_SWRS SPE MPR Block Software Reset . Wh en this bit is se t
to 1, i t will create a software reset for the SPEMP R block.
This reset has the same eff ects as the hardware reset and
chip-level software reset. All microprocessor registers
within the block are reset to their default states. All internal
data path state machine within the block are also reset.
0SMPR_TMUX_SWRS
TMUX Bloc k Software Reset. When this bit is set to 1, it
will create a software reset for the TMUX block. This reset
has the same effects as the hardware reset and chip-lev el
software reset. All microproces s or registers within the
block are reset to their def ault states. All internal data path
state machine within t he block are also reset .
68 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 67. SMPR_GCR, Global Control Register (RW)
Address Bi t Name Function Reset
Default
0x0000F 15:10 Reserved. 0x0000
9:8 SMPR_PMMODE[1:0] Perform a nce Monitor Mode:
00 = PMRST comes from external pin.
10 = PMRST comes from external pin.
01 = PMRS T comes from internal 1 second counter.
Note: P lease see Table 72 and Table 73.
11 = PMRST is software controlled using the
SMPR_PMREST regi ster bit 8 (Table 65 on
page 66).
7:5 Reserved.
4 SMPR_PARITY_EVEN_ODD Even or Odd Parity Indication on the Microproces-
sor Data Bus. This bit cont rols the parity se tting and
checking on the microprocessor data bus:
0 = Even parity on microprocessor byte data/parity bus.
1 = Odd pa ri ty on microprocessor byte data/parity bus.
3SMPR_OH_DEFLT
Overhead Default. T h is b it c on t r o ls the f illing of the
unused overhead bytes:
0 = Fi lling the unused overhead bits with 0.
1 = Fi lling the unused overhead bits with 1.
2 SMPR_FXD_STFF_DEFLT Fixed Stuff Default. This bi t co ntro l the filling of the
fixed stuff bytes:
0 = Fi lling t he fi xed stuff bytes with 0.
1 = Fi lling t he fi xed stuff bytes with 1.
1 SMPR_COR_COW Clear On Read or Clear On Write. This bit controls the
way clearin g i s perfor med on all delta and event bits in
all registers:
0 = The delta and event bit is cleared by writing a 1 to it.
Note: The clear-on-w rite (COW) feature does not apply
to all registers in the 28-channel framer block.
The only framer block register that has CO W is
transmit FDL link register 8 (address 0x8LTD7).
All other registers in the framer bl ock are only
clear-on-read.
1 = The d e lta and event bit is cleared when a microp ro-
cessor read is performed on this delta and ev ent bit.
0 SMPR_SAT_ROLLOVER S aturate or Rol lover. This bit cont rols i f error counters
hold their values or rollover when they reach the ir ma xi-
mum values .
0 = Error counters rollov er when reaching maximum v al-
ues.
1 = Error counters hold their values when reaching max-
imum values.
69Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 68. SMPR_TSCR, TMUX, and SPEMPR Control Register ( RW)
Table 69. SMPR_FCR, Framer Contro l Register (RW)
Address Bit Name Function Reset
Default
0x00010 15:4 Reserved. 0x0000
3 MPU_RHDZTHD_LB Forces Received High-speed to Transmit High-
speed Data Loo pback Prior to the CDR.
2 SMPR_RETIME_CLK_EDGE Ret ime Clock Edge f or the Received High-speed
Data. This bit controls on whic h clock edge, positive
or negative, the rece ived high-speed data is to
retimed.
1 = The received data will be clock ed into the device
on the negativ e clock edge.
0 = The received data will be clock ed into the device
on the positive clock edge.
1 SMPR_TELECOMBUS_EDGE Teleco m Bu s Edg e. When the SPE mapper is
enabled t o use a time slot on the telecom bus. This
bit selects the clock edge for the data signals trans-
mitted to the telecom bus during the s elected time
slot.
0 = Clock telecom bus signals out on the falling edge.
1 = Cloc k telecom bus signals out on the rising edge.
0 SMPR_TMUX_MASTER_SLAVE SMP R/T MUX M aster Slave . Thi s bit controls if the
TM UX blo ck in this Super M apper is the master
de vice in the system module that this Super Mapper
is on, o r if i t is a slave dev ice.
0 = This Super Mapper/TMUX is a slave d evice in
the module.
1 = This Super Mapper/TMUX is a mas t er device in
the module.
Address Bit Name Function Reset
Default
0x00012 15:3 Reserv ed. 0x0000
2:0 SMPR_FRM_CLK_SEL[2:0] Fram er Clock Selection. Selects the source of the
framer high-speed clock the sel ec ted clo ck needs to be
faster than the aggregate throughput of the framer block
for proper operation.
000 = Framer is powered down. No clock required.
001 = Framer receives TLSC 52 (pin AC3) clock input
010 = Framer receives DS1XCLK (pin AD16) clock input.
011 = Fr amer receives E1XCLK (pin AC17) clock input.
70 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 70. SMPR_CLCR, CDR, and LVDS Control Register (RW)
Address Bit N am e Function R eset
Default
0x00013 15:11 Reserved. 0x000C
10 SMPR_MPU_CDR_MODE CDR Mode Selection. This bit controls the operating
mode of the internal CDR; whether it operates a t
155 MHz or 5 1 MHz.
0 = 155 MHz mode.
1 = 51 MH z mode.
9 SMPR_MPU_CG_PWRDN PLL Powerdown Selection. This bit con trols whether
the internal framer PLL is powered on or off.
0 = Internal PLL powered on.
1 = Internal PLL pow ered off.
8 SMPR_LVDS_REF_SEL LV DS Reference Vo ltage Selecti on. This bit controls
which re ference voltage, internal or ext ernal, is used to
power t he LVDS buffers.
0 = External reference voltage is used.
1 = Internal reference voltage is u se d.
7:4 Reser ved.
3 SMPR_RXPWRDN CDR C hannel Po werdo wn. This bit cont rols the power
to the CDR data channel.
0 = Cha nnel is active, power is on.
1 = Channel is inactive, power to the channel is turned off.
2 SMPR_PLLPWRDN CDR Phase-Lock Lo op Pow erdown. This bit controls
the power to t he CDR PLL c ircui t.
0 = PLL is active, power to the PLL is turned on.
1 = PLL is inactive, power to the PLL is turned off.
1 SMPR_MRESET CDR Master Reset. This bit is us ed for the CDR initial-
ization. I t can also be used in test mode to reset t est cir-
cuitry.
0 = No reset.
1 = Reset mode.
0 SMPR_CDR_SEL CDR Selection. This bit c ontrols if the T MU X receives
its high-spee d recei ve clock and data from the on-chip
CDR block o r from the p ins (bypass th e CDR).
0 = Bypass CDR. Receive s clock and data directly from
pins.
1 = Use CDR. Receives clock and dat a through CDR.
71Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 71. SMPR_CPCR, Clock an d Power Control Reg ister (RW)
Table 72. SMPR_PMRCHR, PM Reset Count High Regist er (RW)
Address Bit Name Function Reset
Default
0x00014 15:9 Reserved. 0x0000
8 SMPR_M13_TCLK M13 M U X/Tx Clock Enable.
0 = M13 MUX/Tx clock is powered down and inactive.
1 = M13 MUX/Tx clock is powered up and active.
7 SMPR_M13_RCLK M13 DeMUX Rx Clock Enable.
0 = M13 d eMUX/Rx clock is powered down and inactive.
1 = M 13 deM UX/Rx clock is powered up and active.
6 SMPR_DJA_CLK Digital Jitter Attenua tion Clock Enable.
0 = DJA DPLL is powered down and in a ctive.
1 = DJA DPLL is powered up and active.
5 SMPR_VTMPR_TCLK VT Mapper T x Cl ock Enable.
0 = VT mapper Tx clock is powered down and inactive.
1 = VT mapper Tx clock is powered up and active.
4 SMPR_VTMPR_RCLK VT Mapper Rx Clock Enable.
0 = VT mapper Rx clock is powered and inactive.
1 = VT mapper Rx clo c k is p owered up and active.
3 SMPR_SPEMPR_TCLK SPE Mapper Tx C lock Enable .
0 = SPE mappe r Tx clock is powered down and ina ctive.
1 = SPE mappe r Tx clock is pow ered up and active.
2 SMPR_SPEMPR_RCLK SPE Mapper Rx Clock Ena ble .
0 = SPE mapper Rx clock i s powered dow n and inactive.
1 = SPE mappe r Rx clock is powered up and active.
1 SMPR_TMUX_TCLK TMUX Tx Clock Enable.
0 = TMUX Tx clock is powered down and inactive.
1 = TMUX Tx clock is powered up and activ e.
0 SMPR_TMUX_RCLK TMUX Rx Clock Enable.
0 = TMUX Rx clock is powered down and i nactive.
1 = TMUX Rx clock is powered up and active.
Address Bit Name Fun ction Reset
Default
0x00016 15:11 Reserved. 0x01F8
10:0 SMPR_PMRESET_HIGH_COUNT[10:0] Performance Monitor Counter Preset. The
pre se t value of this register dete rmines the
frequen cy of the internal PM counter. User
should preload an appropriate value based
on the microprocessor interface clock rate in
order to reach the de sir ed PMR ST rate.
72 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 73. SMPR_PM RCLR, PM Reset Cou nt Low Register (RW)
Table 74. SMPR_SR, Scrat c h Re gister (RW)
Table 75. SMPR_TX_LINE_EN1
Address Bit Name Function Reset
Default
0x00017 15:0 SMPR_PMRESET_LOW_COUNT[15:0] Performance Monit or Counter Preset .
The preset value of this register determines
the frequency of the internal PM count er.
User should preload an appropriate value
based on the microprocessor int erface
clock rate in order to reach the desired
PMR ST ra te.
0x0000
Address Bit Name Function Reset
Default
0x0001F 15:0 SMPR_SCRATCH_REGISTER[15:0] Scratch Register. This regi ster is for test
and diagnostics purpose.
Read/write operations can be performed on
all bits. No SMPR control and status will be
aff ected b y any read/write operations to this
register.
0x0000
Address Bit Nam e Fun ction Reset
Default
0x00018 15:0 SMPR_TX_LINE_EN[16:1] 3-State Control for LINETXDATA, LINETXCLK,
and LINETXSYNC Output Pins. 0x0000
0x00019 12:0 SMPR_TX_LINE_EN[29:17] 3-State Control for LINETXDATA, LINETXCLK,
and LINETXSYNC Output Pins. 0x0000
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
73Agere Sy stem s Inc.
7 Microprocessor Interface and Global Control and Status Registers (continued)
7.2 M icroprocessor Inte rface Register Map
Table 76. Micro processor Interface Register Map
Address Symbol Bit
15 Bit
14 Bit
13 Bit
12 Bit
11 Bit
10 Bit
9Bit
8Bit
7Bit
6Bit
5Bit
4Bit
3Bit
2Bit
1Bit
0
Super Mappe r Ve rsi on Control RegisterRO
0x00000 SMPR_VCR 0 0 0 0 0 SMPR_VERSION[2:0] SMPR_ID[7:0]
Super Mappe r Symbol Re gi sterRO
0x00001 SMPR_SYMR4 0x54 = T 0x4D = M
0x00002 SM PR_SY MR3 0x58 = X 0x46 = F
0x00003 SMPR_SYMR2 0x32 = 2 0x38 = 8
0x00004 SMPR_SYMR1 0x31 = 1 0x35 = 5
0x00005 SMPR_SYMR0 0x35 = 5 0x0D = CR
0x00006
0x00007
Super Mapper Inte rrupt Status Re gi sterRO
0x00008 SMPR_ISR SMPR_APS_IS SMPR_
PARITY_IS SMPR_
PMRESET_IS SMPR_TPG_IS SMPR_DJA_IS SMPR_FRM_
IS SMPR_XC_IS SMPR_M13_
IS SMPR_VTMPR_
IS SMPR_
SPEMPR_IS SMPR_TMUX_
IS
Super Mapper Interrupt Mask Register R/W
0x00009 SMPR_IMR SMPR_APS_IM SMPR_
PARITY_IM SMPR_
PMRESET_IM SMPR_TPG_IM SMPR_DJA_
IM SMPR_FRM_
IM SMPR_XC_IM SMPR_M13_
IM SMPR_VTMPR_
IM SMPR_
SPEMPR_IM SMPR_TMUX_
IM
0x0000A
0x0000C
Global Trigger Registe rR/W
0x0000D SMPR_GTR SMPR_BER_
INSRT SMPR_
PMRESET SMPR_SWRS
Block Software Reset RegisterR/W
0x0000E SMPR_MSRR SMPR_TPG_SWRS SMPR_DJA_
SWRS SMPR_FRM_
SWRS SMPR_XC_
SWRS SMPR_M13_
SWRS SMPR_VTMPR_
SWRS SMPR_SPEMPR_
SWRS SMPR_TMUX_
SWRS
Global Control Register (SMPR_GCR)R/W
0x0000F SMPR_GCR SMPR_PMMODE[1:0] SMPR_PARITY_
EVEN_ODD SMPR_OH_
DEFLT SMPR_FXD_
STFF_DEFLT SMPR_COR_
COW SMPR_SAT_
ROLLOVER
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
74 Agere Systems Inc.
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 76. Micr oprocessor Interface Register Map (continued)
Address Symbol Bit
15:11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TMUX and SPEMOR CONTROL RegisterR/W
0x00010 SMPR_TSCR MP0RH02THD_LB SMPR_RETIME_
CLK_EDGE SMPR_TELECOMBUS_
EDGE SMPR_SMPR_TMUX_
MASTER_SLAVE
0x00011
FRAMER Control RegisterR/W
0x00012 SMPR_FCR SMPR_FRM_CLK_SEL[2:0]
CDR and LVDS Control RegisterR/W
0x00013 SMPR_CLCR SMPR_MPU_C
DR_MODE SMPR_MPU_
CG_PWRDN SMPR_LVDS_
REF_SEL SMPR_RXPWRDN SMPR_
PLLPWRDN SMPR_MRESET SMPR_CDR_SEL
Clock and Power Control RegisterR/W
0x00014 SMPR_CPCR SMPR_M13_
TXCLK SMPR_M13_
RXCLK SMPR_DJA_
CLK SMPR_VTMPR_
TXCLK SMPR_VTMPR_
RXCLK SMPR_SPEMPR_
TXCLK SMPR_SPEMPR_
RXCLK SMPR_TMUX_
TXCLK SMPR_TMUX_RXCLK
0x00015
PM Reset Co unt R eg ister Hi g hR/W
0x00016 SMPR_PMRCHR SMPR_PMRESET_HIGH_COUNT[10:0]
PM Reset Co unt R eg ist er LowR/W
0x00017 SMPR_PMRCLR SMPR_PMRESET_LOW_COUNT[15:0]
0x00018 TX_LINE_EN1 TX_LINE_EN[16-1]
0x00019 TX_LINE_EN2 TX_LINE_EN[29-17]
Scratch RegisterR/W
0x0001F SMPR_SR SMPR_SCRATCH_REGISTER[15:0]
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
75Agere Systems Inc.
8 TMUX Regi sters
Ta ble of Conte nts
Contents Page
8 TMUX Registers ................................................................................................................................................. 75
8. 1 TMUX Register Descrip tions .... ........................................................................................... ......................... 77
8. 2 TMUX Register Map ..... .............................................................................................................................. 124
Tables Page
Table 7 7. TMUX_ID_R, TMUX Identification Register (RO) .................................................................................. 77
Table 7 8. TMUX_ONESHOT, TMUX One-Shot Register 0 to 1 (R/W) ................................................................. 77
Tabl e 79. T MUX_ RCV_ TX _MODE , TMUX Receive/Transmit Mode (R/W) ........................... ...............................77
Table 80. TMUX_TX_D LT, Delta/Event (COR /COW) ........................................................................................... 78
Tabl e 81. TMUX_RPS_DLT, De lta/Eve n t ( COR/CO W) ...................... .................................................................. 78
Tabl e 82. TMUX_RHS_DLT, De lta/Event (COR/CO W) ........................................................................................ 79
Table 83. TMUX_RPOH[13]_DLT, Delta/Event (COR/COW) ............................................................................ 81
Table 84. TMUX_TX_MSK, M ask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0) ..........................87
Table 85. TMUX_RPS_MSK, Mask Bits for INT Int errupt Signal (R/W) (Mask = 1, No Mask = 0) ................ ..... .. 88
Table 8 6. TMUX_RHS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0) .......................88
Table 87. TMUX_RPOH[13]_MSK, Mask Bits for Interrupt Signal (R/W) (Mask = 1, No Mask = 0) .... ....... ....... 89
Ta ble 88. T MUX_ APSINT_M SK, Mask Bits for APSINT Inter ru p t Signal (R/W) ( Mask = 1, No Mask = 0) .... ....... 91
Ta ble 89. TMUX_TX_STA TE, Sta te Parameters (RO) .. ........................................................ ............................... 91
Table 9 0. TMUX_RPS _S TA TE, State a nd Value Parameters (RO) ............. ..... . .................. .......................... ..... . 91
Table 9 1. TMUX_RHS_STATE, State and Value Parameters (RO) .....................................................................92
Table 92. TMUX_RPOH[13]_STATE, State and Value Parameters (RO) .. ......................... .......... ... .................92
Table 9 3. TMUX_RHS_CTL, Receive High-speed Control Param eters (R/W) ..................................................... 94
Table 9 4. TMUX_RLS_B I TB LK _CTL, Receive Low- speed Co ntrol Parameters (R/W) ............... ..... .................... 94
Tabl e 95. TMUX_RLS_MODE_ CTL, Receiv e Lo w- sp eed Cont r o l Par a mete rs (R/W) .... ...................................... 95
Table 9 6. TMUX_RAISINH_CT L, Receive Low-speed Control Parameters (R/W) ................. . ................ ............. 96
Table 9 7. TMUX_LOSDETCNT, Receive Low-speed Cont rol Parameters (R/ W) ................................................ 97
Table 98. TM UX_CNTD_TOH_[AB], Continuous N-Times Detect Control Par amet ers (R/W) ..........................98
Table 99. TM UX_CNTD_POH_[AB] , Continuous N-Ti me s Detect Cont rol Parameters (R/W) ......................... 99
Table 100. TMUX_C2EXP[1 2_3], Continuous N-Times Det ect Control Pa r ameters (R/W) ................... ......... 100
Table 101. TMUX_RF1MON, Receive Monitor Values (RO) .............................................................................. 100
Table 102. TMUX_RAPSMON, Receive Monitor Values (RO) ...........................................................................100
Table 103. TMUX_RS1MON, Receive Mon itor Values (RO) .............................................................................. 100
Table 1 04. TMUX_RPOHMON[13][AD], Receive Monito r Values (RO) .......................................................1 01
Table 105. TMUX_TLS_CTL, Transmit Low -spe ed Control Parameters (R/W) ..................................................1 02
Table 106. TMUX_THS_PORT_CTL, Transmit High-spe ed Port Co ntrol Parameters (R/W) .............................103
Table 107. TMUX_THS _TO H_CTL, Transmit Hig h-speed Control Parameters (R/W) ................. ........... ........... 1 03
Table 1 08. TMUX_THS_POH[ 13]_CTL, Transmit High-speed Control Parameters (R/W) ..... ..... .. ..... .. ..... .....105
Table 109. TMUX_TLRDI_CTL, Transm it High-sp eed Line RDI Co ntrol Parameters (R/ W) .............. ................109
Table 110. TMUX_TPRDI_CTL, Transmit High-speed Path RDI Control Parameters (R/W) ..... ..... .. ..... .. ..... .....109
Table 111. T MUX_T Z0_INS _V AL, Transmit TOH and POH Insert Values (R/W) .. .............. .............. ................ 110
Table 112. T MUX_T S1 _F1_ INS_V AL, Transmit TOH and POH Insert Values (R/W) ................. .............. . ........ 1 10
Table 113. T MUX_T APS_I NS _VAL, Transm it T OH and POH Insert Valu es (R/ W) .................. ................. ........110
Table 1 14. TMUX_T PO H[13]_INS_[AC], Transmit T OH and POH Insert V alu es (R/ W) .. ............ ............ ...110
Table 115. TMUX_TBERINS _CTL , Transm it Hi gh-s peed Error Insertion Control Param eters (R/W) . ............ ... 112
Table 116. TMUX_THS _ER R_CTL, Transmit Hig h-speed Error Insertion Control Parameters (R/W) ............ ... 1 13
Table 117. T MUX_T OA C_CT L, Receive/Transmit TOA C/ POA C Control Parameters (R/W) . .................... ........113
Table 118. T MUX_RP OAC_CTL, Re ce ive/Transmit TOAC/POAC Con trol Parameters (R/W) ................. ......... 1 15
Table 119. T MUX_T FRA M EOFF SET , Tran smit High-speed Offset Control Parameters (R/W) .......... ............... 116
Table 1 20. TMUX_SD_CTL[16], B1/ B2 Signal Degrade Set/Clear Control Registers (R/ W) ................. ......... 116
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
76 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table of Conten ts (continued)
Tables Page
Table 1 21. TMUX_SF_CTL[16], B1/B2 Signal Fa il Set/Clear Control Registers (R/W) ............ ....... ................ 117
Table 1 22. TMUX_B3SD_CTL[1 6], B3 Signal Degrade Set/Clear Control Registers (R/W) ................ ..... .. .... 117
Table 1 23. TMUX_B3SF_CTL[16], B3 Signal Fail Set/Clear Control Registers (R/W) ................ .................... 118
Table 1 24. TMUX_B1ECNT, Receive B1 Error Counts (RO) .............................................................................. 118
Table 1 25. TMUX_B2ECNT_17_16 and TMUX_B2ECNT_15_0, Receive B2 Error Cou nt s (R O) ... ... . .. .. . .. ... .. .. 1 1 9
Table 1 26. TMUX_B3ECNT[13], Receive B3 Error Counts (RO) .................................................................... 1 19
Tab le 127. TMUX_M1ECNT_17_16 and TM UX_M1ECNT_15_0, Receive M1 Error Counts (RO) ................... 1 20
Table 1 28. TMUX_G1ECNT[13], Re ce ive G1 Error Counts (RO) ................. ................... ................ . .............. 120
Table 129. TMUX_RPTR_INCCNT[13], Re ceive Poin ter Increment Count (RO ) ................ .............. ..............121
Table 130. TMUX_RPTR_DECCNT[13], Receive Pointer Decrement Count (RO) ......................................... 1 21
Table 131. TMUX_RJ0EXPECTED[18], Expected J0 Byte Sequence (R/W ) ........................... ...................... 121
Table 132. TMUX_RJ0CAPTURED[18], Captured J0 Receive Value (RO) .................................................... 121
Table 1 33. TMUX_TJ0VALUE[18], J0 B y te Transmit Insert (R /W) .. ................. ................ ................. .............. 121
Table 134. TMUX_RJ1EXPECTED1_[132] , Expected J1 Byt e Val u e for Port 1 (R/W) ................................... 122
Table 135. TMUX_RJ1EXPECTED2_[132] , Expected J1 Byt e Val u e for Port 2 (R/W) ................................... 122
Table 136. TMUX_RJ1EXPECTED3_[132] , Expected J1 Byt e Val u e for Port 3 (R/W) ................................... 122
Table 137. TMUX_RJ1CAPTURED1_ [132], Captured J1 Value for STS #1 (RO) ..........................................122
Table 138. TMUX_RJ1CAPTURED2_ [132], Captured J1 Value for STS #2 (RO) ..........................................122
Table 139. TMUX_RJ1CAPTURED3_ [132], Captured J1 Value for STS #3 (RO) ..........................................123
Table 1 40. TMUX_TJ1VALUE_1[13 2 ], J1 Byte Tran smi t Insert for STS #1 (R/W) .. ....................................... 123
Table 1 41. TMUX_TJ1VALUE_2[13 2 ], J1 Byte Tran smi t Insert for STS #2 (R/W) .. ....................................... 123
Table 1 42. TMUX_TJ1VALUE_3[13 2 ], J1 Byte Tran smi t Insert for STS #3 (R/W) .. ....................................... 123
Table 1 43. TMUX Register Map .......................................................................................................................... 124
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
77Agere Systems Inc.
8 TMUX Registers (continued)
8.1 TMUX Re giste r Des criptions
This section provides a brief description of each register bit and its functionality. The abbreviations after each regis-
ter indicate if the regi ster is read only (R O), c l e ar-on- read/ clear- on-wri te (COR /C OW ), o r read/ wri t e ( R / W) .
Table 77. T MUX_ID_R, TMUX Identification Register (RO)
Table 78. TMUX_ONESHOT, TMUX One- Shot Register 0 to 1 (R/W)
Table 79. TMUX_RCV_TX_M ODE, TMUX Receive/Transmit Mod e (R/ W)
Address Bit Name Function Reset Default
0x40000 15:11 Reserved. 0x0
10:8 TMUX_VERSION[2:0] Block V ersion Number. B lo ck version register w ill
change each time t he device is changed. 0x0
7:0 TMUX_ID[7:0] Block ID Number. 0x04
Address Bit Nam e Fun ction Reset Default
0x40002 15:8 Reserved. 0x00
7 TMUX_B3SFCLEAR B3 Signal Fail Clear. Allo ws the signal f ail algorithm
to be force d into the normal state. 0
6 TMUX_B3SFSET B3 Signal Fail Set. Allows the signal fail algorithm
to be fo rced into the failed state. 0
5 TMUX_B3SDCLEAR B3 Signal Degrade Clear. Allows the signal
degrade algorit hm to be f orced into the normal state. 0
4 TMUX_B3SDSET B3 Signal Deg rade Set. Allows the signal degrade
algorithm to be forced into the degraded state. 0
3 TMUX_SFCLEAR Signal Fail Cl ear. Allows the signal fail algorithm to
be forced into the n or mal state. 0
2 TMUX_SFSET Signa l Fail Set. Allows the signal f ai l algorithm to be
forced into the failed state. 0
1 TMUX_SDCLEAR Signal Degrade Clear. Allo ws the signal degrade
algo rithm to be forced into the normal state. 0
0 TMUX_SDSET Signal De grade Set. Allows the signal degrade
algorithm to be forced into the degraded state. 0
Address Bit Nam e Function Reset Default
0x40003 15:1 Reserved. 0x000
0 TMUX_STS1MODE STS-1 Mode Control Bit. A 1 indicates that the
received and transmitted high-speed data is STS-1
data operating at 52 MHz. A 0 indicates that the
received and transmitted high-speed data operates
at 155 MHz.
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
78 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 80. TMUX _TX_DLT, Delta/Event (COR/COW)
Table 81. TMUX_RPS_DLT, Delt a/Event (COR/COW)
Address Bit Name Fun ction Reset
Default
0x40004 15:7 Reserved. 0x000
6:4 TMUX_TLSPARE[3:1] Transm it Low-speed Parity Error Even t (Input Port Num-
ber). This event bit ind icates a byt e t rans fer parity error was
detected on the respective STS-1/A U-3 input. The mask bits
are TM UX_TLSPARM[3:1] ( Table 84).
0
3TMUX_TPOAC_PETransmit Path Overhead Access Channel (TPOAC) Par-
ity Error Event. This event b it indicates a parity error was
detected on the incoming tra nsmit path overhead access
channel. The mask bit is TMUX_TPOAC_PM (Table 84).
0
2TMUX_TTOAC_PETran sm it Tr ansp ort Overhead Access Channel (TTOAC)
Parity Error Event. This event bi t indicates a pari ty error
was detected on the incom ing transmit transport overhead
access channel. The mask bit is TMUX_TTOAC_PM
(Table 84).
0
1TMUX_THSILOFDTransmit High-speed Input Loss of Frame Delta. This
delta bit i n dicates a change of sta te for the transmit loss of
frame bit TMU X_THSILO F (Table 89). The m as k bit is
TMUX_THSILOFM (Table 84).
0
0 TMUX_THSILOCD Transmit High-speed Input Loss of Clock Delta. This
delta bit i n dicates a change of sta te for the transmit loss of
high-speed cloc k bit TMUX_THSILOC (Table 89). The mask
bit i s TM UX_THSILOC M (Table 84).
0
Address Bit Name F un ction Reset
Default
0x40005 15:6 Reserved. 0x000
5TMUX_RPSLOFDReceive Protection High-speed Loss of Frame Delta. This
de lta bit indicates a change in state of TMUX_RPSLOF
(Table 90). T he mask bit is TMUX_RP S LOF M (Table 85).
0
4 TMUX_RPSOOFD Receive Protection High-speed Out of Frame Delta. This
de lta bit indicates a change in state of TMUX_RPSOOF
(Table 90). T he mask bit is TMUX_RP S OOF M (Table 85).
0
3TMUX_RPSILOCDReceive Protection High-speed Loss of Input Clock
Delta. This delta bit indic ates a change in state of the
TMUX_RPS ILOC (Table 90) state bit. The mask bit is
TMUX_RPS ILOCM (Table 85).
0
2TMUX_RPSB2EReceive Protection High-speed B2 Error Event. This e vent
bit indicates a B2 error w as detected in the receive protection
input. The mask bit is TMUX_RPSB2M (Table 85).
0
1 TMUX_RPSLREIE Recei ve Protection High-speed Line REI Event. This
event bit indi c ates a line REI error was detected in the
receive protection input. The mask bit is T MUX _RPSLREIM
(Table 85).
0
0Reserved. 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
79Agere Systems Inc.
8 TMUX Registers (continued)
Table 82. T MUX_RHS_DLT, Delta/Event (COR/COW)
Address Bit Nam e Function Reset Default
0x40006 15 Reserved. 0
14 TMUX_RS1BABE Receive S1 Babble Event. This event bit indicates an
inconsistent S1 value is being received. The ev ent is
triggered if TMUX_CNTDS 1FRAME[3:0] (Table 98) co n-
secutive frames pass without a validated me ssage
occurring. T he m ask bit is TMUX_RS 1BABM (Table 86).
0
13 TMUX_RS1MOND Receive S1 Monitor Delta. Thi s delta bit indicates a
chang e of state for TMUX_RS1MON[7:0] (Table 103). A
new S1 value is detected after TMUX_CNTDS1[3:0]
(Table 98) consecutive occurrences of a co nsistent new
val ue in the S1 b yte. The mask bit is TMUX_RS1MONM.
0
12 TMUX_RLRDIMOND Receive Line RDI Monitor Delta. Thi s delta bit indi-
cates a c hange in state for TM UX _RLRDI MON
(Table 91) when the pattern 110 is detected/not detected
TMUX_CNTDK2[3:0] (Table 98) cons ec uti v e ti mes in t he
incoming STS-3/STM-1 fra me. The mask b it is
TMUX_RLRD IMONM (Table 86).
0
11 TMUX_RLAISMOND Receive Line AIS Monitor Delta. This de lt a bit i ndi -
cates a c hange in state for TM UX_RLAISMON
(Table 91) when the pattern 111 is detected/not detected
TMUX_CNTDK2[3:0] consecutive times in th e incoming
STS-3/STM-1 fr ame. T he mask bit i s
TMUX_RLAISMONM (Table 86).
0
10 TMUX_RK2MOND Receive K2 Monitor Delta. This delta bit indicates a
change in state f or TMUX_K2MON[2:0] (Table 102 on
page 100). A new K 2 value is detected after
TMUX_CNTDK2[3:0] consecutive occurrences of a con-
sistent new value in the t hree least signif icant bits of the
incoming K2 byte. Note that this d elta b it may be coinci-
dent with TMUX_RLRDIMOND and
TMUX_RLAISMOND. The mask bit is
TMUX_RK2MONM (Table 86).
0
9 TMUX_RAPSBABE Receive APS Babble Event. This event bit indi ca tes
when an inconsistent APS value has been detected
TMUX_CNTDK1K2[3:0] (Table 98) times in the incoming
TMUX_CNTDK 1K2FRAM E[3:0] (Table 98) co ns ec utive
frames. T he ma sk bit is TMUX_RAPSBABM (Table 86
on page88 ).
0
8 TMUX_RAPSMOND Receive APS Monitor Delta. This delt a bit indicates a
change in state in the received APS v a lu e
TMUX_RAPSMON[12:0] (Table 102) when a new con-
sistent value is detected TMUX_CNTDK1K2[3:0] times
in the K1 and K2[7:3] bits. The mask bit is
TMUX_RAPSMONM (Table 86).
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
80 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 82. TMUX_RHS_DLT, Delta/Event (COR/COW) (continued)
Address Bit Name Function Reset Default
0x40006 7 TMUX_RF1MOND Rece ive F 1 Monitor Delta. T his delt a bit i ndicat es a
change in state of TMUX_RF1MON0[7:0] and
TM U X _ RF1MO N 1[7:0] (Table 101) w hen a cons istent
new value is detec ted in the incom ing F1 byte for
TMUX_CNTDF1[3:0] (Table 98) continuous frames. The
current value is stored in TMUX_RF1M ON0[ 7: 0] and the
previous value is stored in TMU X_RF 1M ON0[7:0]. The
mask bit is TMUX_RF1MONM (Table 86).
0
6TMUX_RTIMSDReceive Section Trace Identifier Mismatch Delta. This
delta bit indicates a change in state in the received 16-
byte J0 sequence of bytes if the J0 mode is programmed
to receive a 16-byte sequence. The mask bit is
TM UX_RTI MSM (Table 86).
0
5 TMUX_RHSSFD Receive High-speed Signal F ail BER Algori thm Delta.
This delta bit indicates a change of state for the signal fail
BER algorithm s tate bit TMUX_RHSSF (Table 91). The
mask bit for this delta bit is TMUX_RHSS FM (Table 86).
0
4 TMUX_RHSSDD Receive High-speed Signal Degrade BER Algorithm
Delta. This delta bit i ndicates a change of s tate for the
signal d egrade BER algorithm state bit TMUX _RHSSD
(Table 91). T he mas k bit is TMUX_RHS S DM (Table 86).
0
3 TMUX_RHSLOSD Receive High-speed Loss of Signal Delta. This delta
bit indicates a c hange i n s tate of either TMUX_RHSLO S
(Table 91) or TMUX_RHS LOSEXTI (Table 91).
TMUX_RHSLOS EXTI is an external input from a devic e
pin. TM UX _RHSLOS is an internally generated state bit
based on monitoring for a consecutive 0/1s p attern i n the
data input. The mask bit is TMUX_RHSLOSM ( Table 86).
0
2 TMUX_RHSLOFD Receive High-speed Loss of Frame Delta. This delta
bit indicates a c hange i n state of T M UX_RHSLOF
(Table 91). The mask bit is TMUX_RHSLOFM (Table 86).
0
1 TMUX_RHSOOFD Receive High-speed Out of Frame Delta. This de lta bit
indicates a change in state of TMUX_R HSOOF
(Table 91). The mask bit is TMUX_RHSOOFM (Table 86).
0
0 TMUX_RHSILOCD Receive High- speed Loss of Input Clock Delta. This
delta bit indicates a change in s tate of the
TMUX_RHSILOC (Table 91) state b it. The mask bit is
TMUX_RHSILOCM (Table 86).
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
81Agere Systems Inc.
8 TMUX Registers (continued)
Tabl e 8 3. TMUX_RPOH[1 3]_DLT, Delta/ Event (COR/COW)
Address Bit N am e Function Rese t
Default
0x40007 15 TMUX_RSFB3D1 Receive P ath Signal Fail BER Algorithm Delta. T his d e lt a
bit i ndicat es a c hange of state for the signal fail BER algo-
rithm state bit TMUX_RSFB31 (Table 92) at the path level for
port 1. O nly port 1 infor mation is valid in AU-4 mode and in
STS-1 m ode. The mask bit is TMUX_RSFB3M1 (Table 87).
0
14 TMUX_RSDB3D1 Receive Path Signal Degrade BER Algorithm Delta. This
delta bit indicates a change of state for the signal fail BER
algorithm state bit T MUX_RSDB31 (Table 92) at the path
leve l for p ort 1 . Only port 1 informa tion is valid in AU-4 mode
and in STS-1 mode. The mask bit is TMUX_RS D B3M1
(Table 87).
0
13 TMUX_RUNEQPE1 Receive Path Unequipped Event. T his event bit indicates
that the curren t value of the received C 2 (signal label) byte,
TMUX_C2M ON1[7: 0] (Table 104), has a value 0x00, indicat-
ing unequipped payload on port 1. Only port 1 information is
valid in AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RUNEQPM1 (Table 87).
0
12 TMUX_RPLMPE1 Receive P ath Payload Label Mismatch Event. This event
bit indicates th at the current value of the r e ceived C2 (signal
label) byte, TMUX _C2M ON1[ 7:0], differs from the expected
C2 value, TMUX_C2EX P1[7:0] (Table 100) for port 1. Only
port 1 inform ation is valid in AU-4 mode and in STS- 1 mode.
The mask bit i s TMUX_RPLMPM1 (Table 87).
0
11 TMUX_RN1MOND1 Receive N1 Monitor Delta. Thi s delta bit indicates a change
in state in TMUX_N1MON1[7:0] (Table 104). The N 1 c urrent
value is updated when a consecutive and consistent value is
detected in the incoming N1 byte for TMUX_CNTDN1[ 3:0]
(Table 99) frames on port 1. Only port 1 inform ation is valid
in AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RN1MONM1 (Table 87).
0
10 TMUX_RK3MOND1 Receive K3 Monitor Delta. This delt a bit indicates a change
in state in TMUX_K3MON 1[7:0] (Table 104), which is
updated when a consecutive and consistent value is
detected in the incoming K3 byte for TMUX_CNTDK3[3:0]
(Table 99) frames on port 1. Only port 1 inform ation is valid
in AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RK3M ONM1 (Table 87).
0
9 TMUX_RF3MOND1 Receive F3 (Path U ser Byte) Monitor Delta. This delta bit
indicates a change in state in TMUX_F3M ON01[7:0]
(Table 104), which is updated when a consecutive a nd con-
sistent value is detected in the in co ming F3 byte for
TMUX_CNTDF3[3:0] (Table 99) frames on port 1. Only port
1 information is valid in AU-4 mode and in STS-1 mode. The
mask bit is T MUX_RF 3M ONM1 (Table 87).
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
82 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Tabl e 8 3. TMUX_RPOH[1 3]_DLT, Delta/ Event (COR/COW) (continued)
Address Bit Name Function Reset
Default
0x40007 8 TMUX_RF2MOND1 Receive F2 (Path User Byte) Monitor Delta. This delta b it
indicates a change in state in TMUX_F2MON01[7:0]
(Table 104), which is updated when a consecutive and con-
sistent value is detected in the inc oming F2 byte for
TMUX_CNTDF2[3:0] (Table 99) frames on port 1. Only port 1
information is valid in AU-4 mode and in STS -1 mode. The
mask bit is TM UX_RF2MONM1 (Table 87).
0
7 TMUX_RRDIPD1 Recei ve Path RDI (Remote Defect Indication) Monitor
Delta. This delta bit indicates a change in state in
TMUX_RDIPMON1[2:0] (Table 104) that o ccurs when a con-
secutive and consistent new value is detected in the incom-
ing G1[3:1] bits f or TMUX_CNTDRDIP[3:0] (Table 99) frames
on port 1. The device monitors either G1 bit 3 or G1[3:1]
depending on TMUX_REPRD I_MODE ( Table 95). Only port
1 information is valid in AU-4 mode and in STS-1 mode. The
mask bit is TMUX_RRDIPM1 (Table 87).
0
6 TMUX_RC2MOND1 Receive C2 (Signal Label ) Monitor Delta. This de lt a bit
indicates a change in state in TMUX_C2MON1[7:0]
(Table 104), which is updated when a consecutive and con-
sistent value is detected in the incoming C2 byte for
TMUX_CNTDC2[3:0] (Table 99) frames on port 1. Only port
1 information is valid in AU-4 mode and in STS-1 mode. The
mask bit is TMUX_RC2M ONM1 (Table 87).
0
5 TMUX_RTIMPD1 Receive Path Trace I dentifier Mismatch Delta. This de lt a
bit in dicates a change in state in the received 16-byt e J 1
sequence on port 1 if the J1 mode is programm ed to re ceive
a 16-byte sequence. Only port 1 inform ation is valid in AU-4
mode and in STS-1 mode. The mask bit is TMUX_RTIMPM1
(Table 87).
0
4 TMUX_RNDFE1 Receive New Data Flag Event. T his even t bit in dicat es that
the incoming pointer has t he new data flag enabled, causing
a jump in the current poi nter location for port 1. Only port 1
information is valid in AU-4 mode and in STS -1 mode. The
mask bit is TMUX_RNDF M1 (Table 87).
0
3 TMUX_RDECE1 Receive Pointer Decrement Event. This event bit in dicates
that a valid incoming pointer decrem ent ind i cation was
received on por t 1 . Only port 1 inform ation is va lid in AU-4
mod e and in STS-1 mode. The mask bit is TM UX_RDECM1
(Table 87).
0
2 TMUX_RINCE1 Receive Pointer Increm ent Event. This event bit indic a tes
that a valid incoming pointer increment indication was
received on por t 1 . Only port 1 inform ation is va lid in AU-4
mod e and in STS-1 mode. The mask bit is TM UX_RINC M1
(Table 87).
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
83Agere Systems Inc.
8 TMUX Registers (continued)
Tabl e 8 3. TMUX_RPOH[1 3]_DLT, Delta/ Event (COR/COW) (continued)
Address Bit N am e Function Reset
Default
0x4007 1 TMUX_RPAISD1 Receive Path AIS Delta. This delta bit indicates a change in
state of the TMUX_RPAIS1 (Table 92) state bit, which desig-
nates that the port 1 pointer interpret er is in the alarm indica-
tion signal state. Only port 1 information is va lid in AU-4
mode and in STS-1 mode. The mask bit is T M UX_RPAISM1
(Table 87).
0
0 TMUX_RLOPD1 Receive Lo ss of Pointer Delta. This delta bit indi cate s a
change in state of the TMUX_RLOP1 (Table 92) state bit,
which designates that the port 1 po inter interpreter is in the
loss of pointer state. Only port 1 informat ion is valid in AU-4
mode. The mask bit is TMUX_RLOPM1 (Table 87).
0
0x40008 15 TMUX_RSFB3D2 Receive P ath Signal Fail BER Algorithm Delta. T his d e lt a
bit i ndicat es a c hange of state for the signal fail BER algo-
rithm state bit T MUX_RSFB32 (Table 92) at the path le vel f or
port 2. O nly port 1 infor mation is valid in AU-4 mode and in
STS-1 m ode. The mask bit is TMUX_RSFB3M2 (Table 87).
0
14 TMUX_RSDB3D2 Receive Path Signal Degrade BER Algorithm Delta. This
delta bit indicates a change of state for the signal fail BER
algorithm state bit T MUX_RSDB32 (Table 92) at the path
level for port 2. Only port 1 information is valid in AU-4 mode
and in STS-1 mode. The m ask bit is TMUX_RHSSD B3M2.
0
13 TMUX_RUNEQPD2 Receive Pa th Unequipped Delta. This delt a bit indi cate s
that the curren t value of the received C 2 (signal label) byte,
TMUX_C2M ON2[7: 0] (Table 104), has a value 0x00, indicat-
ing unequipped payload for port 2. Onl y port 1 information is
valid in AU-4 mode and in STS-1 mode.The mask bit is
TMUX_RUNEQPM2 (Table 87).
0
12 TMUX_RPLMPD2 Receive Pat h Payload Label Mismatch Delta. T his event
bit indicate s that the current value of the received C2 (signal
label) byte, TMUX _C2M ON2[ 7:0], differs from the expected
C2 value, TMUX_C2EX P2[7:0] (Table 100) for port 2. Only
port 1 information is valid in AU -4 mode and in STS-1
mode.The mask bi t is TMUX _RP LMPM 2 (Table 87).
0
11 TMUX_RN1MOND2 Receive N1 Monitor Delta. This delta bit indicates a change
in state in TMUX_N1MON2[7:0] (Table 104). The N1 current
value is update d when a consecutive and consistent value is
detected in the incoming N1 byte for TMUX_CNTDN1[ 3:0]
(Table 99) frames on port 2. Only port 1 inf ormation is vali d in
AU-4 mode and in STS-1 mo de. The mask bit is
TMUX_RN1MONM2 (Table 87).
0
10 TMUX_RK3MOND2 Receive K3 Monitor Delta. This delta bit indicates a change
in state in TMUX_K3MON 2[7:0] (Table 104), which is
updated when a consecutive and consistent value is
detected in the incoming K3 byte for TMUX_CNTDK3[3:0]
(Table 99) frames on port 2. Only port 1 inf ormation is vali d in
AU-4 mode and in STS-1 mo de. The mask bit is
TMUX_RK3M ONM2 (Table 87).
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
84 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Tabl e 8 3. TMUX_RPOH[1 3]_DLT, Delta/ Event (COR/COW) (continued)
Address Bit Name Functi on Reset
Default
0x40008 9 TMUX_RF3MOND2 Receive F 3 (Path User Byte) Monitor Delta. T his delta b it indi-
cates a change in st ate in T MUX_F3MON02[7:0] (Table 104),
which is up dated when a consecutive and consistent value is
detected in the incoming F3 byte for TMUX_CNTDF3 [3:0]
(Table 99) f rames on port 2. Only port 1 informat ion is valid in
AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RF3MON M2 (Table 87).
0
8 TMUX_RF2MOND2 Receive F2 (Path User Byte) Monitor Delta. T his delta b it indi-
cates a change in st ate in T MUX_F2MON02[7:0] (Table 104),
which is up dated when a consecutive and consistent value is
detected in the incoming F2 byte for TMUX_CNTDF2 [3:0]
(Table 99) f rames on port 2. Only port 1 informat ion is valid in
AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RF2MON M2 (Table 87).
0
7 TMUX_RRDIPD2 Receive Path RD I (Remote Defect Ind ica tion) M onitor Delta.
This delta bit indicates a change in state in
TMUX_RDIPMON2[2:0] (Table 104) which occurs when a con-
secutive and consistent new value is detected in the incoming
G1[3: 1] bi ts for TMUX_CNTDRDIP [3:0] (Table 99) frames on
po rt 2. The device mon it or s either G1 bit 3 o r G1 [3:1] depending
on TMUX_REPRDI_MODE (Table 95). Only port 1 information
is valid in AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RRDIPM2 (Table 87).
0
6 TMUX_RC2MOND2 Receive C2 (Signal Label) Monitor Delta. This delta b it indi-
cates a change in st ate in TMUX_C2MON2[7:0] (Table 104),
which is up dated when a consecutive and consistent value is
de te cted in th e incomin g C2 byte f or TMUX_CNTDC2[3:0]
(Table 99) f rames on port 2. Only port 1 informat ion is valid in
AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RC2MONM2 (Table 87).
0
5 TMUX_RTIMPD2 Receive Path Trace Identifier Mismatch Delta. T h is delta b it
indicates a change in state in t he rec eived 16-b yte J1 sequence
for port 2 if the J1 mode is programmed to receive a 16-byte
sequence. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. T he mask bit is TMUX_RTIMPM2 (Table 87).
0
4 TMUX_RNDFE2 Receive New Data Flag Event. T his event bit indicates that the
incoming pointer has the new data flag enabled for por t 2, caus-
ing a jump in the current pointer location. Only port 1 inf ormation
is valid in AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RNDFM2 (Table 87).
0
3 TMUX_RDECE2 Receive Pointer Decrement Event. This event bit indicates
that a val id incom ing pointer de c rement indication was rece ived
on p ort 2. Only port 1 informatio n i s valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RDECM2 (Table 87). How-
ever, incre ment and decrement event indica tion should be
ignored during loss-of-pointer (LOP) condition.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
85Agere Systems Inc.
8 TMUX Registers (continued)
Tabl e 8 3. TMUX_RPOH[1 3]_DLT, Delta/ Event (COR/COW) (continued)
Address Bit Name Fun ction Reset
Default
0x40008 2 TMUX_RINCE2 Receive Poi nter Increment Event. This even t bit i ndicat es
that a valid incoming pointer increment indication was
received on port 2. Only port 1 information is valid in AU-4
mode and in STS-1 mode. The mask bit is TMUX _RINCM2
(Table 87). Ho wever, increment and decrement e vent indica-
tion should be ignored during loss-of-pointer (L OP ) condi-
tion.
0
1 TMUX_RPAISD2 Recei ve Path AIS Delta. This delta bit indicates a change in
state of the TMUX_RPAIS2 (Table 92) state bit, which desig-
nates that the port 2 po inter interpreter is in the alarm indica-
tion signal state. Only port 1 informat ion is valid in AU-4
mode a nd in STS-1 m ode. The mask bit is TMUX_ RPAISM2
(Table 87).
0
0 TMUX_RLOPD2 Receive Loss of Pointer Delta. Thi s delta bit indicates a
change in state of the TMUX_RLOP2 (Table 92) state bit,
which designates that the port 2 pointer interpreter is in the
loss of pointer state. Only por t 1 inform at ion is valid in AU-4
mode. The mask bit is T MUX_RLOPM2 (Table 87).
0
0x40009 15 TMUX_RSFB3D3 Receive Path Signal Fail BER Algorithm Delta. This delta
bit i ndicat es a c hange of st ate for the signal fail BER algo-
rithm state bit TMUX_RSFB32 (Table 92) at the path le vel for
port 3. O nly port 1 infor mation is valid in AU-4 mode and in
STS-1 m ode. The mask bit is TM UX_RSFB3M3 (Table 87).
0
14 TMUX_RSDB3D3 Receive Path Signal Degrade BER Algorithm Delta. This
delta bit indicates a change of state for the signal fail BER
algorithm state bit T MUX_RSDB32 (Table 92) at the path
level for port 3. Only port 1 information is valid in AU-4 mode
and in STS-1 mode. The mask bit is TMUX_RSD B3M3
(Table 87).
0
13 TMUX_RUNEQPE3 Receive Path Un equ ipped Event. This event bit indicates
that the curren t value of the received C2 (signal label) byte,
TMUX_C2M ON3[7: 0] (Table 104), h as a value 0x00, indicat-
ing unequipped payload for port 3. Only port 1 information is
valid in AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RUNEQPM3 (Table 87).
0
12 TMUX_RPLMPE3 Receive P ath Payload Label Mismatch Event. This event
bit indicate s that the current value of the received C2 (signal
label) byte, TMUX _C2M ON3[ 7:0], differs f rom the expected
C2 value, TMUX_C2EX P3[7:0] (Table 100) for port 3. Only
port 1 informa tion is valid in AU- 4 mode and in STS-1 mode.
The mask bit i s TMUX_RPLMPM3 (Table 87).
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
86 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Tabl e 8 3. TMUX_RPOH[1 3]_DLT, Delta/ Event (COR/COW) (continued)
Address Bit N am e Function Re set
Default
0x40009 11 TMUX_RN1MOND3 Receive N1 Monitor Delta. This delta bit indicates a change in
state in TMUX_N1MON3[7:0] (Table 104). The N1 current
value is updated when a consecutive an d consistent value is
detected in the incoming N1 byte for TMUX_CNTDN1[3:0]
(Table 99) frames on po rt 3. Only port 1 information is valid in
AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RN1MONM3 (Table 87).
0
10 TMUX_RK3MOND3 Receive K3 Monitor Delta. This delta bit indicates a change in
state in TMUX_K3MON3[7:0] (Table 104), whi ch is updated
when a consecutive and consistent value is detected in the
incoming K3 byte for TMUX_CNTDK3[3 :0] (Table 99) frames
on port 2. Only port 1 i nformat ion is val id in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RK 3M ONM3 (Table 87).
0
9TMUX_RF3MOND3Receive F3 (Path User Byte) Monitor Delta. This delta bit
indicates a change in state in TMUX _F3M ON03[7:0]
(Table 104), which is updated when a consec utive and consis-
tent value is detec ted in the incoming F3 byte for
TMUX_CNTDF3[3:0] (Table 99) frames on port 3. Only port 1
information is valid in AU-4 mode and in S TS-1 mode. The
mask bit is T MU X_R F3M ONM 3 (Table 87).
0
8TMUX_RF2MOND3Receive F2 (Path User Byte) Monitor Delta. This delta bit
indicates a change in state in TMUX _F2M ON03[7:0]
(Table 104), which is updated when a consec utive and consis-
tent value is detec ted in the incoming F2 byte for
TMUX_CNTDF2[3:0] (Table 99) frames on port 3. Only port 1
information is valid in AU-4 mode and in S TS-1 mode. The
mask bit is T MU X_R F2M ONM 3 (Table 87).
0
7 TMUX_RDIPD3 Receive Path RDI (Remote Defect Indication) Monitor
Delta. This delta bit indicates a change in state in
TMUX_RDIP MO N3[2:0] (Table 104) which occurs when a con-
secutive and c onsistent new value is de tected in the incomin g
G1[3:1] bits for TMUX_CNTDRDIP[3:0] (Table 99) frames o n
port 3. The de vice monitors eith e r G1 bit 3 or G1[3:1] depend-
ing on TMUX_REPRDI_MODE (Table 95). O nly port 1 informa-
tion is valid in AU-4 m ode and in STS-1 mode. The mask bit is
TMUX_RRDIPM3 (Table 87).
0
6 TMUX_RC2MOND3 Receive C2 (Signal Label) Monitor Delta. Thi s delta bit indi-
cates a c hange in state in TMUX_C2MON3[7:0] (Table 104),
which is updated when a consecutive and consistent value is
detected in the incoming C2 byte for TMUX_CNTDC2[3:0]
(Table 99) frames on po rt 3. Only port 1 information is valid in
AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RC2MONM3 (Table 87).
0
5 TMUX_RTIMPD3 Receive Path Trace Identifier Mismatch Delta. This delta bit
indicates a c hange in state in the received 16-b yte J1 sequence
for port 3 if the J1 m ode is programmed to rece i v e a 16-byte
sequence. Only port 1 information is val id in AU-4 mode and in
STS-1 mode. The ma sk bit is TMUX_RTIMPM3 (Table 87).
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
87Agere Systems Inc.
8 TMUX Registers (continued)
Tabl e 8 3. TMUX_RPOH[1 3]_DLT, Delta/ Event (COR/COW) (continued)
Note: In Table 84, the mask bits are set to suppress an interrupt when the corresponding event has occurred or
change in state has taken place.
Table 84. TMUX_TX_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0)
Address Bit Name Fun ction Reset
Default
0x40009 4 TMUX_RNDFE3 Recei ve New Data Flag Event. This event bit indicates that the
incoming pointer has the n ew data flag enabled, causing a jump
in the current pointer location for port 3. Only port 1 informat ion
is valid in AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RNDFM3 (Table 87).
0
3 TMUX_RDECE3 Receive Pointer Dec rem ent Event. This event bit indicates
that a valid incoming pointer decrement indication was received
on port 3. Only port 1 information is valid in AU-4 mode and in
STS-1 m ode. The mask bit is TM UX_RDECM3 (Table 87).
0
2 TMUX_RINCE3 Receive Po in ter Increment Event. This event bit indicates that
a valid inc oming pointer increment indication was received on
port 3. O nly port 1 inform ation is valid i n AU-4 mode a nd in
STS-1 m ode. The mask bit is TM UX_RINCM3 (Table 87).
0
1 TMUX_RPAISD3 Receive P ath AIS Delta. T h is delta bit i n dicates a change in
state of the TMUX_RPAIS3 (Table 92) state bit, which desig-
nates that the port 3 pointer interpreter is in the alarm indication
signal state. Only port 1 inf ormation is valid in AU-4 mode and in
STS-1 m ode. The mask bit is TMUX_RPA ISM3 (Table 87).
0
0 TMUX_RLOPD3 Receive Loss of Pointer Delta. This del ta bit indicates a
change in state of the TMUX_RLOP3 (Table 92) state bit, which
designates that the port 3 point er interpreter is in the loss of
pointer state. Only port 1 information is valid in AU-4 mode. The
mask bit is TMUX_RLOP M3 (Table 87).
0
Address Bit N ame Function R eset
Default
0x4000A 15:7 Reserved. 0x000
6:4 TMUX_TLSPARM[3:1] Tran sm it Low-speed Parity Error Mask (Input Port Nu m -
ber). See Table 80 for description. 1
3TMUX_TPOAC_PMTransmit Path O verhead Access Channel (TPOAC) Par-
ity Error Mask. See Table 80 for description. 1
2TMUX_TTOAC_PMT ransmit Transport Overhead Access Channel (TT O AC)
Parity Error Mask. See Table 80 for description. 1
1 TMUX_THSILOFM Transmit High-speed Input Loss of Fram e Ma sk. See
Table 80 for description. 1
0TMUX_THSILOCMTran sm it High-speed Input Loss of Cl ock Mask. See
Table 80 for description. 1
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
88 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Note: In Table 85, the mask bits are set to suppress an interrupt w hen the corresponding event has occurred or
change in state has taken place.
Table 85. TMUX_RPS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0)
Note: In Table 86, the mask bits are set to suppress an interrupt w hen the corresponding event has occurred or
change in state has taken place.
Table 86. TMUX_RHS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0)
Address Bit Name Function Reset
Default
0x4000B 15:6 Reserved. 0x000
5 TMUX_RPSLOFM Receive Protection High-speed Loss o f Frame Mask. See
Table 81 for description. 1
4 TMUX_RPSOOFM Recei ve Protection High -speed Out of Frame Mask. See
Table 81 for description. 1
3 TMUX_RPSILOCM Receive Protection High-speed Loss of I nput Clock M ask.
See Table 81 for description. 1
2 TMUX_RPSB2M Receive Protection High -speed B2 Error Mask. See
Table 81 for description. 1
1 TMUX_RPSLREIM Receive Protection High-speed Line REI Mask. See
Table 81 for description. 1
Address Bit Name Function Reset
Default
0x4000C 15 Reserved. 0
14 TMUX_RS1BABM Receive S1 Babble Mask. See Table 82 for description. 1
13 TMUX_RS1MONM Receive S1 Monitor Mask. See Table 82 for description. 1
12 TMUX_RLRDIMONM Recei v e Line RDI Monitor Mask. See Table 82 for descrip-
tion. 1
11 TMUX_RLAISMONM Receive Line AIS Monitor Mask. See Table 82 for descrip-
tion. 1
10 TMUX_RK2MONM Receive K2 Monitor Mask. See Table 82 for description. 1
9 TMUX_RAPSBABM Receive APS Babble Mask. See Table 82 for description. 1
8 TMUX_RAPSMONM R eceive APS Monitor Mask. S ee Table 82 for description. 1
7TMUX_RF1MONMReceive F1 Mo nitor Mask. See Table 82 for description. 1
6 TMUX_RTIMSM Receive Section Trace Identifier Mismatch Mask. See
Table 82 for description. 1
5 TMUX_RHSSFM Receive High-spee d Signal Fail BER Algorithm M ask.
See Table 82 for description. 1
4 TMUX_RHSSDM Receive High-speed Signal Degrade BER Algorithm
Mask. See Table 82 for description. 1
3 TMUX_RHSLOSM Receive High-speed Loss of Signal Mask. See Table 82
for description. 1
2 TMUX_RHSLOFM Receive High-speed Loss of Frame Mask. S ee Table 82
for description. 1
1 TMUX_RHSOOFM Receive High-speed Out of Frame Mask. See Table 82 for
description. 1
0 TMUX_RHSILOCM Receive High-speed Loss of Input Clock Mask. See
Table 82 for description. 1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
89Agere Systems Inc.
8 TMUX Registers (continued)
Note: In Table 87, the mask bits are set to suppress an interrupt when the corresponding event has occurred or
change in state has taken place.
Tabl e 87. TMUX_RPOH [13]_MSK, Mask Bits fo r Interrupt Signal (R/W) (Mask = 1, No Mask = 0)
Address Bit Name Function Reset
Default
0x4000D 15 TMUX_RSFB3M1 Receive Path Signal Fail BER Algorithm Mask. See Table 83
fo r descri ption. 1
14 TMUX_RSDB3M1 Receive Path Signal Degrade BER Algorithm Mask. S ee
Table 83 for description. 1
13 TMUX_RUNEQPM1 Receive Pa th Unequipped Mask. See Table 83 for description. 1
12 TMUX_RPLMPM1 Receive Path Payload Label Mismatch Mask. See Table 83
fo r descri ption. 1
11 TMUX_RN1MONM1 Receive N1 Monitor Mask. See Table 83 for description. 1
10 TMUX_RK3MONM1 Receive K3 Monitor Mask. See Table 83 for description. 1
9 TMUX_RF3MONM1 Receive F3 (Path User Byte) Monitor Mask. See Table 83 for
description. 1
8 TMUX_RF2MONM1 Receive F2 (Path User Byte) Monitor Mask. See Table 83 for
description. 1
7 TMUX_RRDIPM1 Receive P ath RDI (Remote Defect Indication) Monitor Mask.
See Table 83 for description. 1
6 TMUX_RC2MONM1 Receive C2 (Signal Label) Monitor Mask. See Table 83 for
description. 1
5 TMUX_RTIMPM1 Receive Path Trace Identifier M ismatch Mask. See Table 83
fo r descri ption. 1
4 TMUX_RNDFM1 Receive New Data Flag Mask. See Table 83 for description. 1
3 TMUX_RDECM1 Rece ive Pointer De crem ent Mask. See Table 83 for descrip-
tion. 1
2 TMUX_RINCM1 Receive Pointer Increment Mask. S ee Table 83 for descrip-
tion. 1
1 TMUX_RPAISM1 Receive Path AIS Mas k. See Table 83 for description. 1
0 TMUX_RLOPM1 Receive Loss of Pointer Mask. See Table 83 for description. 1
0x4000E 15 TMUX_RSFB3M2 Receive Path Signal Fail BER Algorithm Mask. See Table 83
fo r descri ption. 1
14 TMUX_RSDB3M2 Receive Path Signal Degrade BER Algorithm Mask. S ee
Table 83 for description. 1
13 TMUX_RUNEQPM2 Receive P ath Unequipped Mask. See Table 83 for description. 1
12 TMUX_RPLMPM2 Receive Path Payload Label Mismatch Mask. See Table 83
fo r descri ption. 1
11 TMUX_RN1MONM2 Receive N1 Monitor Mask. See Table 83 for description. 1
10 TMUX_RK3MONM2 Receive K3 Monitor Mask. See Table 83 for description. 1
9 TMUX_RF3MONM2 Receive F3 (Path User Byte) Monitor Mask. See Table 83 for
description. 1
8 TMUX_RF2MONM2 Receive F2 (Path User Byte) Monitor Mask. See Table 83 for
description. 1
7 TMUX_RRDIPM2 Receive P ath RDI (Remote Defect Indication) Monitor Mask.
See Table 83 for description. 1
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
90 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Note: In Table 87, the mask bits are set to suppress an interrupt w hen the corresponding event has occurred or
change in state has taken place.
Table 87. TMUX_RPOH[13]_MSK, Mask Bits for Interrupt Signal (R/W) (Mask = 1, No Mask = 0) (continued)
Address Bit Name Function Rese t
Default
0x4000E 6 TMUX_RC2MONM2 Receive C2 (Signal Label) Monitor Mask. See Table 83 for
description. 1
5 TMUX_RTIMPM2 Receive Path Trace Identifier Mismatch Mask. See
Table 83 for description. 1
4 TMUX_RNDFM2 Receive New Data Flag Mask. See Table 83 for description. 1
3 TMUX_RDECM2 Rec eive Pointer Decrement M ask. See Table 83 for
description. 1
2 TMUX_RINCM2 Receive Poin ter Increment M ask. See Table 83 for descrip-
tion. 1
1 TMUX_RPAISM2 Receive Path AIS Mask. See Table 83 for description. 1
0 TMUX_RLOPM2 Receive Loss of P ointer Mask. S ee Table 83 for description. 1
0x4000F 15 TMUX_RSFB3M3 Receive Path Signal Fail BER Algorithm Mask. S ee
Table 83 for description. 1
14 TMUX_RSDB3M3 Receive Path Signal De grad e BER Algorithm Mask. See
Table 83 for description. 1
13 TMUX_RUNEQPM3 Receive Path Unequipped Mask. See Table 83 for descrip-
tion. 1
12 TMUX_RPLMPM3 Receive P ath Pa yload Label Mismatch Mask. See Table 83
for description. 1
11 TMUX_RN1MONM3 Rec eive N1 Monitor Mask. See Table 83 for description. 1
10 TMUX_RK3MONM3 Receive K3 Mon itor Mask. See Table 83 for description. 1
9 TMUX_RF3MONM3 Receive F3 (Path User Byte) Monitor Mask. See Table 83
for description. 1
8 TMUX_RF2MONM3 Receive F2 (Path User Byte) Monitor Mask. See Table 83
for description. 1
7 TMUX_RRDIPM3 Rec eive Path RDI (Remo te Defect In dicati on) Monitor
Mask. See Table 83 for description. 1
6 TMUX_RC2MONM3 Receive C2 (Signal Label) Monitor Mask. S ee Ta ble 83 for
description. 1
5 TMUX_RTIMPM3 Receive Path Trace Identifier Mismatch Mask. See
Table 83 for description. 1
4 TMUX_RNDFM3 Receive New Data Flag Mask. See Table 83 for descript ion. 1
3 TMUX_RDECM3 Rec eive Pointer Decrement M ask. See Table 83 for
description. 1
2 TMUX_RINCM3 Receive Poin ter Increment M ask. Se e Table 83 for descrip-
tion. 1
1 TMUX_RPAISM3 Receive Path AIS Mask. See Table 83 for description . 1
0 TMUX_RLOPM3 Receive Loss of P ointer Mask. S ee Table 83 for desc ription. 1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
91Agere Systems Inc.
8 TMUX Registers (continued)
Note: In Table 88, the mask bits are set to suppress an interrupt when the corresponding event has occurred or
change in state has taken place.
Table 88. TMUX_APSINT_MSK, Mask Bits for APSINT Interrupt Signal (R/W) (Mask = 1, No Mask = 0)
Note: When state bits are set in Table 89, the corresponding function has occurred.
Table 89. TMUX_TX_S TATE, State Parameters (RO)
Note: When state bits are set in Table 90, the corresponding function has occurred.
Table 90. T MUX_RPS_STATE, State and Value Parameters (RO)
Address Bit Name Function Reset
Default
0x40011 15:8 Reserved. 0x000
7 TMUX_RHSSF_APSM Rec e ive Hi gh - spe ed Signa l Fail BER Algo rithm
APSINT Mask. See Table 82 for description. 1
6 TMUX_RHSSD_APSM Receive High-speed Signal Degrade BER Algo-
rithm APS INT Mask. See Table 82 for description. 1
5 TMUX_RAPSMON_APSM Receive APS Monitor APSINT Mask. See Table 83
for description. 1
4 TMUX_RLAISMON_APSM Recei ve Line AIS Monitor APSINT Mask. See
Table 82 for description. 1
3 TMUX_RHSLOS_APSM Receive High-sp e ed Loss of Signa l APSINT Mask.
See Table 82 for description. 1
2 TMUX_RHSLOF_APSM Receiv e High-speed Loss of Frame APSINT Mask.
See Table 82 for description. 1
1 TMUX_RHSOOF_APSM Receive High-spe ed Out of Frame AP SIN T Mask.
See Table 82 for description. 1
0 TMUX_RHSILOC_APSM R eceive High-spe ed L oss o f Inpu t Clock APSI NT
Mask. See Table 82 for description. 1
Address Bit Name Function Reset
Default
0x40012 15:2 Reserved. 0x000
1TMUX_THSILOFTr ansmi t High-speed Input Loss of Frame S tate. See
Table 80 for description. 0
0TMUX_THSILOCTr ansmi t High-speed Input Loss of Clo ck State. See
Table 80 for description. 0
Address Bit Name Function Reset
Default
0x40013 15:6 Reserved. 0x000
5 TMUX_RPSLOF Receive Protection High-speed Loss of Frame State. See
Table 81 for description. 0
4TMUX_RPSOOFReceive Protection High-speed Out of Frame State . See
Table 81 for description. 0
3 TMUX_RPSILOC Receive Pr otection High-speed Loss of Input Clock State.
See Table 81 for description. 0
2:0 Reserved. 000
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
92 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Note: When state bits are set in Table 91, the corresponding f unct ion has occurred.
Table 91. TMUX_RHS_STATE, State and Value Parameters (RO)
Note: When state bits are set in Table 92, the corresponding f unct ion has occurred.
Address Bit Nam e Function Reset
Default
0x40014 15:13 Reserved. 000
12 TMUX_RLRDIMON Receive Line RDI M o nit or St ate. See Table 82 for
description. 0
11 TMUX_RLAISMON Receive Line AI S M o nitor State. See Table 82 for
description. 0
10:8 Reserved. 000
7 TMUX_RHSLOSEXTI Reflects LOSEXT Pin (AE5) Input.
6TMUX_RTIMSReflects Section-Level Trace Identifier Mismatch State.
5 TMUX_RHSSF Re ceive High - speed Sign a l Fail BER Algo rithm S ta t e.
See Table 82 for description. 0
4 TMUX_RHSSD Receive High-speed Signal Degrade BER Algor it hm
State . See Table 82 for description. 0
3 TMUX_RHSLOS Receive High-speed Loss of Signal State. See Table 82
for description. 0
2 TMUX_RHSLOF Receive High-speed Loss of Frame State. See Table 82
for description. 0
1 TMUX_RHSOOF Receive High-speed Out of Frame State. See Table 82
for description. 0
0 TMUX_RHSILOC Receive High-speed Loss of Input Clock State. See
Table 82 for description. 0
Tabl e 92. TMUX_RPOH [13]_STATE, S t ate an d Value Para meters (RO )
Address Bit Nam e Function R eset
Default
0x40015 15 TMUX_RSFB31 Receive Path Sig nal Fail BER Algorithm State.
See Table 83 for description. 0
14 TMUX_RSDB31 Receive Path Signal Degrade BER Algorithm
State . See Table 83 for description. 0
13 TMUX_RUNEQP1 Receive Path Unequipped State. See Table 83
for description. 0
12 TMUX_RPLMP1 Receive Path Payload Label Mismatch State.
See Table 83 for description. 0
11:6 Reserved. 0x00
5 TMUX_RTIMP1 Receive Path Trace Identifier Mismatch State.
See Table 83 for description. 0
4:2 Reserved. 000
1 TMUX_RPAIS1 Receive Path AI S State . See Table 83 for descrip-
tion. 0
0TMUX_RLOP1Receive Loss of Pointer State. S ee Table 83 for
description. 0
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
8 TMUX Registers (continued)
93Agere Systems Inc.
Address Bit Name Function Reset
Default
0x40016 15 TMUX_RSFB32 R ecei ve Path S ignal Fail BER Algorithm State.
See Table 83 for description. 0
14 TMUX_RSDB32 Recei ve Path Signal Degrade BER A lg or ithm
State . S ee Table 83 for description. 0
13 TMUX_RUNEQP2 Receive Path Unequipped State. S ee Table 83
for description. 0
12 TMUX_RPLMP2 Receive Path Payload Label Mismatch State.
See Table 83 for description. 0
11:6 Reserved. 0x000
5 TMUX_RTIMP2 Receive Path Trace Identifier Mismatch State .
See Table 83 for description. 0
4Reserved. 0
3:2 TMUX_CONCAT_S TATE2[1:0] C oncatenation Po in ter State M achi ne S ta t e.
State bits indicate th e state of the c oncatenation
stat e machine (LOPC = 10, AISC = 01,
C ONC = 00) for port 2. These values only have
meaning in the AU-4 mode with the
TMUX_RCONCATMODE bit (Table 95) set to the
con ca tenation mode (1).
00
1 TMUX_RPAIS2 Recei ve Path AIS S t ate. See Table 83 for descrip-
tion . 0
0TMUX_RLOP2R eceive Loss of Pointer State. See Table 83 for
description. 0
0x40017 15 TMUX_RSFB33 R ecei ve Path S ignal Fail BER Algorithm State.
See Table 83 for description. 0
14 TMUX_RSDB33 Recei ve Path Signal Degrade BER A lg or ithm
State . S ee Table 83 for description. 0
13 TMUX_RUNEQP3 Receive Path Unequipped State. S ee Table 83
for description. 0
12 TMUX_RPLMP3 Receive Path Payload Label Mismatch State.
See Table 83 for description. 0
11:6 Reserved. 0x000
5 TMUX_RTIMP3 Receive Path Trace Identifier Mismatch State .
See Table 83 for description. 0
4Reserved. 0
3:2 TMUX_CONCAT_S TATE3[1:0] C oncatenation Po in ter State M achi ne S ta t e.
State bits indicate th e state of the c oncatenation
stat e machine (LOPC = 10, AISC = 01,
C ONC = 00) for port 3. These values only have
meaning in the AU-4 mode and the
TMUX_RCONCATMODE bit (Table 95) set to the
con ca tenation mode (1).
00
1 TMUX_RPAIS3 Recei ve Path AIS S t ate. See Table 83 for descrip-
tion. 0
0TMUX_RLOP3R eceive Loss of Pointer State. See Table 83 for
description. 0
Ta ble 92. TMUX_R POH[1 3]_ STATE, State and Value P ar ameters (RO) (continued)
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
94 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 93. TMUX_RHS_CTL, Receive High-speed Control Parameter s (R/W)
Address Bit N ame Function Rese t Default
0x40019 15:4 Reserved. 0x000
3 TMUX_LOSEXT_LEVEL Controls External LOSEXT Polarity.
0 = active-low. 1 = active-high. 0
2 TMUX_RPSMUXSEL1 Receive Protection Switch Control. Control bit,
when set to a logic 1 , causes the receive prote c -
tion switch data and clock input s t o be sele c ted;
otherwise, the normal receive high-speed data
input is selec ted.
0
1 TMUX_THS2RHSLB Transmit High-speed to Receive High-speed
Loopback Control. Control bit, when set to a
logic 1, causes the transmit out put S TS-3/STM- 1
(AU-4) signal to be looped bac k to the receive
input; ot herwise, the loopback is d i sabled.
0
0 TMUX_RHSDSCR Receive High-speed Descram ble Enable . Con-
trol bit, when set to a logic 1, c auses the input
STS-3/STM-1 (AU-4) signal to be descrambled;
otherwise, the signal is not descr ambled.
0
Table 94. TMUX_RLS_BITBLK_CT L, Receive Low-speed Control Parameters (R/W)
Address Bit Name Function Reset Default
0x4001A 15:9 Reserved. 0x00
8:7 TMUX_RCV_SS_EXP[1:0] Expected Receive P ointer Size Bits V alue.
Expected value of incoming pointer SS bits. 00
6 TMUX_RCV_SS_ENB Receive Size Bits Enable. Control bit, when set to
a logic 0, causes the received size bits to be
ignored by the pointer interpreter; otherwise, the
received size bits must equal the expected size bits
or the received pointer value will be invalid.
0
5Reserved. 0
4 TMUX_BITBLKG1 Receive Bit/Bl ock Err or Count Control. Control
bit, when set to a logic 0, causes the receive error
counter to count bit errors; otherwise, count bloc k
errors (a block equals one frame).
0
3 TMUX_BITBLKM1 Receive Bi t/Block E rror Co unt Control. Control
bit, when set to a logic 0, causes the receive error
counter to count bit errors; otherwise, count bloc k
errors (a block equals one frame).
0
2 TMUX_BITBLKB3 Receive Bit/Bl ock Err or Count Contro l. Control
bit, when set to a logic 0, causes the receive error
counter to count bit errors; otherwise, count bloc k
errors (a block equals one frame).
0
1 TMUX_BITBLKB2 Receive Bit/Bl ock Err or Count Contro l. Control
bit, when set to a logic 0, causes the receive error
counter to count bit errors; otherwise, count bloc k
errors (a block equals one frame).
0
0 TMUX_BITBLKB1 Receive Bit/ Block Error Count Control. Control
bit, when s et to a logi c 0, causes the receive error
counter to count bit errors; ot herwise , count b l ock
errors (a bl ock equ als one frame).
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
95Agere Systems Inc.
8 TMUX Registers (continued)
Table 95. TMUX_RLS_MODE_CTL, Receive Low-speed Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x4001B 15:14 Reserved. 00
13 TMUX_RPAIS_INS Receive F orce Path AIS Inserti on. Control bit, when
set to a logic 1, causes the recei ve low-speed signal to
carry PAIS as well as asserting all AUTO_AIS[13]
(pins AC6, AE6, and AD6) (Table 3) outputs.
0
12 TMUX_8ORMAJORITY Receive Control Bit for Poi nter Justifications. Con-
trol bit, when set to a logi c 1, causes the pointer inter-
p re ter t o accept an increme nt or decrement only if 8 out
of 10 bits are correct; otherwise, i t will accept an incre-
ment or decrement bas ed on majorit y vote only.
0
11 TMUX_SDB1B2SEL Receive Signal Degrade Algorithm Input Selection.
Contro l bi t, when set to a logic 1 , causes the B2 errors
to contr ibute to the s ignal degrade calculation; other-
wise, the B1 error count is used.
0
10 TMUX_SFB1B2SEL Receive Si gn al Fail Algorithm Input S el ection. Con-
trol bit, when set to a logic, causes the B2 errors to con-
tribute to the signal degrade calculation; otherwise, the
B1 error count is used.
0
9:7 TMUX_J1MONMODE[2:0] Receive J 1 Monitor Mo de. There are si x modes, as
defined in J1 monitor on page 377. 000
6:4 TMUX_J0MONMODE[2:0] Receive J 0 Monitor Mo de. There are si x modes, as
defi ned in Section 17.5.5 J0 Monitor on page 370. 000
3 TMUX_S1MODE4 R eceive S1 Mon itor Mode. Control bit, when set to a
logic 1, causes the most significant nibble of the S1 byte
to be monitored; otherwise, the entire S1 byte is moni-
tored.
0
2 TMUX_RLSPAROEG Receive Low-speed Parity Odd or Even Gen eration.
Control bit , when set to a logic 1, forces the output parity
bit to be even; otherwise, the parity is odd.
0
1 TMUX_RCONCATMODE Receive Concatenation Mode. Control bit, when set to
a logic 1, c auses the input pointer interpreter to operate
in concatenati on mode. This mode is most likely used in
AU-4 m ode; otherwise, th ree independent pointers are
expected.
0
0 TMUX_REPRDI_MODE Receive Enhanced Path RDI Mode. Control bit, when
set to a logic 1, causes the receive path RDI monitor to
monitor the enhanced (3-bit found in G1[3:1]) valu e of
path RDI; otherwise, a 1-bit v al ue (G1[3]) is monitored.
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
96 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 96. TMUX_RAISINH_CTL, Receive Low-speed Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x4001C 15 TMUX_R_M1_BIT7 Re ceive M1 MSB Mode. Control bit, when set to a logic
1, causes the most sign ificant bit in the M1 byte t o be
ignored for line REI accumulation; otherwise, the MSB is
included.
0
14 TMUX_RSDB3_AISINH Rece ive B3 Signal Degrade AIS Inhibit. Control bit,
when set to a logic 1, inhibit the associ ated alar m from
causing the assertion of t he AUTO_AIS o utput; other-
wise, the a ssociated failure causes assertio n of the cor-
responding AUTO_AIS output signal.
0
13 TMUX_RSFB3_AISINH Receive B3 Signal Fail AIS Inhibit. Control bit, when
set to a logic 1, inhibit the associated alarm from causing
the assertion of the AUTO_ AIS output; other wise, t he
associated failure causes assertion of the corresponding
AUTO_AIS output signal.
0
12:10 TMUX_RTIMP_AISINH[3:1] Receive Path Trace Identifier Mismatch AIS Inhibit
Bits. Control bits, when set to a logic 1, inhibit the asso-
ciated alarm from causing the assertion of the
AUTO_AIS output ; otherwise, the associated failure
causes assertion of the corresponding A UTO_AIS output
signal.
0
9 TMUX_RUNEQP_AISINH Receive Path Unequip AIS In hi bi t. Control bit, when
set to a logic 1, inhibit the associated alarm from causing
the assertion of the AUTO_ AIS output; other wise, t he
associated failure causes assertion of the corresponding
AUTO_AIS output signal.
0
8 TMUX_RPLMP_AISINH Receive Path Payload Label Mismatch AIS Inhibit.
Control bit, when set to a logic 1, inhibit the associated
alarm from c aus ing the assertion of the AUTO_ AIS out-
put; otherwise, the associated failure causes assertion of
the corresponding AUTO_A IS output signal.
0
7 TMUX_RHSSD_AISINH Receive High-speed Signal Degrade AIS Inhibit. Con-
trol bits, w hen s et to a l ogic 1, inhibit th e associate d
alarm from causing AIS generation; otherwise, the asso-
ciated failure causes AIS generation on a ll STS-1/AU-3
outputs as we ll as the asser tion of AUTO_AIS out puts.
0
6 TMUX_RHSSF_AISINH Receive High-speed Signal Fail AIS Inhibit. Control
bits, w hen set to a logic 1, inhibit the associated alarm
from causing AIS generation; otherwise, t he associated
failure causes AIS gen eration o n all STS-1/AU- 3 outputs
as well as the asse r tion of AUTO_AIS out puts.
0
5 TMUX_RPAISLOP_AISINH Rec ei v e P a t h AIS or LOP AIS Inhibit . Control bits,
when set to a logic 1, inhibit the associ ated alar m from
causing AIS generation; otherwise, the associated failure
causes AIS generation on all STS-1/AU-3 outputs as well
as the assertion of AUTO_AIS outp uts.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
97Agere Systems Inc.
8 TMUX Registers (continued)
Table 96. TMUX_RAISINH_CTL, Receive Low-speed Contro l Param eters (R/ W) (continued)
Table 97. TMUX _LOSDETCNT, Re ceive Low-speed Control Parameters (R/W)
Address Bit Name Function Res et
Default
0x4001C 4 TMUX_RLAISMON_AISINH Receive Line AIS Monitor AIS Inhibit. Control bit,
when set to a logic 1, inhibits the associated alarm
from causing AIS generation; otherwise, the associ-
ated failure causes AIS generation on all STS-1/AU-3
outputs as well as the assertion of AUTO_AIS out-
puts.
0
3TMUX_RLOF_AISINHReceive Loss-of-Frame AIS Inhibit. Control bit,
when set to a logic 1, inhibits the associated alarm
from causing AIS generation; otherwise, the associ-
ated failure causes AIS generation on all STS-1/AU-3
outputs as well as the assertion of AUTO_AIS out-
puts.
0
2 TMUX_ROOF_AISINH Receive High-speed Out-of-Frame A IS In hibit.
Control bit, when set to a logic 1, inhibits the associ-
ated alarm from causing AIS generation; otherwis e,
the associated failure causes AIS generation on all
STS-1/AU-3 outputs as well as the assertion of
AUTO _AIS out puts.
0
1 TMUX_RHSLOS_AISINH Receive High-speed Loss-of-Signal AIS Inh ibit.
Control bit, when set to a logic 1, inhibits the associ-
ated alarm from causing AIS generation; otherwis e,
the associated failure causes AIS generation on all
STS-1/AU-3 outputs as well as the assertion of
AUTO _AIS out puts.
0
0 TMUX_RILOC_AISINH Receive Input Loss-of-Clock AIS Inhibit. Control
bit, when set to a logic 1, inhi bit s the associated alarm
from c aus ing th e assertion of the AUTO_AIS outp uts;
otherwise, the associated failure causes assertion of
all AUTO_AIS output signals.
0
Address Bit Nam e Function Res et
Default
0x4001D 15:14 Reserved. 00
13:11 TMUX_FORCEC2DEF[2:0] Force TMUX_RPLMP Defects. These bits (one for
each STS-1 in an STS-3) will force TMUX_RPLMP
defects on cer tain conditions as shown in Table 524
(STS Signal Label Defect Conditio n s).
000
10:0 TMUX_LOSDETCNT[10:0] L oss-of-Signal Detection Count. Control bits are the
number of consecutive all-0s/1s patte rn detected to
declare LOS stat e in the unscrambled STS-3/STM-1
(AU-4) input frame. A val ue of 0x02D equals 2.3 µs
while a value of 0x798 equals 100 µs.
0x02D
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
98 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 98. TM UX_CNTD_TOH_[AB], Continuous N-Times Detect Control Parameters (R/W)
Address Bit Na m e Function Reset
Default
0x4001E 15:12 TMUX_CNTDK1K2FRAME[3:0] Continuous N-Times Detect for APS Frame
Bytes. S ets t he number o f CNTD frames within
which an inconsistent APS value is detected in the
incoming STS-3/STM-1 (AU-4). This val ue is used in
the APS babble algorithm. The valid range for this
register is 0x30xF. Inv alid values will be mapped to
a value of 0x3.
0xC
11:8 TMUX_CNTDK1K2[3:0] Continuous N-Times Detect for APS (K1, K2[7:3])
Bytes. S et s the number of CNTD occurrences of a
consistent APS value in the inc omi ng ST S-3/STM-1
(AU-4) frame. The valid range for thi s register is
0x30xF. Invalid values will be mapped to a value of
0x3.
0x3
7:4 TMUX_CNTDF1[3:0] Continuous N-Time s Detect for F1 Byte. S e ts the
number of CNTD occurrences of a consistent F1
value in the incoming STS-3/STM-1 (AU-4) frame.
The valid range for this regi s ter is 0x30xF. Inva lid
values will be mapped to a value of 0x3.
0x3
3:0 TMUX_CNTDJ0[3:0] Continuous N-Times Detect for J0 Byte. Sets the
number of CNTD occurrences of a consistent J0
value in the incoming STS-3/STM-1 (AU-4) frame.
The valid range for this regi s ter is 0x30xF. Inva lid
values will be mapped to a value of 0x3.
0x3
0x4001F 15:14 Reserved. 00
13:12 TMUX_CTDLOPCNT[1:0] Continuous N-Times Detect for Loss of Pointe r
State . Control bits are the number of consecutive
conditions for invalid pointer and invalid concatena-
tion indication (pointer interpret at ion). Valid values
are the following: 00 = 8, 01 = 9, 10 = 10, and 11 = 8 .
0x0
11:8 TMUX_CNTDS1FRAME[3:0] Continuous N-Times Detect for S1 Fram e Bytes.
Sets the number of CNTD frames within which an
inconsistent S1 value is detected in the i nc oming
STS-3/ST M-1 (AU-4 ). This value is us ed in the S1
babble algorithm. The valid rang e for this regist er is
0x30xF. Invalid values will be mapped to a value of
0x3.
0x3
7:4 TMUX_CNTDS1[3:0] Continuous N-Times Detect for S1 Byte. Sets the
number of CNTD occurrences of a consistent S1
value in the incoming STS-3/STM-1 (AU-4) frame.
The valid range for this regi s ter is 0x30xF. Inva lid
values will be mapped to a value of 0x3.
0x3
3:0 TMUX_CNTDK2[3:0] Continuous N-Times Detect for K2[2:0] Byte.
Sets the number of CNTD occurrences of a consis-
tent K2[2:0] value in the incoming STS-3/ STM-1
(AU-4) frame. The valid range for thi s register is
0x30xF. Invalid values will be mapped to a value of
0x3.
0xC
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
99Agere Systems Inc.
8 TMUX Registers (continued)
Table 99. TM UX_CNTD_POH_[AB], Contin uous N-Ti mes Detect Control Parameter s (R/W)
Address Bit Name Function Reset
Default
0x40020 15:12 TMUX_CNTDF2[3:0] Conti nuous N -Tim e s Detect for F2 By te . Sets the num-
ber of CNT D occurrence s of a consistent F2 value i n the
incomi ng STS-3/STM -1 (AU-4) frame. The valid range for
this reg is ter is 0x 30xF. Invalid values will be mapped to
a value of 0x3.
0x3
11:8 TMUX_CNTDRDIP[3:0] Continuous N-Times Detect for G1[3:1] Byte. Sets the
number of CNT D occurrences of a cons istent G1[3:1]
value in the incoming STS-3/ST M-1 (AU-4) fram e. The
valid range for this register is 0x30xF. Invalid values will
be mapped to a value of 0x3.
0x3
7:4 TMUX_CNTDC2[3:0] Continuous N-Times Detect for C2 Byte. Se ts the num-
ber of CNT D occurrence s of a consistent C2 value in the
incomi ng STS-3/STM -1 (AU-4) frame. The valid range for
this reg is ter is 0x 30xF. Invalid values will be mapped to
a value of 0x3.
0x3
3:0 TMUX_CNTDJ1[3:0] Continuous N-Times Detect for J1 Byte. S e ts the num -
ber of CNT D occurrence s of a consistent J1 value in the
incomi ng STS-3/STM -1 (AU-4) frame. The valid range for
this reg is ter is 0x 30xF. Invalid values will be mapped to
a value of 0x3.
0x3
0x40021 15:13 Reserved. 000
12 TMUX_CTDB1SEL Continuous N- Times AUTO AIS Sele ct. Control bi t,
when s et to a logic 1, causes TOH CNTD counters to be
reset wh enever t he AUTO_AIS signal is asser ted.
0
11:8 TMUX_CNTDN1[3:0] Continuous N-Ti mes Detect for N1 Byte. Sets the nu m-
ber of CNT D occurrence s of a consistent N1 value in the
incomi ng STS-3/STM -1 (AU-4) frame. The valid range for
this reg is ter is 0x 30xF. Invalid values will be mapped to
a value of 0x3.
0x3
7:4 TMUX_CNTDK3[3:0] Continuous N-Times Detect for K3 Byte. Se ts th e num-
ber of CNT D occurrence s of a consistent K3 val ue in the
incomi ng STS-3/STM -1 (AU-4) frame. The valid range for
this reg is ter is 0x 30xF. Invalid values will be mapped to
a value of 0x3.
0x3
3:0 TMUX_CNTDF3[3:0] Conti nuous N - Times Detec t for F3 By t e. Sets the num-
ber of CNT D occurrence s of a consistent F3 value i n the
incomi ng STS-3/STM -1 (AU-4) frame. The valid range for
this reg is ter is 0x 30xF. Invalid values will be mapped to
a value of 0x3.
0x3
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
100 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 100. TMUX_C2EXP[12_3] , Cont inuous N-Times D etect Control Para m ete rs (R/ W)
Table 101. TMUX_RF1MON, Receive Monitor Values (RO)
Table 102. TMUX_RAPSMON, Receive Monitor Val ues (RO)
Table 103. TMUX_RS1MON, Receive Monitor Values (RO)
Address Bit N am e Function Re set
Default
0x40022 15:8 Reserved. 0x00
7:0 TMUX_C2EXP1[7:0] Expected C2 Byte for Port 1. Should be p rogrammed to
contain expected signal la bel (C 2) for port 1. 0x00
0x40023 15:8 TMUX_C2EXP3[7:0] Expected C2 Byte for Port 3. Should be programmed to
contain expected signal la bel (C 2) for port 3. 0x00
7:0 TMUX_C2EXP2[7:0] Expected C2 Byte for Port 2. Should be p rogrammed to
contain expected signal la bel (C 2) for port 2. 0x00
Address Bit Name Function Reset
Default
0x40024 15:8 TMUX_RF1MON1[7:0] Receive F1 Previous Mon ito r Value. See Section 17.5.7
F1 Monitor on page 371. 0x00
7:0 TMUX_RF1MON0[7:0] Receive F 1 Current Monitor Val ue. S ee Section 17.5.7
F1 Monitor on page 371. 0x00
Address Bit Name Function Reset
Default
0x40025 15:3 TMUX_
RAPSMON[12:0] Receive APS Monitor Value . See Section 17.5.9 Auto-
matic Protection Switch (APS) Monitor on page 371. 0x00
2:0 TMUX_K2MON[2:0] Receive K2 Monitor V alue. See Section 17.5.9 A utomatic
Protection Switch (APS) Monitor on page 371. 0x0
Address Bit Name Function Reset
Default
0x40026 15:8 Reserved. 0x00
7:0 TMUX_RS1MON[7:0] Receive S1 Monito r Value. See Section 17.5.12 Sync
Status Monitor on page 372. 0x00
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
101Agere Systems Inc.
8 TMUX Registers (continued)
Table 104. TMUX_RPOHMON[13][AD], Receive Monitor Values (RO)
Address Bit Name Function Reset
Default
0x40027 15:11 Reserved. 0x00
10:8 TMUX_RDIPMON1[2:0] Receive Path RDI Monitor Valu e for Port 1. See RDI-P
Detection on page 379.0x0
7:0 TMUX_C2MON1[7:0] Receive C2 Monitor Valu e for Port 1. See Signal Lab el
C2 Byte Monitor on page 378.0x00
0x40028 15:8 TMUX_F2MON11[7:0] Receive F2 Previous Monitor Value for Port 1. See
Pa th User By t e F2 Moni tor on page 380.0x00
7:0 TMUX_F2MON01[7:0] Receiv e F2 Current Monitor Value for Port 1. See Path
User Byte F2 Monitor on page 380.0x00
0x40029 15:8 TMUX_F3MON11[7:0] Receive F3 Previous Monitor Value for Port 1. See
Pa th User By t e F3 Moni tor on page 380.0x00
7:0 TMUX_F3MON01[7:0] Receiv e F3 Current Monitor Value for Port 1. See Path
User Byte F3 Monitor on page 380.0x00
0x4002A 15:8 TMUX_N1MON1[7:0] Receive N1 Monitor Value for Port 1. See N1 Byte M on-
itor on page 381.0x00
7:0 TMUX_K3MON1[7:0] Receive K3 Monitor Value for Port 1. See K3 By te Mon-
itor on page 381.0x00
0x4002B 15:11 Reserved. 0x00
10:8 TMUX_RDIPMON2[2:0] Receive Path RDI Monitor Valu e for Port 2. See RDI-P
Detection on page 379.0x0
7:0 TMUX_C2MON2[7:0] Receive C2 Monitor Valu e for Port 2. See Signal Lab el
C2 Byte Monitor on page 378.0x00
0x4002C 15:8 TMUX_F2MON12[7:0] Receive F2 Previous Monitor Val ue for Port 2. See
Pa th User By t e F2 Moni tor on page 380.0x00
7:0 TMUX_F2MON02[7:0] Receiv e F2 Current Monitor Value for Port 2. See Path
User Byte F2 Monitor on page 380.0x00
0x4002D 15:8 TMUX_F3MON12[7:0] Receive F3 Previous Monitor Val ue for Port 2. See
Pa th User By t e F3 Moni tor on page 380.0x00
7:0 TMUX_F3MON02[7:0] Receiv e F3 Current Monitor Value for Port 2. See Path
User Byte F3 Monitor on page 380.0x00
0x4002E 15:8 TMUX_N1MON2[7:0] Receive N1 Monitor Value for Port 2. See N1 Byte M on-
itor on page 381.0x00
7:0 TMUX_K3MON2[7:0] Receive K3 Monitor Value for Port 2. See K3 By te Mon-
itor on page 381.0x00
0x4002F 15:11 Reserved. 0x00
10:8 TMUX_RDIPMON3[2:0] Receive Path RDI Monitor Valu e for Port 3. See RDI-P
Detection on page 379.0x0
7:0 TMUX_C2MON3[7:0] Receive C2 Monitor Valu e for Port 3. See Signal Lab el
C2 Byte Monitor on page 378.0x00
0x40030 15:8 TMUX_F2MON13[7:0] Receive F2 Previous Monitor Value for Port 3. See
Pa th User By t e F2 Moni tor on page 380.0x00
7:0 TMUX_F2MON03[7:0] Receiv e F2 Current Monitor Value for Port 3. See Path
User Byte F2 Monitor on page 380.0x00
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
102 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 104. TMUX_RPOHMON [1 3][AD], Receive Monitor Values (RO) (continued)
Table 105. TMUX_TLS_CTL, Transmit Low-speed Cont ro l Parameters (R/W)
Address Bit Name Function Reset
Default
0x40031 15:8 TMUX_F3MON13[7:0] Receive F3 Previous Monitor Value for Port 3. S ee
Path User Byte F3 Monitor o n page 380.0x00
7:0 TMUX_F3MON03[7:0] Recei ve F3 Current Monitor Value for Port 3. See Path
User Byt e F3 Moni tor on page 380.0x00
0x40032 15:8 TMUX_N1MON3[7:0] Receive N1 Mo ni tor Value for Port 3. See N1 Byte M on-
itor on page 381.0x00
7:0 TMUX_K3MON3[7:0] Receive K3 Monitor Value for Port 3. See K3 Byte Mon-
itor on page 381.0x00
Address Bit Name Function Reset
Default
0x40033 15:7 Reserved. 0x000
6:4 TMUX_TLS_UNEQP[3:1] Transmit Low-speed Unequipped Insert Control.
Control bit, when set to a logic 1, causes an unequip
signal to be gener ated i n t he selecte d STS-1/AU-3 time
slot in the STS-3/STM-1 (AU-4) output signal; normal
data is sent when set t o a logic 0. Only
TMUX_TLS_UNEQP 1 is used i n AU-4 mode.
0
3:1 TMUX_TLS_PAISINS[3:1] T ransmit Low-speed P ath AIS Insert Contr ol. Control
bit, w hen set to a logic 1, causes path AIS to be
insert ed into the selected STS-1/TUG -3 time slot in th e
STS-3/STM-1 (AU-4) output signal; normal data is sent
when set to a logic 0. Only TM UX_TLS_PAISINS1 is
used in A U-4 mode.
0
0 TMUX_TLSVOEPAR Transmit Low-speed Verify Odd or Even Parity. Con-
trol bit, when set to a logic 0, causes odd parity to be
verified per byte transfer per STS-1/ AU-3 input; other-
wi se, even pa r it y i s ve rified.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
103Agere Systems Inc.
8 TMUX Registers (continued)
Table 106. T MUX_THS_PORT _CTL, Transmit High-speed P ort Control P a rameters (R/W)
Tabl e 1 0 7. TMUX _ T H S_ TOH_C TL , Transmit Hi gh-spe ed Control Param eters (R/W)
Address Bit Name Function Reset
Default
0x40034 15:4 Reserved. 0x000
3 TMUX_TPSMUXSEL3 Transmit Hi gh-speed Protection MUX Selection . C ontrol
bit, when set to a logic 1, causes the receive side working
input STS-3/STM-1 (A U-4) signal to be s elect ed; otherwise,
the signal coming in from the transmit low-speed side (tele-
com bus) and POH MUX is selected. The output of this
MU X is sent to a transpor t overhead MUX and eventually
out the T P SD1 55P /N (pins AF13, AE 13) and TPSC155P/N
(pins AC12, AD13) outputs.
0
2 TMUX_TPSMUXSEL2 Transmit Hi gh-speed Protection MUX Selection . C ontrol
bit, when set to a logic 1, causes the receive side protection
input STS-3/STM-1 (A U-4) signal to be s elect ed; otherwise,
the signal coming in from the transmit low-speed side (tele-
com bus) and POH MUX is selected. The output of this
MU X is sent to a transpor t overhead MUX and eventually
out the THSDP/N (pins AF9, AE9) output.
0
1 TMUX_RHS2THSLB Receive High-speed to Transmit High-speed Loopback
Contro l. Control bit, whe n set to a logic 1, causes the
receive STS-3/STM- 1(AU-4) i nput signal to be looped bac k
to the transm it high-speed output; loopback is disabled
when set to a logic 0.
0
0TMUX_THSSCRTransmit High-speed Scramble Enab le. Control bit, when
set to a l ogic 1, c auses the output STS-3/STM-1
(A U- 4) signal to be scr ambl ed; the signal is not scramb led if
set to a logic 0.
0
Address Bit Name Function Reset
Default
0x40035 15:13 Reserved. 0x0
12 TMUX_TCONCATMODE Transm it a Co ncaten ated Signal. Control bit, when set
to a logic 1, causes the outgoing STS-3/STM-1 signal to
be concatenated; otherwise, the outgoing signal is three
independent S T S-1 s (for a 155 M Hz signal).
0
11 TMUX_TPREIRDISEL Trans mit MU X S electio n C o ntro l for Outgoing Path
REI an d RDI. Control bit, when set to a logic 1, causes
the path REI and RDI signals to be selected from the
protection board; otherwise, they are de rived fro m the
receive side o f the same TMUX.
0
10 TMUX_TLREIRDISEL Tra ns mit MU X S election Contro l for Outgoing Line
REI an d RDI. Control bit, when set to a logic 1, causes
the line REI and RDI signal s to be sele cted from the pro-
tection board; otherwise, they are derived fr om the
receive side o f the same TMUX.
0
9:8 TMUX_TSS[1:0] Transmit SS (Bits). These bit s are inserted into the out-
going pointer value (b ut not in the concatenation values). 00
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
104 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Tabl e 1 0 7. TMU X _THS_TO H _C TL , Transmit Hi gh-spe ed Control Param eters (R/W) (continued)
Address Bit Name Function Reset
Default
0x40035 7 TMUX_THSLREIINH Transmit Line REI Inhibit. Cont rol bit, when s et to a l ogic 1,
disables hardware insertion of line REI (B2 errors) in the outgo-
ing STM-1 (AU-4) f rame M 1 b yte; a logic 0 enables hardware
insertion of line REI.
0
6 TMUX_THSLAISINS Transmit High-speed Li ne AIS Ins e rtion. Control bit, when
set to a logic 1, causes line AIS to be inserted into the outgoing
STS-3/STM-1 (AU-4) signal; otherwise, line AIS is not sent.
0
5 TMUX_THSAPSINS Transmit APS Value Insert (Control). Control bi t, when set to
a logic 1, inserts the value in TMUX_TAPSINS [12:0]
(Table 113) into the outgoing K 1 and K2[7:3] byte s i n the STS-
3/STM-1 (A U-4) frame; a logic 0 inserts the defaul t value based
on SMPR_OH_DEFLT (Table 67).
0
4 TMUX_THSK2INS Transmit K2[2:0] Insert (Control). Co ntrol bit, when set to a
logic 1, inser ts the value in TMUX_TK2INS[2: 0] (Table 113)
into the outgoing K2 byte in the STS-3/STM-1 (AU-4) frame; a
logic 0 inserts the default value based on SMPR_OH_DEFLT.
0
3 TMUX_THSS1INS Transmit S1 Inser t (Control). Control bit, when set to a
logic 1, inser ts the value in TMUX_TS1INS[7: 0] (Table 112)
into the outgoing S1 byte in the STS-3/STM-1 (AU-4) frame; a
logic 0 allows insert ion fro m the TTOAC channel or a defau lt
value.
0
2TMUX_THSF1INSTransmit F1 Insert (Co ntrol). Control bit, when set to a logic
1, inserts the value in TMUX_TF1INS[7:0] (Table 112) into the
outgoing S1 byte in t he STS-3/STM-1 (AU-4) frame; a logic 0
allows insertion from the TTOAC channel or a default value .
0
1TMUX_THSZ0INSTransmit Z0-2 and Z0-3 Insert (Contr ol). Control bit, when
set to a logic 1, inserts the values in TMUX_TZ02INS[7:0]
(Table 111) and TMUX_TZ03INS[7:0] (Table 111) in to the out-
going Z0-2 and Z0-3 bytes in t he STS-3/STM-1 (A U-4) f rame; a
logic 0 inserts the default value based on SMPR_OH_DEFLT.
0
0 TMUX_THSJ0INS Tran sm it J0 Inser t (Contr ol). Control bit, when set to a logic
1, inserts the 16-byte sequence TMUX_TJ0DINS[161][7:0]
(Table 133) into the outgoing STS- 3/STM-1 (AU-4) frame; a
logic 0 inserts the default value based on SMPR_OH_DEFLT.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
105Agere Systems Inc.
8 TMUX Registers (continued)
Table 108. TMUX_THS_PO H [13]_CTL, Transmit High-Speed Contr o l P arameter s (R/W)
Address Bit Name Function Reset
Default
0x40036 15:9 Reserved. 0x00
8 TMUX_THSPREIINH1 Tr ansmit Pat h REI Inhibit for Port 1. Control bit, when set to
a logic 1, dis ables hardware insertion of path RE I ( B3 errors)
in the outgoing STM-1 (AU-4) frame G1 byte; a logic 0
enables hardware inser t ion of path REI. Only por t 1 control is
valid in AU-4 mode.
0
7 TMUX_TPOHTHRU1 Transmit High-speed Path Overhead Insert ion from Low-
speed Input ( Telecom Bus). Co ntrol bit, when set to a logic
1, causes all path overhead byt es, and H1, H2, and H3, to be
pas sed through from the l ow-speed telecom bus to the high-
speed output signal. On ly port 1 control is valid in AU-4 mode.
0
6 TMUX_THSN1INS1 Trans mit N1 Insert (Control) for Port 1. Control bit, when
set to a logic 1, inserts the value in TMUX_TN1INS1[7:0]
(Table 114) into the o utgoing N1 byte in the STS-3/ST M-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default val ue. Only port 1 control is valid in AU-4
mode.
0
5TMUX_THSK3INS1Transmit K3 Inser t (C ontrol) for Port 1. Control bit , when
set to a logic 1, inserts the value in TMUX_TK3INS1[7:0]
(Table 114) into the o utgoing K3 byte in the S TS-3/ST M-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default val ue. Only port 1 control is valid in AU-4
mode.
0
4TMUX_THSF3INS1Transmit F3 Insert (Control) for Port 1. Control bit, when set
to a l ogic 1, inserts the value i n TMUX_TF3INS1[7:0 ]
(Table 114) into the outgoing F3 byte in the STS-3/STM-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default val ue. Only port 1 control is valid in AU-4
mode.
0
3TMUX_THSF2INS1Transmit F2 Insert (Control) for Port 1. Control bit, when set
to a l ogic 1, inserts the value i n TMUX_TF2INS1[7:0 ]
(Table 114) into the outgoing F2 byte in the STS-3/STM-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default val ue. Only port 1 control is valid in AU-4
mode.
0
2 TMUX_THSRDIPINS1 Transm it Path RDI In sert (Control) for P ort 1. Control bit,
w hen set to a logic 1, inser ts th e value in
TMUX_TRDIPINS1[2:0] (Table 114) into t he outgoing G1[3:1]
bits in the STS-3/STM-1 (AU-4) frame; a logic 0 allows inser-
tion from the TPOA C channel or a default v alue . Only port 1
control is valid in AU-4 mode.
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
106 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 108. TMUX_THS_POH[13]_CTL, Transmit High-Speed Contr o l P arameter s (R/W) (continued)
Address Bit Name Function Reset
Default
0x40036 1 TMUX_THSC2INS1 Transmit C2 Insert (Contr ol) for Port 1. Control bit , when
set to a logic 1, inserts the value in TMUX_TC2INS1[7:0]
(Table 114) into the o utgoing C2 byte in the STS-3/ST M-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default val ue. Only port 1 control is valid in AU-4
mode.
0
0TMUX_THSJ1INS1T ransmit J1 Insert (Control) f or P ort 1. Control bit, when set
to a l ogic 1, inserts the 64-byte s equence
TMUX_TJ1DINS1[641][7:0] (Table 140) into the outgoing
STS-3/STM-1 (A U-4) f rame; a logic 0 al lows i nsertion from the
TP OAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
0x40037 15:9 Reserved.
8 TMUX_THSPREIINH2 Tr ansmit Pat h REI Inhibit for Port 2. Control bit, when set to
a logic 1, dis ables hardware insertion of path RE I ( B3 errors)
in the outgoing STS-3 /STM-1 (AU-4) fr ame G1 byte; a logic 0
enables hardware inser t ion of path REI. Only por t 1 con trol is
valid in AU-4 mode.
7 TMUX_TPOHTHRU2 Transmit High-speed Path Overhead Insert ion from Low-
speed Input ( Telecom Bus). Co ntrol bit, when set to a logic
1, causes all path overhead b ytes for port 2 and, H1, H2, and
H 3, to be passed through from the low-speed telec om bus to
the high- speed output signal. Onl y port 1 control is va lid in
AU-4 mo de.
6 TMUX_THSN1INS2 Trans mit N1 Insert (Control) for Port 2. Control bit, when
set to a logic 1, inserts the value in TMUX_TN1INS2[7:0]
(Table 114) into the o utgoing N1 byte in the STS-3/ST M-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default val ue. Only port 1 control is valid in AU-4
mode.
5 TMUX_THSK3INS2 Trans mit K3 Insert (Control) for Port 2. Control bit, when
set to a logic 1, inserts the value in TMUX_TK3INS2[7:0]
(Table 114) into the o utgoing K3 byte in the S TS-3/ST M-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default val ue. Only port 1 control is valid in AU-4
mode.
4TMUX_THSF3INS2Transmit F3 Insert (Control) for Port 2. Control bit, when set
to a l ogic 1, inserts the value i n TMUX_TF3INS2[7:0 ]
(Table 114) into the outgoing F3 byte in the STS-3/STM-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default val ue. Only port 1 control is valid in AU-4
mode.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
107Agere Systems Inc.
8 TMUX Registers (continued)
Table 108. TMUX_THS_POH[13]_CTL, Transmit High-Speed Contr o l P arameter s (R/W) (continued)
Address Bit Name Function Reset
Default
0x40037 3 TMUX_THSF2INS2 T ransmit F2 Insert (Control) for Port 2. Control bit, when set
to a l ogic 1, inserts the value i n TMUX_TF2INS2[7:0 ]
(Table 114) into the outgoing F2 byte in the S TS-3/STM-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default val ue. Only port 1 control is valid in AU-4
mode.
0
2 TMUX_THSRDIPINS2 Transm it Path RDI In sert (Control) for P ort 2. Control bit,
w hen set to a logic 1, inser ts th e value in
TMUX_TRDIPI NS2[2: 0] (Table 114) into the outgoing G1[3:1]
bits in the STS-3/STM-1 (AU-4) frame; a logic 0 allows inser-
tion from the TPOA C channel or a default v alue . Only port 1
control is valid in AU-4 mode.
0
1 TMUX_THSC2INS2 Trans mit C2 Insert (Control) for Port 2. Control bit, when
set to a logic 1, inserts the value in TMUX_TC2INS2[7:0]
(Table 114) into the outgoing C2 byte in the STS-3/STM-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default val ue. Only port 1 control is valid in AU-4
mode.
0
0TMUX_THSJ1INS2T ransmit J1 Insert (Control) f or P ort 2. Control bit, when set
to a l ogic 1, inserts the 64-byte s equence
TMUX_TJ1DINS2[641][7:0] (Table 141) into the outgoing
STS-3/STM-1 (A U-4) f rame; a logic 0 al lows i nsertion from the
TP OAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
0x40038 15:9 Reserved. 0x00
8 TMUX_THSPREIINH3 Tr ansmit Pat h REI Inhibit for Port 3. Control bit, when set to
a logic 1, dis ables hardware insertion of path RE I ( B3 errors)
in the outgoing STS-3 /STM-1 (AU-4) fr ame G1 byte; a logic 0
enables hardware inser t ion of path REI. Only por t 1 control is
valid in AU-4 mode.
0
7 TMUX_TPOHTHRU3 Transmit High-speed Path Overhead Insert ion from Low-
speed Input ( Telecom Bus). Co ntrol bit, when set to a logic
1, causes all path overhead byt es f or port 3, and H1, H2, and
H 3, to be passed through from the low-speed telec om bus to
the high- speed output signal. Onl y port 1 control is va lid in
AU-4 m ode.
0
6 TMUX_THSN1INS3 Trans mit N1 Insert (Control) for Port 3. Control bit, when
set to a logic 1, inserts the value in TMUX_TN1INS3[7:0]
(Table 114) into the o utgoing N1 byte in the STS-3/ST M-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default value . Only po r t 1 control is valid in
AU-4 m ode.
0
5TMUX_THSK3INS3Transmit K3 Inser t (C ontrol) for Port 3. Control bit , when
set to a logic 1, inserts the value in TMUX_TK3INS3[7:0]
(Table 114) into the o utgoing K3 byte in the S TS-3/ST M-1
(A U-4) frame; a logic 0 allows insertion f rom the TPOAC chan-
nel or a default value . Only po r t 1 control is valid in
AU-4 m ode.
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
108 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 108. TMUX_THS_POH[13]_CTL, Transmit High-Speed Contr o l P arameter s (R/W) (continued)
Address Bit Name Function Reset
Default
0x40038 4 TMUX_THSF3INS3 Transmit F3 Insert (Control) for P ort 3. Control bit, when
set to a logic 1, inserts the value in TMUX_TF3IN S3[7:0]
(Table 114) into the outgoing F3 byte in the STS-3/STM-1
(AU-4) frame; a logic 0 allows insertion from the TPOAC
channel or a default value. Only port 1 control is valid in
AU-4 mode.
0
3 TMUX_THSF2INS3 Transmi t F2 Insert (Contr ol) for Port 3 . Control bit, when
set to a logic 1, inserts the value in TMUX_TF2IN S3[7:0]
(Table 114) into the outgoing F2 byte in the STS-3/STM-1
(AU-4) frame; a logic 0 allows insertion from the TPOAC
channel or a default value. Only port 1 control is valid in
AU-4 mode.
0
2 TMUX_THSRDIPINS3 Transmit Pat h RDI In sert (Con tr ol) for Port 3 . Control bit,
when set to a logic 1, inserts the value in
TMUX_TRDIPINS3[2:0] (Table 114) into the outgoing
G1[3 :1] bits in the STS-3/STM - 1 (AU-4) frame; a l ogic 0
allow s insertion f rom the TPOAC channel o r a def a u lt value.
Only port 1 control is va lid in AU-4 mode.
0
1 TMUX_THSC2INS3 Transmi t C2 Insert (Control) for P ort 3. Control bit, when
set to a logic 1, inserts the value in TMUX_TC2INS3[7:0]
(Table 114) into the outgoing C2 byte in th e STS-3/ST M-1
(AU-4) frame; a logic 0 allows insertion from the TPOAC
channel or a default value. Only port 1 control is valid in
AU-4 mode.
0
0TMUX_THSJ1INS3Transmi t J1 Inser t (Control) for Port 3. Control bit, when
set to a logic 1, inserts the 64-byte sequence
TMUX_TJ1DINS3[641][7:0] (Table 142) int o the outgoing
STS-3/STM-1 (AU-4) fra me; a logic 0 allows insertion from
the TPOAC channel or a defaul t val ue. Only port 1 control is
valid in AU-4 mode.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
109Agere Systems Inc.
8 TMUX Registers (continued)
Table 109. TMUX_TLRDI_CTL , Tran sm it High-Speed Line RDI Control Parameters (R/W)
Table 110. T MUX_TPRDI_CTL, Transmit High-Speed Path RDI Control P arameters ( R/W)
Address Bit Name Function Reset Default
0x4003A 15:7 Reserved. 0x000
6 TMUX_TRHSSD_LRDIINH Tran smit Receive High-speed Signa l
Degrade L-RDI Inhibit. Control bit, when
set to a logic 1, c auses the associated fail-
ure not to contribute to the automatic inser-
tion of RDI-L; otherwise, the associated
alarm cont rib utes to the generation of RDI-L.
0
5 TMUX_TRHSSF_LRDIINH Transmit Receive High-speed Signal Fail
L- R D I Inhibi t. Control bit, when set to a
logic 1, causes the associated fai lure not to
contr ibute to the automatic insert ion of RDI-
L; otherwise, the associated alarm contrib-
utes to the generation of RDI-L.
0
4 TMUX_TRLAISMON_LRDIINH Transm it Receive Line AIS Line RDI
Inhibit. Same as abov e. 0
3 TMUX_TRHSLOF_LRDIINH Transm it Receive High-sp eed Loss-of-
Frame Lin e RDI Inhibit. Same as above. 0
2 TMUX_TRHSOOF_LRDIINH Transmit Receive High-speed Out-of-
Frame Lin e RDI Inhibit. Same as above. 0
1 TMUX_TRHSLOS_LRDIINH Transm it Receive High-sp eed Loss-of-
Signal Line RDI Inhibit. Same as above. 0
0 TMUX_TRILOC_LRDIINH Tran sm it Receive Inpu t Loss-of-Clo ck
Line RDI I nhibit . Same as above. 0
Address Bit Name Function Reset
Default
0x4003B 15:8 Reserved. 0x000
7:5 TMUX_TRTIM_PRDIINH[3:1] Transmit Receive T race Identifier Mismatch Path RDI
Inhibit. When a 1, causes the associated failure not to
contribut e to the automatic insertion of RDI-P; other-
wise, the associated alarm contributes to the generation
of RD I-P.
0
4 TMUX_TRUEQ_PRDIINH Transmit Receive Unequipped Path RDI Inhibit.
When a 1, causes the associated failure not to contrib-
ute to the automatic insertion of RDI-P; otherwise, the
associated alarm contrib utes to the generation of RDI-P.
0
3 TMUX_TRPLM_PRDIINH Transmit Recei ve Payload Label Mismatch Path RDI
Inhibit. When a 1, causes the associated failure not to
contribut e to the automatic insertion of RDI-P; other-
wise, the associated alarm contributes to the generation
of RD I-P.
0
2 TMUX_TRLOP_PRDIINH Tr an smit Receive L o ss-o f-Pointer R DI I nhibit . When
a 1, causes the associated failure not to contr ibute to
the automatic inserti on o f RDI-P; ot he rwise, the associ-
ated alarm contributes to the generation of RDI- P.
0
1 TMUX_TRPAIS_PRDIINH Transmit Receive Path AIS RDI Inhibit. Sa me as
above. 0
0 TMUX_TEPRDI_MODE Transmit E nh anc ed RDI M od e. When a 1, causes the
enhanc ed 3-bi t path RDI valu e to be transmitted in
G1[3:1]; otherwise, a one-bit value (G1[3]) i s sent.
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
110 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 111. T MUX_TZ0_INS_VAL, Transmit TOH and POH Insert Values (R/W)
Table 112. TMUX_TS1_F1_INS _VAL , Tra nsmi t TOH and POH In sert Values (R/W)
Table 113. TMUX_TAPS_INS_VAL, Transmit TOH and POH Insert Valu es (R/W )
Address Bit Name Function Reset
Default
0x4003C 15:8 TMUX_TZ03INS[7:0] Tran sm it Z0-3 Data Insert Value . Register value is
inserted into the STS-3/STM-1 (AU-4) output Z0-3 byte
if TMUX_THSZ0INS (Table 107) is asserted.
0x00
7:0 TMUX_TZ02INS[7:0] Transmit Z0-2 Data Insert Value . Re gister value is
inserted into the STS-3/STM-1 (AU-4) output Z0-2 byte
if TMUX_T HSZ0IN S is asser ted.
0x00
Address Bit Name Function Reset
Default
0x4003D 15:8 TMUX_TS1INS[7:0] Transmit S1 Data Inser t Val ue. Register value is
inserted into the STS-3/STM-1 (AU-4) output S1 by te if
TMUX_THSS1INS (Table 107) is asserted.
0x00
7:0 TMUX_TF1INS[7:0] Transmit F1 Data Insert Value. Register value is
inserted into the STS-3/STM-1 (AU-4) output F1 byte if
TMUX_THSF1INS (Table 107) i s asserted.
0x00
Address Bit Name Function Reset
Default
0x4003E 15:3 TMUX_TAPSINS[12:0] Transmi t APS Data Insert Value . Register value is
inserted into the STS-3/S TM-1 (AU-4) out put K1[7:0] and
K2[7:3] bits if TMUX _ TH SAP SI N S (Table 107) is asser ted.
0x00
2:0 TMUX_TK2INS[2:0] Transmit K2 Data Insert Value. Register value is inserte d
into the STS-3/STM-1 (AU-4) output K2[2:0] bits if
TMUX_ T HS K2 IN S (Table 107) is asserted.
000
Table 114. TMUX_TPO H[13]_INS_[AC], Transmit T OH and POH Insert Values (R/W)
Address Bit Name Function Res et
Default
0x4003F 15:11 Reserved. 0x00
10:8 TMUX_TRDIPINS1[2:0] Tra nsmit Path RDI Data Insert Value for Port 1. Register
value is inserted into the STS-3/STM-1 (AU-4) output
G1[3:1] bits if T MUX_T HSRDIPINS1 (Table 108) is
asserted, regardless of the value of TMUX_TEPRDI_MODE
(Table 110).
000
7:0 TMUX_TC2INS1[7:0] Transmit C2 Data Insert V alue for P ort 1. Register value is
inserted into t he ST M-1(AU-4) out put C2 byte if
TMUX_T HSC2INS1 (Table 108) is asser ted.
0x00
0x40040 15:8 TMUX_TF3INS1[7:0] Transmit F3 Data Insert V al ue for P ort 1. Register v alue is
inserted into t he ST M-1(AU-4) output F3 byte i f
TMUX_THSF3INS1 (Table 108) is asser t ed.
0x00
0x40040 7:0 TMUX_TF2INS1[7:0] Transmit F2 Data Insert V al ue for Po rt 1. Register v alue is
inserted into t he ST M-1(AU-4) output F2 byte i f
TMUX_THSF2INS1 (Table 108) is asser t ed.
0x00
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
8 TMUX Registers (continued)
111Agere Systems Inc.
Address Bit Name Function Reset
Default
0x40041 15:8 TMUX_TN1INS1[7:0] Transmit N1 Data I nsert Value for P o rt 1. Register v alue is
inserted into the STM-1(AU -4) out put N1 byte if
TMUX _THSN1INS1 (Table 108) is assert ed.
0x00
7:0 TMUX_TK3INS1[7:0] Transmit K3 Data Insert Value for Port 1. Register v alue is
inserted into t he STM-1(AU -4) output K3 byte if
TMUX_T HSK3INS1 (Table 108) is asserted.
0x00
0x40042 15:11 Reserved. 0x00
10:8 TMUX_TRDIPINS2[2:0] Transmit Path RDI Data Inser t Value fo r Port 2. Register
value is inserted into the STS-3/STM-1 (AU-4) output
G1[3:1] bits if TMUX_T HSRDIPINS2 (Table 108) is
asserted, regardless of the value of
TMUX_TEPRDI_MODE.
000
7:0 TMUX_TC2INS2[7:0] Transmit C2 Data I nsert V alue f or P o rt 2. Register v alue is
inserted into the STM-1(AU -4) out put C2 byte if
TMUX_THSC2INS1 is asserted.
0x00
0x40043 15:8 TMUX_TF3INS2[7:0] T ransmit F3 Dat a Insert V alue f or Port 2. Register v alue is
inserted into t he STM-1(AU-4) output F3 byte if
TMUX_THSF3INS1 is as s erted.
0x00
7:0 TMUX_TF2INS2[7:0] Transmit F2 Data Insert V alue f or P ort 2. Register v alue is
inserted into t he STM-1(AU-4) output F2 byte if
TMUX_THSF2INS1 is as s erted.
0x00
0x40044 15:8 TMUX_TN1INS2[7:0] Transmit N1 Data I nsert Value for P o rt 2. Register v alue is
inserted into the STM-1(AU -4) out put N1 byte if
TMUX _THSN1INS1 (Table 108) is assert ed.
0x00
7:0 TMUX_TK3INS2[7:0] Transmit K3 Data Insert Value for Port 2. Register v alue is
inserted into t he STM-1(AU -4) output K3 byte if
TMUX_T HSK3INS1 (Table 108) is asserted.
0x00
0x40045 15:11 Reserved. 0x00
10:8 TMUX_TRDIPINS3[2:0] Transmit Path RDI Data Inser t Value fo r Port 3. Register
value is inserted into the STS-3/STM-1 (AU-4) output
G1[3:1] bits if TMUX_T HSRDIPINS3 (Table 108) is
asserted, regardless of the value of
TMUX_TEPRDI_MODE.
000
7:0 TMUX_TC2INS3[7:0] Transmit C2 Data I nsert V alue f or P o rt 3. Register v alue is
inserted into the STM-1(AU -4) out put C2 byte if
TMUX _THSC2INS1 (Table 108) is assert ed.
0x00
0x40046 15:8 TMUX_TF3INS3[7:0] T ransmit F3 Dat a Insert V alue f or Port 3. Register v alue is
inserted into t he STM-1(AU-4) output F3 byte if
TMUX_THSF3INS1 (Table 108) is asserted.
0x00
7:0 TMUX_TF2INS3[7:0] Transmit F2 Data Insert V alue f or P ort 3. Register v alue is
inserted into t he STM-1(AU-4) output F2 byte if
TMUX_THSF2INS1 (Table 108) is asserted.
0x00
0x40047 15:8 TMUX_TN1INS3[7:0] Transmit N1 Data I nsert Value for P o rt 3. Register v alue is
inserted into the STM-1(AU -4) out put N1 byte if
TMUX_THSN1INS1 is asserted.
0x00
7:0 TMUX_TK3INS3[7:0] Transmit K3 Data Insert Value for Port 3. Register v alue is
inserted into t he STM-1(AU -4) output K3 byte if
TMUX_THSK3INS1 is asserted.
0x00
Table 114. TMUX_TPOH[13]_INS_[AC], Transmit TOH and POH Insert Values (R/W) (continued)
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
112 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 115. TMUX_TBERINS_CTL, Transmit High-Speed Error Insertion Control P arameters (R/W)
Address Bit Name Function Reset
Default
0x40048 15:13 Reserved. 0x0
12 TMUX_TPSLREIINS Transmit Protection Signal Line REI Insert. Con-
trol bit, when set to a logic 1, causes one line REI
error in the outgoing protection STS-3/STM-1 (A U-4)
signal when there is a rising edge observed on the
SMPR _ BER_ INSRT (Table 65) input s ignal.
0
11 TMUX_TPSB2EIINS Transmit Protection Signal B2 Error Insert. Con-
trol bit , when set to a logic 1, causes one B 2 e rror i n
the outgoing protection STS-3/STM-1 (AU-4) sign al
when there is a rising edge observed on the
SMPR _ BER_ INSRT (Table 65) input s ignal.
0
10:8 TMUX_TPREIINS[3:1] Transmit Pat h REI E r ror Insert. Control bit, when
set to a lo gic 1, causes one path RE I error in the out-
going STS-3/STM-1 (AU-4) signal when there is a
rising edge observed on the SMPR_BER_INSRT
(Table 65) input signal. Only port 1 control is va li d in
AU-4 mode.
0
7:5 TMUX_THSB3ERRINS[3:1] Transm it High-speed B3 Error Insert. Control bit,
when set to a lo gic 1, causes the output B 3 by te i n
the outgoing STS-3/STM-1 (AU-4) signal to be
in verted when there is a rising edge observed on the
SMPR _ BER_ INSRT (Table 65) input si gnal. O nly
po rt 1 control is val id in AU- 4 mode.
0
4 TMUX_TLREIINSTransmit Hi gh-speed Line REI Inse rt. Control bit ,
when set to a logic 1, causes one line REI error in
the outgoing STS-3/STM-1 (AU-4) signal when there
is a rising edge observed on the
SMPR_BER_INSR T (Tabl e 65) input signal.
0
3:1 TMUX_THSB2ERRINS[3:1] Transm it High-speed B2 Error Insert. Control bit,
when set to a lo gic 1, causes the output B 2 by t es i n
the outgoing STS-3/STM-1 (AU-4) signal to be
in verted when there is a rising edge observed on the
SMPR_BER_INSR T (Tabl e 65) input signal.
000
0 TMUX_THSB1ERRINS Transmit High-speed B1 Erro r I nsert. Control bit,
when set to a lo gic 1, causes the output B 1 by te i n
the outgoing STS-3/STM-1 (AU-4) signal to be
in verted when there is a rising edge observed on the
SMPR_BER_INSR T (Tabl e 65) input signal.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
113Agere Systems Inc.
8 TMUX Registers (continued)
Table 116. TMUX_THS _ERR_CTL, Transmi t High-Speed Error Insertion Contro l Par ameter s (R/W)
Address Bit Name Function Reset
Default
0x40049 15:10 Reserved. 0x00
9 TMUX_TAPSBABINS Transmit APS Babble Insert . When 1, causes an
inconsistent APS byte (K1[7:0], K2 [7:3]) to b e inse r ted
into the outgoing S TS-3/ ST M-1 (AU-4) frame.
0
8:6 TMUX_TH1H2INVEN[3:1] Transm it H1 H2 Corrupt Enable. When 1, cause the
output H1 and H2 b ytes of the STS-3/STM-1 (AU-4) sig-
nal to be co rrupted on a p er STS-1 basis. In the AU-4
mode, only control bit 1 is used.
000
5 TMUX_TH1H2INVORNDF Transmit H1 H2 Corrupt or NDF. When 0 , causes an
invalid pointer to be inserted into the output H1 and H2
bytes; ot herwise , a continuous NDF condition (1001) is
sent.
0
4:0 TMUX_TA2ERRINS[4:0] Transmit Frame Error Insert Value. Thes e bits specify
the number of consecutive frames to be inserted with a
frame e rror is inser ted in the outgo ing A2 byte. This
number of errored fr ames is sent each time a rising edge
is observed on the SMPR_BER_INSRT (Table 65) input
signal.
0x0
Table 117. TMUX_T OAC_CT L, Receive/Transmit T OAC/ POAC Control Parameters (R/W )
Address Bit Name Function Reset
Default
0x4004A 15 TMUX_RTOAC_D412MODE Receive TOAC DCC4 to DCC12 Only Mode. When
1, causes t he RTOAC data signal to carry only a par-
ity byte f ollo wed b y DCC4 to DCC12 b ytes . The clock
rate is 640 kHz. If this control bit i s a logic 0 and
TMUX_RTOAC_D13MODE is a l ogic zero, the n the
receive TOAC channel is in ful l access mode.
0
14 TMUX_RTOAC_D13MODE Receive TOAC DCC1 to DCC3 Only Mode. W hen
1, causes t he RTOAC data signal to carry only a par-
ity byte followed by DCC1 to DCC3 bytes. The clock
rate is 260 kHz. If this control bit i s a logic 0 and
TMUX_RT O AC_D412MODE is a logic zero, t hen the
receive TOAC channel is in ful l access mode.
0
13 TMUX_RTOAC_OEPINS Receive TOA C Odd or Even P arity Insert. When 1,
forces receive t he ou tpu t TOAC pa rity bit to be even;
otherw ise, the parity is odd.
0
12:10 Reserved. 000
9 TMUX_TTOAC_D412MODE Transmit TOAC DCC4 to DCC12 Only Mode.
When 1, causes DCC4 to D CC12 in the outgoing
frame to be inserted f rom the TTOAC ch annel. The
TTOAC c lock rate is 640 kHz. If this control b it is a
log ic 0 and TMUX_TTOAC_D13MODE i s a logi c
zero, t hen the transmit TOAC channel is in full
access m ode.
0
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
8 TMUX Registers (continued)
114 Agere Systems Inc.
0x4004A 8 TMUX_TTOAC_D13MODE Transmit TOAC DCC1 to DCC3 Only Mode.
When 1, causes DCC1 to DCC3 in the outgoing
frame to be inserted f rom the TTOAC ch annel. The
TTOAC c lock rate is 260 kHz. If this control b it is a
log ic 0 and TMUX_TTOAC_D13MODE is a logic
zero, t hen the transmit TOAC channel is in full
access m ode.
0
7 TMUX_TTOAC_AVAIL Transmit TOAC Available Byte Con t rol. When 1,
causes the incoming TOAC values for undefined
bytes (bold-faced bytes i n Table 523) to b e inserted
into the o utgoing S TS-3/STM-1 frame. Otherwise,
their va lues depend on SMPR_ OH_D EFLT
(Table 67).
0
6 TMUX_TTOAC_S1 Tra nsmit TOAC S1 Byte Con trol. Whe n 1, causes
the incoming TOAC S1 value to be inserted i nto the
S1 byte of the outgoing STS-3/ S TM-1 frame if the
TMUX_THSS1INS (Table 107) cont rol bit is deas-
serted. If the S1 is n o t inserted fro m register co nt rol
or from the transmit TOAC c hannel, then its value
depends on SMP R_OH_DE FLT.
0
5TMUX_TTOAC_F1Transmit TOAC F1 Byte Control. When 1, causes
the incoming TOAC F1 value to be inserted into the
F1 byte of the outgoing STS-3/STM-1 frame if the
TMUX_THSF1INS (Table 107) control bit is desas -
serted. If the F1 is not inse rted fro m register control
or from the transmit TOAC c hannel, then its value
depends on SMP R_OH_DE FLT.
0
4 TMUX_TTOAC_E2 Tra nsmit TOAC E1 Byte Con trol. Whe n 1, causes
the incoming TOAC E1 value to be inserted i nto the
E1 byte of the outgoing S TS-3/S TM-1 frame. Other-
wise, the E1 value depends on SMPR_OH_DEFLT.
0
3 TMUX_TTOAC_E1 Tra nsmit TOAC E1 Byte Con trol. Whe n 1, causes
the incoming TOAC E1 value to be inserted i nto the
E1 byte of the outgoing S TS-3/S TM-1 frame. Other-
wise, the E1 value depends on SMPR_OH_DEFLT.
0
2 TMUX_TTOAC_D4TO12 Transmit TOAC D4 to D12 Byte Control. When 1,
causes the TTOAC values to be inserted into the D4
to D12 bytes of the outgoing frame. If this control bit
is a logic zero, then the outgoing D4 to D12 values
depend on SMPR_OH_DEFLT.
0
1 TMUX_TTOAC_D1TO3 Transmit TOAC D1 to D3 Byte Co ntrol. When 1,
causes the TTOAC values to be inserted into the D1
to D3 bytes of the outgoing f rame. If this control bit is
a logic zero, then the outgoing D1 to D3 values
depend on SMPR_OH_DEFLT.
0
0 TMUX_TTOAC_OEPMON T ransmit TO AC Odd or Even Parity Monitor . When
1, forces the input TOAC parity checker to check for
odd parity; otherwise, even parity is checked on the
transmit TOAC c hannel .
0
Table 117. TMUX_T OAC_CT L, Receive/Transmit T OAC/ POAC Control Parameters (R/W) (continued)
Address Bit Name Function Reset
Default
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
115Agere Systems Inc.
8 TMUX Registers (continued)
Table 118. TMUX_RPOAC_CTL, Receive/Transmit T OAC/POAC Contr ol Parameters (R/W)
Address Bi t Name Function Reset
Default
0x4004B 15:14 TMUX_RPOAC_SEL[1:0] Receive POAC STS-1 Port Selection. Des ign ates which
STS-1 inserts its path overh ead bytes onto the receive
POA C channel. V alues of 00 or 01 designate STS-1 #1, 10
designates STS-1 # 2, 11 designates STS-1 #3.
00
13 TMUX_RPOAC_OEPINS Receive POAC Odd or Even Parity Insert. W hen 1,
f orces receiv e the output POA C parity bit to be even; other-
wise, the par ity is odd.
0
12:10 Reserved. 000
9:8 TMUX_TPOAC_SEL[1:0] Tran smit POAC STS-1 Port Sele ction. Designates whic h
STS-1 obtains path overhead b ytes from th e transmit
POA C channel. V alues of 00 or 01 designate STS-1 #1, 10
designates STS-1 # 2, 11 designates STS-1 #3.
00
7Reserved. 0
6 TMUX_TPOAC_N1 Transm it POAC N1 Byte Control. When 1, causes the
incoming POA C N1 value to be inserted into the N1 byte of
the selected TPOAC STS-1 if the corresponding
TMUX_THSN1INS (Table 108) cont rol bit is desasserted.
If the N1 is not inserted f rom register control or from the
transmit PO A C channel, then its value depends on
SMPR _OH_DEFLT (Table 67).
0
5 TMUX_TPOAC_K3 Transmit POAC K3 Byte Co ntrol. When 1, causes the
incoming POAC K3 val ue to be inserted into the K3 byte of
the selected TPOAC STS-1 if the corresponding
TMUX_ T H SK3 IN S ( Table 108) control bit is des ass erted.
If the K3 is not inserted from register control or from the
transmit PO A C channel, then its value depends on
SMPR_OH_DEFLT.
0
4 TMUX_TPOAC_F3 Transmit POAC F3 Byte Control. When 1 , causes th e
incoming POAC F3 value to be inserted into the F3 byte of
the selected TPOAC STS-1 if the corresponding
TMUX_THSF3INS (Table 108) control bit is desasserted. If
the F 3 is not inserted f rom register cont rol or from the
transmit PO A C channel, then its value depends on
SMPR_OH_DEFLT.
0
3 TMUX_TPOAC_F2 Transmit POAC F2 Byte Control. When 1 , causes th e
incoming POAC F2 value to be inserted into the F2 byte of
the selected TPOAC STS-1 if the corresponding
TMUX_THSF2INS (Table 108) control bit is desasserted. If
the F 2 is not inserted f rom register cont rol or from the
transmit PO A C channel, then its value depends on
SMPR _OH_DEFLT (Table 67).
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
116 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 118. TMUX_RPOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/ W) (continued)
Table 119. T MUX_TFRAMEOFFSET, Transmit High-Speed Offset Control Parameters (R/W)
)
Address Bit Name Fu nction Reset
Default
0x4004B 2 TMUX_TPOAC_C2 Transmit POAC C2 Byte Control. When 1, causes
the incoming POA C C2 value to be inserted into the C2
byte of the selected TPOAC STS-1 if the correspond-
ing TMUX_THSC2INS (Table 108) control bit is desas -
serted. If the C2 is not inserted from register control or
from the transmit POAC channel, then its value
depends on SMPR_O H_DE FLT.
0
1TMUX_TPOAC_J1Transmit POAC J1 Byte Control. Control bit, when
set to a logic 1, causes the incoming POAC J1 value to
be inserted into the J1 byte of the selected TPOAC
STS-1 if the corresponding TMUX_THSJ 1INS
(Table 108) control bit is desas s erted. If the J 1 is not
inserted from register control or from the transmit
POAC channel, then its value depends on
SMPR_OH_DEFLT.
0
0 TMUX_TPOAC_OEPMON Transm it TOAC Odd o r Ev en P arit y Monit or. Cont rol
bit, when s et to a logic 1, forces the input TOAC parity
check er to check for odd parity; otherwise , ev en parity
is checked o n the transmit TOAC channel.
0
Address Bit Name Function Reset
Default
0x4004D 15:13 TMUX_TLBITCNT[2:0] Transmit Load Bit Count. Allows the output
STS-3/STM-1 (AU-4) frame to have any relationship to
the input frame sync pulse (THSSJ0J1V1I).
000
12:11 TMUX_TLSTSCNT[1:0] Transmit Load STS-1 Count. Same as above. 00
10:4 TMUX_TLCOLCNT[6:0] Transm it Load Col umn Count. Same as above. 0000000
3:0 TMUX_TLROWCNT[3:0] Transmit Load Row Cou nt. Same as above. 0000
Table 120. TMUX_SD_CT L[16], B1/B2 Signal Degrade S et/Clear Control Registers (R/W)
Address Bit Name Function Reset
Default
0x4004E
0x4004F 15:0
2:0 TMUX_SDNSSET[18:3]
TMUX_SDNSSET[2:0] Signal Degrade N s Set. Num ber of frames in a
monitorin g block for signal degrade (SD). 0x00000
0x4004F 14:7 TMUX_SDMSET[7:0] Signal Degrade M Set. Threshold of the number of bad
monitoring blocks in an observation interval. If the
number of bad bloc ks is above t his threshold, then SD is
set.
0x00
6:3 TMUX_SDLSET[3:0] Sig nal Degrade L Set. Error threshold for determining
if a m onitoring block is bad. 0x0
0x40050 15:0 TMUX_SDBSET[15:0] Signal De grade B Set. Num ber of monitor ing blocks. 0x0000
0x40051
0x40052 15:0
2:0 TMUX_SDNSCLEAR[18:3]
TMUX_SDNSCLEAR[2:0] Signal De grad e Ns Clear. Number of fram es in a
monitorin g block for SD. 0x00000
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
8 TMUX Registers (continued)
117Agere Systems Inc.
Table 121. TMUX_SF_CTL[16], B1/B2 Signal Fail Set/ Clear Contro l Registers (R/W )
0x40052
0x40052 14:7 TMUX_SDMCLEAR[7:0] S ignal Degrade M Clear. Threshold of the number of
bad monitoring blocks in an observation inte rval. I f the
number of bad bloc ks is below this threshold, then SD is
cleared.
0x00
6:3 TMUX_SDLCLEAR[3:0] Signal Degrade L Clea r. E rror threshold for
determining if a monitoring blo ck is bad. 0x0
0x40053 15:0 TMUX_SDBCLEAR[15:0] S ignal Degrade B Clear. Num ber of monitor ing blocks. 0x0000
Address Bit Name Function Reset
Default
0x40054
0x40055 15:0
2:0 TMUX_SFNSSET[18:3]
TMUX_SFNSSET[2:0] Signal Fail Ns Set. Number of frames in a m onitori ng
block for signal fa il (SF). 0x0000
0
0x40055 14:7 TMUX_SFMSET[7:0] Signal Fail M Set. Threshold of the number of bad
monitoring blocks in an observation interval. If the
n umber of bad bl ocks is abov e this threshold, then SF is
set.
0x00
0x40055 6:3 TMUX_SFLSET[3:0] Sig nal Fai l L S et . Error th re shold for determining if a
monitorin g block is bad. 0x0
0x40056 15:0 TMUX_SFBSET[15:0] Signal Fail B Set. Numbe r of moni tor ing blocks. 0x0000
0x40057
0x40058 15:0
2:0 TMUX_SFNSCLEAR[18:3]
TMUX_SFNSCLEAR[2:0] Signal Fail Ns Clear. Number of frames in a monitoring
block for SF. 0x0000
0
0x40058 14:7 TMUX_SFMCLEAR[7:0] S ignal Fail M Clear. Thresho ld of the number of bad
monitoring blocks in an observation interval. If the
number of bad bl oc ks is below this threshold, then SF is
cleared.
0x00
0x40058 6:3 TMUX_SFLCLEAR[3:0] Signal Fai l L Clear. Error threshold for determining if a
monitorin g block is bad. 0x0
0x40059 15:0 TMUX_SFBCLEAR[15:0] Signal Fail B Clear. Number of m onitoring blocks . 0x0000
Table 122. TMUX_B3SD_CTL[16], B3 Signal Degrade Set/Clear Control Reg isters (R/W)
Address Bit Name Function Reset
Default
0x4005A
0x4005B 15:0
2:0 TMUX_B3SDNSSET[18:3]
TMUX_B3SDNSSET[2:0] B3 Si gn al Degrade Ns Set. Number of fram es i n a
monitorin g block for signal degrade (SD). 0x0000
0
0x4005B 14:7 TMUX_B3SDMSET[7:0] B3 Si gnal Degrade M Set. Threshold of the number
of bad monitoring blocks in an observation interval . If
the number of bad blocks is above this thres hold,
then SD is set.
0x00
0x4005B 6:3 TMUX_B3SDLSET[3:0] B3 S ignal Degrade L Set. Error threshold for
determining if a m onitoring block is bad. 0x0
0x4005C 15:0 TMUX_B3SDBSET[15:0] B3 Sign al Degrade B S et. Num ber of monitoring
blocks. 0x0000
0x4005D
0x4005E 15:0
2:0 TMUX_B3SDNSCLEAR[18:3]
TMUX_B3SDNSCLEAR[2:0] B3 Signal Degrade Ns Clear. Number of frames in a
monitorin g block for SD. 0x0000
0
Table 120. TMUX_SD_CTL[16], B1/B2 Signal Deg rad e Set/Cle ar Control Registers (R/W) (continued)
Address Bit Name Function Reset
Default
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
8 TMUX Registers (continued)
118 Agere Systems Inc.
Table 123. TMUX_B3SF _CTL [ 1 6], B3 Signal Fail Set/Cle ar C ontrol Re gisters (R/ W)
Table 124. TMUX_B1ECNT, Receive B1 Error Counts (RO)
0x4005E 14:7 TMUX_B3SDMCLEAR[7:0] B3 Signal Degrade M Clear . Threshold of the
number of bad monitor ing blocks in an observation
inter val. If th e number of bad blocks is below this
threshold, then SD is cleared.
0x00
6:3 TMUX_B3SDLCLEAR[3:0] B3 Signal Degrade L Clear . Error threshold for
determ ining if a monitoring block is bad. 0x0
0x4005F 15:0 TMUX_B3SDBCLEAR[15:0] B3 Signal Degrade B Clear. Number of monitoring
blocks. 0x0000
Address Bit Name Function Reset
Default
0x40060
0x40061 15:0
2:0 TMUX_B3SFNSSET[18:3]
TMUX_B3SFNSSET[2:0] B3 Signal Fail Ns S e t. Num ber of frames in a
monitoring block for SF. 0x0000
0
0x40061 14:7 TMUX_B3SFMSET[7:0] B3 Signal Fail M Set. Threshold of the number of
bad monitoring blocks in an observation interval. If
the number of bad blo cks is above this threshold,
then SF is set.
0x00
0x40061 6:3 TMUX_B3SFLSET[3:0] B3 Signal Fail L Set. Error threshold for
determining if a m onitoring block is bad. 0x0
0x40062 15:0 TMUX_B3SFBSET[15:0] B3 Sign a l Fa il B Set. Number of monitoring blocks. 0x0000
0x40063
0x40064 15:0
2:0 TMUX_B3SFNSCLEAR[18:3]
TMUX_B3SFNSCLEAR[2:0] B3 Signal Fail Ns Clear. Number of frames in a
monitoring block for SF. 0x0000
0
0x40064 14:7 TMUX_B3SFMCLEAR[7:0] B3 Signal Fail M Clear. Threshold of the number of
bad monitoring blocks in an observation interval. If
the number of bad blo cks is b elow this threshold,
then SF is cleared.
0x00
0x40064 6:3 TMUX_B3SFLCLEAR[3:0] B3 Signal Fail L Clear. Error threshol d for
determining if a m onitoring block is bad. 0x0
0x40065 15:0 TMUX_B3SFBCLEAR[15:0] B3 Signal F ai l B Clear. Number of monitoring
blocks. 0x0000
Address Bit Name Function Reset
Default
0x40066 15:0 TMUX_B1ECNT[15:0] Receive High-speed B1 Error Count. Counts the number
of B1 errors in the received STS-3/STM-1 (AU-4) frame.
This co unte r can either count a ctual BIP errors or block
errors; s ee TM UX_BITBLKB1 (Table 95). T his counter
holds at its maximum value or rolls over depending on the
value o f SMPR_SAT_ROLLOVER (Table 67) and trans fers
its internal count to a holding regis ter when
SMPR_PMRESET (Table 65) t ransitions fro m a logic 0 to 1.
0x0000
Table 122. TMUX_B3SD_CT L[16], B3 Signal Degra de Set/Clear Control Registers (R/W) (continued)
Address Bit Name Function Reset
Default
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
119Agere Systems Inc.
8 TMUX Registers (continued)
Table 125. T MUX_B2ECNT_17_16 and TMUX_B2ECNT_15_0, Receive B2 Erro r Counts (RO)
Table 126. TMUX_B3ECNT[13], Recei ve B3 Error Counts (RO)
Address Bit Name Function Reset
Default
0x40067 15:2 Reserved. 0x000
0x40067
0x40068 1:0
15:0 TMUX_B2ECNT[17:16]
TMUX_B2ECNT[15:0] Receive High-speed B2 Error Count. C o unts th e
number of B 2 error s in the received ST S -3 /S TM-1
(AU-4) frame. Thi s count er can either count act ual BIP
errors o r bl ock errors; see TMUX _B ITBLKB2
(Table 95). T his counter holds a t its maximum value or
rolls over depe nding on the value of
SM PR_ SAT_ROLLOV E R and transfers it s internal
count to a holding r eg ister when S MPR_PM RESET
transitions from a logic 0 to 1.
0x0000
0
Address Bit Name Function Reset
Default
0x40069 15:0 TMUX_B3ECNT1[15:0] Receiv e High-speed B3 Error Count for Port 1. Counts
the number of B3 errors in the receive STS-3/STM-1
(AU- 4) frame for port 1. On ly counte r value 1 is valid in
AU-4 mode. This counter can either cou nt actual BI P errors
or block errors; see TMUX_BITBLKB3 (Table 95). This
coun ter holds a t its maximum value or r olls over depending
on the value of SMP R_SAT_ROLLOVER (Table 67) and
transfers it s i nte rnal co unt to a holding register when
SMPR_PMRESET (Table 65) transitions from a logic 0 to 1.
0x0000
0x4006A 15:0 TMUX_B3ECNT2[15:0] Receiv e High -spee d B3 Error Count for Port 2. Counts
the number of B3 errors in the receive STS-3/STM-1
(AU- 4) frame for port 2. On ly counte r value 1 is valid in
AU-4 mode. This counter can either cou nt actual BI P errors
or block errors; see TMUX_BITBLKB3 (Table 95). This
coun ter holds a t its maximum value or r olls over depending
on the value of SMPR_SAT_ROLLO VER and transfers i t s
internal count to a holding register when SMPR_PMRESET
transitions from a logic 0 to 1.
0x0000
0x4006B 15:0 TMUX_B3ECNT3[15:0] Receiv e High -spee d B3 Error Count for Port 3. Counts
the number of B3 errors in the receive STS-3/STM-1
(AU- 4) frame for port 3. On ly counte r value 1 is valid in
AU-4 mode. This counter can either cou nt actual BI P errors
or block errors; see TMUX_BITBLKB3 (Table 95). This
coun ter holds a t its maximum value or r olls over depending
on the value of SMPR_SAT_ROLLO VER and transfers i t s
internal count to a holding register when SMPR_PMRESET
transitions from a logic 0 to 1.
0x0000
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
120 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 127. TMUX_M1ECNT_17_16 and TMUX_M1EC NT_15_0, Receive M1 Error Counts (RO)
Table 128. TMUX_G1ECNT[13], Receive G1 Error Counts (RO)
Address Bit Name Function Reset
Default
0x4006C 15:2 Reserved. 0x000
0x4006C
0x4006D 1:0
15:0 TMUX_M1ECNT[17:16]
TMUX_M1ECNT[15:0] Recei ve Line REI Count. Counts the number of
errors received in the M1 byte of the re ceive
STS-3/S TM- 1 (AU-4) frame. This counter can either
count actua l errors or block errors; see
TMUX_BITBLKM1 (Table 95). T his counte r holds at
its maximum value or rolls over depending on the
value of S MPR_SAT_RO LLO VE R and transfers its
internal count to a holding register when
SMPR_PMRESET t ransitions from a logic 0 to 1.
0x00000
Address Bit Name Function Reset
Default
0x4006E 15:0 TMUX_G1ECNT1[15:0] Receive P ath REI Count for Po rt 1. Counts the num ber of
B3 errors received in the G1[ 7:4] bits of port 1 in the
received ST S -3/STM- 1 (AU-4) frame. This counte r c an
either cou nt actual erro rs or block errors; see
TMUX_BITBLKB3 (Table 95). This counter holds at its max-
imum value or rolls over depending on the v alue of
SMPR_SAT_ROLLOVE R (Table 67) and t ransfers its inter-
nal count to a h olding re gister when SMPR_PMRESET
(Table 65) transitions from a logic 0 to 1.
0x0000
0x4006F 15:0 TMUX_G1ECNT2[15:0] Receive P ath REI Count for P ort 2. Coun ts the num ber of
B3 errors received in the G1[ 7:4] bits of port 2 in the
received ST S -3/STM- 1 (AU-4) frame. This counte r c an
either cou nt actual erro rs or block errors; see
TMUX_BITBLKB3 (Table 95). This counter holds at its max-
imum value or rolls over depending on the v alue of
SMPR_SAT_ROLLOVER and transfers its i nter nal count to
a holding register when SMPR _PMRE SET t ransitions from
a logic 0 to 1.
0x0000
0x40070 15:0 TMUX_G1ECNT3[15:0] Receive P ath REI Count f or Port 3. Counts the number of
B3 errors received in the G1[ 7:4] bits of port 3 in the
received ST S -3/STM- 1 (AU-4) frame. This counte r c an
either cou nt actual erro rs or block errors; see
TMUX_BITBLKB3 (Table 95). This counter holds at its max-
imum value or rolls over depending on the v alue of
SMPR_SAT_ROLLOVER and transfers its i nter nal count to
a holding register when SMPR _PMRE SET t ransitions from
a logic 0 to 1.
0x0000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
121Agere Systems Inc.
8 TMUX Registers (continued)
Table 129. TMUX_RPTR_INCCNT[1 3], Receive Pointer Increment Count (RO)
Table 130. TMUX_RPTR_DECCNT[13], Receive Point er Decrement Count (RO)
Table 131. TMUX_RJ0EXPECTED[18], Expected J0 Byte Sequence (R/W)
Table 132. TMUX_RJ0 CAPTURE D[18], Captured J0 Receive Value (RO)
Table 133. TMUX_TJ0VALUE[18], J0 By te Transmit Ins ert (R/W)
Address Bit Name Function Reset
Default
0x40074
0x40076 15:11 Reserved. 0x000
0x40074
0x40076 10:0 TMUX_RPTR_INC1[10:0]
TMUX_RPTR_INC3[10:0] Receive Pointer Increment Count. Counts the
number of increments in the incoming pointer val-
ue s. This counter holds at its maximum value or
rolls over depending on the value of
SM PR _SAT _ROLLOV E R (Table 67) and transfe rs
its internal count to a holding register when
SMP R_PMRESET (Table 65) transitions fro m a
logic 0 to 1.
0x000
Address Bit Name Function Reset
Default
0x40077
0x40079 15:11 Reserved. 0x000
0x40077
0x40079 10:0 TMUX_RPTR_DEC1[10:0]
TMUX_RPTR_DEC3[10:0] Receive Pointer Decrement Count. Counts the
number of decrement s in the incoming pointer val-
ues. This counter holds at its maximum value or rolls
over depending on the value of
SMP R _S AT_ROLLOVE R and transfers its internal
count to a ho lding register when SMPR_PMRESET
transitions from a logic 0 to 1.
0x000
Address Bit Name Function Reset
Default
0x400A0
0x400A7 15:0 TMUX_EXPJ0DMON[161][7:0] Expected Receive J0 Valu e. Registe rs con-
tain either the programmed expected J0 16-
byte sequence or the previously captured J0
sequence, depending o n the J0 mode.
0x0000
Address Bit Name Function Reset
Default
0x400A8
0x400AF 15:0 TMUX_J0DMON[161][7:0] Received J0 Value. Regist ers capture a 16-byte
sequence from the J0 byte of the receive input signal. 0x0000
Address Bit Name Function Reset
Default
0x400B0
0x400B7 15:0 TMUX_TJ0DINS[161][7:0] Transmit J0 Data Inser t. Registers al low a 16-byte
sequence to be inserted i nto the J0 by te of the
STS-3/ST M-1(AU-4) output si gnal.
0x0000
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
122 Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 134. TMUX_RJ1EXPECTED1_[132], Expected J1 Byte Value for Port 1 (R/W )
Table 135. TMUX_RJ1EXPECTED2_[132], Expected J1 Byte Value for Port 2 (R/W )
Table 136. TMUX_RJ1EXPECTED3_[132], Expected J1 Byte Value for Port 3 (R/W )
Table 137. TMUX_RJ1CAPT URE D1_[132], Captured J1 Valu e for STS #1 (RO)
Table 138. TMUX_RJ1CAPT URE D2_[132], Captured J1 Valu e for STS #2 (RO)
Address Bit Name Function Reset
Default
0x400E0
0x400FF 15:0 TMUX_EXPJ1DMON1[641][7:0] Expected Receive J1 Value for P ort 1.
R egisters contain either the programmed
expected J1 16-byte/64-b yte sequence or the
pr ev iously c aptured J1 sequence, depending
on the J1 mode.
0x0000
Address Bit Name Function Reset
Default
0x40100
0x4011F 15:0 TMUX_EXPJ1DMON2[641][7:0] Expected Receive J1 Value for Po rt 2 . Reg-
isters contai n e ither the programmed
expected J1 16-byt e/64-by t e sequenc e or the
previously captured J1 sequence, de pendin g
on the J1 mode.
0x0000
Address Bit Name Fu nction Reset
Default
0x40120
0x4013F 15:0 TMUX_EXPJ1DMON3[641][7:0] Expected Receiv e J1 Value f or Port 3 . Regis-
ters contain either the programmed expected
J1 1 6-byte/64-by te sequence or the pr ev iously
captured J 1 s equence, depending on the J1
mode.
0x0000
Address Bit Name Function Reset
Default
0x40140
0x4015F 15:0 TMUX_J1DMON1[641][7:0] Receive J1 Monitor Data for Port 1. Registers
capture a 16-byte/64-byte s equenc e from the port
1, J1 byte of the S TS-3/ST M-1 (AU-4) input signal.
Only port 1 inform ati on is valid in AU-4 mode.
0x0000
Address Bit Name Function Reset
Default
0x40160
0x4017F 15:0 TMUX_J1DMON2[641][7:0] Receive J1 Monitor Data for Port 2 . Re gisters
capture a 64-byte sequence from the port 2, J1 byte
of the STS-3/STM-1 (AU-4) input signal. Only port 1
information is valid in AU-4 mode.
0x0000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
123Agere Systems Inc.
8 TMUX Registers (continued)
Table 139. TMUX_RJ1CAPTURE D3_[132], Captured J1 Value for STS #3 (RO)
Table 140. TMUX_TJ1VAL UE_1[132], J1 Byte Transmit Insert for S TS #1 (R/W)
Table 141. TMUX_TJ1VAL UE_2[132], J1 Byte Transmit Insert for S TS #2 (R/W)
Table 142. TMUX_TJ1VAL UE_3[132], J1 Byte Transmit Insert for S TS #3 (R/W)
Address Bit Name Function Reset
Default
0x40180
0x4019F 15:0 TMUX_J1DMON3[641][7:0] Receive J 1 Monitor Data for Po rt 3. Registers
capture a 64-byte sequence from the port 3 J1
byte of the STS-3 /S TM-1 (AU-4) input si gnal.
Only port 1 inform ati on is valid in AU-4 mode.
0x0000
Address Bit Name Function Reset
Default
0x401A0
0x401BF 15:0 TMUX_TJ1DINS[641][7:0] Transmi t J1 Data Insert for Por t 1. Registers allow
a 64-byte sequence to be inserted into the port 1, J1
byte of the STS-3/STM-1(AU-4) output signal. Only
port 1 information is valid in AU-4 mode.
0x0000
Address Bit Name Function Reset
Default
0x401C0
0x401DF 15:0 TMUX_TJ1DINS2[641][7:0] Transmit J1 Data Insert for Por t 2. Registers
allow a 64-byte sequence to be inserted into the
port 2, J1 byte of the STS-3/STM-1(AU-4) output
signal. Only port 1 informat ion is valid in AU-4
mode.
0x0000
Address Bit Name Function Reset
Default
0x401E0
0x401FF 15:0 TMUX_TJ1DINS3[641][7:0] Transmit J1 Data Insert for Port 3. Registers allow
a 64-byte sequence to be inserted into the port 2,
J1 byte of th e STS-3/STM-1(AU-4) output signal.
Only port 1 information is valid in AU-4 mode.
0x0000
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
124 A
g
ere S
y
stems Inc.
8 TMUX Registers (continued)
8.2 TMUX Register Map
Tabl e 143. T MUX Register Map
Note: The reset default o f all res erved bits i s 0. Shading denotes reserved bits.
Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2Bit 1Bit 0
ID and VersionRO
0x40000 TMUX_ID_
RTMUX_VERSION[2:0] TMUX_TMUX_ID[7:0] = 0X04
One-Shot (0 to 1 transition Control Bit ParametersR/W
0x40002 TMUX_ON
ESHOT TMUX_B3S
FCLEAR TMUX_B3S
FSET TMUX_B3S
DCLEAR TMUX_B3S
DSET TMUX_SFC
LEAR TMUX_SFS
ET TMUX_SD
CLEAR TMUX_SD
SET
Receive/Transmit ModeR/W
0x40003 TMUX_RC
V_TX_MO
DE
TMUX_STS
1MODE
Delta and Event Par ametersCOR/COW
0x40004 TMUX_TX
_DLT TMUX_TLS
PARE3 TMUX_TLS
PARE2 TMUX_TLS
PARE1 TMUX_TP
OAC_PE TMUX_TTO
AC_PE TMUX_THS
ILOFD TMUX_THS
ILOCD
0x40005 TMUX_
RPS_
DLT
TMUX_RP
SLOFD TMUX_RP
SOOFD TMUX_RP
SILOCD TMUX_RP
SB2E TMUX_RP
SLREIE
0x40006 TMUX_RH
S_DLT TMUX_RS
1BABE TMUX_RS
1MOND TMUX_RLRDI
MOND TMUX_RLAI
SMOND TMUX_RK2
MOND TMUX_RAP
SBABE TMUX_RAP
SMOND TMUX_RF1
MOND TMUX_RTI
MSD TMUX_RH
SSFD TMUX_RH
SSDD TMUX_RH
SLOSD TMUX_RH
SLOFD TMUX_RH
SOOFD TMUX_RH
SILOCD
0x40007 TMUX_RP
OH1_DLT TMUX_RS
FB3D1 TMUX_RS
DB3D1 TMUX_RU
NEQPD1 TMUX_RPLM
PD1 TMUX_RN1
MOND1 TMUX_RK3
MOND1 TMUX_RF3
MOND1 TMUX_RF2
MOND1 TMUX_RR
DIPD1 TMUX_RC2
MOND1 TMUX_RTI
MPD1 TMUX_RN
DFE1 TMUX_RD
ECE1 TMUX_RIN
CE1 TMUX_RPA
ISD1 TMUX_RL
OPD1
0x40008 TMUX_RP
OH2_
DLT
TMUX_RS
FB3D2 TMUX_RS
DB3D2 TMUX_RU
NEQPD2 TMUX_RPLM
PD2 TMUX_RN1
MOND2 TMUX_RK3
MOND2 TMUX_RF3
MOND2 TMUX_RF2
MOND2 TMUX_RR
DIPD2 TMUX_RC2
MOND2 TMUX_RTI
MPD2 TMUX_RN
DFE2 TMUX_RD
ECE2 TMUX_RIN
CE2 TMUX_RPA
ISD2 TMUX_RL
OPD2
0x40009 TMUX_RP
OH3_DLT TMUX_RS
FB3D3 TMUX_RS
DB3D3 TMUX_RU
NEQPD3 TMUX_RPLM
PD3 TMUX_RN1
MOND3 TMUX_RK3
MOND3 TMUX_RF3
MOND3 TMUX_RF2
MOND3 TMUX_RR
DIPD3 TMUX_RC2
MOND3 TMUX_RTI
MPD3 TMUX_RN
DFE3 TMUX_RD
ECE3 TMUX_RIN
CE3 TMUX_RPA
ISD3 TMUX_RL
OPD3
Interrupt Mask Parameters for INT PinR/W
0x4000A TMUX_
TX_
MSK
TMUX_TLS
PARM3 TMUX_TLS
PARM2 TMUX_TLS
PARM1 TMUX_TP
OAC_PM TMUX_TTO
AC_PM TMUX_THS
ILOFM TMUX_THS
ILOCM
0x4000B TMUX_RP
S_MSK TMUX_RP
SLOFM TMUX_RP
SOOFM TMUX_RP
SILOCM TMUX_RP
SB2M TMUX_RP
SLREIM
0x4000C TMUX_RH
S_MSK TMUX_RS
1BABM TMUX_RS
1MONM TMUX_RLRDI
MONM TMUX_RLAI
SMONM TMUX_RK2
MONM TMUX_RAP
SBABM TMUX_RAP
SMONM TMUX_RF1
MONM TMUX_RTI
MSM TMUX_RH
SSFM TMUX_RH
SSDM TMUX_RH
SLOSM TMUX_RH
SLOFM TMUX_RH
SOOFM TMUX_RH
SILOCM
0x4000D TMUX_RP
OH1_MSK TMUX_RS
FB3M1 TMUX_RS
DB3M1 TMUX_RU
NEQPM1 TMUX_RPLM
PM1 TMUX_RN1
MONM1 TMUX_RK3
MONM1 TMUX_RF3
MONM1 TMUX_RF2
MONM1 TMUX_RR
DIPM1 TMUX_RC2
MONM1 TMUX_RTI
MPM1 TMUX_RN
DFM1 TMUX_RD
ECM1 TMUX_RIN
CM1 TMUX_RPA
ISM1 TMUX_RL
OPM1
0x4000E TMUX_RP
OH2_MSK TMUX_RS
FB3M2 TMUX_RS
DB3M2 TMUX_RU
NEQPM2 TMUX_RPLM
PM2 TMUX_RN1
MONM2 TMUX_RK3
MONM2 TMUX_RF3
MONM2 TMUX_RF2
MONM2 TMUX_RR
DIPM2 TMUX_RC2
MONM2 TMUX_RTI
MPM2 TMUX_RN
DFM2 TMUX_RD
ECM2 TMUX_RIN
CM2 TMUX_RPA
ISM2 TMUX_RL
OPM2
0x4000F TMUX_RP
OH3_MSK TMUX_RS
FB3M3 TMUX_RS
DB3M3 TMUX_RU
NEQPM3 TMUX_RPLM
PM3 TMUX_RN1
MONM3 TMUX_RK3
MONM3 TMUX_RF3
MONM3 TMUX_RF2
MONM3 TMUX_RR
DIPM3 TMUX_RC2
MONM3 TMUX_RTI
MPM3 TMUX_RN
DFM3 TMUX_RD
ECM3 TMUX_RIN
CM3 TMUX_RPA
ISM3 TMUX_RL
OPM3
Interrupt Mask Parameters for APSINT PinR/W
0x40011 TMUX_AP
S_MSK TMUX_RH
SSF_APSM TMUX_
RHSSD_
APSM
TMUX_
RAPSMON
_APSM
TMUX_
RLAISMON
_APSM
TMUX_
RHSLOS_A
PSM
TMUX_
RHSLOF_A
PSM
TMUX_
RHSOOF_
APSM
TMUX_
RHSILOC_
APSM
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
125Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 143. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bi t 9 Bit 8 Bi t 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
State and Value ParametersRO
0x40012 TMUX_TX_ST
ATE TMUX_THS
ILOF TMUX_THS
ILOC
0x40013 TMUX_RPS_
STATE TMUX_RP
SLOF TMUX_RP
SOOF TMUX_RP
SILOC
0x40014 TMUX_RHS_
STATE TMUX_RLR
DIMON TMUX_RLA
ISMON TMUX_RH
SLOSEXTI TMUX_RTI
MS TMUX_RH
SSF TMUX_RH
SSD TMUX_RH
SLOS TMUX_RH
SLOF TMUX_RH
SOOF TMUX_RH
SILOC
0x40015 TMUX_RPOH
1_STATE TMUX_RS
FB31 TMUX_RS
DB31 TMUX_RU
NEQP1 TMUX_RPL
MP1 TMUX_RTI
MP1 TMUX_RPA
IS1 TMUX_RL
OP1
0x40016 TMUX_RPOH
2_STATE TMUX_RS
FB32 TMUX_RS
DB32 TMUX_RU
NEQP2 TMUX_RPL
MP2 TMUX_RTI
MP2 TMUX_CONCAT_STATE2
[1:0] TMUX_RPA
IS2 TMUX_RL
OP2
0x40017 TMUX_RPOH
3_STATE TMUX_RS
FB33 TMUX_RS
DB33 TMUX_RU
NEQP3 TMUX_RPL
MP3 TMUX_RTI
MP3 TMUX_CONCAT_STATE3
[1:0] TMUX_RPA
IS3 TMUX_RL
OP3
Receive High-speed Control ParametersR/W
0x40019 TMUX_RHS_
CTL TMUX_LOS
EXT_LEVE
L
TMUX_RP
SMUXSEL1 TMUX_THS
2RHSLB TMUX_RH
SDSCR
Receive Low-speed Control ParametersR/W
0x4001A TMUX_RLS_
BITBLK_CTL TMUX_RCV_SS_EXP[1:0
]TMUX_RC
V_SS_ENB TMUX_BIT
BLKG1 TMUX_BIT
BLKM1 TMUX_BIT
BLKB3 TMUX_BIT
BLKB2 TMUX_BIT
BLKB1
0x4001B TMUX_RLS_
MODE_CTL TMUX_RPA
IS_INS TMUX_8O
RMAJOR-
ITY
TMUX_SD
B1B2SEL TMUX_SFB
1B2SEL TMUX_J1MONMODE[2:0] TMUX_J0MONMODE[2:0] TMUX_S1
MODE4 TMUX_RLS
PAROEG TMUX_
RCONCAT-
MODE
TMUX_
REPRDI_
MODE
0x4001C TMUX_RAISI
NH_CTL TMUX_R_
M1_BIT7 TMUX_
RSDB3_
AISINH
TMUX_RSF
B3_AISINH TMUX_RTIMP_AISINH[3:1] TMUX_
RUNEQP_
AISINH
TMUX_RPL
MP_AISINH TMUX_
RHSSD_
AISINH
TMUX_
RHSSF_
AISINH
TMUX_
RPAISLOP
_AISINH
TMUX_
RLAISMON
_AISINH
TMUX_RL
OF_AISINH TMUX_RO
OF_AISINH TMUX_
RHSLOS_
AISINH
TMUX_RIL
OC_AISINH
0x4001D TMUX_LOSD
ETCNT TMUX_FORCEC2DEF[2:0] TMUX_LOSDETCNT[10:0]
Continuous N-Times Detect ValuesR/W
0x4001E TMUX_CNTD
_TOH_A TMUX_CNTDK1K2FRAME[3:0] TMUX_CNTDK1K2[3:0] TMUX_CNTDF1[3:0] TMUX_CNTDJ0[3:0]
0x4001F TMUX_CNTD
_TOH_B TMUX_CTDLOPCNT[1:0] TMUX_CNTDS1FRAME[3:0] TMUX_CNTDS1[3:0] TMUX_CNTDK2[3:0]
0x40020 TMUX_CNTD
_POH_A TMUX_CNTDF2[3:0] TMUX_CNTDRDIP[3:0] TMUX_C2[3:0] TMUX_CNTDJ1[3:0]
0x40021 TMUX_CNTD
_POH_B TMUX_CT
DB1SEL TMUX_CNTDN1[3:0] TMUX_CNTDK3[3:0] TMUX_CNTDF3[3:0]
0x40022 TMUX_C2EX
P1 TMUX_C2EXP1[7:0]
0x40023 TMUX_C2EX
P2_3 TMUX_C2EXP3[7:0] TMUX_C2EXP2[7:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
126 A
g
ere S
y
stems Inc.
8 TMUX Registers (continued)
Tabl e 143. TMUX Register Map (continued)
Note: The reset default o f all res erved bits i s 0. Shading denotes reserved bits.
Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive Monitor ValuesRO
0x40024 TMUX_RF1M
ON TMUX_RF1MON1[7:0] TMUX_RF1MON0[7:0]
0x40025 TMUX_RAPS
MON TMUX_RAPSMON[12:0] TMUX_K2MON[2:0]
0x40026 TMUX_RS1M
ON TMUX_RS1MON[7:0]
0x40027 TMUX_RPOH
MON1A TMUX_RDIPMON1[2:0] TMUX_C2MON1[7:0]
0x40028 TMUX_RPOH
MON1B TMUX_F2MON11[7:0] TMUX_F2MON01[7:0]
0x40029 TMUX_RPOH
MON1C TMUX_F3MON11[7:0] TMUX_F3MON01[7:0]
0x4002A TMUX_RPOH
MON1D TMUX_N1MON1[7:0] TMUX_K3MON1[7:0]
0x4002B TMUX_RPOH
MON2A TMUX_RDIPMON2[2:0] TMUX_C2MON2[7:0]
0x4002C TMUX_RPOH
MON2B TMUX_F2MON12[7:0] TMUX_F2MON02[7:0]
0x4002D TMUX_RPOH
MON2C TMUX_F3MON12[7:0] TMUX_F3MON02[7:0]
0x4002E TMUX_RPOH
MON2D TMUX_N1MON2[7:0] TMUX_K3MON2[7:0]
0x4002F TMUX_RPOH
MON3A TMUX_RDIPMON3[2:0] TMUX_C2MON3[7:0]
0x40030 TMUX_RPOH
MON3B TMUX_F2MON13[7:0] TMUX_F2MON03[7:0]
0x40031 TMUX_RPOH
MON3C TMUX_F3MON13[7:0] TMUX_F3MON03[7:0]
0x40032 TMUX_RPOH
MON4D TMUX_N1MON3[7:0] TMUX_K3MON3[7:0]
Tr ansmit Low-sp eed Control Param etersR/W
0x40033 TMUX_TLS_C
TL TMUX_TLS_UNEQP[3:1] TMUX_TLS_PAISINS[3:1] TMUX_TLS
VOEPAR
Transm it Hi gh-sp eed Port Contro l ParametersR/W
0x40034 TMUX_THS_
PORT_CTL TMUX_TPS
MUXSEL3 TMUX_TPS
MUXSEL2 TMUX_RH
S2THSLB TMUX_THS
SCR
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
127Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 143. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bi t 9 Bit 8 Bi t 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transm it Hi g h-speed C ontrol ParametersR/W
0x40035 TMUX_THS_
TOH_CTL TMUX_TC
ONCAT-
MODE
TMUX_TPR
EIRDISEL TMUX_TLR
EIRDISEL TMUX_TSS[1:0] TMUX_THS
LREIINH TMUX_THS
LAISINS TMUX_THS
APSINS TMUX_THS
K2INS TMUX_THS
S1INS TMUX_THS
F1INS TMUX_THS
Z0INS TMUX_THS
J0INS
0x40036 TMUX_THS_
POH1_CTL TMUX_THS
PREIINH1 TMUX_TP
OHTHRU1 TMUX_THS
N1INS1 TMUX_THS
K3INS1 TMUX_THS
F3INS1 TMUX_THS
F2INS1 TMUX_THS
RDIPINS1 TMUX_THS
C2INS1 TMUX_THS
J1INS1
0x40037 TMUX_THS_
POH2_CTL TMUX_THS
PREIINH2 TMUX_TP
OHTHRU2 TMUX_THS
N1INS2 TMUX_THS
K3INS2 TMUX_THS
F3INS2 TMUX_THS
F2INS2 TMUX_THS
RDIPINS2 TMUX_THS
C2INS2 TMUX_THS
J1INS2
0x40038 TMUX_THS_
POH3_CTL TMUX_THS
PREIINH3 TMUX_TP
OHTHRU3 TMUX_THS
N1INS3 TMUX_THS
K3INS3 TMUX_THS
F3INS3 TMUX_THS
F2INS3 TMUX_THS
RDIPINS3 TMUX_THS
C2INS3 TMUX_THS
J1INS3
Transmit High-speed Line RDI Control ParametersR/W
0x4003A TMUX_TLRDI
_CTL TMUX_TRS
D_LRDIINH TMUX_TRS
F_LRDIINH TMUX_TRL
AISMON_L
RDIINH
TMUX_TRL
OF_LRDIIN
H
TMUX_TR
OOF_LRDII
NH
TMUX_TRL
OS_LRDIIN
H
TMUX_TRI
LOC_LRDII
NH
Transmit High-speed Path RDI Control ParametersR/W
0x4003B TMUX_TPRDI
_CTL TMUX_TIM_PRDIINH[3:1] TMUX_TRU
EQ_PRDIIN
H
TMUX_TRP
LM_PRDIIN
H
TMUX_TRL
OP_PRDIIN
H
TMUX_TRP
AIS_PRDII
NH
TMUX_TEP
RDI_MODE
Transmit TOH and POH Insert ValuesR/W
0x4003C TMUX_TZ0_I
NS_VAL TMUX_TZ03INS[7:0] TMUX_TZ02INS[7:0]
0x4003D TMUX_TS1_F
1_INS_VAL TMUX_TS1INS[7:0] TMUX_TF1INS[7:0]
0x4003E TMUX_TAPS
_INS_VAL TMUX_TAPSINS[12:0] TMUX_TK2INS[2:0]
0x4003F TMUX_TPOH
1_INS_A TMUX_TRDIPINS1[2:0] TMUX_TC2INS1[7:0]
0x40040 TMUX_TPOH
1_INS_B TMUX_TF3INS1[7:0] TMUX_TF2INS1[7:0]
0x40041 TMUX_TPOH
1_INS_C TMUX_TN1INS1[7:0] TMUX_TK3INS1[7:0]
0x40042 TMUX_TPOH
2_INS_A TMUX_TRDIPINS2[2:0] TMUX_TC2INS2[7:0]
0x40043 TMUX_TPOH
2_INS_B TMUX_TF3INS2[7:0] TMUX_TF2INS2[7:0]
0x40044 TMUX_TPOH
2_INS_C TMUX_TN1INS2[7:0] TMUX_TK3INS2[7:0]
0x40045 TMUX_TPOH
3_INS_A TMUX_TRDIPINS3[2:0] TMUX_TC2INS3[7:0]
0x40046 TMUX_TPOH
3_INS_B TMUX_TF3INS3[7:0] TMUX_TF2INS3[7:0]
0x40047 TMUX_TPOH
3_INS_C TMUX_TN1INS3[7:0] TMUX_TK3INS3[7:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
128 A
g
ere S
y
stems Inc.
8 TMUX Registers (continued)
Tabl e 143. TMUX Register Map (continued)
Note: The reset default o f all res erved bits i s 0. Shading denotes reserved bits.
Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transm it H igh-sp eed Error Insertion Control P arametersR/W
0x40048 TMUX_TBERI
NS_CTL TMUX_TPS
LREIINS TMUX_TPS
B2EINS TMUX_TPREIINS[3:1] TMUX_THSB3ERRINS[3:1] TMUX_TLR
EIINS TMUX_THSB2ERRINS[3:1] TMUX_THS
B1ERRINS
0x40049 TMUX_THS_
ERR_CTL TMUX_TAP
SBABINS TMUX_TH1H2INVEN[3:1] TMUX_TH1
H2INVORN
DF
TMUX_TA2ERRINS[4:0]
Receive/Transmit TOA C/PO AC Control Paramet ersR/W
0x4004A TMUX_TOAC
_CTL TMUX_RT
OAC_D412
MODE
TMUX_RT
OAC_D13
MODE
TMUX_
RTOAC_
OEPINS
TMUX_
TTOAC_
D412MODE
TMUX_
TTOAC_
D13MODE
TMUX_TTO
AC_AVAIL TMUX_TTO
AC_S1 TMUX_TTO
AC_F1 TMUX_TTO
AC_E2 TMUX_TTO
AC_E1 TMUX_
TTOAC_
D4TO12
TMUX_TTO
AC_D1TO3 TMUX_
TTOAC_
OEPMON
0x4004B TMUX_RPOA
C_CTL TMUX_RPOAC_
SEL[1:0] TMUX_
RPOAC_
OEPINS
TMUX_TPOAC_SEL[1:0] TMUX_TP
OAC_N1 TMUX_TP
OAC_K3 TMUX_TP
OAC_F3 TMUX_TP
OAC_F2 TMUX_TP
OAC_C2 TMUX_TP
OAC_J1 TMUX_
TPOAC_
OEPMON
Transmit H ig h-sp eed Offset Control Paramet ersR/W
0x4004D TMUX_TFRA
MEOFFSET TMUX_TLBITCNT[2:0] TMUX_TLSTSCNT[1:0] TMUX_TLCOLCNT[6:0] TMUX_TLROWCNT[3:0]
B1/B2 Signal Degrade Set/Clear Control RegistersR/W
0x4004E TMUX_SD_C
TL1 TMUX_SDNSSET[18:3]
0x4004F TMUX_SD_C
TL2 TMUX_SDMSET[7:0] TMUX_SDLSET[3:0] TMUX_SDNSSET[2:0]
0x40050 TMUX_SD_C
TL3 TMUX_SDBSET[15:0]
0x40051 TMUX_SD_C
TL4 TMUX_SDNSCLEAR[18:3]
0x40052 TMUX_SD_C
TL5 TMUX_SDMCLEAR[7:0] TMUX_SDLCLEAR[3:0] TMUX_SDNSCLEAR[2:0]
0x40053 TMUX_SD_C
TL6 TMUX_SDBCLEAR[15:0]
B1/B2 Signal Fail Set/Cle ar Control RegistersR/W
0x40054 TMUX_SF_C
TL1 TMUX_SFNSSET[18:3]
0x40055 TMUX_SF_C
TL2 TMUX_SFMSET[7:0] TMUX_SFLSET[3:0] TMUX_SFNSSET[2:0]
0x40056 TMUX_SF_C
TL3 TMUX_SFBSET[15:0]
0x40057 TMUX_SF_C
TL4 TMUX_SFNSCLEAR[18:3]
0x40058 TMUX_SF_C
TL5 TMUX_SFMCLEAR[7:0] TMUX_SFLCLEAR[3:0] TMUX_SFNSCLEAR[2:0]
0x40059 TMUX_SF_C
TL6 TMUX_SFBCLEAR[15:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
129Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 143. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bi t 9 Bit 8 Bi t 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
B3 Signal Degrade Set/Clear Control RegistersR/W
0x4005A TMUX_B3SD
_CTL1 TMUX_B3SDNSSET[18:3]
0x4005B TMUX_B3SD
_CTL2 TMUX_B3SDMSET[7:0] TMUX_B3SDLSET[3:0] TMUX_B3SDNSSET[2:0]
0x4005C TMUX_B3SD
_CTL3 TMUX_B3SDBSET[15:0]
0x4005D TMUX_B3SD
_CTL4 TMUX_B3SDNSCLEAR[18:3]
0x4005E TMUX_B3SD
_CTL5 TMUX_B3SDMCLEAR[7:0] TMUX_B3SDLCLEAR[3:0] TMUX_B3SDNSCLEAR[2:0]
0x4005F TMUX_B3SD
_CTL6 TMUX_B3SDBCLEAR[15:0]
B3 Signal Fail Set/Clear Control RegistersR/W
0x40060 TMUX_B3SF_
CTL1 TMUX_B3SFNSSET[18:3]
0x40061 TMUX_B3SF_
CTL2 TMUX_B3SFMSET[7:0] TMUX_B3SFLSET[3:0] TMUX_B3SFNSSET[2:0]
0x40062 TMUX_B3SF_
CTL3 TMUX_B3SFBSET[15:0]
0x40063 TMUX_B3SF_
CTL4 TMUX_B3SFNSCLEAR[18:3]
0x40064 TMUX_B3SF_
CTL5 TMUX_B3SFMCLEAR[7:0] TMUX_B3SFLCLEAR[3:0] TMUX_B3SFNSCLEAR[2:0]
0x40065 TMUX_B3SF_
CTL6 TMUX_B3SFBCLEAR[15:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
130 A
g
ere S
y
stems Inc.
8 TMUX Registers (continued)
Tabl e 143. TMUX Register Map (continued)
Note: The reset default o f all res erved bits i s 0. Shading denotes reserved bits.
Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive B1, B2, B3, M1, G1, and N1 Error CountsRO
0x40066 TMUX_B1EC
NT TMUX_B1ECNT[15:0]
0x40067 TMUX_B2EC
NT_17_16 TMUX_B2ECNT[17:16]
0x40068 TMUX_B2EC
NT_15_0 TMUX_B2ECNT[15:0]
0x40069 TMUX_B3EC
NT1 TMUX_B3ECNT1[15:0]
0x4006A TMUX_B3EC
NT2 TMUX_B3ECNT2[15:0]
0x4006B TMUX_B3EC
NT3 TMUX_B3ECNT3[15:0]
0x4006C TMUX_M1EC
NT_17_16 TMUX_M1ECNT[17:16]
0x4006D TMUX_M1EC
NT_15_0 TMUX_M1ECNT[15:0]
0x4006E TMUX_G1EC
NT1 TMUX_G1ECNT1[15:0]
0x4006F TMUX_G1EC
NT2 TMUX_G1ECNT2[15:0]
0x40070 TMUX_G1EC
NT3 TMUX_G1ECNT3[15:0]
Receive Pointer Increment and D ecrement CountsRO
0x40074 TMUX_RPTR
_INCCNT1 TMUX_RPTR_INC1[10:0]
0x40075 TMUX_RPTR
_INCCNT2 TMUX_RPTR_INC2[10:0]
0x40076 TMUX_RPTR
_INCCNT3 TMUX_RPTR_INC3[10:0]
0x40077 TMUX_RPTR
_DECCNT1 TMUX_RPTR_DEC1[10:0]
0x40078 TMUX_RPTR
_DECCNT2 TMUX_RPTR_DEC2[10:0]
0x40079 TMUX_RPTR
_DECCNT3 TMUX_RPTR_DEC3[10:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
131Agere Sy stem s Inc.
8 TMUX Registers (continued)
Table 143. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bi t 9 Bit 8 Bi t 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Expected J0 Receive ValueR/W
0x400A0
0x400A7
TMUX_RJ0EX
PECTED
[18]
TMUX_EXPJ0DMON[2][7:0]
TMUX_EXPJ0DMON[16][7:0]
TMUX_EXPJ0DMON[1][7:0]
TMUX_EXPJ0DMON[15][7:0]
Captured J0 Receive ValueRO
0x400A8
0x400AF
TMUX_RJ0C
APTURED
[18]
TMUX_J0DMON[2][7:0]
TMUX_J0DMON[16][7:0]
TMUX_J0DMON[1][7:0]
TMUX_J0DMON[15][7:0]
J0 Byte Transmit InsertR/W
0x400B0
0x400B7
TMUX_TJ0VA
LUE[18] TMUX_TJ0DINS[2][7:0]
TMUX_TJ0DINS[16][7:0]
TMUX_TJ0DINS[1][7:0]
TMUX_TJ0DINS[15][7:0]
Expected J1 Receive Value for STS #1R/W
0x400E0
0x400FF
TMUX_RJ1EX
PECTED_1
[132]
TMUX_EXPJ1DMON1[2][7:0]
TMUX_EXPJ1DMON1[64][7:0]
TMUX_EXPJ1DMON1[1][7:0]
TMUX_EXPJ1DMON1[63][7:0]
Expected J1 Receive Value for STS #2R/W
0x40100
0x4011F
TMUX_RJ1EX
PECTED_2
[132]
TMUX_EXPJ1DMON2[2][7:0]
TMUX_EXPJ1DMON2[64][7:0]
TMUX_EXPJ1DMON2[1][7:0]
TMUX_EXPJ1DMON2[63][7:0]
Expected J1 Receive Value for STS #3R/W
0x40120
0x4013F
TMUX_RJ1EX
PECTED_3
[132]
TMUX_EXPJ1DMON3[2][7:0]
TMUX_EXPJ1DMON3[64][7:0]
TMUX_EXPJ1DMON3[1][7:0]
TMUX_EXPJ1DMON3[63][7:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
132 A
g
ere S
y
stems Inc.
8 TMUX Registers (continued)
Tabl e 143. TMUX Register Map (continued)
Note: The reset default o f all res erved bits i s 0. Shading denotes reserved bits.
Addr. Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Captured J1 Receive Value for STS #1RO
0x40140
0x4015F
TMUX_RJ1C
APTURED_1
[132]
TMUX_J1DMON1[2][7:0]
TMUX_J1DMON1[64][7:0]
TMUX_J1DMON1[1][7:0]
TMUX_J1DMON1[63][7:0]
Captured J1 Receive Value for STS #2RO
0x40160
0x4017F
TMUX_RJ1C
APTURED_2
[132]
TMUX_J1DMON2[2][7:0]
TMUX_J1DMON2[64][7:0]
TMUX_J1DMON2[1][7:0]
TMUX_J1DMON2[63][7:0]
Captured J1 Receive Value for STS #3RO
0x40180
0x4019F
TMUX_RJ1C
APTURED_3
[132]
TMUX_J1DMON3[2][7:0]
TMUX_J1DMON3[64][7:0]
TMUX_J1DMON3[1][7:0]
TMUX_J1DMON3[63][7:0]
J1 Byte Transmit Insert for STS #1R/W
0x401A0
0x401BF
TMUX_TJ1VA
LUE_1
[132]
TMUX_TJ1DINS1[2][7:0]
TMUX_TJ1DINS1[64][7:0]
TMUX_TJ1DINS1[1][7:0]
TMUX_TJ1DINS1[63][7:0]
J1 Byte Transmit Insert for STS #2R/W
0x401C0
0x401DF
TMUX_TJ1VA
LUE_2
[132]
TMUX_TJ1DINS2[2][7:0]
TMUX_TJ1DINS2[64][7:0]
TMUX_TJ1DINS2[1][7:0]
TMUX_TJ1DINS2[63][7:0]
J1 Byte Transmit Insert for STS #3R/W
0x401E0
0x401FF
TMUX_TJ1VA
LUE_3
[132]
TMUX_TJ1DINS3[2][7:0]
TMUX_TJ1DINS3[64][7:0]
TMUX_TJ1DINS3[1][7:0]
TMUX_TJ1DINS3[63][7:0]
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
133Agere Systems Inc.
9 SPE Mapper Registers
Ta ble of Conte nts
Contents Page
9 SPE Mapper Registers ..................................................................................................................................... 133
9.1 SPE Mapper Register Desc riptions .. ......................... . ......................... . ......................... . ........................... 134
9.2 SPE Mapper Register M ap ................................. . .............................. ........................................................ 149
Contents Page
Ta ble 144. SPE_VER SIO N _ R , SPE Versi o n an d Identification Register (RO) ......... . .................. . .................. .... 134
Tab le 145. SPE_ONESHOT, One-Shot (R/W) ....................................................................................................1 34
Table 146. SPE_EVENT1 SPE_EVENT3, SPE Delta s/Events (COR/ COW) ......................... ..........................134
Table 1 47. SPE_MASK1SPE_MASK3, Mask Bits (R/W) ................................................................................ 136
Table 148. S PE_STATE 1SPE _STA T E2, Receive/Transm it S t ate and Value Paramet ers (RO) .................... 137
Table 1 49. SPE_RAOH_CTL1SPE _RA OH_CTL3, Receive Control for Alarm and OH Functions (R/W) . ... ... 138
Table 150. SPE_CNTD1SPE_ CNTD2, C ontinuous N-Times Detect Values (R/W) . ............................... ........139
Table 151. SPE_ROHC2, Receive Overhead Expected Value for C2 Byte (R/W) ......... ..... .. .......... .. ..... ....... ..... 140
Table 1 52. SPE_RMON1SPE_RMON5, Receive Mon itor Values (RO) .......................................................... 1 40
Table 1 53. SP E_MAP_CTL1SPE_MAP_CTL3, Tx/Rx Control for Mapping Functions (R/W) ........................140
Table 154. S PE_TAOH_CTL1SPE_TAOH_CTL3, Tx Control for Alarm/OH Functions (R/W) .......................1 43
Table 155. SPE_TRDIREI_CTL, Transmi t Path RDI and REI Control Regi ster (R/W) .......................................1 45
Table 156. SPE_TERRINS_CTL, Transmit Erro r Insertio n Control (R/W) .......................................................... 145
Table 157. SPE_TOHINS1SPE_TOHINS4, Transm it OH Insert Value (R/W) ................................................ 1 45
Table 1 58. SPE_SIGDEG_CTL1SPE_SIG DE G_CTL6, Signal Degrade BER Algorithm Parameters (R/W) .. 146
Table 159. S PE_SIGFAIL_CTL1SPE_SIGFAIL_CTL6, Sign al Fail BER Alg orithm Parameters (R/W) ..........1 46
Table 160. SPE_ERRCNT1SPE_ERRCNT6, B 3, G1, Bipol ar Viol ation, and Ex cess
Zero Error Count (RO) ....................................................................................................................... 147
Table 161. S P E_ PTRCNT1 SPE_PTRCNT3, Rece ive Pointer Increment and Decrement Count (RO) ..........1 47
Table 1 62. SPE_R J1 MON_R1SPE_RJ1MON_R32, Receive J1 Monitor Values (RO) .................................. 147
Table 163. SPE_ TJ1DI NS_R1SPE_TJ1DINS_R32, Transmit J1 Insert Values (R/W) ................................... 1 48
Table 164. SPE_RJ1DEXP_R1SPE_ RJ1DEXP_R32 , Receive J1 Expected Values (R/W) ........................... 148
Table 1 65. SPE_SCRATCH_R, Scratch Pad (R/W) ........................................................................................... 148
Table 1 66. SPE Mapper Register Map .. ....................... . ....................... .......................... ..................................... 149
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
134 Agere Sy stem s Inc.
9 SPE Mapper Registers (continued)
9.1 SPE Ma pper Regis ter Descr iptions
This section gives a brief de scription of each register bit and its functionalit y. The abbreviations after each register
indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/writ e (R/W) .
Table 144. SPE_VERSION_R, SPE V e r sion and Identification Register (RO)
Table 1 45. SP E_ONESHOT, One-Shot (R/W)
Note: In Table 122, the mask bits for these delta and event bits are in Table 147, state bits are in Table 148, and
monitor values are in Table 152.
Address Bit Name F un ction Reset
Default
0x30000 15:11 Reserved. 0x00
10:8 SPE_VERSION[2:0] Block Versi on Number. Block version register will change
each time the device is changed. 0x0
7:0 SPEMPR_ID[7:0] Bloc k ID N umber. 0x03
Address Bit Name F un ction Reset
Default
0x30002 15:5 Reserved. 0x000
4 SPE_BIPOL_ERR Bipolar Violation Error. A single bipolar violation error f or
DS3 output is transmitted each time this bit transitions from a
0 to 1.
0
3 SPE_SFCLEAR Signal Fail Clear. A llows the signal f ail algorithm to be f orced
into the normal state. 0
2 SPE_SFSET Signal Fail Set. Allows the signal fail algorithm to be forced
into the fail ed state. 0
1 SPE_SDCLEAR Signal Degrade Clear. Allows the signal degrade algo ri thm
to be forced into the normal state. 0
0 SPE_SDSET Signal Degrade Set. Allows t he signal degrade algorithm to
be forced into the degraded state. 0
Table 146. SPE_EVENT1SPE_E VENT3, SP E Deltas/Ev e nts (COR/COW)
Address Bit N am e Function Reset
Default
0x30003 15:7 Reserved. 0x000
6 SPE_RDATA_PE Received Data Parity Error Event. Event bit ind icates a parity
error was detected on the incoming data. 0
5 SPE_TPOAC_PE Transmit PO A C Parity Err or Event. Ev ent bit indicates a parity
error was detected on the incoming POAC. 0
4 SPE_K3DMOND K3 Data Monitor Delta Bit. The mask b it is SPE_K3DM ONM. 0
3 SPE_N1DMOND N1 Data Monitor Delta Bit. The mask bit is SPE_N1DMONM. 0
2 SPE_C2DMOND C2 Data Monitor Delta Bit. The mask bit is SPE_C2DMONM. 0
1 SPE_F2DMOND F2 Data Monito r Delta Bit. The mask bit is SPE_F 2DMONM. 0
0 SPE_F3DMOND F3 Data Monito r Delta Bit. The mask bit is SPE_F 3DMONM. 0
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
135Agere Systems In c.
0x30004 15:11 Reserved. 0x00
10 SPE_PRDIDMOND Path RDI Delta. Delta bit indicates a change of state for the
path RDI state bit SPE_PRDIDMON. The delta bit is cleared
when read. The mask bit for this delta bit is
SPE_PRDIDMONM.
0
9 SPE_RNDFE Pointer Interpreter New Data Flag Event Bit. The mask bit is
SPE_RNDFM. 0
8 SPE_RDECE Pointer Interpreter Decrement Event Bit. The mask bit i s
SPE_RDECM. H oweve r, increment and decrement event indi-
cations should be ignored durin g LOP condition.
0
7 SPE_RINCE Pointer Interpreter I ncrement Event Bit. The mask bit is
SPE_RINCM. However, incremen t and dec rement event indica-
tions should be ignored du ring LOP condition.
0
0x30004 6 SPE_RAISD Delta Bit for the AIS Alarm Detect State Bit. The mask bit i s
SPE_RAISM. 0
5SPE_RLOPDDelta Bit for the Loss of Pointer Alarm State Bit. The mask
bit is SPE_RLOPM. 0
4 SPE_SFB3D Signal Fail BE R Algori thm D el t a. Indicates a change of s tate
for the signal fail BER algorithm state bit SFB3. This bit c lear s
when rea d. The mask bit i s SPE_SFB3 M.
0
3 SPE_SDB3D Signa l Degrade BER A lgorithm D elt a. Indicates a change of
state for the signal degrade BER algorit hm state bit SDB3. This
bit clears when read. The mask bit i s SPE_SDB3M.
0
2 SPE_RUNEQD Delta Bit for the Unequipp ed Alarm State Bit. T h e m as k bit i s
SPE_RUNEQM. 0
1 SPE_RPLMD Del ta Bit for the Payload Label Mismatch Alarm S tate Bit.
The mask bit is SPE_RPLM M . 0
0 SPE_RTIMD Trace Indicator M ismatch Event Bit (J1 Byte). The mask bit is
SPE_RTIMM. 0
0x30005 15 Reserved. 0
14 SPE_RSY52LOSD Delta Bit for Loss of Sync 52 Signal from Tele c om Bus. 0
13 SPE_RV1LOSD Delta Bit for Loss of V1 Sync Signal fr om T elecom Bus. 0
12 SPE_RSPELOSD Delta Bit for Loss of SPE Sync Signal from Te lecom Bus. 0
11 SPE_RJ0J1V1LOSD Delta Bit for Loss of J0J1V1 Sync Signal from T elecom Bus. 0
10 SPE_RDS3LOCD Delta Bit for Loss of DS3 External Clock from External P in. 0
9 SPE_RC52LOCD Delta Bit for Loss of 52 MHz Clock from Telecom Bus. 0
8 SPE_RLSLOCD Delta Bit for Los s of 19 MH z Clock from Telecom Bus. 0
7Reserved. 0
6 SPE_TSY52LOSD Delta Bit for Lo ss of Sy nc 52 Signal from Telecom Bus. 0
5 SPE_TV1LOSD Delta Bit for Loss of V1 Sync Signal from Telecom Bus. 0
4 SPE_TSPELOSD Delta Bit for Loss of SPE Syn c Signal from Teleco m Bus. 0
3 SPE_TJ0J1V1LOSD Delta Bit for Loss of J0J1V1 Sync Signal from T elecom Bus. 0
2 SPE_TDS3LOCD Delta Bit for Loss of DS3 External Clock from External Pin. 0
1 SPE_TC52LOCD De lta B it for L oss of 52 M Hz Clock from Telecom Bus. 0
0 SPE_TLSLOCD Delta Bit for Loss of 19 M Hz Clock from Telecom Bus. 0
Table 146. SPE_EVENT1SPE_EVENT3, SPE Deltas/Events (COR/COW) (continued)
Address Bit Nam e Function Reset
Default
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
136 Agere Sy stem s Inc.
9 SPE Mapper Registers (continued)
Table 147. SPE_MASK1SPE_MAS K3, Mask Bi ts (R/W)
Address Bi t Nam e Function Reset
Default
0x30006 15:7 Reserved. 000000
000
6 SPE_RDATA_PM Received Data Parity Error Mask. Active-high. 1
5 SPE_TPOAC_PM Transmit P OAC Parity Error Mask. Active-high. 1
4 SPE_K3DMONM K3 Data Monitor Mask Bit. Active-high. 1
3 SPE_N1DMONM N1 Data M onitor Mask Bit. Active-high. 1
2 SPE_C2DMONM 1C2 Data Monitor Mask Bit. Active-high.
1 SPE_F2DMONM 1F2 Dat a Monitor Mas k B it. Active-high.
0 SPE_F3DMONM F3 Data Monitor Ma sk Bit. Active-high. 1
0x30007 15:11 Reserved. 00000
10 SPE_PRDIDMONM Path RDI Mask Bit. Active-high. 1
9 SPE_RNDFM Pointer Interpreter Ne w Data Flag Mask Bit. Active-high 1
8 SPE_RDECM Pointer In te rpreter Decremen t Mask Bit. Active-high. 1
7 SPE_RINCM Pointer Interpreter Increment Mask Bit. Active-high 1
6 SPE_RAISM Mask Bit for the AI S Alarm Detect State Bit. Active-high. 1
5 SPE_RLOPM Mask Bit for the Loss of Pointer Alarm State Bit. Active-
high. 1
4 SPE_SFB3M Signal Fail Mask Bit. Active-high. 1
3 SPE_SDB3M S ignal Degrade Mask Bit. Active-high. 1
2 SPE_RUNEQM Mask Bit for the Unequipped Alarm State Bit. Active-high. 1
1 SPE_RPLMM Mask Bit for the Pa yload Label Mismatch Alarm State Bit.
Active-high. 1
0 SPE_RTIMM Trace Indicator Mismatch Mask Bits. Active-high. 1
0x30008 15 Reserved. 0
14 SPE_RSY52LOSM Mask Bit for L oss of Sync 52 Signa l fro m Telecom Bus.
Active-high. 1
13 SPE_RV1LOSM Mask Bit for Loss of V1 Sync Signal from Telecom Bus.
Active-high. 1
12 SPE_RSPELOSM Mask Bit for Loss o f SPE Sync Signal from Tele com Bus.
Active-high. 1
11 SPE_RJ0J1V1LOSM Mask Bit for Loss of J0J1V1 Sync Signal from Telecom
Bus. Active-high. 1
10 SPE_RDS3LOCM Mask Bit for Loss of DS3 Exter nal C lock from External
PIN. Active-high. 1
9 SPE_RC52LOCM Mask Bit for Loss of 52 MHz Clock from Te leco m Bus.
Active-high. 1
8 SPE_RLSLOCM Mask Bit for Loss of 19 M H z Cl ock from Telecom Bus.
Active-high. 1
7Reserved. 0
6 SPE_TSY52LOSM M ask Bit for Loss of Sync 5 2 Signal from Telecom Bus.
Active-high. 1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
137Agere Systems Inc.
9 SPE Mapper Registers (continued)
Table 147. SPE_MASK1SPE_MAS K 3, Mask Bits (R/ W) (continued)
Table 1 48. SPE_STATE1 SPE_STATE2, Receive/Transmit State and Value Parameters (RO)
Address Bit Name F un ction Reset
Default
0x30008 5 SPE_TV1LOSM Mask Bit fo r Loss of V1 Syn c S ig nal fro m Telecom Bus.
Active-high. 1
4 SPE_TSPELOSM Mask Bit for Loss of SPE Sync Signal from Telecom
Bus. Active-high. 1
3 SPE_TJ0J1V1LOSM Mask Bit for Loss of J0J1V1 Sync Signal fr om Telecom
Bus. Active-high.
2 SPE_TDS3LOCM Mask Bit for Loss of DS3 Ex te rnal Clock from Extern al
PIN. Active-high. 1
1 SPE_TC52LOCM Mask Bit for Loss of 52 MHz Clock from Telecom Bus.
Active-high. 1
0 SPE_TLSLOCM M ask Bi t for Loss of 19 MHz Clock from Telecom Bus.
Active-high. 1
Address Bit Name F un ction Reset
Default
0x30009 15:7 Reserved. 0x000
6 SPE_RAIS Path AIS State Bit. 0
5 SPE_RLOP Path Loss of Pointer State Bit. 0
4 SPE_SFB3 Signal Fai l State Bit. 0
3SPE_SDB3Signal Degrade State Bit. 0
2 SPE_RUNEQ Path Unequipped State Bit. 0
1 SPE_RPLM Path Payload Label Mismatch State Bit. 0
0SPE_RTIMPath Trace Indicator Mismatch State Bit. 0
0x3000A 15 Reserved. 0
14 SPE_RSY52LOS State Bit for Loss of Sync 52 Signal from Tele com Bus. 0
13 SPE_RV1LOS State Bit for Loss of V1 Sync S i gn al fro m Telecom Bus. 0
12 SPE_RSPELOS State Bit for Loss of SP E Sync Signal from Telecom Bu s. 0
11 SPE_RJ0J1V1LOS State Bit for Loss of J0J1V1 Sync Signal from Tel ecom
Bus. 0
10 SPE_RDS3LOC State Bit for Loss of DS3 Exter nal Clock from External
PIN. 0
9 SPE_RC52LOC State Bit for Loss of 52 MHz Clock from Telecom Bus. 0
8 SPE_RLSLOC State Bit for Loss of 19 MHz Clock from Telecom Bus. 0
7Reserved. 0
6 SPE_TSY52LOS S tate Bit for Loss of Sync 52 Signal from Telecom Bus. 0
5 SPE_TV1LOS State Bit for Loss of V1 S ync Signal fro m Telecom Bu s. 0
4 SPE_TSPELOS State Bit for L oss o f SPE Sync Signal from Telecom Bus. 0
3 SPE_TJ0J1V1LOS State Bit for L oss of J0J1V1 S ync Signal from Telecom
Bus. 0
2 SPE_TDS3LOC St ate Bit for Loss of DS3 Exter nal Cl ock from External
Pin. 0
1 SPE_TC52LOC State Bit for Loss of 52 MHz Clock from Telecom Bus. 0
0 SPE_TLSLOC State Bit for Loss of 19 MHz Clock from Telecom Bus. 0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
138 Agere Sy stem s Inc.
9 SPE Mapper Registers (continued)
)
Table 149. SPE_RAOH_CTL1SPE_RAOH_C T L3 , Recei v e Control fo r Ala r m an d OH Function s (R/W )
Address Bit Nam e F unc tion Reset
Default
0x3000B 15:8 Reserved. 0x00
7 SPE_RD_OEPAR Received Data Odd/Even Parity Check. If 0, odd parity
check for received data; if 1, even p arity check. 0
6:4 SPE_J1MONMODE[2:0] J1 Monitoring Mode. There ar e f our monitoring modes
as defined in the do cument. 000
3 SPE_RPRDI_MODE Receive ERDI Mode. When 1, 3-bit enhanced ERDI
mode is supported; when 0, the 1-bi t RDI mode is
supported.
0
2 SPE_G1BITBLKCNT G1 Error Count in Bit or Bl oc k. When 0, G1(7:4)
check logic will count bit errors; otherwise, it counts
bl ock errors.
0
1 SPE_B3BITBLKCNT B3 Error Count in Bit or Block. When 0, B3 check
logic wi ll co unt bit errors; otherw ise, it count s blo ck
errors.
0
0 SPE_RPOAC_OEPINS Rece ive POAC Odd or Even Parity Insert. When 1,
the out put POAC p arit y bit is ev e n; ot he rwi se, the parity
is odd.
0
0x3000C 15:12 Reserved. 0x0
11:10 SPE_CNTDLOPCNT[1:0] Continuous N-Times Detect for Loss o f Pointer. Two
bit programmable integration constant for the pointer
interpreter.
00
9Reserved. 0
8 SPE_8ORMAJORITY TU- 3 Pointer Interpreter Mode Control. When 1, the
pointer interpret er transitions into the INC and DEC
states based on 8 of the 10 I and D bits. Otherwise, the
pointer interpret er transitions into the INC and DEC
states based on majority rule.
0
7 SPE_PAISINS Path AIS Software Insertion. When 1, path AIS
insertion is enabled. 0
6 SPE_PAIS_AISINH Pa th AIS Stat e bi t I n hi bi t Sig nal for Gene rati ng Path
AIS. When 1, the inhibit is on. 0
5 SPE_PAIS_LOPINH Loss of Pointer Inhibit Signal for Generating Path
AIS. When 1, the inhibit is on. 0
4 SPE_PAIS_SFB3INH Sign a l Fail I nhibi t Sign al for G e ne r a ting P ath AIS.
When 1, the inhibit is on. 0
3 SPE_PAIS_SDB3INH Signal Degrade Inhibit Signal for Generating Path
AIS. When 1, the inhibit is on. 0
2 SPE_PAIS_UNEQINH Path Unequipped Inhibit Signal for Generating Path
AIS. When 1, the inhibit is on. 0
1 SPE_PAIS_PLMINH Path Label Mismatch Inhibit Signal for Generating
Path AIS. When 1, the inhi bit is on. 0
0 SPE_PAIS_TIMINH Path Trace Indicator Mismatch Inhibit Signal for
Generating Path AIS. When 1, the inhibit is on. 0
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
139Agere Systems In c.
Table 150. SPE_CNTD1SPE _CNTD2, Continuous N-Times Detect Values (R/W)
0x3000D 15:7 Reserved. 0x000
6 SPE_AIS_LOSSY52INH Loss of Sync 52 State Bit In hibi t Sign a l fo r Generat-
ing P at h AIS. When 1, the inhibit is on. 0
5 SPE_AIS_LOSV1INH Loss of V1 Sync Inhibit Signal for Generating Path
AIS. When 1, the inhibit is on. 0
4 SPE_AIS_LOSSPEINH Loss of S PE Sy nc Inhibi t Sign a l for Ge ne rat ing Path
AIS. When 1, the inhibit is on. 0
3 SPE_AIS_LOSJ0J1V1INH Loss of J0J1V1 Sync Inhibit Signal for Generatin g
Path AIS. When 1, the inhibit is on. 0
2 SPE_AIS_LOCDS3INH Loss of Ext D S3 Clock Inhibit Signal for G e ne rat ing
Path AIS. When 1, the inhibit is on. 0
1 SPE_AIS_LOC52INH Loss of 52 MHz Clock Inhibit Signal for Generating
Path AIS. When 1, the inhibit is on. 0
0 SPE_AIS_LOCINH Loss of 19 MHz Clock Inhibit Signal for Generating
Path AIS. When 1, the inhibit is on. 0
Address Bit Nam e Fun ction R eset
Default
0x3000F 15:12 SPE_CNTDC2[3:0] Continuous N-Times Detect for C2 Byte. The valid range
f or this register is 0x30xF. Inv alid values will be mapped to
a value of 0x3.
0x3
11:8 SPE_CNTDF3[3:0] C ontinuous N-Times Detect for F3 Byte. The valid range
f or this register is 0x30xF. Inv alid values will be mapped to
a value of 0x3.
0x3
7:4 SPE_CNTDF2[3:0] Contin uous N -Times Detect for F2 By te . The valid range
f or this register is 0x30xF. Inv alid values will be mapped to
a value of 0x3.
0x3
3:0 SPE_CNTDJ1[3:0] Continuo us N-Times Detect fo r J1 Bytes. The valid range
f or this register is 0x30xF. Inv alid values will be mapped to
a value of 0x3.
0x3
0x30010 15:12 SPE_CNTDN1[3:0] Continuous N-Times Detect for N1 Byte. The valid range
f or this register is 0x30xF. Inv alid values will be mapped to
a value of 0x3.
0x3
11:8 SPE_CNTDPRDI[3:0] Co ntinuous N-Tim es Detect for G1 Byte. The valid range
f or this register is 0x30xF. Inv alid values will be mapped to
a value of 0x3.
0x3
7:4 SPE_CNTDK3[3:0] Continuous N-Times Detect for K3[6:4] Byte . The valid
range for this register is 0x 30xF. Inval i d val u es will b e
mapped to a value of 0x3.
0x3
3:0 Reserved. 0x0
Table 149. SPE_RAOH_CTL1SPE_RAOH_CTL3, R eceive Control for Alarm a nd OH Functio ns (R /W)
Address Bit Nam e F un ction Reset
Default
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
140 Agere Sy stem s Inc.
9 SPE Mapper Registers (continued)
Table 151. SPE_ROHC2, Receive Overhead Expected Value f or C2 Byte (R/W)
Table 152. SPE_RMON1SPE_RMON5, Receive Monitor Values (RO)
Address Bit Name F un ction Reset
Default
0x30011 15:8 Reserved. 0x00
7:0 SPE_C2DEXP[7:0] Programmable Expected Value for C2 Byte. The
prog rammed value is checked against the actual rec eived
value to determine payload label mis m at ch e r r or .
0x00
Address Bit Name Function Reset
Default
0x30012 15:3 Reserved. 0x000
2:0 SPE_PRDIDMON[2:0] Received Byte G1[3:1] Monitor Value. 0x0
0x30013 15:8 SPE_N1DMON[7:0] Received Byte N1[7:0] Monitor Value. 0x00
7:0 SPE_K3DMON[7:0] Received Byte K3[7:0] Monitor Value. 0x00
0x30014 15:8 SPE_F2DMON1[7:0] Received Byte F2[7:0] Previous Mon itor Value. 0x00
7:0 SPE_F2DMON0[7:0] Received Byte F2[7:0] Current Monitor Value. 0x00
0x30015 15:8 SPE_F3DMON1[7:0] Received Byte F3[7:0] Previous Mon itor Value. 0x00
7:0 SPE_F3DMON0[7:0] Received Byte F3[7:0] Current Monitor Value. 0x00
0x30016 15:8 Reserved. 0x00
7:0 SPE_C2DMON[7:0] Received Byte C2[7:0] Monitor Value. 0x00
Table 153. SPE_MAP_CTL1SPE_MAP_CTL3, Tx/Rx Control for Mapping Functions (R/W)
Address Bit Name Function Reset
Default
0x30018 15 SPE_T_STS1_MODE Transmi t STS-1 Mode . When 1, S TS-1 mod e is
selected for transmit data; when 0, STS-3/STM-1. 0
14 SPE_T_NSMI_MODE Tran smit Serial STS-1 SPE Mode. When 1, serial
data is ac c epted through an external serial interface
and mapped to STS-1 SP E.
0
13:12 SPE_TDS3SRCTYP[1:0] Transmit DS 3 Source Type. Two bit value selects one
of three DS3 input sources.
00 or 01 = DS3 data from M13 block.
10 = DS3 data from loopback (Rx to Tx).
11 = DS3 data from external clear channel.
00
11 SPE_T_VT_DS3 Transmit VT or DS3 In put. When 1, VT input data is
selected; when 0, DS3 input data is selected. 0
10 SPE_T_AU3_TUG3 Transmit AU-3/STS -1 or TUG-3 Mappin g. When 1,
AU-3/STS-1 mapping is selected; when 0, TUG-3 map-
ping is selected.
0
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
141Agere Systems In c.
0x30018 9:8 SPE_TSTS3TMSLOT[1:0] Tra nsmit S TS-3 Time-Slot Va lue. Two-bit value
selects one of three STS-1 time slots with in an STS-3
in the transmit direction.
00 = No output .
01 = STS-1/ TUG-3 data for slot 1 in STS-3/STM-1.
10 = STS-1/ TUG-3 data for slot 2 in STS-3/STM-1.
11 = STS-1/ TUG-3 data for slot 3 in STS-3/STM-1.
00
7 SPE_R_STS1_MODE Receive STS- 1 Mode. When 1, STS-1 mode is
selected for receive data. W hen 0, STS-3/STM-1. 0
6 SPE_R_NSMI_MODE Recei v e Serial STS-1 SPE Mode. When 1, serial data
demapped from STS-1 SPE is sent out to an ex ternal
serial interface.
0
5:4 SPE_RDS3OUTTYP[1:0] Rece ive DS 3 Output Typ e. Two-bit value selects o ne
of th ree D S 3 output dev i ces.
00 or 01 = DS3 data to M13 block.
10 = DS3 data to loopback (RX to TX).
11 = DS3 data to external clear channel .
00
3SPE_R_VT_DS3Receive VT or D S3 Outp u t . When 1, VT data is out-
put; when 0, DS3 data is output. 0
2 SPE_R_AU3_TUG3 Receive AU-3/STS-1 or TUG-3 Demapping. When 1,
AU-3/STS-1 demapping is selected; when 0, TUG-3
demapping is selected.
0
1:0 SPE_RSTS3TMSLOT[1:0] Receive STS-3 Time Slot. Sel ec ts one of three ST S-1
time slots within an STS-3/STM-1 frame in the receive
direction.
00 = No selection.
01 = STS-1/ TUG-3 data from slot 1 in STS-3/STM-1 .
10 = STS-1/ TUG-3 data from slot 2 in STS-3/STM-1 .
11 = STS-1/ TUG-3 data from slot 3 in STS-3/STM-1 .
00
0x30019 15:13 SPE_T_NSMI_BIT[2:0] Transmit S e rial Syn c Position Within a Byte Bound-
ary. Selects one of eight posit ions f or t he bit sync of the
serial transmit data stream (previously known as the
NSMI interface data).
0x0
12:10 SPE_R_NSMI_BIT[2:0] Receive Serial Sync Posit ion Within a Byte Bound-
ary. Selects one of eight posit ions f or t he bit sync of the
serial receive data stream (previously known as the
NSMI interface data).
0x0
9:6 Reserved. 0x0
5 SPE_TDS3CLK_EDGE External DS3 Clock Edge Select for DS3 Input Data
Retiming.
0 = Negative edge is selected.
1 = Positive edge is selected.
0x0
Table 153. SPE_MAP_CTL1SPE_MAP_CTL3, Tx/Rx Cont rol for Mapping Functions (R/W) (continued)
Address Bit N am e Function R eset
Default
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
142 Agere Sy stem s Inc.
9 SPE Mapper Registers (continued)
Table 153. SPE_MAP_CTL1SPE_MAP_CTL3, Tx/Rx Control for Mapping Functions (R/W ) (continued)
Address Bit Name Function Reset
Default
0x30019 4 SPE_PHDETUP_INV Phase Detector Up Signal In vert. When 1, the phase
detector up signal requ ired for an external PLL in DS3
mode, is inverted from its current phase.
0x0
3 SPE_PHDETDN_INV Phase Detector Down Signal Invert. W hen 1, the
phase detector down signal required for an exte rnal
PLL in DS3 mode, is inverted from its current phase.
0x0
2 SPE_TDS3BPV_IN Transmit DS3 BP V/Data In. When 1, DS3NEGDATAIN
(K22) i nput pin i s used a s e xternal B3ZS bipolar viola-
tion indication instead of negative input pul se.
0x00
1 SPE_TDS3_BIPOLAR Transmit DS3 Bip olar/Unipolar. When 1, the DS3
inp u t is bipola r; when 0, the DS 3 input is unipolar. 0x00
0 SPE_RDS3_BIPOLAR Receive DS3 Bipolar/Unipolar. When 1, the DS3 out-
put is bipolar; when 0, the DS3 o utput is unipolar. 0x00
0x3001A 15 Reserved.
14:8 SPE_T_NSMI_COL[6:0] Transm it Serial S ync Position . Selects one of
90 positions al igned with 90 SONET columns wit hin
SONET row 9 for the bit sync of the serial transmit data
stream (previously known as the NSMI interface d ata).
0x0
7Reserved.
6:0 SPE_R_NSMI_COL[6:0] Receive Se rial S ync Po sition . Selects one of 90 posi-
tions aligned with 90 SONET columns within SONET
row 9 for the bit sync of the serial transmit dat a str eam
(prev iously kn own as the N SMI interface data).
0x0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
143Agere Systems Inc.
9 SPE Mapper Registers (continued)
Table 154. SPE_TAOH_CTL1SPE_TAOH_CTL3, Tx Control for Alarm/OH Functions (R/W)
Address Bit Name Function Reset
Default
0x3001B 15:10 Reserved. 0x00
9 SPE_TD_OEPAR Transmit Data Odd/Even Parity Gene rate. Whe n 0, odd
par ity is generated for transm it data; when 1, even pa rity is
generated.
00
8 SPE_ TREIRDISEL REI and RDI Input Select. Control bit, when 1, inserts
REI/RDI val ue from the protected channel REI/RD I l in es ;
otherwise, the v a l u e is inserted from the direct feedback
(receive to trans mit) lines.
0
7 SPE_TAISPINS Force Path AIS in the Output. Active-high. 0
6SPE_TN1INSTransmi t N1 In ser t Con trol. Control bit, when 1, inserts
the value i n SPE_TN1DINS[7:0] (Table 157) i nto the outgo-
ing N1 byte in the ST S-1 frame; otherwis e, the insert value
depends on SPE_TPOAC_N1 (Table 154) control bit.
1
5 SPE_TK3INS Tran sm it K3 In sert Control. Control bit, when 1, insert s
the value i n SPE_TK3DINS[7:0] (Table 157) into the outgo-
ing K3 bytes; otherwise, the inse r t value depends on
SPE_TPOAC_K3 (Table 154) control bit.
0
4SPE_TH4INSTransmi t H4 In ser t Con trol. Control bit, when 1, inserts
the overhead default value SMPR_OH_ DEFLT (Table 67)
into the outgoing H 4 by te s; otherwise, t he insert value
depends on SPE_TPOAC_H4 (Table 154) control bit.
0
3 SPE_TF3INS Tran sm it F3 Inser t Control. Control bit, when 1, inserts
the value i n SPE_TF3DINS[7:0] (Table 157) into the outgo-
ing F3 byte in the STS- 1 frame; otherwise, the ins ert value
depends on SPE_TPOAC_F3 (Table 154) control bit .
1
2 SPE_TF2INS Tran sm it F2 Inser t Control. Control bit, when 1, inserts
the value i n SPE_TF2DINS[7:0] (Table 157) into the outgo-
ing F2 byte in the STS- 1 frame; otherwise, the ins ert value
depends on SPE_TPOAC_F2 (Table 154) control bit .
1
1 SPE_TC2INS Tran smi t C2 In ser t Con trol. Control bit, when 1, inserts
the value i n SPE_TC2DINS[7:0] (Table 157) i nto the outgo-
ing C2 byte in the ST S-1 frame; otherwis e, the insert value
depends on SPE_TPOAC_C2 (Table 154) control bit.
1
0 SPE_TJ1INS Transmit J1 Insert Control. Control bit, when 1, inserts
the value in SPE_TJ1DINS[164][7:0] (Table 163) into the
outgoing J1 bytes; otherwise, the insert value depends on
SPE_TPOAC_J1 (Table 154) control bit.
0
0x3001C 15:8 Reserved. 0x00
7 SPE_TPOAC_OEPMON Tra n s mi t P OAC Odd or Even Parity Mo nitor . When 1,
even parity i s checked for transmit POAC channels; other-
wise, odd parity is checked.
0
6 SPE_TPOAC_N1 Tran sm it POAC N1 Byte Control. Control bit, when 0, the
default value i s inserted i nto the N1 byte in th e transmit
frame. When 1, t he TP OAC value is i ns erted in the N1 byte.
0
TMXF 28155/51 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
144 Agere Sy stem s Inc.
9 SPE Mapper Registers (continued)
Table 154. SPE_TAOH_CTL1SPE_TAOH_CTL3, Tx Control for Alarm/OH Functions (R/W) (continued)
Address Bit Name Function Reset
Default
0x3001C 5 SPE_TPOAC_K3 Transmit P OAC K3 Byte Control. Control bit, when 0, the
default value is ins erted int o the K3 byte in the tr an smit
frame. When 1, the TPOAC value is inserted in the K3 byte.
0
4 SPE_TPOAC_H4 Transmi t P OAC H4 Byte Control. Control bit, when 0, the
default value is inserted int o the H4 byte in the transmit
frame. When 1, the TPOAC value is inserted in the H4 byte.
0
3 SPE_TPOAC_F3 Tr ansmi t POAC F3 Byte Control. Control bit, when 0, the
default value is ins erted int o the F3 byte in the transmit
frame. When 1, the TPOAC value i s inserted in the F3 byte.
0
2 SPE_TPOAC_F2 Transmit POAC F2 Byte Control. Control bit, when 0, the
default value is ins erted int o the F2 byte in the transmit
frame. When 1, the TPOAC value i s inserted in the F2 byte.
0
1 SPE_TPOAC_C2 Transmi t P OAC C2 Byte Control. Control bit, when 0, the
default value is inserted int o the C2 byte in the transmit
frame. When 1, the TPOAC value is inserted in the C2 byte.
0
0 SPE_TPOAC_J1 Transmi t P OAC J1 Byte Control. Control bit, when 0, the
default value is ins erted int o the J1 byte in the transmit
frame. When 1, the TPOAC value is inserted in the J1 byte.
0
0x3001D 15:8 SPE_NPI_BYTE2[7:0] Transmit NPI Byte 2. Programmable value f o r NPI b yt e 2 to
be inserted into the NPI byte location. 0
7:0 SPE_NPI_BYTE1[7:0] Transmi t NP I Byte 1. Programmable value for NPI byte 1 to
be inserted into the NPI byte location. 0
0x3001E 15:8 Reserved. 0x00
7 SPE_TPRDIINS Transmit RDI Software Insert. When 1, the value in
SPE_TG1DINS[3:1] is inser ted into G1[3:1] in the transmit
frame; otherwise, hardware insert is enabled for RDI-P inser-
tion.
1
6 SPE_TTIM_PRDIINH Transmit Trace Indicator Mismatch RDI Inhibit. Control
bit, when 1, the T IM failure will not contribute to the auto-
mat ic insertion of RDI-P; otherwi se, the associated a larm
contributes to the generation of RDI-P.
0
5 SPE_TPLM_PRDIINH Transmit Path Label Mismatch RDI Inhibit. Control bit,
when 1, the PLM failure will not contribute to the automatic
insert ion of RDI -P; otherwise, the associated alarm contrib-
utes to the generation of RDI-P.
0
4 SPE_TUNEQ_PRDIINH Transmit Path Unequipped RDI Inhibit. Control bit, when
1 , the unequipped failure will not con t ribute to the automatic
insert ion of RDI -P; otherwise, the associated alarm contrib-
utes to the generation of RDI-P.
0
3 SPE_TLOP_PRDIINH Tr ansmit Loss of Pointer RDI Inhibit. Control bit, when 1,
the loss of pointer failure will not cont ribut e to the automatic
insert ion of RDI -P; otherwise, the associated alarm contrib-
utes to the generation of RDI-P.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
145Agere Systems Inc.
9 SPE Mapper Registers (continued)
Table 155. SPE_TRDIREI_CTL, Transmi t Path RDI and REI Control Register (R/W)
Table 156. SPE_TERRINS_CTL, Transmit Err o r Insertion Contro l (R/W)
Table 1 57. SPE_TOHINS1SP E_TOHINS4, Transmit OH Inser t Value (R/W)
Address Bit Name Function Res et
Default
0x3001E 2 SPE_TPAIS_PRDIINH Tr ansmi t Path AIS RDI I nhibi t. Control bit, when 1, the
path AIS failure will not contribut e to the automatic inser-
tion of RDI- P; otherwise, the ass ociated alarm co ntrib-
utes to the generation of RDI-P.
0
1 SPE_TPRDI_MODE Transmit PRDI Mode. When 1, 3-bit enhanced ERDI
mode is su pported; when 0, the 1-bit RDI mode is
supported.
0
0 SPE_TREIP_INH Transmit REI-P Inhib it. When 1, inhibits automatic inser-
tion of REI-P. 0
Address Bit Name F un ction Reset
Default
0x3001F 15:3 Reserved. 0x000
2 SPE_BERR_INS Bit Error Insert Control Bit. When 1, bit error s w ill be
inserted on selected signals (whose error insert bits are set)
each tim e a pulse occurs on the BER_INS line.
0
1 SPE_TB3ERRINS Transmit B3 E rror Insertion. When 1, t he B3 output will be
inverted. 0
0 SPE_TREIERRINS Transmit G1 Er ror Insert. When 1, an error will be insert ed
continuously into the outgoing G1[7:4] bits , until reset to 0. 0
Address Bit Name F un ction Reset
Default
0x30020 15:8 SPE_TF3DINS[7:0] Transmit F3 Byte Value. This value is insert ed into the
tra nsmit F3 byte. 0x00
7:0 SPE_TF2DINS[7:0] Transmit F2 Byte Value . T his value is inserted into the
tra nsmit F2 byte. 0x00
0x30021 15:8 SPE_TC2DINS[7:0] Transmit C2 Byte Value . This value is inserted in to the
tran smit C 2 byte. 0x00
7:0 SPE_TK3DINS[7:0] Transmit K3 By te Value . This value is inserted in to the
tra nsmit K3 byte. 0x00
0x30022 15:8 SPE_TG1DINS[7:0] Transmit G1 Byte Value . This value is inserted into the
tra nsmit G1 byte. 0x00
7:0 SPE_TN1DINS[7:0] Transmit N1 By te Value . This value is inserted in to the
tran smit N 1 byte. 0x00
0x30023 15:8 Reserved. 0x00
7:0 SPE_TH4DINS[7:0] Transmit H4 By te Value . This value is inserted in to the
tran smit H 4 byte. 0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
146 Agere Sy stem s Inc.
9 SPE Mapper Registers (continued)
Table 158. SPE_SIGDEG_CTL1SPE_SIG DEG_CTL6, Signal Degrade BER Algorithm Parameters (R/W)
Table 1 59. SPE_SIGFAIL_CTL1SPE_SIGFAIL_CTL6, Signa l Fa il BER Algorithm Parameters (R/W)
Address Bit Name Function Reset
Default
0x30024
0x30025 15:0
2:0 SPE_SDNSSET[18:3]
SPE_SDNSSET[2:0] Signal Deg rad e Ns Set. Num ber of frames in a
monitoring block for SD. 0x0000
0
0x30025 15 Reserved. 0
14:7 SPE_SDMSET[7:0] Signal Deg rad e M Se t. Threshold of the number of bad
monitoring bl ocks in an observation i nterval. If the
number of bad b locks is above this threshold, then signal
degrade (SD) is set.
0x00
6:3 SPE_SDLSET[3:0] Signal Degrade L Set. Error threshold for determining a
bad monitoring block. 0x0
0x30026 15:0 SPE_SDBSET[15:0] Signal Deg rad e B Set. Numb er of moni to ring blocks. 0 x0000
0x30027
0x30028 15:0
2:0 SPE_SDNSCLEAR[18:3]
SPE_SDNSCLEAR[2:0] Signal Deg rade Ns Clear. Number of frames in a
monitoring block for SD. 0x0000
0
0x30028 15 Reserved. 0
14:7 SPE_SDMCLEAR[7:0] Signal Deg rad e M Clear. Threshold of the number of
bad monitoring blocks in an observation inte rval. If the
num ber of bad block s is below this thres hol d, then SD is
cleared.
0x00
0x30028 6:3 SPE_SDLCLEAR[3:0] Signal Degrade L Cl ear. Error threshold f or determining
a bad monitoring block. 0x0
0x30029 15:0 SPE_SDBCLEAR[15:0] Signal Deg rad e B Clear. Number of moni to ring bl ocks. 0x0000
Address Bit Name F un ction Reset
Default
0x3002A
0x3002B 15:0
2:0 SPE_SFNSSET[18:3]
SPE_SFNSSET[2:0] Sign a l Fail Ns Se t. Number of frames in a mo n ito rin g
block for SF. 0x0000
0
0x3002B 15 Reserved. 0
14:7 SPE_SFMSET[7:0] Si gn a l Fa il M Se t. Threshold of the number of bad
monitoring bl ocks in an observation i nterval. If the
number of bad bloc ks is abov e this threshold, then signal
f ail (SF) is set.
0x00
0x3002B 6:3 SPE_SFLSET[3:0] Si gn a l Fail L Set. Error threshold for determining a bad
monitoring block. 0x0
0x3002C 15:0 SPE_SFBSET[15:0] Si gnal Fail B Set. Number of monitor ing blocks. 0x 0000
0x3002D
0x3002E 15:0
2:0 SPE_SFNSCLEAR[18:3]
SPE_SFNSCLEAR[2:0] Signal Fail Ns Cl ear. Number of frames in a monitoring
block for SF. 0x0000
0
0x3002E 15 Reserved. 0
14:7 SPE_SFMCLEAR[7:0] Signal Fail M Clear. Threshold of the number of bad
monitoring bl ocks in an observation i nterval. If the
number of bad blocks is below this threshold, then SF is
cleared.
0x00
0x3002E 6:3 SPE_SFLCLEAR[3:0] Sign a l Fail L Clea r. Error threshold for d eter mining a
bad monitoring block. 0x0
0x3002F 15:0 SPE_SFBCLEAR[15:0] Signa l Fa il B Clear. Number of monitor ing blocks. 0x0000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
147Agere Systems Inc.
9 SPE Mapper Registers (continued)
Table 160. SPE_ERRCNT1SPE_ERRCNT6, B3, G1, Bipo lar Violation, and Excess Zero Erro r Count (R O)
Table 161. SPE_PTRCNT1SPE_PTRCNT3, Receive P o inter Increment and Decrement Count (RO)
Table 162. SPE_R J1MON_R1SPE_RJ1MON_R32, Receive J1 Monitor Values (RO)
Address Bit N am e Function Reset
Default
0x30030 15:0 SPE_B3ECNT[15:0] B3 Error Count. The v alue of internal running counter is
transferre d into this holding regi ster coinciden t with the
end of a perf ormanc e monitor interval.
0x0000
0x30031 15:0 SPE_G1ECNT[15:0] G1 Error Count. The val ue of internal running counter is
transferre d into this holding regi ster coinciden t with the
end of a perf ormanc e monitor interval.
0x0000
0x30033
0x30033
0x30034
15:8
7:0
15:0
SPE_BIPOL_CNT[23:16]
SPE_BIPOL_CNT[15:0]
Reserved.
Bipolar Coding Violation Occurrence Count. The
value o f internal running counter is tran sferred into this
holding register coincident with the end of a
performance monitor interv al .
0x0000
00
0x30035
0x30035
0x30036
15:8
7:0
15:0
SPE_EXZ_CNT[23:16]]
SPE_EXZ_CNT[15:0]
Reserved.
Excess Zero Occurrence Count. The value of internal
running count er is transferred into this holding reg ister
coincident with the end of a performance monitor
interval.
0x0000
00
Address Bit Nam e Function Reset
Default
0x30037 15:10 Reserved. 0x00
9:0 SPE_STORED_PTR[9:0] Stored TU-3 Pointer Location. 0x000
0x30038 15:11 Reserved. 0x00
10:0 SPE_RPTR_INC[10:0] Pointer Increment Count from P ointer Interpreter
Block. The value of inte rnal running counter is
transferred into this holding register coincident with
the end of a performance monitor interval.
0x000
0x30039 15:11 Reserved. 0x00
10:0 SPE_RPTR_DEC[10:0] P o inter Decrement Count f rom Pointer
Interpreter Block. The value of internal running
counter is trans ferred in to this holding register
coincident with the end of a performance monitor
interval.
0x000
Address Bit Nam e Function Reset
Default
0x30042
0x30061
15:0 SPE_RJ1DMON[164][7:0] Receive J1 Monitor Value. These registers capture
a 64-byte sequence fro m the J1 byte of each frame. 0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
148 Agere Sy stem s Inc.
9 SPE Mapper Registers (continued)
Table 163. SPE_TJ1DINS_R1S PE_T J1DINS_ R32, Tra nsmit J1 Inser t Value s (R/W)
Table 164. SPE_RJ1DEXP_R1SPE_RJ1D EXP_ R 3 2 , Recei v e J1 Exp ect e d Valu e s (R/W )
Table 165. SPE_SCRATCH_R, Scratch P ad (R/W)
Address Bit Name Function Reset
Default
0x30062
0x30081
15:0 SPE_TJ1DINS[164][7:0] Tran sm it J1 Insert Value. T hes e registers allow a
64-by te sequence to be inserted into the J1 byte of
each frame.
0x00
Address Bit Name Function Reset
Default
0x30082
0x300A1
15:0 SPE_RJ1DEXP[164][7:0] Receive J1 Expected V alue. These registers hol d a
programmable 64-b yte expected sequence f or the J1
byte of each frame.
0x00
Address Bit Name Function Reset
Default
0x300A2 15:0 SPE_SCRATCH[15:0] Scratc h Re gist er . Allo ws the control syst em to v erify
read and write operations to the device without
affec tin g de vi ce operation.
0x0000
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
149Agere Sy stem s Inc.
9 SPE Mapper Registers (continued)
9.2 SPE Mapp er Reg ister Map
Note: In Table 166, the reset default of all reserved bits is 0. Shading denotes reserved b its.
Ta ble 166. SPE Mapper Register Map
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SPE Version and Identif ication RegistersRO
0x30000 SPE_
VERSION_R SPE_VERSION[2:0] SPEMPR_ID[7:0]
0x30001
One Shot (0 to 1 transition) Control Bit ParametersR/W
0x30002 SPE_
ONESHOT SPE_
BIPOL_ERR SPE_
SFCLEAR SPE_SFSET SPE_
SDCLEAR SPE_SDSET
Delta and Event P arametersCOR/COW
0x30003 SPE_EVENT1 SPE_
RDATA_PE SPE_
TPOAC_PE SPE_
K3DMOND SPE_
N1DMOND SPE_
C2DMOND SPE_
F2DMOND SPE_
F3DMOND
0x30004 SPE_EVENT2 SPE_PRDI
DMOND SPE_RNDFE SPE_RDECE SPE_RINCE SPE_RAISD SPE_RLOPD SPE_SFB3D SPE_SDB3D SPE_
RUNEQD SPE_RPLMD SPE_RTIMD
0x30005 SPE_EVENT3 SPE_RSY5
2LOSD SPE_
RV1LOSD SPE_RSPE
LOSD SPE_RJ0J1
V1LOSD SPE_RDS3
LOCD SPE_
RC52LOCD SPE_
RLSLOCD SPE_
TSY52LOSD SPE_
TV1LOSD SPE_
TSPELOSD SPE_TJ0J1V
1LOSD SPE_
TDS3LOCD SPE_
TC52LOCD SPE_
TLSLOCD
Interrupt Mask Parameters for INT PinsR/W
0x30006 SPE_MASK1 SPE_
RDATA_PM SPE_
TPOAC_PM SPE_
K3DMONM SPE_
N1DMONM SPE_
C2DMONM SPE_
F2DMONM SPE_
F3DMONM
0x30007 SPE_MASK2 SPE_PRDI
DMONM SPE_RNDFM SPE_
RDECM SPE_RINCM SPE_RAISM SPE_RLOPM SPE_SFB3M SPE_SDB3M SPE_
RUNEQM SPE_RPLMM SPE_RTIMM
0x30008 SPE_MASK3 SPE_RSY5
2LOSM SPE_
RV1LOSM SPE_RSPE
LOSM SPE_RJ0J1
V1LOSM SPE_RDS3
LOCM SPE_
RC52LOCM SPE_
RLSLOCM SPE_
TSY52LOSM SPE_
TV1LOSM SPE_
TSPELOSM SPE_TJ0J1V
1LOSM SPE_
TDS3LOCM SPE_
TC52LOCM SPE_
TLSLOCM
State and V alue Par ameter sRO
0x30009 SPE_STATE1 SPE_RAIS SPE_RLOP SPE_SFB3 SPE_SDB3 SPE_RUNEQ SPE_RPLM SPE_RTIM
0x3000A SPE_STATE2 SPE_
RSY52LOS SPE_
RV1LOS SPE_
RSPELOS SPE_RJ0J1
V1LOS SPE_
RDS3LOC SPE_
RC52LOC SPE_
RLSLOC SPE_
TSY52LOS SPE_
TV1LOS SPE_
TSPELOS SPE_
TJ0J1V1LOS SPE_
TDS3LOC SPE_
TC52LOC SPE_
TLSLOC
Receive Control Parameters for Alarm and Overhead FunctionsR/W
0x3000B SPE_RAOH_
CTL1 SPE_RD_
OEPAR SPE_J1MONMODE[2:0] SPE_RPRDI
_MODE SPE_G1BTB
LKCNT SPE_B3BTB
LKCNT SPE_RPOAC
_OEPINS
0x3000C SPE_RAOH_
CTL2 SPE_CNTDLOPCNT[1:0] SPE_8ORMA
JORITY SPE_
PAISINS SPE_PAIS_
AISINH SPE_PAIS_
LOPINH SPE_PAIS_
SFB3INH SPE_PAIS_
SDB3INH SPE_PAIS_
UNEQINH SPE_PAIS_
PLMINH SPE_PAIS_
TIMINH
0x3000D SPE_RAOH_
CTL3 SPE_AIS_LO
SSY52INH SPE_AIS_
LOSV1INH SPE_AIS_LO
SSPEINH SPE_AIS_LO
SJ0J1V1INH SPE_AIS_
LOCDS3INH SPE_AIS_
LOC52INH SPE_AIS_
LOCINH
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
150 A
g
ere S
y
stems Inc.
9 SPE Mapper Registers (continued)
Table 166. SPE Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Continuous N-Times Detect ValuesR/W
0x3000E
0x3000F SPE_CNTD1 SPE_CNTDC2[3:0] SPE_CNTDF3[3:0] SPE_CNTDF2[3:0] SPE_CNTDJ1[3:0]
0x30010 SPE_CNTD2 SPE_CNTDN1[3:0] SPE_CNTDPRDI[3:0] SPE_CNTDK3[3:0]
Receive Overh ead Expected Value for C 2 ByteR/W
0x30011 SPE_ROHC2 SPE_C2DEXP[7:0]
Receive Monitor ValuesRO
0x30012 SPE_RMON1 SPE_PRDIDMON[2:0]
0x30013 SPE_RMON2 SPE_N1DMON[7:0] SPE_K3DMON[7:0]
0x30014 SPE_RMON3 SPE_F2DMON1[7:0] SPE_F2DMON0[7:0]
0x30015 SPE_RMON4 SPE_F3DMON1[7:0] SPE_F3DMON0[7:0]
0x30016 SPE_RMON5 SPE_C2DMON[7:0]
0x30017
Transmit/Receive Control Parameters for Mapping FunctionsR/W
0x30018 SPE_MAP_CTL1 SPE_T_ST
S1_MODE SPE_T_NS
MI_MODE SPE_TDS3SRCTYP[1:0] SPE_T_
VT_DS3 SPE_T_
AU3_TUG3 SPE_TSTS3TMSLOT[1:0] SPE_R_STS
1_MODE SPE_R_NS
MI_MODE SPE_RDS3OUTTYP[1:0] SPE_R_
VT_DS3 SPE_R_
AU3_TUG3 SPE_RSTS3TMSLOT[1:0]
0x30019 SPE_MAP_CTL2 SPE_T_NSMI_BIT[2:0] SPE_R_NSMI_BIT[2:0] SPE_TDS3
CLK_EDGE SPE_PHDE
TUP_INV SPE_PHDE
TDN_INV SPE_TDS3
BPV_IN SPE_TDS3
_BIPOLAR SPE_RDS3
_BIPOLAR
0x3001A SPE_MAP_CTL3 SPE_T_NSMI_COL[6:0] SPE_R_NSMI_COL[6:0]
Tr ansmit Control Param eters for Alarm and Overhead FunctionsR/W
0x3001B SPE_TAOH_
CTL1 SPE_TD_
OEPAR SPE_TREIR
DISEL SPE_
TAISPINS SPE_
TN1INS SPE_
TK3INS SPE_
TH4INS SPE_
TF3INS SPE_
TF2INS SPE_
TC2INS SPE_
TJ1INS
0x3001C SPE_TAOH_
CTL2 SPE_TPOA
C_OEPMON SPE_
TPOAC_N1 SPE_
TPOAC_K3 SPE_
TPOAC_H4 SPE_
TPOAC_F3 SPE_
TPOAC_F2 SPE_
TPOAC_C2 SPE_
TPOAC_J1
0x3001D SPE_TAOH_
CTL3 SPE_NPI_BYTE2[7:0] SPE_NPI_BYTE1[7:0]
Transmit Path RDI and REI Control ParametersR/W
0x3001E SPE_TRDIREI_
CTL SPE_TPRDII
NS SPE_TTIM_
PRDIINH SPE_TPLM
_PRDIINH SPE_TUNE
Q_PRDIINH SPE_TLOP
_PRDIINH SPE_TPAIS
_PRDIINH SPE_TPRDI
_MODE SPE_TREIP
_INH
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
151Agere Sy stem s Inc.
9 SPE Mapper Registers (continued)
Table 166. SPE Mapper Re gister Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transm it Err o r Insertion Con tr o l ParametersR/W
0x3001F SPE_TERRINS_CTL SPE_BERR_INS SPE_TB3ERRINS SPE_TREIERRINS
Transm it OH Insert ValueR/W
0x30020 SPE_TOHINS1 SPE_TF3DINS[7:0] SPE_TF2DINS[7:0]
0x30021 SPE_TOHINS2 SPE_TC2DINS[7:0] SPE_TK3DINS[7:0]
0x30022 SPE_TOHINS3 SPE_TG1DINS[7:0] SPE_TN1DINS[7:0]
0x30023 SPE_TOHINS4 SPE_TH4DINS[7:0]
Signal Degrade Set/Clear Control RegistersR/W
0x30024 SPE_SIGDEG_CTL1 SPE_SDNSSET[18:3]
0x30025 SPE_SIGDEG_CTL2 SPE_SDMSET[7:0] SPE_SDLSET[3:0] SPE_SDNSSET[2:0]
0x30026 SPE_SIGDEG_CTL3 SPE_SDBSET[15:0]
0x30027 SPE_SIGDEG_CTL4 SPE_SDNSCLEAR[18:3]
0x30028 SPE_SIGDEG_CTL5 SPE_SDMCLEAR[7:0] SPE_SDLCLEAR[3:0] SPE_SDNSCLEAR[2:0]
0x30029 SPE_SIGDEG_CTL6 SPE_SDBCLEAR[15:0]
Signal Fail Set/Clear Control RegistersR/W
0x3002A SPE_SIGFAIL_CTL1 SPE_SFNSSET[18:3]
0x3002B SPE_SIGFAIL_CTL2 SPE_SFMSET[7:0] SPE_SFLSET[3:0] SPE_SFNSSET[2:0]
0x3002C SPE_SIGFAIL_CTL3 SPE_SFBSET[15:0]
0x3002D SPE_SIGFAIL_CTL4 SPE_SFNSCLEAR[18:3]
0x3002E SPE_SIGFAIL_CTL5 SPE_SFMCLEAR[7:0] SPE_SFLCLEAR[3:0] SPE_SFNSCLEAR[2:0]
0x3002F SPE_SIGFAIL_CTL6 SPE_SFBCLEAR[15:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
152 A
g
ere S
y
stems Inc.
9 SPE Mapper Registers (continued)
Table 166. SPE Mapper Register Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
B3 and G1 Error CountsRO
0x30030 SPE_ERRCNT1 SPE_B3ECNT[15:0]
0x30031 SPE_ERRCNT2 SPE_G1ECNT[15:0]
0x30032
Bipolar Violation and Excess Zero Counts for DS3RO
0x30033 SPE_ERRCNT3 SPE_BIPOL_CNT[23:16]
0x30034 SPE_ERRCNT4 SPE_BIPOL_CNT[15:0]
0x30035 SPE_ERRCNT5 SPE_EXZ_CNT[23:16]
0x30036 SPE_ERRCNT6 SPE_EXZ_CNT[15:0]
Receive Pointer Increment and Decrement CountsRO
0x30037 SPE_PTRCNT1 SPE_STORED_PTR[9:0]
0x30038 SPE_PTRCNT2 SPE_RPTR_INC[10:0]
0x30039 SPE_PTRCNT3 SPE_RPTR_DEC[10:0]
0x3003A
0x30041
J1 Byte Receive MonitorRO
0x30042
0x30061
SPE_RJ1MON_R1
SPE_RJ1MON_R32
SPE_RJ1DMON[2][7:0]
SPE_RJ1DMON[64][7:0]
SPE_RJ1DMON[1][7:0]
SPE_RJ1DMON[63][7:0]
J1 Byte Transmit InsertR/W
0x30062
0x30081
SPE_TJ1DINS_R1
SPE_TJ1DINS_R32
SPE_TJ1DINS[2][7:0]
SPE_TJ1DINS[64][7:0]
SPE_TJ1DINS[1][7:0]
SPE_TJ1DINS[63][7:0]
J1 Byte Expected ValuesR/W
0x30082
0x300A1
SPE_RJ1DEXP_R1
SPE_RJ1DEXP_R32
SPE_RJ1DEXP[2][7:0]
SPE_RJ1DEXP[64][7:0]
SPE_RJ1DEXP[1][7:0]
SPE_RJ1DEXP[63][7:0]
Scratch RegisterR/W
0x300A2 SPE_SCRATCH_R SPE_SCRATCH[15:0]
0x300A3
0x301FF
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
153Agere Systems Inc.
10 VT/TU Mapper Registers
Ta ble of Conte nts
Contents Page
10 VT/TU Mapper Registers ................................................................................................................................ 153
10.1 VT/TU Mapper Register Des c riptions ................... ..................... . .................. . .................. . ...................... 154
10.2 VT/TU Mapper Register Map .. ....................... .......................... ..................... . ......................................... 171
Tables Page
Table 167. VT_V ERS ION _R, V T Mapper Ready, V ersion , and Identification (RO) ................ ................... ......... 154
Table 168. V T_G DELTA , V T Global Deltas (COR/COW) . ............................ .......................... ............................154
Table 1 69. VT_REVENT_ DELTA[128], Receive Event and Delta Per Channel (COR/COW) ..... .. ....... ..... .....155
Table 170. VT_LOPOHFAIL_EVENT, Low-Order Pa th Overhead Failure Event (COR/COW) ..........................155
Table 171. VT_TEVENT_DELTA[128], Transmit E vent and Delta Per Channel (COR/COW) ........................1 56
Table 172. V T_GMASK, VT Global Masks (R/W ) ........................... ....... ....... ............ ....... ....... ............ ................156
Table 173. VT_RMASK[128], Receive Masks Per Channel (R/W) ................ ..... .. ..... .. ....... ..... ..... .. ..... .. ..... ..... 157
Table 174. VT_L OPOHFAIL_MASK, Low-Order Path Overhead Failure Mask (R/W) .......................................158
Table 175. V T_TMASK[128], T ransm it Masks Per Channel (R/W ) ................ ...................................... ........... 1 58
Table 176. V T_G S TATE, V T Global State (RO) .... ......................... ........................................ ............................ 158
Table 177. V T_RSTA TE [128], Recei ve State Per Channel (RO) .................... ............. .................... ............... 159
Table 178. VT_RAPSSTATE[128], Rec eive APS St ate Per Channel (RO ) ....................... .......................... .... 159
Table 179. VT_TSTATE[128], Transm it S tate Per Channel (RO) .................. ................... ................... ........... 1 59
Tabl e 180. VT_ GCTL1, VT Global Control Regi ster 1 (R/W) .............................................................................. 160
Tabl e 181. VT_ GCTL2, VT Global Control Regi ster 2 (R/W) .............................................................................. 160
Tabl e 182. VT_ GCTL3, VT Global Control Regi ster 3 (R/W) .............................................................................. 161
Tabl e 183. VT_ GCTL4, VT Global Control Regi ster 4 (R/W) .............................................................................. 161
Tabl e 184. VT_ GCTL5, VT Global Control Regi ster 5 (R/W) .............................................................................. 162
Table 185. VT_SI GDEG_CTL1, Signal Degrade Control Regi ster 1 (R/W) ............ ................. ................ ........... 1 63
Table 186. VT_SI GDEG_CTL2, Signal Degrade Control Regi ster 2 (R/W) ............ ................. ................ ........... 1 63
Table 187. VT_SI GDEG_CTL3, Signal Degrade Control Regi ster 3 (R/W) ............ ................. ................ ........... 1 63
Table 188. VT_SI GDEG_CTL4, Signal Degrade Control Regi ster 4 (R/W) ............ ................. ................ ........... 1 63
Table 189. VT_SI GDEG_CTL5, Signal Degrade Control Regi ster 5 (R/W) ............ ................. ................ ........... 1 64
Table 190. VT_SI GDEG_CTL6, Signal Degrade Control Regi ster 6 (R/W) ............ ................. ................ ........... 1 64
Table 191. VT_SI GDEG_CTL7, Signal Degrade Control Regi ster 7 (R/W) ............ ................. ................ ........... 1 64
Table 192. VT_SIGFAIL_CT L1, Signal Fail Control Register 1 (R/W) ................................................................ 164
Table 193. VT_SIGFAIL_CT L2, Signal Fail Control Register 2 (R/W) ................................................................ 164
Table 194. VT_SIGFAIL_CT L3, Signal Fail Control Register 3 (R/W) ................................................................ 164
Table 195. VT_SIGFAIL_CT L4, Signal Fail Control Register 4 (R/W) ................................................................ 165
Table 196. VT_SIGFAIL_CT L5, Signal Fail Control Register 5 (R/W) ................................................................ 165
Table 197. VT_SIGFAIL_CT L6, Signal Fail Control Register 6 (R/W) ................................................................ 165
Table 1 98. VT_T CTL[128], Transmit Control Per Channel (R/W) ............ .......... ......... .......... .......................... 166
Table 199. V T_TTUOH_CTL[128], Transmit TU Overhead Control Per Channel (R/W) .............. ................... 167
Table 200. V T_TAPSRIVAL[128], Transmit APS and Remo te In dication Per Chan nel (R/W) ........................167
Table 201. VT_TSWOW[128], Transmit Software Overwrite Per Channe l (R/W) .. ............. . ....................... . ... 167
Table 2 02. VT_T SIG_CTL[128], Transmit Signaling Control Per Channel (R/W) ....... ....... ..... ..... ....... .. ..... .....168
Table 203. VT_J2BYTE_INS_R[128][116], J2 Insert Values Per Channel (R/ W) .... ..... .. ..... ..... .. ..... .. ..... ..... 168
Table 204. VT_RCTL[128], Receive Control Per Channel (R/W) .................................................................... 168
Table 205. V T_RTUOH_CTL[128], Receive TU Overhead Control Per Channel (RO) .................. ....... .......... 169
Table 2 06. VT_RBIP2_CNT[128], Receive BIP-2 Error Count Per Channel (RO) . .................. . .................. .... 169
Table 2 07. VT_R REIV_CNT[128] , Receive REI-V Error Count Per Channe l (RO) ............. . ........................... 169
Table 2 08. VT_R PTR_CNT[128], Receive Pointer and Count P er Channel (RO) ....... ..... ..................... . ........ 170
Table 2 09. VT_J2BYTE_EXP_R[128][116], J2 Expect ed Val ues P er Channe l (R/W, RO ) .............. ........... 1 70
Table 2 10. VT_THRES_CTL[128], Transmit Elastic Store Threshold Control (R/W) ...................................... 170
Table 2 11. V T/TU M apper Regist er Map ........ ..................... . ................... .................. . .................. . ...................... 171
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
154 Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
10.1 VT/TU Ma pper Regis te r Descr iptions
The following tables describe the functions of all bits in the register map. For each address, the register bits are
indicated as either read/write ( R/W) or read only (RO), and the value of the bits on reset is given.
Table 167. VT_VERSION_R, VT Mapper Ready, Version, and Identification (RO)
Table 168. V T_G DELTA, VT Global Delt as (COR/COW)
Address Bit Name Function Reset
Default
0x20000 15 VT_RDY VT/TU M app er Ready. A 1 indicates that the VT/TU map-
per is ready for microprocessor reads and writes. 0x0
14:11 Reserved. 0x0
10:8 VT_VERSION[2:0] Block Version Number. These bits identify the versio n
number of the VT/TU mapper. NA
7:0 VT_ID[7:0] Bloc k ID Number. VT _ID returns a fixed value (0x02)
when read. 0x02
Address Bit Name Function Reset
Default
0x20001 15:3 Reserved. 0x000
2VT_SD_DVT/TU Signal Degrade Delta Bit. Logic 1 indicates a
change in the signal degrade condition ba sed on the in ter-
nal bit error rate detector.
0x1
1VT_SF_DVT/TU Signal Fail Delta Bit. Logic 1 indicates a change
in the signal fail condition based on the internal bit error
rate detector.
0x1
0 VT_H4LOMF_D H4 Mismatch Delta Bit. Logic 1 indicates a change in the
H4 loss of multiframe condition . 0x1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
155Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 169. VT_REVENT_D ELTA[128], Receive Event and Delta Per Channel (COR/COW)
Table 170. VT_LOPOHFAIL_EVENT, Low-Order Path Overhead Failure Event (COR/C OW)
Address Bit Name Function Reset
Default
0x20002
0x2001D
15 Reserved. 0
14 VT_RX_VTREI_E[128] Recei ve REI-V Even t Bit. Logic 1 indica tes that
REI-V was received. 0x0
13 VT_RX_BIP2ERR_E[128] Receive BIP-2 Error Event Bit. Logic 1 indic ates
that BIP-2 errors have been detected. 0x0
12 VT_RX_ESOVFL_E[128] Receive Elastic Store Overflow Event Bit. Logic
one indicates an elastic store overflow. 0x0
11 VT_APS_D[128] ERDI-V Delta Bit. Logic 1 in dicat es a V TAPS
change of value. 0x1
10 VT_ERDI_D[128] ERDI-V Delta Bit. Logic 1 indicates an ERDI -V
change of value. 0x1
9 VT_RDI_D[128] RDI-V Delta Bit. Logic 1 i ndicates an RDI-V
change of value. 0x1
8 VT_RFI_D[128] RF I-V Delta Bit. Logic 1 indicates an RFI-V
change of value. 0x1
7Reserved. 0
6 VT_LOPS_D[128] VT Loss of P hase Syn c Delta Bit. Logic 1 indi-
cates a change of VTLOPS state. 0x1
5VT_J2TIM_D[128] J2 Trace Identifier Mismatch. Logic 1 indicates a
change of J2TIM state. 0x1
4VT_PLM_D[128] VT Payload Label Mismatch Delta Bit. Lo gic 1
indicates a change of V TP LM state. 0x1
3 VT_UNEQ_D[128] VT Unequip Delta Bit. Logic 1 ind icates a change
of VTUNEQ state. 0x1
2 VT_SIZERR_D[128] VT Size Error Delta Bit. Logic 1 indicates a
change of VTSIZERR state. 0x1
1VT_AIS_D[128] AIS-V Delta Bi t. Logic 1 indicates a change of
VTAIS state. 0x0
0 VT_LOP_D[128] LOP-V Delta Bit . Logic 1 indicat es a change of
VTLOP state. 0x1
Address Bit Name Function Reset
Default
0x2001E 15:1 Reserved. 0x000
0 VT_LOPOH_FAIL_E Low-Order Path Overhead Fai lure Event Bit. Log ic 1
indicat es that a failure has occurred on the LOPOH
serial access channel.
0x0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
156 Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 171. VT_TEVENT _DELTA[128], Transmit Event and Delta Per Channel (COR/ COW)
Table 172. VT_GMASK, VT Global Masks (R/W)
Address Bit Name Function Reset
Default
0x2001F
0x2003A
15:5 Reserved. 0x000
4 VT_TX_ESOVFL_E[128] Transmit Elastic Store Overflo w Event Bit. Logic
1 indicates an elastic store overflow. 0x0
3Reserved. 0
2 VT_LOFS_D[128] Loss of Frame Sync Delta Bit. Logic 1 indicates a
change of VT_LOFS[128] (Table 179) state. 0x1
1 VT_TX_AIS_D[128] T ransmit AIS Delta Bit. Logic 1 indic ates a c hange
of VT_TX_AIS[128] (Table 179) state. 0x0
0VT_TX_LOC_D[128] Transmit Loss o f Clock Delta Bit. Logic 1 indi-
cates a change of VT_TX_LOC[1 28] (Table 179)
state.
0x1
Address Bit Name Function Reset
Default
0x2003B 15:3 Reserved. 0x000
2VT_SD_MVT/TU Signal Degrade M ask Bit. If set to a logic 1,
VT_SD_D (Table 168) will not con tribute to the interru p t. 0x1
1VT_SF_MVT/T U Si gnal F ai l Ma sk Bit . If set t o a log ic 1, V T_SF_D
(Table 168) will no t c o ntribute to the interrupt. 0x1
0 VT_H4LOMF_M H4 Mismatch Mask Bit. If set to a lo gic 1,
VT_H4L OM F_D (Table 168) will no t con tribute to the
interrupt.
0x1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
157Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 173. VT_RMASK[128], Receive Masks Per Chann el (R/W)
Note: The event and delta bits for these mask bits are in Table 169.
Address Bit Name Function Reset
Default
0x2003C
0x20057
15 Reserved. 0
14 VT_RX_VTREI_M[128] Receive REI-V Mask Bit. If se t to a l ogic 1,
VT_RX_VTREI_E[128] will not contribute to the inter-
rupt.
0x1
13 VT_RX_BIP2ERR_M[128] Receive B IP-2 Err or Mask Bi t. If se t to a logic 1,
VT_RX_BIP2ERR_E[128] will not c o ntribute to the
interrupt.
0x1
12 VT_RX_ESOVFL_M[128] Receive Elastic Store Overflow Mask Bit. If set to a
logic 1, VT _RX_E S OVFL_E [128] will not contribut e to
the interrupt.
0x1
11 VT_APS_M[128] VT APS Mask Bit. If set to a logic 1, VT_APS_D[128]
will not contribute to the interrupt. 0x1
10 VT_ERDI_M[128] ERDI-V Mask Bit. If se t to a logi c 1, VT _ERDI_D[128]
will not contribute to the interrupt. 0x1
9VT_RDI_M[128] RDI-V Mask Bi t. If set to a logic 1, VT_RDI_D[128] will
not contribute to the interrupt. 0x1
8VT_RFI_M[128] RFI-V Mask Bit. If set to a logic 1, VT_RFI_D[128] will
not contribute to the interrupt. 0x1
7Reserved. 0
6 VT_LOPS_M[128] VT Loss of Phase Sync Mask Bit. If set to a logic 1,
VT_LOPS_D[128] will not contribute to the interrupt. 0x1
5 VT_J2TIM_M[128] J2 Mismatch Mask Bit. If s et to a logic 1,
VT_J2TIM_D[128] wi ll not contribute to the interrupt . 0x1
4 VT_PLM_M[128] VT Payload Label Mismatch Mask Bit. If set to a logic
1, VT _P LM_ D [128] will not co ntribute to the interrupt. 0x1
3 VT_UNEQ_M[128] VT Unequip Mask Bit. I f s et to a logic 1,
VT_UNEQ_D[128] will not cont ribute to the interrupt. 0x1
2 VT_SIZERR_M[128] VT Size Error Mask Bit. If set to a l ogic 1,
VT_SIZERR_D[128] will not contribute to the interrupt. 0x1
1VT_AIS_M[128] AIS- V Mask Bi t. If set to a logic 1, VT_AIS_D[128] will
not contribute to the interrupt. 0x1
0VT_LOP_M[128] LOP-V Mask Bit. If set to a logic 1, VT_ L O P_D[128]
will not contribute to the interrupt. 0x1
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
158 Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 174. VT_LOPOHFAIL_MASK, Low-Order Path Overhead Failure Mask (R/W)
Table 175. VT_TMASK[128], Transm it Masks Per Cha nne l (R/W )
Table 176. VT_GSTATE, VT Global State (RO)
Address Bit Name Function Reset
Default
0x20058 15:1 Reserved. 0x000
0 VT_LOPOH_FAIL_M Low-Order Path Overhead Failure Mask Bit. If s e t to a
logic 1, VT _LOP O H_FA IL_ E (Table 170) will not contr ib -
ute to th e interrupt.
0x1
Address Bit Name Function Reset
Default
0x20059
0x20074
15:5 Reserved. 0x000
4 VT_TX_ESOVFL_M[128] Transmi t Elastic Store Overflow Mask Bit. If set
to a logic 1, VT_TX_ESO VFL_E[128] (Table 171)
will not contribut e to the interrupt.
0x1
3 RESERVED Reserved. 0
2 VT_LOFS_M[128] Loss of Frame Sync Mask Bit. If se t to a logic 1,
VT_LOFS_D[128] (Table 171) wil l not c ontribute
to the interrupt.
0x1
1 VT_TX_AIS_M[128] Transmi t AI S Mask Bi t. If set to a logic 1,
VT_TX_AIS_D[128] (Table 171) will not contrib-
ute to the interr upt.
0x1
0 VT_TX_LOC_M[128] Transmi t Loss of Clock Mask Bit. If set to a logic
1, VT _TX_LOC_D[128] (Table 171) will not con-
tribute to the interrupt.
0x1
Address Bit Name Function Reset
Default
0x20075 15:3 Reserved. 0x000
2VT_SDVT/TU Signal Degrade. Logic 1 indicates a signal
degrade condition on the selected c hannel. 0x1
1VT_SFVT/TU Si gna l Fai l. Logic 1 indicates a signal f ail condition
on the selected channel. 0x1
0 VT_H4LOMF H4 Loss of M ultifr am e. Logic 1 indicates a l oss of H4
multiframe alignment . 0x1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
159Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 177. VT_RSTATE[128], Receive St ate Per Ch annel (RO)
Table 178. VT_RAPSSTATE[128], Receive APS State Per Channel (R O)
Table 1 79. VT_TS TATE[128], Transmit State Per Channel (RO)
Address Bit Name Function Reset
Default
0x20076
0x20091
15:13 VT_ERDI[128][2:0] Enhanced RDI-V Value. These bits are the stored ERDI-V
bits received in the Z7 byte. 0x000
12:10 VT_LAB[128][2:0] VT Signal Label. These bits are the stored VT signa l label
bits received in the V5 byte. 0x000
9 VT_RDI[128] RDI-V Value . This bit i s the accepted RDI-V bit received in
the V5 byte. 0x00
8VT_RFI[128] RFI-V Value. Thi s bit is the accepted RFI-V bit received in
the V5 byte. 0x00
7Reserved. 0
6 VT_LOPS[128] VT Loss of Phase Sync. Logic 1 indicates a loss o f P-bi t
phase synch ronizat ion. 0x1
5VT_J2TIM[128] J2 Trace Identifier Mismatch. Logic 1 indicat es a m is-
match between the expected trace and t he detected trace. 0x1
4VT_PLM[128] VT Payload Label Mismatch. Logic 1 indica tes PLM-V. 0x1
3 VT_UNEQ[128] VT Unequip. L ogic 1 indicates UNEQ-V. 0x1
2 VT_SIZERR[128] VT Size Error. Logic 1 indicates a VT s ize error. 0x1
1VT_AIS[128] AIS-V. Logic 1 indic ates AIS-V. 0x0
0VT_LOP[128] LOP-V. Lo gic 1 indicates LOP-V. 0x1
Address Bit Name Function Reset
Default
0x20092
0x200AD
15:4 Reserved. 0x000
3:0 VT_APS[128][3:0] VT APS Value. These bits are the s tored VT APS bits
received in th e Z7/K4 byte. 0x0
Address Bit Name Function Reset
Default
0x200AE
0x200C9
15:3 Reserved. 0x000
2 VT_LOFS[128] Loss of Frame Sync. Logic 1 indicat es DS 1/ E 1 loss of
frame sync. 0x1
1VT_TX_AIS[128] Transmit AIS. L ogic 1 i ndicates DS 1/E 1 AI S. 0x0
0 VT_TX_LOC[128] Transm it Loss of Clock. Logic 1 indicates DS1/E1 los s
of cloc k. 0x1
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
160 Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 180. VT_GCTL1, VT Global Contr ol Reg ister 1 (R/W)
Table 181. VT_GCTL2, VT Global Contr ol Reg ister 2 (R/W)
Address Bit Name Function Reset
Default
0x200CA 15 Reserved. 0
14:8 VT_RX_GRP_TYPE[6:0] Receive Group Ty pe. VT/TU group type selection.
Logic 1 selects V T1.5/TU -11 and logic 0 selects
V T2/TU-12 group type. Group 1 is the LSB.
0x7F
7Reserved. 0
6:0 VT_TX_GRP_TYPE[6:0] Tran smit Group Type. V T/ TU group type selection.
Logic 1 selects V T1.5/TU -11 and logic 0 selects
V T2/TU-12 group type. Group 1 is the LSB.
0x7F
Address Bit Name Function Reset
Default
0x200CB 15:11 Reserved. 0x00
10 VT_LOPS_AIS_INH VT/TU Loss of Phase Sy nc. Contribution to AIS inhibit
control. 0x0
9 VT_J2TIM_ERDI_INH J2 Trace Identifier Mismatch. Contribution to ERDI
inhibit cont rol. 0x0
8 VT_J2TIM_RDI_INH J2 Trace Identifier Mismatch. Contribution to RDI inhibit
control. 0x0
7VT_J2TIM_AIS_INHJ2 Trace Identifier Mismatch. Contribution to AIS inhibit
control. 0x0
6 VT_LOMF_AIS_INH Lo s s of Multiframe . Cont ribution to AIS inhibit control. 0x0
5 VT_PLM_AIS_INH Payload Label Mismatch. Contribution to AIS inhibit c on-
trol. 0x0
4 VT_UNEQ_AIS_INH UNEQ-V. Contribution to AIS inhibit control. 0x0
3Reserved. 0
2VT_UPSRUnidir ectio nal P ath Swit c h Ring Mode Cont r ol. Logic 1
activ ates the UPSR mode of operation. When the device
is programmed for UPSR m ode, the transm itted REI-V,
RDI-V, RFI-V, and ERDI-V are based on the receive condi-
tions. Othe rwise, the trans mitted LO PO H is a copy of the
received overhead bytes.
0x0
1 VT_8ORMAJORITY VT Pointer Int erpreter Mode Control. Logic 1 tells the
pointer inter preter to transition into the inc and de c states
based on 8 of the 10 I and D bits. Other wise, the pointer
interpreter transitions into the inc and dec states based on
majority rule.
0x1
0 VT_BIT_BLOCK_CNT Performa nc e Monitor Coun t Mod e Cont rol. Logic 1
activates BIP-2, TC-BIP-2, REI , and TC-CRC-7 count s
bas ed on single bit errors. Otherwise, errors are counted
on a block basis.
0x1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
161Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 182. VT_GCTL3, VT Global Contr ol Reg ister 3 (R/W)
Table 183. VT_GCTL4, VT Global Contr ol Reg ister 4 (R/W)
Address Bit Name Function Reset
Default
0x200CC 15:8 Reserved. 0x00
7:4 VT_LOPS_NTIME[3:0] VT/TU Loss of Phase Sy nc NTIME Detection Control.
This nib ble is programmed to provision the number of con-
secutive errored phase indications required to transition
into the VT_LOPS[128] (Table 177) stat e. Only valid in
byte synchronous mode.
Note: The valid range of values i s 0x10xF. A value of
0x0 will be mapped to 0x1.
0x6
3:0 VT_H4_NTIME[3:0] H4 Multiframe Indication NT IME Det e ction Control.
This nib ble is programmed to provision the number of con-
secutive errored multif ra me ind ications required to transi-
tion into the VT_H4LOMF ( Table 176) s t ate.
Note: The valid range of values i s 0x10xF. A value of
0x0 will be mapped to 0x1.
0x6
Address Bit Name Function Reset
Default
0x200CD 15:11 VT_Z6_NTIME[3:0] Z6 Byte Monitor NTIME Detection Control. This nibble
is programmed to provision the number of consecutive
consistent Z6 byt es requ ired to accept a new value.
Note: The valid range of values i s 0x10 xF. A val ue of
0x0 will be mapped to 0x1.
0x3
11:8 VT_J2_NTIME[3:0] J2 Byte Monitor NTIM E Detection Control. This nibble
is programmed to provision the number of consecutive
consistent J2 sequences required f or the J2 byte monitor
to transition in and out of J2TIM.
Note: The valid range of values i s 0x10 xF. A val ue of
0x0 will be mapped to 0x1.
0x3
7:4 VT_INV_NTIME[3:0] Pointer Interpreter Invalid Pointer NTIME Detection
Control. This nibble is programme d to provisio n the
number of invalid pointers required for the pointer inte r-
preter to go into the VT_LOP[ 128] (Table 177) stat e.
Note: The valid range of values i s 0x10 xF. A val ue of
0x0 will be mapped to 0x1.
0x8
3:0 VT_NDF_NTIME[3:0] Pointer Interpreter NDF Pointer NTIME Detection
Control. This nibble is programme d to provisio n the
number of c onsecutive NDF poi nters required for the
pointer inter preter to go into the VT_LOP state.
Note: The valid range of values i s 0x10 xF. A val ue of
0x0 will be mapped to 0x1.
0x8
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
162 Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 184. VT_GCTL5, VT Global Contr ol Reg ister 5 (R/W)
Address Bit Name Function Reset
Default
0x200CE 15:12 VT_APS_NTIME[3:0] APS NTIME Detection Contro l. This nibble is programmed
to provision the number of consecutiv e consistent new values
required to accept a new VT_APS[128][3:0] (Table 178).
Note: The valid range of values i s 0x10 xF. A val ue of 0x0
will be mapped to 0x1.
0x3
11:8 VT_LAB_NTIME[3:0] VT Sign al Label NTI ME D et ec tio n Control. This nibble is
programmed to provision the number of consecutive consis-
tent new val ues required to ac cept a ne w
VT_LAB[128][2:0] (Table 177).
Note: The valid range of values i s 0x10 xF. A val ue of 0x0
will be mapped to 0x1.
0x3
7:4 VT_ERDI_NTIME[3:0] ERDI -V NTIME Detection Control. This nibble is pro-
gramme d to provision the n umber of consecutive consistent
ne w val ues required to accept a new VT_ERDI[128][2:0]
(Table 177).
Note: The valid range of values i s 0x10 xF. A val ue of 0x0
will be mapped to 0x1.
0x3
3:0 VT_RDI_NTIME[3:0] RDI-V NTIME Detection Co ntro l. This nibble is pro-
gramme d to provision the n umber of consecutive consistent
ne w val ues required to accept a new VT_RDI[ 128]
(Table 177).
Note: The valid range of values i s 0x10 xF. A val ue of 0x0
will be mapped to 0x1.
0x3
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
163Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 185. VT_SIGDEG_CTL1, Signal Degrade Control Re gister 1 (R/W)
Table 186. VT_SIGDEG_CTL2, Signal Degrade Control Re gister 2 (R/W)
Table 187. VT_SIGDEG_CTL3, Signal Degrade Control Re gister 3 (R/W)
Table 188. VT_SIGDEG_CTL4, Signal Degrade Control Re gister 4 (R/W)
Address Bit Name Function Reset
Default
0x200CF 15:12 Reserved. 0x00
11 VT_SFCLEAR VT Signal Fail Cl e a r. Allows the signal fail al gorithm to be
forced into the normal state. This is a one shot which is
activated by a 0 to 1 t ran si ti on.
0x0
10 VT_SFSET VT Signal Fail Set. Allows the signal fail algori thm to be
forced into the failed state. This is a one shot which is acti-
vated by a 0 to 1 transition.
0x0
9 VT_SDCLEAR S ignal De grade Clear. Allows the signal degrade algo-
rithm to b e forced into the normal state. This is a one shot
which is activat ed by a 0 to 1 transition.
0x0
8VT_SDSETS ignal Degrade Set. Allows the signal degrade algorithm
to be forced into the failed state. This is a one shot which
is activated by a 0 to 1 transition.
0x0
7:5 Reserved. 000
4:0 VT_BER_CH_
SEL[4:0] Bit Erro r Rate Monitor Channel Select. Selects which
channel (128/21) is being monitored b y the internal
BER monitor. Valid inputs are 0000111100.
0x00
Address Bit Name Function Reset
Default
0x200D0 15:0 VT_SDNSSET[18:3] Signal De grade Ns Set. Number of fra mes in a monitor-
ing block fo r SD. 0x0000
Address Bit Name Function Reset
Default
0x200D1 15 Reserved. 0
14:7 VT_SDMSET[7:0] Signal Degrade M Set. Threshold of the number of bad
monitoring b locks in an observati on interval. If the number
of bad blocks is above this thres hol d, the n signal degrade
SD is set.
0x00
6:3 VT_SDLSET[3:0] Signal Degrade L Set. Error threshold for determining if a
monitoring block is bad. 0x0
2:0 VT_SDNSSET[2:0] S ignal Degrade Ns Set. Number of fra mes in a monitor-
ing block fo r SD. 0x0
Address Bit Name Function Reset
Default
0x200D2 15:0 VT_SDBSET[15:0] Signal Degrade B Set. Nu mbe r of moni tor ing bl ocks. 0x0000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
164 Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 189. VT_SIGDEG_CTL5, Signal Degrade Control Re gister 5 (R/W)
Table 190. VT_SIGDEG_CTL6, Signal Degrade Control Re gister 6 (R/W)
Table 191. VT_SIGDEG_CTL7, Signal Degrade Control Re gister 7 (R/W)
Table 192. VT_SIGFAIL_CTL1, Signal Fail Contro l Register 1 (R/W)
Table 193. VT_SIGFAIL_CTL2, Signal Fail Contro l Register 2 (R/W)
Table 194. VT_SIGFAIL_CTL3, Signal Fail Contro l Register 3 (R/W)
Address Bit Name Function Reset
Default
0x200D3 15:0 VT_SDNSCLEAR[18:3] Signal Degrade Ns Clear. Number of frames in a moni-
toring block for SD. 0x0000
Address Bit Name Function Reset
Default
0x200D4 15 Reserved. 0
14:7 VT_SDMCLEAR[7:0] Si gnal Degrade M Clear . Threshold of the number of bad
monitoring blocks in an observat ion interval . If the number
of bad blocks is below this threshold, then SD is cleared.
0x00
6:3 VT_SDLCLEAR[3:0] Signal Degrade L Clear . Error threshold for determining if
a monitoring block is b ad. 0x0
2:0 VT_SDNSCLEAR[2:0] Signal Degrade Ns Clear. Number of frames in a moni-
toring block for SD. 0x0
Address Bit Name Function Reset
Default
0x200D5 15:0 VT_SDBCLEAR[15:0] Signal Degrade B Clear. Number of m onitoring blocks . 0x 0000
Address Bit Name Function Reset
Default
0x200D6 15:0 VT_SFNSSET[18:3] Signal Fail Ns Set. Number of frames in a monitoring block for SF.0x0000
Address Bit Name Function Reset
Default
0x200D7 15 Reserved. 0
14:7 VT_SFMSET[7:0] Signal Fail M Set. Threshold of the number of bad monitori ng
blocks in an observation interval. If the number of bad blocks is
above this threshold, then SF is set.
0x00
6:3 VT_SFLSET[3:0] S ignal Fail L Set. Error threshold for determ inin g if a monitor ing
block is bad. 0x0
2:0 VT_SFNSSET[2:0] Signal Fail Ns Set. Number of fr ames in a monitoring block for SF. 0x0
Address Bit Name Function Reset
Default
0x200D8 15:0 VT_SFBSET[15:0] Signal Fail B Set. Number of monitoring blocks. 0x0000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
165Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 195. VT_SIGFAIL_CTL4, Signal Fail Contro l Register 4 (R/W)
Table 196. VT_SIGFAIL_CTL5, Signal Fail Contro l Register 5 (R/W)
Table 197. VT_SIGFAIL_CTL6, Signal Fail Contro l Register 6 (R/W)
Address Bit Name Function Reset
Default
0x200D9 15:0 VT_SFNSCLEAR[18:3] Signal Fail Ns Clear. Number of frames in a monitoring
block for SF. 0x0000
Address Bit Name Function Reset
Default
0x200DA 15 Reserved. 0
14:7 VT_SFMCLEAR[7:0] Signal Fail M Cl ear. Threshold of the number of bad
monitoring blocks in an observation inte rval. If the
number of bad blocks is below this threshold, then SF is
cleared.
0x00
6:3 VT_SFLCLEAR[3:0] Signal Fail L Clear. Error threshold for determining if a
monitoring bloc k is bad. 0x0
2:0 VT_SFNSCLEAR[2:0] Sign al Fail Ns C lear. Number of frames in a m onitor ing
block for SF. 0x0
Address Bit Name Function Reset
Default
0x200DB 15:0 VT_SFBCLEAR[15:0] Signal Fail B Clear. Nu mbe r of monitoring bl ocks. 0x0000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
166 Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 198. VT_TCTL[128], Transmit Control Per Channel (R/W)
Address Bit Name Function Reset
Default
0x200DC
0x200F7
15:13 Reserved. 0x0
12 VT_TX_ERDI_EN[128] Transm it Path Enhanced RDI-V Enable. Logic one
enables enhanc ed R D I-V. 0x0
11 VT_ERDI_EN[128] Enhanced RDI-V Source Selection. Logic one ac ti-
vates software overwrite of the ERDI-V bits of the Z7
byte. Otherwise, i nsertion is based on the LOPOH
serial channel or automatic gener ation.
0x0
10 VT_RDI_EN[128] RDI-V So urc e Select ion . Logic one acti vates software
overwrite of the RD I-V bit of the V5 byte. Otherwise,
insertion is bas ed on the LOPOH seri al channel or
automat ic generation.
0x0
9 VT_RFI_EN[128] RFI-V Source Selection. Logic one activates software
overwrite of the R F I-V bit of the V5 byte. If
VT_V5_INS[128] = 0 (Table 199) and the mappi ng is
set to byt e synchronous DS1, a logic zero enables
auto ma tic i n serti on of RFI -V. If VT _ V 5_ IN S[1 28] = 1,
a lo gic zero inserts RFI-V based on the L OPOH serial
channel.
0x0
8VT_REI_EN[128] REI-V Enab le. Logic one ac tivates automatic genera-
tio n of REI-V. If VT_V5_ INS[ 1 28] = 0, the generation
is based on the receiv ed BIP-2 errors. Otherwise,
insertion is bas ed on the LOPOH serial channel.
0x0
7Reserved. 0
6 VT_AIS_INS[128] AIS-V Insertion Control. Logic one forces AIS-V to be
transmi tted in the specified channel. 0x0
5VT_TX_CLKEDGE[128] Transmit Path DS1/E1 Clock Edge Selection. Logic
one forces the DS1/E1 signals to be retimed u sing the
r ising edge of the associated clock. Logic zero forces
the DS1/E1 signals to be ret imed using the falling edge
of the assoc iated clock.
0x0
4 VT_LB_SEL[128] Tributary Loopba ck Sele c tion. Logic one activates
tri butar y l oopback. 0x0
3:0 VT_TX_MAPTYPE
[128][3:0] Transmit Mapping Mode Control. See Table 558.0x6
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
167Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 199. VT_TTUO H _CTL[128], Transmit TU Overhead Contro l P er Channel (R/W)
Table 200. VT_TAP SRIVAL[128], Transmit APS and Remote Indication P er Channel (R/W)
Table 201. VT_TSWOW[128], Transm it Software Overwrite Per Channel (R/W)
Address Bit Name Function Reset
Default
0x200F8
0x20113
15:11 Reserved. 0x00
10:9 VT_O_INS[128][1:0] O-Bit Insertion Control. See Table 566 on page446 .0x0
8:7 VT_Z7_INS[128][1:0] Z7 Byte Insertion Control. See Table 5 65, Z7 /K4 Over-
head Byte Insertion M odes Per Channel on page446 .0x0
6:5 VT_Z6_INS[128][1:0] Z6 Byte Insertion Control. See Table 5 64, Z6 /N2 Over-
head Byte Insertion M odes Per Channel on page445 .0x0
4:3 VT_J2_INS[128][1:0] J2 Byte Insertion Control. See Table 563, J2 Overhead
Byte Insertion Modes Per Channel on page 445.0x0
2VT_V5_INS[128] V5 Byte Insertion Control. Logic one forces the V5 b yte
to be programmed via the LOPOH serial channel. See
Table 559 on pag e443.
0x0
1:0 VT_BIP2ERR_
INS[128][1:0] BIP-2 Error Insertion Control. See Table 560 on
page 443.0x0
Address Bit Name Function Reset
Default
0x20114
0x2012F
15:12 Reserved. 0x0
11:8 VT_APS_
INS[128][3:0] APS Software Overwrite Value. This nibble is pro-
grammed to utilize A PS bits in the Z7/K4 byte. This nibble
will be tra nsmitted in bits 1:4 of the Z7/K4 byte.
0x0
7:5 Reserved. 0x0
4:2 VT_ERDI_
INS[128][2:0] Enhanced RDI-V Software Overwrite Values. If
VT_ERDI_EN[128] (Table 198) is a logi c one, these bits
are written into the ERDI-V locations of the Z7 byte.
0x0
1 VT_RDI_INS[128] RDI-V Sof tware Overwrite Values. I f VT_RDI_EN[128]
(Table 198) is a logi c one, this value will be written into the
RDI-V locati on of the V5 byte.
0x0
0VT_RFI_INS[128] RFI-V Software Overwrite Values. If VT_RFI_EN[128]
(Table 198) is a logi c one, this value will be written into the
RFI-V loc ation of the V5 byte.
0x0
Address Bit Name Function Reset
Default
0x20130
0x2014B
15:8 VT_OBIT_
INS[128][7:0] Overhead Values for Software Overwrite in Asyn-
chronous Mappings . This byte is progra mmed to uti lize
the overhead bits in asynchronous VT/TU mapp ings.
VT_OBIT_I N S[7:4] wi ll be transmitted in the byte follow-
ing J2 and VT_OBIT_INS[3:0] will be tr ansmitted in the
by te following Z6/N2.
0x00
7:0 VT_Z6BYTE_
INS[128][7:0] Z 6 Softw are Overwrite Values. This byte is pr o -
grammed into the o utgoing Z6/N2 location when
VT_Z6_INS[128][1:0] (Table 199) = 01.
0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
168 Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 202. VT_TSIG _CTL[128], Transmit Signaling Contro l Per Channel (R/W)
Table 203. VT_J2BYTE_INS_R [1 28][116], J2 Insert Values Per Channel (R/W)
Address Bit Name Function Reset
Default
0x2014C
0x20167
15:11 Reserved. 000000
10 VT_USE_FBIT[128] Frame Bit Use Control. Logic one provisions
use of th e F bit in the outgoing VT/TU. Other-
wise, the F bit is forced to the value of bit
SMPR _OH_DEFLT (Table 67) in the micropro-
cessor interface on the outgoin g VT/TU .
0x1
9 VT_USE_PBIT[128] Phase Bit Use Control. Logic one provisions
use of the P bits in the outgoing VT/T U. Other-
wise, the P bits are forced to the value of bit
SMPR_OH_DEFLT in the microprocessor inter-
face on the outgoing VT/TU.
0x1
8 VT_USE_SBIT[128] Signaling Bit Use Contr ol . Logic one p rovi-
sio ns us e of the S bits in the ou t going V T /TU.
Otherwise, the S bits are forced to the value of
bit SMPR_OH_DEFLT in t he mi croprocesso r
interface on the outgoing VT/TU.
0x1
7:5 Reserved. 000
4:0 VT_TXSIG_CH_SEL[128][4:0] Tran smit Inp ut Ch ann el Selection. These bits
are programmed with the same value as the
cross connect for each i ndividual channel. The
bits are only used in byte synchronous mode
and can be set to 0xXX for all other modes. If an
invalid val ue is programm ed,
UNEQ-V will be transmitted in the specified
channel . Inv alid decimal values are 0, 2 9, 30,
and 31.
0x00
Address Bit Name Function Reset
Default
0x20168
0x20327
15:8 Reserved. 0x00
7:0 VT_J2BYTE_
INS[128][116][7:0] J2 Software Overwrite Values. These values are written
into the outgoing J2 byte when VT_J2_INS[128][1:0] = 01
(Table 199).
0x00
Table 204. VT_RCTL[128], Re ceive Co ntrol Per Channel (R/ W)
Address Bit Name Function Reset
Default
0x20328
0x20343
15 VT_SF_ESF[128] DS1 Frame Type for Byte Synchronous Mode. Logic
one provisions an SF frame forma t. Otherwise, an ESF
frame format is prov isioned.
0x0
14 VT_WR_FBIT[128] F-Bit Provisioning Control. S ee Table 556, Rx Signal-
ing Behavior per Chann el on page 439.0x0
13 VT_SYNC_PBIT[128] P-Bit Provisioning Control. See Table 556, Rx S ignal-
ing Behavior per Chann el on page 439.0x0
Preliminary Data Sheet TMXF28155/51 Super Mapper
June 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
10 VT/TU Mapper Registers (continued)
169Agere Systems Inc.
Table 205. VT_RTUOH_CTL[128], Receive TU Overhead Control Per Channel (RO)
Table 206. VT_RBIP2_CNT[128], Receive BIP-2 Error Coun t Per Channel (RO)
Table 207. VT_RREIV_CNT[128], Receive REI-V Error Count Per Channe l (RO)
0x20328
0x20343
12:8 VT_RXSIG_CH_
SEL[128][4:0] Receive Output Ch annel Selection. These bi ts are pro-
grammed with the same value as the cross connect for
each individual channel. Th e bits are only use d in byte
synchronous mode and can be set to 0xXX for all other
modes. If an invalid value is programmed, UNEQ -V will
be transmitted in the specified channel. Invalid decimal
values are 0, 29, 30, and 31. See Rx Signaling Behav ior
per Channel on page 439.
0x00
7:5 VT_J2MON_
MODE[128][2:0] J2 Trace Monitoring Mode Control. See J2 Byte Moni-
tor and Termination (J2MON) on page 438. 0x00
4 VT_RX_ERDI_EN[128] Receive Path Enhanced RDI-V Enable. Logic on e
enables enhanced RDI-V. 0x0
3:0 VT_RX_
MAPTYPE[128][3:0] Receive Demapping Mode Control. See Table 555,
Receive VT/TU Demapping Selectio n on page 437.0x6
Address Bit Name Function Reset
Default
0x20344
0x2035F
15:8 VT_Z6_BYTE[128][7:0] Received Z6/N2 Byte Value. Accepted Z6/N2 value. 0x00
7:0 VT_OBITS[128][7:0] Received O Bits V al ue. Accepted overhead bits in asyn-
chronous and bit synchronous modes. VT_OBITS[7:4]
are the O bits received in the byte following J 2, and
VT_OBITS[3:0] are the O bits rec eived in the byte follow-
ing Z6/N2.
0x00
Address Bit Name Function Reset
Default
0x20360
0x2037B
15:12 Reserved. 0x0
11:0 VT_BIP2ERR_
CNT[128][11:0] BIP-2 Error Count. BIP-2 error count updated on a 0 to
1 transition of SMPR_PMR ESET (Table 65). 0x000
Address Bit Name Function Reset
Default
0x2037C
0x20397
15:11 Reserved. 0x00
10:0 VT_REI_
CNT[128][10:0] REI-V Error Count. REI - V error count updated on a 0 to 1
tr a n s ition of SMPR_PM R ESET. 0x000
Table 204. VT_RCTL[128], Receive Co ntrol Per Chan nel (R/W) (continued)
Address Bit Name Function Reset
Default
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
170 Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 208. VT_RPTR_CNT[128], Receive Pointer and Count Per Channel (RO)
Table 209. VT_J2BYTE_EXP_R[128][116], J2 Expected Values Per Chan nel (R/W, RO)
Address Bit Name Function Reset
Default
0x20398
0x203B3
15:8 VT_STORED_
PTR[128][7:0] Store VT/TU Pointer Locat ion. This value in dicat es th e
stored location of the V5 byte within the VT/T U m apping. 0x00
7:4 VT_PTR_
DEC[128][3:0] VT P ointer Decrement Count. VT pointer decrement
coun t updated on a 0 to 1 transition of
SMPR_PMRESET.
0x0
3:0 VT_PTR_
INC[128][3:0] VT P ointer Increment Count. VT pointer increment
coun t updated on a 0 to 1 transition of
SMPR_PMRESET.
0x0
Address Bit Name Function Reset
Default
0x203B4
0x20573
15:8 VT_J2BYTE_
EXP[128][116][7:0] J2 Expected Values. Th is value is programmed by the
user as an ex pected value for the J 2 byte. T he hardware
will com par e this value to the inco ming J2 sequence
when VT_J2MON_MODE[128][2:0] = 011 or 100
(Table 204 on pag e168).
0x00
7:0 VT_J2BYTE_
DET[128][116][7:0] J2 Detected Values. Accepted J2 seq uence or value. 0x00
Table 210. VT_THRES_CTL [128], Transm it Elastic Store Threshold Control (R/W)
Address Bit Name Function Reset
Default
0x20574
0x2058F
15 Reserved. 0x0
14:8 VT_HIGH_
THRES[128][6:0] T ransmit Elastic Store High Threshold. Programm able
thresh old controlling positive justifica t io ns. 0x28
7Reserved. 0x0
6:0 VT_LOW_
THRES[128][6:0] Tran sm it Ela stic Store L ow Threshold. Programmable
threshold controlling negative justifications. 0x27
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
171Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
10.2 VT/ T U Mapper Regis ter Ma p
Table 211. VT/TU Mapper Register Map
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
VT Mapper IDRO
0x20000 VT_VERSION_R VT_
RDY VT_VERSION[2:0] VT_ID[7:0]
VT Glob al EventsCOR/COW
0x20001 VT_GDELETA VT_SD_D VT_SF_D VT_H4LOMF_
D
Receive Delta a nd Event Parameter sCOR/COW
0x20002 VT_REVENT_DELTA1 VT_RX_VTREI_E1 VT_RX_BIP2ERR_E1 VT_RX_ESOVFL_E1 VT_APS_D1 VT_ERDI_D1 VT_RDI_D1 VT_RFI_D1 VT_LOPS_D1 VT_J2TIM_D1 VT_PLM_D1 VT_UNEQ_D1 VT_SIZERR_D1 VT_AIS_D1 VT_LOP_D1
0x20003 VT_REVENT_DELTA2 VT_RX_VTREI_E2 VT_RX_BIP2ERR_E2 VT_RX_ESOVFL_E2 VT_APS_D2 VT_ERDI_D2 VT_RDI_D2 VT_RFI_D2 VT_LOPS_D2 VT_J2TIM_D2 VT_PLM_D2 VT_UNEQ_D2 VT_SIZERR_D2 VT_AIS_D2 VT_LOP_D2
0x20004 VT_REVENT_DELTA3 VT_RX_VTREI_E3 VT_RX_BIP2ERR_E3 VT_RX_ESOVFL_E3 VT_APS_D3 VT_ERDI_D3 VT_RDI_D3 VT_RFI_D3 VT_LOPS_D3 VT_J2TIM_D3 VT_PLM_D3 VT_UNEQ_D3 VT_SIZERR_D3 VT_AIS_D3 VT_LOP_D3
0x20005 VT_REVENT_DELTA4 VT_RX_VTREI_E4 VT_RX_BIP2ERR_E4 VT_RX_ESOVFL_E4 VT_APS_D4 VT_ERDI_D4 VT_RDI_D4 VT_RFI_D4 VT_LOPS_D4 VT_J2TIM_D4 VT_PLM_D4 VT_UNEQ_D4 VT_SIZERR_D4 VT_AIS_D4 VT_LOP_D4
0x20006 VT_REVENT_DELTA5 VT_RX_VTREI_E5 VT_RX_BIP2ERR_E5 VT_RX_ESOVFL_E5 VT_APS_D5 VT_ERDI_D5 VT_RDI_D5 VT_RFI_D5 VT_LOPS_D5 VT_J2TIM_D5 VT_PLM_D5 VT_UNEQ_D5 VT_SIZERR_D5 VT_AIS_D5 VT_LOP_D5
0x20007 VT_REVENT_DELTA6 VT_RX_VTREI_E6 VT_RX_BIP2ERR_E6 VT_RX_ESOVFL_E6 VT_APS_D6 VT_ERDI_D6 VT_RDI_D6 VT_RFI_D6 VT_LOPS_D6 VT_J2TIM_D6 VT_PLM_D6 VT_UNEQ_D6 VT_SIZERR_D6 VT_AIS_D6 VT_LOP_D6
0x20008 VT_REVENT_DELTA7 VT_RX_VTREI_E7 VT_RX_BIP2ERR_E7 VT_RX_ESOVFL_E7 VT_APS_D7 VT_ERDI_D7 VT_RDI_D7 VT_RFI_D7 VT_LOPS_D7 VT_J2TIM_D7 VT_PLM_D7 VT_UNEQ_D7 VT_SIZERR_D7 VT_AIS_D7 VT_LOP_D7
0x20009 VT_REVENT_DELTA8 VT_RX_VTREI_E8 VT_RX_BIP2ERR_E8 VT_RX_ESOVFL_E8 VT_APS_D8 VT_ERDI_D8 VT_RDI_D8 VT_RFI_D8 VT_LOPS_D8 VT_J2TIM_D8 VT_PLM_D8 VT_UNEQ_D8 VT_SIZERR_D8 VT_AIS_D8 VT_LOP_D8
0x2000A VT_REVENT_DELTA9 VT_RX_VTREI_E9 VT_RX_BIP2ERR_E9 VT_RX_ESOVFL_E9 VT_APS_D9 VT_ERDI_D9 VT_RDI_D9 VT_RFI_D9 VT_LOPS_D9 VT_J2TIM_D9 VT_PLM_D9 VT_UNEQ_D9 VT_SIZERR_D9 VT_AIS_D9 VT_LOP_D9
0x2000B VT_REVENT_DELTA10 VT_RX_VTREI_E10 VT_RX_BIP2ERR_E10 VT_RX_ESOVFL_E10 VT_APS_D10 VT_ERDI_D10 VT_RDI_D10 VT_RFI_D10 VT_LOPS_D10 VT_J2TIM_D10 VT_PLM_D10 VT_UNEQ_D10 VT_SIZERR_D10 VT_AIS_D10 VT_LOP_D10
0x2000C VT_REVENT_DELTA11 VT_RX_VTREI_E11 VT_RX_BIP2ERR_E11 VT_RX_ESOVFL_E11 VT_APS_D11 VT_ERDI_D11 VT_RDI_D11 VT_RFI_D11 VT_LOPS_D11 VT_J2TIM_D11 VT_PLM_D11 VT_UNEQ_D11 VT_SIZERR_D11 VT_AIS_D11 VT_LOP_D11
0x2000D VT_REVENT_DELTA12 VT_RX_VTREI_E12 VT_RX_BIP2ERR_E12 VT_RX_ESOVFL_E12 VT_APS_D12 VT_ERDI_D12 VT_RDI_D12 VT_RFI_D12 VT_LOPS_D12 VT_J2TIM_D12 VT_PLM_D12 VT_UNEQ_D12 VT_SIZERR_D12 VT_AIS_D12 VT_LOP_D12
0x2000E VT_REVENT_DELTA13 VT_RX_VTREI_E13 VT_RX_BIP2ERR_E13 VT_RX_ESOVFL_E13 VT_APS_D13 VT_ERDI_D13 VT_RDI_D13 VT_RFI_D13 VT_LOPS_D13 VT_J2TIM_D13 VT_PLM_D13 VT_UNEQ_D13 VT_SIZERR_D13 VT_AIS_D13 VT_LOP_D13
0x2000F VT_REVENT_DELTA14 VT_RX_VTREI_E14 VT_RX_BIP2ERR_E14 VT_RX_ESOVFL_E14 VT_APS_D14 VT_ERDI_D14 VT_RDI_D14 VT_RFI_D14 VT_LOPS_D14 VT_J2TIM_D14 VT_PLM_D14 VT_UNEQ_D14 VT_SIZERR_D14 VT_AIS_D14 VT_LOP_D14
0x20010 VT_REVENT_DELTA15 VT_RX_VTREI_E15 VT_RX_BIP2ERR_E15 VT_RX_ESOVFL_E15 VT_APS_D15 VT_ERDI_D15 VT_RDI_D15 VT_RFI_D15 VT_LOPS_D15 VT_J2TIM_D15 VT_PLM_D15 VT_UNEQ_D15 VT_SIZERR_D15 VT_AIS_D15 VT_LOP_D15
0x20011 VT_REVENT_DELTA16 VT_RX_VTREI_E16 VT_RX_BIP2ERR_E16 VT_RX_ESOVFL_E16 VT_APS_D16 VT_ERDI_D16 VT_RDI_D16 VT_RFI_D16 VT_LOPS_D16 VT_J2TIM_D16 VT_PLM_D16 VT_UNEQ_D16 VT_SIZERR_D16 VT_AIS_D16 VT_LOP_D16
0x20012 VT_REVENT_DELTA17 VT_RX_VTREI_E17 VT_RX_BIP2ERR_E17 VT_RX_ESOVFL_E17 VT_APS_D17 VT_ERDI_D17 VT_RDI_D17 VT_RFI_D17 VT_LOPS_D17 VT_J2TIM_D17 VT_PLM_D17 VT_UNEQ_D17 VT_SIZERR_D17 VT_AIS_D17 VT_LOP_D17
0x20013 VT_REVENT_DELTA18 VT_RX_VTREI_E18 VT_RX_BIP2ERR_E18 VT_RX_ESOVFL_E18 VT_APS_D18 VT_ERDI_D18 VT_RDI_D18 VT_RFI_D18 VT_LOPS_D18 VT_J2TIM_D18 VT_PLM_D18 VT_UNEQ_D18 VT_SIZERR_D18 VT_AIS_D18 VT_LOP_D18
0x20014 VT_REVENT_DELTA19 VT_RX_VTREI_E19 VT_RX_BIP2ERR_E19 VT_RX_ESOVFL_E19 VT_APS_D19 VT_ERDI_D19 VT_RDI_D19 VT_RFI_D19 VT_LOPS_D19 VT_J2TIM_D19 VT_PLM_D19 VT_UNEQ_D19 VT_SIZERR_D19 VT_AIS_D19 VT_LOP_D19
0x20015 VT_REVENT_DELTA20 VT_RX_VTREI_E20 VT_RX_BIP2ERR_E20 VT_RX_ESOVFL_E20 VT_APS_D20 VT_ERDI_D20 VT_RDI_D20 VT_RFI_D20 VT_LOPS_D20 VT_J2TIM_D20 VT_PLM_D20 VT_UNEQ_D20 VT_SIZERR_D20 VT_AIS_D20 VT_LOP_D20
0x20016 VT_REVENT_DELTA21 VT_RX_VTREI_E21 VT_RX_BIP2ERR_E21 VT_RX_ESOVFL_E21 VT_APS_D21 VT_ERDI_D21 VT_RDI_D21 VT_RFI_D21 VT_LOPS_D21 VT_J2TIM_D21 VT_PLM_D21 VT_UNEQ_D21 VT_SIZERR_D21 VT_AIS_D21 VT_LOP_D21
0x20017 VT_REVENT_DELTA22 VT_RX_VTREI_E22 VT_RX_BIP2ERR_E22 VT_RX_ESOVFL_E22 VT_APS_D22 VT_ERDI_D22 VT_RDI_D22 VT_RFI_D22 VT_LOPS_D22 VT_J2TIM_D22 VT_PLM_D22 VT_UNEQ_D22 VT_SIZERR_D22 VT_AIS_D22 VT_LOP_D22
0x20018 VT_REVENT_DELTA23 VT_RX_VTREI_E23 VT_RX_BIP2ERR_E23 VT_RX_ESOVFL_E23 VT_APS_D23 VT_ERDI_D23 VT_RDI_D23 VT_RFI_D23 VT_LOPS_D23 VT_J2TIM_D23 VT_PLM_D23 VT_UNEQ_D23 VT_SIZERR_D23 VT_AIS_D23 VT_LOP_D23
0x20019 VT_REVENT_DELTA24 VT_RX_VTREI_E24 VT_RX_BIP2ERR_E24 VT_RX_ESOVFL_E24 VT_APS_D24 VT_ERDI_D24 VT_RDI_D24 VT_RFI_D24 VT_LOPS_D24 VT_J2TIM_D24 VT_PLM_D24 VT_UNEQ_D24 VT_SIZERR_D24 VT_AIS_D24 VT_LOP_D24
0x2001A VT_REVENT_DELTA25 VT_RX_VTREI_E25 VT_RX_BIP2ERR_E25 VT_RX_ESOVFL_E25 VT_APS_D25 VT_ERDI_D25 VT_RDI_D25 VT_RFI_D25 VT_LOPS_D25 VT_J2TIM_D25 VT_PLM_D25 VT_UNEQ_D25 VT_SIZERR_D25 VT_AIS_D25 VT_LOP_D25
0x2001B VT_REVENT_DELTA26 VT_RX_VTREI_E26 VT_RX_BIP2ERR_E26 VT_RX_ESOVFL_E26 VT_APS_D26 VT_ERDI_D26 VT_RDI_D26 VT_RFI_D26 VT_LOPS_D26 VT_J2TIM_D26 VT_PLM_D26 VT_UNEQ_D26 VT_SIZERR_D26 VT_AIS_D26 VT_LOP_D26
0x2001C VT_REVENT_DELTA27 VT_RX_VTREI_E27 VT_RX_BIP2ERR_E27 VT_RX_ESOVFL_E27 VT_APS_D27 VT_ERDI_D27 VT_RDI_D27 VT_RFI_D27 VT_LOPS_D27 VT_J2TIM_D27 VT_PLM_D27 VT_UNEQ_D27 VT_SIZERR_D27 VT_AIS_D27 VT_LOP_D27
0x2001D VT_REVENT_DELTA28 VT_RX_VTREI_E28 VT_RX_BIP2ERR_E28 VT_RX_ESOVFL_E28 VT_APS_D28 VT_ERDI_D28 VT_RDI_D28 VT_RFI_D28 VT_LOPS_D28 VT_J2TIM_D28 VT_PLM_D28 VT_UNEQ_D28 VT_SIZERR_D28 VT_AIS_D28 VT_LOP_D28
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
172 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bi t 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transm it Delt a and Event ParametersCOR/COW
0x2001E VT_LOPOHFAIL_EVENT VT_LOPOH_FAIL_
E
0x2001F VT_TEVENT_DELTA1 VT_TX_ESOVFL_E1 VT_LOFS_D1 VT_TX_AIS_D1 VT_TX_LOC_D1
0x20020 VT_TEVENT_DELTA2 VT_TX_ESOVFL_E2 VT_LOFS_D2 VT_TX_AIS_D2 VT_TX_LOC_D2
0x20021 VT_TEVENT_DELTA3 VT_TX_ESOVFL_E3 VT_LOFS_D3 VT_TX_AIS_D3 VT_TX_LOC_D3
0x20022 VT_TEVENT_DELTA4 VT_TX_ESOVFL_E4 VT_LOFS_D4 VT_TX_AIS_D4 VT_TX_LOC_D4
0x20023 VT_TEVENT_DELTA5 VT_TX_ESOVFL_E5 VT_LOFS_D5 VT_TX_AIS_D5 VT_TX_LOC_D5
0x20024 VT_TEVENT_DELTA6 VT_TX_ESOVFL_E6 VT_LOFS_D6 VT_TX_AIS_D6 VT_TX_LOC_D6
0x20025 VT_TEVENT_DELTA7 VT_TX_ESOVFL_E7 VT_LOFS_D7 VT_TX_AIS_D7 VT_TX_LOC_D7
0x20026 VT_TEVENT_DELTA8 VT_TX_ESOVFL_E8 VT_LOFS_D8 VT_TX_AIS_D8 VT_TX_LOC_D8
0x20027 VT_TEVENT_DELTA9 VT_TX_ESOVFL_E9 VT_LOFS_D9 VT_TX_AIS_D9 VT_TX_LOC_D9
0x20028 VT_TEVENT_DELTA10 VT_TX_ESOVFL_E10 VT_LOFS_D10 VT_TX_AIS_D10 VT_TX_LOC_D10
0x20029 VT_TEVENT_DELTA11 VT_TX_ESOVFL_E11 VT_LOFS_D11 VT_TX_AIS_D11 VT_TX_LOC_D11
0x2002A VT_TEVENT_DELTA12 VT_TX_ESOVFL_E12 VT_LOFS_D12 VT_TX_AIS_D12 VT_TX_LOC_D12
0x2002B VT_TEVENT_DELTA13 VT_TX_ESOVFL_E13 VT_LOFS_D13 VT_TX_AIS_D13 VT_TX_LOC_D13
0x2002C VT_TEVENT_DELTA14 VT_TX_ESOVFL_E14 VT_LOFS_D14 VT_TX_AIS_D14 VT_TX_LOC_D14
0x2002D VT_TEVENT_DELTA15 VT_TX_ESOVFL_E15 VT_LOFS_D15 VT_TX_AIS_D15 VT_TX_LOC_D15
0x2002E VT_TEVENT_DELTA16 VT_TX_ESOVFL_E16 VT_LOFS_D16 VT_TX_AIS_D16 VT_TX_LOC_D16
0x2002F VT_TEVENT_DELTA17 VT_TX_ESOVFL_E17 VT_LOFS_D17 VT_TX_AIS_D17 VT_TX_LOC_D17
0x20030 VT_TEVENT_DELTA18 VT_TX_ESOVFL_E18 VT_LOFS_D18 VT_TX_AIS_D18 VT_TX_LOC_D18
0x20031 VT_TEVENT_DELTA19 VT_TX_ESOVFL_E19 VT_LOFS_D19 VT_TX_AIS_D19 VT_TX_LOC_D19
0x20032 VT_TEVENT_DELTA20 VT_TX_ESOVFL_E20 VT_LOFS_D20 VT_TX_AIS_D20 VT_TX_LOC_D20
0x20033 VT_TEVENT_DELTA21 VT_TX_ESOVFL_E21 VT_LOFS_D21 VT_TX_AIS_D21 VT_TX_LOC_D21
0x20034 VT_TEVENT_DELTA22 VT_TX_ESOVFL_E22 VT_LOFS_D22 VT_TX_AIS_D22 VT_TX_LOC_D22
0x20035 VT_TEVENT_DELTA23 VT_TX_ESOVFL_E23 VT_LOFS_D23 VT_TX_AIS_D23 VT_TX_LOC_D23
0x20036 VT_TEVENT_DELTA24 VT_TX_ESOVFL_E24 VT_LOFS_D24 VT_TX_AIS_D24 VT_TX_LOC_D24
0x20037 VT_TEVENT_DELTA25 VT_TX_ESOVFL_E25 VT_LOFS_D25 VT_TX_AIS_D25 VT_TX_LOC_D25
0x20038 VT_TEVENT_DELTA26 VT_TX_ESOVFL_E26 VT_LOFS_D26 VT_TX_AIS_D26 VT_TX_LOC_D26
0x20039 VT_TEVENT_DELTA27 VT_TX_ESOVFL_E27 VT_LOFS_D27 VT_TX_AIS_D27 VT_TX_LOC_D27
0x2003A VT_TEVENT_DELTA28 VT_TX_ESOVFL_E28 VT_LOFS_D28 VT_TX_AIS_D28 VT_TX_LOC_D28
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
173Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
VT Global Interrupt MasksR/W
0x2003B VT_GMASK VT_SD_M VT_SF_M VT_H4LOMF_
M
Receive Interrupt MasksR/W
0x2003C VT_RMASK1 VT_RX_VTREI_M1 VT_RX_BIP2ERR_M1 VT_RX_ESOVFL_M1 VT_APS_M1 VT_ERDI_M1 VT_RDI_M1 VT_RFI_M1 VT_LOPS_M1 VT_J2TIM_M1 VT_PLM_M1 VT_UNEQ_M1 VT_SIZERR_M1 VT_AIS_M1 VT_LOP_M1
0x2003D VT_RMASK2 VT_RX_VTREI_M2 VT_RX_BIP2ERR_M2 VT_RX_ESOVFL_M2 VT_APS_M2 VT_ERDI_M2 VT_RDI_M2 VT_RFI_M2 VT_LOPS_M2 VT_J2TIM_M2 VT_PLM_M2 VT_UNEQ_M2 VT_SIZERR_M2 VT_AIS_M2 VT_LOP_M2
0x2003E VT_RMASK3 VT_RX_VTREI_M3 VT_RX_BIP2ERR_M3 VT_RX_ESOVFL_M3 VT_APS_M3 VT_ERDI_M3 VT_RDI_M3 VT_RFI_M3 VT_LOPS_M3 VT_J2TIM_M3 VT_PLM_M3 VT_UNEQ_M3 VT_SIZERR_M3 VT_AIS_M3 VT_LOP_M3
0x2003F VT_RMASK4 VT_RX_VTREI_M4 VT_RX_BIP2ERR_M4 VT_RX_ESOVFL_M4 VT_APS_M4 VT_ERDI_M4 VT_RDI_M4 VT_RFI_M4 VT_LOPS_M4 VT_J2TIM_M4 VT_PLM_M4 VT_UNEQ_M4 VT_SIZERR_M4 VT_AIS_M4 VT_LOP_M4
0x20040 VT_RMASK5 VT_RX_VTREI_M5 VT_RX_BIP2ERR_M5 VT_RX_ESOVFL_M5 VT_APS_M5 VT_ERDI_M5 VT_RDI_M5 VT_RFI_M5 VT_LOPS_M5 VT_J2TIM_M5 VT_PLM_M5 VT_UNEQ_M5 VT_SIZERR_M5 VT_AIS_M5 VT_LOP_M5
0x20041 VT_RMASK6 VT_RX_VTREI_M6 VT_RX_BIP2ERR_M6 VT_RX_ESOVFL_M6 VT_APS_M6 VT_ERDI_M6 VT_RDI_M6 VT_RFI_M6 VT_LOPS_M6 VT_J2TIM_M6 VT_PLM_M6 VT_UNEQ_M6 VT_SIZERR_M6 VT_AIS_M6 VT_LOP_M6
0x20042 VT_RMASK7 VT_RX_VTREI_M7 VT_RX_BIP2ERR_M7 VT_RX_ESOVFL_M7 VT_APS_M7 VT_ERDI_M7 VT_RDI_M7 VT_RFI_M7 VT_LOPS_M7 VT_J2TIM_M7 VT_PLM_M7 VT_UNEQ_M7 VT_SIZERR_M7 VT_AIS_M7 VT_LOP_M7
0x20043 VT_RMASK8 VT_RX_VTREI_M8 VT_RX_BIP2ERR_M8 VT_RX_ESOVFL_M8 VT_APS_M8 VT_ERDI_M8 VT_RDI_M8 VT_RFI_M8 VT_LOPS_M8 VT_J2TIM_M8 VT_PLM_M8 VT_UNEQ_M8 VT_SIZERR_M8 VT_AIS_M8 VT_LOP_M8
0x20044 VT_RMASK9 VT_RX_VTREI_M9 VT_RX_BIP2ERR_M9 VT_RX_ESOVFL_M9 VT_APS_M9 VT_ERDI_M9 VT_RDI_M9 VT_RFI_M9 VT_LOPS_M9 VT_J2TIM_M9 VT_PLM_M9 VT_UNEQ_M9 VT_SIZERR_M9 VT_AIS_M9 VT_LOP_M9
0x20045 VT_RMASK10 VT_RX_VTREI_M10 VT_RX_BIP2ERR_M10 VT_RX_ESOVFL_M10 VT_APS_M10 VT_ERDI_M10 VT_RDI_M10 VT_RFI_M10 VT_LOPS_M10 VT_J2TIM_M10 VT_PLM_M10 VT_UNEQ_M10 VT_SIZERR_M10 VT_AIS_M10 VT_LOP_M10
0x20046 VT_RMASK11 VT_RX_VTREI_M11 VT_RX_BIP2ERR_M11 VT_RX_ESOVFL_M11 VT_APS_M11 VT_ERDI_M11 VT_RDI_M11 VT_RFI_M11 VT_LOPS_M11 VT_J2TIM_M11 VT_PLM_M11 VT_UNEQ_M11 VT_SIZERR_M11 VT_AIS_M11 VT_LOP_M11
0x20047 VT_RMASK12 VT_RX_VTREI_M12 VT_RX_BIP2ERR_M12 VT_RX_ESOVFL_M12 VT_APS_M12 VT_ERDI_M12 VT_RDI_M12 VT_RFI_M12 VT_LOPS_M12 VT_J2TIM_M12 VT_PLM_M12 VT_UNEQ_M12 VT_SIZERR_M12 VT_AIS_M12 VT_LOP_M12
0x20048 VT_RMASK13 VT_RX_VTREI_M13 VT_RX_BIP2ERR_M13 VT_RX_ESOVFL_M13 VT_APS_M13 VT_ERDI_M13 VT_RDI_M13 VT_RFI_M13 VT_LOPS_M13 VT_J2TIM_M13 VT_PLM_M13 VT_UNEQ_M13 VT_SIZERR_M13 VT_AIS_M13 VT_LOP_M13
0x20049 VT_RMASK14 VT_RX_VTREI_M14 VT_RX_BIP2ERR_M14 VT_RX_ESOVFL_M14 VT_APS_M14 VT_ERDI_M14 VT_RDI_M14 VT_RFI_M14 VT_LOPS_M14 VT_J2TIM_M14 VT_PLM_M14 VT_UNEQ_M14 VT_SIZERR_M14 VT_AIS_M14 VT_LOP_M14
0x2004A VT_RMASK15 VT_RX_VTREI_M15 VT_RX_BIP2ERR_M15 VT_RX_ESOVFL_M15 VT_APS_M15 VT_ERDI_M15 VT_RDI_M15 VT_RFI_M15 VT_LOPS_M15 VT_J2TIM_M15 VT_PLM_M15 VT_UNEQ_M15 VT_SIZERR_M15 VT_AIS_M15 VT_LOP_M15
0x2004B VT_RMASK16 VT_RX_VTREI_M16 VT_RX_BIP2ERR_M16 VT_RX_ESOVFL_M16 VT_APS_M16 VT_ERDI_M16 VT_RDI_M16 VT_RFI_M16 VT_LOPS_M16 VT_J2TIM_M16 VT_PLM_M16 VT_UNEQ_M16 VT_SIZERR_M16 VT_AIS_M16 VT_LOP_M16
0x2004C VT_RMASK17 VT_RX_VTREI_M17 VT_RX_BIP2ERR_M17 VT_RX_ESOVFL_M17 VT_APS_M17 VT_ERDI_M17 VT_RDI_M17 VT_RFI_M17 VT_LOPS_M17 VT_J2TIM_M17 VT_PLM_M17 VT_UNEQ_M17 VT_SIZERR_M17 VT_AIS_M17 VT_LOP_M17
0x2004D VT_RMASK18 VT_RX_VTREI_M18 VT_RX_BIP2ERR_M18 VT_RX_ESOVFL_M18 VT_APS_M18 VT_ERDI_M18 VT_RDI_M18 VT_RFI_M18 VT_LOPS_M18 VT_J2TIM_M18 VT_PLM_M18 VT_UNEQ_M18 VT_SIZERR_M18 VT_AIS_M18 VT_LOP_M18
0x2004E VT_RMASK19 VT_RX_VTREI_M19 VT_RX_BIP2ERR_M19 VT_RX_ESOVFL_M19 VT_APS_M19 VT_ERDI_M19 VT_RDI_M19 VT_RFI_M19 VT_LOPS_M19 VT_J2TIM_M19 VT_PLM_M19 VT_UNEQ_M19 VT_SIZERR_M19 VT_AIS_M19 VT_LOP_M19
0x2004F VT_RMASK20 VT_RX_VTREI_M20 VT_RX_BIP2ERR_M20 VT_RX_ESOVFL_M20 VT_APS_M20 VT_ERDI_M20 VT_RDI_M20 VT_RFI_M20 VT_LOPS_M20 VT_J2TIM_M20 VT_PLM_M20 VT_UNEQ_M20 VT_SIZERR_M20 VT_AIS_M20 VT_LOP_M20
0x20050 VT_RMASK21 VT_RX_VTREI_M21 VT_RX_BIP2ERR_M21 VT_RX_ESOVFL_M21 VT_APS_M21 VT_ERDI_M21 VT_RDI_M21 VT_RFI_M21 VT_LOPS_M21 VT_J2TIM_M21 VT_PLM_M21 VT_UNEQ_M21 VT_SIZERR_M21 VT_AIS_M21 VT_LOP_M21
0x20051 VT_RMASK22 VT_RX_VTREI_M22 VT_RX_BIP2ERR_M22 VT_RX_ESOVFL_M22 VT_APS_M22 VT_ERDI_M22 VT_RDI_M22 VT_RFI_M22 VT_LOPS_M22 VT_J2TIM_M22 VT_PLM_M22 VT_UNEQ_M22 VT_SIZERR_M22 VT_AIS_M22 VT_LOP_M22
0x20052 VT_RMASK23 VT_RX_VTREI_M23 VT_RX_BIP2ERR_M23 VT_RX_ESOVFL_M23 VT_APS_M23 VT_ERDI_M23 VT_RDI_M23 VT_RFI_M23 VT_LOPS_M23 VT_J2TIM_M23 VT_PLM_M23 VT_UNEQ_M23 VT_SIZERR_M23 VT_AIS_M23 VT_LOP_M23
0x20053 VT_RMASK24 VT_RX_VTREI_M24 VT_RX_BIP2ERR_M24 VT_RX_ESOVFL_M24 VT_APS_M24 VT_ERDI_M24 VT_RDI_M24 VT_RFI_M24 VT_LOPS_M24 VT_J2TIM_M24 VT_PLM_M24 VT_UNEQ_M24 VT_SIZERR_M24 VT_AIS_M24 VT_LOP_M24
0x20054 VT_RMASK25 VT_RX_VTREI_M25 VT_RX_BIP2ERR_M25 VT_RX_ESOVFL_M25 VT_APS_M25 VT_ERDI_M25 VT_RDI_M25 VT_RFI_M25 VT_LOPS_M25 VT_J2TIM_M25 VT_PLM_M25 VT_UNEQ_M25 VT_SIZERR_M25 VT_AIS_M25 VT_LOP_M25
0x20055 VT_RMASK26 VT_RX_VTREI_M26 VT_RX_BIP2ERR_M26 VT_RX_ESOVFL_M26 VT_APS_M26 VT_ERDI_M26 VT_RDI_M26 VT_RFI_M26 VT_LOPS_M26 VT_J2TIM_M26 VT_PLM_M26 VT_UNEQ_M26 VT_SIZERR_M26 VT_AIS_M26 VT_LOP_M26
0x20056 VT_RMASK27 VT_RX_VTREI_M27 VT_RX_BIP2ERR_M27 VT_RX_ESOVFL_M27 VT_APS_M27 VT_ERDI_M27 VT_RDI_M27 VT_RFI_M27 VT_LOPS_M27 VT_J2TIM_M27 VT_PLM_M27 VT_UNEQ_M27 VT_SIZERR_M27 VT_AIS_M27 VT_LOP_M27
0x20057 VT_RMASK28 VT_RX_VTREI_M28 VT_RX_BIP2ERR_M28 VT_RX_ESOVFL_M28 VT_APS_M28 VT_ERDI_M28 VT_RDI_M28 VT_RFI_M28 VT_LOPS_M28 VT_J2TIM_M28 VT_PLM_M28 VT_UNEQ_M28 VT_SIZERR_M28 VT_AIS_M28 VT_LOP_M28
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
174 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transm it Interr upt MasksR/W
0x20058 VT_LOPOHFAIL_MASK VT_LOPOH_FAIL_
M
0x20059 VT_TMASK1 VT_TX_ESOVFL_M1 VT_LOFS_M1 VT_TX_AIS_M1 VT_TX_LOC_M1
0x2005A VT_TMASK2 VT_TX_ESOVFL_M2 VT_LOFS_M2 VT_TX_AIS_M2 VT_TX_LOC_M2
0x2005B VT_TMASK3 VT_TX_ESOVFL_M3 VT_LOFS_M3 VT_TX_AIS_M3 VT_TX_LOC_M3
0x2005C VT_TMASK4 VT_TX_ESOVFL_M4 VT_LOFS_M4 VT_TX_AIS_M4 VT_TX_LOC_M4
0x2005D VT_TMASK5 VT_TX_ESOVFL_M5 VT_LOFS_M5 VT_TX_AIS_M5 VT_TX_LOC_M5
0x2005E VT_TMASK6 VT_TX_ESOVFL_M6 VT_LOFS_M6 VT_TX_AIS_M6 VT_TX_LOC_M6
0x2005F VT_TMASK7 VT_TX_ESOVFL_M7 VT_LOFS_M7 VT_TX_AIS_M7 VT_TX_LOC_M7
0x20060 VT_TMASK8 VT_TX_ESOVFL_M8 VT_LOFS_M8 VT_TX_AIS_M8 VT_TX_LOC_M8
0x20061 VT_TMASK9 VT_TX_ESOVFL_M9 VT_LOFS_M9 VT_TX_AIS_M9 VT_TX_LOC_M9
0x20062 VT_TMASK10 VT_TX_ESOVFL_M10 VT_LOFS_M10 VT_TX_AIS_M10 VT_TX_LOC_M10
0x20063 VT_TMASK11 VT_TX_ESOVFL_M11 VT_LOFS_M11 VT_TX_AIS_M11 VT_TX_LOC_M11
0x20064 VT_TMASK12 VT_TX_ESOVFL_M12 VT_LOFS_M12 VT_TX_AIS_M12 VT_TX_LOC_M12
0x20065 VT_TMASK13 VT_TX_ESOVFL_M13 VT_LOFS_M13 VT_TX_AIS_M13 VT_TX_LOC_M13
0x20066 VT_TMASK14 VT_TX_ESOVFL_M14 VT_LOFS_M14 VT_TX_AIS_M14 VT_TX_LOC_M14
0x20067 VT_TMASK15 VT_TX_ESOVFL_M15 VT_LOFS_M15 VT_TX_AIS_M15 VT_TX_LOC_M15
0x20068 VT_TMASK16 VT_TX_ESOVFL_M16 VT_LOFS_M16 VT_TX_AIS_M16 VT_TX_LOC_M16
0x20069 VT_TMASK17 VT_TX_ESOVFL_M17 VT_LOFS_M17 VT_TX_AIS_M17 VT_TX_LOC_M17
0x2006A VT_TMASK18 VT_TX_ESOVFL_M18 VT_LOFS_M18 VT_TX_AIS_M18 VT_TX_LOC_M18
0x2006B VT_TMASK19 VT_TX_ESOVFL_M19 VT_LOFS_M19 VT_TX_AIS_M19 VT_TX_LOC_M19
0x2006C VT_TMASK20 VT_TX_ESOVFL_M20 VT_LOFS_M20 VT_TX_AIS_M20 VT_TX_LOC_M20
0x2006D VT_TMASK21 VT_TX_ESOVFL_M21 VT_LOFS_M21 VT_TX_AIS_M21 VT_TX_LOC_M21
0x2006E VT_TMASK22 VT_TX_ESOVFL_M22 VT_LOFS_M22 VT_TX_AIS_M22 VT_TX_LOC_M22
0x2006F VT_TMASK23 VT_TX_ESOVFL_M23 VT_LOFS_M23 VT_TX_AIS_M23 VT_TX_LOC_M23
0x20070 VT_TMASK24 VT_TX_ESOVFL_M24 VT_LOFS_M24 VT_TX_AIS_M24 VT_TX_LOC_M24
0x20071 VT_TMASK25 VT_TX_ESOVFL_M25 VT_LOFS_M25 VT_TX_AIS_M25 VT_TX_LOC_M25
0x20072 VT_TMASK26 VT_TX_ESOVFL_M26 VT_LOFS_M26 VT_TX_AIS_M26 VT_TX_LOC_M26
0x20073 VT_TMASK27 VT_TX_ESOVFL_M27 VT_LOFS_M27 VT_TX_AIS_M27 VT_TX_LOC_M27
0x20074 VT_TMASK28 VT_TX_ESOVFL_M28 VT_LOFS_M28 VT_TX_AIS_M28 VT_TX_LOC_M28
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
175Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive S tate ParametersRO
0x20075 VT_GSTATE VT_SD VT_SF VT_H4LOMF
0x20076 VT_RSTATE1 VT_ERDI(1)[2:0] VT_LAB(1)[2:0] VT_RDI(1) VT_RFI1 VT_LOPS1 VT_J2TIM1 VT_PLM1 VT_UNEQ1 VT_SIZERR1 VT_AIS1 VT_LOP1
0x20077 VT_RSTATE2 VT_ERDI(2)[2:0] VT_LAB(2)[2:0] VT_RDI(2) VT_RFI2 VT_LOPS2 VT_J2TIM2 VT_PLM2 VT_UNEQ2 VT_SIZERR2 VT_AIS2 VT_LOP2
0x20078 VT_RSTATE3 VT_ERDI(3)[2:0] VT_LAB(3)[2:0] VT_RDI(3) VT_RFI3 VT_LOPS3 VT_J2TIM3 VT_PLM3 VT_UNEQ3 VT_SIZERR3 VT_AIS3 VT_LOP3
0x20079 VT_RSTATE4 VT_ERDI(4)[2:0] VT_LAB(4)[2:0] VT_RDI(4) VT_RFI4 VT_LOPS4 VT_J2TIM4 VT_PLM4 VT_UNEQ4 VT_SIZERR4 VT_AIS4 VT_LOP4
0x2007A VT_RSTATE5 VT_ERDI(5)[2:0] VT_LAB(5)[2:0] VT_RDI(5) VT_RFI5 VT_LOPS5 VT_J2TIM5 VT_PLM5 VT_UNEQ5 VT_SIZERR5 VT_AIS5 VT_LOP5
0x2007B VT_RSTATE6 VT_ERDI(6)[2:0] VT_LAB(6)[2:0] VT_RDI(6) VT_RFI6 VT_LOPS6 VT_J2TIM6 VT_PLM6 VT_UNEQ6 VT_SIZERR6 VT_AIS6 VT_LOP6
0x2007C VT_RSTATE7 VT_ERDI(7)[2:0] VT_LAB(7)[2:0] VT_RDI(7) VT_RFI7 VT_LOPS7 VT_J2TIM7 VT_PLM7 VT_UNEQ7 VT_SIZERR7 VT_AIS7 VT_LOP7
0x2007D VT_RSTATE8 VT_ERDI(8)[2:0] VT_LAB(8)[2:0] VT_RDI(8) VT_RFI8 VT_LOPS8 VT_J2TIM8 VT_PLM8 VT_UNEQ8 VT_SIZERR8 VT_AIS8 VT_LOP8
0x2007E VT_RSTATE9 VT_ERDI(9)[2:0] VT_LAB(9)[2:0] VT_RDI(9) VT_RFI9 VT_LOPS9 VT_J2TIM9 VT_PLM9 VT_UNEQ9 VT_SIZERR9 VT_AIS9 VT_LOP9
0x2007F VT_RSTATE10 VT_ERDI(10)[2:0] VT_LAB(10)[2:0] VT_RDI(10) VT_RFI10 VT_LOPS10 VT_J2TIM10 VT_PLM10 VT_UNEQ10 VT_SIZERR10 VT_AIS10 VT_LOP10
0x20080 VT_RSTATE11 VT_ERDI(11)[2:0] VT_LAB(11)[2:0] VT_RDI(11) VT_RFI11 VT_LOPS11 VT_J2TIM11 VT_PLM11 VT_UNEQ11 VT_SIZERR11 VT_AIS11 VT_LOP11
0x20081 VT_RSTATE12 VT_ERDI(12)[2:0] VT_LAB(12)[2:0] VT_RDI(12) VT_RFI12 VT_LOPS12 VT_J2TIM12 VT_PLM12 VT_UNEQ12 VT_SIZERR12 VT_AIS12 VT_LOP12
0x20082 VT_RSTATE13 VT_ERDI(13)[2:0] VT_LAB(13)[2:0] VT_RDI(13) VT_RFI13 VT_LOPS13 VT_J2TIM13 VT_PLM13 VT_UNEQ13 VT_SIZERR13 VT_AIS13 VT_LOP13
0x20083 VT_RSTATE14 VT_ERDI(14)[2:0] VT_LAB(14)[2:0] VT_RDI(14) VT_RFI14 VT_LOPS14 VT_J2TIM14 VT_PLM14 VT_UNEQ14 VT_SIZERR14 VT_AIS14 VT_LOP14
0x20084 VT_RSTATE15 VT_ERDI(15)[2:0] VT_LAB(15)[2:0] VT_RDI(15) VT_RFI15 VT_LOPS15 VT_J2TIM15 VT_PLM15 VT_UNEQ15 VT_SIZERR15 VT_AIS15 VT_LOP15
0x20085 VT_RSTATE16 VT_ERDI(16)[2:0] VT_LAB(16)[2:0] VT_RDI(16) VT_RFI16 VT_LOPS16 VT_J2TIM16 VT_PLM16 VT_UNEQ16 VT_SIZERR16 VT_AIS16 VT_LOP16
0x20086 VT_RSTATE17 VT_ERDI(17)[2:0] VT_LAB(17)[2:0] VT_RDI(17) VT_RFI17 VT_LOPS17 VT_J2TIM17 VT_PLM17 VT_UNEQ17 VT_SIZERR17 VT_AIS17 VT_LOP17
0x20087 VT_RSTATE18 VT_ERDI(18)[2:0] VT_LAB(18)[2:0] VT_RDI(18) VT_RFI18 VT_LOPS18 VT_J2TIM18 VT_PLM18 VT_UNEQ18 VT_SIZERR18 VT_AIS18 VT_LOP18
0x20088 VT_RSTATE19 VT_ERDI(19)[2:0] VT_LAB(19)[2:0] VT_RDI(19) VT_RFI19 VT_LOPS19 VT_J2TIM19 VT_PLM19 VT_UNEQ19 VT_SIZERR19 VT_AIS19 VT_LOP19
0x20089 VT_RSTATE20 VT_ERDI(20)[2:0] VT_LAB(20)[2:0] VT_RDI(20) VT_RFI20 VT_LOPS20 VT_J2TIM20 VT_PLM20 VT_UNEQ20 VT_SIZERR20 VT_AIS20 VT_LOP20
0x2008A VT_RSTATE21 VT_ERDI(21)[2:0] VT_LAB(21)[2:0] VT_RDI(21) VT_RFI21 VT_LOPS21 VT_J2TIM21 VT_PLM21 VT_UNEQ21 VT_SIZERR21 VT_AIS21 VT_LOP21
0x2008B VT_RSTATE22 VT_ERDI(22)[2:0] VT_LAB(22)[2:0] VT_RDI(22) VT_RFI22 VT_LOPS22 VT_J2TIM22 VT_PLM22 VT_UNEQ22 VT_SIZERR22 VT_AIS22 VT_LOP22
0x2008C VT_RSTATE23 VT_ERDI(23)[2:0] VT_LAB(23)[2:0] VT_RDI(23) VT_RFI23 VT_LOPS23 VT_J2TIM23 VT_PLM23 VT_UNEQ23 VT_SIZERR23 VT_AIS23 VT_LOP23
0x2008D VT_RSTATE24 VT_ERDI(24)[2:0] VT_LAB(24)[2:0] VT_RDI(24) VT_RFI24 VT_LOPS24 VT_J2TIM24 VT_PLM24 VT_UNEQ24 VT_SIZERR24 VT_AIS24 VT_LOP24
0x2008E VT_RSTATE25 VT_ERDI(25)[2:0] VT_LAB(25)[2:0] VT_RDI(25) VT_RFI25 VT_LOPS25 VT_J2TIM25 VT_PLM25 VT_UNEQ25 VT_SIZERR25 VT_AIS25 VT_LOP25
0x2008F VT_RSTATE26 VT_ERDI(26)[2:0] VT_LAB(26)[2:0] VT_RDI(26) VT_RFI26 VT_LOPS26 VT_J2TIM26 VT_PLM26 VT_UNEQ26 VT_SIZERR26 VT_AIS26 VT_LOP26
0x20090 VT_RSTATE27 VT_ERDI(27)[2:0] VT_LAB(27)[2:0] VT_RDI(27) VT_RFI27 VT_LOPS27 VT_J2TIM27 VT_PLM27 VT_UNEQ27 VT_SIZERR27 VT_AIS27 VT_LOP27
0x20091 VT_RSTATE28 VT_ERDI(28)[2:0] VT_LAB(28)[2:0] VT_RDI(28) VT_RFI28 VT_LOPS28 VT_J2TIM28 VT_PLM28 VT_UNEQ28 VT_SIZERR28 VT_AIS28 VT_LOP28
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
176 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive APS Value Paramete rsRO
0x20092 VT_RAPSSTATE1 VT_APS(1)[3:0]
0x20093 VT_RAPSSTATE2 VT_APS(2)[3:0]
0x20094 VT_RAPSSTATE3 VT_APS(3)[3:0]
0x20095 VT_RAPSSTATE4 VT_APS(4)[3:0]
0x20096 VT_RAPSSTATE5 VT_APS(5)[3:0]
0x20097 VT_RAPSSTATE6 VT_APS(6)[3:0]
0x20098 VT_RAPSSTATE7 VT_APS(7)[3:0]
0x20099 VT_RAPSSTATE8 VT_APS(8)[3:0]
0x2009A VT_RAPSSTATE9 VT_APS(9)[3:0]
0x2009B VT_RAPSSTATE10 VT_APS(10)[3:0]
0x2009C VT_RAPSSTATE11 VT_APS(11)[3:0]
0x2009D VT_RAPSSTATE12 VT_APS(12)[3:0]
0x2009E VT_RAPSSTATE13 VT_APS(13)[3:0]
0x2009F VT_RAPSSTATE14 VT_APS(14)[3:0]
0x200A0 VT_RAPSSTATE15 VT_APS(15)[3:0]
0x200A1 VT_RAPSSTATE16 VT_APS(16)[3:0]
0x200A2 VT_RAPSSTATE17 VT_APS(17)[3:0]
0x200A3 VT_RAPSSTATE18 VT_APS(18)[3:0]
0x200A4 VT_RAPSSTATE19 VT_APS(19)[3:0]
0x200A5 VT_RAPSSTATE20 VT_APS(20)[3:0]
0x200A6 VT_RAPSSTATE21 VT_APS(21)[3:0]
0x200A7 VT_RAPSSTATE22 VT_APS(22)[3:0]
0x200A8 VT_RAPSSTATE23 VT_APS(23)[3:0]
0x200A9 VT_RAPSSTATE24 VT_APS(24)[3:0]
0x200AA VT_RAPSSTATE25 VT_APS(25)[3:0]
0x200AB VT_RAPSSTATE26 VT_APS(26)[3:0]
0x200AC VT_RAPSSTATE27 VT_APS(27)[3:0]
0x200AD VT_RAPSSTATE28 VT_APS(28)[3:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
177Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
T ransmit State ParametersRO
0x200AE VT_TSTATE1 VT_LOFS1 VT_TX_AIS1 VT_TX_LOC1
0x200AF VT_TSTATE2 VT_LOFS2 VT_TX_AIS2 VT_TX_LOC2
0x200B0 VT_TSTATE3 VT_LOFS3 VT_TX_AIS3 VT_TX_LOC3
0x200B1 VT_TSTATE4 VT_LOFS4 VT_TX_AIS4 VT_TX_LOC4
0x200B2 VT_TSTATE5 VT_LOFS5 VT_TX_AIS5 VT_TX_LOC5
0x200B3 VT_TSTATE6 VT_LOFS6 VT_TX_AIS6 VT_TX_LOC6
0x200B4 VT_TSTATE7 VT_LOFS7 VT_TX_AIS7 VT_TX_LOC7
0x200B5 VT_TSTATE8 VT_LOFS8 VT_TX_AIS8 VT_TX_LOC8
0x200B6 VT_TSTATE9 VT_LOFS9 VT_TX_AIS9 VT_TX_LOC9
0x200B7 VT_TSTATE10 VT_LOFS10 VT_TX_AIS10 VT_TX_LOC10
0x200B8 VT_TSTATE11 VT_LOFS11 VT_TX_AIS11 VT_TX_LOC11
0x200B9 VT_TSTATE12 VT_LOFS12 VT_TX_AIS12 VT_TX_LOC12
0x200BA VT_TSTATE13 VT_LOFS13 VT_TX_AIS13 VT_TX_LOC13
0x200BB VT_TSTATE14 VT_LOFS14 VT_TX_AIS14 VT_TX_LOC14
0x200BC VT_TSTATE15 VT_LOFS15 VT_TX_AIS15 VT_TX_LOC15
0x200BD VT_TSTATE16 VT_LOFS16 VT_TX_AIS16 VT_TX_LOC16
0x200BE VT_TSTATE17 VT_LOFS17 VT_TX_AIS17 VT_TX_LOC17
0x200BF VT_TSTATE18 VT_LOFS18 VT_TX_AIS18 VT_TX_LOC18
0x200C0 VT_TSTATE19 VT_LOFS19 VT_TX_AIS19 VT_TX_LOC19
0x200C1 VT_TSTATE20 VT_LOFS20 VT_TX_AIS20 VT_TX_LOC20
0x200C2 VT_TSTATE21 VT_LOFS21 VT_TX_AIS21 VT_TX_LOC21
0x200C3 VT_TSTATE22 VT_LOFS22 VT_TX_AIS22 VT_TX_LOC22
0x200C4 VT_TSTATE23 VT_LOFS23 VT_TX_AIS23 VT_TX_LOC23
0x200C5 VT_TSTATE24 VT_LOFS24 VT_TX_AIS24 VT_TX_LOC24
0x200C6 VT_TSTATE25 VT_LOFS25 VT_TX_AIS25 VT_TX_LOC25
0x200C7 VT_TSTATE26 VT_LOFS26 VT_TX_AIS26 VT_TX_LOC26
0x200C8 VT_TSTATE27 VT_LOFS27 VT_TX_AIS27 VT_TX_LOC27
0x200C9 VT_TSTATE28 VT_LOFS28 VT_TX_AIS28 VT_TX_LOC28
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
178 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
VT Global Control ParametersR/W
0x200CA VT_GCTL1 VT_RX_GRP_TYPE[6:0] VT_TX_GRP_TYPE[6:0]
0x200CB VT_GCTL2 VT_LOPS_AIS
_INH VT_J2TIM_ER
DI_INH VT_J2TIM_RDI
_INH VT_J2TIM_AIS
_INH VT_LOMF_AIS
_INH VT_PLM_AIS_I
NH VT_UNEQ_AIS
_INH VT_UPSR VT_8ORMAJO
RITY VT_BIT_BLO
CK_CNT
0x200CC VT_GCTL3 VT_LOPS_NTIME[3:0] VT_H4_NTIME[3:0]
0x200CD VT_GCTL4 VT_Z6_NTIME[3:0] VT_J2_NTIME[3:0] VT_INV_NTIME[3:0] VT_NDF_NTIME[3:0]
0x200CE VT_GCTL5 VT_APS_NTIME[3:0] VT_LAB_NTIME[3:0] VT_ERDI_NTIME[3:0] VT_RDI_NTIME[3:0]
Signal Degrade ControlR/W
0x200CF VT_SIGDEG_
CTL1 VT_SFCLEAR VT_SFSET VT_SDCLEAR VT_SDSET VT_BER_CH_SEL[4:0]
0x200D0 VT_SIGDEG_
CTL2 VT_SDNSSET[18:3]
0x200D1 VT_SIGDEG_
CTL3 VT_SDMSET[7:0] VT_SDLSET[3:0] VT_SDNSSET[2:0]
0x200D2 VT_SIGDEG_
CTL4 VT_SDBSET[15:0]
0x200D3 VT_SIGDEG_
CTL5 VT_SDNSCLEAR[18:3]
0x200D4 VT_SIGDEG_
CTL6 VT_SDMCLEAR[7:0] VT_SDLCLEAR[3:0] VT_SDNSCLEAR[2:0]
0x200D5 VT_SIGDEG_
CTL7 VT_SDBCLEAR[15:0]
Signal Fail ControlR/W
0x200D6 VT_SIGFAIL_
CTL1 VT_SFNSSET[18:3]
0x200D7 VT_SIGFAIL_
CTL2 VT_SFMSET[7:0] VT_SFLSET[3:0] VT_SFNSSET[2:0]
0x200D8 VT_SIGFAIL_
CTL3 VT_SFBSET[15:0]
0x200D9 VT_SIGFAIL_
CTL4 VT_SFNSCLEAR[18:3]
0x200DA VT_SIGFAIL_
CTL5 VT_SFMCLEAR[7:0] VT_SFLCLEAR[3:0] VT_SFNSCLEAR[2:0]
0x200DB VT_SIGFAIL_
CTL6 VT_SFBCLEAR[15:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
179Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
T ransmit Contro l P aram et ersR/W
0x200DC VT_TCTL1 VT_TX_ERDI_EN1 VT_ERDI_EN1 VT_RDI_EN1 VT_RFI_EN1 VT_REI_EN1 VT_AIS_INS1 VT_TX_CLKEDGE1 VT_LB_SEL1 VT_TX_MAPTYPE(1)[3:0]
0x200DD VT_TCTL2 VT_TX_ERDI_EN2 VT_ERDI_EN2 VT_RDI_EN2 VT_RFI_EN2 VT_REI_EN2 VT_AIS_INS2 VT_TX_CLKEDGE2 VT_LB_SEL2 VT_TX_MAPTYPE(2)[3:0]
0x200DE VT_TCTL3 VT_TX_ERDI_EN3 VT_ERDI_EN3 VT_RDI_EN3 VT_RFI_EN3 VT_REI_EN3 VT_AIS_INS3 VT_TX_CLKEDGE3 VT_LB_SEL3 VT_TX_MAPTYPE(3)[3:0]
0x200DF VT_TCTL4 VT_TX_ERDI_EN4 VT_ERDI_EN4 VT_RDI_EN4 VT_RFI_EN4 VT_REI_EN4 VT_AIS_INS4 VT_TX_CLKEDGE4 VT_LB_SEL4 VT_TX_MAPTYPE(4)[3:0]
0x200E0 VT_TCTL5 VT_TX_ERDI_EN5 VT_ERDI_EN5 VT_RDI_EN5 VT_RFI_EN5 VT_REI_EN5 VT_AIS_INS5 VT_TX_CLKEDGE5 VT_LB_SEL5 VT_TX_MAPTYPE(5)[3:0]
0x200E1 VT_TCTL6 VT_TX_ERDI_EN6 VT_ERDI_EN6 VT_RDI_EN6 VT_RFI_EN6 VT_REI_EN6 VT_AIS_INS6 VT_TX_CLKEDGE6 VT_LB_SEL6 VT_TX_MAPTYPE(6)[3:0]
0x200E2 VT_TCTL7 VT_TX_ERDI_EN7 VT_ERDI_EN7 VT_RDI_EN7 VT_RFI_EN7 VT_REI_EN7 VT_AIS_INS7 VT_TX_CLKEDGE7 VT_LB_SEL7 VT_TX_MAPTYPE(7)[3:0]
0x200E3 VT_TCTL8 VT_TX_ERDI_EN8 VT_ERDI_EN8 VT_RDI_EN8 VT_RFI_EN8 VT_REI_EN8 VT_AIS_INS8 VT_TX_CLKEDGE8 VT_LB_SEL8 VT_TX_MAPTYPE(8)[3:0]
0x200E4 VT_TCTL9 VT_TX_ERDI_EN9 VT_ERDI_EN9 VT_RDI_EN9 VT_RFI_EN9 VT_REI_EN9 VT_AIS_INS9 VT_TX_CLKEDGE9 VT_LB_SEL9 VT_TX_MAPTYPE(9)[3:0]
0x200E5 VT_TCTL10 VT_TX_ERDI_EN10 VT_ERDI_EN10 VT_RDI_EN10 VT_RFI_EN10 VT_REI_EN10 VT_AIS_INS10 VT_TX_CLKEDGE10 VT_LB_SEL10 VT_TX_MAPTYPE(10)[3:0]
0x200E6 VT_TCTL11 VT_TX_ERDI_EN11 VT_ERDI_EN11 VT_RDI_EN11 VT_RFI_EN11 VT_REI_EN11 VT_AIS_INS11 VT_TX_CLKEDGE11 VT_LB_SEL11 VT_TX_MAPTYPE(11)[3:0]
0x200E7 VT_TCTL12 VT_TX_ERDI_EN12 VT_ERDI_EN12 VT_RDI_EN12 VT_RFI_EN12 VT_REI_EN12 VT_AIS_INS12 VT_TX_CLKEDGE12 VT_LB_SEL12 VT_TX_MAPTYPE(12)[3:0]
0x200E8 VT_TCTL13 VT_TX_ERDI_EN13 VT_ERDI_EN13 VT_RDI_EN13 VT_RFI_EN13 VT_REI_EN13 VT_AIS_INS13 VT_TX_CLKEDGE13 VT_LB_SEL13 VT_TX_MAPTYPE(13)[3:0]
0x200E9 VT_TCTL14 VT_TX_ERDI_EN14 VT_ERDI_EN14 VT_RDI_EN14 VT_RFI_EN14 VT_REI_EN14 VT_AIS_INS14 VT_TX_CLKEDGE14 VT_LB_SEL14 VT_TX_MAPTYPE(14)[3:0]
0x200EA VT_TCTL15 VT_TX_ERDI_EN15 VT_ERDI_EN15 VT_RDI_EN15 VT_RFI_EN15 VT_REI_EN15 VT_AIS_INS15 VT_TX_CLKEDGE15 VT_LB_SEL15 VT_TX_MAPTYPE(15)[3:0]
0x200EB VT_TCTL16 VT_TX_ERDI_EN16 VT_ERDI_EN16 VT_RDI_EN16 VT_RFI_EN16 VT_REI_EN16 VT_AIS_INS16 VT_TX_CLKEDGE16 VT_LB_SEL16 VT_TX_MAPTYPE(16)[3:0]
0x200EC VT_TCTL17 VT_TX_ERDI_EN17 VT_ERDI_EN17 VT_RDI_EN17 VT_RFI_EN17 VT_REI_EN17 VT_AIS_INS17 VT_TX_CLKEDGE17 VT_LB_SEL17 VT_TX_MAPTYPE(17)[3:0]
0x200ED VT_TCTL18 VT_TX_ERDI_EN18 VT_ERDI_EN18 VT_RDI_EN18 VT_RFI_EN18 VT_REI_EN18 VT_AIS_INS18 VT_TX_CLKEDGE18 VT_LB_SEL18 VT_TX_MAPTYPE(18)[3:0]
0x200EE VT_TCTL19 VT_TX_ERDI_EN19 VT_ERDI_EN19 VT_RDI_EN19 VT_RFI_EN19 VT_REI_EN19 VT_AIS_INS19 VT_TX_CLKEDGE19 VT_LB_SEL19 VT_TX_MAPTYPE(19)[3:0]
0x200EF VT_TCTL20 VT_TX_ERDI_EN20 VT_ERDI_EN20 VT_RDI_EN20 VT_RFI_EN20 VT_REI_EN20 VT_AIS_INS20 VT_TX_CLKEDGE20 VT_LB_SEL20 VT_TX_MAPTYPE(20)[3:0]
0x200F0 VT_TCTL21 VT_TX_ERDI_EN21 VT_ERDI_EN21 VT_RDI_EN21 VT_RFI_EN21 VT_REI_EN21 VT_AIS_INS21 VT_TX_CLKEDGE21 VT_LB_SEL21 VT_TX_MAPTYPE(21)[3:0]
0x200F1 VT_TCTL22 VT_TX_ERDI_EN22 VT_ERDI_EN22 VT_RDI_EN22 VT_RFI_EN22 VT_REI_EN22 VT_AIS_INS22 VT_TX_CLKEDGE22 VT_LB_SEL22 VT_TX_MAPTYPE(22)[3:0]
0x200F2 VT_TCTL23 VT_TX_ERDI_EN23 VT_ERDI_EN23 VT_RDI_EN23 VT_RFI_EN23 VT_REI_EN23 VT_AIS_INS23 VT_TX_CLKEDGE23 VT_LB_SEL23 VT_TX_MAPTYPE(23)[3:0]
0x200F3 VT_TCTL24 VT_TX_ERDI_EN24 VT_ERDI_EN24 VT_RDI_EN24 VT_RFI_EN24 VT_REI_EN24 VT_AIS_INS24 VT_TX_CLKEDGE24 VT_LB_SEL24 VT_TX_MAPTYPE(24)[3:0]
0x200F4 VT_TCTL25 VT_TX_ERDI_EN25 VT_ERDI_EN25 VT_RDI_EN25 VT_RFI_EN25 VT_REI_EN25 VT_AIS_INS25 VT_TX_CLKEDGE25 VT_LB_SEL25 VT_TX_MAPTYPE(25)[3:0]
0x200F5 VT_TCTL26 VT_TX_ERDI_EN26 VT_ERDI_EN26 VT_RDI_EN26 VT_RFI_EN26 VT_REI_EN26 VT_AIS_INS26 VT_TX_CLKEDGE26 VT_LB_SEL26 VT_TX_MAPTYPE(26)[3:0]
0x200F6 VT_TCTL27 VT_TX_ERDI_EN27 VT_ERDI_EN27 VT_RDI_EN27 VT_RFI_EN27 VT_REI_EN27 VT_AIS_INS27 VT_TX_CLKEDGE27 VT_LB_SEL27 VT_TX_MAPTYPE(27)[3:0]
0x200F7 VT_TCTL28 VT_TX_ERDI_EN28 VT_ERDI_EN28 VT_RDI_EN28 VT_RFI_EN28 VT_REI_EN28 VT_AIS_INS28 VT_TX_CLKEDGE28 VT_LB_SEL28 VT_TX_MAPTYPE(28)[3:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
180 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit TU OH Control ParametersR/W
0x200F8 VT_TTUOH_CTL1 VT_O_INS(1)[1:0] VT_Z7_INS(1)[1:0] VT_Z6_INS(1)[1:0] VT_J2_INS(1)[1:0] VT_V5_INS1 VT_BIP2ERR_INS(1)[1:0]
0x200F9 VT_TTUOH_CTL2 VT_O_INS(2)[1:0] VT_Z7_INS(2)[1:0] VT_Z6_INS(2)[1:0] VT_J2_INS(2)[1:0] VT_V5_INS2 VT_BIP2ERR_INS(2)[1:0]
0x200FA VT_TTUOH_CTL3 VT_O_INS(3)[1:0] VT_Z7_INS(3)[1:0] VT_Z6_INS(3)[1:0] VT_J2_INS(3)[1:0] VT_V5_INS3 VT_BIP2ERR_INS(3)[1:0]
0x200FB VT_TTUOH_CTL4 VT_O_INS(4)[1:0] VT_Z7_INS(4)[1:0] VT_Z6_INS(4)[1:0] VT_J2_INS(4)[1:0] VT_V5_INS4 VT_BIP2ERR_INS(4)[1:0]
0x200FC VT_TTUOH_CTL5 VT_O_INS(5)[1:0] VT_Z7_INS(5)[1:0] VT_Z6_INS(5)[1:0] VT_J2_INS(5)[1:0] VT_V5_INS5 VT_BIP2ERR_INS(5)[1:0]
0x200FD VT_TTUOH_CTL6 VT_O_INS(6)[1:0] VT_Z7_INS(6)[1:0] VT_Z6_INS(6)[1:0] VT_J2_INS(6)[1:0] VT_V5_INS6 VT_BIP2ERR_INS(6)[1:0]
0x200FE VT_TTUOH_CTL7 VT_O_INS(7)[1:0] VT_Z7_INS(7)[1:0] VT_Z6_INS(7)[1:0] VT_J2_INS(7)[1:0] VT_V5_INS7 VT_BIP2ERR_INS(7)[1:0]
0x200FF VT_TTUOH_CTL8 VT_O_INS(8)[1:0] VT_Z7_INS(8)[1:0] VT_Z6_INS(8)[1:0] VT_J2_INS(8)[1:0] VT_V5_INS8 VT_BIP2ERR_INS(8)[1:0]
0x20100 VT_TTUOH_CTL9 VT_O_INS(9)[1:0] VT_Z7_INS(9)[1:0] VT_Z6_INS(9)[1:0] VT_J2_INS(9)[1:0] VT_V5_INS9 VT_BIP2ERR_INS(9)[1:0]
0x20101 VT_TTUOH_CTL10 VT_O_INS(10)[1:0] VT_Z7_INS(10)[1:0] VT_Z6_INS(10)[1:0] VT_J2_INS(10)[1:0] VT_V5_INS10 VT_BIP2ERR_INS(10)[1:0]
0x20102 VT_TTUOH_CTL11 VT_O_INS(11)[1:0] VT_Z7_INS(11)[1:0] VT_Z6_INS(11)[1:0] VT_J2_INS(11)[1:0] VT_V5_INS11 VT_BIP2ERR_INS(11)[1:0]
0x20103 VT_TTUOH_CTL12 VT_O_INS(12)[1:0] VT_Z7_INS(12)[1:0] VT_Z6_INS(12)[1:0] VT_J2_INS(12)[1:0] VT_V5_INS12 VT_BIP2ERR_INS(12)[1:0]
0x20104 VT_TTUOH_CTL13 VT_O_INS(13)[1:0] VT_Z7_INS(13)[1:0] VT_Z6_INS(13)[1:0] VT_J2_INS(13)[1:0] VT_V5_INS13 VT_BIP2ERR_INS(13)[1:0]
0x20105 VT_TTUOH_CTL14 VT_O_INS(14)[1:0] VT_Z7_INS(14)[1:0] VT_Z6_INS(14)[1:0] VT_J2_INS(14)[1:0] VT_V5_INS14 VT_BIP2ERR_INS(14)[1:0]
0x20106 VT_TTUOH_CTL15 VT_O_INS(15)[1:0] VT_Z7_INS(15)[1:0] VT_Z6_INS(15)[1:0] VT_J2_INS(15)[1:0] VT_V5_INS15 VT_BIP2ERR_INS(15)[1:0]
0x20107 VT_TTUOH_CTL16 VT_O_INS(16)[1:0] VT_Z7_INS(16)[1:0] VT_Z6_INS(16)[1:0] VT_J2_INS(16)[1:0] VT_V5_INS16 VT_BIP2ERR_INS(16)[1:0]
0x20108 VT_TTUOH_CTL17 VT_O_INS(17)[1:0] VT_Z7_INS(17)[1:0] VT_Z6_INS(17)[1:0] VT_J2_INS(17)[1:0] VT_V5_INS17 VT_BIP2ERR_INS(17)[1:0]
0x20109 VT_TTUOH_CTL18 VT_O_INS(18)[1:0] VT_Z7_INS(18)[1:0] VT_Z6_INS(18)[1:0] VT_J2_INS(18)[1:0] VT_V5_INS18 VT_BIP2ERR_INS(18)[1:0]
0x2010A VT_TTUOH_CTL19 VT_O_INS(19)[1:0] VT_Z7_INS(19)[1:0] VT_Z6_INS(19)[1:0] VT_J2_INS(19)[1:0] VT_V5_INS19 VT_BIP2ERR_INS(19)[1:0]
0x2010B VT_TTUOH_CTL20 VT_O_INS(20)[1:0] VT_Z7_INS(20)[1:0] VT_Z6_INS(20)[1:0] VT_J2_INS(20)[1:0] VT_V5_INS20 VT_BIP2ERR_INS(20)[1:0]
0x2010C VT_TTUOH_CTL21 VT_O_INS(21)[1:0] VT_Z7_INS(21)[1:0] VT_Z6_INS(21)[1:0] VT_J2_INS(21)[1:0] VT_V5_INS21 VT_BIP2ERR_INS(21)[1:0]
0x2010D VT_TTUOH_CTL22 VT_O_INS(22)[1:0] VT_Z7_INS(22)[1:0] VT_Z6_INS(22)[1:0] VT_J2_INS(22)[1:0] VT_V5_INS22 VT_BIP2ERR_INS(22)[1:0]
0x2010E VT_TTUOH_CTL23 VT_O_INS(23)[1:0] VT_Z7_INS(23)[1:0] VT_Z6_INS(23)[1:0] VT_J2_INS(23)[1:0] VT_V5_INS23 VT_BIP2ERR_INS(23)[1:0]
0x2010F VT_TTUOH_CTL24 VT_O_INS(24)[1:0] VT_Z7_INS(24)[1:0] VT_Z6_INS(24)[1:0] VT_J2_INS(24)[1:0] VT_V5_INS24 VT_BIP2ERR_INS(24)[1:0]
0x20110 VT_TTUOH_CTL25 VT_O_INS(25)[1:0] VT_Z7_INS(25)[1:0] VT_Z6_INS(25)[1:0] VT_J2_INS(25)[1:0] VT_V5_INS25 VT_BIP2ERR_INS(25)[1:0]
0x20111 VT_TTUOH_CTL26 VT_O_INS(26)[1:0] VT_Z7_INS(26)[1:0] VT_Z6_INS(26)[1:0] VT_J2_INS(26)[1:0] VT_V5_INS26 VT_BIP2ERR_INS(26)[1:0]
0x20112 VT_TTUOH_CTL27 VT_O_INS(27)[1:0] VT_Z7_INS(27)[1:0] VT_Z6_INS(27)[1:0] VT_J2_INS(27)[1:0] VT_V5_INS27 VT_BIP2ERR_INS(27)[1:0]
0x20113 VT_TTUOH_CTL28 VT_O_INS(28)[1:0] VT_Z7_INS(28)[1:0] VT_Z6_INS(28)[1:0] VT_J2_INS(28)[1:0] VT_V5_INS28 VT_BIP2ERR_INS(28)[1:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
181Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transm it APS and Rem o te Indicatio nR/W
0x20114 VT_TAPSRIVAL1 VT_APS_INS(1)[3:0] VT_ERDI_INS(1)[2:0] VT_RDI_INS1 VT_RFI_INS1
0x20115 VT_TAPSRIVAL2 VT_APS_INS(2)[3:0] VT_ERDI_INS(2)[2:0] VT_RDI_INS2 VT_RFI_INS2
0x20116 VT_TAPSRIVAL3 VT_APS_INS(3)[3:0] VT_ERDI_INS(3)[2:0] VT_RDI_INS3 VT_RFI_INS3
0x20117 VT_TAPSRIVAL4 VT_APS_INS(4)[3:0] VT_ERDI_INS(4)[2:0] VT_RDI_INS4 VT_RFI_INS4
0x20118 VT_TAPSRIVAL5 VT_APS_INS(5)[3:0] VT_ERDI_INS(5)[2:0] VT_RDI_INS5 VT_RFI_INS5
0x20119 VT_TAPSRIVAL6 VT_APS_INS(6)[3:0] VT_ERDI_INS(6)[2:0] VT_RDI_INS6 VT_RFI_INS6
0x2011A VT_TAPSRIVAL7 VT_APS_INS(7)[3:0] VT_ERDI_INS(7)[2:0] VT_RDI_INS7 VT_RFI_INS7
0x2011B VT_TAPSRIVAL8 VT_APS_INS(8)[3:0] VT_ERDI_INS(8)[2:0] VT_RDI_INS8 VT_RFI_INS8
0x2011C VT_TAPSRIVAL9 VT_APS_INS(9)[3:0] VT_ERDI_INS(9)[2:0] VT_RDI_INS9 VT_RFI_INS9
0x2011D VT_TAPSRIVAL10 VT_APS_INS(10)[3:0] VT_ERDI_INS(10)[2:0] VT_RDI_INS10 VT_RFI_INS10
0x2011E VT_TAPSRIVAL11 VT_APS_INS(11)[3:0] VT_ERDI_INS(11)[2:0] VT_RDI_INS11 VT_RFI_INS11
0x2011F VT_TAPSRIVAL12 VT_APS_INS(12)[3:0] VT_ERDI_INS(12)[2:0] VT_RDI_INS12 VT_RFI_INS12
0x20120 VT_TAPSRIVAL13 VT_APS_INS(13)[3:0] VT_ERDI_INS(13)[2:0] VT_RDI_INS13 VT_RFI_INS13
0x20121 VT_TAPSRIVAL14 VT_APS_INS(14)[3:0] VT_ERDI_INS(14)[2:0] VT_RDI_INS14 VT_RFI_INS14
0x20122 VT_TAPSRIVAL15 VT_APS_INS(15)[3:0] VT_ERDI_INS(15)[2:0] VT_RDI_INS15 VT_RFI_INS15
0x20123 VT_TAPSRIVAL16 VT_APS_INS(16)[3:0] VT_ERDI_INS(16)[2:0] VT_RDI_INS16 VT_RFI_INS16
0x20124 VT_TAPSRIVAL17 VT_APS_INS(17)[3:0] VT_ERDI_INS(17)[2:0] VT_RDI_INS17 VT_RFI_INS17
0x20125 VT_TAPSRIVAL18 VT_APS_INS(18)[3:0] VT_ERDI_INS(18)[2:0] VT_RDI_INS18 VT_RFI_INS18
0x20126 VT_TAPSRIVAL19 VT_APS_INS(19)[3:0] VT_ERDI_INS(19)[2:0] VT_RDI_INS19 VT_RFI_INS19
0x20127 VT_TAPSRIVAL20 VT_APS_INS(20)[3:0] VT_ERDI_INS(20)[2:0] VT_RDI_INS20 VT_RFI_INS20
0x20128 VT_TAPSRIVAL21 VT_APS_INS(21)[3:0] VT_ERDI_INS(21)[2:0] VT_RDI_INS21 VT_RFI_INS21
0x20129 VT_TAPSRIVAL22 VT_APS_INS(22)[3:0] VT_ERDI_INS(22)[2:0] VT_RDI_INS22 VT_RFI_INS22
0x2012A VT_TAPSRIVAL23 VT_APS_INS(23)[3:0] VT_ERDI_INS(23)[2:0] VT_RDI_INS23 VT_RFI_INS23
0x2012B VT_TAPSRIVAL24 VT_APS_INS(24)[3:0] VT_ERDI_INS(24)[2:0] VT_RDI_INS24 VT_RFI_INS24
0x2012C VT_TAPSRIVAL25 VT_APS_INS(25)[3:0] VT_ERDI_INS(25)[2:0] VT_RDI_INS25 VT_RFI_INS25
0x2012D VT_TAPSRIVAL26 VT_APS_INS(26)[3:0] VT_ERDI_INS(26)[2:0] VT_RDI_INS26 VT_RFI_INS26
0x2012E VT_TAPSRIVAL27 VT_APS_INS(27)[3:0] VT_ERDI_INS(27)[2:0] VT_RDI_INS27 VT_RFI_INS27
0x2012F VT_TAPSRIVAL28 VT_APS_INS(28)[3:0] VT_ERDI_INS(28)[2:0] VT_RDI_INS28 VT_RFI_INS28
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
182 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Tr ansmit Software O verwrite ParametersR/W
0x20130 VT_TSWOW1 VT_OBIT_INS(1)[7:0] VT_Z6BYTE_INS(1)[7:0]
0x20131 VT_TSWOW2 VT_OBIT_INS(2)[7:0] VT_Z6BYTE_INS(2)[7:0]
0x20132 VT_TSWOW3 VT_OBIT_INS(3)[7:0] VT_Z6BYTE_INS(3)[7:0]
0x20133 VT_TSWOW4 VT_OBIT_INS(4)[7:0] VT_Z6BYTE_INS(4)[7:0]
0x20134 VT_TSWOW5 VT_OBIT_INS(5)[7:0] VT_Z6BYTE_INS(5)[7:0]
0x20135 VT_TSWOW6 VT_OBIT_INS(6)[7:0] VT_Z6BYTE_INS(6)[7:0]
0x20136 VT_TSWOW7 VT_OBIT_INS(7)[7:0] VT_Z6BYTE_INS(7)[7:0]
0x20137 VT_TSWOW8 VT_OBIT_INS(8)[7:0] VT_Z6BYTE_INS(8)[7:0]
0x20138 VT_TSWOW9 VT_OBIT_INS(9)[7:0] VT_Z6BYTE_INS(9)[7:0]
0x20139 VT_TSWOW10 VT_OBIT_INS(10)[7:0] VT_Z6BYTE_INS(10)[7:0]
0x2013A VT_TSWOW11 VT_OBIT_INS(11)[7:0] VT_Z6BYTE_INS(11)[7:0]
0x2013B VT_TSWOW12 VT_OBIT_INS(12)[7:0] VT_Z6BYTE_INS(12)[7:0]
0x2013C VT_TSWOW13 VT_OBIT_INS(13)[7:0] VT_Z6BYTE_INS(13)[7:0]
0x2013D VT_TSWOW14 VT_OBIT_INS(14)[7:0] VT_Z6BYTE_INS(14)[7:0]
0x2013E VT_TSWOW15 VT_OBIT_INS(15)[7:0] VT_Z6BYTE_INS(15)[7:0]
0x2013F VT_TSWOW16 VT_OBIT_INS(16)[7:0] VT_Z6BYTE_INS(16)[7:0]
0x20140 VT_TSWOW17 VT_OBIT_INS(17)[7:0] VT_Z6BYTE_INS(17)[7:0]
0x20141 VT_TSWOW18 VT_OBIT_INS(18)[7:0] VT_Z6BYTE_INS(18)[7:0]
0x20142 VT_TSWOW19 VT_OBIT_INS(19)[7:0] VT_Z6BYTE_INS(19)[7:0]
0x20143 VT_TSWOW20 VT_OBIT_INS(20)[7:0] VT_Z6BYTE_INS(20)[7:0]
0x20144 VT_TSWOW21 VT_OBIT_INS(21)[7:0] VT_Z6BYTE_INS(21)[7:0]
0x20145 VT_TSWOW22 VT_OBIT_INS(22)[7:0] VT_Z6BYTE_INS(22)[7:0]
0x20146 VT_TSWOW23 VT_OBIT_INS(23)[7:0] VT_Z6BYTE_INS(23)[7:0]
0x20147 VT_TSWOW24 VT_OBIT_INS(24)[7:0] VT_Z6BYTE_INS(24)[7:0]
0x20148 VT_TSWOW25 VT_OBIT_INS(25)[7:0] VT_Z6BYTE_INS(25)[7:0]
0x20149 VT_TSWOW26 VT_OBIT_INS(26)[7:0] VT_Z6BYTE_INS(26)[7:0]
0x2014A VT_TSWOW27 VT_OBIT_INS(27)[7:0] VT_Z6BYTE_INS(27)[7:0]
0x2014B VT_TSWOW28 VT_OBIT_INS(28)[7:0] VT_Z6BYTE_INS(28)[7:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
183Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Tr ansmit Signaling Control ParametersR/W
0x2014C VT_TSIG_CTL1 VT_USE_FBIT1 VT_USE_PBIT1 VT_USE_SBIT1 VT_TXSIG_CH_SEL(1)[4:0]
0x2014D VT_TSIG_CTL2 VT_USE_FBIT2 VT_USE_PBIT2 VT_USE_SBIT2 VT_TXSIG_CH_SEL(2)[4:0]
0x2014E VT_TSIG_CTL3 VT_USE_FBIT3 VT_USE_PBIT3 VT_USE_SBIT3 VT_TXSIG_CH_SEL(3)[4:0]
0x2014F VT_TSIG_CTL4 VT_USE_FBIT4 VT_USE_PBIT4 VT_USE_SBIT4 VT_TXSIG_CH_SEL(4)[4:0]
0x20150 VT_TSIG_CTL5 VT_USE_FBIT5 VT_USE_PBIT5 VT_USE_SBIT5 VT_TXSIG_CH_SEL(5)[4:0]
0x20151 VT_TSIG_CTL6 VT_USE_FBIT6 VT_USE_PBIT6 VT_USE_SBIT6 VT_TXSIG_CH_SEL(6)[4:0]
0x20152 VT_TSIG_CTL7 VT_USE_FBIT7 VT_USE_PBIT7 VT_USE_SBIT7 VT_TXSIG_CH_SEL(7)[4:0]
0x20153 VT_TSIG_CTL8 VT_USE_FBIT8 VT_USE_PBIT8 VT_USE_SBIT8 VT_TXSIG_CH_SEL(8)[4:0]
0x20154 VT_TSIG_CTL9 VT_USE_FBIT9 VT_USE_PBIT9 VT_USE_SBIT9 VT_TXSIG_CH_SEL(9)[4:0]
0x20155 VT_TSIG_CTL10 VT_USE_FBIT10 VT_USE_PBIT10 VT_USE_SBIT10 VT_TXSIG_CH_SEL(10)[4:0]
0x20156 VT_TSIG_CTL11 VT_USE_FBIT11 VT_USE_PBIT11 VT_USE_SBIT11 VT_TXSIG_CH_SEL(11)[4:0]
0x20157 VT_TSIG_CTL12 VT_USE_FBIT12 VT_USE_PBIT12 VT_USE_SBIT12 VT_TXSIG_CH_SEL(12)[4:0]
0x20158 VT_TSIG_CTL13 VT_USE_FBIT13 VT_USE_PBIT13 VT_USE_SBIT13 VT_TXSIG_CH_SEL(13)[4:0]
0x20159 VT_TSIG_CTL14 VT_USE_FBIT14 VT_USE_PBIT14 VT_USE_SBIT14 VT_TXSIG_CH_SEL(14)[4:0]
0x2015A VT_TSIG_CTL15 VT_USE_FBIT15 VT_USE_PBIT15 VT_USE_SBIT15 VT_TXSIG_CH_SEL(15)[4:0]
0x2015B VT_TSIG_CTL16 VT_USE_FBIT16 VT_USE_PBIT16 VT_USE_SBIT16 VT_TXSIG_CH_SEL(16)[4:0]
0x2015C VT_TSIG_CTL17 VT_USE_FBIT17 VT_USE_PBIT17 VT_USE_SBIT17 VT_TXSIG_CH_SEL(17)[4:0]
0x2015D VT_TSIG_CTL18 VT_USE_FBIT18 VT_USE_PBIT18 VT_USE_SBIT18 VT_TXSIG_CH_SEL(18)[4:0]
0x2015E VT_TSIG_CTL19 VT_USE_FBIT19 VT_USE_PBIT19 VT_USE_SBIT19 VT_TXSIG_CH_SEL(19)[4:0]
0x2015F VT_TSIG_CTL20 VT_USE_FBIT20 VT_USE_PBIT20 VT_USE_SBIT20 VT_TXSIG_CH_SEL(20)[4:0]
0x20160 VT_TSIG_CTL21 VT_USE_FBIT21 VT_USE_PBIT21 VT_USE_SBIT21 VT_TXSIG_CH_SEL(21)[4:0]
0x20161 VT_TSIG_CTL22 VT_USE_FBIT22 VT_USE_PBIT22 VT_USE_SBIT22 VT_TXSIG_CH_SEL(22)[4:0]
0x20162 VT_TSIG_CTL23 VT_USE_FBIT23 VT_USE_PBIT23 VT_USE_SBIT23 VT_TXSIG_CH_SEL(23)[4:0]
0x20163 VT_TSIG_CTL24 VT_USE_FBIT24 VT_USE_PBIT24 VT_USE_SBIT24 VT_TXSIG_CH_SEL(24)[4:0]
0x20164 VT_TSIG_CTL25 VT_USE_FBIT25 VT_USE_PBIT25 VT_USE_SBIT25 VT_TXSIG_CH_SEL(25)[4:0]
0x20165 VT_TSIG_CTL26 VT_USE_FBIT26 VT_USE_PBIT26 VT_USE_SBIT26 VT_TXSIG_CH_SEL(26)[4:0]
0x20166 VT_TSIG_CTL27 VT_USE_FBIT27 VT_USE_PBIT27 VT_USE_SBIT27 VT_TXSIG_CH_SEL(27)[4:0]
0x20167 VT_TSIG_CTL28 VT_USE_FBIT28 VT_USE_PBIT28 VT_USE_SBIT28 VT_TXSIG_CH_SEL(28)[4:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
184 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Channel 1 Tr ansmi t J2 Val ue P a rametersR/W
0x20168
0x20177
VT_J2BYTE_INS_R[1][1]
VT_J2BYTE_INS_R[1][16]
VT_J2BYTE_INS(1)(1)[7:0]
VT_J2BYTE_INS(1)(16)[7:0]
Channel 2 Tr ansmi t J2 Val ue P a rametersR/W
0x20178
0x20187
VT_J2BYTE_INS_R[2][1]
VT_J2BYTE_INS_R[2][16]
VT_J2BYTE_INS(2)(1)[7:0]
VT_J2BYTE_INS(2)(16)[7:0]
Channel 3 Tr ansmi t J2 Val ue P a rametersR/W
0x20188
0x20197
VT_J2BYTE_INS_R[3][1]
VT_J2BYTE_INS_R[3][16]
VT_J2BYTE_INS(3)(1)[7:0]
VT_J2BYTE_INS(3)(16)[7:0]
Channel 4 Tr ansmi t J2 Val ue P a rametersR/W
0x20198
0x201A7
VT_J2BYTE_INS_R[4][1]
VT_J2BYTE_INS_R[4][16]
VT_J2BYTE_INS(4)(1)[7:0]
VT_J2BYTE_INS(4)(16)[7:0]
Channel 5 Tr ansmi t J2 Val ue P a rametersR/W
0x201A8
0x201B7
VT_J2BYTE_INS_R[5][1]
VT_J2BYTE_INS_R[5][16]
VT_J2BYTE_INS(5)(1)[7:0]
VT_J2BYTE_INS(5)(16)[7:0]
Channel 6 Tr ansmi t J2 Val ue P a rametersR/W
0x201B8
0x201C7
VT_J2BYTE_INS_R[6][1]
VT_J2BYTE_INS_R[6][16]
VT_J2BYTE_INS(6)(1)[7:0]
VT_J2BYTE_INS(6)(16)[7:0]
Channel 7 Tr ansmi t J2 Val ue P a rametersR/W
0x201C8
0x201D7
VT_J2BYTE_INS_R[7][1]
VT_J2BYTE_INS_R[7][16]
VT_J2BYTE_INS(7)(1)[7:0]
VT_J2BYTE_INS(7)(16)[7:0]
Channel 8 Tr ansmi t J2 Val ue P a rametersR/W
0x201D8
0x201E7
VT_J2BYTE_INS_R[8][1]
VT_J2BYTE_INS_R[8][16]
VT_J2BYTE_INS(8)(1)[7:0]
VT_J2BYTE_INS(8)(16)[7:0]
Channel 9 Tr ansmi t J2 Val ue P a rametersR/W
0x201E8
0x201F7
VT_J2BYTE_INS_R[9][1]
VT_J2BYTE_INS_R[9][16]
VT_J2BYTE_INS(9)(1)[7:0]
VT_J2BYTE_INS(9)(16)[7:0]
Channel 10 Transmit J2 Value ParametersR/W
0x201F8
0x20207
VT_J2BYTE_INS_R[10][1]
VT_J2BYTE_INS_R[10][16]
VT_J2BYTE_INS(10)(1)[7:0]
VT_J2BYTE_INS(10)(16)[7:0]
Channel 11 Transmit J2 Value ParametersR/W
0x20208
0x20217
VT_J2BYTE_INS_R[11][1]
VT_J2BYTE_INS_R[11][16]
VT_J2BYTE_INS(11)(1)[7:0]
VT_J2BYTE_INS(11)(16)[7:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
185Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Channel 12 Transmit J2 Value ParametersR/W
0x20218
0x20227
VT_J2BYTE_INS_R[12][1]
VT_J2BYTE_INS_R[12][16]
VT_J2BYTE_INS(12)(1)[7:0]
VT_J2BYTE_INS(12)(16)[7:0]
Channel 13 Transmit J2 Value ParametersR/W
0x20228
0x20237
VT_J2BYTE_INS_R[13][1]
VT_J2BYTE_INS_R[13][16]
VT_J2BYTE_INS(13)(1)[7:0]
VT_J2BYTE_INS(13)(16)[7:0]
Channel 14 Transmit J2 Value ParametersR/W
0x20238
0x20247
VT_J2BYTE_INS_R[14][1]
VT_J2BYTE_INS_R[14][16]
VT_J2BYTE_INS(14)(1)[7:0]
VT_J2BYTE_INS(14)(16)[7:0]
Channel 15 Transmit J2 Value ParametersR/W
0x20248
0x20257
VT_J2BYTE_INS_R[15][1]
VT_J2BYTE_INS_R[15][16]
VT_J2BYTE_INS(15)(1)[7:0]
VT_J2BYTE_INS(15)(16)[7:0]
Channel 16 Transmit J2 Value ParametersR/W
0x20258
0x20267
VT_J2BYTE_INS_R[16][1]
VT_J2BYTE_INS_R[16][16]
VT_J2BYTE_INS(16)(1)[7:0]
VT_J2BYTE_INS(16)(16)[7:0]
Channel 17 Transmit J2 Value ParametersR/W
0x20268
0x20277
VT_J2BYTE_INS_R[17][1]
VT_J2BYTE_INS_R[17][16]
VT_J2BYTE_INS(17)(1)[7:0]
VT_J2BYTE_INS(17)(16)[7:0]
Channel 18 Transmit J2 Value ParametersR/W
0x20278
0x20287
VT_J2BYTE_INS_R[18][1]
VT_J2BYTE_INS_R[18][16]
VT_J2BYTE_INS(18)(1)[7:0]
VT_J2BYTE_INS(18)(16)[7:0]
Channel 19 Transmit J2 Value ParametersR/W
0x20288
0x20297
VT_J2BYTE_INS_R[19][1]
VT_J2BYTE_INS_R[19][16]
VT_J2BYTE_INS(19)(1)[7:0]
VT_J2BYTE_INS(19)(16)[7:0]
Channel 20 Transmit J2 Value ParametersR/W
0x20298
0x202A7
VT_J2BYTE_INS_R[20][1]
VT_J2BYTE_INS_R[20][16]
VT_J2BYTE_INS(20)(1)[7:0]
VT_J2BYTE_INS(20)(16)[7:0]
Channel 21 Transmit J2 Value ParametersR/W
0x202A8
0x202B7
VT_J2BYTE_INS_R[21][1]
VT_J2BYTE_INS_R[21][16]
VT_J2BYTE_INS(21)(1)[7:0]
VT_J2BYTE_INS(21)(16)[7:0]
Channel 22 Transmit J2 Value ParametersR/W
0x202B8
0x202C7
VT_J2BYTE_INS_R[22][1]
VT_J2BYTE_INS_R[22][16]
VT_J2BYTE_INS(22)(1)[7:0]
VT_J2BYTE_INS(22)(16)[7:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
186 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Channel 23 Transmit J2 Value ParametersR/W
0x202C8
0x202D7
VT_J2BYTE_INS_R[23][1]
VT_J2BYTE_INS_R[23][16]
VT_J2BYTE_INS(23)(1)[7:0]
VT_J2BYTE_INS(23)(16)[7:0]
Channel 24 Transmit J2 Value ParametersR/W
0x202D8
0x202E7
VT_J2BYTE_INS_R[24][1]
VT_J2BYTE_INS_R[24][16]
VT_J2BYTE_INS(24)(1)[7:0]
VT_J2BYTE_INS(24)(16)[7:0]
Channel 25 Transmit J2 Value ParametersR/W
0x202E8
0x202F7
VT_J2BYTE_INS_R[25][1]
VT_J2BYTE_INS_R[25][16]
VT_J2BYTE_INS(25)(1)[7:0]
VT_J2BYTE_INS(25)(16)[7:0]
Channel 26 Transmit J2 Value ParametersR/W
0x202F8
0x20307
VT_J2BYTE_INS_R[26][1]
VT_J2BYTE_INS_R[26][16]
VT_J2BYTE_INS(26)(1)[7:0]
VT_J2BYTE_INS(26)(16)[7:0]
Channel 27 Transmit J2 Value ParametersR/W
0x20308
0x20317
VT_J2BYTE_INS_R[27][1]
VT_J2BYTE_INS_R[27][16]
VT_J2BYTE_INS(27)(1)[7:0]
VT_J2BYTE_INS(27)(16)[7:0]
Channel 28 Transmit J2 Value ParametersR/W
0x20318
0x20327
VT_J2BYTE_INS[28][1]
VT_J2BYTE_INS[28][16]
VT_J2BYTE_INS(28)(1)[7:0]
VT_J2BYTE_INS(28)(16)[7:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
187Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive Control ParametersR/W
0x20328 VT_RCTL1 VT_SF_ESF1 VT_WR_FBIT1 VT_SYNC_PBIT1 VT_RXSIG_CH_SEL(1)[4:0] VT_J2MON_MODE(1)[2:0] VT_RX_ERDI_EN1 VT_RX_MAPTYPE(1)[3:0]
0x20329 VT_RCTL2 VT_SF_ESF2 VT_WR_FBIT2 VT_SYNC_PBIT2 VT_RXSIG_CH_SEL(2)[4:0] VT_J2MON_MODE(2)[2:0] VT_RX_ERDI_EN2 VT_RX_MAPTYPE(2)[3:0]
0x2032A VT_RCTL3 VT_SF_ESF3 VT_WR_FBIT3 VT_SYNC_PBIT3 VT_RXSIG_CH_SEL(3)[4:0] VT_J2MON_MODE(3)[2:0] VT_RX_ERDI_EN3 VT_RX_MAPTYPE(3)[3:0]
0x2032B VT_RCTL4 VT_SF_ESF4 VT_WR_FBIT4 VT_SYNC_PBIT4 VT_RXSIG_CH_SEL(4)[4:0] VT_J2MON_MODE(4)[2:0] VT_RX_ERDI_EN4 VT_RX_MAPTYPE(4)[3:0]
0x2032C VT_RCTL5 VT_SF_ESF5 VT_WR_FBIT5 VT_SYNC_PBIT5 VT_RXSIG_CH_SEL(5)[4:0] VT_J2MON_MODE(5)[2:0] VT_RX_ERDI_EN5 VT_RX_MAPTYPE(5)[3:0]
0x2032D VT_RCTL6 VT_SF_ESF6 VT_WR_FBIT6 VT_SYNC_PBIT6 VT_RXSIG_CH_SEL(6)[4:0] VT_J2MON_MODE(6)[2:0] VT_RX_ERDI_EN6 VT_RX_MAPTYPE(6)[3:0]
0x2032E VT_RCTL7 VT_SF_ESF7 VT_WR_FBIT7 VT_SYNC_PBIT7 VT_RXSIG_CH_SEL(7)[4:0] VT_J2MON_MODE(7)[2:0] VT_RX_ERDI_EN7 VT_RX_MAPTYPE(7)[3:0]
0x2032F VT_RCTL8 VT_SF_ESF8 VT_WR_FBIT8 VT_SYNC_PBIT8 VT_RXSIG_CH_SEL(8)[4:0] VT_J2MON_MODE(8)[2:0] VT_RX_ERDI_EN8 VT_RX_MAPTYPE(8)[3:0]
0x20330 VT_RCTL9 VT_SF_ESF9 VT_WR_FBIT9 VT_SYNC_PBIT9 VT_RXSIG_CH_SEL(9)[4:0] VT_J2MON_MODE(9)[2:0] VT_RX_ERDI_EN9 VT_RX_MAPTYPE(9)[3:0]
0x20331 VT_RCTL10 VT_SF_ESF10 VT_WR_FBIT10 VT_SYNC_PBIT10 VT_RXSIG_CH_SEL(10)[4:0] VT_J2MON_MODE(10)[2:0] VT_RX_ERDI_EN10 VT_RX_MAPTYPE(10)[3:0]
0x20332 VT_RCTL11 VT_SF_ESF11 VT_WR_FBIT11 VT_SYNC_PBIT11 VT_RXSIG_CH_SEL(11)[4:0] VT_J2MON_MODE(11)[2:0] VT_RX_ERDI_EN11 VT_RX_MAPTYPE(11)[3:0]
0x20333 VT_RCTL12 VT_SF_ESF12 VT_WR_FBIT12 VT_SYNC_PBIT12 VT_RXSIG_CH_SEL(12)[4:0] VT_J2MON_MODE(12)[2:0] VT_RX_ERDI_EN12 VT_RX_MAPTYPE(12)[3:0]
0x20334 VT_RCTL13 VT_SF_ESF13 VT_WR_FBIT13 VT_SYNC_PBIT13 VT_RXSIG_CH_SEL(13)[4:0] VT_J2MON_MODE(13)[2:0] VT_RX_ERDI_EN13 VT_RX_MAPTYPE(13)[3:0]
0x20335 VT_RCTL14 VT_SF_ESF14 VT_WR_FBIT14 VT_SYNC_PBIT14 VT_RXSIG_CH_SEL(14)[4:0] VT_J2MON_MODE(14)[2:0] VT_RX_ERDI_EN14 VT_RX_MAPTYPE(14)[3:0]
0x20336 VT_RCTL15 VT_SF_ESF15 VT_WR_FBIT15 VT_SYNC_PBIT15 VT_RXSIG_CH_SEL(15)[4:0] VT_J2MON_MODE(15)[2:0] VT_RX_ERDI_EN15 VT_RX_MAPTYPE(15)[3:0]
0x20337 VT_RCTL16 VT_SF_ESF16 VT_WR_FBIT16 VT_SYNC_PBIT16 VT_RXSIG_CH_SEL(16)[4:0] VT_J2MON_MODE(16)[2:0] VT_RX_ERDI_EN16 VT_RX_MAPTYPE(16)[3:0]
0x20338 VT_RCTL17 VT_SF_ESF17 VT_WR_FBIT17 VT_SYNC_PBIT17 VT_RXSIG_CH_SEL(17)[4:0] VT_J2MON_MODE(17)[2:0] VT_RX_ERDI_EN17 VT_RX_MAPTYPE(17)[3:0]
0x20339 VT_RCTL18 VT_SF_ESF18 VT_WR_FBIT18 VT_SYNC_PBIT18 VT_RXSIG_CH_SEL(18)[4:0] VT_J2MON_MODE(18)[2:0] VT_RX_ERDI_EN18 VT_RX_MAPTYPE(18)[3:0]
0x2033A VT_RCTL19 VT_SF_ESF19 VT_WR_FBIT19 VT_SYNC_PBIT19 VT_RXSIG_CH_SEL(19)[4:0] VT_J2MON_MODE(19)[2:0] VT_RX_ERDI_EN19 VT_RX_MAPTYPE(19)[3:0]
0x2033B VT_RCTL20 VT_SF_ESF20 VT_WR_FBIT20 VT_SYNC_PBIT20 VT_RXSIG_CH_SEL(20)[4:0] VT_J2MON_MODE(20)[2:0] VT_RX_ERDI_EN20 VT_RX_MAPTYPE(20)[3:0]
0x2033C VT_RCTL21 VT_SF_ESF21 VT_WR_FBIT21 VT_SYNC_PBIT21 VT_RXSIG_CH_SEL(21)[4:0] VT_J2MON_MODE(21)[2:0] VT_RX_ERDI_EN21 VT_RX_MAPTYPE(21)[3:0]
0x2033D VT_RCTL22 VT_SF_ESF22 VT_WR_FBIT22 VT_SYNC_PBIT22 VT_RXSIG_CH_SEL(22)[4:0] VT_J2MON_MODE(22)[2:0] VT_RX_ERDI_EN22 VT_RX_MAPTYPE(22)[3:0]
0x2033E VT_RCTL23 VT_SF_ESF23 VT_WR_FBIT23 VT_SYNC_PBIT23 VT_RXSIG_CH_SEL(23)[4:0] VT_J2MON_MODE(23)[2:0] VT_RX_ERDI_EN23 VT_RX_MAPTYPE(23)[3:0]
0x2033F VT_RCTL24 VT_SF_ESF24 VT_WR_FBIT24 VT_SYNC_PBIT24 VT_RXSIG_CH_SEL(24)[4:0] VT_J2MON_MODE(24)[2:0] VT_RX_ERDI_EN24 VT_RX_MAPTYPE(24)[3:0]
0x20340 VT_RCTL25 VT_SF_ESF25 VT_WR_FBIT25 VT_SYNC_PBIT25 VT_RXSIG_CH_SEL(25)[4:0] VT_J2MON_MODE(25)[2:0] VT_RX_ERDI_EN25 VT_RX_MAPTYPE(25)[3:0]
0x20341 VT_RCTL26 VT_SF_ESF26 VT_WR_FBIT26 VT_SYNC_PBIT26 VT_RXSIG_CH_SEL(26)[4:0] VT_J2MON_MODE(26)[2:0] VT_RX_ERDI_EN26 VT_RX_MAPTYPE(26)[3:0]
0x20342 VT_RCTL27 VT_SF_ESF27 VT_WR_FBIT27 VT_SYNC_PBIT27 VT_RXSIG_CH_SEL(27)[4:0] VT_J2MON_MODE(27)[2:0] VT_RX_ERDI_EN27 VT_RX_MAPTYPE(27)[3:0]
0x20343 VT_RCTL28 VT_SF_ESF28 VT_WR_FBIT28 VT_SYNC_PBIT28 VT_RXSIG_CH_SEL(28)[4:0] VT_J2MON_MODE(28)[2:0] VT_RX_ERDI_EN28 VT_RX_MAPTYPE(28)[3:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
188 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive TU OverheadRO
0x20344 VT_RTUOH_CTL1 VT_Z6_BYTE(1)[7:0] VT_OBITS(1)[7:0]
0x20345 VT_RTUOH_CTL2 VT_Z6_BYTE(2)[7:0] VT_OBITS(2)[7:0]
0x20346 VT_RTUOH_CTL3 VT_Z6_BYTE(3)[7:0] VT_OBITS(3)[7:0]
0x20347 VT_RTUOH_CTL4 VT_Z6_BYTE(4)[7:0] VT_OBITS(4)[7:0]
0x20348 VT_RTUOH_CTL5 VT_Z6_BYTE(5)[7:0] VT_OBITS(5)[7:0]
0x20349 VT_RTUOH_CTL6 VT_Z6_BYTE(6)[7:0] VT_OBITS(6)[7:0]
0x2034A VT_RTUOH_CTL7 VT_Z6_BYTE(7)[7:0] VT_OBITS(7)[7:0]
0x2034B VT_RTUOH_CTL8 VT_Z6_BYTE(8)[7:0] VT_OBITS(8)[7:0]
0x2034C VT_RTUOH_CTL9 VT_Z6_BYTE(9)[7:0] VT_OBITS(9)[7:0]
0x2034D VT_RTUOH_CTL10 VT_Z6_BYTE(10)[7:0] VT_OBITS(10)[7:0]
0x2034E VT_RTUOH_CTL11 VT_Z6_BYTE(11)[7:0] VT_OBITS(11)[7:0]
0x2034F VT_RTUOH_CTL12 VT_Z6_BYTE(12)[7:0] VT_OBITS(12)[7:0]
0x20350 VT_RTUOH_CTL13 VT_Z6_BYTE(13)[7:0] VT_OBITS(13)[7:0]
0x20351 VT_RTUOH_CTL14 VT_Z6_BYTE(14)[7:0] VT_OBITS(14)[7:0]
0x20352 VT_RTUOH_CTL15 VT_Z6_BYTE(15)[7:0] VT_OBITS(15)[7:0]
0x20353 VT_RTUOH_CTL16 VT_Z6_BYTE(16)[7:0] VT_OBITS(16)[7:0]
0x20354 VT_RTUOH_CTL17 VT_Z6_BYTE(17)[7:0] VT_OBITS(17)[7:0]
0x20355 VT_RTUOH_CTL18 VT_Z6_BYTE(18)[7:0] VT_OBITS(18)[7:0]
0x20356 VT_RTUOH_CTL19 VT_Z6_BYTE(19)[7:0] VT_OBITS(19)[7:0]
0x20357 VT_RTUOH_CTL20 VT_Z6_BYTE(20)[7:0] VT_OBITS(20)[7:0]
0x20358 VT_RTUOH_CTL21 VT_Z6_BYTE(21)[7:0] VT_OBITS(21)[7:0]
0x20359 VT_RTUOH_CTL22 VT_Z6_BYTE(22)[7:0] VT_OBITS(22)[7:0]
0x2035A VT_RTUOH_CTL23 VT_Z6_BYTE(23)[7:0] VT_OBITS(23)[7:0]
0x2035B VT_RTUOH_CTL24 VT_Z6_BYTE(24)[7:0] VT_OBITS(24)[7:0]
0x2035C VT_RTUOH_CTL25 VT_Z6_BYTE(25)[7:0] VT_OBITS(25)[7:0]
0x2035D VT_RTUOH_CTL26 VT_Z6_BYTE(26)[7:0] VT_OBITS(26)[7:0]
0x2035E VT_RTUOH_CTL27 VT_Z6_BYTE(27)[7:0] VT_OBITS(27)[7:0]
0x2035F VT_RTUOH_CTL28 VT_Z6_BYTE(28)[7:0] VT_OBITS(28)[7:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
189Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receiv e BIP-2 Error Count ValuesRO
0x20360 VT_RBIP2_CNT1 VT_BIP2ERR_CNT(1)[11:0]
0x20361 VT_RBIP2_CNT2 VT_BIP2ERR_CNT(2)[11:0]
0x20362 VT_RBIP2_CNT3 VT_BIP2ERR_CNT(3)[11:0]
0x20363 VT_RBIP2_CNT4 VT_BIP2ERR_CNT(4)[11:0]
0x20364 VT_RBIP2_CNT5 VT_BIP2ERR_CNT(5)[11:0]
0x20365 VT_RBIP2_CNT6 VT_BIP2ERR_CNT(6)[11:0]
0x20366 VT_RBIP2_CNT7 VT_BIP2ERR_CNT(7)[11:0]
0x20367 VT_RBIP2_CNT8 VT_BIP2ERR_CNT(8)[11:0]
0x20368 VT_RBIP2_CNT9 VT_BIP2ERR_CNT(9)[11:0]
0x20369 VT_RBIP2_CNT10 VT_BIP2ERR_CNT(10)[11:0]
0x2036A VT_RBIP2_CNT11 VT_BIP2ERR_CNT(11)[11:0]
0x2036B VT_RBIP2_CNT12 VT_BIP2ERR_CNT(12)[11:0]
0x2036C VT_RBIP2_CNT13 VT_BIP2ERR_CNT(13)[11:0]
0x2036D VT_RBIP2_CNT14 VT_BIP2ERR_CNT(14)[11:0]
0x2036E VT_RBIP2_CNT15 VT_BIP2ERR_CNT(15)[11:0]
0x2036F VT_RBIP2_CNT16 VT_BIP2ERR_CNT(16)[11:0]
0x20370 VT_RBIP2_CNT17 VT_BIP2ERR_CNT(17)[11:0]
0x20371 VT_RBIP2_CNT18 VT_BIP2ERR_CNT(18)[11:0]
0x20372 VT_RBIP2_CNT19 VT_BIP2ERR_CNT(19)[11:0]
0x20373 VT_RBIP2_CNT20 VT_BIP2ERR_CNT(20)[11:0]
0x20374 VT_RBIP2_CNT21 VT_BIP2ERR_CNT(21)[11:0]
0x20375 VT_RBIP2_CNT22 VT_BIP2ERR_CNT(22)[11:0]
0x20376 VT_RBIP2_CNT23 VT_BIP2ERR_CNT(23)[11:0]
0x20377 VT_RBIP2_CNT24 VT_BIP2ERR_CNT(24)[11:0]
0x20378 VT_RBIP2_CNT25 VT_BIP2ERR_CNT(25)[11:0]
0x20379 VT_RBIP2_CNT26 VT_BIP2ERR_CNT(26)[11:0]
0x2037A VT_RBIP2_CNT27 VT_BIP2ERR_CNT(27)[11:0]
0x2037B VT_RBIP2_CNT28 VT_BIP2ERR_CNT(28)[11:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
190 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive REI-V Count ValuesRO
0x2037C VT_RREIV_CNT1 VT_REI_CNT(1)[10:0]
0x2037D VT_RREIV_CNT2 VT_REI_CNT(2)[10:0]
0x2037E VT_RREIV_CNT3 VT_REI_CNT(3)[10:0]
0x2037F VT_RREIV_CNT4 VT_REI_CNT(4)[10:0]
0x20380 VT_RREIV_CNT5 VT_REI_CNT(5)[10:0]
0x20381 VT_RREIV_CNT6 VT_REI_CNT(6)[10:0]
0x20382 VT_RREIV_CNT7 VT_REI_CNT(7)[10:0]
0x20383 VT_RREIV_CNT8 VT_REI_CNT(8)[10:0]
0x20384 VT_RREIV_CNT9 VT_REI_CNT(9)[10:0]
0x20385 VT_RREIV_CNT10 VT_REI_CNT(10)[10:0]
0x20386 VT_RREIV_CNT11 VT_REI_CNT(11)[10:0]
0x20387 VT_RREIV_CNT12 VT_REI_CNT(12)[10:0]
0x20388 VT_RREIV_CNT13 VT_REI_CNT(13)[10:0]
0x20389 VT_RREIV_CNT14 VT_REI_CNT(14)[10:0]
0x2038A VT_RREIV_CNT15 VT_REI_CNT(15)[10:0]
0x2038B VT_RREIV_CNT16 VT_REI_CNT(16)[10:0]
0x2038C VT_RREIV_CNT17 VT_REI_CNT(17)[10:0]
0x2038D VT_RREIV_CNT18 VT_REI_CNT(18)[10:0]
0x2038E VT_RREIV_CNT19 VT_REI_CNT(19)[10:0]
0x2038F VT_RREIV_CNT20 VT_REI_CNT(20)[10:0]
0x20390 VT_RREIV_CNT21 VT_REI_CNT(21)[10:0]
0x20391 VT_RREIV_CNT22 VT_REI_CNT(22)[10:0]
0x20392 VT_RREIV_CNT23 VT_REI_CNT(23)[10:0]
0x20393 VT_RREIV_CNT24 VT_REI_CNT(24)[10:0]
0x20394 VT_RREIV_CNT25 VT_REI_CNT(25)[10:0]
0x20395 VT_RREIV_CNT26 VT_REI_CNT(26)[10:0]
0x20396 VT_RREIV_CNT27 VT_REI_CNT(27)[10:0]
0x20397 VT_RREIV_CNT28 VT_REI_CNT(28)[10:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
191Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive VT Pointer and Count ValuesRO
0x20398 VT_RPTR_CNT1 VT_STORED_VTPTR(1)[7:0] VT_PTR_DEC(1)[3:0] VT_PTR_INC(1)[3:0]
0x20399 VT_RPTR_CNT2 VT_STORED_VTPTR(2)[7:0] VT_PTR_DEC(2)[3:0] VT_PTR_INC(2)[3:0]
0x2039A VT_RPTR_CNT3 VT_STORED_VTPTR(3)[7:0] VT_PTR_DEC(3)[3:0] VT_PTR_INC(3)[3:0]
0x2039B VT_RPTR_CNT4 VT_STORED_VTPTR(4)[7:0] VT_PTR_DEC(4)[3:0] VT_PTR_INC(4)[3:0]
0x2039C VT_RPTR_CNT5 VT_STORED_VTPTR(5)[7:0] VT_PTR_DEC(5)[3:0] VT_PTR_INC(5)[3:0]
0x2039D VT_RPTR_CNT6 VT_STORED_VTPTR(6)[7:0] VT_PTR_DEC(6)[3:0] VT_PTR_INC(6)[3:0]
0x2039E VT_RPTR_CNT7 VT_STORED_VTPTR(7)[7:0] VT_PTR_DEC(7)[3:0] VT_PTR_INC(7)[3:0]
0x2039F VT_RPTR_CNT8 VT_STORED_VTPTR(8)[7:0] VT_PTR_DEC(8)[3:0] VT_PTR_INC(8)[3:0]
0x203A0 VT_RPTR_CNT9 VT_STORED_VTPTR(9)[7:0] VT_PTR_DEC(9)[3:0] VT_PTR_INC(9)[3:0]
0x203A1 VT_RPTR_CNT10 VT_STORED_VTPTR(10)[7:0] VT_PTR_DEC(10)[3:0] VT_PTR_INC(10)[3:0]
0x203A2 VT_RPTR_CNT11 VT_STORED_VTPTR(11)[7:0] VT_PTR_DEC(11)[3:0] VT_PTR_INC(11)[3:0]
0x203A3 VT_RPTR_CNT12 VT_STORED_VTPTR(12)[7:0] VT_PTR_DEC(12)[3:0] VT_PTR_INC(12)[3:0]
0x203A4 VT_RPTR_CNT13 VT_STORED_VTPTR(13)[7:0] VT_PTR_DEC(13)[3:0] VT_PTR_INC(13)[3:0]
0x203A5 VT_RPTR_CNT14 VT_STORED_VTPTR(14)[7:0] VT_PTR_DEC(14)[3:0] VT_PTR_INC(14)[3:0]
0x203A6 VT_RPTR_CNT15 VT_STORED_VTPTR(15)[7:0] VT_PTR_DEC(15)[3:0] VT_PTR_INC(15)[3:0]
0x203A7 VT_RPTR_CNT16 VT_STORED_VTPTR(16)[7:0] VT_PTR_DEC(16)[3:0] VT_PTR_INC(16)[3:0]
0x203A8 VT_RPTR_CNT17 VT_STORED_VTPTR(17)[7:0] VT_PTR_DEC(17)[3:0] VT_PTR_INC(17)[3:0]
0x203A9 VT_RPTR_CNT18 VT_STORED_VTPTR(18)[7:0] VT_PTR_DEC(18)[3:0] VT_PTR_INC(18)[3:0]
0x203AA VT_RPTR_CNT19 VT_STORED_VTPTR(19)[7:0] VT_PTR_DEC(19)[3:0] VT_PTR_INC(19)[3:0]
0x203AB VT_RPTR_CNT20 VT_STORED_VTPTR(20)[7:0] VT_PTR_DEC(20)[3:0] VT_PTR_INC(20)[3:0]
0x203AC VT_RPTR_CNT21 VT_STORED_VTPTR(21)[7:0] VT_PTR_DEC(21)[3:0] VT_PTR_INC(21)[3:0]
0x203AD VT_RPTR_CNT22 VT_STORED_VTPTR(22)[7:0] VT_PTR_DEC(22)[3:0] VT_PTR_INC(22)[3:0]
0x203AE VT_RPTR_CNT23 VT_STORED_VTPTR(23)[7:0] VT_PTR_DEC(23)[3:0] VT_PTR_INC(23)[3:0]
0x203AF VT_RPTR_CNT24 VT_STORED_VTPTR(24)[7:0] VT_PTR_DEC(24)[3:0] VT_PTR_INC(24)[3:0]
0x203B0 VT_RPTR_CNT25 VT_STORED_VTPTR(25)[7:0] VT_PTR_DEC(25)[3:0] VT_PTR_INC(25)[3:0]
0x203B1 VT_RPTR_CNT26 VT_STORED_VTPTR(26)[7:0] VT_PTR_DEC(26)[3:0] VT_PTR_INC(26)[3:0]
0x203B2 VT_RPTR_CNT27 VT_STORED_VTPTR(27)[7:0] VT_PTR_DEC(27)[3:0] VT_PTR_INC(27)[3:0]
0x203B3 VT_RPTR_CNT28 VT_STORED_VTPTR(28)[7:0] VT_PTR_DEC(28)[3:0] VT_PTR_INC(28)[3:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
192 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Channel 1 Receive J2 Expected/Monitor ValuesR/W, RO
0x203B4
0x203C3
VT_J2BYTE_EXP_R[1][1]
VT_J2BYTE_EXP_R[1][16]
VT_J2BYTE_EXP(1)(1)[7:0]
VT_J2BYTE_EXP(1)(16)[7:0]
VT_J2BYTE_DET(1)(1)[7:0]
VT_J2BYTE_DET(1)(16)[7:0]
Channel 2 Receive J2 Expected/Monitor ValuesR/W, RO
0x203C4
0x203D3
VT_J2BYTE_EXP_R[2][1]
VT_J2BYTE_EXP_R[2][16]
VT_J2BYTE_EXP(2)(1)[7:0]
VT_J2BYTE_EXP(2)(16)[7:0]
VT_J2BYTE_DET(2)(1)[7:0]
VT_J2BYTE_DET(2)(16)[7:0]
Channel 3 Receive J2 Expected/Monitor ValuesR/W, RO
0x203D4
0x203E3
VT_J2BYTE_EXP_R[3][1]
VT_J2BYTE_EXP_R[3][16]
VT_J2BYTE_EXP(3)(1)[7:0]
VT_J2BYTE_EXP(3)(16)[7:0]
VT_J2BYTE_DET(3)(1)[7:0]
VT_J2BYTE_DET(3)(16)[7:0]
Channel 4 Receive J2 Expected/Monitor ValuesR/W, RO
0x203E4
0x203F3
VT_J2BYTE_EXP_R[4][1]
VT_J2BYTE_EXP_R[4][16]
VT_J2BYTE_EXP(4)(1)[7:0]
VT_J2BYTE_EXP(4)(16)[7:0]
VT_J2BYTE_DET(4)(1)[7:0]
VT_J2BYTE_DET(4)(16)[7:0]
Channel 5 Receive J2 Expected/Monitor ValuesR/W, RO
0x203F4
0x20403
VT_J2BYTE_EXP_R[5][1]
VT_J2BYTE_EXP_R[5][16]
VT_J2BYTE_EXP(5)(1)[7:0]
VT_J2BYTE_EXP(5)(16)[7:0]
VT_J2BYTE_DET(5)(1)[7:0]
VT_J2BYTE_DET(5)(16)[7:0]
Channel 6 Receive J2 Expected/Monitor ValuesR/W, RO
0x20404
0x20413
VT_J2BYTE_EXP_R[6][1]
VT_J2BYTE_EXP_R[6][16]
VT_J2BYTE_EXP(6)(1)[7:0]
VT_J2BYTE_EXP(6)(16)[7:0]
VT_J2BYTE_DET(6)(1)[7:0]
VT_J2BYTE_DET(6)(16)[7:0]
Channel 7 Receive J2 Expected/Monitor ValuesR/W, RO
0x20414
0x20423
VT_J2BYTE_EXP_R[7][1]
VT_J2BYTE_EXP_R[7][16]
VT_J2BYTE_EXP(7)(1)[7:0]
VT_J2BYTE_EXP(7)(16)[7:0]
VT_J2BYTE_DET(7)(1)[7:0]
VT_J2BYTE_DET(7)(16)[7:0]
Channel 8 Receive J2 Expected/Monitor ValuesR/W, RO
0x20424
0x20433
VT_J2BYTE_EXP_R[8][1]
VT_J2BYTE_EXP_R[8][16]
VT_J2BYTE_EXP(8)(1)[7:0]
VT_J2BYTE_EXP(8)(16)[7:0]
VT_J2BYTE_DET(8)(1)[7:0]
VT_J2BYTE_DET(8)(16)[7:0]
Channel 9 Receive J2 Expected/Monitor ValuesR/W, RO
0x20434
0x20443
VT_J2BYTE_EXP_R[9][1]
VT_J2BYTE_EXP_R[9][16]
VT_J2BYTE_EXP(9)(1)[7:0]
VT_J2BYTE_EXP(9)(16)[7:0]
VT_J2BYTE_DET(9)(1)[7:0]
VT_J2BYTE_DET(9)(16)[7:0]
Channel 10 Receive J2 Expected/Monitor ValuesR/W, RO
0x20444
0x20453
VT_J2BYTE_EXP_R[10][1]
VT_J2BYTE_EXP_R[10][16]
VT_J2BYTE_EXP(10)(1)[7:0]
VT_J2BYTE_EXP(10)(16)[7:0]
VT_J2BYTE_DET(10)(1)[7:0]
VT_J2BYTE_DET(10)(16)[7:0]
Channel 11 Receive J2 Expected/Monitor ValuesR/W, RO
0x20454
0x20463
VT_J2BYTE_EXP_R[11][1]
VT_J2BYTE_EXP_R[11][16]
VT_J2BYTE_EXP(11)(1)[7:0]
VT_J2BYTE_EXP(11)(16)[7:0]
VT_J2BYTE_DET(11)(1)[7:0]
VT_J2BYTE_DET(11)(16)[7:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
193Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Channel 12 Receive J2 Expected/Monitor ValuesR/W, RO
0x20464
0x20473
VT_J2BYTE_EXP_R[12][1]
VT_J2BYTE_EXP_R[12][16]
VT_J2BYTE_EXP(12)(1)[7:0]
VT_J2BYTE_EXP(12)(16)[7:0]
VT_J2BYTE_DET(12)(1)[7:0]
VT_J2BYTE_DET(12)(16)[7:0]
Channel 13 Receive J2 Expected/Monitor ValuesR/W, RO
0x20474
0x20483
VT_J2BYTE_EXP_R[13][1]
VT_J2BYTE_EXP_R[13][16]
VT_J2BYTE_EXP(13)(1)[7:0]
VT_J2BYTE_EXP(13)(16)[7:0]
VT_J2BYTE_DET(13)(1)[7:0]
VT_J2BYTE_DET(13)(16)[7:0]
Channel 14 Receive J2 Expected/Monitor ValuesR/W, RO
0x20484
0x20493
VT_J2BYTE_EXP_R[14][1]
VT_J2BYTE_EXP_R[14][16]
VT_J2BYTE_EXP(14)(1)[7:0]
VT_J2BYTE_EXP(14)(16)[7:0]
VT_J2BYTE_DET(14)(1)[7:0]
VT_J2BYTE_DET()14(16)[7:0]
Channel 15 Receive J2 Expected/Monitor ValuesR/W, RO
0x20494
0x204A3
VT_J2BYTE_EXP_R[15][1]
VT_J2BYTE_EXP_R[15][16]
VT_J2BYTE_EXP(15)(1)[7:0]
VT_J2BYTE_EXP(15)(16)[7:0]
VT_J2BYTE_DET(15)(1)[7:0]
VT_J2BYTE_DET(15)(16)[7:0]
Channel 16 Receive J2 Expected/Monitor ValuesR/W, RO
0x204A4
0x204B3
VT_J2BYTE_EXP_R[16][1]
VT_J2BYTE_EXP_R[16][16]
VT_J2BYTE_EXP(16)(1)[7:0]
VT_J2BYTE_EXP(16)(16)[7:0]
VT_J2BYTE_DET(16)(1)[7:0]
VT_J2BYTE_DET(16)(16)[7:0]
Channel 17 Receive J2 Expected/Monitor ValuesR/W, RO
0x204B4
0x204C3
VT_J2BYTE_EXP_R[17][1]
VT_J2BYTE_EXP_R[17][16]
VT_J2BYTE_EXP(17)(1)[7:0]
VT_J2BYTE_EXP(17)(16)[7:0]
VT_J2BYTE_DET(17)(1)[7:0]
VT_J2BYTE_DET(17)(16)[7:0]
Channel 18 Receive J2 Expected/Monitor ValuesR/W, RO
0x204C4
0x204D3
VT_J2BYTE_EXP_R[18][1]
VT_J2BYTE_EXP_R[18][16]
VT_J2BYTE_EXP(18)(1)[7:0]
VT_J2BYTE_EXP(18)(16)[7:0]
VT_J2BYTE_DET(18)(1)[7:0]
VT_J2BYTE_DET(18)(16)[7:0]
Channel 19 Receive J2 Expected/Monitor ValuesR/W, RO
0x204D4
0x204E3
VT_J2BYTE_EXP_R[19][1]
VT_J2BYTE_EXP_R[19][16]
VT_J2BYTE_EXP(19)(1)[7:0]
VT_J2BYTE_EXP(19)(16)[7:0]
VT_J2BYTE_DET(19)(1)[7:0]
VT_J2BYTE_DET(19)(16)[7:0]
Channel 20 Receive J2 Expected/Monitor ValuesR/W, RO
0x204E4
0x204F3
VT_J2BYTE_EXP_R[20][1]
VT_J2BYTE_EXP_R[20][16]
VT_J2BYTE_EXP(20)(1)[7:0]
VT_J2BYTE_EXP(20)(16)[7:0]
VT_J2BYTE_DET(20)(1)[7:0]
VT_J2BYTE_DET(20)(16)[7:0]
Channel 21 Receive J2 Expected/Monitor ValuesR/W, RO
0x204F4
0x20503
VT_J2BYTE_EXP_R[21][1]
VT_J2BYTE_EXP_R[21][16]
VT_J2BYTE_EXP(21)(1)[7:0]
VT_J2BYTE_EXP(21)(16)[7:0]
VT_J2BYTE_DET(21)(1)[7:0]
VT_J2BYTE_DET(21)(16)[7:0]
Channel 22 Receive J2 Expected/Monitor ValuesR/W, RO
0x20504
0x20513
VT_J2BYTE_EXP_R[22][1]
VT_J2BYTE_EXP_R[22][16]
VT_J2BYTE_EXP(22)(1)[7:0]
VT_J2BYTE_EXP(22)(16)[7:0]
VT_J2BYTE_DET(22)(1)[7:0]
VT_J2BYTE_DET(22)(16)[7:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
194 A
g
ere S
y
stems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Channel 23 Receive J2 Expected/Monitor ValuesR/W, RO
0x20514
0x20523
VT_J2BYTE_EXP_R[23][1]
VT_J2BYTE_EXP_R[23][16]
VT_J2BYTE_EXP(23)(1)[7:0]
VT_J2BYTE_EXP(23)(16)[7:0]
VT_J2BYTE_DET(23)(1)[7:0]
VT_J2BYTE_DET(23)(16)[7:0]
Channel 24 Receive J2 Expected/Monitor ValuesR/W, RO
0x20524
0x20533
VT_J2BYTE_EXP_R[24][1]
VT_J2BYTE_EXP_R[24][16]
VT_J2BYTE_EXP(24)(1)[7:0]
VT_J2BYTE_EXP(24)(16)[7:0]
VT_J2BYTE_DET(24)(1)[7:0]
VT_J2BYTE_DET(24)(16)[7:0]
Channel 25 Receive J2 Expected/Monitor ValuesR/W, RO
0x20534
0x20543
VT_J2BYTE_EXP_R[25][1]
VT_J2BYTE_EXP_R[25][16]
VT_J2BYTE_EXP(25)(1)[7:0]
VT_J2BYTE_EXP(25)(16)[7:0]
VT_J2BYTE_DET(25)(1)[7:0]
VT_J2BYTE_DET(25)(16)[7:0]
Channel 26 Receive J2 Expected/Monitor ValuesR/W, RO
0x20544
0x20553
VT_J2BYTE_EXP_R[26][1]
VT_J2BYTE_EXP_R[26][16]
VT_J2BYTE_EXP(26)(1)[7:0]
VT_J2BYTE_EXP(26)(16)[7:0]
VT_J2BYTE_DET(26)(1)[7:0]
VT_J2BYTE_DET(26)(16)[7:0]
Channel 27 Receive J2 Expected/Monitor ValuesR/W, RO
0x20554
0x20563
VT_J2BYTE_EXP_R[27][1]
VT_J2BYTE_EXP_R[27][16]
VT_J2BYTE_EXP(27)(1)[7:0]
VT_J2BYTE_EXP(27)(16)[7:0]
VT_J2BYTE_DET(27)(1)[7:0]
VT_J2BYTE_DET(27)(16)[7:0]
Channel 28 Receive J2 Expected/Monitor ValuesR/W, RO
0x20564
0x20573
VT_J2BYTE_EXP_R[28][1]
VT_J2BYTE_EXP_R[28][16]
VT_J2BYTE_EXP(28)(1)[7:0]
VT_J2BYTE_EXP(28)(16)[7:0]
VT_J2BYTE_DET(28)(1)[7:0]
VT_J2BYTE_DET(28)(16)[7:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
195Agere Sy stem s Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT/TU Mapper Register M ap (continued)
Note: Registers from 0x20590 to 0x20969 are reserved and should not be read.
Addre ss Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Elastic St ore Thre shold C o ntrolR/W
0x20574 VT_THRES_CTL1 VT_HIGH_THRES(1)[6:0] VT_LOW_THRES(1)[6:0]
0x20575 VT_THRES_CTL2 VT_HIGH_THRES(2)[6:0] VT_LOW_THRES(2)[6:0]
0x20576 VT_THRES_CTL3 VT_HIGH_THRES(3)[6:0] VT_LOW_THRES(3)[6:0]
0x20577 VT_THRES_CTL4 VT_HIGH_THRES(4)[6:0] VT_LOW_THRES(4)[6:0]
0x20578 VT_THRES_CTL5 VT_HIGH_THRES(5)[6:0] VT_LOW_THRES(5)[6:0]
0x20579 VT_THRES_CTL6 VT_HIGH_THRES(6)[6:0] VT_LOW_THRES(6)[6:0]
0x2057A VT_THRES_CTL7 VT_HIGH_THRES(7)[6:0] VT_LOW_THRES(7)[6:0]
0x2057B VT_THRES_CTL8 VT_HIGH_THRES(8)[6:0] VT_LOW_THRES(8)[6:0]
0x2057C VT_THRES_CTL9 VT_HIGH_THRES(9)[6:0] VT_LOW_THRES(9)[6:0]
0x2057D VT_THRES_CTL10 VT_HIGH_THRES(10)[6:0] VT_LOW_THRES(10)[6:0]
0x2057E VT_THRES_CTL11 VT_HIGH_THRES(11)[6:0] VT_LOW_THRES(11)[6:0]
0x2057F VT_THRES_CTL12 VT_HIGH_THRES(12)[6:0] VT_LOW_THRES(12)[6:0]
0x20580 VT_THRES_CTL13 VT_HIGH_THRES(13)[6:0] VT_LOW_THRES(13)[6:0]
0x20581 VT_THRES_CTL14 VT_HIGH_THRES(14)[6:0] VT_LOW_THRES(14)[6:0]
0x20582 VT_THRES_CTL15 VT_HIGH_THRES(15)[6:0] VT_LOW_THRES(15)[6:0]
0x20583 VT_THRES_CTL16 VT_HIGH_THRES(16)[6:0] VT_LOW_THRES(16)[6:0]
0x20584 VT_THRES_CTL17 VT_HIGH_THRES(17)[6:0] VT_LOW_THRES(17)[6:0]
0x20585 VT_THRES_CTL18 VT_HIGH_THRES(18)[6:0] VT_LOW_THRES(18)[6:0]
0x20586 VT_THRES_CTL19 VT_HIGH_THRES(19)[6:0] VT_LOW_THRES(19)[6:0]
0x20587 VT_THRES_CTL20 VT_HIGH_THRES(20)[6:0] VT_LOW_THRES(20)[6:0]
0x20588 VT_THRES_CTL21 VT_HIGH_THRES(21)[6:0] VT_LOW_THRES(21)[6:0]
0x20589 VT_THRES_CTL22 VT_HIGH_THRES(22)[6:0] VT_LOW_THRES(22)[6:0]
0x2058A VT_THRES_CTL23 VT_HIGH_THRES(23)[6:0] VT_LOW_THRES(23)[6:0]
0x2058B VT_THRES_CTL24 VT_HIGH_THRES(24)[6:0] VT_LOW_THRES(24)[6:0]
0x2058C VT_THRES_CTL25 VT_HIGH_THRES(25)[6:0] VT_LOW_THRES(25)[6:0]
0x2058D VT_THRES_CTL26 VT_HIGH_THRES(26)[6:0] VT_LOW_THRES(26)[6:0]
0x2058E VT_THRES_CTL27 VT_HIGH_THRES(27)[6:0] VT_LOW_THRES(27)[6:0]
0x2058F VT_THRES_CTL28 VT_HIGH_THRES(28)[6:0] VT_LOW_THRES(28)[6:0]
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
196 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers
Ta ble of Conte nts
Contents Page
11 M13/M23 MU X/DeMUX Registers .................................................................................................................. 196
11.1 M 13 Block Register Descriptions ............................................................................................................ 198
11.2 M13 Registe r Map .................................................................................................................................. 228
Tables Page
Table 212. M 13_ID_R, M 13 Block Ident ification (RO) ...................... . ......................... ..... .............. . ..................... 198
Table 213. M13_VERSION_R, M13 Version (RO) .............................................................................................. 198
Table 214. M 13_DELTA1, Delta (RO) ............. ....... . ......................... .......... ... ......................... . ............................ 199
Table 215. M13_DELTA2, Delta (RO)..................... ....... ............................................. ............ ....... ..................... 200
Table 216. M13_DELTA3, Delta (RO)..................... ....... ............................................. ............ ....... ..................... 200
Table 217. M 13_DELTA4, Delta (RO) ............. ....... . ......................... .......... ... ......................... . ............................ 201
Table 218. M 13_DELTA5, Delta (RO) ............. ....... . ......................... .......... ... ......................... . ............................ 202
Table 219. M 13_M A SK1, Mask (R/W) ............. .................. ........................ ................ . ................ ........................ 202
Table 220. M 13_M A SK2, Mask (R/W) ............. .................. ........................ ................ . ................ ........................ 203
Table 221. M 13_M A SK3, Mask (R/W) ............. .................. ........................ ................ . ................ ........................ 203
Table 222. M 13_M A SK4, Mask (R/W) ............. .................. ........................ ................ . ................ ........................ 204
Table 223. M 13_M A SK5, Mask (R/W) ............. .................. ........................ ................ . ................ ........................ 205
Table 224. M 13_DS3_STAT U S1, Status (RO) .................. ........................ ............................ ..... ... ..................... 205
Table 225. M 13_DS3_STAT U S2, Status (RO) .................. ........................ ............................ ..... ... ..................... 206
Table 2 26. M13_XC_DS2_LOCD_R, DS2 Loss of Clock Delt a (RO) . ............................................... ................. 206
Table 2 27. M13_XC_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detection Delta (RO) ................ .......... 206
Table 2 28. M13_DS2_OOFD_R, DS 2 Out of Frame Delta (RO) ........................ ..... ... ........................................ 207
Table 229. M 13_DS2_LOFD_ R, DS 2 L oss of Fr ame Delta (RO) ................. ............. ................... ................... ... 207
Table 230. M 13_DS2_A I S_DE TD_R, DS2 Alarm Indication Signal Detect Delta (RO) ..................... ................. 2 07
Table 2 31. M13_DS2_RAI_DETD_ R, DS2 Remote Alarm Indication Detection De lta (RO) ............. .................207
Table 232. M 13_DS 2_L B_ DETD_R, DS 2 Loopback Dete ct Delta (RO) .. ................ ................... ................... ..... 208
Table 233. M 13_DS 2_RS V_RCV D_R, DS2 Receive Reserved Bit Delta (RO) ......... .................................... ..... 208
Table 2 34. M13_DS2DMX_LOCD_R, DS2 DeMUX Loss o f Clock Delta (RO) ........... . ........... . ...... . ........... . ........ 20 8
Table 2 35. M13_DS 1_LOCD_R[14], DS1 Loss of Clock Delta Registers (RO) ......... .............. ... .. .. ... .. ... .. .. ... . 208
Table 2 36. M13_DS 1_AIS_DE TD_R[14 ], DS1 Alar m Ind ication Signal Delta Regi sters (RO) ........................ 209
Table 2 37. M13_DS 1_LB_DETD _R[ 14], DS1 Loopback Detect Delta Registers (RO) ...... . .............. .............. 209
Table 238. M 13__X C_DS2_LOC_R, DS2 Loss of Clock Status (RO) ....... .............. ................... ........................ 2 09
Table 239. M 13_XC_DS 2_A IS _DE T_R, DS2 Alarm Indication Signal Detect St atus (RO) .......... ................... ... 209
Table 240. M 13_DS 2_O OF_R, DS2 Out of Fram e Status (RO ) ........... ............................... .......................... .....210
Table 241. M 13_DS 2_L OF_R, DS 2 L oss of F rame Status (RO) ........................ . .................. .......................... ...210
Table 242. M 13_DS2_A I S_DE T_R, DS 2 Alarm Indication Signal Detect St atus (RO) .......... ................... .......... 210
Table 2 43. M13_DS2_RAI_DET_R, DS2 Remote Alarm Indication Detect Stat us (RO) ................... ................. 210
Table 244. M 13_DS2_LB_DET_R, DS 2 Loopback Dete ct Status (RO) ....... ........... ........................................ ... 211
Table 2 45. M13_DS 2_RSV_RCV_R, DS2 Recei ve Reserved Bit Delta Status (RO) ............ . .................. . ......... 211
Table 2 46. M13_DS2DMX_LO C_R, DS2 DeMUX Loss of Clock S tatus (RO) ........ .......................... ................. 211
Table 247. M 13_DS1_LOC_R[14], DS1 Loss of Clock Status Registers (RO) ............................................... 211
Table 248. M 13_DS1_AIS_DET_R[14], DS1 Alarm Indication Signal Detect Status Registers (RO) ............. 212
Table 2 49. M13_DS 1_LB_DET_R[ 14], DS1 Loopback Detect Status Registers (RO) .............. ...................... 2 12
Table 2 50. M13_DS 1_FEAC_LB _DETD_R[14], DS1 Far-End Alarm and Control Loopback Detect Delta
Registers (RO) ................................................................................................................................... 213
Table 2 51. M13_DS 1_FEAC_LB_DET_R[14], DS1 Far-End Alarm and Control Loopback Detect
Statu s Registers (RO ) ....................................................................................................................... 213
Table 2 52. M13_RFEAC_C ODE_R, Receive Far-En d Alarm and Cont rol Co de Stat us (RO) .... ........................ 214
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
197Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table o f Conten ts (continued)
Tables Page
Table 253. M13_RDL_STATUS, Receive Data-Link Status (RO) .......................................................................214
Table 254. M13_RDL_DATA_R, Receive Data-Link Data (RO) .........................................................................214
Table 2 55. M13_RDL_FRAME_SIZE_R, Receive Data-L ink Frame Size (RO) ..................................................214
Table 256. M13_RHDL C_STATUS_R, Receive High-Level Data-Link Control Status (RO) .............................. 215
Table 2 57. M13_DS2_FORCE_OOF_R, DS2 Force Out of Frame (O ne Sh ot R/W) ............ ... .................. ..... .... 215
Table 2 58. M13_CONTRO L1, Con trol 1 (One Shot R/ W) ........................... ... ......................... .......... ..................215
Table 259. M 13_CO NTROL2, Con trol 2 (R/W ) ............. .................. ................... ................... .............................. 215
Table 260. M 13_CO NTROL3, Con trol 3 (R/W ) .... ................... ...................... .................. ................... ................ 216
Tab le 261. M13_SP_OFFSET_R, Sync Pulse Offset (R/W) ............................................................................... 216
Table 262. M13_SP_D_OFFSET_ R, Sync Pulse D Offset (R/W) ....................................................................... 216
Table 263. M 13_M12_MUX _CONTRO L1_R[17], M12 MUX CONTROL 1 Registers [17] (R/W) ................ 2 17
Table 264. M 13_M12_MUX _CONTRO L2_R[17], M12 MUX CONTROL 2 Registers [17] (R/W) ................ 2 17
Table 2 65. M13_DS 2_RAI_SEND_R, DS2 Remote Alarm Indication Send (R/W ) ................. ..... ..... .................. 217
Table 2 66. M13_DS2_RS V_SEND_R, DS2 Reserve Bit Send (R/W) . ........................................ . ............. ......... 217
Table 2 67. M13_DS2_MPINV_R , DS2 M Frame Alignm ent or Parity Error (R/W) ............... ..................... . ........ 218
Table 2 68. M13_DS2_F INV_R, DS2 Frame Error (R/W) ..................... ................... ..................... . ............. . ........ 218
Table 269. M 13_DS 2_P _BE R_R, Parity Bit Error Rate (R/W) .. .............................. .............. ............... ...............218
Table 2 70. M13_DS 2M12_EDG E_R, DS2 M12 Edge (R/W) ........................................... ..... .......................... .... 218
Table 2 71. M13_DS 2_FORCE_AIS_R, DS2 Force Alarm Indication Signal (R/W) .............. ..................... . ........ 218
Table 272. M 13_M12_DEM UX_CONTROL1_R[17], M12 DeM U X Control 1 Registers [17] ( R /W) ............219
Table 273. M 13_M12_DEM UX_CONTROL2_R[17], M12 DeM U X Control 2 Registers [17] ( R /W) ............219
Table 2 74. M13_M12_DEMUX_CONTROL3, DS 2 M12 DeMUX Control 3 (R/W) ............... ... ....................... .... 219
Table 2 75. M13_DMD S 2_EDGE_R, DS2 Edge f or M12 DeMUX (R/W) ................. ................ . ................... ........ 220
Table 2 76. M13_DS 3_CONTRO L1, DS3 Control 1 (R/W) ........................................ ..... .......................... ........... 220
Table 2 77. M13_DS 3_CONTRO L2, DS3 Control 2 (R/W) ........................................ ..... .......................... ........... 221
Table 278. M 13_T FEA C_CONTROL , Tx FEA C Control (R/W) ..... ................. ................... ................... ............... 221
Table 279. M 13_THDLC_CONTRO L1, T x HDLC Control 1 (R/W) .. ........... ............ ............................ ............... . 222
Table 280. M 13_THDLC_CONTRO L2, T x HDLC Control 2 (R/W) .. ........... ............ ............................ ............... . 222
Table 281. M13_DS 2_LB_REQ_R, DS2 Loopback Reque st (R/W) ........... ................... ................... .................. 222
Table 282. M 13_S EL_DS 2_LB _R, Se lect DS2 Loopback (R/W) ......... ..................... ................... ................... . ... 223
Table 2 83. M13_RDS2_E DGE_R[12], Rx DS2 Edge Registers [12](R/W) ..................................................223
Table 284. M 13_DS2_OUT_IDLE_R, DS2 Output Idle (R/W) . ................... ................... ................... ..................223
Table 285. M 13_DS2_OUT_AI S_R, DS 2 Out put Alarm Indication Sign al (R/W) .................... ..... ....................... 223
Table 2 86. M13_TDS2_EDGE _R, Tx DS2 Edge (R/W) ........... ..... ..................... . .................. .............................. 224
Table 287. M13_RDL_CONTROL, RDL Control (R/W) ....................................................................................... 224
Table 288. M 13_P M _CNT_ ACT_R, P erforma nc e Cou nter (RO) ............ .............. ........... ................................... 224
Table 2 89. M13_DS3_FERR_CNT _R[12], DS3 F-Bit Err o r Registers (RO) ....................................................224
Table 2 90. M13_DS 3_FEBE_CNT_R[12], DS3 Far-End Block Error Registers (RO) .....................................225
Table 2 91. M13_DS3_CP ERR_CNT_R[12], DS3 C-Bit Parity Error Registers (RO) ...................................... 225
Table 2 92. M13_DS3_PERR_CNT_R[ 12], DS3 P-Bi t Error Registers (RO) ...................................................2 25
Table 2 93. M13_DS2_PERR_CNT[71]_R[12] , P- Bi t E rr or C ounter Status Registers (RO) ...................... . .. 22 5
Table 2 94. M13_DS2_FERR_CNT [71]_R, F-Bit Error Counter St atu s Registers (RO) ............. ............. . ........ 226
Table 2 95. M13_BPV_CNT_R[13], B ipolar Violation Counte r Status Registers (RO) ............... ...................... 226
Table 296. M 13_EXZ_CN T_R[13], Bipolar Violation Counter Status Registers (RO) ................... .................. 2 27
Table 297. M 13_TDL_BUFFER_R, Tx Data-Link Buffer Control (R/W) ........... ............................. ......................2 27
Table 298. M 13_TDL_0DATA_R[063], Tx Data for Path Maintenence Data-Link Buffer 0 Registers
(64 Bytes x 8 Bi ts) (R/W) ................................................................................................................... 227
Table 299. M 13_TDL_1DATA_R[063], Tx Data for Path Maintenence Data-Link Buffer 1 Registers
(64 Bytes x 8 Bi ts) (R/W) ................................................................................................................... 227
Table 300. Register Address Map ....................................................................................................................... 228
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
198 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
11.1 M13 Block Register Descriptions
T he followi ng tabl es desc ribe the functions o f al l bit s. For e ach add res s, the re gister bits are in dica ted a s either
read/wr ite (R/W ) or read on ly (RO), and the value of the bit s on rese t is gi ven.
Table 212. M13_ID_R, M13 Block Identification (RO)
Table 213. M13_VERSION_R, M13 Version (R O)
Address Bit Name Function Reset
Default
0x10000 15:8 Reserved. 0x00
7:0 M 13_I D[7:0] The M13_ID_R register returns a fixed value (0x01) when read. 0x01
Address Bit Name Function Reset
Default
0x10001 15:3 Reserved. 0x000
2:0 M13_VERSION[2:0] These bits identify the v er sion number of the M13. 0x 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
199Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 214. M13_DELTA1, Delt a (RO)
Address Bit Name Function Reset
Default
0x10004 15:8 Reserved. 0x00
7 M13_RDL_IDLED This delta b it is set if M 13_RDL_IDLE (Table 224)
ch ange s s t ate. It can be programm ed to b e eithe r cl ear
on read (COR) or clear on write (COW), and it is not s et
to 1 again until another state transition occurs.
0
6 M 13_DS3_LOFD T his delta b it is se t if M 13_DS 3_LOF ( Table 224)
ch ange s s t ate. It can be programm ed to b e eithe r cl ear
on read (COR) or clear on write (COW), and it is not s et
to 1 again until another state transition occurs.
0
5 M13_DS3_OOFD This delta bit is set if M13_DS3_OOF (Table 224)
ch ange s s t ate. It can be programm ed to b e eithe r cl ear
on read (COR) or clear on write (COW), and it is not s et
to 1 again until another state transition occurs.
0
4 M13_DS 3_C1 _DE TD T his delta b it is set if M 13_DS 3_C1_DET (Table 224)
changes state . It is cleared when read, and it is not set to
1 again until another state transition occu rs.
0
3 M 13_DS 3_RAI _DE TD This delta b it is set if M 13_DS 3_RAI _DE T ( Table 224)
ch ange s s t ate. It can be programm ed to b e eithe r cl ear
on read (COR) or clear on write (COW), and it is not s et
to 1 again until another state transition occurs.
0
2 M13_DS3_A ISPAT_DETD This delta b it is set if M13_DS3_AI SPAT_DET
(Table 224) changes state. It can be prog rammed to be
either clear on read (COR) or clear on writ e (COW), and it
is not set to 1 again until another state transition occurs.
0
1 M13_DS 3_I DLEPAT_DE TD This delta bit is se t if M 13_DS 3_I DLE PAT_DET
(Table 224) changes state. It can be prog rammed to be
either clear on read (COR) or clear on writ e (COW), and it
is not set to 1 again until another state transition occurs.
0
0 M13_DS 3_CB Z _DE TD T his delta b it is set if M13_DS3_CBZ _DE T ( Table 224)
ch ange s s t ate. It can be programm ed to b e eithe r cl ear
on read (COR) or clear on write (COW), and it is not s et
to 1 again until another state transition occurs.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
200 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 215. M13_DELTA2, Delt a (RO)
Table 216. M13_DELTA3, Delt a (RO)
Address Bit Name Function Reset
Default
0x10005 15:8 Reserved. 0x00
7 M13_DS1_LB_SD This delt a bit summarizes the state of
M13_DS1_LB _DE T D[28:1] (Table 237) bi ts. 0
6 M13_DS1_ AIS_SD This delta bit is set if a ny M13_DS1_AIS_DETD [28:1]
(Table 236) bit is high . 0
5 M13_DS1_LOC_SD This delta bit is set if any M13_DS1_LOCD[28:1]
(Table 235) bit is high . 0
4 M13_RD S3 _S EFD This delta bit i s set i f M13_RDS3_S EF (Table 225)
changes state. I t can be programmed to be either cl ear on
read (COR) or clear on write (COW), and it is not set to 1
again until another state transition occurs.
0
3 M13_RDS3_ALL1_DETD This delta bit is set if M13_RDS3_ALL1_DET (Table 225)
changes state. I t can be programmed to be either cl ear on
read (COR) or clear on write (COW), and it is not set to 1
again until another state transition occurs.
0
2 M13_R DS3 _LOSD T his delta bit i s s e t if M1 3_RD S3_LOS (Table 225)
changes state. I t can be programmed to be either cl ear on
read (COR) or clear on write (COW), and it is not set to 1
again until another state transition occurs.
0
1 M13_TDS3_LOCD This delta bit is set if M13_TDS3_LOC (Table 225)
changes state. I t can be programmed to be either cl ear on
read (COR) or clear on write (COW), and it is not set to 1
again until another state transition occurs.
0
0 M13_RDS3_LOCD This delta bit is set if M13_RDS3_LOC (Table 225)
changes state. I t can be programmed to be either cl ear on
read (COR) or clear on write (COW), and it is not set to 1
again until another state transition occurs.
0
Address Bit Name Function Reset
Default
0x10006 15:8 Reserved. 0x00
7 M13_DS2_RSV_ SD This delta bit is high if any M13_DS2_RSV _RCVD[7:1]
(Table 233) bi t is high. 0
6 M 13_DS2_LB_S D T his delta bit summarizes the state of
M13_DS2_LB_DETD[7:1] (Table 232). 0
5 M 13_DS2_RAI_SD This delta bi t su mm arizes the state of
M13_ DS2_RAI_DETD[7:1] (Table 231). 0
4 M 13_DS2_AIS_SD This delta bit summarizes the state of
M13_DS2_AIS_D ETD[7:1] (Table 230). 0
3 M13_DS2_LOF_SD This delta bit is high i f any M13_DS2_LOFD[7:1] ( Table 229)
bit is high. 0
2 M13_D S2_O OF_SD This delta bit is high if any M13_DS2_OOFD[7:1]
(Table 228) bi t is high. 0
1 M 13_XC_DS 2_AIS_SD T his delta bit is set if any M13_XC_DS2_AIS_ D E TD[7:1]
(Table 227) bi t is high. 0
0 M13_XC _D S2_LOC_SD This delta bit is set if any M 13_ XC_DS2_LO CD[7:1]
(Table 226) bi t is high. 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
201Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 217. M13_DELTA4, Delt a (RO)
Address Bit Name Function Reset
Default
0x10007 15:8 Reserved. 0x00
7 M13_TFEAC_DONE This bit is se t when the M13 c ompletes tran smiss ion of a
sequence of FEAC con t rol code. It c an be programmed to
be either clear on read (COR) or clear on write (COW), and it
is not set to 1 again until the event reoccurs.
0
6 M13_TDL_DONE This b it is set when the M13 completes tran smission of a
data-link frame. It can be programmed to be either clear on
read (COR) or clear o n write (COW), and it is not s et to 1
again until the event reoccurs.
0
5 M13_TDL_BUF1_INT This bit is se t when the device completes transmission of
M13_TDL_1DATA63[7:0] (Table 299) (the last byte of buffer
1). It can be programmed to be either clear on read (COR) or
clear on wri te (COW), and it is not set to 1 again until the
event reo ccurs.
0
4 M13_TDL_BUF0_INT This bit is se t when the device completes transmission of
M13_TDL_0DATA63[7:0] (Table 298) (the last byte of buffer
0). It can be programmed to be either clear on read (COR) or
clear on wri te (COW), and it is not set to 1 again until the
event reo ccurs.
0
3 M13_RDL_FIFO_AFD This delta bit is set if M13_RDL_FIFO_AF (Table 225)
chang es state. It can be programmed to be either clear on
read (COR) or clear o n write (COW), and it is not s et to 1
again until another state transition occurs.
0
2 M13_RDL_FRM_INT This bit indicates that a new data-link frame closing f lag or
an abort byte has been received. It can be programmed to
be either clear on read (COR) or clear on write (COW), and it
is not set to 1 again until the event reoccurs.
0
1 M13_RFEAC_ALM_INT This bit indicates that a new DS3 FEAC alarm codeword has
been received. The new codew ord is a vailable in register
M13_RF E AC_CODE_R (Table 252). For loopbac k code-
words, the appr opriate M13_DS1_FEAC_LB_DETx
(Table 251) and M13_DS3_FLB_DET (Table 251) bits in reg-
isters 0x2F through 0x32 will be set or cleared. It can be pro-
grammed to be either clear on read (COR) or clear on wri te
(COW), and it is not set to 1 again until the event reoccur s.
0
0 M 13_RF E AC_LB_INT T his bit ind icates that a new DS3 FEAC loopback codeword
has been received. The new codeword is available in regis-
ter M13_RFEAC_ CODE _R. For loopback codewords, the
appropriate M13_DS1_F EAC_LB_DE Tx and
M13_DS3_FLB_DET bits will be set or cleared. It can be
programmed to be either clear on read (COR) or clear on
wr ite (COW), and it is not set to 1 again until the event reoc-
curs.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
202 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 218. M13_DELTA5, Delt a (RO)
Table 219. M13_MASK1, Mask (R/W)
Address Bit Name Function Reset
Default
0x10008 15:2 Reserved. 0x0000
1 M13 _D S2D MX_LOC_SD This delt a bit is set if any M13_DS2DMX_LOCD[7:0]
(Table 234) bi t register is high. 0
0 M13_RD L _FIFO_UFD This delta bit is set if bit M13_RDL_FIFO_UF (Table 225)
changes stat e. It can be programmed to be either clear on
read (COR) or c lear on write (COW), and it is no t set t o 1
again until another state transition occurs.
0
Address Bit Name Function Reset
Default
0x1000A 15:8 Reserved. 0x00
7 M1 3_RDL_IDLE M Setting this mas k bi t high prevents the delta
M13_RDL_IDLE D ( Table 214) f rom causing the block
output interrupt (INT) to be ac tive.
1
6 M1 3_DS 3_LO FM Setting th is mask bi t high prevents the delta
M13_DS3_LOFD (Table 214) from causing the block ou t -
put INT t o be active.
1
5 M13_DS3_O OFM Setting this m ask bi t high prevents the delta
M13_DS3_OOFD (Table 214) from cau sing the block
output INT to be act ive.
1
4 M13_DS3_C1_DETM Setting this mas k bi t high prevents the delta
M13_DS3_C1_DETD (Table 214) from causing the b lock
output INT to be act ive.
1
3 M13_DS3_ R AI_DETM Se tting this mask bi t high prevents the delta
M13_DS3_RA I_DETD ( Table 214) f rom causing the
block output INT to be active.
1
2 M 13_DS 3_AI SPAT_ DETM Setting this mask bi t high prevents the delta
M13_DS3_A ISPAT_DET D (Table 214) from c aus ing the
block output INT to be Active.
1
1 M13_DS3_IDLE PAT_DETM Setting this mask bi t high prevents the delta
M13_DS3_IDLEPAT_DETD (Table 214) from causing the
block output INT to be active.
1
0 M 13_DS3_CBZ_DE TM Setting this mas k bi t high prevents the delta
M13_DS3_CB Z_DET D (Table 214) from causing the
block output INT to be active.
1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
203Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 220. M13_MASK2, Mask (R/W)
Address Bit Name Function Reset
Default
0x1000B 15:8 Reserved. 0x00
7 M13_DS1_ L B_SM S e ttin g t h is ma sk b it h ig h p reve nts the summary delta
M13_DS1_LB _S D ( Table 215) from causing the block out-
put inte rrupt (INT) to be active.
1
6 M 13_DS1_ AIS_S M Set ting this mask bit high prevents the summary delta
M13_DS1_A I S_ SD (Table 215) from causing the block out-
put IN T to be active.
1
5 M 13_DS 1_LOC_SM S etting this mask bit high prevents the su mmary delta
M13_DS1_LOC_SD ( Table 215) f rom causing the block
output INT to be active.
1
4 M1 3 _ RD S3_ SE F M Se t ti n g this ma sk b it h ig h p reve nts the delta
M13_RDS3_S E FD (Table 215) from caus ing the block out-
put IN T to be active.
1
3 M13_RDS 3_A LL1_DE T M Set ting this mask bit high prevents the delta
M13_RDS3_A LL1_DETD (Table 215) fr om causing the
block output IN T to be active.
1
2 M1 3_RDS 3_LOSM S etting this mask bit high prevents the delta
M13_RDS3_LOSD (Table 215) from causing t he block out-
put IN T to be active.
1
1 M13_TDS3_LOCM Setting this mask bit high prevents the delta
M13_T DS3 _LOCD (Table 215) from ca us ing the block out-
put IN T to be active.
1
0 M13_RDS3_LOCM Setting this mask bit high prevents the delta
M13_RDS3_LOCD (Table 215) from causing t he block o ut-
put IN T to be active.
1
Table 221. M13_MASK3, Mask (R/W)
Address Bit Name Function Reset
Default
0x1000C 15:8 Reserved. 0x00
7 M13 _DS2_RS V_ SM Setting this mas k bit hi gh p revents t he sum mary delta
M13_DS2_RS V _S D (Table 216) from causing the blo ck out-
put interr upt (I NT) to be ac tiv e.
1
6 M13_DS2_LB _S M Setting this mas k bit high prevents t he sum mary delta
M13_DS2_LB _S D ( Table 216) f r om causing the block out-
put INT to be activ e.
1
5 M13 _DS 2_RA I_SM S etting this m ask bit hi gh p revents t he sum mary delta
M13_DS2_RA I _S D (Table 216) from caus ing th e block out-
put INT to be activ e.
1
4 M13_DS2_A IS_S M Setting this mas k bit high prevents t he sum mar y delta
M13_DS2_A I S_SD (Table 216) from causing the block out -
put INT to be activ e.
1
3 M13_DS 2_LOF_SM Setting this mas k bit high prevents t he sum mary delta
M13_DS2_LOF_SD (Table 216) from causing the block out-
put INT to be activ e.
1
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
11 M13/M23 MUX/DeMUX Registers (continued)
204 Agere Sy stem s Inc.
0x10 00C 2 M13_DS 2_OOF _S M Setting this m ask bit hig h prevents the sum mar y delta
M13_DS2_OOF_ SD (Table 216) from caus ing the block
output INT to be activ e.
1
1 M 13_X C_DS 2_AIS_SM Setting this mas k bit hig h p revents t he sum mar y delta
M13_XC_DS 2_A I S_SD (Table 216) from causing the block
output INT to be activ e.
1
0 M13_X C_DS 2_LO C_S M Setting this mas k bit hig h prevents the sum mar y delt a
M13_XC_DS2_LOC_SD (Table 216) from causing the block
output INT to be activ e.
1
Table 222. M13_MASK4, Mask (R/W)
Address Bit Name Function Reset
Default
0x1000D 15:8 Reserved. 0x00
7 M13_TFEAC_DONEM Setting this mask bi t high prevents M13_T FEAC_DONE
(Table 217) from causing the bloc k output interrupt (INT) to
be active.
1
6 M13_TDL_ D ONEM Setting this mas k bit high prevents M 13_T DL_DONE
(Table 217) from causing the bl ock output INT to be active. 1
5 M1 3_TDL _BUF1_INTM Se tting this mask bit high prevents M13_TDL_BUF1_INT
(Table 217) from causing the bl ock output INT to be active. 1
4 M1 3_TDL _BUF0_INTM Se tting this mask bit high prevents M13_TDL_BUF0_INT
(Table 217) from causing the bl ock output INT to be active. 1
3 M13_RDL_F I FO_ AFM Se tting this mask bi t high prevents M13_RDL _FIFO_AFD
(Table 217) from causing the bl ock output INT to be active. 1
2 M 13_RDL_FRM_I NTM Se tting this mask bi t high prevents M13_RDL _FRM _INT
(Table 217) from causing the bl ock output INT to be active. 1
1 M 13_RF E AC_ALM_INTM Setting this mask bi t high prevents
M13_RFEAC_ALM_INT (Table 217) from causing the block
output INT to be active.
1
0 M13_RFEAC_LB_IN TM Setting this mask bi t high prevents M13_RF E AC_LB_INT
(Table 217) from causing the bl ock output INT to be active. 1
Table 221. M13_MASK3, Mask (R/W) (continued)
Address Bit Name Function Reset
Default
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
205Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 223. M13_MASK5, Mask (R/W)
Address Bit Name Function Reset
Default
0x1000E 15:2 Reserved. 000000
000000
00
1 M13_DS2DMX _LOC_SM Setting this mask bit high prevents the summary delta
M13_DS2DMX_LO C_S D (Table 218) f rom causing the
bloc k output interrupt (INT) to be active.
1
0 M13_RDL_FIFO_UFM Setting this m ask bi t high prevents M13_RDL _FIFO_UFD
(Table 218) from causing the block output INT to be act ive. 1
Table 224. M13_DS3_STATUS1, Status (RO)
Address Bit Name Function Reset
Default
0x1000F 15:8 Reserved. 0x00
7 M13_RDL_IDLE This bit is set if 15 c onsecutive ones are received on the
path maintenance data link. it is cleared when a flag b yte is
received.
1
6 M13_DS 3_LOF This bit is set if M13 _DS3_OOF is high continuously for
28 frame periods (approximately 3 ms). Once set,
M13_DS3_LOF is not cleared until M13_DS3_OOF is con-
tinuously low for 28 frame p eriods.
0
5 M13_DS3_OOF The DS3 framer out-of-frame state bit. (See DS3 Framer
on page 469) This bit i s high while out-of-frame. 1
4 M13_DS3_C1_DET This bit is set if t he first C bit of each DS3 frame is received
high f or 8 consecutiv e frames. Once M13_DS3_C1_DET is
set , 3 consec utive frames with C1 = 0 must be received
before it is cleared.
0
3 M13_DS3_RAI_DET If both X bits in 2 consecutive frames are received as 0, the
M13 sets t his bit to 1 . Once it is set , it is not cleared u nti l
both X bits in 2 consecutive frames are received as 1.
0
2 M13_DS3_AISPAT_DET The 4704 information bits in each M frame are checked for
the presence of the AIS (1010) pattern. A patt ern detection
bit is set if fewe r t han 5 pattern errors are received in each
of 2 co ns ec uti ve frames. Onc e a bit is set, it is not cleared
until at least 16 p attern errors are received i n e ach of
2 consecutive frames.
0
1 M 13_DS3_IDLEPAT_DET The 4704 inform ation bits in each M frame are checked for
the presenc e of the idle (1100) pattern. A pattern detection
bit is set if fewe r t han 5 pattern errors are received in each
of 2 co ns ec uti ve frames. Onc e a bit is set, it is not cleared
until at least 16 p attern errors are received i n e ach of
2 consecutive frames.
0
0 M 13_DS 3_CBZ_DET This bit is set if every C bit in 3 cons ecutive DS3 frames is
0. It is cleared if the three C bits in a single
M-subframe are all 1.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
206 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 225. M13_DS3_STATUS2, Status (RO)
Table 226. M13_XC_DS2_LOCD_R, DS2 Loss of Clock Delta (RO)
Table 227. M13_XC_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detection Delta (RO)
Address Bit Name Function Reset
Default
0x10010 15:7 Reserved. 000000
000
6 M13_RDL_FIFO_UF This bit is 1 if t he receiv e HDLC FIFO is underflow. 0
5 M13_RDL_FIFO_AF This bit is 1 if the number of unread bytes in the receive
HDLC FIFO is greater than t he fill-up level set by bits
M13_RDL_FILL[1:0] (Table 287).
0
4 M13_R DS3 _SEF This bit is 1 if there a re three or more F-bit errors in
16 consecutive F bits. It is not terminated until the signal is
in-frame and t here are less than three F-bit errors in 16 con-
secutive F bits.
1
3 M 13_RDS3_A LL1_DET This bit is 1 if the input data is 0 for fewer than 9 out o f
8192 clock periods. 0
2 M 13_RDS 3_LOS T his bit is 1 if t here are 175 ±75 contiguous pulse positions
with no pulses of either positive or neg ative pol arity at the
DS3 Input . An LOS is cleared upon detecting an average
pulse d ens ity of at least 33% over a per iod of
17 5 ±75 contiguous pulse positions, starti ng with the receipt
of a pulse.
0
1 M 13_TDS3_LO C T his bit is 1 if t he SM PR_TDS3CLK signal fail s to have tran-
sitions for at least 10 periods of SMPR_RDS3CLK. A single
transition o n SMPR_TDS 3CLK resets this bit.
0
0 M13_R DS 3_LOC T h is bit is 1 if the S M PR _R D S3CL K signal fa ils to have tran-
sitions for at least 10 periods of SMPR_TDS3CLK. A single
transition o n S MPR_RDS3CLK resets this bit.
0
Address Bit Name Function Reset
Default
0x10011 15:7 Reserved. 0x000
6:0 M13_XC_DS2_
LOCD[7:1] These individual delta bits are set as the result o f the corre-
sponding state bits M13_XC_DS2_LOC[7:1] (Table 238) transi-
tioning either from 0 to 1 or from 1 to 0. They can be
programmed to be either clear on read (COR ) or c lear on write
(COW), and they are not set to 1 again unt il the event reoccurs.
0x00
Address Bit Name Function Reset
Default
0x10012 15:7 Reserved. 0x000
6:0 M13_XC_DS2_
AIS_DETD[7:1] These indiv idual delta bits are set as the result of the corre-
sponding state bits M13_XC_DS2_AIS_DET[7:1]
(Table 239) tran sitioning either from 0 to 1 or from 1 to 0.
They can be programme d to be either clear on read (COR)
or clear on write (COW), and they ar e not set to 1 again u ntil
the event reoccurs.
0x00
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
207Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 228. M13_DS2_OOFD_R, DS2 Out of Frame Delta (RO)
Table 229. M13_DS2_LOFD_R, DS2 Loss of Frame Delta (RO)
Table 230. M13_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detect Delta (RO)
Table 231. M13_DS2_RAI_DETD_R, DS 2 Remote Alarm I ndication Detection Delta (RO)
Address Bit Name Function Reset
Default
0x10013 15:7 Reserved. 0x000
6:0 M13_DS2_OOFD[7:1] Th ese individua l delta bits are set as the result of the corre-
sponding s tate bit s M13_DS2_OOF[7:1] (Table 240) transition-
ing either from 0 to 1 or from 1 to 0. Delta bi ts can be
programmed to be either clear on read (COR) or clear on write
(COW), and they are n ot set to 1 again until the event r eoc-
curs.
0x00
Address Bit Name Function Reset
Default
0x10014 15:7 Reserved. 0x000
6:0 M13_DS2_LOFD[7:1] These individual delta bits are set as the result of th e corre-
spond ing s tate bits M13_DS2_LO F[7:1] (Table 241) transition-
ing either f rom 0 to 1 or fro m 1 to 0. They c an be programmed
to be either clear on read (COR) or clear on write (COW), and
they are not set to 1 again until the event reoccurs.
0x00
Address Bit Name Function Reset
Default
0x10015 15:7 Reserved. 0x000
6:0 M13_DS2_AIS_
DETD[7:1] These individual delta bits are set as the result of the corre-
spond ing s tate bits M13_DS2_AI S_ D ET[7:1] (Table 242) tran-
sitioning either from 0 to 1 or from 1 to 0. Delta bits can be
prog rammed to be either clear on read (COR) or clear on write
(COW), and they are not set to 1 again until the event reoc-
curs.
0x00
Address Bit Name Function Reset
Default
0x10016 15:7 Reserved. 0x000
6:0 M13_DS2_
RAI_DETD[7:1] These individual delta bits are set as the result of the corre-
spond ing s tate bits M13_DS2_ RAI _DET[7:1] (Table 243) tran-
sitioning either from 0 to 1 or from 1 to 0. Delta bits can be
prog rammed to be either clear on read (COR) or clear on write
(COW), and they are not set to 1 again until the event reoc-
curs.
0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
208 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 232. M13_DS2_L B_DETD_R, DS2 Loo pb ack Detect Delta (RO)
Table 233. M13_DS2_RSV_RCVD_R, DS 2 Receive Reserved Bit Delta (RO)
Table 234. M13_DS2DMX _LOCD_R, DS2 DeMUX Loss of Clock Del ta (RO)
Table 235. M13_DS1_LOCD_R[14], DS1 Loss of Clock Delta Registers (RO)
Address Bit Name Function Reset
Default
0x10017 15:7 Reserved. 0x000
6:0 M13_DS2_LB_
DETD[7:1] These individual delta bits are set as the result of the corre-
sponding state bits M13_DS2_LB_DET[7:1] ( Table 244) transi-
tioning either from 0 to 1 or from 1 to 0. Delta bits can be
prog rammed to be either clear on read (COR) or clear on write
(COW), and they are not set to 1 again until the event reoc-
curs.
0x00
Address Bit Name Function Reset
Default
0x10018 15:7 Reserved. 0x000
6:0 M13_DS2_RSV_
RCVD[7:1] These individual delta bits are set as the resul t of the corre-
spond ing s tate bits M13_DS2_ RSV _RC V[7:1] (Table 245)
transit ioning either from 0 to 1 or from 1 to 0. Delta bits can be
prog rammed to be either clear on read (COR) or clear on write
(COW), and they are not set to 1 again until the event reoc-
curs. (G.747).
0x00
Address Bit Name Function Reset
Default
0x10019 15:7 Reserved. 0x000
6:0 M13_DS2DMX_
LOCD[7:1] These individual delta bits are set as the result of the corre-
spond ing s tate bits M13_DS2DMX_LOC[7:1] (Table 246) tran-
sitioning either from 0 to 1 or from 1 to 0. Delta bits can be
prog rammed to be either clear on read (COR) or clear on write
(COW), and they are not set to 1 again until the event reoc-
curs.
0x00
Address Bit Name Function Reset
Default
0x1001E 15:4 Reserved. 0x000
0x1001F
0x10021 15:8 Reserved. 0x00
0x1001E
0x1001F
0x10020
0x10021
3:0
7:0
7:0
7:0
M13_DS1_LOCD[28:25]
M13_DS1_LOCD[24:17]
M13_DS1_LOCD[16:9]
M13_DS1_LOCD[8:1]
These individual delta bits are set as the result of the
corresponding state bits M13_DS1_LOC[28:1]
(Table 247) transitioning either from 0 to 1 or from 1 to
0 . Delta bi ts can be programmed to b e either clear on
read (COR) or clear on write (COW), and they are not
set to 1 again until the event reoccurs.
0x00
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
209Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 236. M13_DS1_AIS _DETD_R[1 4], DS 1 Al arm Indication Signal De lta Registers (RO)
Table 237. M13_DS1_LB_DETD_R[14], DS1 Loopback Detect Delta Registers (RO)
Table 238. M13__XC_DS2_LOC_R, DS2 Loss of Clock Status (R O)
Table 239. M13_XC_DS2_AIS_DET_R, DS2 Alarm Indication Signal Detect Status (RO)
Address Bit Name Function Reset
Default
0x10022 15:4 Reserved. 0x000
0x10023
0x10025 15:8 Reserved. 0x00
0x10022
0x10023
0x10024
0x10025
3:0
7:0
7:0
7:0
M13_DS1_AIS_DETD[28:25]
M13_DS1_AIS_DETD[24:17]
M13_DS1_AIS_DETD[16:9]
M13_DS1_AIS_DETD[8:1]
These individual delta bits are set as the result of the
correspondi ng state bits M13_DS 1_AIS_DET[28 :1]
(Table 248) transitioning either from 0 to 1 or from 1
to 0. Delta bits can be pr og rammed to be eit her clear
on read (COR) or c lear on write (CO W), and the y are
not set to 1 again until the event reoccurs.
0x00
Address Bit Name Function Reset
Default
0x10026 15:4 Reserved. 0x000
0x10027
0x10029 15:8 Reserved. 0x00
0x10026
0x10027
0x10028
0x10029
3:0
7:0
7:0
7:0
M13_DS1_LB_DETD[28:25]
M13_DS1_LB_DETD[24:17]
M13_DS1_LB_DETD[16:9]
M13_DS1_LB_DETD[8:1]
These individual delta bits are set as the result of the
correspondin g s tate bits M13_DS 1_LB_DET[28:1]
(Table 249) transitioning either from 0 to 1 or From 1
to 0. Delta bit s can be programmed to be either clear
on read (COR ) or clear on write (COW), and they are
not s et to 1 again until the event r eoccurs.
0x00
Address Bit Name Function Reset
Default
0x1002F 15:7 Reserved. 0x000
6:0 M13_XC_DS2_
LOC[7:1] A logic 1 of M13_XC_DS2_LOCy bit indicates that loss o f
clock is detected on the DS2 clock input. 0x00
Address Bit Name Function Reset
Default
0x10030 15:7 Reserved. 0x000
6:0 M13_XC_DS2_
AIS_DET[7:1] The M13_XC_DS2_AIS_DETy bit is set high i f the input
XC_DS2 M23 DATAy is 0 for fewer than 5 clock cycles in each
of two consecutive 840 clock p eriods , And cleared if there are
more than four zeros in each of two consecutive 840- bit peri-
ods.
0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
210 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 240. M13_DS2_OOF_R, DS2 Out of Frame Status (RO)
Table 2 41. M13_DS2_LOF_R, DS 2 Loss of Frame Status (RO)
Table 242. M13_DS2_AIS_DE T_R, DS2 Alarm Indication Signal Detect Statu s (RO)
Table 243. M13_DS2_RAI_DET_R, DS2 Rem ote Alarm Indication Detect Status (RO)
Address Bit Name Function Reset
Default
0x10031 15:7 Reserved. 000000
000
6:0 M13_DS2_O OF[7: 1] This register cont ains th e st ate bits for the DS2 framers. A 1
indicates out-of-frame. 0x7F
Address Bit Name Function Reset
Default
0x10032 15:7 Reser ved.
6:0 M13_DS2_LOF [7:1] The M13_ DS2 _LOF y bit is set if M13 _ DS 2_O OFy (Table 240)
is high c ontinuously for 28 DS3 f rame pe riod s (approximately
3 ms). Onc e set, M13_DS 2_LOF y i s not cle ared until
M13_DS2_OOFy is continuously low for 28 DS3 frame peri-
ods. DS3 frame periods are not counted while M13_DS3_OOF
= 1 (Table 224).
0x00
Address Bit Name Function Reset
Default
0x10033 15:7 Reserved. 0x000
6:0 M13_DS2_AIS_
DET[7:1] The M13_DS 2_AIS_DETy bi t is se t high if the input to t he yth
M12 demultiplexer is logic 0 for fewer than 5 clock cy cles in
each of two consecutive 840 clock periods and cleared if there
are mor e than fou r zer o s in each of two con sec utiv e 840-bit
periods.
0x00
Address Bit Name Function Reset
Default
0x10034 15:7 Reserved. 0x000
6:0 M13_DS2_RAI_
DET[7:1] The M13_DS2_RAI_DETy bit changes state only after the X bit
in the DS1 mode (M13_DS1_E1Ny = 1 (Table 263)), or the
RAI bit in the E1 mode is received as the same value for four
consecutive DS2 frames. DS2 fra me periods are not counted
while M13_DS3_OOF = 1 (Table 224). In the DS1 mode,
M13_DS 2_RA I_DETy is set t o the inverse of the X b i t. In the
E1 mode, it is set equal to th e RAI bit.
0x00
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
211Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 244. M13_DS 2_LB_DET_R, DS2 Loopback Detect Status (RO)
Table 245. M13_DS 2_RSV_RCV_R, DS2 Receive Reserved Bit Delta Status (RO)
Table 246. M13_DS 2DMX_LOC_R, DS2 DeMUX Loss of Clock Status (RO)
Table 247. M13_DS1_LOC_R[14], DS1 Loss of Clock Status Registers (RO)
Address Bit Name Function Reset
Default
0x10035 15:7 Reserved. 0x000
6:0 M13_DS2_LB_
DET[7:1] In the M23 mode (M13_M23_CBP = 1 (Table 260)), the C bits
in each received DS3 M-sub frame are checked for loopback
requests. I f the third C bit differs fr om the first and second C
bits in the yth M-subframe for 5 successive DS3 frames,
M13_DS2_LB_DE Ty is set to 1. M13_D S2_LB _D ETy is
cleared when t he third C bit does not differ from the first t w o C
bits in subfram e y for 5 successive DS3 frames. In the C-bit
parity mode, M13_DS2_LB_DETy i s fixed at 0.
0x00
Address Bit Name Function Reset
Default
0x10036 15:7 Reserved. 0x000
6:0 M13_DS2_RSV_
RCV[7:1] The M13_DS2_RS V _RCVy bi t changes state only after the
reserve d bit in the E1 mod e (M13_DS1_E1Ny = 0) i s received
as the same value for 4 co ns ecutive DS2 frames. DS 2 frame
periods are not counted while M13_DS3_OOF = 1. It i s set
equal to the reserved bit.
0x00
Address Bit Name Function Reset
Default
0x10037 15:7 Reserved. 0x000
6:0 M13_DS2DMX_
LOC[7:1] A logic 1 of M13_DS2DMX_LOC y bit indicates that loss of
clock is detected on the DS2 clock input, XC _DS2DMXC LKy. 0x00
Address Bit Name Function Reset
Default
0x1003C
0x1003D
0x1003E
0x1003F
0x1003C
0x1003D
0x1003E
0x1003F
15:4
15:8
15:8
15:8
3:0
7:0
7:0
7:0
M13_DS1_LOC[28:25]
M13_DS1_LOC[24:17]
M13_DS1_LOC[16:9]
M13_DS1_LOC[8:1]
Reserved.
Reserved.
Reserved.
Reserved.
The M13 _DS1_LOCx bits indicate wh en loss of clo ck is
detect ed on a low-speed clock input, X C_DS1CLKx.
0x000
0x00
0x00
0x00
0x0
0x00
0x00
0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
212 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 248. M13_DS1_AIS_DET_R[1 4], DS 1 Ala rm I ndication Si gnal Detect Status Registers (RO)
Table 249. M13_DS1_L B_DET_R[14], DS 1 Lo opback Detect St atus Reg isters (RO)
Address Bit Name Function Reset
Default
0x10040
0x10041
0x10042
0x10043
0x10040
0x10041
0x10042
0x10043
15:4
15:8
15:8
15:8
3:0
7:0
7:0
7:0
M13_DS1_AIS_DET[28:25]
M13_DS1_AIS_DET[24:17]
M13_DS1_AIS_DET[16:9]
M13_DS1_AIS_DET[8:1]
Reserved.
Reserved.
Reserved.
Reserved.
The M13_DS1_A IS _DE Tx bits indicate when AIS is
detected on a low-speed data input, XC_DS1DATAx.
0x000
0x00
0x00
0x00
0x0
0x00
0x00
0x00
Address Bit Name Function Reset
Default
0x10044
0x10045
0x10046
0x10047
0x10044
0x10045
0x10046
0x10047
15:4
15:8
15:8
15:8
3:0
7:0
7:0
7:0
M13_DS1_LB_DET[28:25]
M13_DS1_LB_DET[24:17]
M13_DS1_LB_DET[16:9]
M13_DS1_LB_DET[8:1]
Reserved.
Reserved.
Reserved.
Reserved.
The M13_DS1_LB _DETx bits indicate when a loopback
request has been received through inversion of the third
C bit in rec eived DS2 fram es.
0x000
0x00
0x00
0x00
0x0
0x00
0x00
0x00
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
213Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 250. M13_DS1_F EAC_LB_DETD_R[14], DS1 Far-E nd Alarm and Contro l L oopback Detect Delta
Registers (RO)
Table 251. M13_DS1_FEAC_LB _DET_R[14], DS1 Far-End Alarm and Control L oopback Detect Status
Registers (RO)
A ddress Bit Name Functi on Reset
Default
0x10049
0x10049
0x10049
0x1004A
0x1004B
0x1004C
0x10049
0x1004A
0x1004B
0x1004C
15:8
7
6:4
15:8
15:8
15:8
3:0
7:0
7:0
7:0
M13_DS3_FLB_DETD
M13_DS1_FEAC_LB_DETD[28:25]
M13_DS1_FEAC_LB_DETD[24:17]
M13_DS1_FEAC_LB_DETD[16:9]
M13_DS1_FEAC_LB_DETD[8:1]
Reserved.
This d elta bit is set if M13_DS3_FLB_DET
(Table 251) changes state. It can be pro-
grammed to be either clear on read (COR) or
clear on write (COW), and it is not set to 1
again until another state transition occurs.
Reserved.
Reserved.
Reserved.
Reserved.
These individual delta bits are set as the
result of the corresponding state bits
M13_DS1_FEAC_LB_DET[28:1] (Table 251)
transitioning either from 0 to 1 or from 1 to 0.
Del ta bits c an be programmed to be either
clear on read (COR) or clear on write
(COW), and they are not set to 1 again until
the event reoc c urs.
0x00
0x0
000
0x00
0x00
0x00
0x0
0x00
0x00
0x00
Address Bit Name Function Reset
Default
0x1004D
0x1004D
0x1004D
0x1004E
0x1004F
0x10050
0x1004D
0x1004E
0x1004F
0x10050
15:8
7
6:4
15:8
15:8
15:8
3:0
7:0
7:0
7:0
M13_DS3_FLB_DET
M13_DS1_FEAC_LB_DET[28:25]
M13_DS1_FEAC_LB_DET[24:17]
M13_DS1_FEAC_LB_DET[16:9]
M13_DS1_FEAC_LB_DET[8:1]
Reserved.
When an FEAC l oopback activate codeword for
DS3 is received four consecutive times, the bit is
set high. Th e bit is cleared when a loopback deacti-
vate codeword is received four c ons ec ut ive times.
Reserved.
Reserved.
Reserved.
Reserved.
When an FEAC l oopback activate codeword for
DS1 is received four consecutive times, the appro-
priate bit(s) is set high. T he bit(s) is cleared when a
loopback deactiv ate codeword f or that channel(s) is
received four cons ecu tive times.
0x00
0
000
0x00
0x00
0x00
0x0
0x00
0x00
0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
214 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 252. M13_RFEAC_CODE_R, Receive Far-End Alarm and Control Code Status ( RO)
Table 253. M13_RDL_S TATUS, Receive Data-Link S tatus (RO)
Table 254. M13_RDL_DATA_ R, Receive Data-Link Data (RO)
Table 255. M13_RDL_FRAM E_SIZE_R, Receive Data-Link Frame Size (RO)
Address Bit Name Function Reset
Default
0x10051 15:6 Reserved. 000000
0000
5:0 M13_RFE AC_CODE[5:0] When the same codeword is received through the FEAC
channe l four consecutive times, the M 13 wil l set
M13_RF EAC_CODE [5:0] = x5x4x3x 2x1x 0, where the
received FEAC c odewo rd is 0x5x4x 3x 2x 1x 0 0 11111111,
and it is received r ight to left.
0x3F
Address Bit Name Function Reset
Default
0x10052 15:5 Reserved. 0x000
4 M13_RDL_FLAG This bit is high if the closing flag or an ab ort byte has been
received. 0
3 M13_ RDL_A BORT This bit i s high if the fram e was ended wit h an abort byte
rather than a closing flag . 0
2 M13_RDL_NOT_BYTE T his bit is set if the number of bits i n the frame (after removal
of stuff ed zeros) is not a multiple of 8. 0
1 M13_ RDL_OVFL Thi s bi t i s set if a t lea s t 1 byte of the frame was ov er written by
a byte from a s uc ceeding frame before being read. 0
0 M13_RDL_FCS_ERR This bit is set if the CRC-16 check fails and M13_RDL_FCS =
1 (Table 287). 0
Address Bit Name Function Reset
Default
0x10053 15:8 Reserved. 0x00
7:0 M13_RDL_DATA[7:0] Bytes received via the path maintenance data link are stored
in a 128-byte FIFO. They can be read out of t h e FIFO through
this register, M13_RDL_DATA_R. On reset, the FIFO is emp-
tied, and reading from this register returns an undetermined
value.
0xXX
Address Bit Name Function Reset
Default
0x10054 15:7 Reserved. 0x000
6:0 M13_RDL_FRAME_
SIZE[6:0] The number of bytes in the frame modulo-128 is in dicated by
this register . This is the number of bytes from the frame that
have b een written into the FIFO, not the number of byt es
remaining in the FIFO. All bytes bet ween the opening flag and
the FCS bytes are included (unless M13_RDL_FCS
(Table 287) is low , in which case the FCS b ytes are included in
the count).
0x00
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
215Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 256. M13_RHDLC_S TATUS_R, Receive High-Level Data-Link Control Status (RO)
Table 257. M13_DS2_F ORCE_OOF_R, DS 2 Force Out of Frame (One Shot R/W)
Table 258. M13_CO N TROL1, Control 1 (One Sh ot R/W )
Address Bit Name Function Reset
Default
0x10055 15:8 Reserved. 0x00
7:0 M13_RHDLC_
STATUS[7:0] This register provides information on the earliest HDLC frame
still in the FIFO . A value of 1 in bit 7 indicates that the closing
flag or an abort byte for the current frame has been received; a
1 in bit 6 indic ates the c urrent frame is cor rupted; bits 5 to 1
indicate the size of t he current frame modulo-32; and bit 0 is
set to 1 i f there are l ess than 32 by tes of th e earl iest frame left
in the FIFO.
0x00
Address Bit Name Function Reset
Default
0x10059 15:7 Reserved. 0x000
6:0 M13_DS2_FORCE_
OOF[7:1] When M13_DS 2_FORCE_OOFy transitions from 0 to 1, the
DS2 framer in M12 demultiplexer Y is forced out of frame. 0x00
Address Bit Name Function Reset
Default
0x1005A 15:3 Reserved. 0x000
2 M13_RDL_FRM_CLR I f M13_RDL_FRM_CLR is set to 1, the portion of the earli-
est frame still in the receive HDLC FIFO will be deleted.
The user must reset M13_R DL_FRM_CLR before another
frame can be deleted. If M13_RDL_FRM_CLR is set bef ore
the closing flag of the frame currently being read from the
FIFO has been received, all subsequent bytes of the frame
will be discarde d without being written into the FIFO.
0
1 M13_DS 3_FORCE_OOF When this bit transitions fro m 0 to 1, the DS 3 framer is
forced ou t -of-frame. 0
0 M1 3_BIPOL_E RR A single bipolar violation error is transmi tted each time this
bit transitions from 0 to 1. 0
Table 259. M13_CONTROL2, Control 2 (R/W)
Address Bit Name Function Reset
Default
0x1005C 15:8 Reserved. 0x00
7 M13_BP V_ IN If this bit is 1, the SMP R_RDS3NEG _B PV input is used as an
external B3ZS bipolar violation indication instead of a negativ e
input pu lse.
0
6 M13_LOO P_TIME T he M23 multiplexer uses the SMPR_TDS3CLK if this bit is 0,
otherwise, the SM PR_RD S3CL K is used. 0
5 M13_LOOP_T_TO_R S et ti ng this bit to 1 causes the M23 MUX output to be looped
back to the M 23 DEMUX input. 0
4 M13 _LOOP_R _TO_T S et ting this bit to 1 causes the received DS3 input to be
looped back to the transmit DS3 output. 0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
11 M13/M23 MUX/DeMUX Registers (continued)
216 Agere Sy stem s Inc.
Table 260. M 13_CONTROL3, Control 3 (R/W)
Table 261. M13_SP _OFFSET_R, Sync Pu ls e Offset (R/W)
Table 262. M13_SP _D_OFFSET_ R , Sync Pulse D Offset (R/W)
0x1005C 3 M13_AUTO_AIS_LOF If this bit is 1, the M13 will automatically insert AIS in all DS2
outputs of the M23 demultiplexer when M 13_DS3_LOF = 1
(Table 224), and it will automatically insert AIS in all DS1 or E1
outputs of M12 demultiplexer
Y
when M13_DS2_LOFy = 1
(Table 241).
1
2 M13_AUTO_AIS_OOF If this bit is 1, the M13 will automatically insert AIS in all DS2
outputs of the M23 demultiplexer when M 13_DS3_OOF = 1
(Table 224), and it will automatically insert AIS in all DS1 or E1
outputs of M12 demultiplexer Y when M13_DS2_OOFy = 1
(Table 240).
1
1 M13_AUTO_FLB If this bit Is 1, the device will automatically loop the received
DS3 input to the transmit DS3 output when
M13_DS3_FLB_DET = 1 (Table 251), and it will automatically
select DS1 /E1 output
x
from an M12 demultiplexer in place of
the DS1/E1 output from input selector
x
when
M13_ DS1 _FEAC_LB_DETx = 1 (Table 251).
0
0 M13_A UTO_LB When M13_A UTO_LB = 1, loopback of DS1 channel x is ac ti-
vated if M13_DS1_LB_DETx = 1 (Table 249). 0
Address Bit Name Function Reset
Default
0x1005D 15:2 Reserved. 0x0000
1 M13_M23_CBP If th is Bit Is 1, the M13 Operates in the M23 mo de. Other-
wis e, it is in t he C-Bit Parity Mode. 0
0 M13_BIPOLAR The M13 P erforms B3ZS Encoding And Decoding if this
Bit is High. 0
Address Bit Name Function Reset
Default
0x1005E 15:8 Reserved. 0x00
7:0 M13_NSMI_SP_
OFFSET[7:0] The Register De termines the Offset Value (0255) for the
Transmit NSMI sync Pulse ahe ad of the M 1 Bit In a DS 3
Frame.
0x00
Address Bit Name Function Reset
Default
0x1005F 15:8 Reserved. 0x00
7:0 M13_NSMI_SP_D_
OFFSET[7:0] The Register De termines the Offset Value (0255) for the
Receive NSM I Sync Pulse ahead of the M1 Bit In a DS3
Frame.
0x00
Table 259. M 13_CONTROL2, Control 2 (R/W) (continued)
Address Bit Name Function Reset
Default
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
217Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 263. M13_M12_MUX_CONTROL1_R[17], M12 MU X CONTROL 1 Re gisters [17] (R/W)
Table 264. M13_M12_MUX_CONTROL2_R[17], M12 MU X CONTROL 2 Re gisters [17] (R/W)
Table 265. M13_DS2_RAI_SEND_R, DS2 Remot e Alarm Indication Send (R/W)
Table 266. M13_DS2_RSV _S E ND_R, DS2 Reserve Bit Send (R/W)
Address Bit Name Function Reset
Default
0x10060
0x10062
0x10064
0x10066
0x10068
0x1006A
0x1006C
15:8 Reserved. 0x00
7:6 M13_M12_
MODE[17][1:0] 00 = The M12 M U X Operates as the First Sta ge Of M 13
Multiplexing. Th e DS1/E1 clocks are inputs to the block.
01 = The M12 MUX oper ates as an independent mul tiple xer .
The DS1/E1 clocks are inputs to the block.
10 = The M12 MUX oper ates as an independent mul tiple xer .
The DS1/E1 clocks are output s from the block.
11 = The M12 is idle.
00
5 M13_MUXCH2_4_
INV[17] If these bits are 1, the second and fourth DS1 inputs to the
M12 multiple x ers are inverted before the y are MUXed into DS2
signals.
1
4 M13_DS1_E1N[17] If these bits are 1, the M12 m ultiplexers operate on DS1
inputs; otherwise, they operate on E1 inputs. 1
3:0 M13_DS1_LB_
REQ[1:28] If these bits are 1, t he t hird C bit for DS1 or E1 channels is
inverted in the generated DS2 frames to indicate loopback
requests.
0x0
Address Bit Name Function Reset
Default
0x10061
0x10063
0x10065
0x10067
0x10069
0x1006B
0x1006D
15:8 Reserved. 0x00
7:4 M13_SEL_DS1_
LB[1:28] A 1 in the se bits will f orce D eMUXed DS1 o r E1 signals to b e
looped back. 0x0
3:0 M13_RDS1_
EDGE[1:28] A 1 in these bits me ans that the received D S1/E1 signals are
retimed by the rising edge of the associated clocks; a l ogic 0
mea ns that the d ata is re timed by the f alling edge.
0x0
Address Bit Name Function Reset
Default
0x1006E 15:7 Reserved. 0x000
6:0 M13_DS2_RAI_
SEND[7:1] The Remote Al arm Indication is Acti vated if These Bits are
Set t o 1. 0x00
Address Bit Name Function Reset
Default
0x1006F 15:7 Reserved. 0x000
6:0 M13_DS2_RSV_
SEND[7:1] In the E1 Mode, the Reserved Bit Of DS2 is set to the V alue
of These Bits. 0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
218 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 267. M13_DS2_MPINV_R, DS2 M Frame Alignment or Parity Error (R/W)
Table 268. M13_DS2_FINV_R, DS2 Frame Error (R/W)
Table 269. M13_DS2_P_BER_R, Parity Bit Error Rate (R/W)
Table 270. M13_DS2M 12_EDGE_R , DS2 M12 E dg e (R/W)
Table 271. M13_DS2_F ORCE_AIS_R, DS2 Force Alarm Indication Signal (R/W)
Address Bit Name Function Reset
Default
0x10070 15:7 Reserved. 0x000
6:0 M13_DS2_
MPINV[7:1] These Bits Determine whether the DS2 M frame Alignment
Signals in the DS1 Mo de, or the DS2 Parity Bits In the E1
Mode are Generated in Error.
0x00
Address Bit Name Function Reset
Default
0x10071 15:7 Reserved. 0x000
6:0 M13_DS2_FINV[7:1] These Bits Determine whether the DS2 M-Subframe Align-
ment Signals in the DS1 Mode , or the Frame Alignment
Signal in the E1 Mode are Generated in Error.
0x00
Address Bit Name Function Reset
Default
0x10072 15:7 Reserved. 0x000
6:0 M13_DS2_P_
BER[7:1] The DS2 Pa rity Bits in the E1 Mo de Immediately Following
Each 0 to 1 Transition of the Input SMPR_BER_I NSRT
(Table 65) are Inverted if these Register Bits are Set to 1.
0x00
Address Bit Name Function Reset
Default
0x10073 15:7 Reserved. 0x000
6:0 M13_DS2M12_
EDGE[7:1] A 1 in these Bits Means that th e Output DS2 Signals From
M12 MUXs are Retimed by the Rising Edge o f the Assoc i-
ated Clocks; A 0 Means that the Data is Retimed by the
Fal ling Edge.
0x00
Address Bit Name Function Reset
Default
0x10074 15:7 Reserved. 0x000
6:0 M13_DS2_FORCE_
AIS[7:1] A 1 in these Bits Means that the Output DS2 Signals From
M12 MUXs are Forced to be A IS (All Ones). 0x00
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
219Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 272. M13_M12_DE MUX_CONTROL1_R[17], M12 DeMUX Control 1 Registers [17] (R/W )
Table 273. M13_M12_DE MUX_CONTROL2_R[17], M12 DeMUX Control 2 Registers [17] (R/W )
Table 274. M13_M12_DE MUX_CONT ROL3, DS2 M12 DeMUX Con t rol 3 (R/W)
Address Bit Name Function Reset
Default
0x1007B
0x1007D
0x1007F
0x10081
0x10083
0x10085
0x10087
15:8 Reserved. 0x00
7:6 M13_M12DMX_
MODE[17][1:0] 00 = The M12 DeMUX Recei ves DS2 Signal From the M23
DeMUX.
01 = The M12 deMUX operates as a n independ ent demulti-
plexer.
10 /11 = T he M12 deMUX is idle and outputs a re held low.
00
5 M13_DEMUXCH2_
4_INV[17] The Second and Fourth DS1 Outputs from the M12 Demul-
tip lexers are I n verted if these Bits are 1. 1
4 M13_OUT_
TYPE[17] Each DS1/E1 Output Selector Number, x, can be
Expressed as Either 4y 3, 4y 2, 4y 1, or 4y, where y
Ranges From 1 to 7. For a given y, the 4 selectors in the
g r o u p outp u t DS1 si g nal s if M 13_ O UT_TYPEy = 1, or E1 sig-
nals if M13_OUT_T YPEy = 0.
1
3:0 M13_TDS1_
EDGE[28:1] The Tra nsmit DS1/E 1 Signals ar e Retimed by the Rising
Edge of the Associated Clocks if these Bits are Set High;
Otherwise, the Data is Retimed B y the Falling Edge.
0xF
Address Bit Name Function Reset
Default
0x1007C
0x1007E
0x10080
0x10082
0x10084
0x10086
0x10088
15:4 Reserved. 0x000
3:0 M13_DS1_OUT_
AIS[28:1] A logic 1 of these bits will cause the corresponding DS1 output
all ones AIS. 0x0
Address Bit Name Function Reset
Default
0x10089 15:2 Reserved. 0x0000
1 M13_DS2_MODE This Bit Controls the DS2 Framing Algorithm I n the DS1
Mo de O nly. Out of frame is declared if the F bits co ntain two
errors in 4 bits if M 13_D S2_ MODE = 0, or at leas t 1 F-bit error
in four co ns ecutive M-subframe pairs if M13_DS2_MODE = 1 .
0
0 M13_DS2_FERR_
MODE This Bit Controls Frame Error Cou nti ng for the M12
Demulti pl exers in the E1 Mode Onl y. If this bit is 0, the frame
erro r counters incre ment for each frame alignment signal bit
error. Otherwise, the counter increments once for each frame
alignment signal that contains at l east 1 bit erro r .
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
220 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 275. M13_DMDS2_EDGE_R, D S2 Edg e for M12 DeMU X (R/W)
Table 276. M13_DS3_CONTROL1, DS3 Control 1 (R/W)
Address Bit Name Function Reset
Default
0x1008A 15:7 Reserved. 0x000
6:0 M13_DMDS2_
EDGE[7:1] A logic 1 of these bits means that the input DS2 signals to M12
demultiplexers are retimed by the rising edge of the associated
clocks; a lo gic 0 means tha t the data is retimed by the falling
edge.
0x00
Address Bit Name Function Reset
Default
0x10092 15:8 Reserved. 0x00
7 M13_DS3_FINV For t esting purposes , this bit is high to allo w the F bit to be
generated with errors. 0
6 M13_DS3_MINV For testing purposes, this bit is high to allow the M bit to
be generated with errors. 0
5 M13_DS3_PINV For testing purposes, this bit is high to allow the P Bit to
be generated with errors. 0
4 M13_DS3_FORCE_AI S This bit causes the M 13 to generate DS3 AIS in place of
the trans mit DS3 s ignal from the M23 multiplexer. 0
3 M 13_DS3_FORCE_IDLE This bit causes the M13 to ge nerate DS3 idle (unless
M13_DS3_FORCE_AIS (Table 276) is also s et) in place
of the transmit DS3 signal from the M23 multiplexer.
0
2 M13_TDS3_FO RCE_ALL1 This bit c aus es the M 13 to generate unframed all ones
DS3 output. 0
1 M 13_M23CLK _MODE If thi s bit is 1, DS2 clocks associated with DS2 signals
being MUXed into DS3 are outputs from the block; other-
wise, they are inputs to the b lock.
0
0Reserved. 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
221Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 277. M13_DS3_CONTROL2, DS3 Control 2 (R/W)
Table 278. M13_TFEAC_CONTROL, Tx FEAC Control (R/W)
Address Bit Name Function Reset
Default
0x10093 15:7 Reserved. 0x000
6 M23_STUFF_MODE A Logic 0 on this Bit Will Cause the M23 St uffing to be
Determined by the External Stuff Request; Otherwise,
Fixed Stuffing i s Used.
0
5 M13_NSMI_MODE A L ogic 1 of this Bit wi ll Enable M 1 3 to Re ceive and O ut -
put Ds3 Payload Through a Serial Link. 0
4 M13_DS3_P_BER Th e P Bits a nd, in CB P Mod e, th e C P Bit s in the DS3
Frame Immediately Following Eac h 0 to 1 Transition of the
In put SMPR_ BER_INSERT (Table 65), are Inverted if this
Bit is Set to 1.
0
3 M13_CBIT2_ACT This Bit is Used Only in the C-Bit Parity Mode. In this
mode, i f it i s 0, the second c-bit of each ds3 frame, c2, I s Set
To 1. Otherwise, the transmit value of C2 is input through pin
TCBDATA (E12).
0
2 M13_UNUSED_ACT This Bit is Used Only in the C-Bit Parity Mode. In this
mode, if it i s 0, the unus ed C b its of each DS3 frame (t he
fourth through sixth and the s ixteenth through twenty-f irs t) are
set to 1. Otherw ise, the transmit values of these bits ar e input
through pin TCBDATA (E12).
0
1 M13_DS3_RAI_SEND The Transmitted DS3 X Bits are Set to t he Inverse of this
Bit During Normal Transmission. 0
0 M13_FEBE_ERR This Bit is Used to For ce Errors i n the Transm itted DS3
FEBE Indic ation. If the Bit is Set, al l DS3 Frames are
Transmitted with the FEBE Bit s Set t o 000.
0
Address Bit Name Function Reset
Default
0x10094 15:8 Reserved. 0x00
7:6 M13_TFEAC_CTL[1:0] The User Can Provision the M13 to Transmit Continuous
One s by Sett ing M13_TF EAC_C TL to 0 0 . 0x0
5:0 M13_TFEAC_CODE[5:0] F EAC Signals. TFEAC sign als are transmitted continuously
by setting M13_TFE AC_CTL to 01, and M13_TFEAC_CODE
= x5x4x3x2x1x0, where x5x4x3x2x1x0 Is the appropriate
value for the ala rm or status codeword.
In order to activate a loopback, the user may set
M13_TF EAC_CTL = 11, A nd M13_TFEAC_CODE =
x5x4x3x2x1x0, where x5x4x3x2x1x0 Is the Appropriate value
for the loopback codeword. The M13 will then transmit 10 rep-
etitions of the activate codeword, 0 000111 0 11111111, fo l-
lowed by 10 repetitions o f 0 x5x4x3x2x 1x0 0 11111111. A fter
transmitting this 40 octet sequence , it wi ll set
M13_TFEAC_DONE (Table 217) to 1.
In order to deactivate a loopback, the user may set
M13_TF EAC_CTL = 10, and M13_TFEAC_CODE =
x5x4x3x2x1x0, where x5x4x3x2x1x0 is the appropri ate value
for the loopback codeword. The M13 will then transmit 10 rep-
etitions of t he deactivate c ode word, 0 011100 0 11111111, fol-
lowed by 10 repetitions o f 0 x5x4x3x2x 1x0 0 11111111. A fter
transmitting this 40 octet sequence , it wi ll set
M13_TFEAC_DONE to 1.
0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
222 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 279. M13_THDLC_CONTROL1, Tx HDLC Control 1 (R/W)
Table 280. M13_THDLC_CONTROL2, Tx HDLC Control 2 (R/W)
Table 281. M13_DS2_LB_REQ_R, DS2 Loopback Request (R/W)
Address Bit Name Function Reset
Default
0x10095 15:6 Reserved. 0x000
5 M13_TDL_BUF1_END If this Bit is 0, a ll By tes from H DLC Buffer 1 a nd at Least
One Byte from HDLC Buffer 0 are Transmitted. If it is 1,
bytes from buffer 1 a re transmitte d sequent ially up to and
including the byt e s et by M13_TDL_BYTE_END[5:0]
(Table 280).
0
4 M13_TDL_BUF0_END If this Bit is 0, a ll By tes from H DLC Buffer 0 a nd at Least
One Byte from HDLC Buffer 1 are Transmitted. If it is 1,
bytes from buffer 0 a re transmitte d sequent ially up to and
including the byt e s et by M13_TDL_BYTE_END[5:0].
0
3 M13_TDL_ACT If the Data Link is not Used, the Us er Should set
M13_TDL_A CT to 0, Which Causes all Ones to be Trans-
mitted. Ot herwise, this bi t should be set to 1.
0
2 M13_TDL_NTRNL If M13_TDL_NTRN L = 0, the Data Transmitted on the
Data Link Comes Directly from the M13 Input Pin TDL-
DATA (E8); Otherwi se (M13_TDL_NTRNL = 1), the Data
Link is Contr o lled b y the Inter nal HDLC Transmit ter. This
bit is valid only when M13_TDL_ACT = 1 (Table 279).
0
1 M13_TDL_NTRNL_ACT Once M13_TDL_NTRNL _ACT is Set to 1, the HDL C
Transmitter Begins Transmitting the First Byte of the
First Data Buffer Following the Completion of the Next
Flag Byte. The user ma y abort the transmission of an HDLC
frame b y clearing M13_TDL_NTRNL_ACT to 0 prior to com-
pleting transmission of the last byte from the data buffers. If
so, t he HDLC c ontroller will stop t ransmission from the buff-
ers and send an abort byte (0 1111111). The abort byte will
then be followed by flag bytes until M13_TDL_NTRNL_ACT
is again set to 1, starting transmission of a new frame .
0
0 M13_TDL_FCS If M13_TDL_FCS = 1, the HDLC Controller Appends the
Two-Byte ITU-T F CS with the Necessary Zero Stuffing
Be fore Se ndin g t he Closing Fl ag; Ot he rwi se, no FCS
Bytes will b e Trans mitted.
1
Address Bit Name Function Reset
Default
0x10096 15:6 Reserved. 0x000
5:0 M13_TDL_BYTE_
END[5:0] These Bits Define the Position of the Last Byte to be
Transmitted from the Buff er. 0x00
Address Bit Name Function Reset
Default
0x10097 15:7 Reserved. 0x000
6:0 M13_DS2_LB_
REQ[7:1] I f M1 3_DS2_ L B_REQy = 1, the Third C Bit in the yth DS3
M-S ubframe i s Transmitte d as the Inverse o f the First Two
C Bits (Whi ch Indicates a Loopback Request for DS2
Channel y).
0x00
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
223Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 282. M13_SEL_DS2_LB_R, Select DS2 Loopbac k ( R/W)
Table 283. M13_RDS2_EDGE_R[12], Rx DS2 Edge Registers [12](R/W)
Table 284. M13_DS2_OUT_IDLE_R, DS2 Output Idle (R/W)
Table 285. M13_DS2_O UT_AIS_R, DS2 Output Alarm Indication Si gn al (R/W)
Address Bit Name Function Reset
Default
0x10098 15:7 Reserved. 0x000
6:0 M13_SEL_DS2_
LB[7:1] If M13_SEL_DS2_LBy = 1, the DS2 S ig nal from Time Slot y
in the Received DS3 Sign a l is Loope d Back into Time
Slot y of th e Tran sm itted DS3 Signal.
0x00
Address Bit Name Function Reset
Default
0x10099 15:7 Reserved. 0x000
6:0 M13_RDS2_
EDGE[7:1] A logic 1 of these Bits Means that the Received DS2 Sig-
nals are Retimed by the Rising Edge of the Associated
Clocks. A logic 0 me ans that the data is ret imed by the falling
edge. When used in the demand clocking mode of the M23
mapping, M13_ RDS2_EDGE[7:1] = 1 shoul d be set if the
delay from the output clock to the incoming data (the maximum
should be less than 8 STS-1 clock cycles) i s less than 4 STS-1
clock cycles; otherwise, M13_RDS2_EDGE[7:1] = 0 should be
used.
0x00
0x1009A 15:7 Reserved. 0x000
6:0 M13_DS2ALCO_
RTM_EDGE[7:1] In the Demand Clock ing Mode of the M23 Ma pping, this
Register Provides an Extra Clock Edge Selection Capa bi l-
ity, in Addition to M13_RDS2_EDGE[7:1], for Retiming
Input D S2 Data . It should normally be set to logic 1 (defa ult).
A logi c 0 is suggested on ly to be used with
M1 3_ RD S 2_ED G E[7:1] = 0 when neces sary.
0x7F
Address Bit Name Function Reset
Default
0x1009E 15:7 Reserved. 0x000
6:0 M13_DS2_OUT_
IDLE[7:1] If M13_DS2_OUT _IDLEy = 1 , the Output from DS2 Output
Selection Block y is Held Low. 0x00
Address Bit Name Function Reset
Default
0x1009F 15:7 Reserved. 0x000
6:0 M13_DS2_OUT_
AIS[7:1] If M13_DS2_OUT _IDLEy = 0 (Table 284), a Logic 1 of this
Bit Ca us es D S2 AIS to be Output From the DS2 Ou tput
Selector y; Otherwise, the DS2 Sign al From Time Sl ot y in
the Received DS3 Signal will be Output.
0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
224 Agere Sy stem s Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 286. M13_TDS2_EDGE_R, Tx DS2 Edge (R/W)
Table 287. M13_RDL_CONTROL, RDL Control (R/W)
Table 288. M13_PM_CNT_ACT_R, Performance Counter (RO)
Table 289. M13_DS3_F ERR_CNT_R[12], DS3 F-Bit Error Registers (RO)
Address Bit Name Function Reset
Default
0x100A0 15:7 Reserved. 000000
000
6:0 M13_TDS2_EDGE[7:1] A logic 1 of these Bits Means that the Transmit DS2 Sig-
nals are Retimed by t he Rising Edge of the A ssoc iated
Clocks. A logic 0 means that the data is retimed by the falling
edge.
0x7F
Address Bit Name Function Reset
Default
0x100A1 15:5 Reserved. 0x000
4:3 M13 _ RDL_FI L L [1:0] 00 = se ts the receive HDL C FIFO fill leve l to 16 bytes.
01 = set s th e rece ive HD L C FIFO fill leve l to 32 bytes.
10 = set s th e rece ive HD L C FIFO fill leve l to 64 bytes.
11 = set s th e rece ive HD L C FIFO fill leve l to 96 bytes.
The M13_RDL_F IFO_AF (Table 225) bit i s se t if the buffer
reaches t he fill level.
00
2 M13_RDL_FCS If M13_RDL_FCS = 1, the FCS Bytes will be Checked at
HDLC Receiver. Otherwise, the FCS is not che cked and the
last 2 bytes of the HDLC frame are writ ten into the FIFO.
1
1 M13_DS3_MODE This Bit Controls the DS3 Framing Algorithm. Out-of-frame is
declared if the F bits contain 3 errors in 16 bits if
M13_DS3_M ODE = 0, or at least 1 F-bit error in fo ur cons ecu-
tive M-subframes if M13_DS3 _MODE = 1.
0
0 M13_RDS3_EDGE A logic 1 of t hi s Bit Means that the Received DS3 Data is
Retimed by the Rising Edge of the Associated Clock. A
logic 0 means the d ata is retimed by the falling edge.
0
Address Bit Name Function Reset
Default
0x100A5 15:1 Reserved. 0x0000
0 M13_PM_CNT_ACT This Bit Returns a 0 When Read if all Perform ance
Counter Values are 0; Otherwise, its Set to 1. 0
Address Bit Name Function Reset
Default
0x100A6 15:4 Reserved. 0x000
0x100A7 15:8 Reserved. 0x00
0x100A6
0x100A7 3:0
7:0 M13_DS3_FERR_CNT[11:8]
M13_DS3_FERR_CNT[7:0] This Register Holds the Results fro m a Counter
th at Increments each T i me an Error is Dete cted in
Either a DS3 F Bit, or M Bit.
0x0
0x00
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
225Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 290. M13_DS3_F EBE_CNT_R[12], DS3 Far-End Bl ock Error Registers (RO)
Table 291. M13_DS3_CPE RR_CNT_R[12], DS3 C-Bit Parity Error Registe rs (RO)
Table 292. M13_DS3_PE RR_CNT_R[12], DS3 P-Bit Error Registers (RO)
Address Bit Name Function Reset
Default
0x100A8 15:6 Reserved. 0x000
0x100A9 15:8 Reserved. 0x00
0x100A8
0x100A9 5:0
7:0 M13_DS3_FEBE_CNT[13:8]
M13_DS3_FEBE_CNT[7:0] This Register Holds the Results from a Counter
that Accumulates FEBE Error I ndications (1 Error
Indica tion for each DS3 Frame wi th at Least One
FE BE Bit Equal to Z ero ) .
0x00
0x00
Address Bit Name Function Reset
Default
0x100AA 15:6 Reserved. 0x000
0x100AB 15:8 Reserved. 0x00
0x100AA
0x100AB 5:0
7:0 M13_DS3_CPERR_CNT[13:8]
M13_DS3_CPERR_CNT[7:0] This Register is Used Only in the C -B it Pari ty
Mode. It indicates the number of fr ames with two or
more C-bit parity errors.
0x00
0x00
Address Bit Name Function Reset
Default
0x100AC 15:6 Reserved. 0x000
0x100AD 15:8 Reserved. 0x00
0x100AC
0x100AD 5:0
7:0 M13_DS3_PERR_CNT[13:8]
M13_DS3_PERR_CNT[7:0] This Register Indicates the Numb er of Frames
with at Least One P Bit that Disagrees with the
Parity of the Previ ous Fram e.
0x00
0x00
Table 293. M13_DS2_PE RR_CNT[71]_R[12], P-Bit Error Counter Status Registers (RO)
Address Bit Name Function Reset
Default
0x100B2
0x100B3
0x100B4
0x100B5
0x100B6
0x100B7
0x100B8
0x100B9
0x100BA
0x100BB
0x100BC
0x100BD
0x100BE
0x100BF
15:5
15:8
15:5
15:8
15:5
15:8
15:5
15:8
15:5
15:8
15:5
15:8
15:5
15:8
Reserved. 0x000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
11 M13/M23 MUX/DeMUX Registers (continued)
226 Agere Sy stem s Inc.
Table 294. M13_DS2_F ERR_CNT[71]_R, F-Bit Error Coun ter Statu s Registers (RO)
Table 295. M13_BPV_CNT_ R[13], Bipolar Violation Counter Status Registers (RO)
0x100B2
0x100B3 4:0
7:0 M13_DS2_PERR_CNT7[12:8]
M13_DS2_PERR_CNT7[7:0] These Register s are Used by M12 Demulti-
plexers that Operate i n the G.747 (E1)
mode. They indicate the number of received
DS2 frames with P-bit errors.
0x00
0x00
0x100B4
0x100B5 4:0
7:0 M13_DS2_PERR_CNT6[12:8]
M13_DS2_PERR_CNT6[7:0] 0x00
0x00
0x100B6
0x100B7 4:0
7:0 M13_DS2_PERR_CNT5[12:8]
M13_DS2_PERR_CNT5[7:0] 0x00
0x00
0x100B8
0x100B9 4:0
7:0 M13_DS2_PERR_CNT4[12:8]
M13_DS2_PERR_CNT4[7:0] 0x00
0x00
0x100BA
0x100BB 4:0
7:0 M13_DS2_PERR_CNT3[12:8]
M13_DS2_PERR_CNT3[7:0] 0x00
0x00
0x100BC
0x100BD 4:0
7:0 M13_DS2_PERR_CNT2[12:8]
M13_DS2_PERR_CNT2[7:0] 0x00
0x00
0x100BE
0x100BF 4:0
7:0 M13_DS2_PERR_CNT1[12:8]
M13_DS2_PERR_CNT1[7:0] 0x00
0x00
Address Bit Name Function Reset
Default
0x100C6
0x100CC
15:8 Reserved. 0x00
0x100C6
0x100CC
7:0 M13_DS2_FERR_CNT[71][7:0] These Registers Hold the Results From DS2
Frame Alignment Signal Err or Counters. In t he
DS1 mode, these counters in crement each time
an error is detected in either an F bit or M bit. In
the E1 mode, the cou nters increment either for
eac h frame alignment signal bit error
(if M13_DS2_FERR_MODE (Table 274) is 0), or
onc e for each frame alignment signal that con -
tains at le ast one bit error
(if M13_DS2_FERR_MODE = 1).
0x00
Address Bit Name Function Reset
Default
0x100CD
0x100CF
15:8 Reserved. 0x00
0x100CD
0x100CF
7:0 M13_BPV_CNT[23:0] This Register is Only Used In the DS3 Bipolar
Mode. It holds the results from a counter that incre-
ments each t im e a received B3ZS bipolar cod ing
violat ion is detected.
0x00
Table 293. M13_DS2_PE RR_CNT[71]_R[12], P-Bit Error Cou nter S tatus Registers (RO) (continued)
Address Bit Name Function Reset
Default
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
227Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 296. M13_EXZ_CNT_R[13], Bipolar Violation Counter Status Register s (RO)
Table 297. M13_TDL_BUFFE R_R, Tx Data-Link Buffer Control (R/W)
Table 298. M13_TDL_0DATA_R[063], Tx Data for Path Maintenance Data-Link Buffer 0 Registers
(64 Bytes x 8 Bits) (R/W)
Table 299. M13_TDL_1DATA_R[063], Tx Data for Path Maintenance Data-Link Buffer 1 Registers
(64 Bytes x 8 Bits) (R/W)
Address Bit Name Function Reset
Default
0x100D0
0x100D2
15:8 Reserved. 0x00
0x100D0
0x100D2
7:0 M13_EXZ_CNT[23:0] Thi s Register is only Used in the DS3 Bipolar Mod e. It
holds the results f rom a counter t hat inc re ments each time an
excessive zeros stri ng is dete cted.
0x00
Address Bit Name Function Reset
Default
0x100FF 15:1 Reserved. 0x0000
0 M13_TDL_BUFFER If this Bit is 0, Data Written to Registers
M13_TDL_0DATA_R[063] Address 0x101000x1013F
(Table 297) is Stored in the Pat h Maintenance Data-Link
Buffer 0. Otherwise, the data is wri tten to buf fer 1.
0
Address Bit Name Function Reset
Default
0x10100
0x1013F
15:8 Reserved. 0x00
0x10100
0x1013F
7:0 M13_TDL_
0DATA[063][7:0] This 64-Byte Buffer for the Transmit Path Maintenance
Data Link is Accessible whe n M13_TDL_BUFFER = 0
(Table 297). On reset, reading from these registers retur ns an
undetermined value.
0xXX
Address Bit Name Function Reset
Default
0x10100
0x1013F
15:8 Reserved. 0x00
0x10100
0x1013F
7:0 M13_TDL_
1DATA[063][7:0] This 64-Byte Buffer for the Transmit Path Maintenance
Data Link is Accessible whe n M13_TDL_BUFFER = 1. On
reset, reading from these registers ret urns an undetermined
value.
0xXX
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
228Lucent Technologies Inc.
11 M13/M23 MUX/DeM UX Registers (continued)
11.2 M1 3 Register Ma p
Table 300. Register Address Map
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Sym bol Bits [15:8] Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block-level StatusRO
0x10000 M13_ID_R M13_ID[7:0]
0x10001 M13_VERSION_R M13_VERSION[2:0]
0x10002
0x10003
DS3 Deltas, Summary Deltas, FEAC, a nd DL InterruptsRO
0x10004 M13_DELTA1 M13_RDL_IDLED M13_DS3_LOFD M13_DS3_OOFD M13_DS3_C1_DETD M13_DS3_RAI_DETD M13_DS3_AISPAT_DETD M13_DS3_IDLEPAT_DETD M13_DS3_CBZ_DETD
0x10005 M13_DELTA2 M13_DS1_LB_SD M13_DS1_AIS_SD M13_DS1_LOC_SD M13_RDS3_SEFD M13_RDS3_ALL1_DETD M13_RDS3_LOSD M13_TDS3_LOCD M13_RDS3_LOCD
0x10006 M13_DELTA3 M13_DS2_RSV_SD M13_DS2_LB_SD M13_DS2_RAI_SD M13_DS2_AIS_SD M13_DS2_LOF_SD M13_DS2_OOF_SD M13_XC_DS2_AIS_SD M13_XC_DS2_LOC_SD
0x10007 M13_DELTA4 M13_TFEAC_DONE M13_TDL_DONE M13_TDL_BUF1_INT M13_TDL_BUF0_INT M13_RDL_FIFO_AFD M13_RDL_FRM_INT M13_RFEAC_ALM_INT M13_RFEAC_LB_INT
0x10008 M13_DELTA5 M13_DS2DMX_LOC_SD M13_RDL_FIFO_UFD
0x10009
Interrup t MasksR/W
0x1000A M13_MASK1 M13_RDL_IDLEM M13_DS3_LOFM M13_DS3_OOFM M13_DS3_C1_DETM M13_DS3_RAI_DETM M13_DS3_AISPAT_DETM M13_DS3_IDLEPAT_DETM M13_DS3_CBZ_DETM
0x1000B M13_MASK2 M13_DS1_LB_SM M13_DS1_AIS_SM M13_DS1_LOC_SM M13_RDS3_SEFM M13_RDS3_ALL1_DETM M13_RDS3_LOSM M13_TDS3_LOCM M13_RDS3_LOCM
0x1000C M13_MASK3 M13_DS2_RSV_SM M13_DS2_LB_SM M13_DS2_RAI_SM M13_DS2_AIS_SM M13_DS2_LOF_SM M13_DS2_OOF_SM M13_XC_DS2_AIS_SM M13_XC_DS2_LOC_SM
0x1000D M13_MASK4 M13_TFEAC_DONEM M13_TDL_DONEM M13_TDL_BUF1_INTM M13_TDL_BUF0_INTM M13_RDL_FIFO_AFM M13_RDL_FRM_INTM M13_RFEAC_ALM_INTM M13_RFEAC_LB_INTM
0x1000E M13_MASK5 M13_DS2DMX_LOC_SM M13_RDL_FIFO_UFM
DS3 StatusRO
0x1000F M13_DS3_STATUS1 M13_RDL_IDLE M13_DS3_LOF M13_DS3_OOF M13_DS3_C1_DET M13_DS3_RAI_DET M13_DS3_AISPAT_DET M13_DS3_IDLEPAT_DET M13_DS3_CBZ_DET
0x10010 M13_DS3_STATUS2 M13_RDL_FIFO_UF M13_RDL_FIFO_AF M13_RDS3_SEF M13_RDS3_ALL1_DET M13_RDS3_LOS M13_TDS3_LOC M13_RDS3_LOC
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
229 Lucent Techn olo
g
ies Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 300. Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Individual DS2 and DS1 DeltasRO
0x10011 M13_XC_DS2_LOCD_R M13_XC_DS2_LOCD[7:1]
0x10012 M13_XC_DS2_AIS_DETD_R M13_XC_DS2_AIS_DETD[7:1]
0x10013 M13_DS2_OOFD_R M13_DS2_OOFD[7:1]
0x10014 M13_DS2_LOFD_R M13_DS2_LOFD[7:1]
0x10015 M13_DS2_AIS_DETD_R M13_DS2_AIS_DETD[7:1]
0x10016 M13_DS2_RAI_DETD_R M13_DS2_RAI_DETD[7:1]
0x10017 M13_DS2_LB_DETD_R M13_DS2_LB_DETD[7:1]
0x10018 M13_DS2_RSV_RCVD_R M13_DS2_RSV_RCVD[7:1]
0x10019 M13_DS2DMX_LOCD_R M13_DS2DMX_LOCD[7:1]
0x1001A
0x1001D
0x1001E M13_DS1_LOCD_R1 M13_DS1_LOCD[28:25]
0x1001F M13_DS1_LOCD_R2 M13_DS1_LOCD[24:17]
0x10020 M13_DS1_LOCD_R3 M13_DS1_LOCD[16:9]
0x10021 M13_DS1_LOCD_R4 M13_DS1_LOCD[8:1]
0x10022 M13_DS1_AIS_DETD_R1 M13_DS1_AIS_DETD[28:25]
0x10023 M13_DS1_AIS_DETD_R2 M13_DS1_AIS_DETD[24:17]
0x10024 M13_DS1_AIS_DETD_R3 M13_DS1_AIS_DETD[16:9]
0x10025 M13_DS1_AIS_DETD_R4 M13_DS1_AIS_DETD[8:1]
0x10026 M13_DS1_LB_DETD_R1 M13_DS1_LB_DETD[28:25]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
230Lucent Technologies Inc.
11 M13/M23 MUX/DeM UX Registers (continued)
Table 300. Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bi t 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x10027 M13_DS1_LB_DETD_R2 M13_DS1_LB_DETD[24:17]
0x10028 M13_DS1_LB_DETD_R3 M13_DS1_LB_DETD[16:9]
0x10029 M13_DS1_LB_DETD_R4 M13_DS1_LB_DETD[8:1]
0x1002A
0x1002E
DS2 and DS1 StatusRO
0x1002F M13_XC_DS2_LOC_R M13_XC_DS2_LOC[7:1]
0x10030 M13_XC_DS2_AIS_DET_R M13_XC_DS2_AIS_DET[7:1]
0x10031 M13_DS2_OOF_R M13_DS2_OOF[7:1]
0x10032 M13_DS2_LOF_R M13_DS2_LOF[7:1]
0x10033 M13_DS2_AIS_DET_R M13_DS2_AIS_DET[7:1]
0x10034 M13_DS2_RAI_DET_R M13_DS2_RAI_DET[7:1]
0x10035 M13_DS2_LB_DET_R M13_DS2_LB_DET[7:1]
0x10036 M13_DS2_RSV_RCV_R M13_DS2_RSV_RCV[7:1]
0x10037 M13_DS2DMX_LOC_R M13_DS2DMX_LOC[7:1]
0x10038
0x1003B
0x1003C M13_DS1_LOC_R1 M13_DS1_LOC[28:25]
0x1003D M13_DS1_LOC_R2 M13_DS1_LOC[24:17]
0x1003E M13_DS1_LOC_R3 M13_DS1_LOC[16:9]
0x1003F M13_DS1_LOC_R4 M13_DS1_LOC[8:1]
0x10040 M13_DS1_AIS_DET_R1 M13_DS1_AIS_DET[28:25]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
231 Lucent Techn olo
g
ies Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 300. Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bi t 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x10041 M13_DS1_AIS_DET_R2 M13_DS1_AIS_DET[24:17]
0x10042 M13_DS1_AIS_DET_R3 M13_DS1_AIS_DET[16:9]
0x10043 M13_DS1_LB_DET_R4 M13_DS1_AIS_DET[8:1]
0x10044 M13_DS1_LB_DET_R1 M13_DS1_LB_DET[28:25]
0x10045 M13_DS1_LB_DET_R2 M13_DS1_LB_DET[24:17]
0x10046 M13_DS1_LB_DET_R3 M13_DS1_LB_DET[16:9]
0x10047 M13_DS1_LB_DET_R4 M13_DS1_LB_DET[8:1]
0x10048
FEAC Loopback Individual DeltasRO
0x10049 M13_DS1_FEAC_LB_DETD_R1 M13_DS3_FLB_DETD M13_DS1_FEAC_LB_DETD[28:25]
0x1004A M13_DS1_FEAC_LB_DETD_R2 M13_DS1_FEAC_LB_DETD[24:17]
0x1004B M13_DS1_FEAC_LB_DETD_R3 M13_DS1_FEAC_LB_DETD[16:9]
0x1004C M13_DS1_FEAC_LB_DETD_R4 M13_DS1_FEAC_LB_DETD[8:1]
FEAC
Status,
RDL Sta-
tus, and
RDL
FIFO
RO
0x1004D M13_DS1_FEAC_LB_DET_R1 M13_DS3_FLB_DET M13_DS1_FEAC_LB_DET[28:25]
0x1004E M13_DS1_FEAC_LB_DET_R2 M13_DS1_FEAC_LB_DET[24:17]
0x1004F M13_DS1_FEAC_LB_DET_R3 M13_DS1_FEAC_LB_DET[16:9]
0x10050 M13_DS1_FEAC_LB_DET_R4 M13_DS1_FEAC_LB_DET[8:1]
0x10051 M13_RFEAC_CODE_R M13_RFEAC_CODE[5:0]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
232Lucent Technologies Inc.
11 M13/M23 MUX/DeM UX Registers (continued)
Table 300. Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x10052 M13_RDL_STATUS M13_RDL_FLAG M13_RDL_ABOR
TM13_RDL_NOT_
BYTE M13_RDL_OVFL M13_RDL_FCS_
ERR
0x10053 M13_RDL_DATA_R M13_RDL_DATA[7:0]
0x10054 M13_RDL_FRAME_SIZE_R M13_RDL_FRAME_SIZE[6:0]
0x10055 M13_RHDLC_STATUS_R M13_RHDLC_STATUS[7:0]
0x10056
0x10058
One Shot SignalsR/Wl
0x10059 M13_DS2_FORCE_OOF_R M13_DS2_FORCE_OOF[7:1]
0x1005A M13_CONTROL1 M13_RDL_FRM_
CLR M13_DS3_FORC
E_OOF M13_BIPOL_ER
R
0x1005B
Block-level ControlsR/W
0x1005C M13_CONTROL2 M13_BPV_IN M13_LOOP_TIME M13_LOOP_T_T
O_R M13_LOOP_R_T
O_T M13_AUTO_AIS_
LOF M13_AUTO_AIS_
OOF M13_AUTO_FLB M13_AUTO_LB
0x1005D M13_CONTROL3 M13_M23_CBP M13_BIPOLAR
0x1005E M13_SP_OFFSET_R M13_SP__OFFSET[7:0]
0x1005F M13_SP_D_OFFSET_R M13_SP_D_OFFSET[7:0]
M12 MUXs ControlR/W
0x10060 M13_M12_MUX_CONTROL1_R1 M13_M12_MODE1[1:0] M13_MUXCH2_4
_INV1 M13_DS1_E1N1 M13_DS1_LB_REQ[4:1]
0x10061 M13_M12_MUX_CONTROL2_R1 M13_SEL_DS1_LB[4:1] M13_RDS1_EDGE[4:1]
0x10062 M13_M12_MUX_CONTROL1_R2 M13_M12_MODE2[1:0] M13_MUXCH2_4
_INV2 M13_DS1_E1N2 M13_DS1_LB_REQ[8:5]
0x10063 M13_M12_MUX_CONTROL2_R2 M13_SEL_DS1_LB[8:5] M13_RDS1_EDGE[8:5]
0x10064 M13_M12_MUX_CONTROL1_R3 M13_M12_MODE3[1:0] M13_MUXCH2_4
_INV3 M13_DS1_E1N3 M13_DS1_LB_REQ[12:9]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
233 Lucent Techn olo
g
ies Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 300. Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 B it 11 Bit 10 B it 9 Bit 8 Bit 7 B it 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x10065 M13_M12_MUX_CONTROL2_R3 M13_SEL_DS1_LB[12:9] M13_RDS1_EDGE[12:9]
0x10066 M13_M12_MUX_CONTROL1_R4 M13_M12_MODE4[1:0] M13_MUXCH2_4_INV4 M13_DS1_E1N4 M13_DS1_LB_REQ[16:13]
0x10067 M13_M12_MUX_CONTROL2_R4 M13_SEL_DS1_LB[16:13] M13_RDS1_EDGE[16:13]
0x10068 M13_M12_MUX_CONTROL1_R5 M13_M12_MODE5[1:0] M13_MUXCH2_4_INV5 M13_DS1_E1N5 M13_DS1_LB_REQ[20:17]
0x10069 M13_M12_MUX_CONTROL2_R5 M13_SEL_DS1_LB[20:17] M13_RDS1_EDGE[20:17]
0x1006A M13_M12_MUX_CONTROL1_R6 M13_M12_MODE6[1:0] M13_MUXCH2_4_INV6 M13_DS1_E1N6 M13_DS1_LB_REQ[24:21]
0x1006B M13_M12_MUX_CONTROL2_R6 M13_SEL_DS1_LB[24:21] M13_RDS1_EDGE[24:21]
0x1006C M13_M12_MUX_CONTROL1_R7 M13_M12_MODE7[1:0] M13_MUXCH2_4_INV7 M13_DS1_E1N7 M13_DS1_LB_REQ[28:25]
0x1006D M13_M12_MUX_CONTROL2_R7 M13_SEL_DS1_LB[28:25] M13_RDS1_EDGE[28:25]
0x1006E M13_DS2_RAI_SEND_R M13_DS2_RAI_SEND[7:1]
0x1006F M13_DS2_RSV_SEND_R M13_DS2_RSV_SEND[7:1]
0x10070 M13_DS2_MPINV_R M13_DS2_MPINV[7:1]
0x10071 M13_DS2_FINV_R M13_DS2_FINV[7:1]
0x10072 M13_DS2_P_BER_R M13_DS2_P_BER[7:1]
0x10073 M13_DS2M12_EDGE_R M13_DS2M12_EDGE[7:1]
0x10074 M13_DS2_FORCE_AIS_R M13_DS2_FORCE_AIS[7:1]
0x10075
0x1007A
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
234Lucent Technologies Inc.
11 M13/M23 MUX/DeM UX Registers (continued)
Table 300. Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
M12 DeMUXs ControlR/W
0x1007B M13_M12_DEMUX_CONTROL1_R1 M13_M12DMX_MODE1[1:0] M13_DEMUXCH2_4_
INV1 M13_OUT_TYPE1 M13_TDS1_EDGE[4:1]
0x1007C M13_M12_DEMUX_CONTROL2_R1 M13_DS1_OUT_AIS[4:1]
0x1007D M13_M12_DEMUX_CONTROL1_R2 M13_M12DMX_MODE2[1:0] M13_DEMUXCH2_4_
INV2 M13_OUT_TYPE2 M13_TDS1_EDGE[8:5]
0x1007E M13_M12_DEMUX_CONTROL2_R2 M13_DS1_OUT_AIS[8:5]
0x1007F M13_M12_DEMUX_CONTROL1_R3 M13_M12DMX_MODE3[1:0] M13_DEMUXCH2_4_
INV3 M13_OUT_TYPE3 M13_TDS1_EDGE[12:9]
0x10080 M13_M12_DEMUX_CONTROL2_R3 M13_DS1_OUT_AIS[12:9]
0x10081 M13_M12_DEMUX_CONTROL1_R4 M13_M12DMX_MODE4[1:0] M13_DEMUXCH2_4_
INV4 M13_OUT_TYPE4 M13_TDS1_EDGE[16:13]
0x10082 M13_M12_DEMUX_CONTROL2_R4 M13_DS1_OUT_AIS[16:13]
0x10083 M13_M12_DEMUX_CONTROL1_R5 M13_M12DMX_MODE5[1:0] M13_DEMUXCH2_4_
INV5 M13_OUT_TYPE5 M13_TDS1_EDGE[20:17]
0x10084 M13_M12_DEMUX_CONTROL2_R5 M13_DS1_OUT_AIS[20:17]
0x10085 M13_M12_DEMUX_CONTROL1_R6 M13_M12DMX_MODE6[1:0] M13_DEMUXCH2_4_
INV6 M13_OUT_TYPE6 M13_TDS1_EDGE[24:21]
0x10086 M13_M12_DEMUX_CONTROL2_R6 M13_DS1_OUT_AIS[24:21]
0x10087 M13_M12_DEMUX_CONTROL1_R7 M13_M12DMX_MODE7[1:0] M13_DEMUXCH2_4_
INV7 M13_OUT_TYPE7 M13_TDS1_EDGE[28:25]
0x10088 M13_M12_DEMUX_CONTROL2_R7 M13_DS1_OUT_AIS[28:25]
0x10089 M13_M12_DEMUX_CONTROL3 M13_DS2_MODE M13_DS2_FERR_MODE
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
235 Lucent Techn olo
g
ies Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 300. Register Address Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x1008A M13_DMDS2_EDGE_R M13_DMDS2_EDGE[7:1]
0x1008B
0x10091
M23 MUX ControlsR/W
0x10092 M13_DS3_CONTROL1 M13_DS3_FINV M13_DS3_MINV M13_DS3_PINV M13_DS3_FORCE
_AIS M13_DS3_FORCE
_IDLE M13_TDS3_
FORCE_ALL1 M13_M23CLK_
MODE
0x10093 M13_DS3_CONTROL2 M13_NSMI_MODE M13_DS3_P_BER M13_CBIT2_ACT M13_UNUSED_AC
TM13_DS3_RAI_
SEND M13_FEBE_ERR
0x10094 M13_TFEAC_CONTROL M13_TFEAC_CTL[1:0] M13_TFEAC_CODE[5:0]
0x10095 M13_THDLC_CONTROL1 M13_TDL_BUF1_
END M13_TDL_BUF0_
END M13_TDL_ACT M13_TDL_NTRNL M13_TDL_
NTRNL_ACT M13_TDL_FCS
0x10096 M13_THDLC_CONTROL2 M13_TDL_BYTE_END[5:0]
0x10097 M13_DS2_LB_REQ_R M13_DS2_LB_REQ[7:1]
0x10098 M13_SEL_DS2_LB_R M13_SEL_DS2_LB[7:1]
0x10099 M13_RDS2_EDGE_R1 M13_RDS2_EDGE[7:1]
0x1009A M13_RDS2_EDGE_R2 M13_DS2ALCO_RTM_EDGE[7:1]
0x1009B
0x1009D
M23 DeMUX ControlsR/W
0x1009E M13_DS2_OUT_IDLE_R M13_DS2_OUT_IDLE[7:1]
0x1009F M13_DS2_OUT_AIS_R M13_DS2_OUT_AIS[7:1]
0x100A0 M13_TDS2_EDGE_R M13_TDS2_EDGE[7:1]
0x100A1 M13_RDL_CONTROL M13_RDL_FILL[1:0] M13_RDL_FCS M13_DS3_MODE M13_RDS3_EDGE
0x100A2
0x100A4
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
236Lucent Technologies Inc.
11 M13/M23 MUX/DeM UX Registers (continued)
Table 300. Register Address Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Performance Monitoring CountersRO
0x100A5 M13_PM_CNT_ACT_R M13_PM_C
NT_ACT
0x100A6 M13_DS3_FERR_CNT_R1 M13_DS3_FERR_CNT[11:8]
0x100A7 M13_DS3_FERR_CNT_R2 M13_DS3_FERR_CNT[7:0]
0x100A8 M13_DS3_FEBE_CNT_R1 M13_DS3_FEBE_CNT[13:8]
0x100A9 M13_DS3_FEBE_CNT_R2 M13_DS3_FEBE_CNT[7:0]
0x100AA M13_DS3_CPERR_CNT_R1 M13_DS3_CPERR_CNT[13:8]
0x100AB M13_DS3_CPERR_CNT_R2 M13_DS3_CPERR_CNT[7:0]
0x100AC M13_DS3_PERR_CNT_R1 M13_DS3_PERR_CNT[13:8]
0x100AD M13_DS3_PERR_CNT_R2 M13_DS3_PERR_CNT[7:0]
0x100AE
0x100B1
0x100B2 M13_DS2_PERR_CNT7_R1 M13_DS2_PERR_CNT7[12:8]
0x100B3 M13_DS2_PERR_CNT7_R2 M13_DS2_PERR_CNT7[7:0]
0x100B4 M13_DS2_PERR_CNT6_R1 M13_DS2_PERR_CNT6[12:8]
0x100B5 M13_DS2_PERR_CNT6_R2 M13_DS2_PERR_CNT6[7:0]
0x100B6 M13_DS2_PERR_CNT5_R1 M13_DS2_PERR_CNT5[12:8]
0x100B7 M13_DS2_PERR_CNT5_R2 M13_DS2_PERR_CNT5[7:0]
0x100B8 M13_DS2_PERR_CNT4_R1 M13_DS2_PERR_CNT4[12:8]
0x100B9 M13_DS2_PERR_CNT4_R2 M13_DS2_PERR_CNT4[7:0]
0x100BA M13_DS2_PERR_CNT3_R1 vDS2_PERR_CNT3[12:8]
0x100BB M13_DS2_PERR_CNT3_R2 M13_DS2_PERR_CNT3[7:0]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
237 Lucent Techn olo
g
ies Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 300. Register Address Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x100BC M13_DS2_PERR_CNT2_R1 M13_DS2_PERR_CNT2[12:8]
0x100BD M13_DS2_PERR_CNT2_R2 M13_DS2_PERR_CNT2[7:0]
0x100BE M13_DS2_PERR_CNT1_R1 M13_DS2_PERR_CNT1[12:8]
0x100BF M13_DS2_PERR_CNT1_R2 M13_DS2_PERR_CNT1[7:0]
0x100C0
0x100C5
0x100C6 M13_DS2_FERR_CNT7_R M13_DS2_FERR_CNT7[7:0]
0x100C7 M13_DS2_FERR_CNT6_R M13_DS2_FERR_CNT6[7:0]
0x100C8 M13_DS2_FERR_CNT5_R M13_DS2_FERR_CNT5[7:0]
0x100C9 M13_DS2_FERR_CNT4_R M13_DS2_FERR_CNT4[7:0]
0x100CA M13_DS2_FERR_CNT3_R M13_DS2_FERR_CNT3[7:0]
0x100CB M13_DS2_FERR_CNT2_R M13_DS2_FERR_CNT2[7:0]
0x100CC M13_DS2_FERR_CNT1_R M13_DS2_FERR_CNT1[7:0]
0x100CD M13_BPV_CNT_R1 M13_BPV_CNT[23:16]
0x100CE M13_BPV_CNT_R2 M13_BPV_CNT[15:8]
0x100CF M13_BPV_CNT_R3 M13_BPV_CNT[7:0]
0x100D0 M13_EXZ_CNT_R1 M13_EXZ_CNT[23:16]
0x100D1 M13_EXZ_CNT_R2 M13_EXZ_CNT[15:8]
0x100D2 M13_EXZ_CNT_R3 M13_EXZ_CNT[7:0]
0x100D3
0x100FE
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
238Lucent Technologies Inc.
11 M13/M23 MUX/DeM UX Registers (continued)
Table 300. Register Address Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TDL Buffer SelectionR/W
0x100FF M13_TDL_BUFFER_R M13_TDL_B
UFFER
TDL BuffersR/W
When M13_TDL_BUFFER = 0
0x10100
0x1013F
M13_TDL_0DATA_R[063] M13_TDL_0DATA[063][7:0]
When M13_TDL_BUFFER = 1
0x10100
0x1013F
M13_TDL_1DATA_R[063] M13_TDL_1DATA[063][7:0]
0x10140
0x101FF
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
239Agere Systems Inc.
12 28-Channel Framer Registers
Ta ble of Conte nts
Contents Page
12 28-Channel Framer Registers ............... .................. . ................ ..................... . ............. . .................................. 239
12.1 Framer Global Register Descriptions ..................................................................................................... 243
12.2 Arbiter (Framer) Global Registers ................. ... ......................... . ......................... ....... . ........................... 245
12.3 Performance Monitor Global Registers ............................ ... ......................... ..... ... .................................. 247
12.4 HDLC Global Configuration and Statu s Regist ers ... .... ............... .... ... .... ..... ... .... ... ........... ... .... ... ..... .... ... . 253
12.5 System Interface Global Registers ......................................................................................................... 257
12.6 Signaling Global Registers ..................................................................................................................... 262
12.7 Frame Formatter (Transmit Framer) Global Register ............................................................................. 266
12.8 Facility Data Link Global Registers ......................................................................................................... 267
12.9 Super Mapper Framer Per Link Configurat ion and Status R egisters .... . .................. ................... ........... 26 7
12.9.1 Signal ing Pe r Link Registers ........ ....... ....... ....... ....... ....... ....... ...... ....... ....... ....... ....... ....... ............. 267
12.10 Performance Monitor Per Link Registers ....... . ........... ................... ............... ........... .............. . ............... 273
12.11 Receive Facility Data Link Configuration and Status Registers . ..................... ................... .................. 288
12.12 Tran smit Facility Data Link Configuration and Status Registers ..........................................................290
12.13 System Interface, Arbiter, and Fram e Formatter Mapping ................................................................... 292
12.14 System Interface Per Link Registers .................................................................................................... 293
12.15 Arbiter Framer Per Link Registers ........................................................................................................ 295
12.16 Frame Formatte r Per Link Registers .................................................................................................... 300
12.17 Line Decoder/Encoder P er Link Registers ......... ...................................... .......................... ... ............... 302
12.18 Line Encode r/Decoder P er Link Registers ..................... ... ......................... . ......................... ................ 303
12.19 HDLC Per Channel Configuration and Status Registers .............. ..................... . .................. ..... ... ........ 304
12.20 28-Channel Framer Bloc k Register Map .............. . ....................... ... ....................... ... ........................... 311
Tables Page
Table 301. FRM_SF GR1, Superframer G lobal Registe r 1 (R/W) ........................................................................ 243
Table 302. FRM_SF GR2, Superframer G lobal Registe r 2 (R/W) ........................................................................ 244
Table 303. FRM_SF GR3, Superframer G lobal Registe r 3 (RO) ......................................................................... 245
Table 304. F RM_SF GS R4, Superf ram er G lobal Register 4 (R/W) .. .................. ..................... ........................ ....245
Table 305. FRM_FGR1 , Framer G lobal Re gister 1 (R/W) .................................................................................. 245
Table 306. FRM_FGR2 , Framer G lobal Re gister 2 (R/W) .................................................................................. 246
Table 307. FRM_FGR3 , Framer G lobal Re gister 3 (R/W) .................................................................................. 246
Table 308. FRM_FGR4 , Framer G lobal Re gister 4 (COR) .................................................................................246
Table 309. FRM_FGR5 , Framer G lobal Re gister 5 (COR) .................................................................................247
Table 310. F RM_PM GR1_B, Performance Monitor Global Register 1_B (R/W) .... ..................... . ............. ......... 247
Table 3 11. FRM_PM GR1, Performance Monitor Global Register 1 (COR) ................... ... .................. . ............... 2 47
Table 3 12. FRM_PM GR2, Performance Monitor Global Register 2 (COR) ................... ... .................. . ............... 2 48
Table 3 13. FRM_PM GR3, Performance Monitor Global Register 3 (R/W) ............. ..................... . ......................2 48
Table 3 14. FRM_PM GR4, Performance Monitor Global Register 4 (R/W) ............. ..................... . ......................2 49
Table 3 15. FR M_PMGR5, Performance Monitor Global Register 5PMGR5 (R/W ) . .............. ..........................249
Table 3 16. FRM_PM GR6, Performance Monitor Global Register 6 (R/W) ............. ..................... . ......................2 49
Table 3 17. FRM_PM GR7, Performance Monitor Global Register 7 (R/W) ............. ..................... . ......................2 49
Table 3 18. FRM_PM GR8, Performance Monitor Global Register 8 (R/W) ............. ..................... . ......................2 50
Table 3 19. FRM_PM GR9, Performance Monitor Global Register 9 (R/W) ............. ..................... . ......................2 50
Table 3 20. FRM_PM GR10, Performance Monitor Global Register 10 (R/W) .................. . ....................... ........... 250
Table 3 21. FRM_PM GR11, Performance Monitor Global Register 11 (R/W) .................. . ....................... ........... 250
Table 3 22. FRM_PM GR12, Performance Monitor Global Register 12 (R/W) .................. . ....................... ........... 251
Table 3 23. FRM_PM GR13, Performance Monitor Global Register 13 (R/W) .................. . ....................... ........... 251
Table 3 24. FR M_PMGR14, Performance Monitor Global Register 14 (R/W) .... . .................... . ........................... 252
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
240 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table of Conten ts (continued)
Tables Page
Table 3 25. FRM_PM GR15, Performance Monitor Global Register 15 (R/W) ............ . .................. ..... ................. 252
Table 3 26. FRM_PM GR16, Performance Monitor Global Register 16 (R/W) ............ . .................. ..... ................. 252
Table 327. FRM_HGR1, Transmit HDLC Glo bal Register 1 (R/W) .....................................................................253
Table 328. FRM_HGR2, Transmit HDLC Glo bal Register 2 (R/W) .....................................................................253
Table 329. FRM_HGR3, Transmit HDLC Glo bal Register 3 (R/W) .....................................................................253
Table 330. FRM_HGR4, Transmit HDLC Glo bal Register 4 (R/W) .....................................................................253
Table 331. FRM_HGR5, Transmit HDLC Glo bal Register 5 (R/W) .....................................................................254
Table 332. FRM_HGR6, Transmit HDLC Glo bal Register 6 (R/W) .....................................................................254
Table 333. FRM_HGR7, Transmit HDLC Glo bal Register 7 (R/W) .....................................................................254
Table 334. FRM_HGR8, Transmit HDLC Glo bal Register 8 (R/W) .....................................................................254
Table 335. FRM_HGR9, Transmit HDLC Glo bal Register 9 (R/W) .....................................................................254
Table 336. F RM_HGR10, Tr ansm it HDLC Gl obal Register 10 (R/W) ...................... ................... ...................... .. 255
Table 337. F RM_HGR11, T ransm it HDLC Global Register 11 (RO) .... ................... ................... ...................... .. 2 55
Table 338. F RM_HGR12, Tr ansm it HDLC Gl obal Register 12 (R/W) ...................... ................... ...................... .. 255
Table 339. F RM_HGR13, Tr ansm it HDLC Gl obal Register 13 (R/W) ...................... ................... ...................... .. 255
Table 340. F RM_HGR14, Tr ansm it HDLC Gl obal Register 14 (R/W) ...................... ................... ...................... .. 255
Table 341. FRM_HGR15, R eceive H DLC Global Register 15 (R/W) .................................................................. 255
Table 342. FRM_HGR16, R eceive H DLC Global Register 16 (R/W) .................................................................. 256
Table 343. FRM_HGR17, R eceive H DLC Global Register 17 (R/W) .................................................................. 256
Table 344. FRM_HGR18, R eceive H DLC Global Register 18 (R/W) .................................................................. 256
Table 345. FRM_HGR19, R eceive H DLC Global Register 19 (R/W) .................................................................. 256
Table 346. FRM_HGR20, R eceive H DLC Global Register 20 (R/W) .................................................................. 256
Table 347. FRM_SYSGR1, System Interface Glob al Register 1 (R/W) .............................................................. 257
Table 348. FRM_SYSGR2, System Interface Glob al Register 2 (R/W) .............................................................. 258
Table 349. FRM_SYSGR3, System Interface Glob al Register 3 (R/W) .............................................................. 259
Table 350. FRM_SYSGR4, System Interface Glob al Register 4 (R/W) .............................................................. 259
Table 351. FRM_SYSGR5, System Interface Glob al Register 5 (R/W) .............................................................. 259
Table 352. FRM_SYSGR6, System Interface Glob al Register 6 (COR) ............................................................. 259
Table 353. FRM_SYSGR7, System Interface Glob al Register 7 (COR) ............................................................. 260
Table 354. FRM_SYSGR8, System Interface Glob al Register 8 (R/W) .............................................................. 260
Table 355. FRM_SYSGR9, System Interface Glob al Register 9 (R/W) .............................................................. 260
Table 356. FRM_SYSGR10FRM_SYSGR14, System Interface Global Register 1014 (R/W) .................... 261
Ta ble 357. FRM_SYSGR 1 5, System Int erface Gl obal Regi ste r 15 (COR) ......................................................... 261
Ta ble 358. FRM_SYSGR 1 6, System Int erface Gl obal Regi ste r 16 (R/W) .......................................................... 261
Table 3 59. FR M_SGR1, Receiv e S ignaling Global Register 1 (R/W) .... .................. ... ....................... .................262
Table 3 60. FR M_SGR2, Receiv e S ignaling Global Register 2 (R/W) .... .................. ... ....................... .................262
Table 3 61. FR M_SGR3, Receiv e S ignaling Global Register 3 (R/W) .... .................. ... ....................... .................263
Table 3 62. FR M_SGR4, Receiv e Signaling Global Register 4 (RO ) .......................... . ................................... ... .. 263
Table 3 63. FR M_SGR5, Receiv e Signaling Global Register 5 (RO ) .......................... . ................................... ... .. 263
Table 364. FRM_SGR6, Receive Signaling Global Register 6 ....... . ................................... ... ............................ 264
Table 3 65. FR M_SGR7, Receiv e S ignaling Global Register 7 (R/W) .... .................. ... ....................... .................264
Table 366. F RM_SGR8, Tran smit Signali ng Globa l Registe r 8 (R/W) ......... ........................ ..................... ..........265
Table 367. FRM_FFG R1, Transmit Framer Global Register 1 (R/W ) ................................................................. 266
Table 3 68. FRM_FDLGR1, Receive Facility Data Link Global Register 1 (R/W) ................................................ 267
Table 369. FRM_FDLG R2, Transmit Facility Data Link Global Register 2 (R/W) ............ ......... ............ ............ .. 267
Table 3 70. Receive Path Signaling Register Addressing Map ............................................................................ 267
Table 371. Receive Path Signaling Registers Addres s Index ing ................. ....... . ......................... ....... . .............. 267
Table 372. FRM_RSLR0FRM_RSLR31, Receiv e Signali ng Link Registers 031 (R/W) ............... ................ 268
Table 3 73. FRM_RSLR32, Receive Signaling Link Register 32 (COR) ................... ..................... ..... ................. 269
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
241Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table o f Conten ts (continued)
Tables Page
Table 3 74. FRM_RSLR33, Receive Signaling Link Register 33 (R/W) ..................... . ....................... .................. 269
Table 375. Transmit Path Signaling Register A ddres s ing Map . ......................... ....... ..... ... .................................. 270
Table 376. Transmit Path Signaling Registers Address Indexing .......... ....... .......... ... ................................ ......... 270
Table 377. FRM_TSLR0FRM _T SLR 31, Transmit Signaling L ink Registers 031 (R/W) ..............................271
Table 3 78. FRM_TSLR32, T r ans mit Signaling Link Regist er 32 (R/W) .................... . .................. ..... ..................272
Table 3 79. FRM_TSLR33, T r ans mit Signaling Link Regist er 33 (CO R) . .................. ..... .......................... ........... 273
Table 380. Performance Monitor Per Link R egister Addressing Map ............................ ... .................................. 273
Table 381. Performance Monitor Per Link R egister Address Indexing .......... ................... . .............................. .... 274
Table 382. FRM_PMLR1, P erformance Moni tor Link Register 1 (R/W) ................ ........... . ............ .............. ........274
Table 383. FRM_PMLR2, P erformance Moni tor Link Register 2 (R/W) ................ ........... . ............ .............. ........274
Table 384. FRM_PMLR3, P erformance Moni tor Link Register 3 (R/W) ................ ........... . ............ .............. ........275
Ta ble 385 . FR M _P MLR 4, Pe rfo r man ce M on itor L i nk Register 4 (COR) ........ . ........... . ............. . ........... . ........... . .. 27 5
Ta ble 386 . FR M _P MLR 5, Pe rfo r man ce M on itor L i nk Register 5 (COR) ........ . ........... . ............. . ........... . ........... . .. 28 2
Ta ble 387 . FR M _P MLR 6, Pe rfo r man ce M on itor L i nk Register 6 (COR) ........ . ........... . ............. . ........... . ........... . .. 28 4
Ta ble 388 . FR M _P MLR 7, Pe rfo r man ce M on itor L i nk Register 7 (COR) ........ . ........... . ............. . ........... . ........... . .. 28 4
Ta ble 389 . FR M _P MLR 8, Pe rfo r man ce M on itor L i nk Register 8 (COR) ........ . ........... . ............. . ........... . ........... . .. 28 5
Ta ble 390 . FR M _P MLR 9, Pe rfo r man ce M on itor L i nk Register 9 (COR) ........ . ........... . ............. . ........... . ........... . .. 28 5
Tab le 391. FRM_PMLR10, Performance Monitor Link Register 10 (COR) ......................................................... 285
Tab le 392. FRM_PMLR11, Performance Monitor Link Register 11 (COR) ......................................................... 285
Tab le 393. FRM_PMLR12, Performance Monitor Link Register 12 (COR) ......................................................... 285
Tab le 394. FRM_PMLR13, Performance Monitor Link Register 13 (COR) ......................................................... 286
Tab le 395. FRM_PMLR14, Performance Monitor Link Register 14 (COR). ........................................................287
Tab le 396. FRM_PMLR15, Performance Monitor Link Register 15 (COR) ......................................................... 287
Tab le 397. FRM_PMLR16, Performance Monitor Link Register 16 (COR) ......................................................... 287
Tab le 398. FRM_PMLR17, Performance Monitor Link Register 17 (COR) ......................................................... 287
Tab le 399. FRM_PMLR18, Performance Monitor Link Register 18 (COR) ......................................................... 287
Tab le 400. FRM_PMLR19, Performance Monitor Link Register 19 (COR) ......................................................... 288
Tab le 401. FRM_PMLR20, Performance Monitor Link Register 20 (COR) ......................................................... 288
Table 402. Re cei ve Facility Data Link Re gist e r Addr e ssing Map ....................... ................. ............ .................... 288
Table 403. Receive Path F ac ility D ata Link Registers A ddress Indexing ................ ... ......................... ....... . ........ 289
Table 4 04. FR M_RFDLLR1FRM_RFDLLR5, Receive FDL Link Registers 15 (RO) ................................... 2 89
Table 4 05. FRM_RFDLLR6 , Receive FDL Link Register 6 (R/W) ....................................................................... 289
Table 4 06. FRM_RFDLLR7, Receive FDL Link Reg ister 7 (R O) ........................................................................ 289
Table 4 07. FRM_RFDLLR8, Receive FDL Link Reg ister 8 (COR) ......................................................................290
Table 4 08. FRM_RFDLLR9 , Receive FDL Link Register 9 (R/W) ....................................................................... 290
Table 409. Transmit Facility Data Link Register Addressing Map ............................. ..... ... ......................... ......... 290
Table 410. T rans mit Path Facility Data Link Registers A ddress Index in g ...................... ..................... . ............... 290
Table 4 11. FRM_TFDLLR1FRM_TFDLR5, Transmit FDL Link Registers 15 (COR ) .... .. ... ..... .. .. ... .... ... .. ... .. 290
Table 412. FRM_TFDL LR6, Transmit FDL Link Register 6 (R/W) ...................................................................... 291
Table 413. FRM_TFDL LR7, Transmit FDL Link Register 7 (R/W) ...................................................................... 291
Table 414. FRM_TFDL LR8, Transmi t FDL Link Register 8 (RO/CO W) ..............................................................292
Table 415. FRM_TFDL LR9, Transmit FDL Link Register 9 (R/W) ...................................................................... 292
Table 416. S y s tem Interface, Arbiter, and Frame Formatter Link Register Addressing Map .............................. 292
Table 417. S y s tem Interface, Arbiter, and Frame Formatter Link Register Address Indexing ............ ....... ......... 293
Tab le 418. FRM_SYSLR1, System Interface Link Registe r 1 (R/W) ................................................................... 293
Tab le 419. FRM_SYSLR2, System Interface Link Registe r 2 (R/W) ................................................................... 294
Table 420. FRM_SYSLR3FRM_SYSLR6 , Sys te m Inte r face Link Reg isters 36 (R/W) ................................294
Table 421. FRM_ARLR 1, Arbiter Link Regi ster 1 (R/W) ..................................................................................... 295
Table 422. FRM_ARLR 2, Arbiter Link Regi ster 2 (R/W) ..................................................................................... 296
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
242 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table of Conten ts (continued)
Tables Page
Table 423. FRM_ARLR 3, Arbiter Link Regi ster 3 (R/W) ..................................................................................... 299
Table 424. FRM_FFLR1, Frame Formatter Link Register 1 (R/W) .............. . ............................ ........... . ........... . .. 300
Table 425. FRM_FFLR2, Frame Formatter Link Register 2 (R/W) .............. . ............................ ........... . ........... . .. 301
Table 4 26. Line Decoder Per LIn k Register Addressing Map ............................................................................. 302
Table 427. Li ne Decoder P er Link R egisters Address Indexing .......................... . ................................ . .............. 302
Table 428. Line Encoder Per Link Register Addressing Map .............................................................................. 302
Table 429. Li ne E ncoder Per Link Registers Address I ndexing . ......................... .......................... ...................... 302
Table 430. F RM_L DLR1, Li ne Decoder L ink Register 1 (R/W ) ............. ................... ...................... ..................... 303
Table 4 31. FRM_LDLR2, Line Encoder Link Register 2 (R/W) ........................................................................... 303
Table 4 32. HDLC P er Channel Regis ter Addressing Map .. ................... .................. ................... ........................ 304
Table 433. F RM_H CR1, Transmit HDLC Channel Register 1 (R/ W) ................................... ................. .............. 3 04
Table 434. F RM_H CR2, Transmit HDLC Channel Register 2 (R/ W) ................................... ................. .............. 3 04
Table 435. F RM_H CR3, Transmit HDLC Channel Register 3 (R/ W) ................................... ................. .............. 3 05
Table 436. F RM_H CR4, Transmit HDLC Channel Register 4 (RO) .............. ............. .................... ................ ..... 306
Table 437. F RM_H CR5, Transmit HDLC Channel Register 5 (R/ W) ................................... ................. .............. 3 06
Table 438. F RM_HCR6, Tran smit HDLC Channel Register 6 (WO) ................. ...................... ........... ................. 3 07
Table 439. F RM_H CR7, Transmit HDLC Channel Register 7 (RO) .............. ............. .................... ................ ..... 307
Table 440. FRM_HCR8, Receive HDLC Channel Register 8 (R/W) ............... ........... . ........... . .............. ........... . .. 307
Table 441. FRM_HCR9, Receive HDLC Channel Register 9 (R/W) ............... ........... . ........... . .............. ........... . .. 307
Table 442. F RM_H CR10, Recei ve HDLC Channel Register 10 (R/W) ................................................. ........... ... 308
Table 443. F RM_H CR11, Recei ve HDLC Channel Register 11 (R O) ................................................... ........... ... 3 08
Table 444. F RM_H CR12, Recei ve HDLC Channel Register 12 (R/W) ................................................. ........... ... 309
Table 445. F RM_H CR13, Recei ve HDLC Channel Register 13 (R O) ................................................... ........... ... 3 10
Tab le 446. FRM_HGR14, Rec e iv e HDLC Channel Register 14 (COR ) . ....... .......................... .......................... .. 310
Table 4 47. Framer Register Map ......................................................................................................................... 311
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
243Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.1 Fra m er Gl oba l Register D e scription s
Table 301. FRM_SFGR1, Superframer Global Register 1 (R/W)
Address Bit Name Function Reset Default
0x80000 15 FRM_SW_TRN Superframer Configuration Modes.
0 = Transport mode.
1 = Switching mode.
0
14:13 FRM_LC_
CNTRL[1:0] Line Enc oder/Decoder Control.
00 = Line encoder and line decoder blocks are not used in
either the fra mer Tx or Rx paths. This s etting i s used in the
follow ing switching modes:
STS-3/STS-1/DS3/DS2 to CHI/parallel system bus/SMI.
STS-3/ STS-1/DS3 to line data rate mode.
01 = Line decoder is used in the R x path and line encoder is
used in the Tx path. This setting is used in the framer-only
switching modes:
DS1 to CHI/parallel system bus/SMI channelized.
10 = Line decoder is used in the Tx path and line encoder is
used in the Rx path. This setting is used in the following
transport m odes:
DS1 to DS2/DS3/STS-1/STS -3.
11 = Re served.
00
12 FRM_LOOP_
TIMING Loop Timing.
0 = Superframer is programmed for normal mode.
1 = Superframer is programmed f or loop timing; i.e., all receiv ed
line clocks are looped back to the corresponding transmit
line clocks.
0
11 FRM_DS1_
CEPTN DS1/C EPT Terminal Count.
0 = Superframer is programmed for CEPT mode, which has a
maximum of 21 operational links. Links 22 to 28 are
disabled.
1 = Superframer is programmed for DS1 mode, which has a
maximum of 28 operational links.
Note: For fewer links or DS 1/CEPT mixed modes, use
FRM_TC_ EN and FRM_TC [7:0] ( Table 306) parame-
ters to select an accurate link count.
1
10 FRM_PLL_
BYPAS PLL Bypass.
0 = Internal P LL is used to generate the line clock in the
transmi t path.
1 = The PLL is bypassed. External line clock is required in this
mode.
0
9:1 Reserved. Must wr ite to 0. 0
0 FRM_LG_BUF_
MODE HDLC Buffer M ode.
0 = HDLC channel buffers are configured for 128-byte storage.
Up to 64 (32) channels can be supported in the switching
(transport) mode.
1 = HDLC channel buffers are combined for 512-byte storage.
Up to 16 (8) channels can be supported in the switching
(transport) mode.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
244 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 302. FRM_SFGR2, Superframer Global Register 2 (R/W)
Address Bi t Name Function Reset
Default
0x80001 15:14 Reserved. M ust write to 0. 0
13 FRM_TP_SIG_PWDN Transmit Path Receive Signaling Powerdown . When set
to 0 , the transmit path receive signaling block for th e trans -
port mode is p owered down.
1
12 FRM_RP_SIG_PWDN Receive Path Transmit Signal ing Powerdown. When set
to 0, the receive path transmit signaling block for the trans-
port mode is p owered down.
1
11 FRM_TP_RDL_PWDN Transmit Path Receive Datalink P owerdown. W hen set to
0, the tra n smit path receive data link block for the transport
mode is powered down.
1
10 FRM_RP_TDL_PWDN Rece ive Path Tran sm it Datalink Powerdown. When set to
0, the receive path transmit data link block for the transport
mode is powered down.
1
9 FRM_TP_RH_PWDN Transmit Path Receive HDLC Powerdown. When set to 0,
the transmit path receiv e HDLC block f or the tr ansport mode
is powered down.
1
8 FRM_RP_TH_PWDN Receive Path Tra nsm it HDLC Powerdown. When set to 0,
the receiv e path transmit HDLC blo ck for the transport mode
is powered down.
1
7 FRM_TS_PWDN Transm it Path Sy stem Bl ock Pow erdown. When set to 0,
the transmit path system block is powered down. 1
6 FRM_RS_PWDN Receive Path System Block Pow erdown. When set to 0,
the receive path system block is powered down. 1
5 FRM_TP_PM_PWDN Tran smit Pat h Performance Monit or Powerdown. Wh en
set t o 0, the transmit path performance monitor block is pow-
ered down.
1
4 FRM_RP_FF_PWDN Rece ive Path Frame Formatter Powerdow n. When set to
0, the receive pa th frame formatter block is powered down. 1
3 FRM_TP_RA_PWDN Transmit Path Receive Aligner Powerdown. When set to
0, the transmit path receive align er block is powered down. 1
2:0 Reserved. Must write to 0. 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
245Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 303. FRM_SFGR3, Superframer Global Register 3 (RO)
Table 304. FRM_SF GS R4, Sup erfram er Global Register 4 (R/W)
12.2 Arbiter (Framer ) Globa l Registers
Table 305. FRM_FGR1, Framer Global Register 1 (R/W)
Address Bit Name Fun ction Reset
Default
0x80002 15 FRM_RP_SIG A 1 indicates the change of signaling state FIFO contains
state change information. 0
14 FRM_AR _IS A 1 indicat es the FRM _A R_I S block has generat ed a n
interrupt. 0
13 FRM_TP_RDL_IS A 1 indicates the FRM_TP_RDL_IS block has generated
an interrupt. 0
12 FR M_TP_TDL_IS A 1 indicates the FRM_TP_TDL_IS block has generated
an interrupt. 0
11 FRM _RH_IS A 1 indicates t he FRM _RH_IS block has generated an
interrupt. 0
10 FRM_TH_I S A 1 i ndicates the FRM _TH _IS block has generated an
interrupt 0
9 F RM_ TS_I S A 1 indicat es t he FRM_TS _IS block h as generated an
interrupt. 0
8 FRM_RS _I S A 1 indicat es t he FRM_RS _I S block has generated a n
interrupt. 0
7 FRM_TP_P M _IS A 1 i ndicates t he FRM_TP_P M _I S block has generat ed
an interrupt. 0
6 F RM_ RP_ PM_I S A 1 i ndicates t he FRM_RP _P M _IS block has generated
an interrupt. 0
5 FRM_RP_RDL_IS A 1 indicates the FRM_RP_RDL_IS b lock has generated
an interrupt. 0
4 FRM_RP_TDL_IS A 1 indicates the FRM_RP_TDL_IS block has generated
an interrupt. 0
3:0 Reserved. Reads 0. 0
Address Bit Name Fun ction Reset
Default
0x80003 15 Reserved. Must wr ite to 0. 0
14:12 FRM_VERSION[2:0] Superframer Version Number. 000
11:0 Reserved. Must write to 0. 0x000
Address Bit Name Function Reset
Default
0x80010 15:8 Reserved. Must write to 0. 000000000
7:0 FRM_TO[7:0] Time-Out Count. The number of frames to wait before
declaring a time out. See FRM_OPT[1:0] ( Table 422). T he
default is 40 fram es (5 ms).
00101000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
246 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 306. FRM_FGR2, Frame r Glo bal Register 2 (R/W)
Table 307. FRM_FGR3, Frame r G lobal Register 3 (R/W)
Table 308. FRM_FGR4, Frame r G lobal Register 4 (COR)
Address Bit N am e Function Reset
Default
0x80011 15 FRM_TC_EN Terminal Count Enable.
0 = Terminal count disabled use defaults.
1 = Terminal count enabled.
0
14:8 Reserved. Must write to 0. 0000000
7:0 FRM_TC[7:0] Terminal Count. When enabled, the link counter will count
from 1 to the terminal count. The terminal count determines
the number of links a vailab le for use. The operational links are
link 1 to the l ink determined by the terminal count. By default ,
the count is determined by the option bit, FRM _DS1_CEPTN
(Table 301). In an applica tio n , where there is a mix of DS1
and CEPT links or a small number of l inks, the te r minal count
may be set by enabling FRM_T C_EN and setting the terminal
count, FRM_TC[7:0].
00000000
Address Bit Nam e Fu nction Reset
Default
0x80012 15 FRM_TPSSE_IM T ransmit P ath System Synchronization Error Interrupt
Mask. A tra ns mi t pat h syst e m synch ro niza tion error inter-
rupt is generated when synchronizat ion is lost between
the receive syst em interfac e and the transm it path line
c lock. FRM_TP SSE_ IM is a global mask for the interrupt
status from each link. T he individual link tr ansmit path
system error interrupt st atus bits, FRM_TPSSEI[28:1] are
summarized in FRM_AR_IS bit 14 of FRM_SFGR3
(Table 303).
0 = Allows any synchronization error, as report ed in the
synchronization status r egisters, to generate a n interrupt.
1 = Masks any synchronization error , as reported in the
synchronization s tatus registers, from generating an inter-
rupt.
1
14:0 Reserved. Must write to 0. 000000000
000000
Address Bit Name Function Reset
Default
0x80014 15:0 FRM_TPSSEI[16:1] Transmit Path System Synchronization Error Inter-
rupt.
1 = Indicates a transmit path system synchronization
error on links 16 to 1.
00X0000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
247Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 309. FR M_F GR5, Frame r G lobal Register 5 (COR)
12.3 Performance Monitor Global Registers
Table 310. FR M_PMGR1_ B, Performance Monitor Global Register 1_B (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 11. FRM_PMGR1, Performance Monitor Global Register 1 (COR)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address Bit Name Function Reset
Default
0x80015 15:12 Reserved. Must write to 0. 000
11:0 FRM_TPSSEI[28:17] Transmit Path System Synchronization Error Inter-
rupt.
1 = Indicates a transmit path system sync hronization
error on links 28 t o 1 7.
000000000
000
Address*Bit Nam e Function Reset
Default
0x80P20 15 FRM_SEC_SEL Framer PMRESET Source. The source of the performance
monitoring interval (generally one second) may be select ed to
be inter nal to the framer block or external to the framer block.
0 = Exter nal.
1 = Int ernal.
0
14:13 Reserved. Must write to 0. 000
12:0 FRM_CT125[12:0] Framer Terminal Count. This is the terminal count for an inter-
nal 125 µs timer th at is multipl ied by 8000 to determ ine the int er-
nal performance monitoring interval. This count is based on the
T DM cl oc k s peed. The default count is b ased on a 51.84 MHz
clock. This terminal count i s calculated by the following equa-
tion.
Timer term inal count = (125 µs)(fTDM clock).
0x1950
Address*Bit Name Function Reset
Default
0x80P30 15:2 Reserved. Must write to 0. 0x0000
1 FRM_DETECT Test-Pattern Detect. A 1 indicates the pattern detector has
locked onto the pattern specified by the FRM _PTR N _SEL[3:0]
(Table 324) configuration bits. There is only one test-pattern
detector. S ee O.151 Section 2. Both framed and unframed test-
pattern generation/detection are supp orted.
0
0 FRM_PTRNBER Test-Pattern Bit Error. A 1 i ndicates the rec eive framer pattern
detector has found one or more sing le-bit errors in the pattern
that it is currently locked on t o. There is only one te st-pattern
BER counter for all links.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
248 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 3 12. FR M_PM GR2, Performance Monitor Global Reg ister 2 (COR)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 13. FRM_PMGR3, Performance Monitor Global Register 3 (R/W)
* P = 0x 0 for th e rec eive pat h, an d P = 0x 1 for the tr an sm it pa th.
FRM_RACF RM_ RDC Standard.
Address*Bit Name Function Reset
Default
0x80P31 15:0 FRM_TPERR_CT[15:0] Test Pattern Error Count R egister. This regi ster con-
tains the 16-bit count of test-pattern errors. 0
Address*Bit Name Fu nction Reset
Default
0x80P32 15:14 Reserved. Must write to 0. 00
13:11 FRM_RAC[2:0] CEPT Mode RAI Activation Count. 001
10:8 FRM_RDC[2:0] CEPT Mode RAI Deactivation Count. RAC and RDC
can be set to mee t various standards. 001
7 FRM_FSFBEEN FS Frame Bit E rror Enable. Allows a signaling frame (FS)
bit error to set the FBE status bit, FRM_FBE (Table 386).
In DDS, a 0 means do not count TS24 framing and FS as
FB Es; a 1 means count TS24 framing and Fs as FB Es.
0 = FS bit errors disabled.
1 = FS bit errors enabled.
0
6FRM_CMFRFENCEPT Multiframe Reframe Enable.
0 = CEPT CRC-4 multiframe reframe disabled.
1 = CEPT CRC-4 multiframe reframe enabled. A research
for multiframe alignment is initiated upon a loss of CEPT
CRC-4 mult ifram e alignment.
0
5 FRM_CRCRFEN CRC Reframe Enable.
0 = CRC errors do not cause a reframe or LOF conditi on.
1 = The receive performance monitor will force a reframe
an d LOF condition on excessi ve CRC errors.
1
4:3 FRM_CEPTAISM[1:0] CEPT AIS Mode.
00 = Option 0: G.775 section I.2; G.965 section 16.1. 2.
01 = Option 1: G.775 section 5.2.
10 = Option 2: G.775 section I.2.
11 = Option 3: G.775 section I.2.
01
2 FRM_DS1AISM DS1 AIS Mode.
0 = Option 0: T1.231 section 6.1.2.2.3, T 1.403 section H,
G.775 section 5.4.
1 = Option 1: G.775 section I.2.
1
1 FRM_ESFRAIM ESF RAI Mode.
0 = Alternating eight ones followed by eight zer os.
1 = All ones.
0
0 FRM_RAICLR Clear RAI on Reception of DS1 Idle Signal.
0 = Ignore DS1 idle signal for RAI clearing.
1 = Clear failure on reception of DS1 idle signal:
ANSI
T1.231 se ction 6. 2.2.2.1.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
249Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 3 14. FRM_PMGR4, Performance Monitor Global Register 4 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 15. FRM_PMGR5, Performan ce Monitor Global Register 5PMGR5 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 16. FRM_PMGR6, Performance Monitor Global Register 6 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 17. FRM_PMGR7, Performance Monitor Global Register 7 (R/W)
These bit s enable the errored events used to determ ine errored and severely errored seconds in the D S1 modes.
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address*Bit Name F unction Reset
Default
0x80P33 15:0 FRM_SFSEST[15:0] SF Severely Errored Second Threshold for All SF Format-
ted Channels.
Note: A burs t y errored second wi ll be recorded if the number
of events is greater than the errored second threshold
but less than the severely errored second threshold.
There is a separate threshold for ESF and SF because
of t he bi t e rror prov ision in g in ESF (Ft or Fs).
0x0140
Address*Bit Nam e Function Reset
Default
0x80P34 15:0 FRM_DCT[15:0] DS1 Excessive CRC ThresholdDefault 320. This register
sets the one second CRC threshold at which an excessive CRC
error condition is reported and the one second CRC threshold at
which a reframe may be forced.
0x0140
Address*Bit Name Fu nction Reset
Default
0x80P35 15:0 FRM_ESFSEST[15:0] ESF Severely Errored Second Threshold fo r All ESF
Formatted Channels. A bursty erro red second will be
recorded if t he number o f event s is greater than the errored
second threshold but less than the severely errored second
threshold.
0x0140
Address*B it N am e Fun ctio n R eset
Default
0x80P36 15:9 Reserved. Must write to 0. 0x00
8FRM_DSEFDS1 Severely Errored Frame E nable. See FRM_SEFS (Table 400). 0
7FRM_DLFADS1 Loss of Fram e Alignment Enable. 0
6 FRM_DRFA DS1 Remote Frame Alarm Enable. 0
5FRM_DSLIPDS1 Slip Enable. 0
4 FRM_DLOS DS1 Lo ss of Signal Ena ble. 0
3FRM_DAISDS 1 Alarm Indication Signal Enable. 0
2 FRM_DCRC DS1 CRC-6 Error Enable. 0
1FRM_DFSDS1 Fs F raming Bit Error En able (SF Only). 0
0FRM_DFTDS1 Ft Fram ing Bit Error Ena ble (SF and ESF). 0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
250 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 3 18. FR M_PM GR8, Performance Monitor Global Reg ister 8 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 19. FRM_PMGR9, Performance Monitor Global Register 9 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 20. FRM_PMGR10, Perform ance Monitor Global Register 10 (R/W)
These bits enab le the errored events used to determi ne errored and severely errore d seconds in the CEPT modes.
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 21. FRM_PMGR11, Perform ance Monitor Global Register 11 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address*Bit Name Function Reset
Default
0x80P37 15:0 FRM_CCT[15:0] CEPT Excessive CRC ThresholdDefault 915. This register
sets the one second CRC threshold at which an excessive CRC
error condition is reported and the one second CRC threshold at
which a reframe may be forced.
0x0393
Address*Bit N am e Fu nction Reset
Default
0x80P38 15:0 FRM_CSEST[15:0] CEPT Severely Errored Second Threshold for All CEPT
Formatte d Ch anne l s. 0x0000
Address*Bit Name F unction Reset
Default
0x80P39 15 FRM_CSA6_F CEPT Sa6 = F Enable and Sa5 = 1. (Reception of AIS.) 1
14 FRM_CSA6_E CEPT Sa6 = E Enable and Sa5 = 1. (FC3 and FC4.) 1
13 FRM_CSA6_C CEPT Sa6 = C Enable and Sa5 = 1. (LOS/LFA.) 1
12 FRM_CSA6_8 CEPT Sa6 = 8 Enable an d Sa5 = 1. (Loss of power.) 1
11 FRM_CSA6_1X CEPT Sa6 = 001x Ev ent Enable. 1
10 FRM_CSA6_X1 CEPT Sa6 = 00x1 Event Enable. 1
9FRM_CEBITCEPT E bit = 0 Event Enable . 1
8 FRM_CLMFA CEPT Loss of Multiframe Alignment Enable. 1
7 FRM_CLFA CEPT Loss of Frame Alignment Enable. 1
6 FRM_CRFA CEPT Remote Frame Alarm Enable. 1
5FRM_CSLIPCEPT Slip Enable. 1
4FRM_CLOSCEPT Loss of Signal Enable. 1
3FRM_CAISCEPT Alarm Indication Signal Enable. 1
2 FRM_CCRC CEPT CRC-4 Error Enabl e. 1
1 FRM_CNOTFAS CEPT Non-FAS Bit Error Enable. 1
0FRM_CFASCEPT FAS Bit Error Enable. 1
Address*Bit Name Function Reset
Default
0x80P3A 15:0 FRM_CRET[15:0] Co ntinuous Re ce ived E- B i t Th resh oldDefault 9 9 1. This
register sets the five second conti nuous E - bit threshold for set-
ting the CRE b it status indication.
0x03DF
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
251Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 3 22. FRM_PMGR12, Performance Monitor Global Regist er 12 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 23. FRM_PMGR13, Perform ance Monitor Global Register 13 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address*Bit Name Function R eset
Default
0x80P3B 15 FRM_CRAI_AIS Send RAI Upon Detection of AIS Enable in CEPT Mode. 0
14 FRM_CRAI_OOF Send RAI Upon Detection of OOF Enable in CEPT Mode. 0
13 FRM_CRAI_LOS Send RAI Upon Detection of LOS Enable in CEPT Mode. 0
12 FRM_CRAI_SA6EQC Send RAI Upon Detection of Sa6 = (0xC) Enable in CEPT
Mode. 0
11 FRM_CRAI_SA6EQ8 Send RAI Upon Detection of Sa6 = (0x8) Enable in CEPT
Mode. 0
10 FRM_CRAI_CRCTX Send RAI Upon Detection of CRCTX Enable in CEPT
Mode. 0
9 FRM_CRAI_LTS0MFA Send RAI Upon Detection of LTS0MFA Enable in CEPT
Mode. 0
8 FRM_CRAI_LTS16MFA Send RAI Upon Det ection o f LTS16MFA Enable in CEPT
Mode. 0
7 FRM_CRAI_8MSEX Send RAI Upon Detection of 8 ms Timer Expiration
Enable in CEPT Mode. 0
6:3 Reserved. Must write to 0. 0
2 FRM_DSRAI_LOS Send RAI Upon Detection of LOS Enable in DS1 Mode. 0
1 FRM_DSRAI_OOF Send RAI Upon Detection of OOF Enable in DS1 Mode. 0
0 FRM_DSRAI_AIS Send RAI Upon Detection of AIS Enable in DS1 Mode. 0
Address* Bi t Name Fun ction Res et
Default
0x80P3C 15:4 Reserved. Must write to 0. 0x000
3 FRM_CFBE_MODE CEPT FBE Mode.
0 = Count onl y FBEs received in FAS frame.
1 = Count F BEs received in both FAS and NOTFAS
frames.
0
2 FRM_CEBIT_LTS0MFA Set E Bits Upon Detection of LTS0MFA Enable (CEPT
Only). 0
1 FRM_CEBIT_ESMF Set E B its Upon Detecti o n of an Erro re d CEPT _CRC4
SMF (Submultiframe) Enable. 0
0 FRM_CEBIT_CRCTX Set E Bits Upon Detection of CRCTX Enable (CEPT
Only). 0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
252 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 3 24. FRM_PMGR14 , Performance Monitor Global Register 14 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 25. FRM_PMGR15, Per formance Monitor Global Register 15 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 3 26. FRM_PMGR16, Per formance Monitor Global Register 16 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address* Bit Name Functi on Reset
Default
0x80P3D 15:12 Reserved. Must write to 0. 0x0
11 FRM_PTRN_EN Enables the Detector Circu itr y. FRM_PTRN_LNK[4:0]
should be set to 1 before enabling the detection circuitry. 0
10 FRM_PTRN_INV Receive Pattern Normal/Inver t Mode. Selects whether to
check for the selected pattern or its inverse.
0 = Selected pattern.
1 = Inverse.
0
9 FRM_PTRN_FRMT Receive Pattern Framed/Unframed Mode. Selects moni-
toring for either framed or unframed test pattern.
0 = Unframed.
1 = Framed.
0
8:4 FRM_PTRN_LNK[4:0] Pattern Detector Link Select. 5-bit link selection to indi-
cate which link to moni tor for test patter ns. 0
3:0 FRM_PTRN_SEL[3:0] Receive Pattern Select.
0000 = Pattern detector deactivate.
0001 = MARK (a ll ones AIS ) .
0010 = QRSS (220 1 with zero s uppres s ion).
0011 = 25 1.
0100 = 63(2 6 1).
0101 = 511(2 9 1) (V.52).
0110 = 29 1.
0111 = 2047(211 1) (O.151).
1000 = 211 1 (reve rsed).
1001 = 215 1 (O.151).
1010 = 220 1 (V.57).
1011 = 220 1 (CB113/CB114).
1100 = 223 1 (O.151).
1101 = 1:1 (alter nating).
0x00
Address* Bit Name Function Reset
Default
0x80P3E 15: 0 FRM_LN_I S[16:1] Per-Link PM Su mmary Interru pts for Links 16 Down to 1 . 0x0000
Address* Bit Nam e Fun ction Reset
Default
0x80P3F 15:12 Reserved. Must writ e to 0. 0x0
11:0 FRM_LN_IS[28:17] Per-Link PM Summary Interrupts for Links 28 Down to 17. 0x000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
253Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.4 HDLC Glo bal Configuration a nd Status Registers
Table 327. FR M_HGR1, Tr ansmit HDLC Global Register 1 (R/W)
Table 328. FR M_HGR2, Tr ansmit HDLC Global Register 2 (R/W)
Table 329. FR M_HGR3, Tr ansmit HDLC Global Register 3 (R/W)
Table 330. FR M_HGR4, Tr ansmit HDLC Global Register 4 (R/W)
Address Bit Nam e Function Reset
Default
0x80140 15:10 Reserved. Must write to 0. 0x00
9:0 FRM_HTTHRSH0[9:0] HDL C Trans mit FIFO T hre shold 0. T hese bits indicate
the threshold levels for the Tx FIFOs. When a channel is
enabled an d the number of bytes in its FI FO decrements
to this val ue, its FRM_HTTHRSH (Table 436) bit i s set
(optionally causes in terrupt ). FRM_HTTHRS H0[9:0] or
FRM_HTTHRSH1[9:0] is selected on a per-channel basis
with the FRM_HTTHRSEL (Table 436) parameter.
0x000
Address Bit Nam e Function Reset
Default
0x80141 15:10 Reserved. Must write to 0. 0x00
9:0 FRM_HTTHRSH1[9:0] HDL C Trans mit FIFO T hre shold 1. T hes e bi ts indicate
the threshold levels for the Tx FIFOs. When a channel is
enabled an d the number of bytes in its FI FO decrements
to this va lue, its FRM_HTTHRSH bit is set (option a lly
causes interrupt). FRM_HTTHRSH0[9:0] or
FRM_HTTHRSH1[9:0] is selected on a per-channel basis
with the FRM_HTTHRSEL (Table 436) parameter.
0x000
Address Bit Nam e Function Reset
Default
0x80142 15:8 Reserved. Must write to 0. 0x00
7:0 FRM_TXICHAR0[7:0] Transparent Mode Transmit Idle Char 0. These bits are
used in tra ns parent mo de. They represent the firs t 8-bit pat -
tern the t ra ns mi tter s hould send when there is no data
available in the FIFO. One of the four patterns can be
selected on a per-channel basis with the
FR M_ H XPIDLE[1 :0] (Table 436) param eter.
0x00
Address Bit Nam e Function Reset
Default
0x80143 15:8 Reserved. Must write to 0. 0x00
7:0 FRM_TXICHAR1[7:0] Transparent Mode Transmit Idle Char 1. These bits are
used in transparent mode. They represent the second 8-bit
patter n the transmitter will send when there is no data avail-
able in the FIFO. One of the four p atterns c an be selected
on a per-chann el basis with the FRM_HXPIDLE[1:0]
(Table 436) parameter.
0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
254 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 331. FRM_HGR5, Transmit HDLC Global Reg ister 5 (R/W)
Table 332. FRM_HGR6, Transmit HDL C Gl obal Register 6 (R/W)
Table 333. FRM_HGR7, Transmit HDL C Gl obal Register 7 (R/W)
Table 334. FRM_HGR8, Transmit HDL C Gl obal Register 8 (R/W)
Table 335. FRM_HGR9, Transmit HDL C Gl obal Register 9 (R/W)
Address Bit Name Function Reset
Default
0x80144 15:8 Reserved. Mus t write to 0. 0x00
7:0 FRM_TXICHAR2[7:0] Transparent Mode Transmi t Idle Char 2. These bits
are used in transpare nt mode. They represent the third
8-bit patter n th e transmitter will send when t here is no
data available in the FIFO. One of the four patterns can
be selected on a per-channel basis with the
FRM_HXPIDLE[1:0] (Table 435) parameter.
0x00
Address Bit Name Function Reset
Default
0x80145 15:8 Reserved. Mus t write to 0. 0x00
7:0 FRM_TXICHAR3[7:0] Transparent Mode Transmi t Idle Char 3. Thes e bi t s
are used in transparent mode. They represent the fourth
8-bit patter n th e transmitter will send when t here is no
data available in the FIFO. One of the four patterns can
be selected on a per-channel basis with the
FRM_HXPIDLE[1:0] (Table 435) parameter.
0x00
Address Bit Name Function Reset
Default
0x80146 15:5 Reserved. M ust write to 0. 0x 000
4:0 FRM_FCNT0[4:0] HDLC Flag Count 0. These v alues are the number of addi-
tional idle flags to be sent between HDLC packets. One of
the four values can be selected on a per-channel basis with
the F R M_CFLAGS[1:0] (Table 435) parameter.
00000
Address Bit Name Function Reset
Default
0x80147 15:5 Reserved. M ust write to 0. 0x 000
4:0 FRM_FCNT1[4:0] HDLC Flag Count 1. These v alues are the number of addi-
tional idle flags to be sent between HDLC packets. One of
the four values can be selected on a per-channel basis with
the F R M_CFLAGS[1:0] parameter.
00000
Address Bit Name Function Reset
Default
0x80148 15:5 Reserved. Must write to 0. 0x000
4:0 FRM_FCNT2[4:0] HDL C Flag Cou nt 2. These va lues are the number of addi-
tional idle flags to be sent between HDLC packets. One of
the four values can be selected on a per-channel basis with
the F RM_CFLAGS[1:0] (Table 435) parameter.
00000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
255Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 336. FRM_HGR10, Transmit HDLC Global Register 10 (R/W)
Table 337. FRM_HGR11, Transmit HDLC Global Register 11 (RO)
Table 338. FRM_HGR12, Transmit HDLC Global Register 12 (R/W)
Table 339. FRM_HGR13, Transmit HDLC Global Register 13 (R/W)
Table 340. FRM_HGR14, Transmit HDLC Global Register 14 (R/W)
Table 341. FR M_HGR15, Receive HDLC Global Register 15 (R/W)
Address Bit Name Function Reset
Default
0x80149 15:5 Reserved. Must write to 0. 0x 000
4:0 FRM_FCNT3[4:0] HDLC Flag Cou nt 3 . These values are the number of
additional idle flags to be sent between HDLC packets.
One of the four values can be selected on a per-channel
basis wi th the FRM_CFLAGS[1:0] parameter.
00000
Address Bit Nam e Function Reset
Default
0x8014A 15:0 FRM_TH_IS[15:0] Trans mit HDLC Interrupt Su mmary. This bitmap
shows what channels have interrupts. This register
maps channe ls 150 to bits 15:0 .
0x0000
Address Bit Name Function Reset
Default
0x8014B 15:0 FRM_TH_IS[31:16] Transmit HDLC Interrupt Summary. T his bitmap
shows what channels have interrupts. This register
ma p s ch a nnel s 31 16 to bits 15:0.
0x0000
Address Bit Name Function Reset
Default
0x8014C 15:0 FRM_TH_IS[47:32] Transmit HDLC Interrupt Summary. T his bitmap
shows what channels have interrupts. This register
ma p s ch a nnel s 47 32 to bits 15:0.
0x0000
Address Bit Name Function Reset
Default
0x8014D 15:0 FRM_TH_IS[63:48] Transmit HDLC Interrupt Summary. T his bitmap
shows what channels have interrupts. This register
ma p s ch a nnel s 63 48 to bits 15:0.
0x0000
Address Bit Nam e Function Reset
Default
0x80040 15:10 Reserved. Must write to 0. 0x00
9:0 FRM_HRTHRSH0[9:0] Indicates the Thresh ol d Levels for the Rx FIFOs.
When a channel i s enabled and its F IFO count incre-
ments to this val ue, its FRM_HRTHRSH (Table 443)
status bit is se t. FRM _HRTHRS H0 or
FRM_HRTHRSH1 is selected on a per- channe l basis
with the FRM_RTHRSEL (Table 442) parameter.
0x000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
256 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 342. FRM_HGR16, Receiv e HDLC Global Register 16 (R/W)
Table 343. FRM_HGR17, Receive HDL C Global Register 17 (R/W)
Table 344. FRM_HGR18, Receive HDL C Global Register 18 (R/W)
Table 345. FRM_HGR19, Receive HDL C Global Register 19 (R/W)
Table 346. FRM_HGR20, Receive HDL C Global Register 20 (R/W)
Address Bit Nam e Function Rese t
Default
0x80041 15:10 Reserved. Must write to 0. 0x00
9:0 FRM_HRTHRSH1[9:0] Indicates the Thresh ol d Levels for the Rx FIFOs.
When a channel i s enabled and its F IFO count incre-
ments to t his value, its FRM_HRTHRSH status bit is
set. FRM _HRTHRSH0[9:0] or FRM _HRTHRSH1[9:0]
is sele cted on a per-channel basis with the
FRM_RTHRSEL (Table 442) parameter.
0x000
Address Bit Nam e Function Rese t
Default
0x80042 15:0 FRM_RH_IS[15:0] Receive HDLC Interru pt Sum m ary. Thi s bitmap
shows what channels have interrupts. This register
maps channels 150 to bits 15:0.
0
Address Bit Name Function R eset
Default
0x80043 15:0 FRM_RH_IS[31:16] Receive HDLC Interrupt Summary. This bitmap
shows what channels have interrupts. This register
maps ch annels 3116 to bits 15:0.
0
Address Bit Name Function R eset
Default
0x80044 15:0 FRM_RH_IS[47:32] Receive HDLC Interrupt Summary. This bitmap
shows what channels have interrupts. This register
maps ch annels 4732 to bits 15:0.
0
Address Bit N am e Function Reset
Default
0x80045 15:0 FRM_RH_IS[63:48] Rece ive HDLC I nter rupt Summary. This bitmap
shows what channels have interrupts. This register
ma p s ch a nnel s 63 48 to bits 15:0.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
257Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.5 System Interface Global Registers
Table 347. FRM_SYSGR1, System Interface Global Register 1 (R/W)
Address Bit Name Function Reset
Default
0x80050 15:12 FRM_SYSMOD[3:0] System Interface M ode Associated Signaling Mode.
0000 = 2.048 Mbits /s CHI.
0001 = 4.096 Mbits /s CHI.
0010 = 8.192 Mbits /s CHI.
0100 = 19.44 Mbits /s PSB (device 0 mode).
0101 = 19.44 Mbits /s PSB (device 1 mode).
0110 = 19.44 Mbits /s PSB (device 2 mode).
1 000 = SM I.
All others: Reserv ed.
0000
11 FRM_ASM System Interface Mode Assoc iated Si gnaling Mode.
0 = CHI is configured to carry payload data only.
In P SB mode, transmit signaling is 3-s tated, and receive sig-
naling ignored.
1 = CH I is configured to carr y both payload data and signaling
information. Each time slot consists of 16 bits where 8 bits are
data and the remaining 8 bits are signaling information. CHI
must be programmed for 4.096 Mbits/s or 8.192 Mbits/s
modes.
In PSB m ode , tra nsmi t signaling is driven and receiv e signaling
is fo rwarded to the signaling block.
0
10 FRM_CMS CHI Clock Mode. This bit is only applicable in the CHI mode.
Otherwise , it should be set to 0.
0 = CH I clock and CHI data have the same rate.
1 = CH I clock is twic e the rate of CHI data.
0
9 FRM_CHIDTS CHI Dual Time-Slot Mode. This bit is only applicable in the
C H I 4.096 Mbits/s (no ASM) and 8 .192 Mbits/s (without ASM)
modes.
0 = Enables 32 contiguous time slots.
1 = Enables double time slot mode in which the transmit CHI
drives data for one time s lot and 3-states for the subsequent
time slot.
0
8 FRM_STUFFL/
FRM_LNKSTART Stuff Position/Link Start. CHI m ode s onl y: determ in e s t he
position of th e stuffed time slo ts in co njuncti on with the byte off-
set.
0 = SDDDSDDDSDDDS.. . . . . . . (TS0TS31).
1 = SDDDDD D. . . . . . . SSSSSSS (TS0TS31).
N SM I modes only: this bit determines how lin ks are numbered
on the NSMI. Internally, links are numbered starting at 1.
0 = NSMI link numbering starts at 0.
1 = NSMI link numbering starts at 1.
1
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
258 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 347. FRM_SYSGR1, System Interface G lobal R egister 1 (R/W) (continued)
Table 348. FRM_SYSGR2, System Interface Global Register 2 (R/W)
Address Bit Name Function Reset
Default
0x80050 7 FRM_AISLFA System AIS on Loss of Frame Alignme nt.
0 = No action .
1 = System AIS is transmitted when the r eceive framer or the mapper
loss of frame alignment (MFA for DS1, BFA for CEPT) is detected.
0
6 FRM_AISCRCT S ystem AIS on CEPT Ti m er Expiration .
0 = No action.
1 = S ystem AIS is transmitted when the r ec eiv e fr amer loss of multifram e
alignment timer expiration is detected. (C EPT only.)
0
5 FRM_DNOTFAS CEPT Dual No t FAS. This bit is applicable in all system modes.
0 = FAS and NOTFAS time slots are transmitted to the system. The
receive system interface expects both FAS and NOTFAS time slots.
1 = NO TFAS is transmi tted twice to the system (in the NOTFAS and FAS
time slots). The receive system expects time slots 0 to carry
NOTFAS that is repeated twice.
0
4 FRM_TFSCKE System Interface Transmit Frame Sync Clock Edge Select.
0 = Transmit frame sync is sampled on the falling edge of transmit clock.
1 = Transmit frame sync is sampled on t he rising edge of t ransmit clock.
In PSB mode, this bit also determines the clock edge used to drive
data. The sampling p oin t of trans mit f rame s ync defi nes the zero off-
se t for CHI mode.
0
3 FRM_FSPOL Frame Sync Polarity.
0 = Transmit and receive frame sync is active low.
1 = Transmit and receive frame sync is active-high.
0
2:0 Reserved. Must wr ite to 0. 0
Address Bi t Name Function Res et
Default
0x80051 15 FRM_HWYENA Tran sm it System In terface Highway Enable.
0 = Transmit data is forced into a high-impedance state for all
transmitted time slots. Receive system ignores receive data and
inserts the idle code in all time slots transmitted to the line. This
allows the fram er to be fully configured before transmission.
1 = Transmit and receive data is enabled.
0
14 FRM_RSTDONE
(Read Only) Framer Reset Status.
0 = Indicates internal reset is still in process.
1 = Indicates internal reset is complete.
Generally, the FRM_HWYENA bit should not be set to1 until this bit
reads 1.
0
13:0 Reserved. Must wr ite to 0. 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
259Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 349. FRM_SYSGR3, System Interface Global Register 3 (R/W)
Table 350. FRM_SYSGR4, System Interface Global Register 4 (R/W)
Table 351. FRM_SYSGR5, System Interface Global Register 5 (R/W)
Table 352. FRM_SYSGR6, System Interface Glo bal Register 6 (COR)
Address Bit Name F unc tion Reset
Default
0x80052 15:8 FRM_STUFF[7:0] Stuffed Time-Slot Code. 7F
7:0 FRM_IDLE[7:0] CHI Time-Slot Loopback Idle Code. 7F
Address Bit Name Function Reset
Default
0x80053 15 FRM_STSSLB CHI Time Slot System Loopback
0 = No action.
1 = Receive CHI time slot is looped back to th e system.
Idle code, FRM_IDLE[7:0] (Table 349), is inserted in place
of the looped back time slot to the line.
0
14 FRM_STSLLB C HI Time-Slot Line Loop Back.
0 = No action.
1 = Transmit CHI time slot is looped back to the line. Idle
code, FRM_ID LE[7:0], is inserted in place of the looped
back time slot to the system.
0
13 Reserved. Must write to 0. 0
12:8 FRM_TSLBA[4:0] CHI Time-Slot Loopback Address. 00000
7:5 Reserved. Must w rite to 0. 0
4:0 FRM_TSLBL[4:0] CHI Time- Slot Loopback Link Number. 00000
Address Bit Name Function Reset
Default
0x80054 15 FRM_TS_DPAR Transmit P SB Data P arity. This bit is only applicab le in the
parallel syste m bus mode. Otherwise, it should be set to
zero.
0 = Odd data parity is transmitted by the system.
1 = Even data parity i s transmitted by the sy stem.
0
14 FRM_TS_SPAR Transmit Sign alin g Pari t y. This bit applies to the signaling
information in the parallel system bus mode. It al so det er-
mines the parity for CHI ASM mode. Otherwise, i t should be
set to 0.
0 = Odd signaling parity is transmitted by th e sys tem.
1 = Even signaling parity is transmitted by the system.
0
13:0 Reserved. Mus t write to 0. 0
Address Bit Name Function R eset
Default
0x80055 15:0 Reserved. Must wr ite to 0. 0x0000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
260 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 353. FRM_SYSGR7, System Interface Global Register 7 (CO R)
Table 354. FRM_SYSGR8, System Interface Global Register 8 (R/W)
Table 355. FRM_SYSGR9, System Interface Global Register 9 (R/W)
Address Bit Name F unc tion Reset
Default
0x80056 15:1 Reserved. Must write to 0. 0x0
0 FRM_TPSB_FS_IS Transmit P S B Frame Sync Error Interrupt. A 1 i ndi-
cates a f rame sync error was detected in PSB mod e.
The frame sync was either detec ted when it should
not have been (misplaced) or was not detected when
it should have (missing). This bit is cleared on read/
write unless the condition that set it still exists after
the read.
0
Address Bit Nam e Function R eset
Default
0x80057 15:1 Reserved. Must write to 0. 0
0 FRM_PSB_FS_IM Transmit PS B Frame Sync Inter rup t Mask. A 1 pre-
vents the FRM_T PSB _F S_IS (Table 353) st atus from
causin g an i nterrupt. A 0 al lows the interr upt.
1
Address Bit Name Function Reset
Default
0x80150 15 FRM_RS_DPAR Receive PSB Data Parit y Select. This bit is only applicable in
the parallel system bus interface mode. Otherwise, it should
be set to 0.
0 = O dd data parit y is expected by the receive system.
1 = Even data parity is ex pected by the receive syste m.
0
14 FRM_RS_SPAR Receive Signaling Parity Select. This bit ap plies to the sig-
nalin g information in the parallel syst em bus mode. It also
determines the parity f or CHI ASM mode. Otherwise, it should
be set to 0.
0 = Odd signaling parity is expecte d by the receive system.
1 = Even si gnali ng parity is expected by the receive system.
0
13 FRM_RFSCKE Sys tem Interface Receive Frame Sync Clock Edge Select.
0 = Receive frame sync (and data) is sampled o n the falling
edge of receive clock.
1 = Recei ve frame sync (and data) is sample on the rising
edge of receive clock.
In para llel syst em bu s mode , thi s bit a lso determines the clo ck
edge used to sample data.
In CHI mode, the sample point of frame sync defines the zero
offset for the CHI.
0
12:0 Reserved. Must write to 0. 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
261Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 356. FRM_SYSGR10FRM _ SYSG R14, Sy stem Interface Global Register 1014 (R/W)
Table 357. FRM_SYSGR15, System Interface Glo bal Register 15 (COR)
Table 358. FRM_SYSGR16, System Interface Global Register 16 (R/W)
Address Bit Name Function Reset
Default
0x80151
0x80155
15:0 Reserved. Mus t write to 0. 0x0000
Address Bit Name Function Reset
Default
0x80156 15 FRM_DPAR_IS Data P arity Interrupt. I n PSB mode, a 1 indicates a data parity
erro r was detected. Thi s bi t is cl eared on read unless the con-
d ition that set it still exists after the read.
0
14 FRM_SPAR_IS Signaling Parity Interrupt. In PSB mode, a 1 i ndic ates a sig-
naling parity error w as detected. In CHI ASM mode, a 1 indi-
cates a parity error was detected.
T h is bit is cleared on read unless the condition that se t it still
exis t s af t er t he read.
0
13:1 Reserved. Must write to 0. 0
0 FRM_PSB_FS_IS Receive PSB frame Sy nc Interrupt. A 1 indicates a frame
sync error was detected in PSB mode. The frame sync was
either detected when it should n ot have been (misplaced) or
was not detec ted when it should have ( missing). This bit is
cleared on read unless t he condition that s et it still exists after
the read.
0
Address Bit Name Function Reset
Default
0x80157 15 FRM_DPAR_IM Data Parity Interrup t Mask. A 1 p reve nts the FRM _ DP A R _ IS
status from causing an interrupt. A 0 allow s the interru pt. 1
14 FRM_SPAR_IM Signaling Parity Interrupt Mask. A 1 pre vents the
FRM_SPAR_IS status from causing an inter rupt. A 0 allo ws the
interrupt.
1
13:1 Reserved. Must write to 0. 0
0 FRM_PSB_FS_IM Recei ve PSB frame Sync Interrupt Mask. A 1 prevents the
FRM_PSB_F S_IS status f rom causing an interru pt. A 0 allows
the interru pt.
1
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
262 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
12.6 Signa ling G lobal Registe rs
Table 359. FRM_SGR1, Receive Signaling Glob al Reg ister 1 (R/W)
Table 360. FRM_SGR2, Receive Signaling Glob al Reg ister 2 (R/W)
A ddress Bit Name Function Reset
Default
0x80060 15 FRM_R_TSAISHG S ystem AIS for Handling Group s. When set to 1, this
configuration bit forces AIS to the system interface for
those signaling bits which cor respond to a handling group ,
which is out of a lignment . A 0 d isables thi s feature. This
feature is only applied to those links which are enabled for
byte sync mappin g and handli ng groups us ing the pe r-li n k
signaling configuration registe rs.
0
14:10 FRM_R_LINKCNT[4:0] Rece ive Link Count. Indicates the number of links ser-
viced by the signaling b lock. This value should be set to 28
when the Super Mapper is interfac ing with only DS1 links;
it should be set to the actual number of links active for
mixed mode applications.
28
9Reserved. Must write to 0. 0
8:6 FRM_TEST_BIT[2:0] Test Bits. 000
5:2 Reserved. Must write to 0. 0
1 FRM_R_AFZFBE Au tomati c Signaling Freeze on Framing Bit Err ors. Set
to 1 in order to freeze signaling regis te r updates based on
framing bit errors.
0
0Reserved. Must write to 0.
Address Bit Name Function Reset
Default
0x80061 15 FRM_R_SCOSEN Receive Signaling Change of State F IF O E nable. When set
to 1, this configuration bit enables the maintenance of the sig-
naling ch ange of state FIFO. When set to 0, no entries will be
made into t he FI FO. T his bit applies to all of the links. If an
individual time slot is programmed f or no signaling, then no
entri es wil l be made fo r that time slo t. Also, if the si gnal ing
source in the receive path is set to host, then no entries will be
made for that time slot.
0
14:10 Reserved. Must write to 0. 0
9:0 FRM_R_
SCOSDTH[9:0] Receive Signaling Change of State FIFO Depth Threshold.
Th is number can be prog ramm e d fr om 0 to 672. If the number
of entries in the signal ing change of s tate FI FO e xceeds the
value programmed here, then the associ ated interrupt status
bit w ill be se t.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
263Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 361. FRM_SGR3, Receive Signaling Global Regis ter 3 (R/ W )
Table 3 62. FRM_SGR4, Receive Signaling Glob al Reg ister 4 (RO)
Table 3 63. FRM_SGR5, Receive Signaling Glob al Reg ister 5 (RO)
Address Bit Name F unction R eset
Default
0x80062 15:0 FRM_
R_SCOSTTH[15:0] Receive Signalin g Chan ge of Stat e FIFO T i m er Threshold.
This number can be programmed from 0 to 0xFFFF. The value
indicates the number of 125 µs increments that the timer
counts before int errupting the processor. The associated inter-
r upt status bit will be set only if there are valid entries in the
FIFO. When set to 0, the timer is disabled and no interrupt will
be generated. The maximum timer setting is 8 s.
0x0000
Address Bit Name Function Reset
Default
0x80063 15:14 FRM_
R_COSFIFOS[1:0] Receive Signaling Chan g e of Stat e FIFO Status. These
bits are located at the addr ess for t he signaling c hange of
state F IFO. Th ese status bits have the followin g de finitio ns:
01 = Th e ent ry being read is the last valid en try.
11 = Th e ent r y being rea d is not the last valid entry.
00 = The entry being read is not valid and should be ignored.
0
13:9 FRM_
R_COSFIFOL[4:0] COS Li nk Numb er. These bits are located at the address for
the signaling ch ange of state FIFO. This number indicates
the particular link from which a signaling change of state has
been detected.
0
8:4 FRM_
R_COSFIFOTS[4:0] COS T ime-Sl ot Number. These bits are located at the
addres s for the signaling change of state FIFO. This number
indicates the par ticular time slot in wh ich a signaling cha nge
of state has been detected.
0
3:0 FRM_
R_COSFIFOSIG[3:0] New Signaling Code. Th ese bits are located at the address
for the signaling change of state FIFO. This value indicates
the new signaling state received.
0
Address Bit N am e Fun ction R eset
Default
0x80064 15:1 Reserved. 0X0000
0FRM_
R_COSDTHS Receiv e Signaling Change of State FIFO Depth Thre shold
Overflo w Status. This status bit reflects the actual depth of the
FIFO entries as compared t o the threshold programmed by the
host. When set to 1, the threshold is currently e xceeded. When
set to 0, the number of FIFO entries is less than the programmed
threshold.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
264 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 364. FRM_SGR6, Receive Signaling Global Register 6
Table 365. FRM_SGR7, Receive Signaling Glob al Reg ister 7 (R/W)
Address Bit Name F unction Reset
Default
0x80065 15:3 Reserved. Reads 0. 0
2 FRM_R_COSDTHI Re ceiv e Signal i ng Cha nge of State FIFO Dep th Threshold
Overflow Interrupt. This interru pt stat us bit wil l be set when
the programmed threshold for the FIFO capacity has been
exceeded. This interrupt bit can be reset based on a clear-on-
read protocol, w hich is provisioned in the Super Mapper global
registers.
0
1FRM_R_COSTTHIRe c eive Signal i ng Cha nge of State FIFO Timer Thres hol d
Interrupt. This interrupt status bit wi l l be set when the pro-
gr ammed interrupt timer has expired and there are valid entries
in the FIFO to be processe d. This interrupt bit can be reset
based on a clear-on-read protocol, which is provisioned in the
Super Mapper global registers.
0
0 FRM_R_COSOFI Re ceive Signal ing Cha nge o f State FIFO Overflow I nt er-
rupt. This interrupt status bit will be set when the signaling
change of state FIFO overflows. The contents of the FI FO will
be lost and programmed threshold for the FIF O c apac it y has
been exceeded. This interrupt bit can be reset based on a
clear-on-rea d protocol, which is provisioned in the Super Map-
per global registers.
0
Address Bit Name F un ction R eset
Default
0x80066 15:3 Reserved. Reads 0. 0
2FRM_
R_COSDTHM Receive Signaling Change of State FIFO Depth Threshold
Overflow Interrupt Mask. The corresponding interrupt status bit
will cause a processor interrupt if this bit is set to 0. The corre-
sponding interrupt status bi t will be mas ked from causing a pro-
cessor i nterr upt if this bit is set to 1.
1
1FRM_
R_COSTTHM Receive Signaling Change of State FIFO Tim er Thresho ld
Interrupt Mask. The corresponding interrupt status bit will cause
a processor interrupt if this bit is set to 0. The corresponding
interrupt status bit will be masked from causing a processor inter-
r upt if this bit is set t o 1.
1
0FRM_
R_COSOFM Receive Signaling Change of State FIFO Overflo w Interrupt
Mask. The corresponding interrupt status bit will cause a proces-
sor interrupt if this bit is set to 0. The corresponding interrupt sta-
tus bit will be masked from causing a processor interrupt if this bit
is set to 1.
1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
265Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 366. FRM_SGR8, Transmit Signaling Global Register 8 (R/W)
Address Bi t Name Function Reset
Default
0x80160 15 Reserved. Must wr ite to 0. 0
14:10 FRM_T_LINKCNT[4:0] Transmit Li nk Count . Indicates the number of links ser-
viced by the signaling block. Th is value should be set to 28
when the Super Mapper is interfacing with only DS1 links; it
should be set to t he actual number of links activ e for mixed
mode applications.
28
9:6 Reserved. Must write to 0. 0000
5 FRM_T_SUBZERO Substitute Zero. A 1 forces signaling data to be 0000 for
those time s lots which have a signaling state mode of no
signaling. This only applies to the signaling data trans ferred
to the VT mapper.
0
4 FRM_T_FAS_NOTFAS FAS/NO T FAS Transmission. Use d to force alignment of
the CEPT TS16 multiframe to a FAS or NO TF AS frame. A 0
indicates alignment to a FAS frame . A 1 indicates alignment
to a NOTFAS frame.
0
3:2 Reserved. Must write to 0. 00
1 FRM_T_AFZFBE Auto matic Signaling Fre eze on Fr aming Bi t Errors. Set
to 1 in order to freeze signaling register updates based on
framing bit errors .
0
0Reserved. Must wr ite to 0. 0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
266 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
12.7 Frame Forma tter (Transmi t Fr amer) G loba l Register
Table 367. FRM_FFGR1, Transmit Framer Global Register 1 (R/W)
Address Bit Nam e Function Reset
Default
0x80170 15 FRM_TXFSOOF Transmit Frame S ync when Out-Of-F ram e Valid in
Transport Modes Only.
0 = Do not transmit FS when out-of-frame. (FS is
present when in frame.)
1 = Transmit an arbitrary FS when out-of-frame.
0
14:12 Reserved. Must write to 0. 0
11 FRM_PTRN_EN Transm it Pattern.
0 = Pattern generator off.
1 = Patter n generator on.
0
10 FRM_PTRN_INV Transm it Pattern Normal/Inver t Mode.
This bit inverts the patte rn.
0 = No rmal.
1 = Invert.
0
9 FRM_PTRN_FRMT Transmit Pattern Framed/Unframed Mode.
This bit selects ei the r a framed (1) or un framed (0) pat-
tern.
0
8:4 FRM_PTRN_LNK[4:0] Pattern Generator Link Select.
5-bit link selection to indicate link for pattern insertion. 00001
3:0 FRM_PTRN_SEL[3:0] Transmit Pa ttern Select.
0000 = Pattern generator deactivated.
0001 = MARK (all ones AIS) .
0010 = QRSS (220 1 with zero suppression).
0011 = 25 1.
0100 = 63 (265 1).
0101 = 511(2 9 1) (V.52).
0110 = 29 1.
0111 = 2047 (211 1) (O.151).
1000 = 211 1 (rev ersed).
1001 = 215 1 (O. 151) .
1010 = 220 1 (V.57).
1011 = 220 1 (CB113/CB114).
1100 = 223 1 (O. 151) .
1101 = 1:1 (al ternating ).
1110 = Reserved.
1111 = Reserved.
0000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
267Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.8 Facility Data Li nk Global R egisters
Table 368. FRM_FDLGR1, Receive Facility Data Link Global Register 1 (R/ W )
Table 369. FRM_FDLGR2, Tra nsmit Facility Data Link G lo bal Regi ster 2 (R /W)
12.9 Super Mapp er Fra me r Per Link Con figura tion and Stat us Registe rs
12.9.1 Signaling Per Link Registers
Table 370. Receive Path Signaling Register Addressing Map
* L and R represent hexidecimal digits used for absolute addressing in Table 372, Table 373, and Table 374.
Table 371. Receive Path Signaling Registers Address Indexing
Read: for link 1, the hexidecim al digi t L is 0x0 and the hexidecimal digit R is 0x2.
Address Bit Nam e Function Reset
Default
0x80090 15:0 Reserved. Must wr ite to 0. 0x0000
Address Bit Nam e Function Reset
Default
0x801A1 15:0 Reserved. Must write to 0. 0x0000
Address Pins (ADDR1 5ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 LNK4 LNK3 L NK2 LNK 1 LNK0 R XP = 0 0 SIG6 SIG5 SIG4 SIG3 SIG2 SIG1 SIG0
L* R*
Link L R Link L R Link L R Link L R
1 0x0 0x2 8 0x1 0x0 16 0x2 0x0 24 0x3 0x0
2 0x0 0x4 9 0x1 0x2 17 0x2 0x2 25 0x3 0x2
3 0x0 0x6 10 0x1 0x4 18 0x2 0x4 26 0x3 0x4
4 0x0 0x8 11 0x1 0x6 19 0x2 0x6 27 0x3 0x6
5 0x0 0xA 12 0x1 0x8 20 0x2 0x8 28 0x3 0x8
6 0x0 0xC 13 0x1 0xA 21 0x2 0xA ———
7 0x0 0xE 14 0x1 0xC 22 0x2 0xC ———
———15 0x1 0xE 23 0x2 0xE ———
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
268 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 372. F RM_RSLR0FRM_RS LR31, Receive Signaling Link Registers 031 (R/W)
* See Table 371 for values of L and R.
Notes:Bit 0 = A, bit 1 = B, bit 2 = C, bit 3 = D, bit 5 = F, and bit 6 = G.
Register includes the following bits: F, Gselects 2, 4, 16 or no state signaling mode; A, B, C, Dsig na li ng data.
For DS1 links, address locations 1 through 24 will contain valid data.
F or CE PT l inks , loca tio ns 1 throu gh 15 and 1 7 t hro ug h 3 1 wil l con tai n v a li d data . W rit es fr o m t he syst e m in t erface to a dd ress 0 and 16 will
be accepted and stored in signaling registers.
Address*Bit N ame Function Reset
Default
0x8LR00 6:0 FRM_RPSR0[6:0] Time Slot 0 Receive Signaling Data. 0000000
0x8LR01 6:0 FRM_RPSR1[6:0] Time Slot 1 Receive Signaling Data. 0000000
0x8LR02 6:0 FRM_RPSR2[6:0] Time Slot 2 Receive Signaling Data. 0000000
0x8LR03 6:0 FRM_RPSR3[6:0] Time Slot 3 Receive Signaling Data. 0000000
0x8LR04 6:0 FRM_RPSR4[6:0] Time Slot 4 Receive Signaling Data. 0000000
0x8LR05 6:0 FRM_RPSR5[6:0] Time Slot 5 Receive Signaling Data. 0000000
0x8LR06 6:0 FRM_RPSR6[6:0] Time Slot 6 Receive Signaling Data. 0000000
0x8LR07 6:0 FRM_RPSR7[6:0] Time Slot 7 Receive Signaling Data. 0000000
0x8LR08 6:0 FRM_RPSR8[6:0] Time Slot 8 Receive Signaling Data. 0000000
0x8LR09 6:0 FRM_RPSR9[6:0] Time Slot 9 Receive Signaling Data. 0000000
0x8LR0A 6:0 FRM_RPSR10[6:0] Time Slot 10 Receive Sig naling Data. 0000000
0x8LR0B 6:0 FRM_RPSR11[6:0] Time Slot 11 Receive Sig naling Data. 0000000
0x8LR0C 6:0 FRM_RPSR12[6:0] Time Slot 12 Receive Signaling Data. 0000000
0x8LR0D 6:0 FRM_RPSR13[6:0] Time Slot 13 Receive Signaling Data. 0000000
0x8LR0E 6:0 FRM_RPSR14[6:0] Time Slot 14 Receive Sig naling Data. 0000000
0x8LR0F 6:0 FRM_RPSR15[6:0] Time Slot 15 Receive Signaling D a ta. 0000000
0x8LR10 6:0 FRM_RPSR16[6:0] Time Slot 16 Receive Signaling Data. 0000000
0x8LR11 6:0 FRM_RPSR17[6:0] Time Slot 17 Receive Signaling Data. 0000000
0x8LR12 6:0 FRM_RPSR18[6:0] Time Slot 18 Receive Signaling Data. 0000000
0x8LR13 6:0 FRM_RPSR19[6:0] Time Slot 19 Receive Signaling Data. 0000000
0x8LR14 6:0 FRM_RPSR20[6:0] Time Slot 20 Receive Signaling Data. 0000000
0x8LR15 6:0 FRM_RPSR21[6:0] Time Slot 21 Receive Signaling Data. 0000000
0x8LR16 6:0 FRM_RPSR22[6:0] Time Slot 22 Receive Signaling Data. 0000000
0x8LR17 6:0 FRM_RPSR23[6:0] Time Slot 23 Receive Signaling Data. 0000000
0x8LR18 6:0 FRM_RPSR24[6:0] Time Slot 24 Receive Signaling Data. 0000000
0x8LR19 6:0 FRM_RPSR25[6:0] Time Slot 25 Receive Signaling Data. 0000000
0x8LR1A 6:0 FRM_RPSR26[6:0] Time Slot 26 Receive Sig naling Data. 0000000
0x8LR1B 6:0 FRM_RPSR27[6:0] Time Slot 27 Receive Sig naling Data. 0000000
0x8LR1C 6:0 FRM_RPSR28[6:0] Time Slot 28 Receive Signaling Data. 0000000
0x8LR1D 6:0 FRM_RPSR29[6:0] Time Slot 29 Receive Signaling Data. 0000000
0x8LR1E 6:0 FRM_RPSR30[6:0] Time Slot 30 Receive Sig naling Data. 0000000
0x8LR1F 6:0 FRM_RPSR31[6:0] Time Slot 31 Receive Signaling D a ta. 0000000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
269Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 373. FRM_RSLR32, Receive Signaling Link Register 32 (COR)
* See Table 371 for values of L and R.
Address*Bit Name Fun ction Reset
Default
0x8LR20 15:12 FRM_R_HGAIS[3:0] HG AIS Detection. Indicat es t he detection of AIS i n the
correspondi ng HG. 0000
11:8 FRM_R_HGA[3:0] HG Alignment. Indicates the alignment status for the cor-
responding HG. A 0 indicates no ali gnment. A 1 indicates
alignment for the correspo nding group.
0000
7:4 FRM_R_HGRDI[3:0] HG RDI. Indicates the detection of three consecutive
zeros in the Sp bit position of the corresponding HG. 0000
3 FRM_R_TS16A Time Slot 16 Multiframe Alignment St atus. A 0 indi-
cates that currently, time slot 16 m ult iframe alignment is
not established. A1 indicates that currently, time slot 16
multiframe alignment has been establi s hed.
0
2 FRM_R_TS16AIS Time Slot 16 AIS Detection Status. If time slot 16 multi-
frame alignme nt is lo st, this bit will reflect the detection of
AIS in ti me slot 16.
0
1:0 Reserved. Must write to 0. 0
Table 374. FRM_RSLR33, Receive Signaling Link Register 33 (R/W)
Address*Bit Name F unction Reset
Default
0x8LR21 15 FRM_R_FZCON Freeze C onversion. When s et to1, this enables the conver-
sion of cer tain signaling codes w hen the signaling buffers
have been f rozen. The code translation is 00 to 01 and 0000
to 0101 for 4-state and 16- state signaling, respective ly.
0
14:9 Reserved. Must write to 0. 0
8 FRM_R_SIGI Signaling Insertion. A 1 enables the insertion of signaling
data into th e Tx line. A 0 disables the inser tion of si gnaling
data into the Tx line. This bit is valid in t he Rx path o nly when
in transport mode; otherwise, it shoul d be set to 0.
0
7FRM_R_RXSTOMPR x Path Stomping. For DS1 links, thi s bit indi cates to s tomp
all robbed bi t signaling on voice time slots on the correspond-
ing link. Stomping of time slot 16 for CEPT links is performed
in the system interface block.
1 = Will enable stomping .
0 = Will disable stom ping for the corresponding link.
6Reserved. Must wr ite to 0.
5 FRM_R_SIGDEB Signaling Debounce.Thi s bit enables signal debounce on
signaling when extracted from the Rx line. 0
4 FRM_R_HGEN Handling Group Enable. When set to 1 i n combination w ith
selecting the s ource of signaling data to be the VT mapper,
this indicates to the signaling block that the signaling for this
link is byte sy nc mapped and us es the handling group format.
0
3 FRM_R_MSIGFZ Manua l S i gnali ng Fr eez e. Used to manually h a lt the signal-
ing register upd ates w hen the source of sign aling data is
either the VT mapper or when t he s ignaling is extracted from
the Rx line. A 1 halts the updates.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ju ne 2001
270 Agere Sy stem s Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
12 28-Channel Framer Registers (continued)
* See Table 371 for values of L and R.
Table 375. Transmit Path Signaling Register Addressing Map
* L and T represent hexidecimal digits used for absolute addressing in Table 377, Table 378, and Table 379.
Read: for link 1 (pertaining to Table 376), the hexidecimal digit L is 0x0 and the hexidecimal dig it T is 0x 3.
Table 376. Transmit Path Signaling Registers Address Indexing
0x8LR21 2 FRM_R_FGSRC F and G Source. Indicates which enti t y will be the source for
the F and G values used in handling the ABCD bits.
0 = Host programmed.
1 = Implied by the T x path ASM.
The Tx path option can only be selected when the Tx path is
configured with an ASM CHI or parallel system bus interface.
Also, the Tx path option can only be selected when the Rx
path is extracting da ta from the receive line interface v s. byte
sync VT mapped mode.
0
1:0 FRM_R_SIGSRC[1:0] Signaling Data Source. Indicates which of the entities will be
the source for the ABCD bits.
00 = Signali ng programmed b y the host.
01 = Signaling e xt racted from the Rx line .
10 = Signaling read from VT mapper in byte sync mode (valid
only for DS1).
00
Address Pins (ADDR15ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 LNK4 LNK3 LNK2 LNK1 LNK0 TXP=1 0 SIG6 SIG5 SIG4 SIG3 SIG2 SIG1 SIG0
L* T*
Link L T Link L T Link L T Link L T
1 0x0 0x3 8 0x1 0x1 16 0x2 0x1 24 0x3 0x1
2 0x0 0x5 9 0x1 0x3 17 0x2 0x3 25 0x3 0x3
3 0x0 0x7 10 0x1 0x5 18 0x2 0x5 26 0x3 0x5
4 0x0 0x9 11 0x1 0x7 19 0x2 0x7 27 0x3 0x7
5 0x0 0xB 12 0x1 0x9 20 0x2 0x9 28 0x3 0x9
6 0x0 0xD 13 0x1 0xB 21 0x2 0xB ———
7 0x0 0xF 14 0x1 0xD 22 0x2 0xD ———
———15 0x1 0xF 23 0x2 0xF ———
Table 374. FRM_RSLR33, Receive Signaling Link Register 33 (R/W) (continued)
Address*Bit Name F unction Reset
Default
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
271Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 377. FRM_TSLR0FRM _T SL R31, Transm it Signaling Link Registers 0 31 (R/W)
* See Table 376 for values of L and T.
Notes:Bit 0 = A, bit 1 = B, bit 2 = C, bit 3 = D, bit 5 = F, and bit 6 = G.
Register includes the following bits: F, Gselects 2, 4, 16 or no state signaling mode; A, B, C, Dsig na li ng data.
For DS1 links, address locations 1 through 24 will contain valid data.
F or CE PT l i nks, loca t ions 1 thr ough 15 an d 17 t hr oug h 31 will cont ai n v a li d dat a. Wri tes fr om th e syst em i nte r face to ad dres s 0 and 16 will
be accepted and stored in signaling registers. For CEPT links, inser ted time slot 16 X bits are written to locates 0.
Address*Bit Nam e Function R eset
Default
0x8LT00 6:0 FRM_TPSR0[6:0] Time Slot 0 Tr ansmit Sig naling Data. 0000000
0x8LT01 6:0 FRM_TPSR1[6:0] Time Slot 1 Tr ansmit Sig naling Data. 0000000
0x8LT02 6:0 FRM_TPSR2[6:0] Time Slot 2 Tr ansmit Sig naling Data. 0000000
0x8LT03 6:0 FRM_TPSR3[6:0] Time Slot 3 Tr ansmit Sig naling Data. 0000000
0x8LT04 6:0 FRM_TPSR4[6:0] Time Slot 4 Tr ansmit Sig naling Data. 0000000
0x8LT05 6:0 FRM_TPSR5[6:0] Time Slot 5 Tr ansmit Sig naling Data. 0000000
0x8LT06 6:0 FRM_TPSR6[6:0] Time Slot 6 Tr ansmit Sig naling Data. 0000000
0x8LT07 6:0 FRM_TPSR7[6:0] Time Slot 7 Tr ansmit Sig naling Data. 0000000
0x8LT08 6:0 FRM_TPSR8[6:0] Time Slot 8 Tr ansmit Sig naling Data. 0000000
0x8LT09 6:0 FRM_TPSR9[6:0] Time Slot 9 Tr ansmit Sig naling Data. 0000000
0x8LT0A 6:0 FRM_TPSR10[6:0] Time Slot 10 Transmit Signaling D a ta. 0000000
0x8LT0B 6:0 FRM_TPSR11[6:0] Time Slot 11 Transmit Signaling D a ta. 0000000
0x8LT0C 6:0 FRM_TPSR12[6:0] Time Slot 12 Transmit Signaling Data. 0000000
0x8LT0D 6:0 FRM_TPSR13[6:0] Time Slot 13 Transmit Signaling Data. 0000000
0x8LT0E 6:0 FRM_TPSR14[6:0] Time Slot 14 Transmit Signaling D a ta. 0000000
0x8LT0F 6:0 FRM_TPSR15[6:0] Time Slot 15 Transmit Signaling Data. 0000000
0x8LT10 6:0 FRM_TPSR16[6:0] Time Slot 16 Transmit Signaling Data. 0000000
0x8LT11 6:0 FRM_TPSR17[6:0] Time Slot 17 Transmit Signaling Data. 0000000
0x8LT12 6:0 FRM_TPSR18[6:0] Time Slot 18 Transmit Signaling Data. 0000000
0x8LT13 6:0 FRM_TPSR19[6:0] Time Slot 19 Transmit Signaling Data. 0000000
0x8LT14 6:0 FRM_TPSR20[6:0] Time Slot 20 Transmit Signaling Data. 0000000
0x8LT15 6:0 FRM_TPSR21[6:0] Time Slot 21 Transmit Signaling Data. 0000000
0x8LT16 6:0 FRM_TPSR22[6:0] Time Slot 22 Transmit Signaling Data. 0000000
0x8LT17 6:0 FRM_TPSR23[6:0] Time Slot 23 Transmit Signaling Data. 0000000
0x8LT18 6:0 FRM_TPSR24[6:0] Time Slot 24 Transmit Signaling Data. 0000000
0x8LT19 6:0 FRM_TPSR25[6:0] Time Slot 25 Transmit Signaling Data. 0000000
0x8LT1A 6:0 FRM_TPSR26[6:0] Time Slot 26 Transmit Signaling D a ta. 0000000
0x8LT1B 6:0 FRM_TPSR27[6:0] Time Slot 27 Transmit Signaling D a ta. 0000000
0x8LT1C 6:0 FRM_TPSR28[6:0] Time Slot 28 Transmit Signaling Data. 0000000
0x8LT1D 6:0 FRM_TPSR29[6:0] Time Slot 29 Transmit Signaling Data. 0000000
0x8LT1E 6:0 FRM_TPSR30[6:0] Time Slot 30 Transmit Signaling D a ta. 0000000
0x8LT1F 6:0 FRM_TPSR31[6:0] Time Slot 31 Transmit Signaling Data. 0000000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
272 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 378. FRM_TS LR32, Trans mit Si gn aling Link Register 32 (R/W)
*See Table 376 fo r value s of L an d T.
Address*Bit N am e Function Reset
Default
0x8LT21 15 Reserved. Must write to 0. 0
14 FRM_T_ATS16RFA Au tomat ic TS16 Remote Frame Alarm. Enab les automatic
transmission of a 1 in the Y-bit position in the tran smit path
when the receive path ha s lo st TS16 alignment.
0
13 Reserved. Must write to 0. 0
12 FRM_T_ASPLB Automatic Sp Loopback. When set, the Sp bi t transm itted
for each individual HG will be set to 0 when the HG ali gn-
ment is lost in the Rx pat h. Each Sp in the Tx path corre-
sponds to the same HG in the Rx path.
0
11 FRM_T_MSP Ma nua l S p. Used to manually force the transmission of a 0
in each of the Sp bit s of the HG s on each link. 0
10 FRM_T_ZCSM Zero Code Suppression Mode. When set to 1, the signal-
ing block wil l give an indication to the frame formatter for
each of the data channels. This indication should disabl e the
zero-code suppression for the associated t ime slot. Signal-
ing insertion must be enabled for FRM_T_ZCSM to take
effect. FRM_T_ZCSM will not work when byte sync mapping
is enabled.
0
9 FRM_T_VTSIGE VT Sign aling Enabl e. A 1 enables the transport of signaling
to the VT mapp er from the programmed s ignaling source in
byte sync mode. Byte sync mode cannot be enabled in c on-
junction with signaling insertion (bit 8, FRM_T_SIGI). The
robbed-bit p ositions can be stomped while in byte sync
mode but no signaling data can be inserted.
0
8 FRM_T_SIGI Signaling Insertion. A 1 enables the insertion of signaling
data i nto the Tx line. A 0 disable s the insert ion of signaling
data i nto the Tx line.
0
7Reserved. Must write to 0. 0
6 FRM_T_TXSTOMP Tx Path Stomping. F or DS1 l inks , t his bit indi cates to st omp
all robbed-bit signaling on voice time slots on the corre-
sponding link to 0. Stomping time slot 16 for CEPT links i s
done by inserting all ones using the signaling registers. A 1
will enable stomping. A 0 will disabl e stomping f or the corre-
sponding link.
0
5Reserved. Must write to 0. 0
4 FRM_T_HGEN Handling Group Enable. When set to 1 in com binat ion with
(bit 9, FR M _ T_V T SIGE ) , thi s bit indi cate s to the signaling
block that the signaling for this link is byte sync mappe d and
uses the handling group format.
0
3 FRM_T_MSIGFZ Manua l Signal in g F r ee ze . Used to manually halt the signal-
ing register updates when the source of signali ng data is
eith er the Rx system or the R x line. A 1 ha lt s t he updates .
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
273Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 3 78. FRM_TS LR32, Transmit Signaling Link Register 32 (R/W) (continued)
*See Table 376 fo r value s of L an d T.
Table 379. FR M_T SLR33, Transm it Signaling Link Register 33 (COR)
*See Table 376 fo r value s of L an d T.
12.10 Performanc e Monitor Pe r Link Re gisters
The following ta bles describe the functions of all bits in the regi s ter map. Counters are programmable to either roll-
over or saturate, and may be programmed to clear on rea d.
Registers are only provisionable to cl ear-on-read (COR) .
For each address, the register bits are identified as either read/write (R/W) or read only (RO), and the value of the
bits on reset are give n.
Table 3 80. Performance Monitor Per Link Register Addressing M ap
* L and P rep re sent hex idec im al digi ts u se d for abso lute ad dres sing in Table 382 through Table 401.
Address*Bit N am e Function Reset
Default
0x8LT21 2 FRM_T_FGSRC F and G Source. Indicates which entity will be the source for
the F an d G values used in handling the ABCD bits.
0 = Host programmed.
1 = Sourced from the Rx system interface.
The F and G programming can be implied by the system
interface only when u sing th e A SM CHI or the parallel sys-
tem interface.
0
1:0 FRM_T_SIGSRC[1:0] Signaling Data Source. Indicates which of the entities will
be the source for the ABCD b its.
00 = Signaling programmed by the host.
01 = Signaling extracted from the Rx line.
10 = Signaling received from the s ystem interface.
00
Address*Bi t Nam e Function Reset
Default
0x8LT20 15:4 Reserved. Must write t o 0. 0x000
3 FRM_T_TS16A Time Slot 16 Multifra me Alignment Status. A 0 indicat es
that currently, time slot 16 multiframe alignment i s not estab-
lished. A1 indica tes that c urre ntl y, time slot 16 multiframe
alignment has been established.
0
2 FRM_T_TS16AIS Time Slot 16 AIS Detecti on S tatus. If time slot 16 multi-
frame alignment is lost, this bit will reflect the detection of AIS
in time slot 16.
0
1:0 Reserved. Must write to 0. 00
A ddress Pins (ADDR15ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 LNK4 LNK3 LNK2 LNK1 LNK0 RXP = 0
TXP = 1 1 0 PM5 PM4 PM3 PM2 PM1 PM0
L* P*
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
274 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 3 81. Performance Monitor Per Link Register Address Indexing
Read: for link 1 on the receive p ath, the hexidecimal digit L is 0x0 and the he xidecimal digit P is 0x2.
Table 382. FRM_PMLR1, P erformance Monitor Link Register 1 (R/W)
*See Table 381 fo r value s of L an d P.
Tabl e 383. FRM_PMLR2, Performance Monitor Link Register 2 (R/W)
*See Table 381 fo r value s of L an d P.
Link L P Link L P Link L P Link L P
Receiv e Path (P is even)
1 0x0 0x2 8 0x1 0x0 16 0x2 0x0 24 0x3 0x0
2 0x0 0x4 9 0x1 0x2 17 0x2 0x2 25 0x3 0x2
3 0x0 0x6 10 0x1 0x4 18 0x2 0x4 26 0x3 0x4
4 0x0 0x8 11 0x1 0x6 19 0x2 0x6 27 0x3 0x6
5 0x0 0xA 12 0x1 0x8 20 0x2 0x8 28 0x3 0x8
6 0x0 0xC 13 0x1 0xA 21 0x2 0xA ———
7 0x0 0xE 14 0x1 0xC 22 0x2 0xC ———
———15 0x1 0xE 23 0x2 0xE ———
Transmit Path (P is odd))
1 0x0 0x3 8 0x1 0x1 16 0x2 0x1 24 0x3 0x1
2 0x0 0x5 9 0x1 0x3 17 0x2 0x3 25 0x3 0x3
3 0x0 0x7 10 0x1 0x5 18 0x2 0x5 26 0x3 0x5
4 0x0 0x9 11 0x1 0x7 19 0x2 0x7 27 0x3 0x7
5 0x0 0xB 12 0x1 0x9 20 0x2 0x9 28 0x3 0x9
6 0x0 0xD 13 0x1 0xB 21 0x2 0xB ———
7 0x0 0xF 14 0x1 0xD 22 0x2 0xD ———
———15 0x1 0xF 23 0x2 0xF ———
Address*Bi t Nam e Function Re set
Default
0x8LP80 15:0 FRM_PM_IM4[15:0] Pe rf ormance Mo nitoring Registe r FRM_PMLR 4 I nter-
rupt Mask. A 1 masks the corres ponding status bit in the
interrupt status registers (Table 386) from generating an
interr upt. A 0 allows a n interrupt to be generated.
0xFFFF
Address*Bi t Nam e Function Res et
Default
0x8LP81 15:0 FRM_PM_IM5[15:0] Performance Monitor Register FRM_PMLR5 Interrupt
Mask. A 1 masks the corresponding status bit i n interrupt
status registe rs (Table 386) from generating an interrupt. A
0 allows a n interrupt to be generated.
0xFFFF
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
275Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 384. FRM_PMLR3, P erformance Monitor Link Register 3 (R/W)
*See Table 381 fo r value s of L an d P.
Address*Bit Name Function Reset
Default
0x8LP82 15:11 Reserved. Must write to 0. 00000
10:7 FRM_MHGALIGN[3:0] Handling Group Alignment Interrupt Mask. A 1 masks
the corresponding status bit in the interrupt status register
(Table 400) from generating an interrupt. A 0 allows an
interrupt to be generated.
0xF
6 FRM_MSEFS Severely Errored Fram e Interrupt Mask. A 1 masks the
correspondi ng status bit in the interrupt status register
(Table 400) from generating an interrupt. A 0 allows an
interrupt to be generated.
1
5FRM_MFECEPT Functional Element Status Interrupt Mask. A 1
mask s any and all of the FE status bits in Table 394 and
Table 395 from generating an interru pt. A 0 allows an
interrupt to be generated.
1
4:0 FRM_PM_IM6[15:0] Perfor mance Monitor Register FRM_PMLR6 Interrupt
Mask. A 1 masks th e corresponding status bit in the inter-
rupt st atus register (Table 387) from generating an inter-
r upt. A 0 allows an interrupt to be generated.
0x001F
Table 385. FRM_PMLR4, P erformance Monitor Link Register 4 (COR)
Address*Bit Nam e F unction Re set
Default
0x8LP83 15 FRM_SLIPO Receive Elastic Store Slip Overflow. A 1 indicates that the
receive elastic store performed a control slip due to an ela stic
store ov erflow c ondition. This signal is set when the error occurs
and is cleared when it is read, if there is not another error during
the read.
0
14 FRM_SLIPU Recei ve Elastic Store Slip Underflow. A 1 indicates that the
receive elastic store performed a control slip due to an ela stic
store underflow condition. T his signal is set when the error
occurs and is cleared when it is read, if there is not another
error during the read.
0
13 FRM_OOF Out O f Frame. A 1 indicates that the receive framer has lost
frame alignme nt and is cu rrently searching for a new fra me
alignment. Se ction 21.6.1 L os s of Frame Alignment Criteria on
page 488 lis ts t he loss of frame c rite r ia for the framing bit.
(T1.231 section 6.1.2.2.1, G. 706 section 4.1). Excessi ve
(exceeding the provisionable CRC error count) CR C errors may
optionally cause a reframe.
In ESF or J-ES F, more than 320 CRC-6 errors in 1 second
result i n loss of frame alignment. The CRC error count is p r ov i-
sionable.
In the CEPT CRC-4 multiframe formats, more than 915 CRC-4
errors in 1 second result in loss of frame alignmen t. (G.706 se c-
tion 4.3.2). The CRC error count is provisionabl e.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ju ne 2001
276 Agere Sy stem s Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
12 28-Channel Framer Registers (continued)
*See Table 381 fo r value s of L an d P.
0x8LP83 12 FRM_LSFA Loss of Si gnaling Frame Align m ent. DS1: A 1 indicates that
the receive framer is in a loss of signaling superframe alignment
in the
SLC
-96 framing f ormat. This bit is a 0 in all other DS1
framing modes.
SLC
-96 signaling alignment is assumed to hav e
been lo st when multiframe al ignment is lost.
CEPT: A 1 indicat es that the los s o f the CEPT time slot 16
channel associated signaling multiframe structure. CEP T time
slot 16 multiframe alignment is assumed lost when two consec-
utive time slot 16 multiframe alignment patterns (0000) are
received in error, or when time s lot 16 is all zeros for one or two
multiframes. Time slot 16 multiframe alignment is assumed to
have occurred when the fir st time slot 16 m ultiframe alignment
pattern is found in time slot 16 and optionally, the precedin g
time slot 16 contained at least one. (G.732 section 5.2; O.162
section 2.1.3.) This i s the time slot 16 align input from the sig-
naling block.
0
11 FRM_OAIS O the r Al arm I ndi ca ti on Si gn als . DS1 AIS-CI: A 1 indicates the
receive framer detected alarm i ndication signal customer instal-
lation (AIS-CI). AIS-CI is a repetitive pattern wi th a 1.2 6 s
per iod. It consists of 1.11 s of unframed all ones interleaved
with 0.15 s of all ones mod ified by the A IS-CI signature pattern.
The A IS s ignature pattern is 01111100 11111111 (transmitted
right-to-left at 3 86-bit inter vals). It takes 4 ms to detect AI S-CI.
(T1.231 section D.1.3.)
CEPT RT S16AIS: A 1 indicates the receive framer detected
time slot 16 AIS. Time slot 16 AIS is defined to be fewer than
three zeros in each of two consecutive time slot 16 multiframe
per iods, (G775 section 5.1.1). This i s the tim e slot 16 AIS input
from the signaling block.
0
Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued)
Address*Bi t Name Fun ction Reset
Default
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
277Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued)
*See Table 381 fo r value s of L an d P.
Address*Bit Nam e F unction Re set
Default
0x8LP83 10 FRM_AIS Alarm Indi cation Signal. A 1 ind icates the framer is currently
receiv ing an AIS pattern or receiving an AIS indication on the
TDM bus from the mapper.
DS1: Opti on 0: AIS occurs upon detection of an unframed sig-
nal with a ones density of at least 99.9% for a time between
3 ms and 75 ms. AIS is removed if the signal does not meet the
99.9% ones density or the unframed criteria for a period
between 3 ms and 7 5 ms. (
ANSI
T1.231 section 6.1.2.2.3,
T1.403 section H, G.775 sec tion 5.4.)
Option 1: AIS is detected if the signal has one or less zeros in
24 frames (3 ms/4632 bits). AIS is removed i f the signal has tw o
or more zeros in 24 frames. (
ANSI
G.775 section I.2.)
CEPT: Option 0:AIS is detected when loss of frame alignme nt
occurs and there are two or less zeros in a double frame pe riod
(512 bits per double frame period). AIS is cleared on receipt of a
signal not conforming to the AIS defect criteria. (
ANSI
G.775
section I .2; G. 965 s ection 16.1.2.)
Option 1: AIS is detected when there are two or fewe r zeros in
each of two consecutive double fra me p eriods (512 bits per
double frame period). A I S is cleared w hen ea ch of two consecu-
tive double frame periods contain three or more zeros or the
frame alignme nt signal (FAS) is found. (
ANSI
G.775 section
5.2.)
O pt i on 2 : AIS i s det e ct ed w he n t h e re ar e t hr e e o r le ss zero s in a
four frame period (0.5 ms/1024 bits) and th e signal i s out o f
frame. AIS is cleared i f t her e are fo ur or more zeros in a four-
frame period or the signal is in frame alignment. (
ANSI
G.775
section I.2.)
Option 3: AIS is detected when there are one or fewer zeros in
each of two consecutive double fra me p eriods (512 bits per
double frame period) a nd the FAS i s not dete cted. AIS is
cle ared when each of t wo c onsecutive doubl e fr ame periods
contain three or more zeros or the frame alignment sig nal (FAS)
is found . (
ANSI
G.775 section I.2.)
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
278 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 385. FRM_PMLR4, Performance Monitor Link Regist er 4 (COR) (continued)
*See Table 381 fo r value s of L an d P.
Address*Bi t Name Fun ction Reset
Default
0x8LP83 9 FRM_ORAI Other Remote Alarm Indi cation. A 1 indicates the receive
framer detected an other remote (yellow) alar m. This bit is a 0 in
the modes not indicated below. This bit is s et when the alarm is
detected, and is cleared on a read of this register if the alarm is
not detected during the read.
J-D4 RJYA: The frame bit in frame 12 is a 1 two out of three
consecutive t imes.
ESF, J-ESF RAI-CI:
Option 0: A 1 indicates the receive fram er detected remote
alarm indication cust omer installation (RAI-C I) in the ESF data
link. RAI-CI is a repetitive pattern with a 1.08 second period. It
consists of 0. 99 s of the unscheduled message 00000000
11111111 (RAI in the data link) interleaved with
0.09 s of the RAI-CI signature pattern. The RAI-CI signature
pattern is 00111110 11111111 (transmitted rig ht-to-left). (
ANSI
T1.231 section D.1.2.)
Option 1: A 1 indicates the receive framer detected RAI-CI in
the ES F data link. RAI-CI is a repetitive pattern wi th a 1.0 8 s e c -
ond period. I t consists of 0.99 s of all ones (RAI in the data link)
interleaved with 0.09 s of the RAI-CI signature pattern. The RAI-
CI signature pattern is 00111110 11111111 (transmitted right-
to-left). (
ANSI
T1.231 section D.1.2.)
CEPT RTS16 MFA : Bit 6 of time slot 16 of signaling frame 0 is a
1 for three consecut ive occurrences. The alarm is considered
inactive when bit 6 of time slot 16 of signaling frame 0 is 1 in
less than two consecutive occasions. This is true if time slot 16
is not carrying a payload, e.g., common channel signaling. If
time slot 16 is used f or common channel s ignaling, bit 6 will be
continuously 1. In this case, it will b e possible to inhibit the
remote alarm to prevent false alarm conditions. (O.162 section
2.1.5.) This is t he y - bit input from the signaling blo ck.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
279Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued)
*See Table 381 fo r value s of L an d P.
Address*Bit Nam e F unction Re set
Default
0x8LP83 8 FRM_RAI Remote Alarm Indication. A 1 indicates the receive framer
detected a remote (yellow) alarm o r det ec ted an RAI i ndication
on the T D M bus from the mapper.
D4: Bit 2 of all time slots is a 0 for one fra me. (
ANSI
T1.403 sec-
tion 9.1.)
DDS: Bit 6 of time s lot 24 is a 0 for 12 frames.
ESF: Option 0: An alternating pattern of eight ones foll owe d by
eight zeros in the ESF data link for 10 cons ec utive times. (
ANSI
T1.403 section 9.1.)
Option 1: A pattern of all ones in the ESF data link for 10 con-
secutive times.
CEPT Basic Frame: RAI is activated when bit 3 of the NOTFAS
frame is 1 RA C consecutive times. RAI is deactiv ated when bit 3
of the NOTFAS fr a m e is a 0 RDC consecu t iv e tim es. RAI ac t iv a-
tion co unt (RAC) and RAI dea ctivation count (RDC) are provi-
sionable in Section Table 313. FRM_PMGR3, Performance
Monit or Global Register 3 (R/W) on page 248.
Option 0: Bit 3 of the NOTFAS frame is a 1 one consecutive
time. RAI is inac tive when bi t 3 is set to a 0.
Option 1: RAI is set on three consecutive ones and deactivated
on three cons ec utive zeros.
Option 2: Bit 3 of the NO TFAS frame is a 1 four consecutive
times. RAI is inact ive when bit 3 is set to a 1 in less than two
consecut ive occasions. (O.162 s ection 2.1.4.)
Option 3: RAI is set on five consecutive ones and deactivated
on five consecutive zeros. (ETS 300.417-1-1.)
CEPT CRC-4 Multiframe: Reception of 1 bit A with a content of
1. (G .965 section 16.1.2)
0
7 FRM_SA600X1E Sa6 = 00x1 Event. This bit indicates detection of an Sa6 = 00x1
event. The S a6 code is detected synchronously to the CRC-4
multiframe and is no t counted during loss of CRC-4 multiframe
alignment. This det ection is not qualified by Sa5 = 1, unlike bits
6 and 8 of S ec tion Table 394. FRM_PM LR13, Perform anc e
Monitor L ink Re gister 13 (COR) on page 286.
0
6 FRM_SA6001XE Sa6 = 001x Event. This bit indicates detection of an Sa6 = 001x
event. The S a6 code is detected synchronously to the CRC-4
multiframe and is no t counted during loss of CRC-4 multiframe
alignment. This detection is not qualified by Sa5 = 1, unlike bits
7 and 8 of Table 394
.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
280 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
* See Table 381 for values of L and P.
Tabl e 385. FRM_ PMLR4, Performance Monitor Link Register 4 (COR) (continued)
Address*Bit Name Function Reset
Default
0x8LP83 5 FRM_CRCTX CRC-4 Multiframe Alignment Timer Expired. A 1 indicates
th at either the 100 ms or the 400 ms interworki ng timer expired.
It is only active immediately after bas ic fram e alignment is f ound
in CEPT CRC-4 modes. This signal is set when the error
occurs, and is cleared when it is read if there is not another
error during the read.
0
4 FRM_LTS0MFA Loss of Time Slot 0 CRC-4 Multifr ame Alignment. A 1 indi-
cates the a bsence of CRC-4 multiframe alignment. This bit is
set when basi c fram e alignment has been found and multiframe
alignment is being searched for, or when mul tiframe alignment
is lost but basic frame alignment remains good, or when multi-
frame a lignment is lost.
Note: This is a stored version of the status. It is c leared after
one good multiframe bit is seen.
CRC-4 multifram e alignment is assumed lost when there are
three consecutive errors i n the CRC-4 mult iframe alignment bits
(bit 0 of not-F A S frames 1, 3, 5, 7, 9, and 11). Loss of CRC-4
multiframe alignment may optionall y cause a research for CRC-
4 multiframe alignment without affecting t he current basic frame
alignment.
CEPT with CRC-4 only. In all other modes, this bit is a 0.
0
3 FRM_TS0MFABE Time Slot 0 Multiframe Alignment Signal Bit Error. A 1
indicates that the rec eive framer detected an error in the CRC-4
multiframe alignment signal. A 0 indicates no errors . Bit 0 of
NO TFAS frames (1, 3, 5, 7, 9, and 11).
0
2FRM_SESSeverely Errored Secon d (G.826 Annex B). A 1 indicates the
receive framer detected a severely errored second. The events
that can cause an errored second are provisionable for DS1
links in Table 317 and for CEPT links in Table 320. The severely
errored second threshold is provisionable; DS1-SF links in
Table 314 on page249 , DS1- E SF links in Table 316 on
page 249 and CEPT links in Table 319.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
281Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 385. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued)
*See Table 381 fo r value s of L an d P.
Address*Bit Nam e F unction Re set
Default
0x8LP83 1 FRM_BES Burs ty Errored Seco nd. A 1 indicates the receive framer
detected a bursty errored second. The ev ents that can cause an
errored s econd are provisionable for D S1 lin ks in Tab le 317 on
page 249 an d for CEPT links in Table 320 on page 250 . T he
severely errored second threshold is provis ionable; DS1-SF
lin ks in Table 314 on page249 , DS1-ESF links in Table 316 on
page 249 an d CE PT links in Table 319 on page250 .
BES is not valid in any CEPT mode.
Note: The SES threshold must always be greater than the ES
threshold because BES li es in between (i .e., ES < BES <
SES).
0
0FRM_ESErrored Second (G.826 Annex B). A 1 indicates the receive
framer d etected an errored sec ond. T he even ts that can cause
an errored second are provisionable for DS1 links in S ec ti on
Tabl e 317. FRM_PMGR7, Performance Monitor Global Register
7 (R/W) on page 249 and for CEPT links in Section Table 320.
FRM_PMGR10, P erf ormance Monitor Global Register 10 (R/W)
on page 250.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
282 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 386. FRM_PMLR5, Performance Monitor Link Regist er 5 (COR)
*See Table 381 fo r value s of L an d P.
Address*Bit Nam e Function Reset
Default
0x8LP84 15:14 Reserved. Must write to 0. 0
13 FRM_LFV Line Form a t Viol ation. A 1 indicates the rec eive framer detected
a bipolar line codin g or excessive zeros vio lat ion. The p erfor -
mance monitor counts all pulses on the BPV signal from the frame
aligner block . This s ignal is s et when the error occ urs and is
cleared when it is read, if there is not another error du r ing the
read. (G.703 Annex A and O.161 section 2.)
0
12 FRM_FBE Frame-Bit Erro red. A 1 indicates the receive framer detected a
frame bit or frame alignment pattern error. For SF f ormats, either
FT, or FT and FS bits are used and are pr ogr ammabl e. T hi s signal
is set when the error occurs and is cleared when it is read, if the r e
is not another error during the read. In DDS, FT and FS are always
counted as FBEs. The PMON is, however, con figurable as to
whether T S 24 is also counted as a FBE. In CEPT, FAS words can
only generate one FBE .
0
11 FRM_CRCE CRC Errored. A 1 indicates the receive framer detected a CRC
error. I t is the occurrence of a received CRC code that is no t iden-
tical to the locally calculated code . This signal is set when the error
occurs and is cleared when it is read, if there is n ot another error
during the read. This signal is only v alid in ESF(G.704 s ection A.1)
and CEPT CRC-4 (G.70 4 section A.3) modes.
0
10 FRM_ECRCE Excessive CRC Errors. A 1 indicates the receive framer detected
an excessive CRC error condition. This signal is set when the
error occurs and is cleared when it is read, if there is not another
error during the read. This signal i s onl y valid in ESF and CEPT
CRC-4 modes. The CRC error count is provisionable. In ESF, an
e xcessive CRC error is defined as 320 CRC errors in one sec-
ond. In CEPT, an excessi ve CRC error is def ined as 915 CRC
errors i n one second.
0
9FRM_REBITReceived E Bit = 0. A 1 indicates the receive framer detected an
E bit = 0 in the CEPT CRC-4 modes. This signal is set when the
error occurs and is cleared when it is read if there is not anot her
error during the read. This signal is onl y va lid in CEP T CRC-4
modes.
0
8 FRM_CREBIT Contin uous Received E Bits. A 1 indicates the detection of a five
second interval containing 991 E bit = 0 events in each second.
The E - bit error count is provisionable. The defaults of 991 are
shown.
0
7FRM_LTFALoss of Transm it Frame Alignment. DS1: Always 0.
CEPT FRM_LTFA: A 1 indicates that the CEPT bifra me a lignment
pattern (alternating 0, 1 in bit 2 of time slot 0) receiv ed from the
system is in error. This alignmen t pattern is required when trans-
mitting the Si or Sa bits transparently. Detection of this condition
may opt iona lly b e disabled.
0
6FRM_NFANew Frame Alignment. A 1 indicates th e rec eive framer has
reframed. 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
283Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 386. FRM_PMLR5, Performance Monitor Link Register 5 (COR) (continued)
*See Table 381 fo r value s of L an d P.
Address*Bit Nam e Function Rese t
Default
0x8LP84 5 FRM_SA7LID Sa7 Link Identification. A 1 indicates that a sequence was fou nd
such that two out of three Sa7 bits are 0. (G.965 secti on 16.1.2.) 0
4 FRM_LLBON Lin e Lo op bac k O n Co de Det ec t. A 1 indicates the receiv e framer
detected the DS1 l ine loopback enable code. The activation signal
consis ts of repetitions on th e pattern 00001 wi th the framing bits
replacing the pattern bits. (T1.403 section 9.3.1.1.) Only applica-
ble in DS1 SF formats.
0
3 FRM_LLBOFF Line Loopback Off Code Detect. A 1 indicates the receive framer
detected the DS1 line loopback disable code. The deactivation sig-
nal consists of rep etitions on the pattern 001 with the framing bits
replacing the pattern bits. (T1.403 section 9.3.1.2.) Only applica-
ble in DS1 SF formats.
0
2FRM_AUXPAuxiliary Pattern. DS1 IDLEID: Each of the 24 time slots in a
frame contain the DS1 idle signal, 00010111. (T1.231 s ec tion
6.4.8.)
CEPT AUX P: A 1 indicates the detection of a val id auxiliary pa t -
tern (unframed 10 . . . pattern) in the CEPT mode . When in loss o f
frame alignment state, a n auxiliary patt ern is detected when more
than 255 10 patterns are detected in a 512-bit interval. The alarm
is disabled when three or more non-10 patterns a r e detec ted in a
512-bit interval. The s earc h for AUX P is synchro n ized t o th e fi rst
alternating 10 pa ttern found. (ETS 300 233 section 8.2.2.2, O.151
section 2.4.)
0
0x8LP84 1 FRM_LOS Lo s s of Sign a l. A 1 indicates that the receive line decoder has
detecte d a loss of signal condition. T his s tatu s i s only v alid in the
dual-rail mode of operation.
DS1: Loss of signal occurs when, for 100 contiguous pulse posi-
tions, there are no pul ses of eithe r the positive or negative polarity
at the line interface. The loss of signal defect is removed upon
detecting 13 pulses over 10 0 pulse positions following the receipt
of a pulse, and there is no 100 pulse position interval where there
were no pulses. (T1.231 s ection 6 .1.2. 1.1, G.775 section 4.3.)
CEPT: Loss of signal occurs when, for 100 consecutive pulse
positions, there are no pulses of either the positive or negative
polarity at the line interface. The loss of signal defect is r emoved
when there are puls es in a 100 consecutive pulse positi on period
(G.775 section 4.2.). Note that the defect is set and cleared at the
end define d sample period.
0
0FRM_BOMRBit Or iented Message Received . A 1 indicates a B OM has been
received in th e ESF data link bits and FRM_RBOM[7:0]
(Table 399) should be read. A BOM i s defined in
ANSI
T1.403 as a
0xxxxxx0 11111111 pattern (received right-to-left) repeated
10 consecutive t imes. The 0 x x xxxx0 pattern is saved in the
FRM_RBOM[7:0] regi ster (Table 399 on page287 ) upon t he
10th occurrence of the BOM message.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
284 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 387. FRM_PMLR6, Performance Monitor Link Regist er 6 (COR)
*See Table 381 fo r value s of L an d P.
Tabl e 388. FRM_ PMLR7, Performance Monitor Link Register 7 (COR)
*See Table 381 fo r value s of L an d P.
Address*Bi t Name Fu nction Reset
Default
0x8LP85 15:5 Reserved. 0
4 FRM_FDL_RAI ESF_FDL_RAI/Yellow Alarm. A 1 indicates the receive
framer detected the ESF_FDL_RAI/yell ow alarm code in the
payload. T his code is de fined in
ANSI
T1.403-1995 as a
00000000 11111111 pattern in the fa cility data link (received
r igh t-to-left). T his si gnal is set when the patte rn is de tected
(10 consecutiv e times) and is cleared when it is read if the pat-
tern is n o longer being detect ed.
0
3 FRM_FDL_PLBON ESF_FDL Payload Loopback Enab l e. A 1 indicates the
receive framer detected the ESF_FDL pa yload loopback
enable code in the payload. This code is defined in
ANSI
T1.4 03-1995 as a 00010100 11111111 pattern in the
facilit y data link ( r eceived right -t o- le f t ). This si gnal is set when
the pattern is dete cte d (10 consecutive times) and is cleared
w hen it is read if the pattern is no longer being det ected. T his
could also be set by FF_PLB (manual PLB indication) input.
0
2 FRM_FDL_PLBOFF ESF_FDL Payload Loopback Di sa bl e. A 1 indicates the
receive framer detected the ESF_FDL pa yload loopbac k d i s-
a ble code in the payload. This code is defined in
ANSI
T1.4 03-1995 as a 00110010 11111111 pattern in the
facilit y data link ( r eceived right -t o- le f t ). This si gnal is set when
the pattern is dete cte d (10 consecutive times) and is cleared
w hen it is read if the pattern is no longer being det ected.
0
1 FRM_FDL_LLBON ESF_FDL Line Loopback Enable. A 1 indicates the receive
framer detecte d the ESF_FDL line loopback enable code in
the payload. This code is defined in
ANSI
T1. 403-1995 as a
00001110 11111111 pattern in the fa cility data link (received
r igh t-to-left). T his si gnal is set when the patte rn is de tected
(10 consecutiv e times) and is cleared when it is read if the pat-
tern is n o longer being detect ed.
0
0 FRM_FDL_LLBOFF ESF_ FDL Line Loopback Disable. A 1 indicates the receive
framer detecte d the ESF_FDL line loopback disable code in
the payload. This code is defined in
ANSI
T1. 403-1995 as a
00111000 11111111 pattern in the fa cility data link (received
r igh t-to-left). T his si gnal is set when the patte rn is de tected
(10 consecutiv e times) and is cleared when it is read if the pat-
tern is n o longer being detect ed.
0
Address*Bi t Name Function Reset
Default
0x8LP86 15:0 FRM_BPV[15:0] Bipolar Violation Counter. This reg ister contains the 16-bit
count of received bipolar violations, line code violations, and
excessive zeros.
0x0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
285Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 389. FRM_PMLR8, Performance Monitor Link Register 8 (COR)
*See Table 381 fo r value s of L an d P.
Tabl e 390. FR M_PMLR9, Performance Monitor Link Register 9 (COR)
*See Table 381 fo r value s of L an d P.
Table 391. FRM_PMLR10, Performance Monitor L in k Register 10 (COR)
*See Table 381 fo r value s of L an d P.
Table 392. FRM_PMLR11, Performance Monitor L in k Register 11 (COR)
*See Table 381 fo r value s of L an d P.
Table 3 93. FRM_PMLR12, Performance Monitor Link Regi ster 12 (COR)
*See Table 381 fo r value s of L an d P.
Address*Bit Name Function Reset Defau lt
0x8LP87 15:0 FRM_FBEC[15:0] Frame Bit Error Coun ter.
DS1: This reg ister contains the 16-bit count of received
frami ng bit errors. Framing bit errors are not counted dur-
ing loss of frame alignment. (T1.231 section 6.1.1.2.2.)
CEPT: This register contains the 16-b it count of received
frame alignment signal errors. Optionally, bit 2 of non-FAS
fram es can be counted.
Note: A FAS with errors in two or more bit positions is
only counted once.
0x0
Address*Bit Name Function Reset Default
0x8LP88 15:0 FRM_CEC[15:0] CRC Err or Counter . T his register contains t he 16-bit count
of receiv ed CRC errors. CRC errors are not counted during
loss of CRC mult iframe alignment.
0x0
Address*Bit Name Function Reset Default
0x8LP89 15:0 FRM_REC[15:0] Rece ive E-bit Counter. This register contains the 16-bit
count of received E bit = 0 events. E bit = 0 eve nts are n ot
counted during loss of CEPT CRC-4 multiframe alignment.
0x0
Address*Bit Name F un ction Reset Default
0x8LP8A 15:0 FRM_CETE[15:0] Sa6 = 00x1 Event Co un ter. This register con tains the
16-bit cou nt of received Sa6 = 00x 1 events. The Sa6
code is detected synchronously to the CRC-4 multiframe
and is not counted during loss of CRC-4 multiframe align-
ment. T his detec tion is not qualified by S a5 = 1.
0x0000
Address*Bit Name Function Reset Default
0x8LP8B 15:0 FRM_CENT[15:0] Sa6 = 001x Event Counter. This register contains the
16-bit count of receiv ed Sa6 = 001x ev ents. The Sa6 code
is detected synchronously to the CRC-4 multiframe and is
not counted during loss of CRC-4 multiframe alignment.
This detection is not qualified by S a5 = 1.
0x0000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
286 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
The regis ter in Table 394 provides a status indication of functional elements (FE) exchanged between the access
digital section and the exchange te rmination (ET) as de fined in ETS 300 233 sec tion 9.3 and T a bl e 2. T he s e are
decoded from the A, Sa5, and Sa6 bits. The Sa6 code words are synchro nized to the CRC-4 multiframe.
Table 394. FRM_PMLR13, Performance Monitor Link Regi ster 13 (COR)
*See Table 381 fo r value s of L an d P.
Address*Bit Name Function
(A, SA5, S A6[1:4]) Reset
Default
0x8LP8C 15:14 Reserved. Mu st write to 0. 0 0
13 FRM_FE_OP Defect FCET in the ET or FCDLd in the Digital Link Between V3
and V3 or Defect FCDLu Between the V3 and V3. AIS. 0
12 FRM_FE_N Recepti on of AIS at V3 Reference Point of LT and FC4 Simulta-
neously. (0, 1, 1111.) 0
11 FRM_FE_M Reception of AIS at V3 Reference Point of LT (Reaction to FCDL
or FCET). (1, 1, 1111.) 0
10 FRM_FE_L LOS at Line Side of LT (FC1). AUXP. 0
9FRM_FE_KLos s of Power at NT1 and LOS/LFA a t TE Simult aneously. (1, 1,
1000.) 0
8FRM_FE_ILoss of Power at NTT. (0, 1, 1000.) 0
7FRM_FE_HSimultaneous FC3 and FC4. (0, 1, 1110.) 0
6FRM_FE_GLOS/LFA at T Reference Point of NT1. (0, 1, 1100.) 0
5FRM_FE_FLOS/LFA at V3 Reference Point of ET. (1, 0, 0000. ) 0
4FRM_FE_ELOS at Line Side of NT1 or at V3 Reference Po int of LT Only. (1,
1, 1 110. ) 0
3FRM_FE_DLOS/LFA at TE. (1, 1, 00xx.) 0
2FRM_FE_CUnintentional Loopback. (x, 0, xxxx.) 0
1FRM_FE_BNorm al Operation of t he ET. (x, 0, 0000.) 0
0FRM_FE_ANormal Operation of t he D S. (x, 1, 00xx.) 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
287Agere Systems Inc.
12 28-Channel Framer Registers (continued)
The regis ter in Table 395 provides a status indication of functional elements ( FE) exchanged between the access
digital section and the e xchange termination (ET) as defined in ETS 300 233 sec tion 9.3 and Tables 3 and 4 .
Table 395. FRM_PMLR14, Performance Monitor Link Regi ster 14 (COR)
*See Table 381 fo r value s of L an d P.
Table 396. FRM_PMLR15, Performance Monitor L in k Register 15 (COR)
*See Table 381 fo r value s of L an d P.
Table 397. FRM_PMLR16, Performance Monitor L in k Register 16 (COR)
*See Table 381 fo r value s of L an d P.
Table 398. FRM_PMLR17, Performance Monitor L in k Register 17 (COR)
*See Table 381 fo r value s of L an d P.
Table 399. FRM_PMLR18, Performance Monitor L in k Register 18 (COR)
*See Table 381 fo r value s of L an d P.
Address*Bit Name Function
(A, Sa5, Sa6[1:4], E) Reset
Default
0x8LP8D 15:9 Reserved. Must write to 0. 0x000
8FRM_FE_YSimultaneous Occurrence of FE_W and F E_ X. (x, 1 , 0011, x.) 0
7FRM_FE_XCRC Error Detected at T Reference Point of N T1. (x, 1, 0 010, x. ) 0
6FRM_FE_WCRC Error Reported fro m T E . (x , 1, 0001, x. ) 0
5FRM_FE_VCRC Error Information from ET. (x, 0, 0000, 0.) 0
4FRM_FE_UCRC Error Report from NT1 Line S i de. (x, 1, xxxx, 0.) 0
3FRM_FE_TLoo pback Rel ease Command . (x, 0, 0000, x.) 0
2FRM_FE_SLoopback Ack nowledge. (1, 0, xxxx, x.) 0
1FRM_FE_RLoopb a ck 2 Command. (1, 0, 1010, x.) 0
0FRM_FE_QLoo pback 1 Co mm and . (1, 0, 1111, x.) 0
Address*Bit Name Function Reset
Default
0x8LP8E 15:0 FRM_ESC[15:0] Errored Second Counter. This register contains the 16-bit count
of errored seconds. 0x0000
Address*Bit Na me Fun ction Reset
Default
0x8LP8F 15:0 FRM_BESC[15:0] Bursts Errored Second Counter. This register contains the
16-bit count of bursty errored seconds. 0x0000
Address*Bit N am e Function Reset
Default
0x8LP90 15:0 FRM_SESC[15:0] Severely Err ored Second Counter. This regis ter contains the
16-bit count of se verely errored seconds. 0x0000
Address*Bit Nam e Function Reset
Default
0x8LP91 15:8 Reserved. Must write to 0. 0 x00
7:0 FRM_RBOM[7:0] Received Bit-Oriented Messa ge (0xxxxxx0). Note that only
storing the 8 bits that contain actual data, the first eight ones are
not stored.
0x00
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
288 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 400. FRM_PM LR19, Performance Monitor L ink Register 19 (COR)
This register a pplies to the receive path only.
*See Table 381 fo r value s of L an d P.
Table 401. FRM_PMLR20, Performance Monitor L in k Register 20 (COR)
*See Table 381 fo r value s of L an d P.
12.11 R ece ive Fac ility Data Lin k Configur ation and Sta tus Regi sters
Table 4 02. Receive Facili t y Data Link Register A ddressing Map
* L and R represent hexidecimal digits u sed for absolu t e a ddr ess ing in Table 404 through Table 408.
Address*Bit Name Function Reset
Default
0x8LP92 15:5 Reserved. Must write to 0. 0x000
4:1 FRM_HGALIGN[3:0] Indicates HG Alignment f or the Associated HG on Each
Link. The status will be given for a particular link a ny time
that link appears on the TDM bus. A 1 in any bit position indi-
cates that al ignm ent ha s been achieved. 0 indicates al ign-
ment is lost or handl ing groups are disabled.
0000
0FRM_SEFSSeverely Errored Frame Status. (See
ANSI
T1.403
9.4.2.2.2 for ESF and T1.231 6.1.2.2.2 fo r SF.) 0
Address*Bit Name Fu nction R eset
Default
0x8LP93 15:13 Reserved. Must write to 0. 000
12:7 FRM_G[6:1] PRM Message Bit G6G1. 0
6FRM_SEPRM Message Bit SE. 0
5FRM_FEPRM Message Bit FE. 0
4FRM_LVPRM Message Bit LV. 0
3FRM_SLPRM Message Bit SL. 0
2FRM_LBPRM Message Bit LB. 0
1FRM_N1PRM Message Bit N1. 0
0FRM_N0PRM Message Bit N0. 0
Address Pins (ADDR15ADDR0)
151413 12 11 10 9 8 7654 3 2 1 0
00LNK4LNK3LNK2LNK1LNK0 RXP = 0 1100RDL3RDL2RDL1RDL0
L* R*
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
289Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 403. Rece ive Path Facility Data Link Registers Address Indexing
Read: for link 1, the hexidecim al digi t L is 0x0 and the hexidecimal digit R is 0x2.
Table 404. FRM_RFDLLR1FRM_RFDLLR5, Receive FDL Link Registers 1 5 (RO)
*See Table 403 fo r value s of L an d R .
Table 405. FR M_RF DLLR6, Receive FDL Link Register 6 (R/W)
*See Table 403 fo r value s of L an d R .
Table 406. FR M_RF DLLR7, Receive FDL Link Register 7 (RO)
*See Table 403 fo r value s of L an d R.
Link L R Link L R Link L R Link L R
1 0x0 0x2 8 0x1 0x0 16 0x2 0x0 24 0x3 0x0
2 0x0 0x4 9 0x1 0x2 17 0x2 0x2 25 0x3 0x2
3 0x0 0x6 10 0x1 0x4 18 0x2 0x4 26 0x3 0x4
4 0x0 0x8 11 0x1 0x6 19 0x2 0x6 27 0x3 0x6
5 0x0 0xA 12 0x1 0x8 20 0x2 0x8 28 0x3 0x8
6 0x0 0xC 13 0x1 0xA 21 0x2 0xA ———
7 0x0 0xE 14 0x1 0xC 22 0x2 0xC ———
———15 0x1 0xE 23 0x2 0xE ———
Address*Bit Name F unction Reset
Default
0x8LRC0 15:0 FRM_RXS0[15:0] Rx Stack Data 0. 0x0
0x8LRC1 15:0 FRM_RXS1[15:0] Rx Stack Data 1. 0x0
0x8LRC2 15:0 FRM_RXS2[15:0] Rx Stack Data 2. 0x0
0x8LRC3 15:0 FRM_RXS3[15:0] Rx Stack Data 3. 0x0
0x8LRC4 15:0 FRM_RXS4[15:0] Rx Stack Data 4. 0x0
Address*Bit Na m e Fun ction Reset
Default
0x8LRC5 15:1 Reserved. Must write to 0. 0x0
0 FRM_RXCRCSM CEPT CRC-4 Stack Mode. When se t to 0, the Sa bits will
be stored based on multiframe alignment. If multiframe
alignment is lost, the stack will not be made avai lable to the
host. W hen set to 1, the Sa bits will be stored based on an
arbitrary multiframe al ignment when only basic frame
alignment can be established.
0
Address*Bit Nam e Fun ction Reset
Default
0x8LRC6 15:1 Reserved. Reads 0. 0x0
0 FRM_RXSA Rx Stack Available. A 1 indicates that the Rx stack is available
for reading. 0 indicat es t hat the stack is being updated and
should not be read. In order to prevent a mix of old and new
data being read the host should ver ify that this bit is set to 1
before continuing to read the stack.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
290 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 407. FRM_RFDLLR8, Receive FDL Link Register 8 (COR)
*See Table 403 fo r value s of L an d R .
Table 408. FRM_RFDLLR9, Receive FDL Link Register 9 (R/W)
*See Table 403 fo r value s of L an d R .
12.12 Transmit Facility Data Link Configuration and Status Registers
Table 409. Transm it Facility Data Lin k Register Addressing Map
* L and R represent hexidecimal digit s used for absolu t e a ddr ess ing in Table 411 through Table 415.
Table 410. Transm it Path Facility Data Link Registers Address Indexing
Read: for link 1, the hexidecim al digi t L is 0x0 and the hexidecimal digit T is 0x3.
Tabl e 411. FRM_TFDLLR 1FRM_TFDLR5, Transmit FD L Link Registers 15 (COR)
*See Table 410 fo r value s of L an d T.
Address*Bit Name Fu nction Reset
Default
0x8LRC7 15:1 Reserved. Reads 0. 0x0
0 FRM_RXSR_IS Rx Stack Ready In terrupt. A 1 indicates that the Rx stack has
been filled with data following the format of the associated lin k. 0
Address*Bit Name F un ction Re set
Default
0x8LRC8 15:1 Reserved. Must write to 0. 0x0
0 FRM_MRXSR Mask Rx Stack Ready Interrupt. A 1 masks the Rx stack
ready interrupt. 1
Address Pins (ADDR15ADDR0)
151413 12 11 10 9 8 7654 3 2 1 0
00LNK4LNK3LNK2LNK1LNK0 TXP = 1 1101TDL3TDL2TDL1TDL0
L* T*
Link L T Link L T Link L T Link L T
1 0x0 0x3 8 0x1 0x1 16 0x2 0x1 24 0x3 0x1
2 0x0 0x5 9 0x1 0x3 17 0x2 0x3 25 0x3 0x3
3 0x0 0x7 10 0x1 0x5 18 0x2 0x5 26 0x3 0x5
4 0x0 0x9 11 0x1 0x7 19 0x2 0x7 27 0x3 0x7
5 0x0 0xB 12 0x1 0x9 20 0x2 0x9 28 0x3 0x9
6 0x0 0xD 13 0x1 0xB 21 0x2 0xB ———
7 0x0 0xF 14 0x1 0xD 22 0x2 0xD ———
———15 0x1 0xF 23 0x2 0xF ———
Address*Bit Na me Function Reset Default
0x8LTD0 15:0 FRM_TXS0[15:0] Tx Stack Data 0. 0x0000
0x8LTD1 15:0 FRM_TXS1[15:0] Tx Stack Data 1. 0x0000
0x8LTD2 15:0 FRM_TXS2[15:0] Tx Stack Data 2. 0x0000
0x8LTD3 15:0 FRM_TXS3[15:0] Tx Stack Data 3. 0x0000
0x8LTD4 15:0 FRM_TXS4[15:0] Tx Stack Data 4. 0x0000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
291Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 412. FRM_TFDL LR6, Transmit FDL Link Register 6 (R/W)
*See Table 410 fo r value s of L an d T.
Table 413. FRM_TFDL LR7, Transmit FDL Link Register 7 (R/W)
*See Table 410 fo r value s of L an d T.
Address*Bi t Nam e Function Reset
Default
0x8LTD5 15:8 Reserved. Must write to 0. 0x0
7 FRM_SA8SC Sa8 Source Contro l. A 1 indicates that Sa8 is sourced from t his
block. 0 indicates that S a8 is so urce d from the framer Sa stack. 0
6 FRM_SA7SC Sa7 Source Contro l. A 1 indicates that Sa7 is sourced from t his
block. 0 indicates that S a7 is so urce d from the framer Sa stack. 0
5 FRM_SA6SC Sa6 Source Contro l. A 1 indicates that Sa6 is sourced from this
block. 0 indicates that S a6 is so urce d from the framer Sa stack. 0
4 FRM_SA5SC Sa5 Source Contro l. A 1 indicates that Sa5 is sourced from t his
block. 0 indicates that S a5 is so urce d from the framer Sa stack. 0
3 FRM_SA4SC Sa4 Source Contro l. A 1 indicates that Sa4 is sourced from t his
block. 0 indicates that S a4 is so urce d from the framer Sa stack. 0
2 FRM_TXCRCSM CEPT CRC-4 Stack Mod e. When set to 0, the Sa bits will be
tr a n smi tted based on bei ng act ive . If MFA is lost, the stac k w ill
not be transmitted. When set to 1, the Sa bits will be transmitted
based on BFA on ly .
0
1FRM_ASRCAlignment S ou rce. A 1 indicates that the MFA and BFA will be
used to determine if a BOM or stack is transmitted. A 0 indicates
that, when enabled for insertion, BO Ms and st acks will be
inserted whenever the TDM data is reques ted.
0
0FRM_DS1IDS1 Insertion. A 1 enables this block to insert the contents of
the stack into the associated DS1 lin k. For
SLC
-96 li nks, D bits
will be inserted given the associated stac k forma t. For DDS
links, data-link bits will be i ns erted given the associated stack
format. For other DS 1 link types, this bit has no eff ect . A 0 d is-
ables this block from inserting D bits or data link bits into the
associated link.
0
Address*Bit Name Function Reset
Default
0x8LTD6 15:7 Reserved. Mu st write to 0. 0x000
6FRM_BOMETransmit Bi t Oriented Message Enable. A 1 indicates that the
BOM message register has been initialized and should be transmit-
ted on the data link of the ESF frame. The pattern will continue to
be transmitted until the enable is removed. When set to 0, the BOM
transmission will stop immed iately without completing the current
pattern transmission or wit hout completing the serie s of 10 pa t-
terns.
0
5:0 FRM_TBOM[5:0] Transmit Bi t Oriented Messag e. Indicat es t he conte nts of t he
BOM to be tra n smitted when enabled with FRM_B OME. A pattern
of 111110 implies a BOM of 0111110 011111111 with the right
most bit b eing transmitted first.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
292 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 414. FRM_TFDL LR8, Transmit FDL Link Register 8 (RO/COW)
*See Table 410 fo r value s of L an d T.
Table 415. FRM_TFDLLR9, Transmit FDL Link Register 9 (R/W)
*See Table 410 fo r value s of L an d T.
12.13 System Interface, Arbiter, and Frame Formatter Mapping
Table 416. System Interface, Arbiter, and Frame Formatter Link Register Addressing Map
* L and P represent hexidecimal digi ts use d for absolute addressing in Table 419 through Table 425.
Address*Bi t Name Function Reset
Default
0x8LTD7 15:2 Reserved. Must write to 0. 0000000
0000000
1 FRM_BOMC_IS BOM Complete I nterrupt. ( Clear on write. ) A 1 indicates that the
BOM register contents have been transmitt ed 10 tim es over the
data link of the ES F frame.
0
0 FRM_TXSE_IS Tx Stack Empty Interrupt. (Clear on write.) A 1 i ndicates t hat
the Tx st a ck is e mp ty. 0 i ndi c a te s th a t the host has fin i s hed
updati ng the stack. The Tx dat a l ink block sets this bit when the
stack is empty and needs to be filled if the D bits or Sa bits
require c hanging. If th e stack is not refilled, the old data wi ll be
retran smitted.The new data ca n b e written anytime without inter-
fering with the current transmission. The stack needs to be
update d within 9 ms for a
SLC-
96 link or 4 ms for a CEPT link in
order for the new information to be transmitted in the next double
multiframe.
1
Address*Bi t Name Function Reset
Default
0x8LTD8 15:2 Reserved. Must writ e to 0. 0000000
0000000
1 FRM_BOMC_IM Mask BO M Complete Interrupt. A 1 masks the BOM complete
interrupt, FRM_ BOMC. 1
0 FRM_TXSE_IM Mask Tx Stack Empty Interrupt. A 1 masks the Tx stack empty
interrupt, FRM_TXSE. 1
Address Pins (ADDR15ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 LNK4 LNK3 LNK2 LNK1 LNK0 RXP=0/TXP=1 1 1 1 0 0 SYS2 SYS1 SYS0
L* P*
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
293Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 417. System Interface, Arbiter, and Frame Formatter Link Register Address Indexing
Read: for link 1 on the receive p ath, the hexidecimal digit L is 0x0 and the hexidecimal digit P is 0x2.
12.14 System Interface Per Link Registers
Table 418. FRM_SYSLR1, System Interface Link Register 1 (R/W)
*See Table 417 fo r value s of L an d P.
Link L P Link L P Link L P Link L P
Receiv e Path (P is even)
1 0x0 0x2 8 0x1 0x0 16 0x2 0x0 24 0x3 0x0
2 0x0 0x4 9 0x1 0x2 17 0x2 0x2 25 0x3 0x2
3 0x0 0x6 10 0x1 0x4 18 0x2 0x4 26 0x3 0x4
4 0x0 0x8 11 0x1 0x6 19 0x2 0x6 27 0x3 0x6
5 0x0 0xA 12 0x1 0x8 20 0x2 0x8 28 0x3 0x8
6 0x0 0xC 13 0x1 0xA 21 0x2 0xA ———
7 0x0 0xE 14 0x1 0xC 22 0x2 0xC ———
———15 0x1 0xE 23 0x2 0xE ———
Transmit Path (P is odd))
1 0x0 0x3 8 0x1 0x1 16 0x2 0x1 24 0x3 0x1
2 0x0 0x5 9 0x1 0x3 17 0x2 0x3 25 0x3 0x3
3 0x0 0x7 10 0x1 0x5 18 0x2 0x5 26 0x3 0x5
4 0x0 0x9 11 0x1 0x7 19 0x2 0x7 27 0x3 0x7
5 0x0 0xB 12 0x1 0x9 20 0x2 0x9 28 0x3 0x9
6 0x0 0xD 13 0x1 0xB 21 0x2 0xB ———
7 0x0 0xF 14 0x1 0xD 22 0x2 0xD ———
———15 0x1 0xF 23 0x2 0xF ———
Address*Bit Nam e Function Reset
Default
0x8LPE0 15 Reserved. Must write to 0. 0
14:8 FRM_BYOFF[6:0] CHI Byte Offset. Thi s bit is on ly applicable in t he CHI m ode. 0000000
7Reserved. Must write to 0. 0
6:4 FRM_OFF[2:0] CHI Bit Offset. 000
3:2 Reserved. Must write to 0. 0
1FRM_HALFOFFHalf Bit O ffset. When set to 1, an offset of 1/2 bit is added to
offsets. 0
0FRM_QUAROFFQuarter Bit Offset. When set to 1, a n offset of 1/4 bit is
added to the offsets. CHI CM S mode only. 0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
294 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 419. FRM_SYSLR2, System Interface Link Register 2 (R/W)
This regis ter applies t o the receive path only, insert ed in the transmit system int er face on demand.
*See Table 417 fo r value s of L an d P.
*See Table 417 fo r value s of L an d P.
Address*Bit Nam e Function Reset
Default
0x8LPE1 15 FRM_CEPTMAIS Transmit CEPT TS16 AIS.
0 = No act ion.
1 = Time slot 16 is forced to all o nes.
0
14 FRM_CEPTAAIS Transmit CEPT TS16 AIS on Loss of MFA.
0 = No act ion.
1 = Time slot 16 is forced to all o nes when time s lot 16 mul -
tiframe alignment i s lost.
0
13 FRM_MANAIS Transm it System AIS.
0 = No act ion.
1 = Transmit system AIS to the system.
0
12 FRM_CEPTSTMP Transmit System CEPT TS1 6 S tomp.
0 = No act ion.
1 = If upper or lower nibble of time slot 16 is 0000 then it is
changed to 1111 toward the transmit system interface.
0
11:0 Reserved. Must wri te to 0. 0x000
Table 420. FRM_SYSLR3FRM_SYSLR6, System Interface Link Registers 36 (R/W)
Address*Bit Name Function Reset
Default
0x8LPE2 15:0 Reserved. Must wri te to 0. 0x0000
0x8LPE3 15:0 Reserved. Must wri te to 0. 0x0000
0x8LPE4 15:0 Reserved. Must wri te to 0. 0x0000
0x8LPE5 15:0 Reserved. Must wri te to 0. 0x0000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
295Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.15 Arbiter Framer Per Link Registers
Table 421. FRM_ARLR1, Ar bite r Link Register 1 (R/W)
*See Table 417 fo r value s of L an d P.
Address*Bit Nam e Function Rese t
Default
0x8LPF0 15 FRM_LNK_ENA Link Enable .
0 = Link is disable d.
1 = Link is enabled.
1
14 FRM_LNK_TRANSP Tr ansp arent Mode Selection.
Switching:
0 = The link is in a nontransp arent mode. (Regenerate
framing bits and CRC bits.)
1 = The link is in transparent mode. (Flow through
framing bits and CRC bits.)
Transport:
0 = Nontransparent mode (regenerate CRC bits and
flow through framing bits).
1 = Trans parent mode (flow t hrough f raming bits and
CRC bits).
0
13 FRM_LNK_RESTARTN Re start Link.
0 = Restart the link.
1 = Nor mal operational mode for the link.
0
12 FRM_LNK_REFRAME Force Reframe.
0 = Nor mal operational mode for the link.
1 = Link is forced to reframe.
0
11:10 Reserved. Must write to 0. 0
9 FRM_ICKEDGE Input Clock Edge Selection.
0 = Sample data on risi ng edge of input clock.
1 = Sam ple data on falling edge of input clock.
0
8:0 Reserved. Must writ e to 0. 000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
296 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 422. FRM_ARLR2, Arbiter Link Register 2 (R/W)
*See Table 417 fo r value s of L an d P.
Address*Bi t Name Function Reset
Default
0x8LPF1 15 FRM_ESF_CRC_EN CRC Framing Enable .
D S1 Modes: ESF CRC framing algorithm enable:
0 = ESF CRC fr aming disabled.
1 = ESF CRC fram ing enab led. (Enables inclusion of CRC
in t he frame search algorithm.)
CE PT Modes: CRC-4 Multifra me:
0 = Multiframe reframe disabled.
1 = Multiframe r eframe enabled. (Enables the inclusion of
the following criteria to the CEPT loss of multiframe crite-
r ia. Three consecutive multiframe a lignment pattern bit
error s will cause a search for a new multiframe alignment.
Basic frame alignment is no t lost. )
0
14 FRM_FAST Fast Frame M ode.
D S1 M odes :
0 = Disable qui ck fra me recovery.
1 = Enable quick frame recovery as follows:
D 4 and J-D4: 36 fewer frame bits are checked.
SLC-96: Eighteen fewer FT bits are checked during the
search for FT framing.
D DS: No chan ge.
CEPT Modes:
0 = Disable qui ck fra me recovery.
1 = This bit enables the (n + 2) framing research algorithm
as defined in the note in Recommendation G.706 section
4.1.2. W hen an FAS is found in fram e n, frame (n + 1) is
checked to ensure that it is a non-FAS frame and frame
(n + 2) is checked for FAS. Failure to meet either of these
con dit ions results in a new search in frame (n + 2).
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
297Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 422. FRM_ARLR2, Arbiter Link Register 2 (R/W) (continued)
*See Table 417 fo r value s of L an d P.
Address*Bi t Name Function Reset
Default
0x8LPF1 13:12 FRM_OPT[1:0] Frame Op tio ns.
D S1 M ode:
00 = The frame aligner will not frame up until all mimics
are gone.
01 = Tim e-out algorithm is enabled. A counter is started
w hen, for the f irst time, one of th e 1 9 3-bit p ositions con-
tain s a sequence long enough to declare fr ame but is pre-
vented from doing so b y the presence of a mimic. The
p rovisionable counter sets a tim e limit for mimics to go
away. If there are still mimics, a candidate bit position that
has me t th e minimum fra ming requirements i s chosen and
fram e alignment is made t o that position. See
FRM_TO[7:0] (Table 305).
Oth ers reserved.
CEPT Mode:
00 = No change.
01 = Enables an ex tra NOTFA S frame check. This can
prevent frame alignment on PRBS patt erns which contain
a pseudoframing pattern. The CEPT fra ming sequence
now becomes:
Find FAS (n).
Verify NOTFAS frame (n + 1).
Verify second FAS in frame (n + 2).
Verify second NOTFAS frame (n + 3).
Oth ers reserved.
0
11 FRM_FBE_MODE DDS FBE Mode.
0 = Allows t w o FBEs to be detected in a frame in DDS
mode. One FBE for t he frame bit (FT and FS) and one
FBE for the time slot 24 f rame alignment s i gnal.
1 = Only 1 FBE is detected in a frame in DDS mode.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
298 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 422. FRM_ARLR2, Arbiter Link Register 2 (R/W) (continued)
*See Table 417 fo r value s of L an d P.
Address*Bi t Name Function Reset
Default
0x8LPF1 10:8 FRM_LF_CRT[2:0] Loss of Frame Criteria.
D S1 M ode:
000 = 2 errored framing bits o ut of 4 FT and FS bits.
001 = 2 errored framing bits o ut of 5 FT and FS bits.
010 = 2 errored framing bits o ut of 6 FT and FS bits.
011 = 3 errored framing bits out of 12 FT, F s, a nd channel
24 FA S bits (DDS only).
100 = 2 errored framing bits o ut of 4 FT bits only.
101 = 2 errored framing bits o ut of 5 FT bits only.
110 = 2 errored framing bits o ut of 6 FT bits only.
111 = 4 errored framing bits out of 12 FT, FS, and channel
24 FA S bits (DDS only).
CEPT Mode:
000 = 3 consecutive errored FAS patterns.
x01 = 3 consecutiv e errored FAS patterns or 3 consecu-
tive errored NOTF AS bits (bit 2).
x10 = 3 consecutive errored frames (FAS and NOTFAS).
Oth ers reserved.
0
7Reserved. Must write to 0. 0
6 FRM_AUTO_AIS Auto AIS.
0 = Auto AIS is disa bled.
1 = Auto AIS is enabled.
W hen auto AIS is enabled, the receive arbiter data is
forced to 1 when out of frame.
0
5:4 FRM_RAIL3_DEC[1:0] Th i rd Rai l Option.
00 = Third input signal to the frame aligner is ignored.
01 = Third input is bipolar violations (in the CMI mode,
C RVs are also inc luded on the RBPV input, but not
pas se d through the frame aligner).
10 = Third rail is frame sync used to indicate time s lot
alignment. The multiframe alignment is determined b y the
frame sync.
11 = Third rail is frame sync used to indicate framing bit
position. Multiframe alig nment i s searched for expedited
by the fram e sync.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
299Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 422. FRM_ARLR2, Arbiter Link Register 2 (R/W) (continued)
*See Table 417 fo r value s of L an d P.
Table 423. FRM_ARLR3, Ar bite r Link Register 3 (R/W)
This register applies to the transmit path only.
*See Table 417 fo r value s of L an d P.
Address*Bi t Name Function Reset
Default
0x8LPF1 3:0 FRM_MODE[3:0] Framing Mode.
0000 = Nonalign 256 bit.
0001 = CEPT basic frame.
0010 = CEPT with CRC-4 and 100 ms timer.
0011 = CMI.
0100 = CEPT with CRC-4 and 400 ms timer.
0101 = Reserved. (Future J2 - G.704.)
0110 = Reserved. (Future J2 - NTT Y.)
0111 = Reserved.
1000 = Nonalign 193 bits.
1001 = SF (FT bits only).
1 010 = J-ESF.
1 011 = ESF.
1100 = D4.
1101 = J-D4 (SF with Japanese Yellow Ala rm).
1110 = DDS.
1 111 = SLC-96.
1011
Address*Bit Name Function R eset Default
0x8LPF2 15 FRM_TP_CK_
SRC_EN Framer Transmi t Path Clock Source En able.
0 = FRM_T P_ C K_SRC bit is disabled. FRM_SW_T RN
(Table 301) bit controls clock source.
1 = FRM_TP_ CK_ SRC bit is enabled. FRM_SW_T RN bit
is ignored.
Transmit path clock and data is selected with bits
FRM_ TP_CK _S RC and FRM_TP_DD_SRC.
0
14 FRM_TP_CK_
SRC Transmit Path Clock Source.
0 = Transmit clock comes from the frame aligner (transport
applications).
1 = Transmit clock comes from the system interface
(switching applications).
1
13 FRM_TP_DD_
SRC Transmit Path Default Data Source.
0 = Transmit data comes from the frame aligner (transport
applications).
1 = Transmit data comes from the system interf ace (switc h-
ing applications).
1
12:1 Reserved. Must write to 0. 0000
0 FRM_SYSFSM System Fram e Sync Mas k. A 1 masks th e system frame
synchronizat ion signal in the transmit framer formatter.
Note: For those applications that ha ve ji tter on the transmit
clock signal relative to the system clock signal,
enable this b it so that the jitter is isolated fro m the
transmit framer.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
300 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
12.16 Frame Form atter Per Link Registers
Table 4 24. FRM_FFLR1, Frame Formatter Link Register 1 (R/W)
*See Table 417 fo r value s of L an d P.
Address*Bit N am e Function Reset
Default
0x8LPF4 15:12 Reserved. Must write to 0. 0000
11 FRM_ESFRAMD ESF Remote Alarm Indicator Mode.
0 = Data link remote alarm sequence is 1111 1111 0000 0000.
1 = Data link remo te alarm is all ones.
0
10:8 FRM_ZCSMD[2:0] Zero Cod e Suppression Mo des.
000 = ZCS off.
001 = Set bit 6 (numbered 07) of all time slots.
011 = Set bit 6 of all 0-byte time slots.
101 = Set bit 6 of all voice t ime slots.
111 = Set bit 6 of all 0-byte voice time slots.
110 = Set 0-byte time sl ots to 1001 1000.
100, 010 = Reserved.
(Signali ng F and G bits identify voice time slots.)
000
7Reserved. Must write to 0. 0
6 FRM_OCKEDGE Output Clock Edge Selection.
0 = Dat a clocked out on rising clock edge.
1 = Data clocked out on fallin g clock edge.
0
5:4 Reserved. Must write to 0. 0
3 FRM_AUTOPLB Automatic Payloa d Loopback (ESF Framing Only).
0 = Ignore received pa yload loopback requests.
1 = Automatically start pa yload loopback when pa yload loop-
ba ck signal is received.
0
2 FRM_AUTOLLB Automatic L ine Loo pback (S F and ES F F raming Only).
0 = Ignore rec eived line loopback req ues ts.
1 = Automatically st art line loopback when line loopback signal
is received.
0
1 FRM_AUTOEBIT Automatic E-Bit Inserti on (CEPT Framing Only).
0 = Ignore E-bit insertion requests from PM.
1 = Auto matically inser t E bits when indicated by PM.
0
0 FRM_AUTORAI Au tomatic RAI Insertion.
0 = Ignore RAI insertion requests from PM.
1 = Auto matically insert RA I when indicated by P M.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
301Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 4 25. FRM_F FLR2, Frame Formatter Link Register 2 (R/W)
*See Table 417 fo r value s of L an d P.
Address*Bit N am e Function Reset
Default
0x8LPF5 15:14 FRM_TXLBMD[1:0] Transmit Loopback Modes.
00 = Loopbacks off.
01 = Line loopback.
10 = Payload line loopback pass through. (T he received p ay-
load data, the CRC bits, and the frame alignment bits are
loopback to the line. The data link bi ts are inserted.)
11 = Payload line loopback regenerate. (The rece ived pay-
load data is looped back t o the line. The CRC bi ts, the frame
alignment bits, and data link bits are regenerated and
inserted.)
00
13:10 Reserved. Must write to 0. 0000
9 FRM_TXLLBOFF Tr ansmit D 4 SF Line Loopback Off Code .
0 = Do not transmit the D4 SF line loopbac k off code.
1 = Transmit the D4 SF line loopback off code. (Repeated 001
patterns with the framing bits overwriting the pattern T1.403
section 9.3. 1.2.)
0
8FRM_TXLLBONTransmit D4 SF Line Loopback On Code.
0 = Do not transmit the D4 SF line loopback on code.
1 = Transmit the D4 SF line loopback on code. (Repeated
00 001 patterns wit h the framing bits overwriting the pattern
T1.40 3 section 9 .3.1.1.)
0
7:6 Reserved. Must write to 0. 0
5FRM_TXIIDTransmit DS1 Idle ID (Fixed pattern defined inT1.403 sec-
tion D.2).
0 = On demand idle ID off.
1 = On demand idle ID on ( send idle ID).
0
4 FRM_TXAUXP Transmi t AUXP.
0 = On demand AUXP off.
1 = On demand AUX P on ( send AUXP).
0
3 FRM_TXRAICI Transmit RAI-CI (E SF modes only).
0 = On demand RAI-CI off.
1 = On demand RAI-CI on (send RAI-CI).
0
2 FRM_TXRAI Tr ansmi t RAI .
0 = On demand RAI off.
1 = On demand RAI on (send RAI).
0
1 FRM_TXAISCI Transmit AIS-CI (E SF modes only).
0 = On demand AIS-CI off.
1 = On demand AIS-CI on (send AIS-CI).
0
0 FRM_TXAIS Transmi t AI S .
0 = On demand AIS off.
1 = On demand AIS on (send AIS).
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
302 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
12.17 Line De code r/E ncode r Per Link R e gisters
Table 426. Line Decoder Per LInk Register Addressing Map
* L and R represent hexadecimal digits used for absolute a d d re ssing in Table 411 through Table 415.
Table 4 27. Line Decoder Per Link Registers Address Indexing
Read: for link 1, the hexadecimal digit L is 0x0 and the hexadecimal digit T is 0x 3.
Table 428. Line Encoder Per Link Register Addressing Map
* L and R represent hexadecimal digits used for absolute addressing in Table 404 through Table 408.
Table 429. Line Encoder Per Link Registers Address Indexing
Read: for l ink 1, the hexadecimal digit L is 0x0 and the hexidecimal digit R is 0x2.
Address Pins (ADDR15ADDR0)
151413 12 11 10 9 8 7654 3 2 1 0
00LNK4LNK3LNK2LNK1LNK0 TXP=1 1111 1 1 0 0
L* T*
Link L T Link L T Link L T Link L T
1 0x0 0x3 8 0x1 0x1 16 0x2 0x1 24 0x3 0x1
2 0x0 0x5 9 0x1 0x3 17 0x2 0x3 25 0x3 0x3
3 0x0 0x7 10 0x1 0x5 18 0x2 0x5 26 0x3 0x5
4 0x0 0x9 11 0x1 0x7 19 0x2 0x7 27 0x3 0x7
5 0x0 0xB 12 0x1 0x9 20 0x2 0x9 28 0x3 0x9
6 0x0 0xD 13 0x1 0xB 21 0x2 0xB ———
7 0x0 0xF 14 0x1 0xD 22 0x2 0xD ———
———15 0x1 0xF 23 0x2 0xF ———
Address Pins (ADDR15ADDR0)
151413 12 11 10 9 8 7654 3 2 1 0
00LNK4LNK3LNK2LNK1LNK0 RXP = 0 1111 1 1 0 0
L* R*
Link L R Link L R Link L R Link L R
1 0x0 0x2 8 0x1 0x0 16 0x2 0x0 24 0x3 0x0
2 0x0 0x4 9 0x1 0x2 17 0x2 0x2 25 0x3 0x2
3 0x0 0x6 10 0x1 0x4 18 0x2 0x4 26 0x3 0x4
4 0x0 0x8 11 0x1 0x6 19 0x2 0x6 27 0x3 0x6
5 0x0 0xA 12 0x1 0x8 20 0x2 0x8 28 0x3 0x8
6 0x0 0xC 13 0x1 0xA 21 0x2 0xA ———
7 0x0 0xE 14 0x1 0xC 22 0x2 0xC ———
———15 0x1 0xE 23 0x2 0xE ———
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
303Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.18 L i ne E ncode r/De code r Pe r Link R e gisters
Tabl e 4 30. FR M_LD LR1, Line Decoder L ink Register 1 (R/W)
*See Table 427 fo r value s of L an d T.
Tabl e 4 31. FR M_LD LR2, Line Encoder L ink Register 2 (R/W)
*See Table 429 fo r value s of L an d R.
Address*Bi t N am e Function Reset
Default
0x8LTFC 15:6 Reserved. Must write to 0. 0x000
5 FRM_EXCZERO Lin e Format Vi olation Op t i on.
0 = Excessive zeros are not included in bipolar viola-
tions.
1 = Excess ive zeros are in cl uded in bipola r violations.
0
4 FRM_RLCLK_EDGE Recei ve Line Clock Edge Select.
0 = Data and bipolar violations are latch ed in o n the pos-
itive edge of the receive lin e i nterface clock (RLCLK).
1 = Data and bipolar violations are latched in on the neg-
ative edge of the receive line interface clock (RLCLK0).
0
3Reserved. Must write to 0. 0
2:0 FRM_LD_MODE[2:0] Line Decoder Mode.
000 = Single rail (CMI use s ingle rail).
001 = HDB3.
010 = B8ZS.
011 = AMI.
100 = Reserved.
101 = Reserved.
110 = Reserved.
111 = Reserved.
000
Address*Bit Name Function Reset
Default
0x8LRFC 15:5 Reserved. Must write to 0. 0x000
4 FRM_TLCLK_EDGE Transmit Line Clock E dge S el ect.
0 = Data and frame sync are latched out on the positive
edge of the transmit line inter face clock (TL_CLK).
1 = Data and fr ame sync are latched out on the negativ e
edge of the transmit line inter face clock (TL_CLK).
0
3Reserved. Must write to 0. 0
2:0 FRM_LE_MODE[2:0] Line Encoder Mode.
000 = Single rail (CMI use s ingle rail).
001 = HDB3.
010 = B8ZS.
011 = AMI.
100 = Reserved.
101 = Reserved.
110 = Reserved.
111 = Reserved.
000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
304 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
12.19 HDLC Per Channel Configuration and Status Registers
Table 432. HDLC Per Channel Register Addressing Map
* H and P represent hexidecimal digits used for absolute addressing in Table 433 through Table 446.
Table 433. F RM_HCR1, Transmit HDLC Channe l Register 1 (R/W)
*See Table 432 for mapping of H and P.
Table 434. F RM_HCR2, Transmit HDLC Channe l Register 2 (R/W)
*See Table 432 for mapping of H and P.
Address Pins (ADDR15ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01HDLC Channels 164 (000000111111) RXP= 0/
TXP = 1 000 Per Channel Register
HDL9 HDL8 HDL7 HDL6 HDL5 HDL4 HDL3 HDL2 HDL1 HDL0
H* P*
Address*Bit Name Function Rese t
Default
0x8HP80 15:13 Reserved. M us t write to 0. 000
12:8 FRM_TTIMESLOT[4:0] Tra nsmit HDLC T ime-Slot.
These bits indicate (in binary) the time s lot number
assigned to this channel.
0x0
7:0 FRM_TBIT_IM[7:0] Tra nsmit HDL C Bit Assignment.
Thes e bits indicate which bits of a time slot are to be
assigned to this channel (1 = bit assigned).
In loopback mode, set as follows:
00000000 = slowest (~6 kbits/s at 52MHz)
10000000 = faster (~ 2x above)
110 00000 = fas ter st ill (~4x slowes t rate)
. . . .
11111111 = fastest (~1.5 Mbi ts/s at 52MHz)
Note: I f running a mix of loopback and nonloopback
channels, the loopback speed should not be set
fa ster than 111 00000.
0x00
Address*Bi t Name Function Res et
Default
0x8HP81 15:14 FRM_TFRAME_
SEL[1:0] Transmit HDLC Frame Select.
These bits a re enc oded to sele ct odd and/or even num-
bered frames assigned to this channel.
00 = No data select ed.
01 = Data to even frames selected (FS, FAS) .
10 = Data to odd frames selected (FT, NOTFAS, ESF-D L).
11 = Data to all (even and odd) frames selected.
00
13:5 Reserved. Must write to 0. 0x000
4:0 FRM_TLINK[4:0] Transmit HDLC Link S el ect.
These bits indicate (in b inary) the link number assigned to
this channel.
00000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
305Agere Systems Inc.
12 28-Channel Framer Registers (continued)
*See Table 432 for mapping of H and P.
Table 435. F RM_HCR3, Transmit HDLC Channel Register 3 (R/W )
Address*Bit Na m e Function Reset
Default
0x8HP82 15 FRM_THC_RESET Transmi t HDLC Reset. When this bit is 1, the channel is
held in reset.
This cle a rs st atus for the c hannel, disables the channel,
and clears the FIFO for the channel.
0
14 FRM_TENABL Transmit HDLC Enable. When this bit is 0, and written to
1, the channel is reinitialized and enabled. When this bit is
1, and written to 0, no fu rther data will be transmitted and
any partial data being seria lized will be los t. The channel
is disabled.
The user s hould reset the FIFO to p revent partial packets
from being tr ansmitted once re-enab led. Writing the same
value as currently programmed has no effect.
0
13:11 Reserved. Must write to 0. 000
Bits 10:0, 3, 1:0 can only be wr itten as the channel is being enabled, (i.e., bit 14 held 0 and is now being
wr itten to 1).
0x8HP82 10:9 FRM_CFLAGS[1:0] C losin g Flags. Only valid in HDLC mode. These bits
select on e of four v alues ( 00 = FRM_FCN T0[4: 0],
01 = FRM_FCNT1[4:0], 10 = F R M_FCNT2[4:0],
11 = FRM_FCNT3[4:0 ] (Table 333Table 336)). T his
value indicates the number of additional closing flags
inserted after an HDLC packet (e.g., if FRM_F CNT2[4: 0]
is selected an d it i s set to 00100, then five flags are
inserted).
00
8 FRM_PRMEN PRM Enable. When 1, this channel is enable d t o se n d
PRM packets automatically. When 0, this feature is dis-
abled. (Bit only f or channels 128, o r else reser ved.)
When enabled, PRMs will not be sent until all four sec-
onds of PRM information are valid.
0
7 FRM_TLOOP HDLC Controll er Loopback. When this bit is set to 1, the
channel will operate in loopback mode . When 0, the chan-
nel operates normally.
Note: The corresponding Rx channel should be enabled
before enabling the Tx channel for loopback.
0
6 FRM_C_R PRM C/R Bit. This bit is inser ted as the C/R bit when
sending a PRM pack et on this channel. (Bit only for chan-
nels 027, or else reserved.)
0
5 FRM_HTTHRSEL Tran sm i t Threshol d Select. T his bit selects which of the
two programmabl e FIFO threshold values to use for this
channel (0 selects FRM_HTTHRSH0 (Table 327), 1
selects FRM_HTTHRSH1 (Table 328)).
0
4FRM_IFCSFCS Insert. Only valid in HDLC mode. When 0 , this bit
indica tes the FCS at the end of an HDLC packet should
be inserted . A 1 indicates that the internally computed
FCS will not be inserted at the end of the packet.
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
306 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 435. FRM_HCR3, Transmit HDLC Channel Reg ister 3 (R/W) (continued)
*See Table 432 for mapping of H and P.
Table 436. FRM_HCR 4, Tran sm it HDLC Channel Register 4 (RO)
*See Table 432 for mapping of H and P.
Table 437. FRM_HCR 5, Transm i t HDLC C han nel Register 5 (R/W)
*See Table 432 for mapping of H and P.
Address*Bit Name Function Reset
Default
0x8HP82 3 FRM_HTIDLE HDLC Idle Select. On l y valid in HDLC mode. This bit indicates
the idle fill chara cter w hen the Tx FIFO is empty. A 0 m eans fill
with flags (01111110). A 1 means f ill with idle (11111111).
0
2FRM_HTMODETransmit Ch annel M od e Se lect. A 0 indicates the channel is
in HDLC mode. A 1 indicates the channel is in transparent
mode.
0
1:0 FRM_HXPIDLE[1:0] Transparent Idle Mode Character Select. Only valid in trans-
parent mode . These bits indicate one of the four possible 8-bit
patterns to be sent when the Tx FIFO is empty.
(00 selects TXICHAR0 (Table 329), 01 selects TXICHAR1
(Table 330), e t c. )
00
Address*Bit Name Fu nction R eset
Default
0x8HP83 15:3 Reserved. Reads 0. 0x000
2 FRM_HTUND Transm i t FIFO Underrun . A 1 indicates this channel has
run out of data in the middle of an HDLC pack et. In trans-
parent mode, it simply means the channel has run out of
data.
0
1FRM_HTDONETran sm it Done . A 1 indicate s a complete p acket has been
sen t o n t his cha nnel . 0
0 FRM_HTTHRSH Transmit FIFO Threshold Interrupt. A 1 indicates this
channels F IF O level has dropp ed below the programmed
threshold value.
0
Address*Bit Name F unc tion Reset
Default
0x8HP84 15:3 Reserved. Must write to 0. 0x0
2 FRM_MHTUND Trans m it FIFO Und errun Interrupt M ask. A 1 masks the
corresponding channels F RM_HTUND status from caus-
ing an interr upt.
0
1 FRM_MHTDONE Transmit Done I nterrupt Mask. A 1 masks the corre-
sponding channels F RM _HTDO NE status from causing
an interrupt.
0
0 FRM_MHTTHRSH Tra n smi t F IF O Thre sh ol d I nte r rup t Ma sk. A 1 masks the
corresponding channels F RM_HTT HRSH status from
causing an interrupt.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
307Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 438. FRM_HCR6, Transmit HDLC Channel Register 6 (WO)
*See Table 432 for mapping of H and P.
Table 439. FRM_HCR 7, Tran sm it HDLC Channel Register 7 (RO)
*See Table 432 for mapping of H and P.
Table 440. FRM_HCR8, Receive HDLC Channel Register 8 (R/W)
*See Table 432 for mapping of H and P.
Table 441. FRM_HCR9, Receive HDLC Channel Register 9 (R/W)
*See Table 432 for mapping of H and P.
Address*Bit Name Function R eset
Default
0x8HP85 15:10 Reserved. Must wr ite to 0. 0x00
9:8 FRM_HTFUNC[1:0] Transmit Data F unction. These two bits indicate the
action to be taken by writing this register:
00 = Add DATA to the Tx FIFO (non-EOP).
01 = Add DATA to the Tx FIFO as EOP data (i.e., last byte
of pa cke t) .
10 = Abort last incomplete data packet in FIFO. (If written
after an E OP byte, this may abort the p revious packet.)
11 = Reserved.
00
7:0 FRM_HTDATA[7:0] Transmit Data Register. When FRM_HTFUNC[1:0] = 00
or 01, then these bits contain a byte of data to be written to
the FIFO.
0x00
Address*Bit Name Function Reset Default
0x8HP86 15:10 Reserved. Must write to 0. 0x0
9:0 FRM_HTCOUNT[9:0] Transmit FIFO Byte Count. These bit s indicate
the number of bytes available to be filled in the Tx
FIFO for the specific channel.
x80 (x200 in large
buffer mode)
Address*Bit N am e Function Reset
Default
0x8HP00 15:13 Reserved. Must write to 0. 000
12:8 FRM_RTIMESLOT[4:0] Received HDLC Time Slot. These bits indicate (in
binary) the time slot number assigned to this channel. 00000
7:0 FRM_RBIT_IM[7:0] Received HDLC Bit A ssignme nt. These bits indicate
which bits of a t ime slot are to be assigned to this
channel (1 = bit assigned).
0x00
Address*Bit Name Fu nction Reset
Default
0x8HP01 15:14 FRM_RFRAME_
SEL[1:0] Receive HDLC Frame Select. These bits are enc oded to
select odd and/or even numbered frames as signed to this
channel.
00 = No dat a selected. (Use for loopback mode.)
01 = Data from even frames selected (Fs, FAS).
10 = Data from odd frames selected (FT, NOTFAS, ESF-DL).
11 = Data from all (even and odd) f rames selected.
000
13:5 Reserved. Must w rite to 0. 0x0
4:0 FRM_RLINK[4:0] Receive HDL C Link Select. These bits indicate (in binary)
the l ink number assigned to t his channel. 00000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
308 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 442. FRM_HCR10, Receive HDLC Channel Register 10 (R/W)
*See Table 432 for mapping of H and P.
Table 443. FRM_HCR11, Receive HDLC Channel Register 11 (RO)
*See Table 432 for mapping of H and P.
Address*Bit Nam e Function Reset
Default
0x8HP02 15 FRM_RHC_RESET Receiv e HDL C Reset. When this bit is 1, the channel is
held in reset. 0
14 Reserved. Must write to 0. 0
13 FRM_RENABL Receive HDLC Enable. When this bit is 0 and written to 1,
the channel is reinitialized (i. e., HDLC searching for open-
ing flag, transparent searching for alignment char acter if so
programmed) and enabled. When thi s bit is 1 and written t o
0, any current HDLC packet will be aborted and the chan-
nel disabled. Writing the same value as curr ently pro-
grammed has no effect.
0
12 Reserved. Must w rite to 0. 0
Bits 11:0 c an onl y b e written as the channel is being enabled, (i .e. , bi t 13 held 0 and is now being
w ritten to 1).
11 FRM_RTHRSEL Receiv e FIFO Threshold Selec t. This bi t selects which of
the two programmable FIFO threshold values to use for this
chan nel. (0 selects FRM_HRT HRS H0[9:0] (Table 341), 1
selects FRM_HRTHRSH1[9:0] (Table 342)).
0
10 FRM_RFCS Re ceiv e FCS Option. Only valid in HDLC mode. When 1,
this bit indicate s the FCS at the end of an H DLC packet
should be removed. A 0 indicates it s hould kept as part of
the packet.
0
9 FRM_HRMODE Re ceiv e Chan nel Mode S elect. A 0 indicates the chan nel
is in HDLC mode. A 1 indicates the channel is in trans par-
ent mode.
0
8FRM_BYTALByte Alig nment. This bit is only used in trans parent mode
(forced to 1 in HDLC mode). A 0 indicates no byte align-
ment is done by the rece iver. A 1 indicate s that byte align-
me nt will be done by the receiver once the
FRM_ MAT CH[7:0] code is found.
0
7:0 FRM_MATCH[7:0] Transparent Mode Pattern Match. Only valid in transpar-
ent mode with by te alignment. These bits indicate the pat-
tern to match to begin receiving transparent data (forced to
ones in HDLC mode).
0x0
Address*Bit Name Function Reset
Default
0x8HP03 15:4 Reserved. Reads 0. 0x000
3FRM_RIDLEReceive Channel Id le. A 1 indicates th is channel has been
detecte d as idle. 0
2FRM_OVRReceive FIFO Overflow. A 1 indicates this channels FIFO
has overflowed. 0
1FRM_EOPEnd of P ac ket . A 1 indicates an end-of-packet has been
detecte d on this ch annel. 0
0 FRM_HRTHRSH Receive FIFO Thresho ld Interrupt. A 1 indicates this
channels FIFO has exceeded the programmed threshold
value.
0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
309Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 444. FRM_HCR12, Receive HDLC Channel Register 12 (R/W)
*See Table 432 for mapping of H and P.
Address*Bit Name Function R eset
Default
0x8HP04 15:4 Reserved. Must write to 0. 0x000
3 FRM_MIDLE Receive Channel I dle Interrupt Mask. A 1 masks this
channels idle detection interrupt. 1
2FRM_MOVRReceive FIFO Overflow Interrupt Mask. A 1 masks this
channels FIFO overflow interrupt. 1
1FRM_MEOPE nd of Packet Interru pt Mask. A 1 masks this channels
end-of-packet interrupt. 1
0 FRM_MHRTHRSH Receive FIFO Threshold Interrupt Mask. A 1 masks this
channels exceeded FIFO threshold interrupt. 1
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
310 Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 445. FRM_HCR13, Receive HDLC Channel Register 13 (RO)
*See Table 432 for mapping of H and P.
Table 446. FRM_HG R14, Re ceiv e HDLC Channel Register 14 (COR)
*See Table 432 for mapping of H and P.
Address*Bit Name Fu nction Reset
Default
0x8HP05 15:11 Reserved. Reads 0. 00000
10 FRM_HMDA M ore Data Available. A 1 indicates that if the FIFO is
read aga in, valid data will be returned. A 0 indicates no
more data is available.
0
9FRM_HRVALIDReceive FIFO Valid Data. A 1 indicates the information
read from the FIFO is val id. A 0 indicates the FIFO was
empty and no inf ormation was avai l able.
0
8 FRM_HRTYPE Receiv e FIFO D ata Type. A 0 in dicat es
FRM_HR_DATA[7:0] is data. A 1 indicates
FRM_ HR_DATA[7:0] is stat us in formation.
0
7:0 FRM_HR_DATA[7:0] Re cei ve F IFO Data. When FRM_HRTYPE = 0, these bits
co ntain a byte of data. Whe n FR M_HRTYPE = 1 , the bits
are defined below.
0
7FRM_HOVRFIFO Overflow. A 1 indic ates the FIFO overflowed. 0
6FRM_HEOPEnd of P acket. A 1 indicates end of packet (normal
packet). 0
5 FRM_HCRCERR HDL C CRC Error. A 1 indicates a CRC error was
detected. 0
4FRM_HABRTHDLC Abort. A 1 indicates an abo rt was r eceived. 0
3FRM_HIDLHDLC Idle. A 1 indicates id le (as defi ned by HDLC proto-
col) condition detect ed. 0
2:0 FRM_HBIT[2:0] Complete Byte Status. 111 indicates the last data
received was a compl ete byte.
These bit s should be igno red if EOP is 0.
0
Address*Bit Name Function Re set
Default
0x8HP06 15:10 Reserved. Must write to 0. 0x00
9:0 FRM_HRCOUNT[9:0] Receive FIFO Byte Count. These bit s indicate the
number of valid bytes contained in the Rx FIFO for the
spe c if ic cha nnel .
0x000
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SONET/S DH x28/x21 DS1/E1
311Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
12.20 28-Ch annel Framer Block Register Map
Table 447. Framer Reg ister Map
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Superframer Global RegistersR/W
0x80000 FRM_SFGR1 FRM_
SW_TRN FRM_LC_CNTRL[1:0] FRM_LOOP_
TIMING FRM_DS1_
CEPTN FRM_PLL_
BYPAS FRM_
LG_BUF_M
ODE
0x80001 FRM_SFGR2 FRM_TP_
SIG_PWDN FRM_RP_
SIG_PWDN FRM_TP_
RDL_PWDN FRM_RP_
TDL_PWDN FRM_TP_R
H_PWDN FRM_RP_T
H_PWDN FRM_TS_
PWDN FRM_RS_
PWDN FRM_TP_P
M_PWDN FRM_RP_F
F_PWDN FRM_TP_
RA_PWDN
0x80002 FRM_SFGR3
(RO) 0 FRM_AR_IS FRM_TP_
RDL_IS FRM_TP_
TDL_IS FRM_RH_IS FRM_TH_IS FRM_TS_
IS FRM_RS_
IS FRM_TP_
PM_IS FRM_RP_
PM_IS FRM_RP_R
DL_IS FRM_RP_T
DL_IS 0000
0x80003 FRM_SFGR4 FRM_VERSION[2:0]
0x80004
0x80009
Arbi te r (Framer) Global Regis tersR/W
0x80010 FRM_FGR1 FRM_TO[7:0]
0x80011 FRM_FGR2 FRM_TC_
EN FRM_TC[7:0]
0x80012 FRM_FGR3 FRM_
TPSSE_IM
0x80014 FRM_FGR4
(COR) FRM_TPSSEI[16:1]
0x80015 FRM_FGR5
(COR) FRM_TPSSEI[28:17]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
312 A
g
ere S
y
stems Inc.
12 28-Channel Framer Registers (continued)
Table 447. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
P e rf ormanc e Mon i t o r Gl ob al Re g i ster sR/W
0x80P20 FRM_PMGR1_
BFRM_
SEC_SEL FRM_CT125[11:0]
0x80P30 FRM_PMGR1
(COR) FRM_
DETECT FRM_
PTRNBER
0x80P31 FRM_PMGR2 FRM_TPERR_CT[15:0]
0x80P32 FRM_PMGR3 FRM_RAC[2:0] FRM_RDC[2:0] FRM_
FSFBEEN FRM_
CMFRFEN FRM_
CRCRFEN FRM_CEPTAISM[1:0] FRM_
DS1AISM FRM_
ESFRAIM FRM_
RAICLR
0x80P33 FRM_PMGR4 FRM_SFSEST[15:0]
0x80P34 FRM_PMGR5 FRM_DCT[15:0]
0x80P35 FRM_PMGR6 FRM_ESFSEST[15:0]
0x80P36 FRM_PMGR7 FRM_
DSEF FRM_DLFA FRM_DRFA FRM_
DSLIP FRM_
DLOS FRM_DAIS FRM_
DCRC FRM_DFS FRM_DFT
0x80P37 FRM_PMGR8 FRM_CCT[15:0]
0x80P38 FRM_PMGR9 FRM_CSEST[15:0]
0x80P39 FRM_PMGR10 FRM_
CSA6_F FRM_
CSA6_E FRM_
CSA6_C FRM_
CSA6_8 FRM_
CSA6_1X FRM_
CSA6_X1 FRM_
CEBIT FRM_
CLMFA FRM_CLFA FRM_CRFA FRM_
CSLIP FRM_
CLOS FRM_CAIS FRM_
CCRC FRM_
CNOTFAS FRM_
CFAS
0x80P3A FRM_PMGR11 FRM_CRET[15:0]
0x80P3B FRM_PMGR12 FRM_
CRAI_AIS FRM_
CRAI_OOF FRM_
CRAI_LOS FRM_CRAI_S
A6EQC FRM_CRAI_
SA6EQ8 FRM_CRAI_C
RCTX FRM_CRAI
_LTS0MFA FRM_CRAI
_LTS16MFA FRM_CRAI_
8MSEX FRM_DSR
AI_LOS FRM_DSR
AI_OOF FRM_DSR
AI_AIS
0x80P3C FRM_PMGR13 FRM_CFBE
_MODE FRM_
CEBIT_
LTS0MFA
FRM_
CEBIT_
ESMF
FRM_
CEBIT_
CRCTX
0x80P3D FRM_PMGR14 FRM_PTRN_
EN FRM_PTRN_
INV FRM_PTRN
_FRMT FRM_PTRN_LNK[4:0] FRM_PTRN_SEL[3:0]
0x80P3E FRM_PMGR15 FRM_LN_IS[16:1]
0x80P3F FRM_PMGR16 FRM_LN_IS[28:17]
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
313Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 447 . F ram er Regist er Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
HDLC Global Configuration and Status RegistersR/W
Tr ansmit HDLC Global Register s
0x80140 FRM_HGR1 FRM_HTTHRSH0[9:0]
0x80141 FRM_HGR2 FRM_HTTHRSH1[9:0]
0x80142 FRM_HGR3 FRM_TXICHAR0[7:0]
0x80143 FRM_HGR4 FRM_TXICHAR1[7:0]
0x80144 FRM_HGR5 FRM_TXICHAR2[7:0]
0x80145 FRM_HGR6 FRM_TXICHAR3[7:0]
0x80146 FRM_HGR7 FRM_FCNT0[4:0]
0x80147 FRM_HGR8 FRM_FCNT1[4:0]
0x80148 FRM_HGR9 FRM_FCNT2[4:0]
0x80149 FRM_HGR10 FRM_FCNT3[4:0]
0x8014A FRM_HGR11 FRM_TH_IS[15:0]
0x8014B FRM_HGR12 FRM_TH_IS[31:16]
0x8014C FRM_HGR13 FRM_TH_IS[47:32]
0x8014D FRM_HGR14 FRM_TH_IS[63:48]
Receive HDLC Global Registers
0x80040 FRM_HGR15 FRM_HRTHRSH0[9:0]
0x80041 FRM_HGR16 FRM_HRTHRSH1[9:0]
0x80042 FRM_HGR17 FRM_RH_IS[15:0]
0x80043 FRM_HGR18 FRM_RH_IS[31:16]
0x80044 FRM_HGR19 FRM_RH_IS[47:32]
0x80045 FRM_HGR20 FRM_RH_IS[63:48]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
314 A
g
ere S
y
stems Inc.
12 28-Channel Framer Registers (continued)
Table 447. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Inter fac e Global Reg istersR/W
Receive System Interface Global Registers
0x80050 FRM_SYSGR1 FRM_SYSMOD[3:0] FRM_ASM FRM_CMS FRM_
CHIDTS FRM_
STUFFL or
FRM_
LNKSTART
FRM_
AISLFA FRM_
AISCRCT FRM_
DNOTFAS FRM_
TFSCKE FRM_
FSPOL
0x80051 FRM_SYSGR2 FRM_HWYE
NA FRM_RSTDO
NE (read
only)
0x80052 FRM_SYSGR3 FRM_STUFF[7:0] FRM_IDLE[7:0]
0x80053 FRM_SYSGR4 FRM_
STSSLB FRM_
STSLLB FRM_TSLBA[4:0] FRM_TLSBL[4:0]
0x80054 FRM_SYSGR5 FRM_TS_
DPAR FRM_TS_
SPAR
0x80055 FRM_SYSGR6
0x80056 FRM_SYSGR7 FRM_TPSB
_FS_IS
(COR)
0x80057 FRMSYSGR8 FRM_PSB_
FS_IM
Transmit System Interface Global Registers
0x80150 FRM_SYSGR9 FRM_RS_
DPAR FRM_RS_
SPAR FRM_
RFSCKE
0x80151 FRM_SYSGR1
0
0x80152 FRM_SYSGR1
1
0x80153 FRM_SYSGR1
2
0x80154 FRM_SYSGR1
3
0x80155 FRM_SYSGR1
4
0x80156 FRM_SYSGR1
5FRM_
DPAR_IS FRM_
SPAR_IS FRM_PSB_
FS_IS
0x80157 FRM_SYSGR1
6FRM_
DPAR_IM FRM_
SPAR_IM FRM_PSM
_FS_IM
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
315Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 447 . F ram er Regist er Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Signaling Global RegistersR/W
0x80060 FRM_SGR1 FRM_R_
TSAISHG FRM_R_LINKCNT[4:0] FRM_TEST_BIT[2:0] FRM_R_
AFZFBE
0x80061 FRM_SGR2 FRM_R_
SCOSEN FRM_R_SCOSDTH[9:0]
0x80062 FRM_SGR3 FRM_R_SCOSTTH[15:0]
0x80063 FRM_SGR4
(RO) FRM_R_COSFIFO[1:0] FRM_R_COSFIFOL[4:0] FRM_R_COSFIFOTS[4:0] FRM_R_COSFIFOSIG[3:0]
0x80064 FRM_SGR5
(RO) ???????????????FRM_R_
COSDTHS
0x80065 FRM_SGR6
(COR) 0000000000000FRM_R_
COSDTHI FRM_R_
COSTTHI FRM_R_
COSOFI
0x80066 FRM_SGR7 0 0 0 0 0 0 0 0 0 0 0 0 0 FRM_R_C
OSDTHM FRM_R_
COSTTHM FRM_R_
COSOFM
0x80160 FRM_SGR8 FRM_T_LINKCNT[4:0] FRM_T_
SUBZERO FRM_T_FA
S_NOTFAS FRM_T_
AFZFBE
Frame Formatter Global Regis ter R/W
0x80170 FRM_FFGR1 FRM_
TXSOOF FRM_
PTRN_EN FRM_
PTRN_INV FRM_PTRN
_FRMT FRM_PTRN_LNK[4:0] FRM_PTRN_SEL[3:0]
Facility Data Link Glo bal RegistersR/W
0x80090 FRM_FDLGR1
0x801A1 FRM_FDLGR2
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
316 A
g
ere S
y
stems Inc.
12 28-Channel Framer Registers (continued)
Table 447. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive S ignaling Link Register sR/W
See Table 370 for Values of L and R in the Register Address Field
0x8LR00 FRM_RSLR0 FRM_RPSR0[6:0]
0x8LR01 FRM_RSLR1 FRM_RPSR1[6:0]
0x8LR02 FRM_RSLR2 FRM_RPSR2[6:0]
0x8LR03 FRM_RSLR3 FRM_RPSR3[6:0]
0x8LR04 FRM_RSLR4 FRM_RPSR4[6:0]
0x8LR05 FRM_RSLR5 FRM_RPSR5[6:0]
0x8LR06 FRM_RSLR6 FRM_RPSR6[6:0]
0x8LR07 FRM_RSLR7 FRM_RPSR7[6:0]
0x8LR08 FRM_RSLR8 FRM_RPSR8[6:0]
0x8LR09 FRM_RSLR9 FRM_RPSR9[6:0]
0x8LR0A FRM_RSLR10 FRM_RPSR10[6:0]
0x8LR0B FRM_RSLR11 FRM_RPSR11[6:0]
0x8LR0C FRM_RSLR12 FRM_RPSR12[6:0]
0x8LR0D FRM_RSLR13 FRM_RPSR13[6:0]
0x8LR0E FRM_RSLR14 FRM_RPSR14[6:0]
0x8LR0F FRM_RSLR15 FRM_RPSR15[6:0]
0x8LR10 FRM_RSLR16 FRM_RPSR16[6:0]
0x8LR11 FRM_RSLR17 FRM_RPSR17[6:0]
0x8LR12 FRM_RSLR18 FRM_RPSR18[6:0]
0x8LR13 FRM_RSLR19 FRM_RPSR19[6:0]
0x8LR14 FRM_RSLR20 FRM_RPSR20[6:0]
0x8LR15 FRM_RSLR21 FRM_RPSR21[6:0]
0x8LR16 FRM_RSLR22 FRM_RPSR22[6:0]
0x8LR17 FRM_RSLR23 FRM_RPSR23[6:0]
0x8LR18 FRM_RSLR24 FRM_RPSR24[6:0]
0x8LR19 FRM_RSLR25 FRM_RPSR25[6:0]
0x8LR1A FRM_RSLR26 FRM_RPSR26[6:0]
0x8LR1B FRM_RSLR27 FRM_RPSR27[6:0]
0x8LR1C FRM_RSLR28 FRM_RPSR28[6:0]
0x8LR1D FRM_RSLR29 FRM_RPSR29[6:0]
0x8LR1E FRM_RSLR30 FRM_RPSR30[6:0]
0x8LR1F FRM_RSLR31 FRM_RPSR31[6:0]
0x8LR21 FRM_RSLR32 FRM_R_
FZCON FRM_R_
SIGI FRM_R_
RXSTOMP FRM_R_
SIGDEB FRM_R_
HGEN FRM_R_
MSIGFZ FRM_R_
FGSRC FRM_R_SIGSRC[1:0]
0x8LR20 FRM_RSLR33 FRM_R_HGAIS[3:0] FRM_R_HGA[3:0] FRM_R_HGRDI[3:0] FRM_R_
TS16A FRM_R_
TS16AIS
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
317Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 447 . F ram er Regist er Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Signaling Link RegistersR/W
See Table 375 for Values of L and T in the Register Address Field
0x8LT00 FRM_TSLR0 FRM_TPSR0[6:0]
0x8LT01 FRM_TSLR1 FRM_TPSR1[6:0]
0x8LT02 FRM_TSLR2 FRM_TPSR2[6:0]
0x8LT03 FRM_TSLR3 FRM_TPSR3[6:0]
0x8LT04 FRM_TSLR4 FRM_TPSR4[6:0]
0x8LT05 FRM_TSLR5 FRM_TPSR5[6:0]
0x8LT06 FRM_TSLR6 FRM_TPSR6[6:0]
0x8LT07 FRM_TSLR7 FRM_TPSR7[6:0]
0x8LT08 FRM_TSLR8 FRM_TPSR8[6:0]
0x8LT09 FRM_TSLR9 FRM_TPSR9[6:0]
0x8LT0A FRM_TSLR10 FRM_TPSR10[6:0]
0x8LT0B FRM_TSLR11 FRM_TPSR11[6:0]
0x8LT0C FRM_TSLR12 FRM_TPSR12[6:0]
0x8LT0D FRM_TSLR13 FRM_TPSR13[6:0]
0x8LT0E FRM_TSLR14 FRM_TPSR14[6:0]
0x8LT0F FRM_TSLR15 FRM_TPSR15[6:0]
0x8LT10 FRM_TSLR16 FRM_TPSR16[6:0]
0x8LT11 FRM_TSLR17 FRM_TPSR17[6:0]
0x8LT12 FRM_TSLR18 FRM_TPSR18[6:0]
0x8LT13 FRM_TSLR19 FRM_TPSR19[6:0]
0x8LT14 FRM_TSLR20 FRM_TPSR20[6:0]
0x8LT15 FRM_TSLR21 FRM_TPSR21[6:0]
0x8LT16 FRM_TSLR22 FRM_TPSR22[6:0]
0x8LT17 FRM_TSLR23 FRM_TPSR23[6:0]
0x8LT18 FRM_TSLR24 FRM_TPSR24[6:0]
0x8LT19 FRM_TSLR25 FRM_TPSR25[6:0]
0x8LT1A FRM_TSLR26 FRM_TPSR26[6:0]
0x8LT1B FRM_TSLR27 FRM_TPSR27[6:0]
0x8LT1C FRM_TSLR28 FRM_TPSR28[6:0]
0x8LT1D FRM_TSLR29 FRM_TPSR29[6:0]
0x8LT1E FRM_TSLR30 FRM_TPSR30[6:0]
0x8LT1F FRM_TSLR31 FRM_TPSR31[6:0]
0x8LT21 FRM_TSLR32 FRM_T_
ATS16RFA FRM_T_
ASPLB FRM_T_MSP FRM_T_
ZCSM FRM_T_
VTSIGE FRM_T_
SIGI FRM_T_
TXSTOMP FRM_T_
HGEN FRM_T_
MSIGFZ FRM_T_
FGSRC FRM_T_SIGSRC[1:0]
0x8LT20 FRM_TSLR33 FRM_T_
TS16A FRM_T_
TS16AIS
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
318 A
g
ere S
y
stems Inc.
12 28-Channel Framer Registers (continued)
Table 447. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Performance Monitor Link Regi stersCOR
See Table 381 for Values of L and P in the Register Address Field
0x8LP80 FRM_P MLR1
(R/W) FRM_PM_IM4[15:0]
0x8LP81 FRM_P MLR2
(R/W) FRM_PM_IM5[15:0]
0x8LP82 FRM_P MLR3
(R/W) FRM_MHGALIGN[3:0] FRM_
MSEFS FRM_MFE FRM_PM_IM6[4:0]
0x8LP83 FRM_PMLR4 FRM_SLIPO FRM_SLIPU FRM_OOF FRM_LSFA FRM_OAIS FRM_AIS FRM_ORAI FRM_RAI FRM_
SA600X1E FRM_
SA6001XE FRM_
CRCTX FRM_
LTS0MFA FRM_
TS0MFABE FRM_SES FRM_BES FRM_ES
0x8LP84 FRM_PMLR5 FRM_LFV FRM_FBE FRM_CRCE FRM_ECRCE FRM_
REBIT FRM_
CREBIT FRM_LTFA FRM_NFA FRM_
SA7LID FRM_
LLBON FRM_
LLBOFF FRM_AUX
PFRM_LOS FRM_
BOMR
0x8LP85 FRM_PMLR6 FRM_
FDL_RAI FRM_FDL_
PLBON FRM_FDL_
PLBOFF FRM_FDL_
LLBON FRM_FDL_
LLBOFF
0x8LP86 FRM_PMLR7 FRM_BPV[15:0]
0x8LP87 FRM_PMLR8 FRM_FBEC[15:0]
0x8LP88 FRM_PMLR9 FRM_CEC[15:0]
0x8LP89 FRM_PMLR10 FRM_REC[15:0]
0x8LP8A FRM_PMLR11 FRM_CETE[15:0]
0x8LP8B FRM_PMLR12 FRM_CENT[15:0]
0x8LP8C FRM_PMLR13 FRM_FE_OP FRM_FE_N FRM_FE_M FRM_FE_L FRM_FE_K FRM_FE_I FRM_FE_H FRM_FE_G FRM_FE_F FRM_FE_E FRM_FE_D FRM_FE_C FRM_FE_B FRM_FE_A
0x8LP8D FRM_PMLR14 FRM_FE_Y FRM_FE_X FRM_FE_W FRM_FE_V FRM_FE_U FRM_FE_T FRM_FE_S FRM_FE_R FRM_FE_Q
0x8LP8E FRM_PMLR15 FRM_ESC[15:0]
0x8LP8F FRM_PMLR16 FRM_BESC[15:0]
0x8LP90 FRM_PMLR17 FRM_SESC[15:0]
0x8LP91 FRM_PMLR18 FRM_RBOM[7:0]
0x8LP92 FRM_PMLR19 FRM_HGALIGN[3:0] FRM_SEFS
0x8LP93 FRM_PMLR20 FRM_G6 FRM_G5 FRM_G4 FRM_G3 FRM_G2 FRM_G1 FRM_SE FRM_FE FRM_LV FRM_SL FRM_LB FRM_N1 FRM_N0
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
319Agere Sy stem s Inc.
12 28-Channel Framer Registers (continued)
Table 447 . F ram er Regist er Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive FDL Link Re gistersR/W
See Table 403 for Values of L and R in the Register Address Field
0x8LRC0 FM_RFDLLR1 FRM_RXS0[15:0]
0x8LRC1 FM_RFDLLR2 FRM_RXS1[15:0]
0x8LRC2 FM_RFDLLR3 FRM_RXS2[15:0]
0x8LRC3 FM_RFDLLR4 FRM_RXS3[15:0]
0x8LRC4 FM_RFDLLR5 FRM_RXS4[15:0]
0x8LRC5 FM_RFDLLR6 FRM_RXC
RCSM
0x8LRC6 FM_RFDLLR7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FRM_
RXSA
0x8LRC7 FM_RFDLLR8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FRM_
RXSR_IS
0x8LRC8 FM_RFDLLR9 FRM_
RXSR_IM
Transmit FDL Li nk Regis tersR/W
See Table 410 for Values of L and T in the Register Address Field
0x8LTD0 FM_TFDLLR1 FRM_TXS0[15:0]
0x8LTD1 FM_TFDLLR2 FRM_TXS1[15:0]
0x8LTD2 FM_TFDLLR3 FRM_TXS2[15:0]
0x8LTD3 FM_TFDLLR4 FRM_TXS3[15:0]
0x8LTD4 FM_TFDLLR5 FRM_TXS4[15:0]
0x8LTD5 FM_TFDLLR6 FRM_
ABITSRC FRM_
MBITSRC FRM_
SBITSRC FRM_
CBITSRC FRM_
SA8SC FRM_
SA7SC FRM_
SA6SC FRM_
SA5SC FRM_
SA4SC FRM_
TXCRCSM FRM_
ASRC FRM_DS1I
0x8LTD6 FM_TFDLLR7 FRM_BOME FRM_TBOM[5:0]
0x8LTD7 FM_TFDLLR8
(RO/COW) FRM_
BOMC_IS FRM_
TXSE_IS
0x8LTD8 FM_TFDLLR9 FRM_
BOMC_IM FRM_
TXSE_IM
System Interface Link RegistersR/W
See Table 417 for Va lues of L and P in the Register Address Field
0x8LPE0 FRM_SYSLR1 FRM_BYOFF[6:0] FRM_OFF[2:0] FRM_
HALFOFF FRM_
QUAROFF
0x8LPE1 FRM_SYSLR2 FRM_CEPT
MAIS FRM_CEPTA
AIS FRM_MANAI
SFRM_CEPTS
TMP
0x8LPE2 FRM_SYSLR3
0x8LPE3 FRM_SYSLR4
0x8LPE4 FRM_SYSLR5
0x8LPE5 FRM_SYSLR6
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
320 A
g
ere S
y
stems Inc.
12 28-Channel Framer Registers (continued)
Table 447. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Arbiter Link RegistersR/W
See Table 417 for Values of L and T in the Regist er Address Field
0x8LPF0 FRM_ARLR1 FRM_
LNK_ENA FRM_LNK_
TRANSP FRM_LNK_
RESTARTN FRM_LNK_
REFRAME FRM_
ICKEDGE
0x8LPF1 FRM_ARLR2 FRM_ESF_
CRC_EN FRM_FAST FRM_OPT[1:0] FRM_FBE_
MODE FRM_LF_CRT[2:0] FRM_AUTO
_AIS FRM_RAIL3_DEC[1:0] FRM_MODE[3:0]
0x8LPF2 FRM_ARLR3 FRM_TP_C
K_SRC_EN FRM_TP_
CK_SRC FRM_TP_
DD_SRC
Frame Formatter Link RegistersR/W
See Table 417 for Values of L and T in the Regist er Address Field
0x8LPF4 FRM_FFLR1 FRM_
ESFRAMD FRM_ZCSMD[2:0] FRM_
OCKEDGE FRM_
AUTOPLB FRM_
AUTOLLB FRM_
AUTOEBIT FRM_
AUTORAI
0x8LPF5 FRM_FFLR2 FRM_TXLBMD[1:0] FRM_
TXLLBOFF FRM_
TXLLBON FRM_TXIID FRM_
TXAUXP FRM_
TXRAICI FRM_
TXRAI FRM_
TXAISCI FRM_
TXAIS
Line Decoder/Encoder Link RegistersR/W
See Table 427 and Tabl e429 for Values of L and T in the Register Address Field
0x8TPFC FRM_LDLR1 FRM_
EXCZERO FRM_RLCL
K_EDGE FRM_LD_MODE[2:0]
0x8LPFD FRM_LDLR2 FRM_TLCL
K_EDGE FRM_LE_MODE[2:0]
HDLC Channel RegistersR/W
See Table 432 for Mapping of H and P in the Register Address Field
Trans mit HDLC Chann el Re gisters
0x8HP80 FRM_HCR1 FRM_TTIMESLOT[4:0] FRM_TBIT_IM[7:0]
0x8HP81 FRM_HCR2 FRM_TFRAME_SEL[1:0] FRM_TLINK[4:0]
0x8HP82 FRM_HCR3 FRM_THC_
RESET FRM_
TENABL FRM_CFLAGS[1:0] FRM_
PRMEN FRM_
TLOOP FRM_C_R FRM_
HTTHRSEL FRM_IFCS FRM_
HTIDLE FRM_
HTMODE FRM_HXPIDLE[1:0]
0x8HP83 FRM_HCR4
(RO) 0000000000000FRM_
HTUND FRM_
HTDONE FRM_
HTTHRSH
0x8HP84 FRM_HCR5 FRM_
MHTUND FRM_
MHTDONE FRM_MHT
THRSH
0x8HP85 FRM_HCR6
(WO) FRM_HTFUNC[1:0] FRM_HTDATA[7:0]
0x8HP86 FRM_HCR7 FRM_HTCOUNT[9:0]
Receive HDLC Channel Registers
0x8HP00 FRM_HCR8 FRM_RTIMESLOT[4:0] FRM_RBIT_IM[7:0]
0x8HP01 FRM_HCR9 FRM_RFRAME_SEL[1:0] FRM_RLINK[4:0]
0x8HP02 FRM_HCR10 FRM_RHC_
RESET FRM_
RENABL FRM_
RTHRSEL FRM_RFCS FRM_
HRMODE FRM_
BYTAL FRM_MATCH[7:0]
0x8HP03 FRM_HCR11
(RO) 000000000000FRM_
RIDLE FRM_OVR FRM_EOP FRM_
HRTHRSH
0x8HP04 FRM_HCR12 FRM_
MIDLE FRM_
MOVR FRM_
MEOP FRM_MHR
THRSH
0x8HP05 FRM_HCR13
(RO) 0 0 0 0 0 FRM_HMDA FRM_
HRVALID FRM_
HRTYPE FRM_HR_DATA[7:0]
FRM_HOVR FRM_HEOP FRM_
HCRCERR FRM_
HABRT FRM_HIDL FRM_HBIT[2:0]
0x8HP06 FRM_HCR14
(COR) FRM_HRCOUNT[9:0]
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
321Agere Systems Inc.
13 Cross Connect (XC) Registers
Ta ble of Conte nts
Contents Page
13 Cross Connect (XC) Registers ...... .............. ................. .............. .............. ................. ..................................... 321
13.1 Cross Connect Register Descrip tions ..................................................................................................... 322
13.2 Cross Connect Register Map ................................................................................................................. 328
Tables Page
Table 448. XC_ID_R, XC Global R egister 1 (RO) ...............................................................................................322
Table 449. X C_CHI_MODE1_R, X C S ystem Interface Global Regist er 1 (R/W) .................. ................... ........... 3 22
Table 450. X C_CHI_MODE2_R, X C S ystem Interface Global Regist er 2 (R/W) .................. ................... ........... 3 22
Table 4 51. XC_PIND_SRC[115], XC1 External I/O TXDAT A and TXCLK Source Configuration (R/W) ..... . ... 323
Table 452. XC_FRP_SRC[114], X C 1 Framer Rec eive Path Data Source Configuration (R/W) ..................... 323
Table 4 53. XC_M13_SRC[114], XC1 M13 Data Source Configuration (R/W) .................................................323
Table 4 54. XC_V T_SRC[114], XC1 VT Mapper Source Configuration (R/W) ..................... . ........................... 3 24
Table 4 55. XC_DJA _S RC[114], X C 1 Digital Jitter Attenuator Source Configuration (R/ W) ........................ . ... 324
Table 4 56. XC_FTP_SRC[114], XC1 Framer Transmit P ath Data Source Configuration (R/W) ..................... 324
Table 457. XC_FRS_SRC[114], X C 1 Framer Rec eive System Interfac e Source Configuration (R/W) . ..... ....324
Table 4 58. XC_TPM_SRC[14], XC1 Test-Pattern Monitor Source Configuration (R/W) ................................. 325
Table 459. XC 2_M12_SRC[17], XC2 M12 DS2 Clock and Data Source Configuration (R/W) ........ ..... ...........325
Table 460. XC 2_M23_SRC[17], XC2 M23 DS2 Data Source Configuration (R/W) .........................................325
Table 4 61. XC2_TPM_SRC, XC2 Te st-Pattern Mo nitor Source Configuration (R/W) ........................................ 3 26
Table 462. XC_MISC, XC Global Register 2 (R/W) ............................................................................................ 326
Table 4 63. XC3_TPM_SRC, XC3 Te st-Pattern Mo nitor Source Configuration (R/W) ........................................ 326
Table 4 64. XC3_MDS3_SRC, XC3 DS3 Source Configuration (R/W) ................................................................ 327
Table 4 65. XC_P INS_SRC[115], XC1 External I/O TXSYNC Source Configuration (R/W) ............................ 327
Table 4 66. XC_A LCO_SRC[115], XC1 External I/O RXCLK Clock Out Source Configuration (R/W) ............. 327
Table 467. Register Address Map ....................................................................................................................... 328
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
322 Agere Sy stem s Inc.
13 Cross Connect (XC) Registers (continued)
13.1 Cross Connect Register Descriptions
Table 448. XC_ID_R, XC Global Register 1 (RO)
Table 449. XC_CHI_M ODE1_R, X C S ystem Inter face Global Register 1 (R/W)
Table 450. XC_CHI_M ODE2_R, X C S ystem Inter face Global Register 2 (R/W)
DS1/E1 crosspoint conne ctivity i s determined by a set of source identifiers (SOURCE_IDs), one for each channel
leaving the crossp oint switch. A DS1/E1 SOURCE_ID is therefore defined as follows:
Address Bit Name Function Reset
Default
0x50000 15:11 Reserved. 0x0005
10:8 XC_VERSION[2:0] Version. Th ese bits identify the version number of th e XC.
7:0 XC_ID[7:0] XC_ID. XC_ID register returns a fixed valu e (0x05) when
read.
Address Bit Name Function Reset
Default
0x5000E 15:3 Reserved. 0x0000
2Reserved. Must write to 0.
1 XC_SYNC_FOR_DATA Sync For Data. This bit should set to 1 if the transmit sys-
tem interface is in use (CHI, PSB, and NSMI). Se tting this
bit allows the ext ernal I/O pins LINETX SYNC[291] to
outpu t tra n smi t system data . Otherwise, se t to 0.
0 XC_SI_CHI PSB/CHI. This bit should be set t o 1 if the tran smit system
interface is in PSB mode; otherwise, 0 in CHI m ode.
Address Bit Name Function Reset
Default
0x5000F 15:14 Reserved. 0x0000
13:0 XC_CHI_MODE
[17][1:0] CHI Mode. The 28 tra nsmit system links are broken down
into seven groups o f four. Each group is co ntrolled b y two
bits XC_CHI_MODE[17][1:0]. XC_CHI_MODE[17][1:0]
cont rols th e group of li nks 4i 3, 4i 2, 4i 1, and 4i, where
i = 1 to 7. T he definition of C HI _MODE [17][1:0] is as fol-
lows:
00 = All four links within the group are normal outputs at
2 Mbits/s or 4 Mbits/s.
01 = Link s 4i 3 and 4i 2 are normal outputs; links 4i 1
and 4i are combined into a single output on 4i; a nd out-
put 4i 1 is used as T1/E1 line output.
10 = Links 4i 1 and 4i are combined into a si ngle output on
4i; links 4i 3 and 4i 2 are combi ned into a single out-
put on 4i 2; and outputs 4i 1 and 4i 3 a re used as
T1/E1 line o utputs.
11 = Al l four links are combined into a single output on 4i;
and the other three outputs are used as T1/ E1 line out-
puts.
Bit 76543210
SOURCE_ID SOURCE_BLOCK[2:0] CHANNEL_ID[4:0]
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
323Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
The SOURCE_BLOCK is defined as:
The CHANNEL_ ID ty pically ranges from 1 to 28 (29 for external). Values 0, 30, and 31 (and usually 29 as well) are
unused. The above definition is valid for X C _PDATA[12 9], XC_RP_RDAT A[128], XC_MDS1DATA[129]
(Table 453), XC_VD ATA[128] (Table 454), XC_SYNC[129] (Table 465), and XC_ALCO [129] (Table 466).
Table 452. XC_FRP_SRC[114], XC1 Framer Receive Path Data Source Configuration (R/W)
Table 453. XC_M13_SRC[114], XC1 M13 Data Source Configuration (R/W)
Index Block Identifier Index Block Identifier
000 TPG (Test-Pattern Generat or)/Spec ial 100 VTMPR (VT Mapper)
001 PIN (External I/O) 101 DJA (J itter Attenuator)
010 FRM TP (Superframer) 110 FRM RP (Framer Line Interface)
011 M13 (M1 3 MUX) 111 FRM TS (Framer Sy s tem Interface)
Table 451. XC_PIND_SRC[115], XC1 External I /O TXDATA and TXCLK Sou rce Con f i guration ( R /W)
Address Bit Name Function Reset
Default
0x50010
0x5001D
15:8 XC_PDATA
[2, 4, . . . 28][ 7:0]
(SOURCE_ID)
Source Identi fier fo r External I/ O Pin LINETXDATA and
LINET XCLK Conn e c tio n. Exte rnal I /O DS1/E1 data and
clock (even cha nnels).
0x1E
(invalid)
0x5001E 15:8 Reserved.0x00
0x50010
0x5001E
7:0 XC_PDATA
[1, 3, . . . 29][ 7:0]
(SOURCE_ID)
Source Identi fier fo r External I/ O Pin LINETXDATA and
LINET XCLK Conn e c tio n. Exte rnal I /O DS1/E1 data and
clock (odd channels).
Note: Exter nal I/O has 29 channels.
0x1E
(invalid)
Address Bit Name Function Reset
Default
0x50020
0x5002D
15:8 XC_RP_RDATA
[2, 4, . . . 28][ 7:0]
(SOURCE_ID)
So urce Identifier for Framer Receive Path Connecti on.
Framer receive path DS1/E1 input signals RP_RDATA,
RP_RCLK, RP_RFS, RP_AIS, and RP_RAI (e ven channels).
0xFF
(invalid)
0x50020
0x5002D
7:0 XC_RP_RDATA
[1, 3, . . . 27][ 7:0]
(SOURCE_ID)
So urce Identifier for Framer Receive Path Connecti on.
Framer receive path DS1/E1 input signals RP_RDATA,
RP_RCLK, RP_RFS, RP_AIS, and RP_RAI (odd channels ).
0xFF
(invalid)
Address Bit Name Function Reset
Default
0x50030
0x5003D
15:8 XC_MDS1DATA
[2, 4, . . . 28][ 7:0]
(SOURCE_ID)
So urce Identifier for M13 MUX Connection. M13 DS1/E1
data and cloc k inputs (e v en channels). Also f or stuff request
inputs if operating in LOW_CLOC K_OUT mode.
0xFF
(invalid)
0x50030
0x5003D
7:0 XC_MDS1DATA
[1, 3, . . . 27][ 7:0]
(SOURCE_ID)
So urce Identifier for M13 MUX Connection. M13 DS1/E1
data and clock inputs (odd channels). Also f o r stuff request
inputs if operating in LOW_CLOC K_OUT mode.
0xFF
(invalid)
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
324 Agere Sy stem s Inc.
13 Cross Connect (XC) Registers (continued)
Table 454. XC_VT_SRC[114], XC1 VT Mappe r S ource Configu ration (R/W)
Table 455. XC_DJA_SRC[114], XC1 Digital Jitter Attenuator Source Configurat ion ( R/W)
Table 456. XC_FTP_SRC[114], XC1 Framer Transmit Path Data Source Configurati on (R/W)
Table 457. XC_FRS_SRC[114], XC1 Framer Receive System Interface Source Configuration (R/W)
Address Bit Name Function Reset
Default
0x50040
0x5004D
15:8 XC_VDATA
[2, 4, . . . 28][ 7:0]
(SOURCE_ID)
Source Identifier for VT Mapper Connection. VT mapper
DS1/E1 data, clock, sync, and RA I i nputs (even channels). 0xFF
(invalid)
0x50040
0x5004D
7:0 XC_VDATA
[1, 3, . . . 27][ 7:0]
(SOURCE_ID)
Source Identifier for VT Mapper Connection. VT mapper
DS1/E1 data, clock, sync, and RA I i nputs (odd channels). 0xFF
(invalid)
Address Bit Name Function Reset
Default
0x50050
0x5005D
15:8 XC_JDATA
[2, 4, . . . 28][ 7:0]
(SOURCE_ID)
So urce Identifier for Jitter Attenuator Connectio n. DJA
DS1/E1 data, clock, pointer adjustme nt, and autoA IS i nputs
(even channel s ).
0xFF
(invalid)
0x50050
0x5005D
7:0 XC_JDATA
[1, 3, . . . 27][ 7:0]
(SOURCE_ID)
So urce Identifier for Jitter Attenuator Connectio n. DJA
DS1/E1 data, clock, pointer adjustme nt, and autoA IS i nputs
(odd c hannels).
0xFF
(invalid)
Address Bit Name Function Reset
Default
0x50060
0x5006D
15:8 XC_TP_RDATA
[2, 4, . . . 28][ 7:0]
(SOURCE_ID)
Source Identifier for Framer Transm it Path Connection.
Framer transmit pat h DS1/E1 input signals (even chan nels). 0xFF
(invalid)
0x50060
0x5006D
7:0 XC_TP_RDATA
[1, 3, . . . 27][ 7:0]
(SOURCE_ID)
Source Identifier for Framer Transm it Path Connection.
Framer transmit path DS1/E1 input signals (odd channels). 0xFF
(invalid)
Address Bit Name Function Reset
Default
0x50070
0x5007D
15:8 XC_RS_D
[2, 4, . . . 28][ 7:0]
(SOURCE_ID)
Source Identifier for Framer Receive System Interface
Connection. Fram er receive syste m (RS) data i nput (even
channels).
0x00
(invalid)
0x50070
0x5007D
7:0 XC_RS_D
[1, 3, . . . 27][ 7:0]
(SOURCE_ID)
Source Identifier for Framer Receive System Interface
Connection. Fram er receive syste m (RS) data i nput (odd
channels).
0x00
(invalid)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
325Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
Table 458. XC_TP M_SRC[14], XC1 Test-P attern Monitor Source Configuration (R/W)
The DS2 crosspoints connectivity is determined by a smaller set of source2 identifie rs (SOURCE2_IDs), one for
each channel leaving the DS2 crossp oint swi tch XC2. A DS2 SOURCE2_ID is therefore defined as follows:
The SOURCE2_BLOCK is defined as f ol lows:
The CHANNEL2_ID typically ranges from 1 to 7. For test data ( SOURCE2_BLOCK = 0), value 4 represents the
DS2 test p a tte rn. F o r DS2 sig nal s route d from external pins to the input of M23 MUX o r TPM, the CHANNEL2_ID
can range from 1 to 29 .
Table 459. XC2_M12_SRC[17], XC2 M12 DS2 Clock and Data S ource Config uration (R/W)
Table 460. XC2_M23_SRC[17], XC 2 M23 DS2 Data Source Confi guration (R/W)
Address Bit Name Function Reset
Default
0x50080 15:8 Reserved. 0x00
7:0 XC_TPM_DS1_DATA[7:0]
(SOURCE_ID) Source Identifier for TPM DS1 Data Pattern . Source
identifier f or te st-pattern monitor (TPM) DS1 test channel
inputs.
0xFF
(invalid)
0x50081 15:8 Reserved. 0x00
7:0 XC_TPM_DS1_IDLE[7:0]
(SOURCE_ID) Sou rce Identifier for TPM DS1 Idle Pattern. S ourc e
iden tifier for TPM DS1 idl e channel inputs. 0xFF
(invalid)
0x50082 15:8 Reserved. 0x00
7:0 XC_TPM_E1_DATA[7:0]
(SOURCE_ID) Source Identifier for TPM E1 Data Pattern. Source
identifier for TPM E1 test channel inputs. 0xFF
(invalid)
0x50083 15:0 Reserved. 0x0000
Bit 7 6 5 43210
SOURCE2_ID 0 SOURCE2_BLOCK[1:0] CHANNEL2_ID[4:0]
Index Block2 Identifier
00 TPG (DS2 Test -Pattern Generat or)
01 M13:M12 MUX
10 M13:M23 DeM U X
11 External I/O
Address Bit Name Function Reset
Default
0x50090
0x50096
15:8 XC2_DS2M12CLK
[17][7:0]
(SOURCE_ID)
So urce Ide ntifier for High-speed DS2 Clock Input to
M12 M ult iplexers Connection. DS2 clock input to M12
multiplexers. Refer to M12 MUX section for more details.
0x0040
(invalid)
0x50090
0x50096
7:0 XC2_M21[17][7:0]
(SOURCE_ID) Source Ide ntifier for High-speed DS2 Data and Clock
Connection. DS2 data and clock inputs to M12 demulti-
plexers. Refer to M12 de M U X sec tion for more details.
Address Bit Name Function Reset
Default
0x500A0
0x500A6
15:8 Reserved. 0x0040
(invalid)
7:0 XC2_MDS2M23DATA
[17][7:0]
(SOURCE2_ID)
Source Identifier for M23 I nput DS2 Signals Connec-
tion. When SOURCE2_B LOCK = 11, CHANNEL2_ID
can range from 1 to 29.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
326 Agere Sy stem s Inc.
13 Cross Connect (XC) Registers (continued)
Table 461. XC2_TPM_S RC, XC2 Test-Pattern Monitor Source Configuration (R/W)
Table 462. XC_MISC, XC Global Register 2 (R/W)
Table 463. XC3_TPM_S RC, XC3 Test-Pattern Monitor Source Configuration (R/W)
Address Bit Name Function Reset
Default
0x500A8 15:8 Reserved. 0x0000
(invalid)
7:0 XC2_TSOURCE_ID[7:0] XC 2 TPM Sou rce Co nne cti on . Source2 identifier f or TPM
DS2 test data. When externa l I/ O is selected
(SOURCE2_BLOCK = 11), CHANNEL2_ID can r ange
from 1 to 29.
Address Bit Name Function Reset
Default
0x500C0 15:6 Reserved. 0
5 XC_DS2ALCOEN M 23 DS2 Clock Out. Setting this bit to 1 enables DS2 low
clock-out mode from M23. Setting this bit to 0 sele cts t he nor-
mal DS2 clock and data input mode.
0
4 XC_DS1ALCOEN M 12/M13 DS1 Clock Out. Setting this bit to 1 enables DS1
low clock-out mode from M12/M13. Setting this bit to 0 selects
the no rmal DS1 clock and data input m ode.
0
3 XC_RPOAC_EN Receive POAC Enable. Setting this bit to 1 enables RPOAC
channel output and 0 to disable. 0
2 XC_TPOAC_EN Tr ansm it POAC Ena b le. Setting this bit to 1 enables TP OAC
channel output and 0 to disable. 0
1 XC_RSTS1_TUG3 Receive P OAC Channel Select. Sele ctor for TMUX (logic 1)/
SPEMPR (logic 0) receive POAC channel. 0
0 XC_TSTS1_TUG3 T ransmit POA C Channel Select. Selector for TMUX (logic 1)/
SPEMPR (logic 0) transmit POAC channel. 0
Address Bit Name Function Reset
Default
0x500D3 15:8 Reserved. 0x0000
7Reserved. Must write to 0.
6:5 XC3_TSOURCE_ID[1:0] TPG/TP M D S 3 Source. Source identifier for TP M DS3 test
data.
00 = TPM rec eives DS3 from external pins.
01 = TPG a nd TPM are connected t o M13 through NSMI
interface.
10 = TPM rec eives DS3 from SPE.
11 = Reserved.
4:0 Reserved. Must write to 0.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
327Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
Table 464. XC3_MDS3_SRC, XC3 DS3 Source Configuration (R/W)
Table 465. XC_PINS_SRC[115], XC1 External I/O TXSYNC S ource Config uration (R/W)
Table 466. XC_ALCO_SRC[115], XC1 Ex ternal I/O RXCLK Clock Out Source Configuration (R/W)
Address Bit Name Function Reset
Default
0x500D4 15:2 Reserved. 0x0000
1:0 XC3_SOURCE_ID[1:0] DS3 Level Con nections. This reg ister defines the conne c-
tivity at DS3 level among external I/O, M13, and SPE.
00 = M13 inputs/out puts DS3 through external pins .
01 = M1 3 an d SPE pass data to each other .
10 = SPE inputs /outputs DS3 through external pins and M13
is u se d as a monitor for t he transmit DS3.
11 = SPE inputs /outputs DS3 through external pins and M13
is u se d as a monitor for the receive D S3.
Address Bit Name Function Reset
Default
0x500E0
0x500ED
15:8 XC_SYNC
[2, 4, . . . 28][ 7:0]
(SOURCE_ID)
Source Identifier for External I/ O Pin LINETXSYNC. (Even
channels.) In the LIU mode, these registers must be pro-
grammed the same as XC_PIND_ SRC[115] (Table 451)
regist ers; in th e syste m interf ac e mode (CHI, PSB, and f ramer
o nly), these re gisters w ill be programmed separately to
ensure the system data output properly.
0xFF
(invalid)
0x500EE 15:8 Reserved. 0x00
0x500E0
0x500EE
7:0 XC_SYNC
[1, 3, . . . 29][ 7:0]
(SOURCE_ID)
Source Identifier f o r External I/O Pin LINETXSYNC (Odd
channels).
Note: Exter nal I/O has 29 channels.
0xFF
(invalid)
Address Bit Name Function Reset
Default
0x500F0
0x500FD
15:8 XC_ALCO
[2, 4, . . . 28][ 7:0]
(SOURCE_ID)
Source Identifier f o r External I/ O Pin LINE RXCLK when
Operating in Low Clock Output Mode. (Either DS1/E1 or
D S2.) For D S1/E1 c hannels, the programmed value of these
registers should be consistent with those of r egisters
XC_PIND_SRC[115] (Table 451) to ensure that clock and
data for the sam e channel always will be routed together;
w hile for DS2 c hannels, the value of these registers should
matc h t hos e of reg isters XC2_M23_SRC[17] (Table 460)
(even channel s ).
0xFF
(invalid)
0x500FE 15:8 Reserved. 0x00
0x500F0
0x500FE
7:0 XC_ALCO
[1, 3, . . . 29][ 7:0]
(SOURCE_ID)
Source Identifier f o r External I/ O Pin LINE RXCLK when
Operating in Low Clock Output Mode. (Either DS1/E1 or
D S2.) For D S1/E1 c hannels, the programmed value of these
registers should be consistent with those of r egisters
XC_PIND_SRC[115] (Table 451) to ensure that clock and
data for the sam e c hannel will always be routed together;
w hile for DS2 c hannels, the value of these registers should
matc h t hos e of reg isters XC2_M23_SRC[17] (odd chan-
nels).
Note: Exter nal I/O has 29 channels.
0xFF
(invalid)
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
328 A
g
ere S
y
stems Inc.
13 Cross Connect (XC) Registers (continued)
13.2 Cross Connect Register Map
Table 467. Register Address Map
Note: The reset default o f all res erved bits i s 0. Shading denotes reserved bits.
Addr Symbo l Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Cross Connect GlobalRO
0x50000 XC_ID_R XC_VERSION[2:0] XC_ID[7:0]
0x50001
0x5000D
Framer System Interface ControlR/W
0x5000E XC_CHI_MODE1_
R0 XC_SYNC_
FOR_DATA XC_SI_CHI
0x5000F XC_CHI_MODE2_
RXC_CHI_MODE7[1:0] XC_CHI_MODE6[1:0] XC_CHI_MODE5[1:0] XC_CHI_MODE4[1:0] XC_CHI_MODE3[1:0] XC_CHI_MODE2[1:0] XC_CHI_MODE1[1:0]
DS1/E1 Crosspoint ConfigurationR/W
External I/O (LINETXDATA[129] and LINETXCLK[129] Pins) Data and Clock Output Selects
0x50010
0x5001D
XC_PIND_SRC[1
14] XC_PDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_PDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5001E XC_PIND_SRC15 XC_PDATA29[7:0] Source_ID
0x5001F
DS1/E1 Crosspoint ConfigurationR/W
Framer Receiv e P ath Selects
0x50020
0x5002D
XC_FRP_SRC[1
14] XC_RP_RDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_RP_RDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5002E
0x5002F
DS1/E1 Crosspoint ConfigurationR/W
M13 MUX Selects
0x50030
0x5003D
XC_M13_SRC[1
14] XC_MDS1DATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_MDS1DATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5003E
0x5003F
DS1/E1 Crosspoint ConfigurationR/W
VT Mapper Sel ects
0x50040
0x5004D
XC_VT_SRC[1
14] XC_VDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_VDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5004E
0x5004F
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
329Agere Sy stem s Inc.
13 Cross Connect (XC) Registers (continued)
Table 467. Register Address Map (continued)
AddrSymbol Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0
DS1/E1 Crosspoint Configurati on R/W
Jitter Attenu ation Selec ts
0x50050
0x5005D
XC_DJA_SRC[1
14] XC_JDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_JDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] So urce_ID
0x5005E
0x5005F
DS1/E1 Crosspoint Configurati on R/W
Framer Transmit Path Selects
0x50060
0x5006D
XC_FTP_SRC[1
14] XC_TP_RDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_TP_RDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5006E
0x5006F
DS1/E1 Crosspoint Configurati on R/W
Fram er RS (System Interfac e) Selects
0x50070
0x5007D
XC_FRS_SRC[1
14] XC_RS_D[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_RS_D[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5007E
0x5007F
Test-Patte rn Moni to r (TPM) Input s
0x50080 XC_TPM_SRC1 XC_TPM_DS1_DATA[7:0] Source_ID
0x50081 XC_TPM_SRC2 XC_TPM_DS1_IDLE[7:0] Source_ID
0x50082 XC_TPM_SRC3 X C_TPM_E1_DATA[7:0] Source_ID
0x50083 XC_TPM_SRC4
0x50084
-
0x5008F
DS2 Crosspoint ConfigurationR/W
M12 MUX/DeMUX Selec ts
0x50090
0x50096
XC2_M12_SRC[1
7] XC2_DS2M12CLK[17][7:0] Source_ID XC2_M21_[17][7:0] Source_ID
0x50097
0x5009F
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
330 A
g
ere S
y
stems Inc.
13 Cross Connect (XC) Registers (continued)
Table 467. Register Address Map (continued)
Addr Symbo l Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DS2 Crosspoint ConfigurationR/W
M23 MUX Selects
0x500A0
0x500A6
XC2_M23_SRC[1
7] XC2_MDS2M23DATA[17][7:0] Source2_ID
0x500A7
DS2 Crosspoint ConfigurationR/W
Test-Pattern Monitor (TPM) Inputs
0x500A8 XC2_TPM_SRC XC2_TSOURCE_ID[7:0] Data Source2_ID
0x500A9
0x500BF
Miscellaneous
0x500C0 XC_MISC XC_DS2
ALCOEN XC_DS1
ALCOEN XC_RPOAC
_EN XC_TPOAC
_EN XC_RSTS1_
TUG3 XC_TSTS1_
TUG3
0x500C1
0x500D2
DS3 Crosspoint ConfigurationR/W
0x500D3 XC3_TPM_SRC 0 XC3_TSOURCE_ID[1:0] 00000
0x500D4 XC3_MDS3_SRC XC3_SOURCE_ID[1:0]
0x500D5
0x500DF
DS1/E1 Crosspoint ConfigurationR/W
Ex ternal I/O (LINETXSYNC Pins) Sync Selects
0x500E0
0x500ED
XC_PINS_SRC[1
14] XC_SYNC[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] SOURCE ID XC_SYNC[1, 3 , 5 , 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] SOURCE_ID
0x500EE XC_PINS_SRC15 XC_SYNC29[7:0] S OURCE_ID
0x500EF
DS1/E1 Crosspoint ConfigurationR/W
Low Clock Out Selects
0x500F0
0x500FD
XC_ALCO_SRC[1
14] XC_ALCO[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_ALCO[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x500FE XC_ALCO_SRC15 XC_ALCO29 Source_ID
0x500FF
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
331Agere Systems In c.
14 Digital Jitter Attenuation Co ntroller Registers
Ta ble of Con tents
Contents Page
14 Digital Jitter Attenuation Control ler Registers .................... ..... .. ..... ....... .. ..... ..... .. ....... ..... .. ..... .........................331
14.1 Digital Jitter Attenuation Controller Register Descriptions .......................................................................332
14.2 Digital Jitter Attenuation Controller Register Map ...................................................................................335
Tables Page
Table 468. DJA_VERSION, DJA Version and Identification (RO) .............. ... ....................... ... ............................332
Table 469. DJA_EVENT1DJ A_EVE NT2 , Loss of Clock an d O v erflow/Und erflow De lta
(COR/COW) .......................................................................................................................................332
Table 470. DJA_MASK1DJA_MASK2, Loss of Clock and Overflow/Underflow Masks (R/W) . . ........... ............332
Table 471. DJA_STATE1DJA _STATE2, Loss of Clock and VT Pointer Adjustm ent Indicators
(R/W) ..................................................................................................................................................333
Table 472. DJA_E1GAINHDJA_E1 G AINL, E 1 A ccumulator G ain Threshold (R/W) ............................ ............333
Table 473. DJA_DS1GAINHDJA_DS1G AINL, DS1 Accumulator Gain Threshold (R /W) ................................333
Table 474. DJA_E1SCALE, E1 Scale Factor (R /W) ........................................................................ ......... ...........333
Table 475. DJA_DS1SCALE, DS1 Scale Factor (R/W) .......................................................................................333
Table 476. DJA_E1PTRHDJA_E1PTRL, E1 First-Order Loop Counter (R/W) ...............................................334
Table 477. DJA_DS1PTRHDJA_DS1PTRL, DS1 First-Order Loop Counter (R/W) ........... . .................. ..........334
Table 478. DJA_DS1SELHDJA_DS1SEL L, DS1 E1 Mode Select (R/W) ................... ................. ... ................334
Table 479. DJA_CLK_CTL1DJA _CLK_CTL4, Reference Clo ck Rate and Edge Transitions (R/W) ...............334
Table 480. DJA Register Map ..............................................................................................................................335
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
332 Agere Systems Inc.
14 Digital Jitter Attenuation Controller Registers (continued)
14.1 Dig ita l Jitter Atte nuation Controller R egis ter Des cription s
This section gives a brief de scription of each register bit and its functionalit y. The abbreviations after each register
indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/writ e (R/W) .
Table 468. DJ A_VERSION, DJA Versi on and Identif ication (R O)
Table 469. DJA_ EVE NT1DJA_EVENT2, Lo ss of Clock and Overflow/Underflow Delta
(COR/COW)
Table 470. DJA_ MASK 1DJA _MASK 2, Loss of Clock and Ov er f low/Underflow Masks (R/W)
Address Bit Na m e Function Reset
Default
0x70000 15:11 Reserved. 00000
10:8 DJA_VERSION[2:0] Block Version Num ber. Block ve rsion register
wi ll change each time the device is changed. 0x0
7:0 DJA_ID[7:0] Block ID Number. 0x7
Address Bit N am e Function Reset
Default
0x70003 15 DJA_G_DS1_DLT G_PIN_DS1XCLK Loss of Clock Delta. 0
14 DJA_DS1_DLT P IN_DS1 XCLK L oss of Clock Delta. 0
13 DJA_G_E1_DLT G_PIN_E1XCLK Loss of Clock Delta . 0
12 DJA_E1_DLT PIN_E1XCLK Loss of Clock Delta. 0
0x70003
0x70004 11:0
15:0 DJA_ESOVFL[28:17]
DJA_ESOVFL[16:1] Elastic Store Overflow/Underflow Event. 0x0
Address Bit N am e Function Reset
Default
0x70006 15 DJA_G_DS1_MSK G_ PIN_DS1X CLK Loss of Clock In dication
Mask. 1
14 DJA_DS1_MSK PIN_DS1XCLK L os s of Clock Indication
Mask. 1
13 DJA_G_E1_MSK G_PIN _ E1XC LK Los s of C lock Indic ation
Mask. 1
12 DJA_E1_MSK PIN _E1XC LK Lo ss of Clock Indication Mask. 1
0x70006
0x70007 11:0
15:0 DJA_ESOVFL_MSK[28:17]
DJA_ESOVFL_MSK[16:1] Elastic Store Over/Underflow Indication
Mask. 0xFFFFFFF
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
333Agere Systems In c.
14 Digital Jitter Attenuation Controller Registers (continued)
Table 471. DJA_STATE1DJA_STATE 2, Loss o f Cloc k and VT Pointer Ad jus tment Indicator s
(R/W)
Table 472. DJA_E1GAINHDJ A_E1GAINL, E1 Accumulator Gain Threshold (R/W)
Table 473. DJA_DS1GAINHDJ A_DS1GAINL, DS1 Accumulator Gain Threshold (R/W)
Table 474. DJA_E1SCALE, E1 Scale Factor (R/W)
Table 475. DJA_DS1SCALE, DS1 Scale Factor (R/W)
Address Bit N am e Fun ction Re set
Default
0x70009 15 DJA_G_DS1LOC G_PIN_DS1XCLK Loss of Cl ock Ind ic ation. (1 = LOC.) 0
14 DJA_DS1LOC PIN_DS1XCLK Loss of Clock Indication. (1 = LOC.) 0
13 DJA_G_E1LOC G_PIN_E1 XCLK Loss of Clock Indication. (1 = LOC.) 0
12 DJA_E1LOC PI N _ E1X C LK Los s of Clock Indication. (1 = LOC.) 0
0x7000A
15:11
11:0
15:0
DJA_PTRADJS[28:17]
DJA_PTRADJS[16:1]
Reserved.
VT P ointer Adjustment Indicator State. When this state
is high, the associated PLL has experienced a VT pointer
adjustment within the last PTRADJCNT register specified
time interval.
0
Address Bit Name Function Reset
Default
0x7000B
0x7000C
15:11
10:0
15:0
DJA_E1GAIN[26:16]
DJA_E1GAIN[15:0]
Reserved.
E1 Gain. Accu mulator gain thresh old at which a
clock adjustment takes place for E1 signals (see
Table 622, PLL B andwidth Control Parameters
on page573 ).
0x7FFFFFF
Address Bit Name Function Reset
Default
0x7000D
0x7000E
15:11
10:0
15:0
DJA_DS1GAINTHR[26:16]
DJA_DS1GAINTHR[15:0]
Reserved.
DS1 Gain. Accumulator gain threshold at which
a clock adjustment takes place for DS1 signals
(see Table 622).
0x7FFFFFF
Address Bit Name Fu nction Reset
Default
0x7000F 15:0 DJA_E1SCALE[15:0] E1 Scale. Scale factor that controls clock adjust-
ment rate s for E1 signals (see Table 622). 0xFFFF
Address Bit Name Fu nction Reset
Default
0x70010 15:0 DJA_DS1SCALE[15:0] DS1 Scale. Scale factor that control s clock
adjustment rates for DS1 si gnals (see
Table 622).
0xFFFF
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
334 Agere Systems Inc.
14 Digital Jitter Attenuation Controller Registers (continued)
Table 476. DJA_E1PTRHDJA_E1PTRL, E1 First-Or der Loop Counter (R/W)
Table 477. DJA_DS1PTRHDJA_DS1PTRL, DS1 First-O rder Loop Counter (R/W)
Table 478. DJA_DS1SELHDJA_DS1SELL, DS1 E1 Mode Select (R/W)
Table 479. DJA_CLK_CT L1DJA_CLK_CTL4, Referen ce Clock Rat e and Edge Transitions (R/W)
Address Bit N am e Function Reset
Default
0x70011
0x70012
15:5
4:0
15:0
DJA_E1PTRADJCNT[20:16]
DJA_E1PTRADJCNT[15:0]
Reserved.
E1 First-Order Loop Count. Count val ue that
determines the amount of time spent as a fir st -
order loop following a VT pointer adjustment in
E1 mode (see Table 623, F irst-Order Mode Dura-
tion Control on page573 ).
0x177000
Address Bit N am e Function Reset
Default
0x70013
0x70014
15:5
4:0
15:0
DJA_DS1PTRADJCNT[20:16]
DJA_DS1PTRADJCNT[15:0]
Reserved.
DS 1 First-Order Loop Count . Count value that
determines the amount of time spent as a fir st -
order loop following a VT pointer adjustment in
DS1 mode (see Table 623).
0x11AB70
Address Bit Name Function Reset
Default
0x70015
0x70016
15:12
11:0
15:0
DJA_DS1SEL[28:17]
DJA_DS1SEL[16:1]
Reserved.
DS1 E1 Mode Select. Control signal that deter-
mines the operating mode of each jitter attenua-
tion block (1 = DS1, 0 = E1).
0xFFFFFFF
Address Bit Name Function Res et
Default
0x70017 15:14 Reserved.
13:12 DJA_BLUECLKD1[1:0] Ref e rence Clock Rate. Control signal that indi-
cates that the input XCL K runs at 32 X (11) or
16 X (01) t he lin e rate or exactly the line rate
(00).
111
0x70017
0x70018 11:0
15:0 DJA_TXEDGE[28:17]
DJA_TXEDGE[16:1] Transmit Edge Sel ect. Control signal that deter-
mines on which edge of the clo ck the output
DS1/E1 data transitions (1 = rising edge).
0xFFFFFFF
0x70019
0x7001A
15:12
11:0
15:0
DJA_RXEDGE[28:17]
DJA_RXEDGE[16:1]
Reserved.
Receive Edg e Select. Control signal that det er-
mines on which edge of the clock the input
DS1/E1 data is re timed (1 = rising edge).
0xFFFFFFF
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
335Agere Sy stem s Inc.
14 Digital Jitter Attenuation Controller Registers (continued)
14.2 Digital Jitter Attenuation Controller Register Map
The registe r bank arc hitecture of the microproces sor interface is shown in Table 76 on page73 .
Table 480. DJA Register Map
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 1 2 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 B it 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID and Interrupt Registers (RO)
0x70000 DJA_VERSION DJA_VERSION[2:0] DJA_ID[7:0]
0x70001
0x70002
Del ta and E ven t Pa ramet ers (COR/COW)
0x70003 DJA_EVENT1 DJA_G_DS1DLT DJA_G_E1DLT DJA_DS1DLT DJA_E1DLT DJA_ESOVFL[28:17]
0x70004 DJA_EVENT2 ESOVFL[16:1]
0x70005 Interrup t M ask Para me ters for INT Pins (R/W )
0x70006 DJA_MASK1 DJA_G_DS1MSK DJA_G_E1MS
KDJA_DS1MS
KDJA_E1MSK DJA_ESOVFL[28:17]
0x70007 DJA_MASK2 ESOVFL[16:1]
0x70008 State and Value Parameters (RO)
0x70009 DJA_STATE1 DJA_G_DS1LOC DJA_G_E1LO
CDJA_DS1LOC DJA_E1LOC DJA_PTRADJS[28:17]
0x7000A DJA_STATE2 DJA_PTRADJS[16:1]
Control Parameters for PLL Bandwidth and Mode (R/W)
0x7000B DJA_E1GAINH DJA_E1GAIN[26:16]
0x7000C DJA_E1GAINL DJA_E1GAIN[15:0]
0x7000D DJA_DS1GAINH DJA_DS1GAIN[26:16]
0x7000E DJA_DS1GAINH DJA_DS1GAIN[15:0]
0x7000F DJA_E1SCALE DJA_E1SCALE[15:0]
0x70010 DJA_DS1SCAL
EDJA_DS1SCALE[15:0]
0x70011 DJA_E1PTRH DJA_E1PTRADJCNT[20:16]
0x70012 DJA_E1PTRL DJA_E1PTRADJCNT[15:0]
0x70013 DJA_DS1PTRH DJA_DS1PTRADJCNT[20:16]
0x70014 DJA_DS1PTRL DJA_DS1PTRADJCNT[15:0]
0x70015 DJA_DS1SELH DJA_DS1SEL[28:17]
0x70016 DJA_DS1SELL DJA_DS1SEL[16:1]
0x70017 DJA_TXEDGEH DJA_BLUECLKD[1:0] DJA_TXEDGE[28:17]
0x70018 DJA_TXEDGEL DJA_TXEDGE[16:1]
0x70019 DJA_RXEDGEH DJA_RXEDGE[28:17]
0x7001A DJA_RXEDGEL DJA_RXEDGE[16:1]
0x7001B
0x700FF
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
336 Agere Sy stem s Inc.
15 Test-P attern Generation/Detection Registers
Ta ble of Conte nts
Contents Page
15 Test-Pattern Generation/Detection Registers ....................... ....... ..... ....... . ......................... ....... . ..................... 336
15.1 Test-P attern Generation/Detection Register Descriptions ........................... ... ....................... ... .............. 337
15.2 Test-P attern Generation/Detection Register Map ............. ... ......................... ..... ....... ..... ... ..................... 350
Tables Page
Table 481. TPG_ID , Status Re giste r (RO) .......................................................................................................... 337
Table 4 82. TPG_ISRC_OOF D, Delta Register (RO) ........................................................................................... 337
Table 483. TPG_ISRC_ OOSD, Delta Register (RO) .......................................................................................... 337
Table 484. TPG_ISRC_ BERE, Event Reg ister (RO) .......................................................................................... 338
Tabl e 485. TP G_ISRC_FERE, Event Reg ister (RO) .. ......................................................................................... 338
Ta ble 486. TPG_ISR C_B PVE, Event Register (RO) .... ........................................... ............................................ 338
Table 4 87. TPG_ISRC_AISD, Delta Register (RO) ............................................................................................. 339
Table 488. TPG_I SRC_CRCE, Event Register (RO) ......................... .......................... .......................... ............. 339
Table 489. TPG_IMSK_OOFD, Register (R/W) .................................................................................................. 339
Table 4 90. TPG_IM SK_OOSD, Register (R/W) .................................................................................................. 339
Table 491. TPG_IMSK_BERE, Register (R/W) ................................................................................................... 340
Table 492. TPG_IMSK_FERE, Regi ster (R/W) ................................................................................................... 340
Table 493. TPG_IMSK_BPV, Register (R/W) ..................................................................................................... 340
Table 494. TPG_IMSK_AISD, Reg ister (R/W) .................................................................................................... 341
Table 495. TPG_IMS K_CRCE, Register (R/W) .................................................................................................. 341
Table 496. TPG_VAL _OOF, Register (RO) ........................................................................................................ 341
Table 497. TPG_VAL_OOS, Register (RO) ........................................................................................................ 342
Table 4 98. TPG_VAL_AIS, Register (RO) .......................................................................................................... 342
Table 499. TPG_VAL _FER, Register (RO) ......................................................................................................... 342
Table 500. TPG_VAL_CRCE, Register (RO) ...................................................................................................... 343
Table 5 01. TPG_BER_INSRT, Register (R/W) ................................................................................................... 343
Table 502. TPG_FER_INSRT, Registe r (R/W) ................................................................................................... 343
Table 5 03. T PG_CRCE_INSRT, Register (R/W) ................................................................................................ 343
Table 504. TPG_ESFDL_TX, Register (R/W) ..................................................................................................... 344
Table 505. TPG_E1SA_TX12, Reg ister (R/W) .................................................................................................... 344
Table 506. TPG_E1SA_TX34, Reg ister (R/W) .................................................................................................... 344
Table 507. TPG_CONFIG0, Register (R/W) ....................................................................................................... 345
Table 508. TPG_CONFIG2, Register (R/W) ....................................................................................................... 346
Table 509. TPG_CONFIG4, Register (R/W) ....................................................................................................... 347
Table 510. TPG_CONFIG5, Register (R/W) ....................................................................................................... 348
Table 5 11. TPG_USER, Register (R/W) ............................................................................................................. 348
Table 5 12. TPM_USER, Register (R/W) ............................................................................................................. 348
Table 513. TPG_BER CNT0, Register (RO) ........................................................................................................ 348
Table 514. TPG_BER CNT2, Register (RO) ........................................................................................................ 349
Table 515. TPG_BER CNT4, Register (RO) ........................................................................................................ 349
Table 516. TPG_BER CNT5, Register (RO) ........................................................................................................ 349
Table 517. TPM_ESFDL_RX, Register (RO) ...................................................................................................... 349
Table 518. TPM_E1SA_RX12, Register (RO) ..................................................................................................... 349
Table 519. TPM_E1SA_RX34, Register (RO) ..................................................................................................... 349
Table 5 20. Test-Pattern Generation/Detection Register Map ............................................................................. 350
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
337Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
15.1 Te st-Pattern Generation/Dete ction Re gister D esc riptions
The following ta bles describe the function s of all bits in the microproc es s or register map. For each address, the
register bits are indicated as either read/write (R/W) or read on ly (RO), and the value of the bits on reset is given.
Table 481. TPG_ID , Status Regist er (RO)
Table 482. TPG_ISRC_OOFD, Delta Register (RO)
Table 483. TPG_ISRC_OOSD, Delta Register (RO)
A ddress Bi t Nam e Fun ction Reset
Default
0x60000 15 TPG _RE ADY This bit signifies that TPG reset/initialization is complete. 1
14:11 Reserved. 0x0
10:8 TPG_
VERSION[2:0] These bits identify the version number of the TPG. 0x0
7:0 TPG_ID[7 :0] TPG_ID returns a fixed value (0x06) when read. 0x06
Address Bit Name Function Reset
Default
0x60004 15:3 Reserved. 0x0000
2 TPM _OO F2D This bit is set when the TPM mo n itor E1 test signal out-of-frame
detector changes state (tra n sitio ns ). 0
1Reserved. 0
0 TPM_OOF0D This bit is set when the TPM monitor DS1 test signal out-of-frame
detector changes state (tra n sitio ns ). 0
Address Bit Name Function Reset
Default
0x60005 15:6 Reserved. 0x000
5 TPM_OOS5 D This bit is set when the TPM mo n itor DS3 test signal out-of-sync
detector changes state (tra n sitio ns ). 0
4 TPM_OOS4 D This bit is set when the TPM mo n itor DS3 test signal out-of-sync
detector changes state (tra n sitio ns ). 0
3Reserved. 0
2 TPM_OOS2 D This bit is set when the TPM mon itor E1 test signal out-of-sync
detector changes state (tra n sitio ns ). 0
1Reserved. 0
0 TPM_OOS0 D This bit is set when the TPM mo n itor DS1 test signal out-of-sync
detector changes state (tra n sitio ns ). 0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
338 Agere Sy stem s Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 484. TP G_ISRC_BERE, E vent Register (RO)
Table 485. TPG_ISRC_FERE, Event Register (RO)
Table 486. TPG_I SR C _ BPVE, Event Regis ter (RO)
Address Bit Name Function Reset
Default
0x60006 15:6 Reserved. 0x000
5 T PM_BERE 5 This bit is se t when the TPM monitor determines that the incom-
ing DS3 test signal has a s ingl e bit error. 0
4 T PM_BERE 4 This bit is se t when the TPM monitor determines that the incom-
ing DS2 test signal has a s ingl e bit error. 0
3Reserved. 0
2 T PM_BERE 2 This bit is se t when the TPM monitor determines that the incom-
ing E1 test signal has a singl e bit error. 0
1Reserved. 0
0 T PM_BERE 0 This bit is se t when the TPM monitor determines that the incom-
ing DS1 test signal has a s ingl e bit error. 0
Address Bit Name Function Reset
Default
0x60007 15:3 Reserved. 0x000
2 TPM _FE R E2 This bit is set when the TPM monitor dete rm ines that the incom-
ing E1 test signal has a framing error. 0
1Reserved. 0
0 TPM _FE R E0 This bit is set when the TPM monitor dete rm ines that the incom-
ing DS1 test signal has a f raming error. 0
Address Bit Name Function Reset
Default
0x60008 15:3 Reserved. 0x0000
2 TPM_BPVE2 This bit is set when the TPM monitor determines that the inco m-
ing E1 test signa l has a bipolar violation error. 0
1Reserved. 0
0 TPM_BPVE0 This bit is set when the TPM monitor determines that the inco m-
ing DS1 test signal has a bipolar violation error. 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
339Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 487. TPG_ISRC_AISD, Delta Register (RO)
Table 488. TP G_ISRC_CRCE, Event Register (RO)
Table 489. TPG_IMSK_OOFD, Register (R/W)
Table 490. TPG_IMSK_OOSD, Register (R/W)
Address Bit Name Function Reset
Default
0x60009 15:6 Reserved. 0x000
5 TPM_AIS5D This bit is set when the TPM monitors DS3 test signal A I S detec-
tor changes state (transitions). 0
4 TPM_AIS4D This bit is set when the TPM monitors DS2 test signal A I S detec-
tor changes state (transitions). 0
3Reserved. 0
2 TPM_AIS2D This bit is set when the TPM monitors E1 test signal AI S de te cto r
changes state (transitions). 0
1Reserved. 0
0 TPM_AIS0D This bit is set when the TPM monitors DS1 test signal A I S detec-
tor changes state (transitions). 0
Address Bit Name Function Reset
Default
0x6000A 15:3 Reserved. 0x000
2 TPM_CRCE2 This bit is set when the TPM mo n itors E 1 CRC errors. 0
1Reserved. 0
0 TPM_CRCE0 This bit is se t when the TPM monitors DS1 CRC errors. 0
Address Bit Name Function Reset
Default
0x60010 15:3 Reserved. 0x000
2 TPM_OOF2DM This mask bit is set t o suppress an interrupt when the TPM moni-
tor E1 test sign al out-of-frame indicator cha nges. 1
1Reserved. 0
0 TPM_OOF0DM This mask bit is set t o suppress an interrupt when the TPM moni-
tor DS1 test sign al out-of-frame indicat or changes. 1
Address Bit Name Function Reset
Default
0x60011 15:6 Reserved. 0x000
5 T PM_OOS5DM Thi s mask bit is set to suppress an interrupt when the TPM moni-
tor DS3 test s ign al out-of-sync in dicator changes. 1
4 T PM_OOS4DM Thi s mask bit is set to suppress an interrupt when the TPM moni-
tor DS2 test s ign al out-of-sync in dicator changes. 1
3Reserved. 0
2 T PM_OOS2DM Thi s mask bit is set to suppress an interrupt when the TPM moni-
tor E1 test sign al out-of-sync ind icato r change s. 1
1Reserved. 0
0 T PM_OOS0DM Thi s mask bit is set to suppress an interrupt when the TPM moni-
tor DS1 test s ign al out-of-sync in dicator changes. 1
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
340 Agere Sy stem s Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 491. TPG_IMSK_BERE, Register (R/W)
Table 492. TPG_IMSK_FERE, Register (R/W)
Table 493. TPG_IMSK_BPV, Reg ister (R/W)
Address Bit Name Function Reset
Default
0x60012 15:6 Reserved. 0x000
5 TPM_BE RE5M This m as k bit is set t o suppress an interrupt when the TPM moni-
tor determines that the incoming DS3 test signal has a bit error. 1
4 TPM_BE RE4M This m as k bit is set t o suppress an interrupt when the TPM moni-
tor determines that the incoming DS2 test signal has a bit error. 1
3Reserved. 0
2 TPM_BE RE2M This m as k bit is set t o suppress an interrupt when the TPM moni-
tor determines that the incomin g E1 test si gnal has a bit error. 1
1Reserved. 0
0 TPM_BE RE0M This m as k bit is set t o suppress an interrupt when the TPM moni-
tor determines that the incoming DS1 test signal has a bit error. 1
Address Bit Name Function Reset
Default
0x60013 15:3 Reserved. 0x0000
2 TPM_FE R E2M This mas k bit is set to suppress an interrupt when the TPM moni-
tor determines that the E1 test signal has a framing error. 1
1Reserved. 0
0 TPM_FE R E0M This mas k bit is set to suppress an interrupt when the TPM moni-
tor determines that the DS1 test sig nal has a framing error. 1
Address Bit Name Function Reset
Default
0x60014 15:3 Reserved. 0x0000
2 TPM_BPV2M This mask bit is set to suppress an interrupt when the TPM moni-
tor determi nes that the E1 test signal has a bipolar v iolation erro r. 1
1Reserved. 0
0 TPM_BPV0M This mask bit is set to suppress an interrupt when the TPM moni-
tor determines that the DS1 test sig nal has a bipolar violation
error.
1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
341Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 494. TPG_IMSK_AISD, Register (R/W)
Table 495. TPG_IMSK_CRCE, Register (R/W)
Table 4 96. TPG_VAL_OOF, Register (RO)
Address Bit Name Function Reset
Default
0x60015 15:6 Reserved. 0x000
5 T PM_AIS5DM This mask bit is set t o suppress an interrupt when the TPM moni-
tor DS3 test sign al AIS indicator changes. 1
4 T PM_AIS4DM This mask bit is set t o suppress an interrupt when the TPM moni-
tor DS2 test sign al AIS indicator changes. 1
3Reserved. 0
2 T PM_AIS2DM This mask bit is set t o suppress an interrupt when the TPM moni-
tor E1 test sign al AIS in dicat or changes. 1
1Reserved. 0
0 T PM_AIS0DM This mask bit is set t o suppress an interrupt when the TPM moni-
tor DS1 test sign al AIS indicator changes. 1
Address Bit Name Function Reset
Default
0x60016 15:3 Reserved. 0x0000
2 TPM_CRCE2M This mask bit is set to suppress an interr upt when the TPM moni-
tor detects an E1 test signal CRC-4 erro r. 1
1Reserved. 0
0 TPM_CRCE0M This mask bit is set to suppress an interr upt when the TPM moni-
tor detects a DS1 test signal CRC-6 erro r. 1
Address Bit Name Function Reset
Default
0x60020 15:3 Reserved. 0x0000
2 TPM_OO F2 This status bit is set whenever the TPM E1 test m onitor h as
encountered an out -of-frame condition. 1
1Reserved. 0
0 TPM_OO F0 This status bit is set whenever th e T PM DS1 test m onitor has
encountered an out -of-frame condition. 1
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
342 Agere Sy stem s Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 4 97. TPG_VAL_OO S, Register (RO)
Table 498. TPG_VAL_AIS, Register (RO)
Table 499. TPG_VAL_FER, Register (RO)
Address Bit Name Function Reset
Default
0x60021 15:6 Reserved. 0x000
5 TPM_OO S 5 This status bit is set whe never t he TPM DS3 test monitor has
encountered an out-of-sy nc condition. 1
4 TPM_OO S 4 This status bit is set whe never t he TPM DS2 test monitor has
encountered an out-of-sy nc condition. 1
3Reserved. 0
2 TPM_OOS 2 Thi s sta tus bit is set whenever the TPM E1 test monitor has
encountered an out-of-sy nc condition. 1
1Reserved. 0
0 TPM_OO S 0 This status bit is set whe never t he TPM DS1 test monitor has
encountered an out-of-sy nc condition. 1
Address Bit Name Function Reset
Default
0x60022 15:6 Reserved. 0x000
5 TPM_AIS5 This status bit is set wh e never t he TPM DS3 test monitor has
encountered an AIS condition. 0
4 TPM_AIS4 This status bit is set wh e never t he TPM DS2 test monitor has
encountered an AIS condition. 0
3Reserved. 0
2 TPM_ AIS2 This sta tus bit is set whenever the TPM E1 test monitor has
encountered an AIS condition. 0
1Reserved. 0
0 TPM_AIS0 This status bit is set wh e never t he TPM DS1 test monitor has
encountered an AIS condition. 0
Address Bit Name Function Reset
Default
0x60023 15:3 Reserved. 0x0000
2 TPM_FER2 Thi s sta tus bit is set whenever the TPM E1 test monitor has
encounter ed an FER condition. 0
1Reserved. 0
0 TPM_FER0 This status bit is set whe never the T PM DS1 test monitor has
encounter ed an FER condition. 0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
343Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 500. T PG_VAL_CRCE, Register (RO)
Table 501. TPG_BER_INSRT, Register (R/W)
Tabl e 502. TPG_ FER_INSRT, Register (R/W)
Table 503. T PG_CRCE_INSRT, Register (R/W)
Address Bit Name Function Reset
Default
0x60024 15:3 Reserved. 0x0000
2 TPG_CR C EINS 2 This bit is set when the user desires to inject a single CRC error
into the E 1 test signal (via 0 to 1 transition). 0
1Reserved. 0
0 TPG_CR C EINS 0 This bit is set when the user desires to inject a single CRC error
into the DS1 test signal (Via 0 to 1 transition ). 0
Address Bit Name Function Reset
Default
0x60028 15 TPG_B E R_E N This bit, whe n set , all ows automatic bit error insertion by the
microprocessor. 0
14:6 Reserved. 0x000
5 TPG_BERINS5 This bit is set when the user desires to inject a single bit error into
the DS3 test signal via SMPR_B ER_INSRT (Table 65,
SMPR_G TR, Global Trigger Re gister (RW) o n pag e 66).
0
4 TPG_BERINS4 This bit is set when the user desires to inject a single bit error into
the DS2 test signal via SMPR_B ER_INSRT. 0
3Reserved. 0
2 TPG_BERINS2 This bit is set when the user desires to inject a single bit error into
the E1 test signal via SMPR_BER_IN SRT. 0
1Reserved. 0
0 TPG_BERINS0 This bit is set when the user desires to inject a single bit error into
the DS1 test signal via SMPR_B ER_INSRT. 0
Address Bit Name Function Reset
Default
0x60029 15:3 Reserved. 0x0000
2 T PG_FERI NS2 T h is bit i n jects a s i ng l e fr a mi ng e rror into the E1 test signal (v i a 0
to 1 transition). 0
1Reserved. 0
0 TPG_FERINS0 Thi s bit injects a single framing error into the DS1 test signal (via
0 to 1 transition ). 0
Address Bit Name Function Reset
Default
0x6002A 15:3 Reserved. 0x0000
2TPG_
CRC4EINS2 Th is bit is set when the user desires to inject a single CRC-4 error
into the E 1 test signal (via 0 to 1 transition). 0
1Reserved. 0
0TPG_
CRC6EINS0 This bit is set when the user desires to inject a single
CRC-6 error Into the DS1 test signal (via 0 to 1 transition). 0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
344 Agere Sy stem s Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 504. TPG_ESFDL_TX, Register (R/W)
Table 5 05. TPG_E1SA_TX12, Register (R/W)
Table 5 06. TPG_E1SA_TX34, Register (R/W)
A ddress Bit Name Function Reset
Default
0x6002C 15:0 TPG_ESFDL[15:0] Data -Link Field to be Sent with Each DS1 Idle Fra m e. 0x7E7E
Address Bit Name Function Reset
Default
0x6002E 15:13 Reserved . 0x0
12:8 TPG_E1SA2[4:0] Sa (sp are bits [8:4]) to be Sent with E1 Idle Fram e. 0x00
7:5 Reser ved. 0x0
4:0 TPG_E1SA1[4:0] Sa (spare bits [8:4]) to be Sent with E1 Idle Frame. 0x00
A ddress B it Name Function Reset
Default
0x6002F 15:13 Reserved. 0x0
12:8 TPG_E1SA4[4:0] Sa (spare bits [8:4]) to be Sent with E1 Test Frame. 0x00
7:5 Reserved. 0x0
4:0 TPG_E1SA3[4:0] Sa (spare bits [8:4]) to be Sent with E1 Test Frame. 0x00
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
345Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 507. T PG_CONFIG0, Register (R/W)
A ddres s Bit Name Function Reset
Default
0x60030 15: 13 TPM_ SEQ0[2:0] These bits select the test pattern to be monitored by the TPG on
the DS1 test input. 000
12 TPM_TPINV0 This bit, if set, inverts the received data for DS1 test si gnals. 0
11 TPG_TPIN V0 This bit, if set, inve rts t he transmitted data for DS1 t est signals. 0
10 TPM_EDGE0 This bit, if set, selects the rising edge of XC_TCLK[0] for use as
the retim ing clock edge; or else selects falling edge. 1
9 TPG_E DGE 0 This bit, if set, selects the rising edge of TPG_CLK[0] for use as
the trans m it clo ck edge; or else selects falling edge. 1
8TPG_TPM_
ESF_0 This bit sel ec ts extended superframe mode for DS 1 Test s ignals. 0
7:6 TPG_TPM_
CODE0[1:0] Dont Use Line Coding/decoding when 00.
Use HDB3 coding/decoding when 01.
Use B8ZS coding/decoding when 10.
Use AMI coding/decoding when 11.
This code is common to the generator and monitor sides.
00
5 TPM_FRAME 0 This bit is set to select a framed DS1 Test pattern in the monito r. 0
4 TPG_FINV0 If this bit is set, the frame bit in the 12th fr ame of each superframe
is inverted in the DS1 test pattern. 0
3 T PG_FRAME0 This bit is set to select a framed DS1 test pattern in the genera-
tor. 0
2:0 TPG_SEQ0[2:0] These Bits Select the Test Pattern to be Generated and
Transmitted by the TPG on the DS1 Test Output.
000 = PRBS15
001 = PRBS20
010 = QRSS
011 = PRBS23
100 = Alternating 01
101 = All ones
110 = Unused
111 = User defined
000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
346 Agere Sy stem s Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 508. T PG_CONFIG2, Register (R/W)
Address Bit Name Function Re set
Default
0x60032 15:13 TPM_SEQ2[2:0] These Bits Select th e Test Pattern to be Monitored by the
TPG on the E1 Test Input. 000
12 TPM_TPINV2 This Bit, if Set, Inverts the Received Data for E1 Test Signals. 0
11 TPG_TPINV2 This Bit, if Set, Inve rts the Transmitted D ata f or E1 Test Sig-
nals. 0
10 TPM_EDGE2 This Bit, if Set, Selects the Rising Edge of XC_TCLK[2] for
Use as the Retiming Clock Edge; or Else Selects Falling
Edge.
1
9TPG_EDGE2This Bit, if Set, S el ects the Rising Edge of TPG_CLK[2] for
Use as the Trans mit Clock Edge; or Else Selects Falling
Edge.
1
8TPG_TPM_
CRC4_EN2 This Bit, if Set, E nables CR C-4 Insertion if E1 Framing is
Selected.
This bit i s common to the generator and monitor sides.
0
7:6 TPG_TPM_
CODE2[1:0] Dont uSe Line Coding/decoding when 0 0 .
Use HDB3 coding/decoding when 01.
Use B8ZS coding/decoding when 10.
Use AMI coding/decoding when 11.
This code is common to the generator and monitor sides.
00
5TPM_FRAME2Th is Bit is Set to Select a Framed E1 Test Pattern. 0
4TPG_FINV2If this Bit is Set, the Frame Alignment Sequence (Normally
0011011) is Transmitted with the Last Bit Inverted (0011010). 0
3TPG_FRAME2This Bit i s S et to Select a Fram ed E1 Test Pattern. 0
2:0 TPG_SEQ2[2:0] These Bits Select the Test Pattern to Be Generated and
Transmitted by the TPG on the E1 Test Output
(TPG_DATA[2]).
000 = PRBS15
001 = PRBS20
010 = QRSS
011 = PRBS23
100 = Alternating 01
101 = All ones
110 = Unused
111 = User defined
000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
347Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 509. T PG_CONFIG4, Register (R/W)
Address Bit Name Function Reset
Default
0x60034 15:13 TPM_SEQ4[2:0] These Bits Select th e Test Pattern to be Monitored by the
TPG on the DS2 Test Input. 000
12 TPM_TPINV4 This Bit, if Set, Inverts the Received Data for DS2 Test Sig-
nals. 0
11 TPG_TPINV4 This Bit, if Set, Inverts the Transmitted Data for DS2 Test Sig-
nals. 0
10 TPM_EDGE4 This Bit, if Set, Selects the Rising Edge of XC_TCLK[4] for
Use as the Retiming Clock Edge; or Else Selects Falling
Edge.
1
9TPG_EDGE4This Bit, if Set, Selects the Rising Edge of TPG_CL K[4] for
Use as the Trans mit Clock Edge; or Else Selects Falling
Edge.
1
2:0 TPG_SEQ4[2:0] These Bits Select the Test Pattern to be Generated and
Transmitted by the TPG on the DS2 Output (TPG_DATA[4]).
000 = PRBS15
001 = PRBS20
010 = QRSS
011 = PRBS23
100 = Alternating 01
101 = All ones
110 = Unused
111 = User defined
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
348 Agere Sy stem s Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 510. T PG_CONFIG5, Register (R/W)
Table 511. TPG_USER, Register (R/W)
Table 512. T PM_USER, Register (R/W)
Table 513. TPG_BERCNT0, Register (RO)
Address Bit Name Function Re set
Default
0x60035 15:13 TPM_SEQ5[2:0] These Bits Select th e Test Pattern to be Monitored by the
TPG on the DS3 Test Input. 000
12 TPM_TPINV5 This Bit, if Set, Inve rts the Receive d Data for DS3 Test Sig-
nals. 0
11 TPG_TPINV5 This Bit, if Set, Inverts the Transmitted Data for DS3 Test Sig-
nals. 0
10 TPM_EDGE5 This Bit, if Set, Selects the Rising Edge of XC_TCLK[5] for
Use as the Retiming Clock Edge; or Else Selects Falling
Edge.
1
9TPG_EDGE5This Bit, if Set, S el ects the Rising Edge of TPG_CLK[5] for
Use as the Trans mit Clock Edge; or Else Selects Falling
Edge.
1
8:3 Reserved.
2:0 TPG_SEQ5[2:0] These Bits Select the Test Pattern to be Generated and
Transmitted by the TPG on the DS3 Output (TPG_DATA[5]).
000 = PRBS15
001 = PRBS20
010 = QRSS
011 = PRBS23
100 = Alternating 01
101 = All ones
110 = Unused
111 = User defined
0
Address Bit Name Function Reset
Default
0x60036 15:0 TPG_USER[15:0] User Programmed Test Pattern Generator Data. 0xDEAD
Address Bit Name Function Reset
Default
0x60037 15:0 TPM_USER[15:0] User Pr o grammed Test Pa ttern Monitor Data. 0xBEEF
Address Bit Name Function Re set
Default
0x60040 15:0 TPM_CNT0[15:0] This Fi el d Holds the Current Counter Va lue for DS1 Test Pa t-
tern Bit Errors as Detected by the TP M. 0x0000
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
349Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 514. TPG_BERCNT2, Register (RO)
Table 515. TPG_BERCNT4, Register (RO)
Table 516. TPG_BERCNT5, Register (RO)
Table 517. TPM_ESFDL_RX, Register (RO)
Table 5 18. TPM_E1SA_RX12, Regi ster (RO)
Table 519. TPM_E1S A_RX34, Register (RO)
Address Bit Name Function Reset
Default
0x60042 15:0 TPM_CNT2[15:0] This Fi el d Holds the Current Counter Value for E1 Test Pat-
tern Bit Errors as Detected by the TP M. 0x0000
Address Bit Name Function Reset
Default
0x60044 15:0 TPM_CNT4[15:0] This Fi el d Holds the Current Counter Value for DS2 Test Pat-
tern Bit Errors as Detected by the TP M. 0x0000
Address Bit Name Function Reset
Default
0x60045 15:0 TPM_CNT5[15:0] This Fi el d Holds the Current Counter Value for DS3 Test Pat-
tern Bit Errors as Detected by the TP M. 0x0000
Address Bit Name Function Reset
Default
0x6004C 15:0 TPM_
ESFDL[15:0] Data-Link Field Received from L ast DS1 Idle Frame. 0x0000
Address Bit Name Function Reset
Default
0x6004E 15:13 Reserved . 0x0
12:8 TPM_E1SA2[4:0] Sa (spare bits [4:8]) Received from E1 Frame . 0x00
7:5 Reser ved. 0x0
4:0 TPM_E1SA1[4:0] Sa (spare bits [4:8]) Recei ved from E1 Frame. 0x00
Address Bit Name Function Reset
Default
0x6004F 15:13 Reserved. 0x0
12:8 TPM_E1SA4[4:0] Sa (spare bits [4:8]) Received from E1 Frame . 0x00
7:5 Reserved. 0x0
4:0 TPM_E1SA3[4:0] Sa (spare bits [4:8]) Recei ved from E1 Frame. 0x00
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
350 A
g
ere S
y
stems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
15.2 Test-Pattern Generation/Detection Re gister Map
Tabl e 520. Test-Pattern Generation/Detection Register Map
Note: The reset default o f all res erved bits i s 0. Shading denotes reserved bits.
Addre ss Symbol Bit 1 5 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bi t 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block-Level StatusRO
0x60000 TPG_ID TPG_
READY 0 0 0 0 TPG_VERSION[2:0] TPG_ID[7:0]
0x60001
0x60003
TPM Interrupt Sources (Deltas and Events)RO
0x60004 TPG_ISRC_
OOFD TPM_
OOF2D TPM_
OOF0D
0x60005 TPG_ISRC_
OOSD TPM_
OOS5D TPM_
OOS4D TPM_
OOS2D TPM_
OOS0D
0x60006 TPG_ISRC_
BERE TPM_
BERE5 TPM_
BERE4 TPM_
BERE2 TPM_
BERE0
0x60007 TPG_ISRC_
FERE TPM_
FERE2 TPM_
FERE0
0x60008 TPG_ISRC_
BPVE TPM_
BPV2 TPM_
BPV0
0x60009 TPG_ISRC_
AISDE TPM_
AIS5D TPM_
AIS4D TPM_
AIS2D TPM_
AIS0D
0x6000A TPG_ISRC_
CRCE TPM_
CRCE2 TPM_
CRCE0
0x6000B
0x6000F
TPM Interrupt MasksR/W and Edge Controls
0x60010 TPG_IMSK_
OOFD TPM_
OOF2DM TPM_
OOF0DM
0x60011 TPG_IMSK_
OOSD TPM_
OOS5DM TPM_
OOS4DM TPM_
OOS2DM TPM_
OOS0DM
0x60012 TPG_IMSK_
BERE TPM_
BERE5M TPM_
BERE4M TPM_
BERE2M TPM_
BERE0M
0x60013 TPG_IMSK_
FERE TPM_
FERE2M TPM_
FERE0M
0x60014 TPG_IMSK_
BPV TPM_
BPV2M TPM_
BPV0M
0x60015 TPG_IMSK_
AISD TPM_
AIS5DM TPM_
AIS4DM TPM_
AIS2DM TPM_
AIS0DM
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
351Agere Sy stem s Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 520. Test-Pattern Gene rat ion/Detec tion Regis t e r Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x60016 TPG_IMSK_
CRCE TPM_
CRCE2M TPM_
CRCE0M
0x60017
0x6001F
TPM S tate and V alue ParametersRO
0x60020 TPG_VAL_
OOF TPM_
OOF2 TPM_
OOF0
0x60021 TPG_VAL_
OOS TPM_
OOS5 TPM_
OOS4 TPM_
OOS2 TPM_
OOS0
0x60022 TPG_VAL_
AIS TPM_
AIS5 TPM_
AIS4 TPM_
AIS2 TPM_
AIS0
0x60023 TPG_VAL_
FER TPM_
FER2 TPM_
FER0
0x60024 TPG_VAL_
CRCE TPG_CR
CEINS2 TPG_CR
CEINS0
0x60025
0x60027
TPG Err o r Insert Enables R/W
(Error injection triggered by SMPR_BER_INSRT (Table 65, SMPR_GTR, Global Trigger Register (RW) on page 66))
0x60028 TPG_BER_
INSRT TPG_
BER_EN TPG_
BERINS5 TPG_
BERINS4 TPG_
BERINS2 TPG_
BERINS0
TPG Er ror Insert Triggers (rising edge)R/W
0x60029 TPG_FER_
INSRT TPG_
FERINS2 TPG_
FERINS0
0x6002A TPG_CRCE_
INSRT TPG_
CRC4EIN
S2
TPG_
CRC6EIN
S0
0x6002B
TPG (Transmi t) ESF Dat a Li nk and E1 SA-B its Content sR/W
0x6002C TPG_
ESFDL_TX TPG_ESFDL[15:0]
0x6002D
0x6002E TPG_E1SA_
TX12 TPG_E1SA2[4:8] TPG_E1SA1[4:8]
0x6002F TPG_E1SA_
TX34 TPG_E1SA4[4:8] TPG_E1SA3[4:8]
TMX F2 8155 Super Ma pp er Pre liminary Data Sheet
155/51 Mbits/s SONET/ SDH x28/x21 D S1/ E1 May 2 001
352 A
g
ere S
y
stems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Tabl e 520. Test-Pattern Generation/Detection Register Map (continued)
Addre ss Symbol Bit 1 5 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bi t 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TPG/TPM ConfigurationR/W
(Test Channels Only)
0x60030 TPG_
CONFIG0 TPM_SEQ0[2:0] TPM_
TPINV0 TPG_
TPINV0 TPM_
EDGE0 TPG_
EDGE0 TPG_
TPM_
ESF_0
TPG_TPM_
CODE0[1:0] TPM_
FRAME0 TPG_
FINV0 TPG_
FRAME0 TPG_
SEQ0[2:0]
0x60031
0x60032 TPG_
CONFIG2 TPM_
SEQ2[2:0] TPM_
TPINV2 TPG_
TPINV2 TPM_
EDGE2 TPG_
EDGE2 TPG_
TPM_
CRC4_
EN2
TPG_TPM_
CODE2[1:0] TPM_
FRAME2 TPG_
FINV2 TPG_
FRAME2 TPG_SEQ2[2:0]
0x60033
0x60034 TPG_
CONFIG4 TPM_SEQ4[2:0] TPM_
TPINV4 TPG_
TPINV4 TPM_
EDGE4 TPG_
EDGE4 TPG_SEQ4[2:0]
0x60035 TPG_
CONFIG5 TPM_SEQ5[2:0] TPM_
TPINV5 TPG_
TPINV5 TPM_
EDGE5 TPG_
EDGE5 TPG_SEQ5[2:0]
0x60036 TPG_USER TPG_USER[15:0]
0x60037 TPM_USER TPM_USER[15:0]
0x60038
0x6003F
TPM B it Error CountersRO
(see also PMRST (Table 3, High-speed I/O Pin Descriptions on page 29), SMPR_SAT_ROLLOVER and SMPR_COR_COW (Table 67, SMPR_GCR, Global Control Register (RW) on page 68))
0x60040 TPG_
BERCNT0 TPM_CNT0[15:0]
0x60041
0x60042 TPG_
BERCNT2 TPM_CNT2[15:0]
0x60043
0x60044 TPG_
BERCNT4 TPM_CNT4[15:0]
0x60045 TPG_
BERCNT5 TPM_CNT5[15:0]
0x60046
0x6004B
P
re
li
m
i
nary
D
a
t
a
Sh
ee
tTMXF28155
S
uper
M
apper
May 2001 155/51 Mbits/s SO NET /SDH x 28/x2 1 DS1/E1
353Agere Sy stem s Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 520. Test-Pattern Gene rat ion/Detec tion Regis t e r Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TP M Received DS1-ESF Dat a Link and E1 Sa-Bits ContentsRO
0x6004C TPM_
ESFDL_RX TPM_ESFDL0[15:0]
0x6004D
0x6004E TPM_E1SA_
RX12 TPM_E1SA2[4:8] TPM_E1SA1[4:8]
0x6004F TPM_E1SA_
RX34 TPM_E1SA4[4:8] TPM_E1SA3[4:8]
0x60050
0x600FF
354 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
Functional Descriptions
16 Microprocessor Interface Functional Description
Ta ble of Conte nts
Contents Page
16 Microprocessor Interface Functional Description ............................. .............. . ......................... . ..................... 354
16.1 In troduction ............................................................................................................................................. 355
16.2 Features ................................................................................................................................................. 355
16.3 Microprocessor Interface ........................................................................................................................ 355
16.4 M PU Block Di agram ............................................................................................................................... 356
16.5 Super Mapper Register Address M apping .................................... .......................... ............................... 356
16.6 Performance Monitoring (PM) Counters Operation ............. ..... .............. . ......................... ..... ... .............. 356
16.7 Super Map per Global Interrupt Stat us and Cont ro l ....................... ... ......................... . ............................ 358
16.8 Gl obal Control ......................................................................................................................................... 358
Figures Page
Fig ure 18. Microprocessor Interface..................................................................................................................... 356
Fig ure 19. PM Reset Cou nter............................................................................................................................... 357
Figure 20. PM Reset Signal Generation.................. ....... ..... ....... ................. ... ......................... ....... ...................... 357
Tables Page
Table 5 21. S uper Mapper Register Address Map ping .............. . .................. . .................. . .................. ................. 356
355Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
16 Microprocessor Interface Functional Description (continued)
16.1 Introductio n
The Super Mapper micr opr ocessor int e r face consists of a 20-bit address and a 16-bit data bus. In addition, this
block contains global control and status regis te rs. These registe r s include the summar y of interrupt status o f m ajor
functional blocks and the control to enable them or power them down.
16.2 Features
20-bit address/16-bit data bus m icroproces sor interfa ce.
Synchronous (16 MHz to 66 MHz)/asynchronous microprocessor interface modes.
Microproces sor data bus parity monitoring.
Summar y of interrupt s f rom major functional blocks/maskable.
Separate device interrupt outputs for automatic protection sw itch and the Super Mapper global interrupt.
Global conf iguration of network performance m onitoring co unters operation.
Global software resets.
Global enabling and poweri ng down of major functional blocks.
Miscellaneous global configuration and control.
16.3 Micro p roc e ss o r In t er f ac e
This device is equipped with a generic 20-bit address/16-bit dat a microprocessor interface that allows operation
with most commercially avai lable microprocesso rs. Device input pin M PMODE (pin AD17) is used to configure this
interface into one of tw o possible modes (syn c hronous or asynchronous). In synchronous m ode (MPMODE = 1),
the microprocessor interface can ope rate at speeds from 1 6 MHz up to 66 MHz. In asynchronous mode
(MPMODE = 0), a 16 MHz to 66 MHz clock is required on the MPCLK (pin AE17) pin for proper operation.
Two parity detectors are provided for th e microproc essor data bus, one for the higher-order byte an d one for the
low er-order byte . The parity sense is programmed as even or od d with register bit SMPR_PARITY_EVEN_ODD
(Table 67 on page68 ). The composite status of both pa rity det ecto rs is indicated in regi ster bit S MPR_PARITY_IS
(Table 63 on page64 ). The interrupt from this status indicator may b e masked with register bit SMPR_PARITY_IM
(Table 64 on page65 ). A bad p a rity event does not inhibit a dat a transfer. The microproc essor interface is fully
func tional without parity supplied by the host pr oc essor.
The inter rupt status from each of the major blocks, the au tomatic prot ection switch, and the mic roprocessor data
bus pari ty are summ ari zed in Table 63 on page 64 . Each interrupt is maskabl e with the complementary bit set in
the interrupt m as k regi ster, s ee Table 64 on page65 .
356 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
16 Microprocessor Interface Functional Description (continued)
16.4 MPU Block Diagram
5-9039(F)r.2
Figure 18. Microprocessor Interfa ce
16.5 Super Mapp er R eg ister A ddress M a ppi ng
Each of the Super Mappers major fun ctional b locks is selected with an address mapping of the highest order nib-
ble, device pins ADDR[19:16], and allocated a 16-bit address ra nge, pins ADDR[15:0], as defined in Table 521.
Table 521. Super Mapper Register Address Mapping
16.6 Perfo rman ce Mon itoring (PM) Counters Operation
PM counters are error counters or other statist ics counters. In general, t wo i nt erna l registers are ne eded to imple-
ment a PM count er: a running count register (1), m aintained by the core logi c, which i s incremented by 1, every
time an error (or statistics event) happens. At a defined interval, one second for example, the content of the running
counter is transferred to a holding register (2), while the running count register is reset t o 0 and star t s to count
anew. The cou nt holding register holds the data that microprocessor actually reads.
ADDR[19:16] Block ID Block Name ADDR
0000 0 TOP [15:0]
0001 1 M13 [15:0]
0010 2 VTMPR [15:0]
0011 3 SPEMPR [15:0]
0100 4 TMUX [15:0]
0101 5 XC [15:0]
0110 6 TPG [15:0]
0111 7 DJA [15:0]
1000 8 FRAMER [15:0]
MPCLK
ADDR[19:0]
CSN
ADSN
DSN
RWN
DATA[15:0]
DTN
MPMODE
INTN
APS_INTN
INTERNAL
ADDRESS
INTERNAL
DATA
INTERNAL
CONTROL
PAR[1:0]
357Agere Systems Inc.
Prelim inary Data Sheet TMXF28155 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
16 Microprocessor Interface Functional Description (continued)
5-9040(F)r.3
Figure 19. PM Reset Counter
The PM counter control signal c ontrols the transf er and reset of all performance monitoring registers (collec ting
events/statistics). The s ource of this signal is configurable and can come from e xternal pin (PMRST pin T25), an
inter nal timer, or be cont rolled by software, depending on the SMPR_PMMODE[1:0] bits (Table 67, bits 9:8),
describ ed as follows:
SMPR_PMMODE[1:0] = 00, 10: PM counter control is sourced from external pin PMRST .
SMPR_PMMODE[1:0] = 01: PM counter control is sourc ed from internal 1 second timer. Writing a logic one to the
SMPR _ PMR ESET bit (Table 65, bit 8 ) will reset the timer s o tha t a transiti on o cc urs on th e internal PM counter
control signal within 10 MPCLK clock cycles. The ti mer is based on the period of the MPCLK and the programmed
value of the re gisters in Table 72 and Table 73. Once initially reset and synchronized, the PM counter reset interval
is determined by the combined delay of the programme d registers. The device pin, PMRST, is enab led as an out-
put.
SMPR _P M MO D E[1:0] = 11: The PM counter con trol signa l is sof tware cont ro ll ed. Writ ing a logic one to the
SMPR _PMR ESET bi t will cause a P M reset within 10 MPCL K cycle times after writing. This pulse will be
100 cycles high and 100 cycles low at the MPCLK frequency. D uri ng this 200 cycle time, writing to PM bit w ill have
no effect. The device pi n, PMRST, is enabled as an output.
5-9931(F)
Figure 20. P M Reset Sig nal Generation
PM COUNT EVENT RUNNING HOLDING
MPU READABLE MPUCLK
MPU RE A D HOLDING
REGISTER
(ONE PER BLO CK)
COUNTER COUNTER
PM COUNT EVENT CLOCK
RESET
PM COUNTER CONTROL
PM CO UNTER
BUFFERED
ENABLE
MPUCLK DELAY
1/ 2 S E C O N D
COUNTERS
SMPR_PMRESET_HIGH_COUNT
SMPR_PMRESET_LOW_COUNT
SMPR_PMMODE
(REG ISTER SMPR_ GC R bit s [9 :8 ])
SMPR_PMRESET
(REGISTER SMPR_GTR bit 8)
FREE RUNNING
(SMPR_PMMODE[1:0] = 01)
SOFTWARE CONTROLLED
(SMPR_PMMODE[1:0] = 11)
EXTERNAL
(SMPR_PMMODE[1:0] = 00, 10)
MPUCLK
OUTPUT ENABLED
SMPR_PMMODE[1:0] = 01, 11
OUTPUT DISABLED
SMPR_PMMODE[1:0] = 00, 10
PMRST (TO BLOCKS)
PMRSTO
PMRSTI
MPU BLO CK
358 Agere Sy stem s Inc.
TMXF 28155 Super Mapper Preliminary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
16 Microprocessor Interface Functional Description (continued)
16.7 Su pe r Mapp er Globa l Interrupt Status and Control
The Super Mapper provides two hardware inter rupt output pins: one global (INTN pin AB24) and one for the
SONET automatic protection switc h ing ( APS_INTN pin AC25). B oth interrupt pins are active-low and are open-
drain outp uts to allow a wired OR wit h complementary devices.
Interrupt status for major functional bloc ks are summariz ed in Table 63 and maskable in Table 64.
16.8 Glo b al Con trol
Several registers in this block provide global control of Super Mapper features. The register descriptions are self-
explanator y, but so me highlights are listed as follows:
Global enabling and poweri ng down of major functional blocks is shown in Table 71 SMP R_CP CR, Clock and
Power Control Regist er (RW) on page 71.
Software resets for major functional blocks are s hown in Table 66 SMPR_MSRR, Block Software Reset Register
(RW) on page66 .
Global reset of the Super Mapper is controlled with SMPR_SWRS, bit 8 in Table 65 SMPR_GTR, Global Trigger
Register (RW) on page 66.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
359Agere Systems Inc.
17 TMUX Functional Description
Ta ble of Conte nts
Contents Page
17 TMUX Func tional Description . ..... ... ....................... ... .......................................... ... ......................................... 359
17.1 TMUX Introduction ............................................................................ ............ .......................................... 361
17.2 TMUX Features ...................................................................................................................................... 361
17.3 TMUX Receive Path Overview ............................................................................................................... 362
17.3.1 Receive Line Framer a nd Trans port O v erhead Term ination . .......... ... .............................. ... ........ 362
17.3.2 Receive T r ans port Overhead Mo nitor and RTOAC Drop .... ............................ . ........................... 362
17.3.3 Receive MSP 1 + 1 Payload Switch ............................................................................................. 363
17.3.4 R eceive Pointer Interpreter .......................................................................................................... 363
17.3.5 Receive High-Order Path Overhead Termination and RPOAC Drop .......................................... 363
17.3.6 R eceive Byte Interleave Demultiplexer ........................................................................................ 363
17.3.7 R eceive T elecom Bus .................................................................................................................. 363
17.4 TMUX Transmi t Path Overview .............................................................................................................. 364
17.4 .1 Transmi t Tele co m Bus ................ ....................................................................... .......................... 364
17.5 Receive Direction (Receive Path from Sonet Global/SDH) ........................ ............................................ 368
17.5.1 I nput Clock and L oss-of-Signal Monitoring ............................ .......... ... ......................... ....... ..... .... 369
17.5.2 High-Speed Loopba ck Sele ct Logic ................................ ....... ............ ....... .......................... ......... 369
17.5.3 Frame AlignmentSTS-3/STM-1 (AU-4) Framing or STS-1 Framing ......................................... 369
17.5.4 B1 BIP-8 Check ........................................................................................................................... 369
17.5.5 J0 Monitor .................................................................................................................................... 370
17.5.6 D escrambler ................................................................................................................................. 370
17.5.7 F1 Monitor .................................................................................................................................... 371
17.5.8 B2 BIP-8 Check ........................................................................................................................... 371
17.5.9 Automatic Protection Switch (APS) Monitor ................................................................................. 371
17.5.10 K2 Monitor, AIS-L and RDI-L Detect ...................... . ....................... .......................... .................. 371
17.5.11 M1 REI-L Detect ........................................................................................................................ 372
17.5.12 Sync Status Monitor ................................................................................................................... 372
17.5.13 Receive Transport Overhead Access C hannel (RTOAC) ......... . ............................................ . ... 372
17.5.14 MSP 1 + 1 Payload Switch ......................................................................................................... 374
17.5.15 Pointer Interpreter ...................................................................................................................... 374
17.5.16 Path Monitoring Functions ......................................................................................................... 377
17.6 Transmit Di rection (Transmit Path to SONET/SDH Line) ....................................................................... 386
17.6.1 Transmit Side Telecom Bus Interface .......................................................................................... 386
17.6.2 Transmit Path and Transport Overhead Insertion Diagram ......................................................... 386
17.6.3 POAC Insert ................................................................................................................................. 388
17.6.4 A IS Path Generation ............................. ....... ............ ....... ....... ...................................... ................ 389
17.6.5 J1 Insert Control ........................................................................................................................... 389
17.6.6 B3 BIP-8 Calculation and Insert ................................................................................................... 389
17.6.7 C2 Signal Label Byte Insert ............................................................... ....... ................................... 389
17.6.8 Path RDI (RDI-P) Insert ............................................................................................................... 390
17.6.9 R EI-P: G1(7:4) Insert ................................................................................................................... 390
17.6.10 F2 Byte Insert ............................................................................................................................. 391
17.6.11 H4 Insert Control ........................................................................................................................ 391
17.6.12 F3 Byte Insert ............................................................................................................................. 391
17.6.13 K3 Byte Insert ............................................................................................................................ 391
17.6.14 N1 Byte Insert ............................................................................................................................ 391
17.6.15 MSP 1 + 1 Payload Switch ......................................................................................................... 391
17.6.16 Transmit T ransport Overhead Access Channel (TTOAC) ............................. ............................ 391
17.6.17 Sync Status Byte (S1) Insert ...................................................................................................... 393
17.6.18 REI-L: M1 Insert ......................................................................................................................... 393
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
360 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
Table of Conten ts (continued)
Contents Page
17 .6.19 APS Val ue and K2 Insert Control Parameters ........................................................................... 393
17.6.20 Criteria for Insert Line RDI ......................................................................................................... 394
17.6.21 Line A IS Generation ................................................................................................................... 394
17.6.22 B2 BIP-8 Calculation and Insert ................................................................................................. 394
17.6.23 F1 Byte Insert ............................................................................................................................. 394
17.6.24 B1 Generate and Error Insert ............... ........................ ....... ........................ ... ............................ 395
17.6.25 Scrambler ................................................................................................................................... 395
17.6 .2 6 J 0 Inse rt Contro l ....................... ....................................................................... ........................... 395
17.6.27 Z0-2, Z0-3 Insert Control ............................................................................................................ 395
17.6.28 A2 Error Insert ............................................................................................................................ 395
Figures Page
Fi gure 21. T MUX RTOAC Ti mi n g Diagra m.......................................................................................................... 362
Fi gure 22. T MUX TTOA C and RTOAC Timing Di a gr am.... .................................................................................. 365
Fig ure 23. High-Le vel TMUX Interconnect........................................................................................................... 365
Figure 24. Detailed Block Diagram of the TMUX.................................................................................................. 366
Figure 25. Receive Direction Functional Block Diagram...................................................................................... 367
Fig ure 26. Pointer Interpretation State Dia gram................................................................................................... 374
Figure 27. Receive Low-Speed Bus Interface Signals for STS-3/STM-1 Signals................................................ 385
Figure 2 8. Transmit Low-Speed Bu s Interface Signals for STS-3/STM-1 Signals .................. .............. . .............. 386
Fi gure 29. Transmi t Direction POH and TOH In se r ti o n Di ag r am . ........................................................................ 387
Tables Page
Table 5 22. Receive TOAC Modes ....................................................................................................................... 373
Table 523. Transport Overhead By te Acces sReceiv e Dire ction ......................................................................373
Table 524. STS Signal Label Defect Conditions ............................. ..... ..... ......... ..... .............. ..... ......................... 379
Table 525. STS - 1 P-REI Interpretation ................................................................................................................ 380
Table 5 26. Signal Degrade (SD) Parameters ................ . ................ ................... ................... ............................... 382
Table 527. Signal Fail Parameters ...................................................................................................................... 383
Table 528. Signal Fail or Signal Degrade Re commended Programming Values ................... . ......................... . .. 3 84
Table 529. P ath Overhead Byte Access ... ....... ....... ....... ................... ............ ....... ................... ....... ...................... 384
Table 530. P ath Overhead Byte AccessTransmit Direction ............................................................................. 388
Table 5 31. TPOAC Control Bits ........................................................................................................................... 389
Table 532. RDI-P Defects fo r Enhanced RDI-P M ode ...................................... .............. .............. ...................... 390
Table 533. Transmit TOAC Modes ......................... . ....................... ............................ . .................. ...................... 392
Table 534. T ra nsmit Transport Overhead Byte Full Access Mode .... ......................... ......................................... 392
Table 535. TTOAC Control Bits in Full Access Mode ....... .............. .............. . ........... .............. . ........... ................. 393
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
361Agere Systems Inc.
17 TMUX Functional Description (continued)
17.1 TMUX I ntroductio n
The TMUX multiplexer block implements SDH/ SONE T-com pli ant, byte-i nter leave multiplexing/dem ultiplexing, over-
head insertion and termination, multiplex section protectio n (MS P) 1 + 1 switc h capability, and s erializer/des eria l-
izer for 155.52 Mbits/s and 51.84 Mbits/s t raffic.
As shown i n Figure 23 on page 365, the TMUX provides three modes of operation: STS-3 mode, STM-1 mode, and
STS- 1 mode. In STS-3 mode, the TMUX im plements the functions nec es sar y to mult iplex and demultiplex up to
three STS-1 signals to/from a SONET STS-3 signal. In STM-1 (VC-4) mode, the TMUX provides the functionality to
multiplex and demultiplex up to three TUG-3 signals to/ f rom an STM-1(VC-4) sign al. The dev i ce can also build/
extract up to three AU-3 signals to/from an STM-1(VC-3) stream. In STS-1 mode, the TMUX imple ments the func-
tions necessary to interface a single S TS-1 to/from an external serial link.
On the high-speed side or line side, the bloc k can be configured for either a 155.52 Mbits/s (STS-3/STM-1) or
51.84 Mbits/s (STS-1) serial data interface. On the low-speed side or tributary side, t he TMUX provides a byte-wide
bus that can communicate with up to three STS-1/TUG-3/AU-3 devices at a 19.44 MHz rate. If single STS-1 mode
is employed, the bus rate will be 6.48 MHz. Th e TM UX th erefore provides complete multiplexing/demultiplexing
to/from an STS-3/STM-1 signal for up to 8 4 DS1, 84 JT1, or 63 E1 signals. I n S TS-1 mode, the TMUX provides
multiplexing/ demultiplexing for up to 28 DS1, 28 JT1, or 21 E 1 streams. In STS-3/S T M-1 mode, the TMUX from
only one device is required . The TMUX in other c onnect ed devices may be powered d own t o reduce consu med
power. T his architecture allo ws flexible and modular growth in equipment capacity for both 51.84 Mbits/s and
155.52 Mbits/s links.
17.2 TMUX Featur es
Multiplexes three STS- 1 signals into a SONET STS-3 signal.
Multiplexes three VC-3 si gnals into an SDH STM-1 (AU-4) sig nal via a TUG-3 c ons truction.
Multiplexes three VC-3 signals into an SDH STM-1 (AU-3) sig nal.
Demultiple xes three STS-1 signals f rom a SONET STS-3 signal.
Demulti plexes three VC-3 signals from an SDH STM-1 (AU-4) signal via a TUG-3 deconstructi on.
Demultiple xes three VC-3 signals from an SDH STM- 1 (AU-3) signal.
Provides STS-1-only m ode for receive and transmit directions .
Provides complete functionality for SDH MSP 1 + 1 pro tection switching.
Detects STS-3/ STM-1 loss-of-signal (LOS) conditions.
Det ec ts STS- 3/ S TM-1 o ut -o f-fram e and loss-of-frame (OOF/LOF) conditions.
Provides an 8-bi t parallel bus interface that can accomm odate up to three STS-1/AU-3s.
Provides S TS - 3/ STM-1/STS-1 select able scrambler/descrambler func t ions and B1/B2/B3 generation/detection.
Provides S TS-3/ S TM -1/STS-1 poi nter interpretat ion . Detec ts AIS-P an d LOP.
Complies wi th GR-253-CORE , T 1.10 5, G.707, G.7 83, G. 806, G.821, and ETSI 417-1-1.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
362 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
17.3 TMUX Re ce iv e Path O ve r v iew
A detailed drawing of t he TMUX receive pa th is provided in the bottom half of Figure 24 on page366 . For the
receive path, the T MUX imp lements tw o serial inp uts for both the work and protect streams of an MSP 1 + 1 net-
work interface. Synchronous data (SDH/SONET) framers are implemented to frame on the incoming receive data
streams. One or both may be employed depending on system architecture. The incoming traffic is converted from
serial to byte- wide parallel. The tr anspo rt overhead bytes of the incoming tra ffic are moni tored and dropped vi a the
receive path TOAC drop interface. A multiplexer i mplements the receive M SP 1 + 1 payload switch and only one of
the incoming stream s is passed to the downstream processing blocks. The pointer interpreter passes pointer infor-
ma tion to the 1:3 demultiplexer logic, and bus control circuitry provides functions necessary to manage traffi c o n
the telecom bus drop interface which drops traffic from up to three S TS-1/TU G- 3 paths on the TMUX receive path.
T he path overhead bytes are monitored by t he path overhead monitor and are dropped v ia the re ceive path POAC
drop interface.
17.3.1 Receive Line Framer and Transport Overhead Termination
Input receive data is received at the TMUX synchronous dat a framer from the high-speed line interface block. The
framer performs a multitude of fu nctio ns includin g frame alignment (S TS-3/ STM-1 o r STS-1), B1 BIP-8 check,
J0 byte monitoring, d escrambling, F1 byte monitoring, B 2 BI P -8 check, autom atic protection switch (APS) and K2
by te monitoring, AI S-L and RDI-L detection, M1 byte REI-L detection, S1 byte sync status monitoring, and receive
transport overhead access channel (RTOAC) drop. T he states of the framer as well as all state changes are
reported, and, if not mas ked, c ause an interrupt. The B1 and B2 byte p a rity check supports bit and block modes.
The TMUX implements internal performance monitor counters. These counters can count up to one second worth
of B IP errors. The counters operate in either a saturation mode, such that the maximum value is retained once
reached, o r in a rollover mode. These counters s hould be optimally read (and cleared) at least once per second.
The J0 monitor supports non-fr amed, SONET-fr amed, and SDH-framed 16-byte sequences as well as single
J0 by te monit orin g mode. APS monitoring is perf orme d on by tes K 1[7:0] and K 2 [7:3]. The value of each is stored
and changes are repor ted. Bits [2:0] of the K2 byte are monitored independently. Line AIS (AIS-L/MS-AIS ) and
RDI-L/MS-RDI are monitored separately and changes are reported. This AIS-L/MS-AIS and RDI-L/MS-RDI infor-
ma tio n is also sent to the prot ec tion device for add/drop m ultiplex (ADM) appl ications . The M1 byte monitor oper-
ates either in bit or block mode and allows access to the REI-L/MS-REI errored bit count. The S1 byte can be
mo nitored in two modes: as an entire 8-bi t w or d or as one 4 -bit nibble (bits 7 t o 4). Contin u o us N-times detection
counters are i mplemented for these monitoring functions. All auto mat ic receive monitoring functions ca n be config-
ured to prov ide an interrupt to the c ontrol system, or the device can be operated in a polled mode.
17.3.2 Receive Transport Overhead Monitor and RTOAC Drop
The receive RTOAC provides access to all of the line section overhead byt e s . Even or odd parity is calculated over
all b ytes. It has a data rate of 5.184 Mbits/s and consists of a clock, data, and an 8 kHz sync pul se. In an alternate
operating mode, the data communication channel byte s D1D3 or D4D12 may transmit a se rial 192 kbi ts/s or a
576 kbits/s data stream onto the RTOAC drop channel.
0783(F)
Figure 21. TM UX RTOAC Timing Diagram
rtoac clk
rtoac sync
r toa c data
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
363Agere Systems Inc.
17 TMUX Functional Description (continued)
17.3.3 Receive MSP 1 + 1 Payload Switch
Output from both receive framer b locks pr ov id e s the input to the MSP 1 + 1 payload switch.This portion of the
TMUX implements a payload 1 + 1 prote ction switch. In the receive dire ct ion, this occur s pri or to pointer interpreta-
tion. If the protection s witch is activat ed, then the data is selected from the receive protection interface rather than
from the hig h-sp eed input path. Only the selec ted input traf fic is provided down stream to the pointer i nterpr eter.
The interfac e consists of a 155.52 MHz or 51.84 MHz clock , data, and sync pulse.
17.3.4 Receive Pointer Interpreter
The pointer interpreter is implemented via a state machine which implements the pointer interpretation algorithm
described in ETS 300 417-1-1: January 1996 -Annex B. The p ointer interpreter evaluates the current pointer state
for t he normal state, path AIS state, or LOP conditions, as well as pointer increments and decrements. The current
poi nter st ate and any changes in pointer condition are reported to the control system. The number of consecutive
frames for invalid pointer and invalid concatenati on indication is fixed at nine.
17.3.5 Receive High-Or der P ath Overhead Termination and RPOAC Drop
Path overhead (POH) ter mina tion is p e rformed in the rece ive path on either al l three STS -1s or on the VC - 4 POH
only. The recei ve POH circuitry includes: J1 byte moni toring, B3 byte BIP-8 checking, C2 byt e s ignal label m oni t o r-
ing, REI-P and RDI-P detection, H4 byte multiframe monitoring; F2, F3, and K3 byte APS monitoring, N1 byte tan-
dem connection monit oring (TCM), signal degrade BER and signal f ai l BER detection; receive path ov erhead
access channel (RPOAC) drop, and AIS-P/HO-A I S insert ion and automatic AIS genera tion (with individual inhibit) .
The J1 monitor provides five modes of operation for a programmable length (1 byte to 6 4 bytes) of the t race identi-
fier. These five modes are comprised of: cyclic checking against the last received sequence, compare against a
programmed sequence, SONET framing mode, SDH framing mode, and consecutive consistent occurrenc es of a
new pattern. B3 is monitored eit her in bit or bloc k mode. Provisionabl e N-times detection counters are implemented
for the C2, F2, F3, N1, an d K3 bytes. The K3 APS byte and N1 TCM byte can be monitored as an entire 8-bit word
or two 4-bit nibbles.
T he r e ce ive RPO AC p rovid e s ac c e ss to a ll th e p at h overhead bytes. Even or odd parity is calculated over all bytes.
The RPOAC has a data rate of 9 bytes per 8 k H z frame and consis t s of cloc k, data, and an 8 kHz sync pulse.
17.3.6 Receive Byte Interleave Demultiplexer
The byte interleav e demultiple xer accepts serial traf fic and demultiplexes that information into one (STS-1 mode) or
three (STS-3/STM- 1 mode) t raffic streams for input via the telecom bus to th e VT/VC ma pper. The demultiplexer
takes the bytes in the order t h ey are pres e nted and places that traffic onto the telecom bus.
17.3.7 Receive Telecom Bus
The TMUX can communicate with up to three SPE mappers via the telecom bus interface. In typical applications,
si nce one SPE mapper is in cluded in the Super Mapper device , two ext ernal SPE m appers re side on the telecom
bus. The bus operates at 19.44 MH z for STS- 3/ STM-1 m odes and at 6.48 MHz for STS-1 mode . In the receive
di rectio n, t he Super M apper o utputs one para lle l cloc k at 19.44 MHz, t hr ee sync si gnals ( SPE, J0J1V1, and V1), an
8-bit data bus , and an odd/even parit y bit. The data bus carries either three STS-1/TUG-3 signals, each in their own
time slot, or it carries one STS-1 signal. A 51.84 MHz low-speed clock and sync signal is also output from this cir-
cuit.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
364 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
17.4 TMUX Tr ans mit Path Over v iew
The TMUX transmit path is depicted in the t op half of Fi gur e 24 on page366 . The transmit path of the TMUX imple-
ments the inverse function to the receive path. Transmit input traffic at the telecom bus interface from up to three
STS-1/TU G-3 path s is managed v i a the transmit path bus control circuitry. Transmit traffic, al arms, or unequipped
indication information is inserted as needed depending on the status and provisioning of the device. The 3:1 multi-
ple xer pro vides byte interleav e multiple xing of the incoming tr affic and insertion of the path overhead bytes. A serial
path provides input for the transmit protection traffic and the framer and serial-to-parallel converter fo rmats this t raf-
fic for input to the transmit MSP 1 + 1 payload switch. The select ed output from the transmit MSP 1 + 1 s witch is
input to the trans port overhead insert block and the parallel to se rial converter sends a seria l stream to the device
output. The TMUX transmit path provides path overhead byte insertion and transport overhead byte insertion via
the respective POA C insert and TOA C insert interfaces.
Local clock and frame generation control circuitry is imp lem ented in the TM UX for controlling the STS-1, S TS-3,
and STM-1 termination and generation functions. Internal loopbacks in the TMUX provid e near-end line l oopback
and far-end line loopback capability.
17.4.1 Transmit Telecom Bus
The transmit side of Super Mapper drives a clock and thre e sync signals (SPE, J0J1V1, and V1) onto the telecom
bus. These signals control when the internal SPE mapper or one of the mate devices talks on the data bus.
Because it is on the receive side, the transmit telecom bus operates at 19.44 MHz for STS-3/STM-1 modes and at
6.48 MH z for STS-1 mode. The TMUX communicates with up to three VT/VC mappers, via an 8-bit data word and
an odd/ev en parity bit from the telecom bus . The data consists of the STS-1/TUG-3 from up to three mappers; each
in its own time slot, or it c arries one single STS- 1 signal. A 51.84 MHz low-speed clock and sync are also output .
Transmit High-Order P ath Overhead Generation and TPO A C Insert. In the transmit direction, J1 path trace byte
insertion, B3 byte calculation and insertion, C2 signal l abel byte insertion, REI-P and RDI-P insertion; F2 byte
insertion, H4 multiframe byte insertion, F3 path user byte insertion, K 3 byte insertion, N1 b yte insertion, and AIS-P
insertion via POAC or software control is supported. The transmit TPOAC allows insertion of all overhead bytes
other t han the B3 byt e, which is automatically calculated. Even or odd parity is checked over all bytes. Bytes which
are not enabled for insertion are set to an all-ones or all-zeros stuff value. Transport path o verhead bytes are added
to the payload stream during multiplexing in the byte interleave multiplexer.
Transmit Byte Interleave Mult iplexer. In STS- 3/S TM-1 m ode, th e transmit byte interleave multiplexer block multi-
plexes up to three STS-1/TU G3 s ignals to form a SONET/S DH STS-3/STM-1 struc tured signal. The S TS-3/STM-1
multi plexer func tion p ro ce sses the input bytes in the order in which they are presented on the transmit telecom bus
and multipl exes these bytes into a single high-speed stream. Gro oming of the VTs/VCs is perf ormed in the SPE
mapper of each of the three devices. High-order path ov erhead bytes are interlea ved with the data traffic during the
byt e interleave multiplexing.
Transmit Payload Framer and MSP 1 + 1 Payload Switch. In the transmit direct ion, the MSP 1 + 1 switch fu n c -
tion inc orporates dual MSP 1 + 1 p ayload switch structures. In operation, the traffic from t he transmit byte inter-
leave multiplexer are presented to both M SP 1 + 1 payload switches. The output of the signal from the 3:1 multip lex
is broadcast to both switch paths, and the output of the receive payload framers is also input respectively to one of
the two swi tch paths. For normal op eration, one of the two outputs from th e two MSP 1 + 1 blocks is selected. The
path from the receive f ra mer to t he MSP switc h structures provides a means t o perform far-end loopback.
Transmit Tran spo rt O verhead Genera tion a nd TTOAC Insert. Th e t ransmit transport overhead generator per-
forms T TOAC byte insertio n, sync sta tus byte (S1) inser tion, M0/M1REI-L insertion, K1 and K2 byte insertion,
AIS-L i ns ert ion, B2 byte calculation and insertion , F1 byte insertio n, B1 byte generation and error insertion, scram-
bli ng, J0 byte insertion control, and A2 byte error insertion. All insert control functions that are inhibited will insert
optionally either an all-zeros or an all-one s word.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
365Agere Systems Inc.
17 TMUX Functional Description (continued)
The transmit TTOAC allows the users to insert the following overhead b ytes: E1, F1, D1D3, D4D12, S1, and
E2. Even or odd parity is checked over all b ytes. Bytes which are not enabled for i nser tion are set to an all-ones or
al l-zeros stuff va lu e.
The data communication channels D1D3 or D4D12 may als o be received via the TTOAC interface. In this
mo de, the TTOAC channel will comprise a serial 192 kbits/s or a 576 kbits/s data stream.
The insertion (overwri te by TOAC) of programmed S 1, F1, J0, Z0-2, and Z0 -3 bytes can be enabled via registers.
Automatic in se rtion of M0 /M1 may also be inhibited via registers. A prot ection switch selects the REI-L value for
insertion to be taken from the protection board rather t han from the receive side. The entire APS v alue or K2[2:0]
can b e inserted via wr itable re gisters. Automatic RDI insertion is supporte d with indivi dual inhib it for each cont ri bu-
tor. A prote ction switch selects the RDI-L value for insertion to be t aken from the protection board rather than fr om
the receive side. B1 and B2 BIP-8 valu es a re calculated and inser ted. Both valu e s can be optio nally inverted.
0784(F)
Figure 22. TMUX TTOAC an d RTOAC Timing Dia gram
5-9004(F)
Figure 23. Hi gh-Level TM UX Inte r connect
ttoac clk
ttoac sync
t toac data
TMUX
SPE
TELECOM
BUS
VT/TU
MAPPER
M13
TUG-2DS3
MAPPER
STS-1/TUG-3
(TIME S LO T # 1)
STS-1/TUG-3
(TIME S L O T # 2 )
STS-1/TUG-3
(TIME SLOT #3)
STS-3/STM-1
OR STS-1
DEVICE #1
DEVICE #2
DEVICE #3
HIGH-SPEED
SONET/SDH INTERFACE
VT MPR RDI_P, REI_P
VT MPR RDI_L, RE I_L
TMUX RDI_L, REI_L
TMUX RDI_P, REI_P
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
366 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
5-9005(F)r.1
Figur e 24. Detailed Block Diagram of t he TM UX
PATH RDI
POAC
DROP
1:3
DEMUX
LOGIC
MSP 1+1
STS#1
STS#2
STS#3
TOAC
INSERT
TRANSMIT DIRECTION
RECEIVE DIRE CTION
STS#3
TLSCLK
PAIS, UEQ
INSERT
BUS
CONTROL
TLSPAR
TLSDATA[7:0]
RLSCLK
BUS
CONTROL
RLSPAR
RLSDATA[7:0]
TTOACCLKO,
POINTER
INTERPRETER
TTOACSYNCO,
TTOACDATI
TLSV1
(19.44 MHz)
(19.44 MHz )
RTPOACSYNC,
RTPOACDATA
THSD
RLSJ0J1V1
RLSV1
RLSSPE
TLSJ0J1V1
TLSSPE
TLSSYNC52
TLSCLK52
RLSSYNC52
RLSCLK52
TOH
MONITOR
TOAC
DROP
RTOACCLK,
RTOACSYNC,
RTOACDATA
POAC
INSERT
TPOACCLK,
TPOACSYNC,
TPOACDATA
POH
MONITOR
STM-1
TOH
STS#2
P A IS , U E Q
INSERT
STS#1
PAIS, UEQ
INSERT
FRAMER
PAYLOAD
SWITCH 1
AND S/P
3:1
AND
POH
INSERT
MUX
LOGIC
PATH REI
INSERT
MSP 1+1
PAYLOAD
SWITCH 2
LINE RDI
LINE REI
P/S
VTMPR RDI_L, REI_L
VTMPR RDI_P,
AUTO_AISO[13] RHSC
RPSD155
FRAMER,
S/P, AND
RPSC155
TPSC155
RHSD
B2 ERR
INSERT,
MSP 1+1
PAYLOAD
SWITC H 3
TPSD155
P/S
L-REI INS
B2 MON,
LOC, OOF,
LOF, B2E
LOC, OOF,
LOF, B2E
L-REI MON
LOCAL CLOCK
GENERATION
THSC THSSYNC
AND FRAME
RPSC155R PSSY NC155 (FRO M RECEIVE SIDE)
TPSMUXSEL2
RPSSYNC155
TIM ING SIG N ALS TO TX SIDE
RTPOACCLK,
REI_P
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
367Agere Systems Inc.
17 TMUX Functional Description (continued)
The following block diagram describes t he receive side transport overhead functions. Data is received from the
high-speed i nterface at 155 Mb its/s (51.84 Mbits/s for STS-1 mode) a nd the output is d riven on to the low-speed
telecom bus in a parallel format. The TOH receive side f unctional blocks are shown in Figure 25.
5-9006(F)r.2
Figure 25. Receive Directio n F unctional Block Diagram
INSERT
C2
MONITOR
B3
BIP N K3
CHECK
G1
RDI-P G1
REI-L
DETECT
APS
MONITOR
B3 K3
DETECT
G1 G1N1C2
POAC
DROP
RECEIVE DATA
REI
COUNTER
G1
AIS-P
BER
ALGORITHM
FRAME DESCR-
AMBLER
B1
BIP-8
J0
MONITOR
LOS
CHECK
F1
MONITOR
B2
BIP N K1/K2
CHECK
AIS-L
RDI-L M1
REI-L SYNC
MONITOR
DETECT
APS
MONITOR
B2 K1
K2
DETECT
K2 M1 S1
STATUS
B1
DETECTOR
J0 F1
TOAC
DROP
LOF
MONITOR
OOF
ALIGN
MONITOR
INPUT
REI
COUNTER
M1
BER
ALGORITHM
J1
MONITOR
J1
F3
MONITOR
F3
F2
MONITOR
F2
MONITOR
H1, H2, H3
INTERPRETER
POINTER
TELECO M BU S
N1
MONITOR
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
368 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
17.5 Receive Direction (Receive Path from Sonet Global/SDH)
All functions supported by the TMUX in the receive direction are summarized here:
Input clock m onitori ng and loss-of-signal mon ito rin g
High-speed loopback
Frame al ignm ent
Receive side frame sync output
B1 BIP-8 check
J0 monitor
Descrambler
F1 monitor
B2 BIP-8 check
APS (au to matic pro te ction swit ch ) mon itor
K2 monitor, AIS- L and RDI-L detect
M1 REI-L detect
Sync s tat us monitor
Receiv e transport ov erhead access channel (RTOAC)
MS P 1 + 1 payload switc h
Pointer inter preter
J1 monitor
B3 BIP-8 check
Signal label C2 b yte monitor
RDI-P detect
REI-P detect
Path user byte F2 monitor
H4 mu ltiframe ind icator
Path user byte F3 monitor
K3 byte monitor
N1 tandem connection byte monitor
Signal degrade BER algorithm
Signal fail BER algorithm
Path overhead access c hannel (POAC) drop
AIS-P insertion and AUTO_AISO[13] generation
Receive side telecom bu s interface
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
369Agere Systems Inc.
17 TMUX Functional Description (continued)
17.5.1 Input Cloc k and Loss-of-Signal Monitoring
The TMUX det ects and repor ts the loss of the 155 MH z i nput c lock for STS-3 mode and the loss of the
51.84 MHz clock for S T S-1 mode with register bits TMUX_RHSILOC state (Table 91, s tarting on page92 ),
TMUX_RHSILOCDdelta state (Table 91, s tarti ng on page 92), TMUX_RHSILOCMinterrupt m as k ( Table 91,
starting on page 92 ). LOC is determined by a stuck high or stuck low for a time greater than 10 µs and uses the
micro processor clock as its reference.
The TMUX will detect and report a loss-of-signal condition with register bits TMUX_RHSLOSst ate (Table 91 on
page 92), TMUX_RHSLOSDdelta state (Table 91, s t ar t ing on pa g e9 2), TMUX_RHSLOSM i nterrupt m ask
(Table 86 on page88 ), b y monitoring the e xternal input signal pin, LOSEXT (pin AE5), or detecting a conti nuous
all-zeros/ones patte r n for 51.44 ns to 105 µs in 51.44 ns steps before data is descrambled. The detect ion time is
determined by the value programmed in register bits, TMUX_LOSDETCNT[10:0] (Table 97 on pag e97). The LOS
state will clear after reception of two consecutive receive frames with th e correct framing pattern spaced 125 µs
apart wit hout an incomi ng L OS all-zeros/ones p attern. T his rec overy applies to both internal and external LOS fail-
ure causes.
17.5.2 High-Speed Loopback Select Logic
The device can be configured to loopback the tran smit S TS-3/STM-1 (AU-4) TMUX_TH S2RHSLB = 1 (Table 93 on
page 94) or accept the local STS-3/S TM -1 (AU-4) signal TMUX_THS2RHSLB = 0.
17.5.3 Frame AlignmentSTS-3/STM-1 (A U-4) Framing or STS-1 Framing
The device will frame on the incomi ng signal. The state of the framer, out of frame (OOF) (register bit
TMUX_RHSOOF, see Table 91 on page92 ) as well as any changes to this state (register bits TMUX_RHSOOFD
delta state, see Table 91, starting on pag e 92 and TMUX_RHSOOFMi n te rr upt ma sk; s ee Table 86 on page88 )
will be reported.
The 32-bit (A1-2, A1-3, A2-1, and A2-2) framing pattern will be used in the frame detection for the
STS-3/STM-1 case and a 16-bit pattern will be used for the STS-1 case. The device will be considered out of frame
until two successive framing patterns separated in time b y 125 µs occur withou t framing b yte e rrors.
The device will be consi d ered in fr a me until five
successive frames, separated in time by 125 µs, occur with errored
framing patterns. If the framer transitions to the out of frame state, the framer will remain synchronized to the last
known frame boundary or the latest detected unerrored framing pattern.
A loss of fr ame (LOF) (register bit T MUX_RHSLOF; see Table 91 on p age 92) state bit as well as an y changes to
this state (register bits TMUX_RHSLOFDdelta state , see Table 91, start ing on page92 , TMUX_RHSLOFM
in ter r u pt m ask; see Table 86 on page88 ) will be reported. These state and mask and delta bits are the same for
both types of input data, STS-3/STM-1 or STS-1.
The device will be considered in the LOF state when an OOF condition persists for 24 consecut ive frames (3 ms).
The device will transition out of the LOF state after receiving 24 co n secutive frames w ith the correct framing pat-
tern s spaced 125 µs apart and the OOF condition is cl ear.
17.5.4 B1 BIP-8 Check
A BIP-8 even parity will be computed over all the incoming bits of the STS- 3/STM-1 frame (STS-1 f rame in STS -1
mode), which are scrambled (except for the bits in the A1, A2, a nd J 0/Z0 by t es) and c ompared to t he B1 byte
received in the next frame.
The total number of B1 BIP-8 bit errors (raw count) , or bl ock errors (as determined by register bit
TMUX_B ITBLKB1; see Table 95 on page 95), are cou nted . Upon t he assertion of the perfo rmance monitor control
signal as configured in the microprocessor interface block, the raw count will be reset to zero and the value trans-
ferred to a 16-bit counter for B1 error counts B1ECNT[15:0] (Table 124 on pag e118).
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
370 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
In case of overflow, depending on the value programmed in the microprocessor interface register bit
SMPR_SAT_ROLLOVE R (Table 67 SMPR_GCR, Global Control Register (RW) on page 68), the B1 error counter
will either roll over or saturat e at the maximum value until cleared.
17.5.5 J0 Monitor
J0 (section trace overhead) monitoring is done via register bits T MU X_J0 MON MOD E [2:0] (Table 95 on pag e95).
This J0 monitoring has six d ifferent monitoring modes, a s follows:
TMUX_J 0MONMODE[2:0] = 000: the TMUX latch es the value of the J0 byte ev e ry frame for a total of
16 by tes into registers TMUX_J0DMON[161][7 :0]; s ee Table 132 on page121 . The TMUX compares the
in coming J 0 byte w ith the n ext expected value (the expected value is obtained by cycling through the previously
stored 16 recei ved bytes in round-robin fashion) and, if different, setting the section trace identifier mi sma t ch
state register bit, TMUX_RTIMS, see Table 91 on page92 . A ny change to T MUX_RT IMS will be reported via
delta and inter rupt regi s ter bits TMUX_RTIMSD; see Table 82, starting on pag e79 and TMUX_RTIMSM; see
Table 86 on page88 .
TMUX_J0MONMODE[2:0] = 001: this is the SONET framing mode. The hardware looks for a 0x0A character to
indicate that the next b yte is the first byte of the path trace message. The J 0 byte message is continuously writ-
ten into TMUX_J0DMON[116][7: 0] registers with the first byte residing at the first address. If any received byte
does not match the previ ously receiv ed byte f or its location, then the state register bit, TMUX_R TIMS, is set. An y
change to RTIMS will be reported via d elta and interrupt mask regi ster bits T MUX_RTIMSD and
TMUX_RTIMSM.
TMUX_J0MONMODE[2:0] = 010: this is the SDH framing mode. The hardware looks for the byte with the most
significant bit (MSB) set to one, w hich in dicates that the next byte is the second byte o f the message. The rest of
operation is the same as in SONET framing mode.
TMUX_J0MONMODE[2:0] = 011: a new J0 byte (TMUX_J0DMON[1][7: 0] ) will be detected after the number of
consecutive consistent occurrences of a new pattern in the J0 overhead byte as determined by the valu es in reg-
isters TMUX_CNTDJ0[3:0]; see Table 98 on page98 . Any changes to this byte are reported via de lta and inter-
rupt mask registers TMUX_RTIMSD and TMUX_R TIMSM. The TMUX_RT IMSD delta bit in this mode indicates a
chang e in state for the TMUX_J 0DMON[1][7:0] byte and the state regis ter bit, TMU X_RTIMS, is not used.
TMUX_J0MONMO DE[2:0] = 100: the user will program the 16 expected values of J0 in the SONET frame into
registers TM UX_ EXPJ0DM ON[ 11 6][7:0]; se e Table 131 on page 121. The fir st e xp ec ted b yte, the byte follow-
ing t he 0x0A character, is written into the f i rst location TMUX_J0DMON[1] [ 7:0] . T he T M U X compare s the inco m-
ing J0 s equence with the stored expected value and sets the state register bit, TMUX_RTIMS (Table 91 on
page 92), if they are different. Any change to TMUX_RTIMS is reported via regis ter bit s TMUX _RTIMSD (d elta
state) and TMUX_RTIMSM (interrupt mask).
TMUX_J0M ONMODE[1:0] = 101: the user will program the 1 6 expected values o f J0 in the SDH frame in regis-
ters TMUX_EXPJ0DMON[1 16][7:0]. The first b yte of the message has the MSB set to 1. The TMU X comp ares
the incoming J0 sequence with the stored e xpected value, setting the state register bit, TMUX_R TIMS, if they are
different. Any change to TMUX_RTIMS wil l be reported via register bits TMU X_RTIMSD (delta state) and
TMUX_RTIMSM (interrupt mask).
TMUX_J0MONMODE[1:0] = 110 and 111 are currently undefined.
17.5.6 Descrambler
A frame synchronous descramb l er of length 127 and generating polynomial x7 + x6 + 1 w ill descramble th e en tire
STS-3/ST M-1 (or S TS-1) signal except for the first row of overhead. The s c rambler will be set to 1111111 on the
first byte following the last section overhead byte in the first row (i.e., after byte J0 for STS-1). The descrambler
operates in a byte-wide mode.
The frame descramb ler can be enabled or disabled using register bit TMUX_RHSDSCR (Table 93 on page94 ).
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
371Agere Systems Inc.
17 TMUX Functional Description (continued)
17.5.7 F1 Monitor
The TMUX monitors the fault location b yte TMUX_RF1MON0[ 7:0] (Table 101 on p age 100). A new f aul t location
state will be detected after the number of consecutive consistent occurrences of a new pa ttern in the F1 overhead
byte as determined by t he value programmed in TMUX_CNTDF1[3:0] (Table 98 o n pag e98).
The TMUX maintains a history of the previous, valid F1 byte in TMUX_RF1MON 1[7:0] (Table 101 on pag e100),
and any changes will be repor ted v ia TMUX_RF 1M OND (delt a state) (Table 82, starting on pag e79) and
TMUX_RF1MONM (interrupt mask) (Table 86 on page88 ).
This continuous N -times detection counter will be reset to 0 upon the transition of the framer into the out of frame
state.
17.5.8 B2 BIP-8 Check
A B2 BIP-8 even pa rity is computed over all the incoming bits (except for the nine section overhead byt es) of the
STS-1 frame after descrambling, and compared to the B2 byte received in the next frame. The total number of B2
BIP-8 bit errors (ra w count), or bloc k errors (as determined by T MUX_BITBLKB2; Table 94 on page 94), i s counted.
Upon the assertion of the perf ormance monitor control signal as configured in the micr oprocessor interface , the raw
count w ill be reset to zero and the value transferred to an 18-bit holding register for B2 error c ounts
(TMUX_B2EC NT[17: 0]; see Table 125 on page119 ). In case of overflow, dependin g on the value programmed in
the microprocessor interface register bit SMPR_SAT_ROLLOVER (Ta ble 6 7 on pag e68), the B2 e rror counter will
either roll over or saturate at the maxim um value unt il cleared.
17.5.9 Automatic Protection Switch (APS) Monitor
The TMUX monitors the receive APS value (the K1 byte , and the five most significant bi ts of the K2 byte) and
stores this value in TMUX_RAPSMON[1 2:0] (Table 102 on page100 ). Th is register is updated after the reception
of a programmed number o f identical consecutive frames as determined by the value i n TMUX_CNTDK1K2[3:0]
(Table 98 on page98 ). Whenever the contents of TMUX_RAPSMON[12:0] changes , a delta bit,
TMUX_RAPSMOND will be set (Table 82, starting on page 79) and the interrupt can be masked using
TMUX_RAPSMONM (Table 8 6 on pag e88). This indication also contributes to a separate device inter rupt indica-
tion specific ally inten ded for automatic protection switching.
The T MUX monitors this same 13-bit APS val ue (K1[7:0], K2[7:3]) in the receive dir ect ion and reports when the
APS va lue is i nconsistent, usi ng TMUX_RAPSBABERec eive APS Babble Even t (Table 82 on pag e79) and
TMUX_RAPSBABMReceive APS Babble Mask (Table 86 on page 88). Incon si s tent AP S b ytes are defined as
the number of successive frames of ASP data where no frames s atisfy the criteria for updating the
TMUX_RAP SMON register (Table 102 on page100). The number of inconsistent frames allowed before reporting
is programmed in TMUX_CNTDK1K2FRAME[3:0] (default = 12, see Table 98 on page98). This continuous N-
times det ection counter will be reset to 0 upon the transition of the framer into the out-of-f rame s t ate or upon the
detection of a B1 error.
17.5.10 K2 M on itor, AIS-L and RDI-L Detect
The three least significant bits of K2 are independently monitored and the current value is stored in
TMUX_K2M ON[ 2:0] (Table 102 on page100 ). The r egi st er wil l be updated after the programmed number of con-
secutive identical K2[2:0] bits. This number is programmed by the value in TM U X_CNTDK2[3:0] (Table 98 on
page 98). Whenever the c ontents of T MUX _K2MON[2: 0] changes, a delta bit, TM UX_RK2MOND will be set
(Table 82, starting on page79 ), and the interrupt ca n be mas ked using TMUX_RK2MONM (Table 8 6 on pag e88).
T he TMUX m oni tors for line AI S (AIS-L/ MS-AIS) in the K2[2:0] b its (K2[2:0] = 111 ). When line AIS is detected,
TMUX_RLAISMON (Table 91 on page92) will be set t o 1 after a number of consecutive occurrences of line AIS as
determined by t he value programmed in TMUX_CNTDK2[3:0]. Once set, AIS-L will be c leared after a number of
consecutive frames of no line AIS as deter mined by this same value in TMUX_CNTDK2[3:0].
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
372 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
Any change to TMUX_RLAISMO N will be reported in TMUX_RLAISMOND (Tab le 82, starting on page 79 ) and the
interrupt can be masked using TMUX_RLAISMONM (Table 86 on page 88).
The T MUX monitors for a re mote defect indication ( RDI-L/ MS-RDI) condition in the K2[2:0] bi t s (K2[2:0] = 110) .A
line RDI condition will be detected and TMUX_R LRDIMON (Table 91 on page92 ) w ill be set to 1 af ter a number of
consecutive occurrences of RDI as determined by the value in TMUX_CNTDK2[3:0]. Once set, RDI-L will be
cleared after a number of consecu tive frames of n o RDI as determined by this same value programme d i n
TMUX_CNTDK2[3:0]. Any change to TMUX_RLRDI MON, will be reported in TMUX_RLRDIMOND (Table 82, start-
ing on page79 ) and the interrupt can be masked using TMUX_RLRDIMONM (Table 86 on page 88). T his continu-
ous N-times detection counter will be reset to 0 upon the transition of the framer into the out-of-frame state.
17.5.11 M 1 REI-L Detect
One byt e (M1) is allocated for use as a line remote error indication funct io n (REI-L). For STS-3/STM-1 signals, all
eight bits of the M1 byte are allocated for REI-L information. The REI-L value reflects the error count detected by
the line terminating equipment (LTE) (using the line BIP-8 code) back to its peer LTE. F or STS-3/STM-1 signals, the
value of the error count can be up t o 24. A value of 25 and above will be interpreted as no errors. If
TMUX_R_M1_BIT7 (Table 9 6 on pag e96) is 1, then th e most significant bit of the by te is i gnored .
The TMUX allo ws ac cess to t he acc umul ated M1-REI err ored bi t co unt from the M1 byte via TMUX_M1ECNT[17:0]
(Table 126 on page 119). The counter will count in bit or block mode, depending upon the v a lue of
TMUX_BITBLKM1 (Table 94 on page94 ). At the s elect ed perfor mance monitor ( PM) inte rval, the value of the inter-
nal running raw counter is placed into a holding register, TMUX_M1ECNT[ 17: 0], and then c leared. Depending on
the va l ue of SMPR_SAT_ROLLOVER (Table 67 on pag e68) in the microprocessor interface, the intern al counter
will either roll over or saturat e a t its maximum value until cleared.
17.5.12 Sync Status Monitor
The S1 by te is allocated for synchronization status. S1 bits [7:4] are used to convey a 4-bi t code of which o n ly six
patterns are defined with the remaini ng codes rese rved for qual ity levels defined by individual administrations.
The S1 byte can be monitored in two modes: (1) as an entir e 8-bit word or (2) as one 4-bit nibble (bits [7:4]), as pro-
grammed by TMUX_S1MODE4 (Table 95 on page 95).
TMUX_S1MODE4 = 0 the associated state, delta, and mask registers are TMUX_RS1MON[7:0] (Table 103 on
page 100), TMUX_RS1MOND (Table 82, s tar ting on page79 ), an d TM UX_ RS1MO NM (Table 86 on page 88),
respectively.
TMUX_S1MODE4 = 1 the associated state, delta, and mask registers are TMUX_RS1MON[7:4],
TMUX_RS1MOND, and TMUX_RS1MONM.
A new value will be detected after a programmed number of consecutive occurrences of a consistent new value in
the incoming S1 byte as det ermine by the value in TMUX_CNTDS1[3:0] (Table 98 on page98 ). A maskable event,
TMUX_ R S1 BABE (Table 82, starting on page79 ), is set if a programmed number of consecutiv e fr ames pass with-
out a validated mes sage occurring as determined by the value in TMUX_CNTDS1FRA ME[3:0] (Table 98).
In 8-bit mode, the entire value is monitored for an inconsist ent value, while in 4-bi t mode, only th e most sig ni ficant
nibbl e is moni tored for a n inc ons ist ent value. This continuous N-times detection counter will be reset to 0 upon the
transition of the framer into the out-of-frame state.
17.5.13 Receive Tr ansport Over head Access Channe l (RTOAC)
A transport overhead access channel (TOAC) is provided on-chip to drop the transport overhead ( T OH) por tion of
the incoming S DH or SO NET frame. The TOAC channel supports three modes of operati on based on the conf igu-
ration of TMUX_RTOAC_D13MODE and TMUX _RTOAC_D412 MOD E (Table 117 on page113).
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
373Agere Systems Inc.
17 TMUX Functional Description (continued)
The TOAC channel consist s of the fo llow ing s ignal s :
A clock signal sourced by the de vice pin, RT O A CCLK (external output pin AD1). The clock frequency depends on
the values of TMUX_RTOAC_D13M ODE and TMUX_RTOAC_D412MODE. See Table 522 below.
A data signal out of RTOACDATA (exte rnal output pin A D 3). The data rate and the values transmitted depend on
the values of TMUX_RTOAC_D13M ODE and TMUX_RTOAC_D412MODE. See Table 522 below.
An 8 kHz synchron ization signal, out to output pin, RTOACSYNC (external output pin AA5). The sync signal is
nor mally low. During the last clo ck period of each frame coincident with the least signifi cant bit of the last byte
(the eight y-first byte for all TOH modes), the sync signal is driven high.
Receive TOAC DCC1DCC3 Mode. In this m ode, DCC byte s 1 to 3 are transmitted ser ially on the data pin. The
clock rate is 192 K H z . The data bytes are transmitted MSB first, and the data bytes are driven out in sequential
order: DCC1, DCC2, and DCC3. The da ta signal is partitioned into frames of 3 bytes with a repetit ion rate of 8 kHz.
Receive TOAC DCC4DCC12 Mode . In this mode, DCC bytes 4 12 are transmitted se rially on the data output.
The clock rate is 576 K H z . The data bytes are transmitte d MSB first, and the data bytes are dri ven out in sequential
order: DCC4, DCC5, DCC6, DCC7, DCC8, DCC9, DCC10, DCC11, and DCC12. The data signal is partitioned into
frames of 9 bytes . The frame repetiti on rate is 8 kHz .
Receive TOAC Fu ll TOH Ac cess Mo de . In this mode, the data signal is partitioned int o frames of 8 1 byte s. The
frame rep etition rate is 8 kHz. Each byte consi sts of 8 bits that are transmitted/rec eived most significant bit first.
T he M SB of th e fi r st b yt e o f each frame contains an odd/even parity bit over the 648 bits of the previous frame. The
remaining 7 bits of this byte are not specified.
Bytes shown in Table 523 below s ummar ize the access capabilities of the receive TAO C in full access mode. The
transport overhead bytes shown in this table are always dropped by the receive side. There is programmability on
the transmit side regarding the insertion of these bytes. Bytes indicated in bo ld type are not specified in the stan-
dard, but are available on the receive TOAC dat a sig nal.
Table 522. Receive TOAC Modes
TOAC Mod e TMUX_RTOAC_D13MODE
Value TMUX_RTOAC_D412M ODE
Value Number of Data
Bytes per Frame Clock Rate
DCC1DCC3 1 X 3 1 92 KHz
DCC4DCC12 0 1 9 576 K H z
Full TOH Mode 0 0 81 5.184 MHz
Table 523. Transport Overhead Byte AccessRecei ve Di rection
OH Parity A 1-2 A1-3 A2-1 A2-2 A2-3 J0 Z 0-2 Z0-3
B1 B1-2 B1-3 E1 E1-2 E1-3 F1 F1-2 F1-3
D1 D1-2 D1-3 D2 D2-2 D2-3 D3 D3-2 D3-3
H1-1 H1-2 H1-3 H2 H2-2 H2-3 H3 H3-2 H3-3
B2-1 B2-2 B2-3 K1 K1-2 K1-3 K2 K2-2 K2-3
D4 D4-2 D4-3 D5 D5-2 D5-3 D6 D6-2 D6-3
D7 D7-2 D7-3 D8 D8-2 D8-3 D9 D9-2 D9-3
D10 D10-2 D10-3 D11 D11-2 D11-3 D12 D12-2 D12-3
S1 Z1-2 Z1-3 Z2-1 Z2-2 M1 E2 E2-2 E2-3
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
374 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
Receive TOACOH Parity. Even or odd parit y can be i nserted into the fi rst bit of the M SB byte of the TOAC out-
going frame by program mi ng TM UX_RTOAC_OEPINS (Table 117 o n pag e113).
17.5.14 MSP 1 + 1 Payload Switch
The TMUX suppor ts a payload 1 + 1 protecti on switch. In the receive direction, this occurs prior to pointer interpre-
tation. If TMUX_RPSMUXS EL1 = 1 (Table 93), then the input receive data and c lock are selecte d from the pr otec-
tion path : device pins RPS D 155P /N (pins A D 10/ AE10) an d RPSC155P/N (pins AC10/AD11), rather than from the
normal (wor king) path device pins, RHSDP/N (pins AF7/AE7) and RHSCP/N (pins AC7/AD8).
17.5.15 Pointer Interpreter
The STS-3/STM-1 pointer interpreter logic block performs all necessary functions to support STS-3/STM-1, as well
as STS-1, pointer i nte rpretation. The pointer interpreter operates as one machi ne in STM-1 m ode and as three
independent machines in STS-3 mode. The following features a re implemented:
The pointer interpreter consists of the follo wing st ates:
LOP: loss of pointer
AIS: al arm indiction s ignal (all ones in H1 and H2 )
NDF: new data flag enabled (1001,0001,1101,1011, and 1000)
NORM: normal (disabled NDF, normal pointer)
INC: increment (in verted I bits)
DEC: decrement (in verted D bits)
* This st ate diagram is based on the E TS-417-1-1 pointer interpretation state diagram (Figure B.1). T ransitions of eight invalid pointers from the
INC, DEC, and NDF states into the LOP state have been added. 5-9007(F)
Figure 2 6. Pointer Interpretation St ate D i agra m
NORM
DECINC
NDF
AISLOP
FROM ALL ST ATE S
8 INVA LID POINTERS
FROM ALL ST AT ES
3 NEW POINTERS
INCREMENT DECREMENT
8 NDF ENABLE
NDF ENABLE
NDF ENABLE
NDF
NDF
NDF
3 ANY 3 ANY
3 NEW POINTERS
3 NEW POINTERS
3 ANY PO IN TER S
3 NEW POINTERS
8 INVALID
8 INVALID POINTERS*
INDICATION INDICATION
3 AIS INDICATIONS ENABLE
ENABLE
POINTERS POINTERS
POINTERS ENABLE
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
375Agere Systems Inc.
17 TMUX Functional Description (continued)
The pointer inte rpreter transitions into the LOP state based on the following conditions:
Continuous NDF. If NDF (1001, 0001, 1101, 1011, and 1000) is received in 8, 9, or 10 consecutive frames, as
determined by the value in TMUX_CTDLOPCNT[1:0] (Table 98 on page98 ), then LOP will be declared.
Invalid pointer values. If 8, 9, or 10 consecutive frames (determined by TMUX_CTDLOPCNT[1:0]) are received
with a pointer that is not a normal value, NDF, AIS, increment, or decrement, then LOP will be decl ared.
The pointer interpreter will transition out of the LOP state based on the following con ditions:
Following three conse cutive frames with all one s in the H1 and H2 bytes, the pointer interpr e ter will transition
from the LOP state into the A IS state.
Followi ng three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
LOP state into the NORM stat e.
The pointer interpreter
will not tra ns iti on fro m the L OP stat e int o the NDF state.
The pointe r inte rpreter will tran sit ion into the AIS state based on the following conditions:
Following three consecutive f rames with al l ones in the H1 and H2 bytes, AIS will be declared .
The pointer interpreter will tran sit ion out of the AIS s t ate based on the following conditions:
Followi ng three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
AIS state into the NORM state.
Following eight consecutive invalid pointers, the po inter interpreter will transition from t he AIS st ate into the
LOP state.
If ND F is enabled on the incoming H1 and H2 bytes, the pointer interpr e ter will transition from the AIS state
into the NDF state.
The pointe r inte rpreter will transit ion into the NDF state based on the following condition:
If ND F is enabled on the incoming H1 and H2 bytes, the pointer interpre ter will transitio n from t h e N ORM,
NDF, AIS, INC, and DEC states into the NDF state.
The pointer inte rpreter will transition out of the NDF s tate based on the following conditions:
Continuous NDF. I f NDF (1001, 0001, 1101, 1011, and 1000) is received for eight c onsecutive frames, the
pointer interpreter will transition from the NDF state into the LOP state.
Following any three consecutive, consist ent, and valid pointers, the pointer interpreter will transition f rom the
NDF state into the NORM state.
Following three conse cutive frames with all one s in the H1 and H2 bytes, the pointer interpr e ter will transition
from the NDF state into the AIS state.
Followi ng three new , consecutive , consistent, and valid pointers, the pointer interpreter will transition from the
NDF state into the NORM state.
Following eight consecutive invalid pointers, the po inter interpreter will transition f rom the NDF state into the
LOP state.
The pointer inte rpreter will transition int o the N O RM state based on the fol lowing conditio ns:
Following three new consecutive, consistent, and v alid pointers, the pointer interpreter will transition into the
NORM state.
Foll owi ng any three consecutive, consistent, and valid pointers, the pointer interpreter will transition into the
NORM state, i .e., transitioning from the INC, DEC, and NDF states.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
376 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
The pointer inte rpreter will transit ion out of t he N ORM state based on the foll owing conditions:
Following eight consecutive invalid pointers, the po inter interpreter will transition from the NORM state into
the LOP state.
If ND F is enabled on the incoming H1 and H2 bytes, the pointer interpre ter will transitio n from t h e NORM
state into the NDF state.
Following three conse cutive frames with all one s in the H1 and H2 bytes, the pointer interpr e ter will transition
from the NO RM state into the AIS state.
When operating in the 8 of 10 mode, controlled by TMUX_8ORMAJORITY = 1 ( Table 95 on page95 ), if 8 of
the 10 I and D bits are correct for a pointer decrement on the incomi ng H1 and H2 bytes, the pointer inte r-
preter will transition from the NORM state into the DEC s tate. Otherwise, if 3 of the 5 I bits and 3 of the 5 D
bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter will transition
from the NORM state into the DEC stat e.
When operating in the 8 of 10 mode (TMUX _8ORMAJORITY = 1), if 8 of the 10 I and D bit s are cor r ect for a
pointer increment on the incoming H1 and H2 bytes , the pointer interpreter will transition from th e NORM
state into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment
on the incoming H1 and H2 by tes, the pointer interpreter will transition fr om the NORM state into the INC
state.The p ointer interpreter will transition into the INC state based on the following conditions:
When operating in the 8 of 10 mode (TMUX _8ORMAJORITY = 1), if 8 of the 10 I and D bit s are cor r ect for a
pointer increment on the incoming H1 and H2 bytes, the pointer interpreter will transition into the INC state.
Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming H1 and
H2 bytes, the pointer interpreter will transition into the INC state.
The pointer inte rpreter will transition out of the INC sta te based on t h e following conditions:
If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will tr ansition from the INC state
into the NDF state.
Following three conse cutive frames with all one s in the H1 and H2 bytes, the pointer interpr e ter will transition
from the INC state into the AIS state.
Followi ng three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
INC sta te into the NORM state.
Following any three consecutive, consist ent, and valid pointers, the pointer interpreter will transition f rom the
INC sta te into the NORM state.
Following eight consecu tive invalid pointers, the pointer interpreter will t ra nsition from the INC state into the
LOP state.
The pointer inte rpreter will transit ion into the DEC state based on the following conditions:
When operating in the 8 of 10 mode (TMUX _8ORMAJORITY = 1), if 8 of the 10 I and D bit s are cor r ect for a
pointer decrem ent on the incoming H1 and H2 bytes, the poi nter interp reter will transition into the DEC state.
Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement on the incoming H1 and
H2 bytes, the pointer interpreter will transition into the DEC state.
The poi nter interpreter w ill t ransit ion out of the D EC st ate based on the f ollowin g conditions:
If N D F is enabled on the inc oming H1 and H2 bytes, the pointer interpreter will transition from the DEC state
into the NDF state.
Following three conse cutive frames with all one s in the H1 and H2 bytes, the pointer interpr e ter will transition
from the DEC state into the AIS state.
Followi ng three new consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
DEC state into th e NORM state.
Following any three consecutive, consist ent, and valid pointers, the pointer interpreter will transition f rom the
DEC state into th e NORM state.
Following eight consecutive invalid pointers, the pointer interpreter will transition from the DEC state into the
LOP state.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
377Agere Systems Inc.
17 TMUX Functional Description (continued)
Pointer increments and d ecrements will be counted and presented to the microprocesso r as fol lo ws :
Pointer increments and decrements will be monitored and counte d internally.
The internal and latched counts will be forced to clear (0x00) if TMUX_RLOP[31] = 1 (Table 92 on page 92 )
or TMUX_RPAIS[31] = 1 (Table 92), where [31] des ignates the tributary number.
Upon the configured performance monitor ing interval, raw counts are transferred to holding registers for
pointer increments (TMUX_RPTR_I NC[13][10:0] (Table 129 on page121 )) and decrements
TMUX_RPTR_DEC[13][10:0] (Table 130), a llowing access by the microprocessor. The raw counters will
reset (t o 0x00).
Dependi ng on the value of SMPR_SAT_ROLLOVER (Table 67 on page68 ) in the microprocessor interface
block, the internal running counts saturate at their maximum value or rollover.
However, increment and decrement event indications should be ignored during LOP station.
The current pointer state is read from TMUX_RLOP[31] and TMUX_RPAIS[31]. Any change s in pointer con-
dition are read from the d elta s tate bits TMUX_RLOPD[31] and TMUX_RPAISD[31] (Table 83). T he associ -
ated interru pt mask bits are TMUX_RLOPM[31] (Table 87 on page89 ) and TM UX_RPAI S M[31] (Table 87).
W hen th e devi ce is receiving a con catenated s ignal (STM-1(AU-3)), the receive concatenation mode register bit,
TMUX_ RC ONCATMODE (Table 95 on page 95), must be set for the conc atenation state machines (register bits
TMUX_CONCAT_STATE[32][1:0] (Ta ble 92 on page92 )) on p orts 2 and 3 to contribute to pointer e valuation.
This state machine implements the pointer interpretation algorithm described in ETS 300 417-1-1: January 1996
- Ann ex B.
17.5.16 Path Monitoring Functions
The following s ec tions describe the path monitoring functions. For STM-1 signals, the values corresponding to
STS-1 #1 are the relevant signal s. F o r STS -3 input data, there are th ree versions of each path monitor, one corre-
sponding to each STS- 1. The mode bits are applied to the moni tors of all three STS-1s.
J1 Monitor. J1 (path trace) monitoring has six different monitoring modes controlled by TMUX_J1MONMODE[2:0]
(Table 95 on page95 ). The J1 monitoring mode fo r all three STS -1s within an STS-3 signal is the same.
TMUX_J1M ONMODE[2:0] = 000: The TMUX latches the value of the J1 byte ever y frame for a total of 64 bytes
in TMUX_J1DMON[13][164][7:0] (Table 137 on page122 , Table 138, and Table 139). The TMUX compares
the incoming J1 byte with the next expected value (the expected value is obtained by cycling through the previ-
ous store d 64 received bytes in round -r obin fashion) and setting the path trace identifie r state regi ster b it(s ),
TMUX_RTIMP[13] (Table 92 on page92 ), if different. Any change to the path trace identifier is reported in
TMUX_RTIMPD[13] (Table 83), with interrupt mask bits, TMUX_RTIMPM[13] (Table 87 on page89 ).
TMUX_J 1MONMODE[2:0] = 001: This is the SONE T framing mode. The hardware looks for the 0x0A char acter
to indicate that the next byte is the first byte of the path trace message. The J1 byte message is continuously
wr itten into registers, TMUX_J1DMON[13][164][7:0], with the first byte residing at the first address. If any
receiv ed b yte does not match the previously received byte for its location, then the state bit(s),
TMUX_RTIMP[13], is set. Any change to the path trace identi fier is reported in TMUX_RT IMPD[13], with
interr upt m as ks bits, TMU X_RTIMPM[13].
TMUX_J1MONMODE[2:0] = 010: This is the SDH framing mode. The hardware looks for the byte with the MSB
set to one , which indicates that the next byte is the s econd byte of the mess age. The rest of operation is the
same as in SO NET fr am ing mode, except that th ere are 16 bytes instead of 64.
TMUX_J1MONMODE[2:0] = 011: A new J1 byte (TMUX_J1DMON[1][7:0]) will be detected after a number of
consecutive consistent occurrences of a new pattern (determined by the v alue in TMUX_CNTDJ 1[3:0] (Table 99
on pag e99)) in the J1 overhead byte. Any changes to t his byte must be reported in TMUX_RTIMPD[13], with
the interrupt mask bits, TMUX_RTIMPM[13]. The delta bit(s) in this mode i ndicate a change in state for the
TMUX_J1DMON [1][7:0] by te, and the state bits, TMUX_RTIMP[13], are not used.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
378 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
TMUX_J 1MONMODE[1:0] = 100: The user will program the 64 expected values of J1 in
TMUX_EXPJ1DMON[13][164][7:0] (Table 134 on page122 , Table 135, and Table 136), in SONET framing
mode, where the first expected byte, the byte following the 0 x 0A character, is written into the first location of
TMUX_EXPJ 1DM ON[1][7 :0] . The T MUX wil l compare the i ncomi ng J 1 sequence with the stored expected value,
setting the path trace identifier state bit(s), TMUX_RTIMP[13] if they are different. Any change to the path trace
identifier is reported in TMUX_RTIMPD[13], with inter rupt mask bits, T MUX_RTIMPM[13].
TMUX_J 1MONMODE[1:0] = 101: The user will program the 16 expected values of J1 in
EXPJ1DMON[116][7:0] in SDH framing mode, where the first byte of the message has the MSB set to 1. The
TMUX c ompares the incoming J1 sequ enc e with the stored expected value, setting the state register bit(s),
TMUX_RTIMP[13], if they are different. Any change to path trace i dentifier i s reported in re gister bit s,
TMUX_RTIMPD[13], wi th interrupt mask bits, T MUX_RTIMPM[13].
TMUX_J1MONMODE[1:0] = 110 and 111 are currently undefined.
B3 BIP-8 Check. A B3 BIP-8 even pari ty is comput ed over all the incoming s y nchronous payload envelope bits of
the STS-3/S TM-1/STS-1 signal after descrambling, and compared to the B3 byte received in the next frame. The
total number of B3 BIP-8 bit errors (raw count), or block errors (as determined b y TMUX_B ITBLKB3 (Table 95 on
page 95), is counted. Upon the configured performance monitor (PM) int erval, the v alue of the internal running
counter is placed into holding registers TMUX_B3ECNT[13][15:0] (Table 126 on page119 ) and then cleared.
Depending on the value of SMPR_SAT_ROLLOVER (Table 67 on pa ge68) in the microprocessor interface block,
the internal counter will either roll ove r or stay at its maximum value until cleared.
Signal Label C2 Byte Monitor. The C2 byte per STS -1/STM-1 is stored in TMUX_C2MON[13][7:0] (Table 104
on page101 ). Eac h regist er will be updated after a number, de termined by the value in TMUX_CNT DC2[3:0]
(Table 99 on pag e99), of consecutive frames of identical C2 bytes for a given STS-1/STM-1, i.e., the 8-bit pattern
must be ide ntica l for a programmed number frames prior to u pdating t he C2 register. Any change to C2 byte moni-
tor is reported via the corresponding delta and mask register bits, TMUX_RC2M O ND[13] (Table 83) and
TMUX_RC2MONM[13] (Table 87 on pag e89).
In addition, there are prog rammable expected value(s) for the C2 bytes of each STS-1/STM-1 in
TMUX_C2EXP[13][7:0] (Table 100 on page100 ). If the current value of a C2 byte in TMUX_C2MON[13][7:0]
does not equal the expec ted C2 value in TMUX_C2EXP[13][7:0]), then a payload label mi smat ch def e ct may b e
declared f or that STS-1/STM-1 in TMUX_RPLMP[13] (Table 92 on page92 ). A lso, if the current value of a
C2 byte is all 0s, then the corresponding unequipped defect is declared in TMUX_R UN EQP[13] (Table 92).
Note: The payload label mismatch and unequipped defects are mutually exclusive and unequipped t akes pr iority.
The following table desc ribes the condition s for generating payload label mi smatch (TMUX_RPL MP[13]) and
unequipped defects (TMUX_RUNEQP).
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
379Agere Systems Inc.
17 TMUX Functional Description (continued)
Table 524. S TS Signal L abel D efect Conditions
TMUX_FO RCEC2DEF[2:0] will force path pa yload label mismatch defects on those conditi ons that are shown on
in Table 524 above.
The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame
state.
RDI-P Detection. A remote defect i ndicati on-path (RDI-P) signal indicates to STS path terminating equipment
(PTE ) that its peer STS PTE has detected a defe ct on the signal that it origi nated. The TMUX supports a 1-bit
RDI-P code as well as a 3-bit enhanc e d R D I-P code; the mode is selectable using the TMUX_REPRDI_MODE
(Table 95 on page95 ). If TMUX_REPRDI_ MODE = 0, then the 1-bit code is supported, and if
TMUX_REPRDI_MODE = 1, then the 3-bit enhanced path RDI code is supported.
The TMUX monitors f or a 1- bit RDI -P code in G1[3] or a 3-bit enhanced remote defect indication (RDI-P) conditi on
in G1[3:1]. The curr ent value of the path RDI state will be detected after a number of consecu ti ve occurrences
determined by the value in TMUX_CNTDRDIP[3:0] (Table 99 o n page 99). T he current value(s) will be stored in
TMUX_RDIPMON[13][2:0]] (Table 104 on page 101), f or nonenhanced RDI-P mode , and the current va lue(s) will
be stored in TMUX_RDIPMON[13][2:0], for e nhanced RDI-P mode. A ny change to T MU X_RDI PMO N [13][2:0]
will be reported in TMUX_RRDIPD[ 13] wit h interrupt mask bits,T MUX_RRDIP M[13] (Table 87 on page89 ).
The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame
state.
REI-P Detection. Bits [7:4] of the G1 byte are al located for use as a path remote error indication function (REI-P).
For S T S -1 and STM-1 signals, b its [7:4] of the G1 byte are allocated for REI-P which conveys the error count
detected by the PT E (using the path BIP-8 code B3) back to its peer PTE as shown in Table 525.
Provisione d ST S PTE
Functionality, Expected C2 Received Payload Label
(C2 in h ex) Defect TMUX_FORCEC2DEF = 1
(Table 97)
Any Equipped Functionality Unequipped (00) TMUX_R UNEQP No Change
Any E quip ped Functionality Equip pedNonspec ific (01) None No Change
EquippedNonspecific Any Value (02 to E0, FD t o FE) N one No Change
Any Payload Specific C ode The Same Payload Specific
Code (02 to E0, FD to FE) None No Change
Any Payloa d Specific C ode A Different Pay loa d Spec ific
Code (02 to E0, FD to FE) TMUX_RPLMP No Change
EquippedNonspecific (01) or
VT-Structured STS-1 (02) PDI, 1 to 27 VTx Defects
(E1 to FB) None TMUX_RPLMP
Any Payloa d Spec ific Code
Except VT-Stru ctured
ST S-1 (02)
PDI, 1 to 27 VTx Defects
(E1 to FB) TMUX_RPLMP No Change
Any Equipped Functionality P DI, 28 VT1.5 Defects or 1
Non-VT Payload Defect (F C) None TMUX_RPLMP
Any Equipped Functionality Reserved (FF) None TMUX_RPLMP
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
380 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
Table 525. STS-1 P-REI Interpretat ion
The TMUX allows acc es s to the G1-RE I errored bit count for each STS-1/ STM-1 in TMUX_G1E CNT[1 3][15:0]
(Table 128 on page 120), which is the accumulated error c ount from G 1[3:0] by te of the STS-1/STM-1 signal. The
counter(s) will count in bit or block mode , depending on the value of TMUX_B ITBLKG1 (Table 95 on page95 ).
Upon the c onfigured p er formance monitor (PM) inte rval, the value of the internal running counter is placed into the
holding registers TMUX_G1ECNT[13][15:0] and then cleared. Dep ending on the val ue of
SMPR_SAT_ROLLOVER (Table 67 o n pag e68) in the microproc essor int er face block, the int ernal counter will
either roll over or stay at its maximum value until cleared.
Path User Byte F2 Monitor. The TMUX monitors the path user channel in the F2 byte of each STS-1/STM-1. The
F2 byt e(s) will be stored in TMUX_F2MON0[13][7:0] (Table 104, starting on page 101). Each r egister will be
updated after a number of consec utive frames o f ident ical F2[7:0] as determined by the value in
TMUX_CNTDF2[3:0] (Table 99 on page 99). That is , the 8-bit pattern must be identical for the programmed number
of f rames prior to updat ing the F2 register. Any change to F2 monitor registers will be reported in
TMUX_RF2MOND[13] (Table 83), with interrupt mask bits, TMUX_RF2MONM[13] ( Table 87 on page89 ). The
TMUX also maintains a history of the previous valid F2 b yte in TMUX _F2MON1[ 13][7:0] (Table 104). The contin-
uous N-times detection counter(s) will be reset to 0 upon the tra nsiti on of th e framer int o the out of frame state.
H4 Multiframe Indicator. The H4 byte is allocated for use as a mapping specific indicator byte. For VT-structured
SPEs, this byte is used as a multiframe indicator.
The TMUX passes the H4 byte of each STS-1 onto the low- speed telecom bus so that it can be monitored by the
VT mapper block. The TMUX also indicates when the H4 byte(s) has a value of 0x 01 by assert ing the RLSV 1 out-
put pin (pin number W4) on the telecom bus during that frame.
Note: The three H 4 bytes of an S TS-3 signal can occ ur at any time with respect to one another within a frame.
Path User Byte F 3 Monitor. The TMUX monitors the second path user channel in the F3 byte for each
STS-1/ST M-1. The F3 byte(s) for each STS-1/STM-1 is stored in TMUX_F3MON0[13][7:0] ( Table 1 04 on
page 101). Each register will be updated after a number determined by the v alue in TMUX_CNTDF3[3: 0] (Table 99
on pag e99) of c onsecutive frames of identical F3[7: 0] monitor bytes on that particular STS-1. That is, the 8-bit pat-
tern must be identical for the programmed number of frames prior to updating the F3 regi ster.
G1[7:4] Code Code Interpretation
0000 0 (no errors)
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 0 (no errors)
. . . . . .
1111 0 (no errors)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
381Agere Systems Inc.
17 TMUX Functional Description (continued)
Any change to F3 b yte monitor registers is reported in TMUX_RF3MOND[13] (Table 83), wi th inte rr upt mask bits,
TMUX_RF3MONM[13] (Table 87 on page89 ).
T he TMUX also maintains a history o f the previous valid F3 byte in TMUX_ F3MON1[13][7:0] (Table 104 on
page 101). T he con tinuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the
out of frame state.
K3 Byte Monitor. The TMUX monitors the K3 byte for each STS-1/STM -1 . The K3 by te(s) are stored in
TMUX_K3MON[13][7:0] (Table 104). Each register will be updated after a number determi ned by the value in
TMUX_CNTD K3[3:0] (Table 99 on page99 ) of consecutive frames of identical K3[7:0] f or that particular
STS-1/STM-1. T hat is, the 8 -bit patte rn must be identical for a number of frames prior to updating the K3 register.
Any change to K3 monitor registers is reported in TMUX_RK 3MOND[13] (Table 83), with interrupt mask bits,
TMUX_RK3MONM[13] (Table 87 on page89 ). The continuous N-t imes detection counter(s) will be reset to 0
upon the transition of the framer i nto the out of frame state.
N1 Byte Monitor. The TMUX monitors the N1 byte for each S TS-1/STM-1. The N1 byte(s) are stored in
TMUX_N1MON[13][7:0] (Table 104 on page101 ) . Each register w ill be updated after a number determined by
the valu e in TMUX_CNTDN1[3:0] (Table 99 on page 99) of consecutive fr ames of identical N1[7:0] f or that particu-
lar STS -1 /STM-1. That is, the 8-bit pattern must be identical f or a number of frames prior to updating the N1 regis-
ter. Any change to N1 monitor registers will be reported in TMUX_RN1MOND[13] (Table 83), with interrupt mask
bits, TMUX_RN1M O NM[13] (Table 87 on page89). The continuous N - times detection counter(s) will be reset to
0 upon the trans ition of the framer into the out of frame state.
Signal Degrad e BER A lg orithm. A signal degrade state in register bit TMUX_RHSSD (Table 91 on page 92) and
change of s tat e indication is rep orted in register bit, TMUX_RHSSDD (Table 82, s tarting on page79 ), with the
i nt e rr upt ma sk bi t , T MU X_ RH SS DM (Table 87 on page 89). This bit err or rate algorithm can operate on either B1 or
B2 errors, det er mined by the value of TMUX_SDB1B2 SEL (Table 95 on page95 ). E ac h B3 monitor has an i nde-
pendent signal deg rade function as w ell in TMUX_RSDB3[1 3] (Table 92 on page92 ).
Declaring the signal degrade state requires the de finition of two measurement window s, a monitoring block consist-
ing of a number of frames in TMUX_SDNSSET[18:0] (Table 120 on page116 ) and a measurement interv al consist-
ing of a number of monitoring blocks in TMUX _SDBSET [11:0] (Table 120). A block is determined bad when the
number of bit errors equals or ex ceeds a threshold set in TMUX_S DLSE T[3: 0] (Table 120). Signal degrade is
declared when a number of bad monitoring blocks equals or exceeds the threshold in TMUX_SDMSET[7:0]
(Table 526) for the meas urement interval.
Clearing the signal degrade st ate requires t he definition of two measurement windows, a monitoring block consist-
ing of a number of frames in TMUX_SDNSCLEAR[18:0] ( Table 120) and a measurement interval c ons isting of a
number of m oni tor ing bl ocks in TMUX _S DBCLE AR [11:0] (Table 120). A block is det ermined good when the num-
ber of bit errors is less than a threshold set in TMUX_SDLCLEAR[3:0] ( Table 120). Signal deg rade is cleared when
a number of good monitoring block s equals or exceeds the threshold in TMUX_SDMCLEAR[7:0] ( Table 120) f or the
measurement interval.
The set parameters are used when th e signal degra de state is clear, and the clear p arameters are used when the
signal degrade state is declared.
The signal degrade state may be forced t o the declared state with TMUX_SDSET ( Table 78 on page 77) and forced
to the cleared state with TMUX_SDCLEAR (Table 78). One shot sign al must be provided to force the BER algo-
rithm into the failed state or normal state, respectively.
The algorithm described above can detect bit error rates from 1 x 103 to 1 x 109.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
382 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
Table 526. Signal Degra de (SD) Parameters
Note: T h e thr e sho lds written by the co ntrol s ys t e m will b e o ne les s t han the des ired nu mb er, except for th e TMUX _SDLS ET[ 3 : 0 ] and
TMUX_SDLCLEAR[3:0] parameters.
Signal Fail BER Alg orithm. A signal degrade state in register bit TMUX_RHSSF (Table 91) and change o f state
indication is reported in register bit, TMUX_RHSSFD (Table 82, starting on page79 ), with the interrupt m ask bi t,
TMUX_RHSSFM (Table 86 on page88 ). Th is bit error rate algorithm can operate on either B1 or B 2 e r rors
selected with register b it, TMUX _SDB1B2SEL (Table 95 on pag e95). Eac h B 3 mo nitor has its own bit error rate
algorithm as well with the failure i ndicat ed in TMUX _RSFB3[13] (Table 92 on pag e92).
Declaring the signal degrade state requires the de finition of two measurement window s, a monitoring block consist-
ing of a number of frames in TM UX_SFNSSET[18:0] (Table 121 on page117) and a measurement interval consist-
ing of a number of monitoring blocks in TMUX_SFBSET[11:0] (Table 121). A block is determ ine d bad w hen the
number of bit errors equals or exceeds a threshold set in T MUX_S F LS ET[3 :0] (Table 121). Signal degra de is
declared when a number of bad monitoring blocks equals or exceeds the threshold in TMUX_SFMSET[7:0]
(Table 121) for the meas urement interval.
Clearing the signal degrade st ate requires the d efinition of two measurement windows, a monitoring block consist-
ing of a number of frames in TMUX_SFNSCLEAR[18:0] (Table 121) a nd a measurem ent i nterval consisting of a
number of m oni tor ing bl ocks in TM UX_S FBCLE AR [11:0 ] (Table 121). A block is determined good when the num-
ber of bit e rrors is less than a threshold set in T MUX_S F LCLE AR [3:0] (Table 121).
Name Function
TMUX_SDNS SET [18:0] (Table 120)Signal Degrad e Ns Set. Number of frames in a monitoring block for SD.
TMUX_S DLSET[3:0] (Table 120)Signal Deg rad e L Set. Error threshold for determining if a monitoring
block is b ad.
TMUX_SDM SET [7:0] (Table 120)Signal Degrade M Set. Threshold of the number of bad monitoring blocks
in an observation interval. If the number of bad bloc ks is below this thresh-
old, then SD is cleared.
TMUX_SDBSE T[15:0] (Table 120)Signal Deg rad e B Set. Number of monitoring blocks in a measurement
interval.
TMUX_SDNS CLE A R[1 8:0]
(Table 120)Signal Deg rade Ns Clear. Number of frames in a monitoring b l oc k for
SD.
TMUX_SDLCLEA R[3:0] (Table 120)Signal Deg rad e L C lear. Error threshold for deter mining if a monitoring
block is b ad.
TMUX_SDMCLEAR[7:0] (Table 120)Sign al Deg rade M Clea r. Threshold of the number of bad m o nitoring
blocks in an observation interval. If t he number of bad blocks is below this
thr e s h ol d , t hen SD is cl e ared .
TMUX_SDBCLE AR[15:0] (Table 120)Signal Degrade B Clear . Number of monitoring blocks in a measurement
interval.
TMUX_SDSET (Table 78)Si gnal Deg rad e Set. Allows the signal degrade algorithm to be forced
into the failed state (active 0 t o 1).
TMU X_SDCL EAR (Table 78)Signal Deg rad e Clear. Allows the signal degrade algorithm to be forced
into the normal state (active 0 to 1).
TM UX_ SDB1B 2S EL (Table 95)Sign al Degrad e B1/B2 Error Count Select. Control bit, when set to a
logic 0, caus es the signal fail bit error rate algorithm to use B1 errors; oth-
erwise, B2 errors are used to calculate the error rate.
TMUX_RHSSD (Table 91)Signal Deg rad e BE R Alg orithm State Bit.
TMUX_RHSSDD (Table 82)Signal Degrade BER Algorithm Delta Bit.
TMUX_ RHSSDM (Table 86)Signal Degrade BER Algorithm Mask Bit.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
383Agere Systems Inc.
17 TMUX Functional Description (continued)
Signal degrade is cleared when a number of good m on i t oring blo c ks equals or exceeds the threshold in
TMU X _ S FM C LEAR [7: 0] (Table 121) for the measurem ent interval.
The set parameters are used when the signal fail state is clear, and the clea r parameters are used when the signal
f ail state is declared.
The signal degrade s ta te may be forced to the declared state wi th TMUX_SFSET (Table 78) and forced to the
cleared state with TMUX_ SFC LE AR (Table 78). One shot signal must be p r ovided to force the BER algorithm into
th e f ailed stat e or normal state, respecti v e ly .
The above algor ithm can detect bit error rates from 1 x 103 to 1 x 109.
Table 527. Signal F ail P arameters
Note: T h e thr e sho lds written by the co ntrol s ys t e m will b e o ne les s t han the des ired nu mb er, except for th e TMUX _SFLSET [3:0 ] and
TMUX_SFLCLE AR[3:0] parameters.
Name Function
TMUX_ SFNSSET[18 :0 ] (Table 121)Signa l Fail N s Se t . Number of frames in a monitoring block for SF.
TMUX_SFLSET[3:0] (Table 121)Signal Fail L Set. Error threshold for determining if a monitoring block is
bad.
TMUX_SFMSET[7:0] (Table 121)Sign al Fa il M Se t . Threshold of the number of bad monitoring blocks in
an observation interval. If the number of bad blo cks is below this thresh-
old, then SF is cleared.
TMUX_ SFBSET[15 :0 ] (Table 121)Sign al Fail B S et . Number of monitoring blocks.
TMUX_SFNSCLEAR[18:0]
(Table 121)Signal Fail Ns Clear. Number of frames in a monitoring block for SF.
TMUX_SFLCLEAR[3:0] (Table 121)Sign al Fa il L Clear. Error threshold for determining if a mon itoring block
is bad.
TM U X _SFMCLEAR [ 7: 0] (Table 121)Signal Fai l M Clear . Threshold of the number of bad monitoring blocks in
an observation interval. If the number of bad blo cks is below this thresh-
old, then SF is cleared.
TMUX_SFBCLEAR[15:0] (Table 121)Signal Fail B C lear. Number of monitoring blocks.
TMUX_S FB1B2SEL (Table 95)Signal Fail B1/B2 Error Count Select. Control bit, when set to a logic 0,
causes the signal fail bit error rate algorithm to use B1 errors; when set to
a logic 1, causes the signal fail bit error rat e algorithm to use B2 errors.
TMUX_SFSET (Table 78)Signal Fail Set. Allows the signal degrade algorithm to be forced into the
failed state (active 0 to 1).
TMU X_S FC LEAR (Table 78)Signal Fa il C lear. All ows the signal degrade algorithm to be forced into
the normal state. (active 0 to 1).
TMUX_RHSSF (Table 91)Signal Fail BER A lgorithm State Bit.
TMUX_RHSSFD (Table 82)Signal Fail BER Algorithm Delta Bit.
TMUX_RHSSFM (Table 86)Signal Fail BER Algorithm Mask Bit.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
384 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
Path Overhead Access Channel (POAC) Drop. The TMUX provides one path overhead access channel (POAC
output channel). The TMUX can receive up to three S TS-1 signals. There ar e tw o re g i ster bits,
TMUX_RPOAC_SEL[1:0] (Tabl e 118 on page 115), to designate which STS-1s POH will be dropped onto the
POAC channel. TMUX_RPOAC_SEL[1:0] = 01 designates STS-1 #1, TMUX_RPOAC_SEL[1:0] = 10 designat es
STS-1 #2, and TM UX_RPOAC_S EL[1:0] = 11 designates ST S -1 #3. TMUX_RPOAC_SEL[1:0] = 00 de signates
t hat th e RP OAC channel is not dr iven b y the TMUX.
The POAC ch annel consis t s of the follow ing s ignal s :
A 576 kHz inverted clock signal sourced by the TMUX (RPOACCLK, pin AE3).
A 576 kb its/s data signal sourced by the TMUX (RPOACDATA, pin AD4).
An 8 kHz synchronization signal, sourced by the TMUX (RPOACSYNC, pin AF4). The sync signal is normally
low. During the last clock period of each frame coincident with the least signifi cant bit of the last byte, the sync
signal is high.
The data s ig na l i s pa rtitioned in to f ra mes of 9 bytes. The frame rep etition rate is 8 kHz. Each byte consists of 8 bits
that are transmitted/received most significant bi t first. The MSB of the second byte of each frame contains an
odd/even parity b it over the 72 bits of the previous frame. The remaining 7 bits o f this by te are not specified.
Bytes shown in Table 529 summarize the a ccess capabilities of the receive POAC.
Table 529. P ath Overhead Byte Access
Even or o dd pari ty can be inserted into the first bit of the MSB byte of the POAC outgoing frame. P ari ty i s selected
with TMUX_RPOAC_OEPINS (Table 118 o n page115 ).
AIS-P Insertion and AUTO_AISO Generation. Upon detecting cert ain fai lure conditions, the TMUX asserts the
external output signals named AUTO_AIS[13] (pins AD 6, AE6, and AC6). The AUTO_A IS[ 13] si gnals, one per
STS-1, als o informs th e other blocks within the Super Mapper to insert A IS downstream d ue to detected failures .
The followi ng conditions ca n cause AUTO_AISO[13] signals to be as serted: line AIS, LOC (STS -1 mode o nly),
LOS, LOF, OOF, L OP-P, SF (B1, B2, or B3), SD (B1, B2, or B3), payload label mismatch, or payload unequipped.
Each co ndition can be individually inhibited from contributing to the i nternal AUTO_AISO[13] signals. For concat-
enated signals (STS-3c or S TM- 1), all AUTO_A ISO[13] sign als should be driv en coincidentally . In STS-3 mode,
each STS-1 signal has a correspondi ng AUTO_ AISO signal.
Table 5 28. Signal Fail or Signal Deg rade Recommended Programming Values
Set
Threshold NsSet LSet MSet BSet Clear
Threshold NsClear LClear MClear BClear
1x1030x00001 0x5 0x3D 0x003D 1x1040x00001 0x6 0x03 0x0007
1x1040x00006 0x8 0x03 0x0007 1x1050x00006 0x2 0x03 0x0007
1x1050x00030 0x6 0x03 0x0007 1x1060x00030 0x2 0x03 0x0007
1x1060x001E0 0x6 0x03 0x0007 1x1070x001E0 0x2 0x03 0x0007
1x1070x01275 0x6 0x04 0x0009 1x1080x01275 0x2 0x04 0x0009
1x1080x0B5A4 0x6 0x04 0x0009 1x1090x0B5A4 0x2 0x03 0x0009
1x1090x3F7A0 0x4 0x05 0x0013 1x1010 0x3F7A0 0x2 0x02 0x000F
J1
POH Parity
C2
G1
F2
H4
F3
K3
N1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
385Agere Systems Inc.
17 TMUX Functional Description (continued)
The following boolean expression is th e cr iteria for AUTO_AI S and send path AIS. The expressions represent com-
binations of s ignal st atus stat es register bits and inhibit state register bits that form the criter ia.
Criteria for AUTO_AISO<n> =
((TMUX_RLAISMON AND TMUX_RLAISMON_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RILOC AND TMUX_RILOC_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RHSLOS AND TMUX_RHSLOS_ AISINH AND TMUX_RPSMUXSEL ) O R
(TMUX_RHSLOF AND TMUX_RHSLOF_AISINH) OR
(TMUX_RHSOOF AND TMUX _RHSOO F_AISINH) OR
(TMUX_RLOP<n> AND TMUX_RLOP_AISINH) OR
(TMUX_RHSSF AND TMUX_RHSSF_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RHSSD AND TMUX_RHSSD_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RSFB3<n> AND TMUX_RSFB3_AISINH) OR
(TMUX_RSDB3<n> AND TMUX_RSDB3_AISINH) OR
(TMUX_RPLMP<n> AND TMUX_RHPLMP_AISINH) OR
(TMUX_RUNEQP<n> AND TMUX_RUNEQP_AISINH) OR
(TMUX_RTIMP<n> AND TM UX_RTIMP_AISINH) OR
(TMUX_RPAIS_INS))
In addition to generating the external AUTO_AIS si gnal , the TM UX ca n inse rt path AIS int o th e rec eiv e d si gn al prio r
to driving it onto the low-speed teleco m bus. The conditions for sending path AIS include some of the above condi-
tions. The same inhibit bits are used as above . Note that the above A UT O_AISO[13] signal generation is on a per
STS-1 basis, while sendin g path AIS occurs on the compl ete STS-3/ STM- 1 signal (or S T S-1 for STS-1 only m ode).
Criteria for Send Path AIS =
((TMUX_RLAISMON AND TMUX_RLAISMON_AISINH AND TMUX_ RPSMUXSEL) OR
(TMUX_RHSLOS AND TMUX_RHSLOS_ AISINH AND TMUX_RPSMUXSEL ) O R
(TMUX_RHSLOF AND TMUX_RHSLOF_AISINH) OR
(TMUX_RHSOOF AND TMUX _RHSOO F_AISINH) OR
(TMUX_RLOP<n> AND TMUX_RLOP_AISINH) OR
(TMUX_RHSSF AND TMUX_RHSSF_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RHSSD AND TMUX_RHSSD_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RPAIS_INS))
Receive Side Telecom Bus Interface. The TMUX outputs one parallel clock (RLSCLK, pin V4), t hree sync signals
(RLSSPE, RLSJ0J1V1, and RLSV1; pi n numbers V1, V3, and W4), an 8-bit data bus (RLSDATA[7:0], pins R1, R3,
T4, T2, T3, U4, U2, and U3), and an odd/even (RLSP AR, pin V2) parity signal. T he data bu s carries either three
STS-1/T UG-3 signals, each in their own time slot, or it carri es one STS - 1 s ignal where the para llel clock operates
at 6. 48 MHz instead of 19.44 MHz.
5-9008(F)
Figure 27. Receive Low-Speed Bus Interface Signals for STS-3/STM-1 Signals
A1-1 A1-2 A1-3 A2-1 A2-3 J0-1 J0-2 J0-3 J1-1 J1-2 J1-3 V1-1 V1-2 V1-3A2-2
A1 A2 J0 J1 V1
3 BYT ES 3 BYTES 3 BYTES 3 BYTES 3 BYTES
RLSSPE
RLSJ0J1V1
RLSV1
RLSDATA[7:0]
RLSCLK
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
386 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
17.6 Transmit D irec tion (Transmit Path to SONET/SDH Line)
All func tions supported by TMUX in the tra nsmit direction are summ arized below:
Transmit side telecom bus interface
Path overhead access c hannel (POAC) insert
Path overhead insertion fu nc tions
MS P 1 + 1 payload switc h
Transpor t overhead access channel (TOAC) insert
Section and line overhead inserti on func ti ons
17.6.1 Transmi t S ide Telecom Bus Interface
The TMUX transmit side drives a parallel clock (TLSCLK, pin AA2) and three sy nc signals ( TLS SPE, TLSJ0J1V1,
and TLS V1; pins A B2, AB4, and AB3) onto th e telecom bus. From these sync signals, the SPE mappers can deter-
mine when to driv e data onto the bu s. The TMUX receives an 8-bit data bus (TLSDATA[7:0], pins W2, W1, W3, Y4,
Y2, Y1, Y3, and AA4), and an odd/even (TLSPAR, pin AA3) parity signal from the telecom bus . The data consists of
the SPE for up to 3 STS- 1 s.
The parallel clock operates at 19.4 4 MH z for STS-3/STM -1 mod es and at 6.48 MHz for STS-1 mo de.
5-9009(F)
Figure 28. Transmit Low-Speed Bus Interface Signals fo r STS-3/STM-1 Signals
17.6.2 Transmit Path and Transport Overhead Insertion Diagram
Th e trans mit blo ck consis ts of two o verhea d insertion sections. The first sectio n i nserts the path over head (POH )
bytes into the payl oad data to create an STS-3/STM-1/STS-1 SPE. After POH insertion, there is an MS P 1 + 1 pr o -
tection switch on the payload. After the switch sel ection is made, the transport overhead bytes are added to the
SPE to generate a complete SONET/SDH frame.
A1-1 A1-2 A1-3 A2-1 A2-3 J0-1 J0-2 J0-3 J1-1 J1-2 J1-3 V1-1 V1-2 V1-3A2-2
A1 A2 J0 J1 V1
3 BYTES 3 BYTES 3 BYTES 3 BYTES 3 BYTES
TLSSPE
TLSJ0J1V1
TLSV1
TLSDATA[7:0]
TLSCLK
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
387Agere Systems Inc.
17 TMUX Functional Description (continued)
5-9010(F)r.2
Figure 29. Transmit Direction POH and TOH Insertion Diagram
The first section, which is the path overhead s ec t i on , is broken down into the following functional parts:
J1 path trace insert
B3 calculation and insert
C2 signal label insert
REI-P and RDI-P insert
Path user byte F2 insert
H4 mu ltiframe insert
Path user byte F3 insert
K3 insert
Tandem connection b yte N1 insert
AIS-P Insert
SCRAM. INSERT INSERT
AIS
MSOH
INSERT LINE/MSOH
F1 B2
GENERATE K1/K2 RDI-L M0
REI-L SYNC
APS
B2 K1
K2
INSERT
K2 M0 S1
STATUS
B1 F1
SECTION/RSOH
INSERT J0
A1/A2
TRANSMIT PATH TO SONET/SDH LINE (TRANSMIT DIRECTION)
TRANSMIT DATA
TOAC INSER T
D4D12 AND E2
B1, E1, F1, D13 I N SERT
H4
INSERT
F2
INSERT
F3
INSERT
J1 INSERT
N1 INSERT
C2 INSERT
H4
G1
REI-P
INSERT
G1
RDI-P
INSERT
K3
APS
INSERT
N1 C2 F3 F2K3 G1 G1J1
INSERT
AIS-P
POAC INSERT
F2, F3, C2, N1, AND J1
INSERT PATH OVERHEAD BYTES
INSERT
TE LECO M B U S
TRANSMIT PROTECTION
MSP 1+1
SWITCH
SWITCH BU S D ATA
[2:0]
B1
GENERATE
B3
GENERATE
B3
INSERT
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
388 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
The second sec tion after the switch, the transport overhead section, is broken down into the fo llowing functional
parts:
TOAC insert
Sync status byte (S1) ins ert
M0/M1RE I-L Insert
K1 and K2 insert
AIS-L insert
B2 calculation and insert
F1 byte ins er t
B1 generate and error ins ert
Scrambler
J0 insert control
A2 error inse rt
All insert control functions that are inhibited will insert all zeros or al l ones, depending on the value of microproces-
sor reg ister bit, SM PR_OH_DEFLT (Table 6 7 on pag e68).
17.6.3 POAC Insert
One path overhead access channel (POAC) is provided on-chip to p rovision the path overhead (POH) portion of
the outgoing frame. The TMUX transmits up to three STS-1s. The register bits TMUX_TPOA C_SEL[1:0] (Table 118
on page115 ) designate which STS-1s POH is inserted from the transmit POAC channel.
TMUX_TPOAC_SEL[1:0] = 00 designates no TMUX_TPOAC insertion, TMUX_TPOAC_SEL[1:0] = 01 designates
STS- 1 #1, TMUX_TPOAC_SEL[1:0] = 10 designates STS-1 #2, and TMUX_T POAC_SEL[1:0] = 11 designates
STS-1 # 3.
A POAC ch annel consis t s of the follow ing s ignal s :
A 576 kHz inverted clock signal sourced by the TMUX (TPOACCLK, pin AE4).
A 576 kbits/s serial data signal received by the T M UX in the transmit direction (TPOACDATA, pin AD5).
An 8 kHz synchronization signal (TPOACSYNC, pin AC5), sourced by the TMU X. The sync signal is normally low.
During the last clock period of each frame, coincident with the least significant bit of the eighth byte, the sync signal
is high.
The data s ig na l i s pa rtitioned in to f ra mes of 9 bytes. The frame rep etition rate is 8 kHz. Each byte consists of 8 bits
that are tr ansmitted/received most signi ficant bit fir st. The MSB of t he first byte of each frame contains an odd/ even
parity bit over the 72 bits of the previous frame. The remaining 7 bits o f this byte are not specified. The B3, G1, and
H4 transmit pat h over head bytes are not provisionable via the POAC channel.
Bytes shown in Table 530 summa rize the access capabilities of the transmi t POAC channel. X indicat es a d ont
care.
Table 530. P ath Overhead Byte AccessTrans m it Direction
J1 X F3
POH Parity F2 K3
C2 X N1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
389Agere Systems Inc.
17 TMUX Functional Description (continued)
An ev ent indication TMUX_TPOA C_PE ( Table 80 on page78 ), interrupt mask bit TMUX_TPOAC_PM ( Table 84 on
page 87), is provided to indicate parity errors for the POAC channel. Odd (logic 0)/even (logic 1) parity is checked
and is configured wit h TM UX_TPOA C _ OEPMON (Table 117 on page113).
Table 531 summarizes the insertion options for the specified overhead bytes for POAC. The TMUX allows a fixed
default value (all z eros or all ones) to be inserted on the correspo nding P OAC val ue. All control signals are activ e-
high.
Tabl e 531 . TPOAC Control Bits
17.6.4 AIS Path Generation
Path AI S is specified as all ones in the entire STS-1 signal before sc rambling, excludi ng the transport overhead
(section and line overhead).
Path AIS can be inserted for each ST S -1 in the STS-3 using reg ister bi ts , TMUX_TLS_PAISI NS[3:1] (Tab l e 105 on
page 102).
17.6.5 J1 Insert Contro l
A 64-byte sequence stored in TMUX_TJ1DINS[13][164][7:0] (Table 140 on page123 , Table 141, an d
Table 142), will be inser ted into the outgoing J1 byte if TMUX_THSJ1 INS (Ta ble 108 on page105 ) is set to 1. Oth-
erwise, the associated POAC value is inserted when T MUX _TPOAC_J1 (Table 118 o n page 115) is a logic 1, or
the default value is inserted when TMUX _TP OAC_J1 is logic 0.
17.6.6 B3 BIP-8 Calculation and Insert
The B3 bytes are allocated for a path overhead error monitoring function. This function will be a bit interl eaved par-
ity 8 code (BIP-8) using even parity. The BIP-8 is computed before scrambling over all bi ts of the previous STS-1
frame except for the first three columns consisting of the section and line overhead and is placed in byte B3 of the
current frame, also before scrambling.
A bit error rate can be i nserted on any B3 byte with TMUX_THSB3ERRINS[13] (Table 115 on page112 ) and
micr oprocess or in terf ace bloc k SMPR_BER_I NSRT (Table 65 on page 66) bi t. When TMUX_THSB3ERRINS[13]
is a sserted, the corresponding B 3 b yte is inve rted each time the SMPR_BER_INSRT bit is asserted.
17.6.7 C2 Signal Label Byte Insert
When TMUX_THSC2INS[13] = 1 (Tabl e 108 on page 105), the value in TMUX_TC2INS[13][7:0] (Table 124 on
page 118) is inserted into the C2 byte of the outgoing signal. O the rwise, the associat ed POAC value is inserted
when TMUX_TPOAC_C2 = 1 (Table 118 on page115 ). If both TM UX_THSC2INS and TM UX_TPOAC_C2 = 0,
then the value inserted depends on the microprocessor interface block, SMPR_OH_DEFLT (Table 67 on page68 )
bit value. If S MPR_OH_DEFLT = 0, then all 0s are in sert e d. If SMPR _O H _DEFLT = 1, then all ones are inserted.
Overhead Bytes Register Control Bits Values
0 (Default Value) 1
J1 T M UX_ TPOAC_J1 (Table 118)SMPR_OH_DEFLT
(00000000/11111111) TPOAC
Data
C 2 TMUX_TPOAC_C2 (Table 118)
F2 TMUX_TPOAC_F2 (Table 118)
F3 TMUX_TPOAC_F3 (Table 118)
K3 TMUX_TPOAC_K 3 (Table 118)
N 1 TMUX_TPOAC_N1 (Table 118)
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
390 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
17.6.8 Path RDI (RDI-P) Insert
When TMUX_THSRDIPINS = 1 (Table 1 08 on page 105), then data from TMUX_TRDIPINS[13][2:0] (Table 114
on page110 ) is written into the corresponding three ST S-1 G1 byte output bits (G1[3:1]). For STS-3 mode, each
STS-1 signal carries its own G1 value. For S TM-1 mode, only TMUX_TRDIP INS1[2:0 ] is writte n into the first
STS-1 loc ati on. When TMUX_THSRDIPINS = 0, hardware insert is enabled f or RDI-P insertion. Each defect contri-
bution to the RDI-P outgoing code can be inhibited. There are two modes supported for path RDI insertion. One
mode conforms to the earlier one-bit version of the standa r d . T he ot her mode, enhanced RDI-P mode, uses a 3-bit
RDI- P cod e and conforms to the current version of t he standard. When TMUX_TEPRDI_MODE = 0 (Table 110 on
page 109) , the TM UX sends a 3-bit code that conforms to the earlier 1- bit version of the s tandards. If
TMUX_TEPRDI_MODE = 1, the TMUX will send a 3-bit code conforming to the current enhanced path RDI encod-
ing. Note that for non-enhanced RDI-P mode, the relevant defects are AIS-P and LOP-P. For enhanced RDI-P
mode, the relevant defects are AIS-P, L OP-P, PLM-P, and UNEQ-P.
When a failure condition exists that will cause RDI-P to be generated vi a hardware, the generation of RDI-P must
last for at l eas t 20 frames before cleari ng, even if the original failure cause has cleared in less than 20 frames.
Table 532 desc r ibes the encoding of the path RDI defects.
Table 532. RDI-P Defects f or Enhanced RDI-P Mode
The TMUX pro vi des a protection s wi tch MUX for RDI-P i nsertion. The MUX is controlled by TMUX_TPREIRDISEL
(Table 107 on page 103). If TMUX_TPREIRDI SEL = 1, then the RDI-P v alue f or insertion is tak en from the value on
the protection board rather than from the receive side of the same TMUX.
17.6.9 REI-P: G1(7:4) Insert
Four bits of the G1 byte G1(7:4) are al l ocated for use as path remote error indication (REI). For STS-1 signals and
for STM-1 signals , these bits convey the coun t (in the range of 0 to 8) of interleaved bit blocks that have been
detected in error by th e BI P-8 ( B3) dete ctor on the received signal.
The automatic insertion of path REI can be inhibited on an STS-1 basis by programming the corresponding register
bits TMUX_TPREIIN S[1:3] (Table 115) to 1. For STM-1 mode, o nly TMUX_ TPREIINS[1] is relevant. If the register
bit(s) TMU X_TPREIINS[1:3] are programmed to 1, then one e rror is inserted into the G1 byte for that particular
STS-1(s) each time the microproces s or interface block SMPR_BE R _I NSRT (Table 65 on page66 ) bit is asserted.
The TM UX provi des a protection swit ch MUX for REI-P inse rtio n. Th e MU X is controlled b y TMU X_TPREI RDIS EL
(Table 107 on page 103 ). If TMUX_TPREIRDISEL = 1, then the REI- P value f or insertion is taken from the value on
the protection board rather than from the receive side of the same TMUX.
G1 Triggers
Bit 3Bit 2Bit 1
0 0 0 No defects (nonenhance d RDI-P mode).
0 0 1 No defects (enhanced RDI-P mode).
0 1 0 LCD-P, PLM-P (LCD-P not supported in Super Mapper).
0 1 1 No defects (nonenhance d RDI-P mode).
1 0 0 AIS-P, LOP -P (nonenhanc ed RDI-P mode).
1 0 1 AIS-P, LOP-P (enhanced RDI-P mode).
1 1 0 T IM-P, UNEQ-P (enhanced RDI-P mode).
1 1 1 AIS-P, LOP -P (nonenhanc ed RDI-P mode).
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
391Agere Systems Inc.
17 TMUX Functional Description (continued)
17.6.10 F2 B yte Insert
When TMUX_THSF2INS = 1 (Table 108 on p age 105), the v alue in TMUX_TF2INS[13][7:0] (Table 114 on
page 110) is inserted into the outgoing signal. Otherwise, the as s ociated PO AC value is inserted when
TMUX_TPOAC_F2 = 1 (Table 118 on page115 ). If b oth TMUX_THSF2INS and TMUX_TPOAC_F2 = 0, then the
value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67 on pag e68)
bit. If SMPR_OH_DEFLT = 0, then all 0s are inserted. If SMPR_OH _DEFLT = 1, then all ones are inserted.
17.6.11 H4 Insert Control
A 4-byte sequence (0, 1, 2, and 3) will be inserted into the out goi ng H4 by tes. Note that the assertion of pi n TLSV1
(pin AB3) occurs afte r the J1 byte(s) during the frame where the H4 count equals one.
17.6.12 F3 B yte Insert
When TMUX_THSF3INS = 1 (Table 108), the value in TMUX_TF 3INS[ 13][7:0 ] (Table 114 on page110 ) is
inserted in to the outgoing signal. Otherwise, the associated POAC value is inserted when T MUX _TPOAC_F3 = 1
(Table 118 on page 115). If both TM UX_THSF3INS and TMUX_TPOAC_F3 = 0, then the value inserted depends
on the value of mi croprocessor interface block SMPR_OH_DEFLT (Table 67 on page68 ) bit. If SMP R _ O H_ DE F LT
= 0, then all 0s are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted.
17.6.13 K3 Byte Insert
When TMUX_THSK3INS = 1 (Table 108 on page105 ), the value in TMUX_TK3INS[13][7:0] (Table 114) is
inserted in to the outgoing signal. Otherwise, the associated POAC value is inserted when T MUX _TPOAC_K3 = 1
(Table 118 on page 115). If both TMUX_T HSK3INS and TM UX_TPOAC_K3 = 0, then the value inserted depends
on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67) bit. If S MPR_OH_DEFLT = 0, then all
0s are inserted. If SMPR_O H_DEFLT = 1, then all ones are inserted.
17.6.14 N1 Byte Insert
When TMUX_THSN1INS = 1 (Table 108 on page 105), the value in TMUX_ TN1INS[13][7:0] (Table 114 on
page 110) is inserted into the outgoing signal. Otherwise, t he associated POAC value is inserte d when
TMUX_TPOAC_N1 = 1 (Table 118). If both TMUX_THSN1INS and TMUX_TPOAC_N1 = 0, then the v alue inserted
depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67 on page68 ) bit. If
SMPR_OH_DEFLT = 0, then all 0s are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted.
17.6.15 MSP 1 + 1 Payload Switch
For the working transmit high-speed data output (THSDP/N, pins AF9/AE9), it is possibl e to sele ct the norm al
transmit path low-speed data by setting TMUX_ TPSMUXSEL2 = 0 (Table 106 on p age 103) or the receive-si de
protecti on input data by sett ing TMUX_TPSMUXSEL2 = 1. Note that if the receiv e-side protect ion inpu t is selected,
then the local clock and frame sync are generated based on the receive-sid e pr otection inputs as well.
To c reate the transmit high-speed protec tion out p uts (TPSD155P/N and TPSC155P/N; pins AF13/AE13 and
AC1 2/AD13), i t is possible to select th e normal tran smit path low-speed input data with TMUX_TPSMUX SEL 3 = 0
(Table 106 on page 103) or the rece ive-side working inputs with TMUX_TPSMUXSEL3 = 1.
Note: Clocks and t im ing signals are select ed by T MUX_TPSMUXSEL3 as well as the parallel data.
17.6.16 Transmit Tr ansp ort Overhead Access Channe l (TTOAC)
The TMUX provides a transmit transport over head access channel (TTOAC) to provision the TOH portion of the
outgoing frame. The TTOAC channel sup ports three modes of operati on based on values in
TMUX_TTO AC_D13MODE and TMUX_TT OAC_D412MODE (Table 117 on page113 ).
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
392 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
The TTOAC channel cons ists of the following signals:
A data signal re ceived by the TMUX in the transmit direction (TTOACDATA, pin AE2). The dat a bytes per fr ame
received depend on t he values of TMUX_TTOAC_D13MODE and TMUX_TTOAC_D412MODE. See Table 533
below.
A clock signal sourced by the T M UX (TTOACCLK, pin AB6). The clock frequency depends on the values of
TMUX_T TOAC_D13MODE and TMUX _TTOAC_D412M ODE. S ee Table 533 below.
An 8 kHz synchronization signal (TTOACSYNC, pin AF3) is s ourced by the TMUX. This sync signal is normally
low; during the last clock period o f each frame, coincident with the least significant bit of the last byte, th e sync
signal is high.
Table 533. Transmit TOAC Modes
Transmit TOACDCC1 through DCC3 M od e. In this mode, DCC bytes 1 to 3 are received serially on the data
pin. The clock rate is 192 kHz. The data bytes are received MSB first, and the sequence of data bytes is DCC1,
DCC2, and DCC3. The data signal is partitioned into frames of 3 bytes. The frame repetition rat e is 8 kHz.
Transmit TOACDCC4 thro ugh DCC12 Mode. In this m ode, DCC by tes 4 to 12 are received serially on the data
output. Th e clock rate is 5 76 kHz. The data bytes are receive d MSB first, and the sequence of data bytes is DCC4,
DCC5, DCC6 , DCC7, DCC8, DCC9, DCC10, DCC11, and DCC12. T he data signal is partitioned into frames of
9 bytes. The frame repetition rate is 8 kHz.
Transmit TOACFul l TOH Access Mode. In t his mode, where TMUX_TTOAC_D13M ODE = 0 and
TMUX_TTOAC_D412MODE = 0 (Table 117 on page113 ), the data signal (TTOACDATA, pin A E2) is partitioned
into frames of 81 bytes. The frame repetition rate is 8 kHz. Each b yte consists of 8 bits that are transmitted/receiv ed
most significant bit first. The MSB of the first byte of each frame contains an odd/even parity bit over the 648 bits of
the previous frame. The remaining 7 bits of this byte are not specified.
Bytes shown in Table 534 summarize the access capabilities of the transmit TOAC. This table describes the possi-
ble bytes in the o utgoing frame that can be provisioned from the values on the TOAC c hannel. There are additional
mode bits described in Table 535 that must be programmed to allow inserti on from the TOAC c hann el. Bytes indi-
cated in b old type below are not specified in the standard, but are available for insertion into the outgoing frame via
the register bit, T MUX_TTOA C_AVAIL (Table 117). An X in Table 534 indicates bytes that are dont care s; the val-
ues of these bytes in the outgoing transmit frame are not related to the values on the TTOAC channel.
Table 534. Transmit Transport Overhead Byte Full Access Mode
TOAC Mode TMU X_ TTOAC_
D13MODE Value TMUX_TTOAC_
D412MODE Value Dat a Bytes per
Frame Cloc k Rate
DCC1DCC3 1 X 3 192 kHz
DCC4DCC12 0 1 9 576 kHz
Full TOH mode 0 0 81 5.184 MHz
OH ParityXXXXXXXX
XB1-2 B1-3 E1 E1-2 E1-3 F1 F1-2 F1-3
D1 D1-2 D1-3 D2 D2-2 D2-3 D3 D3-2 D3-3
XXXXXXXXX
XXXXK1-2K1-3XK2-2K2-3
D4 D4-2 D4-3 D5 D5-2 D5-3 D6 D6-2 D6-3
D7 D7-2 D7-3 D8 D8-2 D8-3 D9 D9-2 D9-3
D10 D10-2 D10-3 D11 D11-2 D11-3 D12 D12-2 D12-3
S1 Z1-2 Z1-3 Z2 Z2-2 X E2 E2-2 E2-3
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
393Agere Systems Inc.
17 TMUX Functional Description (continued)
Table 535 summarizes the insertion options for the specified overhead bytes f or TOAC in full TOH access mode.
The TMUX allows a default value (all zeros if m icroprocessor inter face block SMPR_OH_DEFLT = 0 (Table 67 on
page 68), and all ones if SMPR_OH_DEFLT = 1 ) to be inserted on the corresponding TOAC va lue. All control sig-
nals are active-high.
Table 535. TTO AC Contr ol Bits in F ull Access Mode
An event indication must be provided to indicate parity errors for the TOAC channe l. O dd or even pari ty is checked
depending on TMUX_TTOA C_OEPMON (Table 117 on page 113); 0 selects odd parity and 1 selects even parity. A
par ity error is reported in s t atu s register bit TMUX _TTOAC_PE (Table 80 on pag e78), and the interrupt is
maskable with TMU X_T TOAC_PM (Table 84 on page87 ).
17.6.17 Sync Status Byte (S1) I nsert
When TMUX_THSS1INS = 1 (Table 107 on page 103), the v alue in TMUX_TS1INS[7:0] (Table 112 on page 110) is
inserted in to the S 1 byte of the outgoing signal; otherwise, the as sociated TOAC value is in serted when
TMUX_TTOAC_S1 = 1 (Table 117 on pag e113). If both TMUX_T HSS1INS and TM UX_TTOAC_S1 are a logic 0,
then the value inserted depends on the value of the mi croprocessor interface block SMPR_OH_DEFLT (Table 67
on page68 ) bit. If S M PR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are
inserted.
17.6.18 REI-L: M1 Inser t
For S TS- 3/ ST M-1 modes, the M1 by t e is all oc ated for use as a line remote error indication (R EI). For STS-1, bits 0
to 3 of the M0 byte are u sed . The M0 or M1 bytes co nvey the count of interleaved bi t bl ocks that have been
detected in error by the line BIP-8 (B2) detec tor on the received signal.
This function can be inhibited by asserting TMUX_THSLR EIINH (Table 107 on page103 ). A bit error in the M 0/M 1
byte can be inserted under user con tr ol. When TMUX_TLREIINS (Table 115 on page112) is asserted the c orre-
sponding M0 o r M1 byte will indic at e one error each time the mic roprocessor interface bl ock SMPR _BER_INSRT
(Table 65) bi t is asserted.
T he TMUX provides a p rote ction switch MUX for REI- L insertion , c ontr oll ed by TMUX_TLREIRDISEL ( Table 107).
If TMUX_TLREIRDISEL = 1, then the REI-L value for insertion is taken from the value on the protection board
rather than from the receive side o f the same TMUX.
17.6.19 APS Value an d K2 Insert Co ntrol Parameters
Whe n TMU X_ T H SAPSINS = 1 (Table 107), the K1 byte and the fiv e m ost significant bi ts of the K2 by te are written
from TMUX_TAPSINS[12:0] (Table 113). When TMUX_THSA PSINS = 0, ei ther all 0s or all ones will be written,
depending on the val ue of microprocessor interface block SMPR_OH_DEFLT (Table 67) bit.
Overhead Bytes Register Control Bits Value of the Register Control Bits
0 (Default Value) 1
E1 TMUX_TTOAC_E1 (Table 117)SMPR_OH_DEFLT
(00000000 or 11111111) TOAC Da ta
F1 TMUX_TTOAC_F1 (Table 117)
D1D3 TMUX_ TTOAC_D1TO3 (Table 117)
D4D12 TMUX_TTOAC_ D4TO12 (Table 117)
S1 TMUX_TTOAC_S1 (Table 117)
E2 TMUX_TTOAC_E2 (Table 117)
All remaining bytes
in Table 534 TMUX_TTOAC_AVAIL (Table 117)
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
394 Agere Sy stem s Inc.
17 TMUX Functional Description (continued)
An APS babbling test is con t rol led with T M U X_TAPSBABINS (Table 116 on page113 ). Se tting
TMUX_TAPSBABINS = 1 forces the K1[7:0], K2[7:3) to an in consistent state; no three consecutive values are con-
tinuously the same.
When the transmit K2 software insert bit TMUX_THSK2INS = 1 (Tab l e 107 on page103 ), data from bits
TMUX_TK2I NS[2:0] (Tab l e 113 on page110 ) is written into the K2[2:0] output bits. When TMUX_THSK2INS = 0,
hardware insertion of RDI-L is enabled.
17.6.20 Criteria for Insert Line RDI
Hardware inser tion of l ine RDI is generated using the following equation. Each de fect contri bution to line RDI can
be individually inhibited.
(TMUX_RILOC AND TMUX_TRILOC_LRDIINH) OR
(TMUX_RHSLOS AND TMUX_T RLOS_LRD IINH) O R
(TMUX_RHSLOF AND TMUX_TRLOF_LRDIINH) OR
(TMUX_RHSOOF AND TMUX_TR O OF_LRDIINH) OR
(TMUX_RLAISMON AND T MU X_TRLA I SMON_ LRDIINH) OR
(TMUX_RHSSF AND TMUX_TRS F_LRDIINH) OR
(TMUX_RHSSD AND TMUX_TRSD_LRDIINH)
When a failure condition exists that will cause RDI-L to be generated, the generation of RDI-L mu st last for at least
20 frames before clearing, even if the orig inal failure caus e has cleared in less than 20 frames.
The TMUX provides a protection switch MUX for RDI-L insertio n. The MUX is controlled by TMUX_TLREIRDISEL
(Table 107). If TMUX _TLREIRDISEL = 1, then the RDI-L value for insertion i s taken from the value on the protec-
tion board rather than from the receive side of the same TM UX.
17.6.21 Line AIS Generation
Line AIS is sp ec ifi ed as all ones in the entir e STS/STM signal befor e scrambling, excluding t he s ection overhead.
Line AIS can be g enera ted by setting TMUX_ T HSLAISINS = 1 (Table 107).
17.6.22 B2 BIP-8 Calculation and Insert
The B2 byte is allocated for a line overhead er ror monitoring function. This function will be a bit interleav ed parity-8
code (BIP-8 ) us ing even pa rity. The BI P -8 is computed before scra mbling, over al l the bits of the previous STS-1
frame (except for the 9 bytes of s ec ti on overhead) and is placed in byte B2 of the current frame also before scram-
bling.
A bit error rate can be inserted on any B2 byte. When bit(s) TMUX_THSB2ERRINS[13] (Table 115 on page112 )
is (ar e) as ser ted, the corresponding B2 by te is inverted each time th e mi c roprocesso r interface block
SMPR _ BER_ I NSR T (Table 65 on page66 ) bit is asserted.
17.6.23 F1 B yte Insert
When TMUX_THSF1INS = 1 (Table 107 on page 103), the v alue in TMUX_TF1INS[7:0] ( Table 112 on page 110) is
inserted into the F1 byte of the outgoing signal. Otherwise , the ass ociated TOAC value is inserted when
TMUX_TTOAC_F1 = 1 (Table 117 on page113 ). If b oth TMUX _THSF1INS and TMUX_T TOAC_F1 = 0, then the
value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67 on page 68)
bit. If S MPR_OH_ DEFLT = 0 , th en al l 0s are inserted. If SMP R_O H_DEFLT = 1, then all ones are inserted.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
395Agere Systems Inc.
17 TMUX Functional Description (continued)
17.6.24 B1 Generate and Error Ins e rt
The sec ti on bit interleaved parity c ode (BIP-8) byte (even parity) is used to check for transmis si on errors over a
section. Its value is cal culated over all bits in the previous frame a fter scrambling and placed in the B1 byte of time
slot 1 before scr amblin g.
A bit error rat e ca n be inserted on th e B1 byte. When TMUX _THSB1ERRI NS = 1 (Table 115 on pag e 112), the B1
by te is inverte d each time the m icroproc es s or interface block SMP R_BER_INSRT (Table 65 on page66 ) bit is
asserted.
17.6.25 Scrambler
The outgoing frame wil l be scrambled with t he fram e synchronous scrambler of length 127 and generating polyno-
mial x7 + x6 + 1. The entire STS/ST M sign al will be scrambled except for the first row of overhead. The scrambler
will be set to 1111111 on the first byte following the last overhead byte in the first row.
For test pu rposes, the scrambler will be disabled whe n TMUX_TH SSCR = 0 (Table 106 o n page 103).
17.6.26 J0 Insert Control
A 16-byte sequence stored in TMUX_TJ0DINS[116][7:0] (Table 133 on page121 ) will be inserted into the outgo-
ing J0 byte if TMUX_THSJ0INS = 1 (Table 107 on pag e103). If TMUX_THSJ0INS = 0, then the value inserted
depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 67) bit. If SMPR_OH_DEFLT =
0, t hen all 0s are inserted. If SMPR_OH_ DEFLT = 1, then all ones are inse rted.
17.6.27 Z0-2, Z0 -3 Insert Control
The 2 bytes, Z0-2 and Z0-3, that follow J0 are not scrambled. If TMUX_THSZ0INS = 1 (Table 107), then the values
stored in TMUX_TZ02INS[7:0] (Table 111 on pag e110) and TMUX_TZ03 INS[7:0] (Table 111) will be inserted. If
TMUX_THSZ0INS = 0, then the value inserted depends on the value of microprocessor interface block
SMPR_OH_DEFLT bit. If SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all
ones are inserted.
17.6.28 A2 Error Insert
The TMUX allows, under s oftware control, from 1 to 32 cont inuo u s frames to have an inv erted A2-1 (0x28 to 0xD7)
pattern in the outgoing frame. The value in TMUX_TA2ERRINS[4:0] (Table 106) specifies t he number of frames to
insert errors into whil e assertion of microprocessor interface b lock, SMPR_BER_INSRT bit, starts the error inser-
tion process.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
396 Agere Sy stem s Inc.
18 SPE Mapper Functional Description
Ta ble of Conte nts
Contents Page
18 SPE Map per Functional Description ................ ... ......................... . ......................... . ........................................ 396
18.1 In troduction ............................................................................................................................................. 398
18.2 Features ................................................................................................................................................. 398
18.3 SPE Mapper Functional Block Diagrams ........................ ......... .............. . ................................ . .............. 399
18.4 TUG-2 to AU-3 /STS-1 SPE Mapping (Used in North American Systems) ............................................. 402
18.5 TUG - 2 to TUG-3 Mapping (Used in ITU/ETSI S tandard Based Systems ) .............................. .......... ... .. 40 2
18.6 DS3 t o AU-3/STS-1 SPE Mapping (Used in
Telcordia
/
ANSI
Standards Based Systems) ..................... 403
18.7 DS3 t o TUG-3 Mapping (Used in ITU/E TS I Standard Based Systems) .................................. .......... ... .. 40 3
18.8 SPE Mapper Basic Configuration ........................................ .......... ... ...................................................... 403
18.9 DS3 C onfiguration .................................................................................................................................. 403
18.9.1 DS3 M13 ...................................................................................................................................... 404
18.9.2 D S3 Loopback Channel .................................................. ....... ....... ....... ........................................ 404
18.9.3 DS3 Clear Channel from External Pins ........................................................................................ 404
18.10 Phase Detector for External DS3 PL L .................................................................................................. 404
18.11 Serial STS-1 SPE Channel (NSMI) ... ......................... ....... .................................... ... ............................ 405
18.12 TMUX Interface to the SPE Mapper ...... ... ......................... .......... ... ......................... ....... ...................... 406
18.13 PATH Termination Block ...................................................................................................................... 406
18.13.1 Pointer Inte rpretation Block ....................................................................................................... 407
18.14 SP E Mapper Receive Direction Requirement s .................. ..... .............. ..... ... ........................................ 410
18.14.1 Loss of Clock and Loss of Sync Monitors . .................. . ............. ..... ...................... .................. ... 411
18.14.2 J1 Monitor .................................................................................................................................. 411
18.14.3 B3 BIP-8 Check ......................................................................................................................... 412
18.14.4 Signal Label C2 Byte Monitor ............. .......... ....... ....... ....... ....... ....... .......... ....... ....... ....... ........... 412
18.14.5 Path User Byte F2 Monitor ........................................................................................................ 413
18.14.6 Path User Byte F3 Monitor ........................................................................................................ 414
18.14.7 N1 Monitor ................................................................................................................................. 414
18.14.8 K3 Byte Monitor ......................................................................................................................... 415
18.14.9 AIS-P and RDI-P Det ec t .................... ..................... ..... . .................. .......................... ................. 415
18.14.10 REI-P Detect ........................................................................................................................... 416
18.14.11 S ignal Degrade B ER Algorithm .......................... ... ......................... . ......................... ..... .......... 416
18.14.12 Signal Fail BER Algorithm ..................... ............ ............................ ..... ..... ................ ................ 417
18.14.13 POAC Dro p ............................................................................................................................. 418
18.14.14 Insertion of AIS-P .................................................................................................................... 419
18.15 Transmit Direction (to SONET/SDH Line) ............................................................................................ 420
18.15.1 PATH Insertion Block ................................................................................................................ 420
18.15.2 Loss o f Clock and Loss of Sync Detectors .................. . .................. ..................... . .................. ... 421
18.15.3 J1 Byte Insert ............................................................................................................................ 421
18.15.4 B3 BIP-8 Calculation and Insert ................................................................................................ 421
18.15.5 C2 S ignal Label Byte Insert ............................. ....... ..... ....... ....... . ................................ . .............. 421
18.15.6 REI-P G1(7:4 ) Insert .................................................................................................................. 421
18.15.7 Path RDI (RDI-P) Insert ............................................................................................................. 422
18.15.8 F2 Byte Insert ............................................................................................................................ 422
18.15.9 H4 Insert Control ....................................................................................................................... 422
18.15.10 F3 Byte Insert .......................................................................................................................... 422
18.15.11 K3 Insert Control Parameters .................................................................................................. 422
18.15.12 N1 Insert Control Parameters .................................................................................................. 423
18.16 POAC Insert ......................................................................................................................................... 423
18.17 AIS Path Generation ............................................................................................................................. 424
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
397Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Table o f Conten ts (continued)
Figures Page
Figure 30. S PE Mapper Block with Connections to External Pins and Other Blocks in the Device ..................... 399
Figure 31. Basic Functional Flow of the SPE Mapper Transmit Section................................................. ......... .... 400
Figure 32. Basic Functional Flow of the SPE Mapper Recei ve Section...................... ............. . ................ ........... 401
Fig ure 33. STS-1 NSMI Receive Operation ......................................................................................................... 405
Fig ure 34. STS-1 NSMI Transmit Operation ........................................................................................................ 406
Figure 35. Receive Direction Path Terminatio n Block.......................................................................................... 407
Fig ure 36. Pointer Interpretation State Dia gram................................................................................................... 408
Fig ure 37. Transm it Directio n Path Insertion Block.............................................................................................. 420
Tables Page
Table 536. J1 Monitor ..........................................................................................................................................412
Table 537. STS Signal Label Defect Conditions ................ .......... ......... ..... .......................... ............................... 412
Table 5 38. C2MON Processing ........................................................................................................................... 413
Table 539. F2 Monitor ......................................................................................................................................... 414
Table 540. F3 Monitor ......................................................................................................................................... 414
Table 5 41. N1 Monitor ......................................................................................................................................... 414
Table 542. K3 Monitor ......................................................................................................................................... 415
Table 5 43. AIS-P a nd RDI-P D etect .................................................................................................................... 415
Table 544. STS - 1 P-REI Interpretation ................................................................................................................416
Table 5 45. Signa l Degrade Parameters ........................ .................. . ......................... ..... ... .................................. 417
Table 546. Signal Fail Parameters ...................................................................................................................... 418
Table 547. P ath Overhead Byte Access .............................. ................... ....... ............ .............. ............................ 419
Table 548. RDI-P Defects fo r Enhanced RDI-P M ode .. ................................ ................. .............. .......................422
Table 549. P ath Overhead Byte AccessTransmit Direction ............................................................................. 423
Table 550. TPOAC Control Bits .......................................................................................................................... 424
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
398 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
18.1 Introductio n
This section d e scribes the fu n ctions of the SPE mapper block .
The SPE mapper is highly configurable; it can operate in two different modes, as an AU-3/S TS-1 mapper or as a
TUG-3 mappe r. In both mo des, it can map/demap da ta from/to either the VT mapper b lo ck , the M13 MUX/deMUX
block, the DS3 c lear channel, or t he D S3 loopback channel.
The SPE mapper supports numerous autom ati c monitor ing functions. It ca n provide interrupts to the control sy s-
tem, or it c an be operated in a polled mode.
Additionally, this block has a built-in auxiliary channel known as the path overhead acc ess channel (POAC). This
channel is mainly used for path overhead insertion and drop functions.
18.2 Features
The SPE mapper accepts/delivers T UG-2 data from/to the VT mapper. The TUG-2 data is mapped/demapped
either t o/from an AU-3/STS-1 si gnal fo r t he North Am erican digit al systems or to/from a TUG-3 signal for the
European digital systems.
Flexibility down to TUG-2 level is provided for choosing which TUG-2s (betwee n 1 and 7) are mapped into which
TUG-3s (between 1 and 3) f or generating STM-1 signals. Similarly, any TUG-2s (up to 7) may be dropped/termi-
nated from the 21 TU G-2s of an STM-1 signal.
The SPE ma pper a ccep ts/ de liv ers DS3 data fr om/t o the M13 MUX/d eMUX. Th e DS3 dat a is mapped/demapped
either t o/from an AU-3/STS-1 si gnal fo r t he North Am erican digit al systems or to/from a TUG-3 signal for the
European digital systems.
The SPE mapper accepts/delivers a clear DS3 signal at 44. 736 Mbits/s rate. T he clear DS3 signal is m apped/
demapped essentially the same way as M13 si gnal d e scribed above.
The SPE mapper has a DS3 loopback circuit placed f or the functions of demapping and remapping a DS3 signal.
It is particularly usef ul in cases where a DS3 signal mapped as an AU-3/ STS-1 si gnal is needed to b e remapped
as a TUG-3 signal or vice versa.
The SPE mapper supports a path overhead access channel mo re commonly known as the P O AC channel.
Seven path overhead bytes namely J1, C2, F2, H4, F3, K3, an d N 1 may be inserted /dropped through this chan-
nel. This channel works as the master which means that this channel provides a clock in both transmit and
receive directions and POH data may be inserted by the user on the tran smit side or dropped by the block in the
receive side.
Path overhead byte B3 (BIP error) generation/detection and programmable BIP-2 bit error rate insertion.
Programmable clear on read/clear on write registers.
Sign al fail and signal degrade indicators available to report bit error rates above a certain programmable thresh-
old.
Capable of detecting /inserting alarm indication si gnals (AIS), remote defect indica tion signals (RDI) and remote
error indication signals (RE I ).
Numerous monitoring functions provided on a ll the TUG-3 path overhead bytes.
Supports uni directional path switch ring (UPS R ) applications.
N1 tandem connection support is provided.
Complies with GR-2 53-CO RE, T1.1 05, ITU-T G.707, ITU-T G.8 3 1 , G.783, E TS 300 417 - 1- 1.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
399Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.3 SPE M app er Fu nc tiona l Block Diagrams
5-9065(F)
Figure 30. SPE Mapper Block with Connections to External Pins and Other Blocks in the Device
VT
MICRO INTERFACE
SPE
MAPPER
DS3DATAINCLK
DS3DATAOUTCLK
DS3NEGDATAIN
PHASEDETUP
PHASEDETDOWN
DS3NEGDATAOUT
AUTO_AIS,
TPOAC
DS3POSDATAOUT
DS3POSDATAIN
REI DS3
AUTO_AIS
DATA, CLK, SYNC
TRANSMIT
RECEIVE
TELECOM
BUS
CLK, DATA
RPOAC
TRANSMIT
RECEIVE
CLK, DATA
TRANSMIT RECEIVE
TRANSMIT
PATH OVERHEAD
INSERT
POAC CHANNEL
TELECOM
BUS
RDI, REI
MAPPER
TRANSMIT
SECTION
VT
MAPPER
RECEIVE
SECTION
M13
MAPPER
TRANSMIT
SECTION
M13
MAPPER
RECEIVE
SECTION
DS3
CLEAR INPUT
TRANSMIT
PINS
DS3
CLEAR INPUT
RECEIVE
PINS
RECEIVE
PATH OVERHEAD
EXTRACT
POAC CHANNEL
TMUX
RECEIVE
SECTION
TMUX
TRANSMIT
SECTION
DATA, CLK, SYNC
DATA, CLK,
CONTROL
DATA, CLK,
CONTROL
LOOPBACKRDI
TRANSMIT
SECTION
SPE
MAPPER
RECEIVE
SECTION
MISC SIGNALS
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
400 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
5-9066(F)
Figure 31. Basic Functional Flow of the SPE Mapper Transmit Section
TELECOM BUS DATA[7:0], CLOCK, PARITY, SYNC (19.44 MHz OR 6.48 MHz)
TO/FROM TMUX TRANSMIT SIDE
DS3 _EXT_CLK
DS3 POS_DATA
51.84 MHz CLOCK FROM TMUX
51.84 MHz CLOCK, CONTROL FROM TMUX
B3ZS
M13
DS3 DATA
DS3 CLK
DS3 CLK_EN
DS3 INPUT CONTROL &
VT/TU
FIFO
DS3
TUG-2
PATH
TUG-2_DATA
SYNC_V1
CLK_6MHz
MUX
TUG-3 MAPPER
AU-3 MAPPER
MUX
TUG-3 OR AU-3
MUX
MICRO-
C-3
TUG-2
MUX
LOOPBACK_CLK
LOOPBACK_DATA
TX_POACDATA
TX_POACSYNC
TX_POACINH
TX_POACCLKO
PATH OVERHEAD
LOOPBACK_CLK_EN
DS3 NEG_DATA
STS3_TIMESLOT
AU3_TUG3
VT_DS3
AU3_TUG3
AU3_TUG3
AU3_TUG3
VT_DS3
VT_DS3
VT_DS3
TDS3_BIPOLAR
DS3_SRC_TYPE
DS3_SRC_TYPE
VT_DS3
VT_DS3
VT_DS3
84 x 9 bytes
84 x 9 bytes
84 x 9
85 x 9 b ytes
87 x 9 bytes
87 x 9 bytes 87 x 9 bytes
TU11_TU12
TUG2_NO[2:0]
TUG3_NO[1:0] AU3_TUG3
VT_DS3
MPUCLKDS3CLK
TELECOM BUS
OUTPU T (87 x 9 bytes)
CONTROL CIRCUITRY
ADD 1 COLUMN
OF FIXED STUFFING &
TU-3 PTR BYTES
ADD 2 COLUMNS
OF FIXED STUFFING
OVERHEAD
INSERTION
INSERT
POAC CHANNEL
MAPPERMAPPER
DECODE
SERIAL-TO-PARALLEL
CONVERSION INPUT
CONTROL
MAPPED AS
CONTAINER C-3
INTERFACE
CLOCK
bytes
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
401Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
5-9067(F)r.1
Figure 32. Basic Functional Flow of the SPE Mapper Receive Section
TELECOM BUS DATA[7:0], CLOCK, PARITY, SYNC (19.44 MHz OR 6.48 MHz)
FROM TMUX RECEIVE SIDE
DS3 _EXT_CLK
DS3 POS_DATA
51.84 MHz CL OCK, CONTROL FROM TMUX
AUTO AIS SI GNAL FROM TMUX
B3ZS
M13
DS3 DATA
DS3 CLK
DS3 CLK_EN
DS3 OUTPUT CONTROL &
VT/TU
FIFO
C-3
TUG-2
PATH
TUG-2_DATA
SYNC_V1
CLK_6MHz
TUG-3 DEMAPPER
AU -3 DEM A PP ER
TUG -3 OR AU-3
MICRO
C-3
TUG-2
RX_POACSYNCO
RX_POACCINH
RX_POACSINH
RX_POACDATAO
PATH OVERHEAD
DS3 NEG_DATA
STS3_TIMESLOT
VT_DS3
AU3_TUG3
AU3_TUG3
AU3_TUG3
VT_DS3
VT_DS3
VT_DS3
DS3CLK
VT_DS3
VT_DS3
VT_DS3
84 x 9 b ytes
84 x 9
85 x 9 bytes
87 x 9 bytes 87 x 9 bytes
TU11_TU12
TUG2_NO[2:0]
TUG3_NO[1:0] AU3_TUG3
VT_DS3
TELECOM BUS
INPUT (87 x 9 BYTES)
CONTROL CIRCUIT RY
REMOVE 1 COLUMN
OF FIXED STUFFING &
TU-3 PTR BYTES
REMOVE 2 COLUMNS
OF FIX ED STUFFING
OVERHEAD
EXTRACTION/
EXTRACT
POA C CHANNEL
DEMAPPER
DEMAPPER
ENCODER
PARALLEL-TO-SERIAL
CONVERSION OUTPUT
CONTROL
DE MAPPED AS
AS DS3
INTERFACE
CLOCK
bytes
DS3
TERMINATION
POINTER
INTERPRETER
MUX
85 x 9 bytes
VT_DS3
RX_POACCLKO
RX_POACDINH
85 x 9 bytes
VC-3
DS3_OUT_TYPE
DS3_BIPOLAR
PHASE_DET_UP
PHASE_DET_DOWN
DS3 _LOOPBACK_DATA
DS3 _LOOPBA CK_CLK
LOOPBACK_CLK_EN
TUG3MPR_DS3_AIS
MPUCLK
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
402 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
The SPE mapper basically interfaces to three other blo cks within the Super Mapper device:
The VT mapper.
The M13 MUX/deMUX.
The TMUX.
The interf ace between the SPE mapper and the VT mapper consists of clock, p arallel data, sync, and control type
interfaces and is compl etely intern al to the Super Mapper device.
The interface be tween th e SP E mapper and t he M13 MUX/deMUX c onsists of a serial clock, serial data, and clock
enable type interface and is also completely intern al to the Super Mapper device.
The interf ace between the SPE mapper and the T MUX consists of the telecom b us and every signal that flows
between these two blocks is also brought in/out through external device pins connected to the telec om bus.
As ou tli ned i n the f eatu res , the SPE mapper can map/demap s even TUG-2 or a DS3 to/from AU3/STS-1 or TUG-3.
Each TUG-2 assembled/disassembled by the VT mapper consist of three TU-12 (E1) or four TU-11 (DS1) virtual
tributaries.
The following is a brief de scription of the supported standards based mappings . For greater details, please refer to
the appropriate standard.
18.4 TUG-2 to AU-3/STS-1 SPE Mapping (Used in North American Systems)
A TUG-2 payload capacity, which is 9 rows by 12 columns or 108 bytes, may contain four TU-11s or three TU-12s
byt e interleav ingly multiple x ed.
The 27-byte capacity of a TU-11 is equivalent to thre e-column cap acity in an S TS-1 frame of 125 µs. Four TU-11s
are by te interleavingly multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven
TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a VC-3. The VC-3 has a struc ture
of 9 rows by 85 c olumns: one column is VC-3 path overhead and the other 84 columns are seven TUG-2s evenly
distributed within the payload. Two columns of fixed stuffing ar e then added to the payload to build the complete
STS-1 SPE frame of 9 rows by 87 columns.
The 36-byte capacity of a TU-1 2 i s equivalent to four-column capacity i n a n S TS-1 frame of 125 µs. T h ree TU-12s
are by te interleavingly multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven
TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a VC-3. The VC-3 has a struc ture
of 9 rows by 85 c olumns: one column is VC-3 path overhead and the other 84 columns are seven TUG-2s evenly
distributed within the payload. Two columns of fixed stuffing ar e then added to the payload to build the complete
STS-1 SPE frame of nine rows by 87 columns.
18.5 TUG-2 to TU G-3 M apping (U sed in ITU/ETSI Sta ndard Based Systems)
A TUG-2 payload capacity, which is nine rows by 12 columns or 108 bytes, may contain four TU-11s or three
TU-12s byte interleavingly multiplexed.
The 27-by te capacity of a TU-11 is equivalent to three-column capacity in a n STM-1 frame of 125 µs. Four TU-11s
are by te interleavingly multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven
TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a TUG- 3. The TUG-3 has a struc-
ture of nine rows by 86 columns: one column of NPI (null pointer indication) plus fixed stuff ing byte s, one column of
fixed stuffing and the other 84 columns are seven TUG-2s evenly distributed within the TUG-3 payl oad.
The 36-byte capacity of a TU -12 is equivalent to four-column capacity in an STM-1 frame of 125 µs. Three TU-1 2s
are byte interleaving multiplexed into a TUG-2 p ayload capacity which has a capacity of 12 columns. Seven
TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a TUG-3.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
403Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
The TUG-3 has a st ruct ure of 9 rows by 86 columns: one column of null pointer indication (NPI) plus fixed stuffing
by tes, one column o f fixed stuffing, and the other 84 columns a r e seven TUG-2s evenly distrib uted within the
TUG-3 payload.
18.6 DS3 to AU-3/STS-1 SPE Mapping (Used in
Telcordia
/
ANSI
Standards Based Systems)
DS3 is an asynchronous signal w ith a rat e of 44.736 Mbits/s. This pa yload with other information bits (total
3.648 Mbits/s) is used to form the cont ainer C-3 (48.384 Mbits/s) which occupies 84 columns of an STS-1 frame.
One colum n of path overhead byt es is added to the C-3 container to make a VC-3. Finally, two columns of fixed
stuffing (column numbers 30 and 59) are added to VC-3 to form an STS-1 SPE (87 columns).
Stuffing (S bits) is used to rate adapt the DS3 payload to the SPE. Nine stuffing S bits are included in t h e C-3 con-
tainer. When no stuffing is used, the STS-1 SPE can accommodate a rate of 44.712 Mbits/s. When all nine stuffing
S bits are use d, the STS-1 SPE can accommodate 44.7 84 Mbits/s. Since the DS3 coming from the M13 has a
nominal rate of 44.736 Mbits/s, stuffing is used f or every third row of an STS-1 frame; or in other words, three S bits
per 125 µs are used for stuffing to achieve the DS3 rate.
18.7 DS3 to TUG -3 Mapping (Used in ITU/ETS I S tandard Based Systems)
DS3 is an asynchronous signal w ith a rat e of 44.736 Mbits/s. This pa yload with other information bits (total
3.648 Mbits/s) is used to form the cont ainer C-3 (48.384 Mbits/s) which occupies 84 columns of an STM-1 frame .
One column of path overhead byt es are added to the C-3 container to make a VC- 3 (85 columns). Now a TUG-3
signal consists of 8 6 col umn s by 9 rows, therefore 3 by tes of TU-3 pointer (H1, H2, and H3 b y t es) are placed on
rows 1 through 3 of the newly added column and fixed s tuffing bits ar e placed on the rem a i ni ng rows. Thus, a
TUG-3 frame of 9 row s by 86 columns is formed. Three TUG-3s are byt e i nterleavingl y multiplexed by the TMU X to
form a n STM-1 signal.
Stuffing (S bits) is used to rate adapt the DS3 pa yload to the TUG-3. Nine stuffin g Sbits are incl uded in the C-3
container. When no stuffing is used, the TUG-3 p ayload can accommodate a rate of 4 4.712 Mbits/s. When all nine
stuffing S bit s are used, the TUG-3 payload can accommodate 44.7 84 Mbits/s . Since the DS3 coming fr om the
M13 has a nominal rate of 44.736 Mbits/s, stuffing is used for every t hird row of a T UG-3 frame; or in other words,
three S bits per 125 µs are used for stuffing to achieve the DS3 rate.
18.8 SP E M app er B asic C onfi gur ation
SPE mapper c onfiguration progr amming is provided through r eg i st e rs SPE_MAP_CTL1SPE_ M AP_CTL3
(Table 153 on page 140).
When mapping to a STS-3/STM-1 rate, the SPE mapper requires configuration to select one of the three time slots
on the telecom bus that inter f aces the TMUX. The register bits for selection are SPE_TSTS3TMSL OT[1:0] and
SPE_RST S3TM SL OT[1:0] (Table 153).
Selection of AU-3/S TS-1 or TUG-3 mapping is provided through bits SPE_T_AU3_TUG3 and SPE_R_ AU3_TUG3
(Table 153).
TUG-2 (virtua l tributary) or DS3 dat a is selected with b its, SPE_T_AU3_TUG3 and SPE_R_ AU3_TU G3.
18.9 DS3 Con figura tion
The SPE mapper is configured to select the source and destination of the DS3 signals. The configuration is deter-
mined with register bits, SPE_ TDS3S RCTYP[1:0] and SPE_RDS3OUTTYP[1:0] (Table 153). DS3 source/destina-
tion may be selected as loopback, external device pins, or M13.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
404 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
18.9.1 DS3 M13
The SPE mapper is conf igured to/from the M13 MUX/deMUX as the source/destination of data by setting b its,
SPE_TDS 3SR CTYP [1:0] = SPE_RDS 3OUT TYP [1:0] = 00 or 01.
18.9.2 DS3 Loopback Channel
The DS3 loopb ack circuit is pla ce d in the SPE mapper to allow demapping a nd remapping of a DS3 sign al.
When SPE_TDS3SRCTYP[1:0] = SPE_RDS3OUTTYP[1:0] = 10, the SPE mapper extracts the asynchronous DS3
data and clock from the recei ved payload. T he recovered DS3 is looped back to the transmit path and either
mapped as AU-3/STS-1 SPE signal for the No rt h American digit al systems or mapped as TU G-3 for the Eur opean
digital systems. It is particularly useful in cases where a DS3 signal m apped as an AU-3/STS-1 signal is needed to
be remapped as a T UG-3 signal or vice versa.
18.9.3 DS3 Clear Chan nel from Exte rnal P ins
The SPE mapper is configured for a DS3 signal at 44.736 MHz rate from external device pins by setting
SPE_TDS3SRCTYP[1:0] = SPE_ RDS3OUT TYP[1:0] = 11.
The DS3 data can either be unipolar or bipolar. Unipolar data and clock is selected (device pins DS 3POSDATAIN,
DS3DATAINCLK, DS3POSDATAOUT, and DS3DATAO UTCLK (pins M22, J22, R22, and N22, respect ively)) when
bits SPE_TDS3_BIPOLAR and SPE_RDS3_BIPO LAR = 0 (Table 153). Bipolar data and clock is selected (device
pins DS3POSDATAIN, DS3NEGDATAIN, DS3DATAINCLK, DS3POSDATAOUT, DS3NEGDATAOUT, and
DS3DATAOUTCLK (pins M22, K 22, J22, R22, P22, and N22, respectively)) when bits SPE_TD S3_B IPOL AR and
SPE_RDS3_BIPOLAR = 1.
When bipolar data is selected for the transmit path (SPE_TDS3_BIPOLAR = 1), the data received from the external
pins is expected to be B3ZS encoded. A B3ZS decoder is used to recover the DS3 data prior to being mapped into
a container.
The B3ZS dec oder also checks for bipolar coding violations. Th e SPE mapper contains a counter that increments
on ea ch occu rrence of a receiv ed bi polar cod ing viol atio n (BPV) . It als o monit ors the occurre nce of e xcess iv e z eros
(EXZ ), w hich is def ined as any zero string len gth equal to or greater than three. These are part of the per formance
monitoring counters that can be sampled and simultaneously reset. Their last sampled values are av ailable t hr ough
SPE_BIPOL_CNT[23:0] and SPE_EXZ_CNT[23:0] (Table 160).
When bipolar dat a is sele cted for the receive path (SPE_RDS3_BIPOLAR = 1), the data out from the external pins
will be B3ZS encoded. A single bipolar violation may be inserted in the data when SPE_BIPOL_ERR is asserted
(Table 145).
The clock edge for sampling the tr ans mi t path data (device pin DS3DAT A I NCLK (pin J22)) is sel ected with
SPE_TDS3CLK_ED G E (Table 153).
18.10 Phase Detector for External DS3 PLL
The rece ive sec tion of the SPE mapper has a phase detector circ uit built inside the device. This phase detector cir-
cuit generates the necessary up and down signals (device pins PHASEDETUP and PHASEDETDOWN ( pins V22
and U22, respec tively)) for an external phase-lock loop (PLL) circ uit to generate a smooth DS3 clock at
44.736 MHz rate.
The logic sense of the phas e det ector up and dow n outputs may be i nv erted with bits SP E_PHDETUP_INV
(Table 153) and SPE_PHDETDN_INV, respectively.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
405Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.11 Serial STS-1 SPE Channel (NSMI)
The SPE mapper has the capability of accepting a clear serial STS-1 SPE signal at 51.84 MHz rate. The intent is to
map/demap the netwo r k serial mult iplexed interface (NSMI) interface data.
The receive section of the SPE mapper outputs a serial data at 51.84 MHz rate, a clock enable sign al i nhibited dur-
ing overhead insertion times, and a sync signal whose position within the ST S -1 frame is programmable to a cer-
tain extent (is programmable to occupy any STS- 1 c olumn position (numbers 0 89) within a fixed row (# 8)),
through bits SPE_R_NSMI_BIT[2:0] (Table 153) and SP E_R_NSMI_CO L[6:0] (Table 153).
The transmit section of the SPE mapper input s seria l dat a at 5 1 .84 MH z ra te , outp u ts a cl o c k enable signal inhib-
ited during ov erhead insertion times and a sync signal whose position within the STS-1 frame is programmab le to a
certain ex tent (is programmable to occupy any STS-1 column position (numbers 089) within a fixed row (#8)),
through bits, S PE_T_NSMI_BIT[2:0] and SPE_T_N SMI_COL[6:0] (Table 153).
The STS-1 SPE data is then mapped as AU-3 si gnal for the N orth Am erican d igital systems.
0786(F)(F)
Figure 3 3. STS-1 NSMI Receive Operation
UNUSED
VARIABLE
LINE_RXCLK29
RXDATAEN
RXSYNC (OPTIONAL)
LINE_RXDATA29
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
406 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
0785(F)(F)
Figure 34. STS-1 NSMI Transmit Operation
18.12 T M U X Int er face t o the S PE M apper
The SPE mapper sends/receive s data mapped as an AU-3/STS-1 SPE signal or as a TUG-3 signal to/from the
TMUX. The inte rface required f or this exchange of data, clo ck, and control signals is call ed the high-speed tele com
bus. The hig h-speed telecom bus is accessible from ex ternal pins s o that the TMUX can send/receive data to/from
other external Super Mapper devices in the system. T he TM UX can byte interleavingly multipl ex th ree S TS-1s or
three T UG-3 s ignals, receiving through the t elecom bus, to form one STS-3 or STM-1 signal, res pec tively.
The high-speed telecom bus cons ists of a byte-wide data bus running at 19.44 Mbits/s for ST S- 3/ STM-1 mode, or
6.48 Mbits/s for STS-1 stand-alone mode. It also consis ts of a parity bit line, a clock line which is 19.44 MHz or
6.48 MHz depending on STS-3/STM-1 or STS-1 mode, respectively; one sync line and two sync control lines. The
sync l ine out puts the J0, J1, and V1 time slo t si gnals of the STS-3/STM-1 frame and the two sync control signals
distinguishes between the three sync bytes. The sync signals are used to synchronize the byte counters in the SPE
mapper, and the infor mation is also passed along to the VT mapper fo r synchronizing the V1 counters.
The TMUX also provides through the external pins one 51.84 MHz serial clock and one clock cont r ol signal which
synchronizes the 51.84 MHz to the J0 byte o f t he STS-3/STM- 1 frame. This serial clock is re q uired for the M13
MUX/deMUX because of its serial m ode of working.
In the case where the SPE mapper has to drive the telecom bus in the transmit side, there is a 3-state control sig-
nal (acti v e-hi gh) which is an outp ut from the SPE m apper. This si gnal enabl es the 3-state drivers on the high-speed
telecom bus at the time period when the clock is low.
18.13 PATH Term inatio n B lock
The path termination block of the SPE mapper is shown below. The block consists of a pointer interpreter which
monitors the T U-3 pointer bytes H1, H2, and H3, and interprets t he beginning of the path overhead bytes for the
TU G-3 frames. Aft er mo nit orin g and t erminating the path overhead b ytes, the TUG-3 payload is passed on to the
output blocks.
UNUSED
VARIABLE
LINE_TXCLK29
TXDATAEN
TXSYNC (OPTIONAL)
LINE_TXDATA29
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
407Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
5-9068(F)
Figure 35 . Receive D irection Path Termination Block
18.13.1 Pointer Interpretation Block
The TUG-3 pointer int erpreter logic block perfor ms all neces s ary fu nction s t o support TU -3 p oi nter interpretation.
The following features are impl emented:
The pointer interpreter consists of the following states:
LOP-T U3lo s s of p o inter
AIS-TU3TU G-3-AIS (all ones in H1 and H2)
NDFNDF enabled (1001, 0001, 1101, 1011, 1000)
NORMnormal (disabled NDF, normal pointer)
INCincrement (i nvert ed I bits)
DECdecrement (inverted D bits)
The SPE mapper includes ev ent or change of state indicators for pointer interpreter states except the NORM state.
States NDF, DEC, and INC are reported with event st atus bits SPE_RNDFE (Table 146 on page134),
SPE_RDECE (Table 146), and SPE_RINCE (Table 146), respectively. States AI S and LOP are r eported with
change of state (delta) status bits SP E_RAISD (Table 146) and SPE_RLOPD (Table 146), respectively. Interru pts
for each event o r delt a state may be mask ed wit h bits SPE_RNDFM, SPE_RDECM, SPE_RINCM, SP E_ RAISM,
and SPE_RL OPM (all in Ta ble 147 on page 136 ).
INSERT
B3 K3 AIS-P G1
B3 K3 G1 G1N1C2
POAC G1
J1F3
F2
F2
H1, H2, H3 POINTER
PATH
POAC DATA
TUG-3 D ATA VC-3 DATA
TUG-2 DATA
PAYLOAD DATA TO OUTPUT BLOCKS
MUX
MONITOR INTERPRETER
MONITOR F3
MONITOR C2
MONITOR J1
MONITOR N1
MONITOR BIP N
CHECK APS
MONITOR RDI-P
DETECT REI-L
DETECT
AIS-P
TERMINATE
REI
COUNTER
DROP
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
408 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
5-9007(F)
* Thi s st ate di ag r am is ba sed on the E TS 417 -1- 1 poin ter inte rpret a tion sta t e di ag ra m (F ig ure B. 1 ). Tra ns iti on s of eig ht in v al i d pointers from the
INC, DEC, and NDF states into the LOP state have been added.
Figure 3 6. Pointer Interpretation St ate D i agra m
The pointer inte rpreter transitions into the LOP-TU3 state based on the following conditio ns:
Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive frames
(determined by the value program med in bits SPE_CNTDLOPCNT[1:0] (Table 149)), then LOP-TU3 is de-
clared.
Inv alid pointer valu e s. I f the number of consecutive frames (determi ned by the value programmed in
SPE_CNT DLOPCNT[1 :0] ) are recei ved w ith a poi nter t hat i s not a nor mal va lue, NDF, AIS-TU 3, incremen t, or
decrem ent , then LO P-TU3 is declared.
The pointe r interpreter transitions out of the LOP-TU3 state based on the fo llowing conditions:
Fol lowing thr ee consecutive fram es with all ones in the H1 and H2 bytes the pointer interpreter transitions from
the LOP-TU3 state into the AIS-TU3 s tate.
Following three new consecutive, consistent, valid pointers the pointer interpret er tran sitions from the
LOP-TU3 state into the NORM state.
The p ointer interpreter
will not
transition fro m the LO P-TU3 state into the NDF state.
The pointer interpreter transitions into the AIS-TU3 state based on the following conditions:
Following three consecut ive frames with all ones in the H1 and H2 byte s AIS-TU3 is declared.
The poi nter interpreter trans itions out of the AIS-TU3 state based on the following c onditions:
Following three new consecutive, consistent, valid pointers the pointer interpreter transiti ons from the AIS-TU3
state into the NO RM state.
Fo llowi ng the number of consecutive invalid pointers (determined by the value programmed in
SPE_CNTDLOPCNT[1:0]) the pointer interpreter transitions from the AIS-TU3 state into the LOP-TU3 state.
If NDF is enabled on the incoming H1 an d H2 bytes, the pointer interpreter transitions from the AIS-TU3 state
into the NDF state.
NORM
DECINC
NDF
AISLOP
FROM ALL STATES
8 INVALID POINTERS
FROM ALL STATES
3 NEW POINTERS
INCREMENT DECREMENT
8 NDF ENABLE
NDF ENABLE
NDF ENABLE
NDF
NDF
NDF
3 ANY 3 ANY
3 NEW POINTERS
3 NEW POINTERS
3 ANY POINTERS
3 NEW POINTERS
8 INVALID
8 INVALID POINTERS*
INDICATION INDICATION
3 AIS INDICATIONS ENABLE
ENABLE
POINTERS POINTERS
POINTERS ENABLE
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
409Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
The pointer inte rpreter tran sitions into the NDF state based on the follo wing conditions:
If NDF is enable d on the incoming H1 and H2 bytes, t he pointer interprete r tr ansition s from the NORM, N D F,
AIS, INC, and D EC states into the NDF state.
The pointer interpreter transitions out of the NDF state based on t he following conditions:
Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive frames
(determined by the value programmed in SPE_CNTDLOPCN T[1:0] (Table 149)), the p ointer interpreter tran-
sitions from the NDF state into the LOP-TU3 state.
Following any three consecutive, consistent, and valid pointers, the pointer interpreter transitions from the NDF
state into the NO RM state.
Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from
the NDF state into the AIS-TU3 state.
Following three new, consecutive, consistent, and valid pointers, the pointer interpreter transitions from the
NDF state into the NORM state .
Fo llowi ng the number of consecutive invalid pointers (determined by the value programmed in
SPE_CNTDLOPCNT[1:0]), the pointer interpreter transitions from the NDF state into the LOP-TU3 state.
The pointe r interpreter transitions into the NORM state b ased on t he following con dit ions:
Following three new consecu tive, consistent, and valid pointers, the pointer interpreter tran sit ions into the
NORM state.
Fo llowing any three consecutive, consistent, and valid pointers, the pointer interpreter transitions into the
NORM sta te. i.e., t r a n sitioning f rom the INC, DEC, and NDF states.
The pointer interpreter transitions out of the NO RM s tate based on the following conditions:
Fo llowi ng the number of consecutive invalid pointers (determined by the value programmed in
SPE_CNTDLOPCNT[1:0]), the pointer interpreter transitions from the NORM stat e into the LOP-TU3 state.
If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transiti ons f ro m the NORM state
into the NDF state.
Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from
the NORM state into the AIS- TU3 state.
When operating in the 8 of 10 mode (SPE_8ORMAJORITY = 1 (Table 149)), if 8 of the 10 I and D bits are
correct for a pointer decrement on the incoming H1 and H2 bytes the pointer interpreter transitions f rom the
NORM state into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer
decrement on the incoming H1 and H2 bytes, t he pointer interpreter transitions from the NORM state into the
DEC state.
When operating in the 8 of 10 mode (S P E _8OR MA JORITY = 1), if 8 of the 10 I and D bits are correct for a
pointer in crement on the incoming H1 and H2 bytes, the pointer interpreter tr ansitions from the NORM state
into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are co rrect for a pointer in crement on the
incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM state into the INC state.
The pointer inte rpreter transitions into the INC s tate based on the following conditions:
When operating in the 8 of 10 mode (S P E _8OR MA JORITY = 1), if 8 of the 10 I and D bits are correct for a
pointer increment on the incoming H1 and H2 bytes t h e poi nt e r i nterpreter transitions into the INC state. Oth-
erwi se, if 3 of the 5 I b its and 3 of the 5 D bits are c orrect fo r a poin t er increment on the incoming H1 and H2
bytes, the pointer i nterpreter transitions into the INC state.
The pointer inte rpreter tran sitions out of the INC state ba sed on the foll owing conditions:
If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter tr ansitions from the INC state into
the NDF state.
Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from
the INC state into the AIS -TU3 state.
Following three new consecutive, consistent, and valid pointers, the pointer interpreter transitions from the INC
state into the NO RM state.
Following any three consecutive, consistent, and valid pointers, the pointer interpreter transit ions from the INC
state into the NO RM state.
Fo llowi ng the number of consecutive invalid pointers (determined by the value programmed in
SPE_CNTDLOPCNT[1 :0 ] ( Table 149)), the pointer interpreter transitions from the INC s tate into the LOP-TU3
state.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
410 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
The pointer inte rpreter tra nsitions into the DEC state based on the following conditions :
When operating in the 8 of 10 mode (SPE_8ORMAJORITY = 1 (Table 149)), if 8 of the 10 I and D bits are
correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter transitions into the
DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct f or a pointer decrement on the incoming
H1 and H2 bytes the pointer interpreter tr ansitions into the DEC state.
The pointer interpreter transitions out of the DEC state based on the followi ng conditions:
If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the DEC state into
the NDF state.
Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from
the DEC state into the AI S-TU 3 state.
Following three new consecu tive, consistent, and valid pointers, the pointer interpreter trans it ions from the
DEC state into the NORM state.
Following any three consecutive, consistent, and valid pointers, the pointer interpreter transitions from the DEC
state into the NO RM state.
Following the number of consecutive invalid pointers (determined by the value programme d in
SPE_CNTDLOPCNT[1:0]), the pointer interpreter transitions from the DEC state into the LOP-TU3 state.
Pointer increments and d ecrements will be counted and presented to the microprocesso r as fol lo ws :
Pointer increments and de c rements will be monitored and counted internally.
The internal and latched counts will be forced to 0x00 if device pin AUTO_AIS (AC6, AE6, and AD6) = 1 (from
TMUX), bit SPE_RLOP = 1 (Table 148), or bit SPE_RAIS = 1 (Table 148).
Latched counts, SPE_ R PT R _ IN C [1 0 :0 ] (Table 161) and SPE_RPTR_DEC[10:0] (Table 161), wi l l be updated
coincident with the end of a performance monitor interval.
The internal counters will reset to 0x00 coincident with the end of a performance monitor interval.
If SMP R_S A T_RO LLOVER = 1 (Table 67), the internal running cou nts w ill hold at thei r ma ximum va lue. Oth -
erwis e, t he c ounts will roll over.
Howev er, i n cr ement and de crement even t indications should be ignored during LOP state.
LOP-T U3 (TU-3 path LOP) and AIS-TU3 (TU-3 path AIS) will be detec ted and reported to the microprocessor.
Both the LOP-TU3 and AIS-TU3 con ditions will contribute to the AUTO AIS control signal from t he SPE mapper
to the VT mapper. Any change in state o f SPE_RL OP (Table 148) or SPE_RAIS (Table 148) will be reported to
the microprocessor via SPE_RLOPD (Table 146) and SPE_RAISD (Table 146). Unless the appropriate mask bit
is set (SPE_R LOPM/SPE_RAISM (Table 147)), SPE_RLOPD = 1 or SPE_RAISD = 1 will gener ate an interrupt.
The current TU-3 pointer v alue is s tored in SPE_STORED_PTR [9: 0] (Table 161).
18.14 SPE Mapper Receive Direction Requirem ents
All monitoring functions supported by the SPE mapper in the receive direction are summarized here:
Loss of CLOCK and loss of sync monitors
J1 monitor
B3 BIP-8 check
C2 signal label monitor
F2 monitor
F3 monitor
N1 monitor
K3 mo nitor
AIS-P and RDI-P detect
REI-P detect
Signal degrade BER algorithm
Signal fail BER algorithm
Path overhead access c hannel (POAC) drop
Insertio n of AIS-P
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
411Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Whenever the continuous N-times detect signals are defined, they require no t only that the monitored signal be
consistent for N consecutive frames, but also that the frame bytes be error free for all N frames before the status
can be updated. I f there ar e any e r rors in the framing pattern, then the consec u t ive N-times d etectio n counters
must be r e s e t to 0. N c an range from 1 to 15. Programming a CNTD block with any value less than 1 will set the
CNTD to 1 time detect.
18.14.1 Loss of Clock and Loss of Sync M oni tors
The SPE mapper detects and reports los s of the in put clocks state for RLSCLK (pin V4) (19 MHz clock) in bit
SPE_ RLSL OC (Table 148 on page 137), RLSC52 (pin A C2) (52 MHz clock) in bit SPE_RC52LOC (Table 148), and
DS3DATAINCLK (pin J22) (DS3 external clock) in bit SPE _RDS3LOC (Table 148), as determined by stuck high or
stuck low fo r t ime T. The detection t ime T will be greater than 10 µs but les s than 125 µ s . The function uses the
micro processor clock as its reference. The device will report changes in the states using b its, SPE_RLSL OCD
(Table 146 on page 134), SPE_ RC52LO CD (Table 146), and SPE_RDS3LOCD ( Table 146); interrupt mask bits
SP E_ R L SL OCM ( Table 147), SPE_RC52LOCM (Table 147), and SPE_RDS3LOCM (Table 147 on page136 ),
respectively.
The SPE mapper will detect loss-of-sync conditions f or the telecom bus sync signals. The states are reported in the
bits, SPE_ RSY52LOS (Table 148), SPE_RJ0J1V1LOS (Table 148), SPE_RSPELOS (Table 148), a nd
SPE_RV1LOS (Table 148). T he device w ill report changes in the states in bits SPE_RSY52LOSD (Table 146),
SPE_RJ0J1V1LOSD (Table 146), SPE_RSPELOSD (Table 146), SPE_RV1LOSD (Table 146); in terrupt m ask bi ts
SPE_RSY52LOSM (Table 147), SPE_RJ0J1V1LOSM (Table 147), SPE_RSPELO SM (Table 147), and
SPE_RV1LOSM (Table 147), respectively.
18.14.2 J1 Monitor
J1 (path trace) monitoring has six different monitoring modes controlled by bits SPE_J1MONMODE[2:0]
(Table 149):
SPE_J1MONMODE[2:0 ] = 000: the SPE mapper will latch the value of the J1 byte every frame for a total
64 bytes in SPE_RJ1DMON[164][7:0] (Table 162). The SPE mapper compares the incoming J1 byte with the
next expected value (the expected value i s obtained by cycling t hrough the previous stored 64 received bytes in
round-robin f ashion) and setting the path trace identifier st ate bit, SPE_R TIM (Table 148), if diff erent. Any change
in state is reported in bit, SPE_RTIMD (Table 146), u si ng in ter rupt mask bi t SP E_R TI MM ( Table 147). CRC is not
check ed by the hardware.
SPE_J1MONMODE[ 2 :0 ] = 001: th is is the SONE T framing mode. The h ardware looks for 0x0D and then the
0x0DA charac ters to indicate that the n ext byte is the fir st byte of the path trace mes sage. The J1 byte message
is continuously written into SPE_RJ1DMON[164][7:0] with the first byte residing at the fir st address. If any
receiv ed b yte does not match the previously received byte for its location, then the state bi t SPE_RTIM is set.
Any change in state is reported in bit SPE_RTIMD, using interrupt mask bit SPE_RTIMM.
SPE_J 1MONMODE[ 2:0 ] = 010: th is is the SDH fram ing mode . The hardware looks for the byte with the most sig-
nificant bit (MSB) set to one, whi ch indicates that the nex t byte is the second byte of the mes sage. The r est of
operation is the same as in SONET framing mode.
SPE_J 1MONMODE[2:0] = 011: a n e w J1 by t e (SPE_RJ1DMON[1][7:0]) wil l be de tected after a number of con-
secutive consistent occurrences (SPE_CNTDJ1[3:0] (Table 150)) of a new pa ttern in t he J1 overhead byte. Any
changes to t his byte is reported in bit S PE_RTIMD, using interrupt mask bit SPE_RTIMM. The delta bit in this
mode indicates a change in state for the J1 byte, and the bit SPE_RT IM is not used.
SPE_J1MONMODE[ 2 :0 ] = 100: the use r will p r o g ra m th e 64 expected values of J1 in reg isters,
SPE_RJ1DEXP[164][7:0] (Table 164), i n SONET framing mode, where the first expected byte, t he byte f ol lo w-
ing the 0x0A character, is written into the first register loc ation, S PE_RJ1DEXP[1][ 7:0] . T he S P E mapper com-
pares the incoming J1 sequence with the s t ored expected value, setting the S PE_RTIM state bi t if they are
different. Any changes in the state is reported in bit SPE_RTIMD, using interrupt mask bit SPE_RTIMM.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
412 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
SPE_J1MONMODE[ 2 :0 ] = 101: the use r will p r o g ra m th e 16 expected values of J1 in
SPE_RJ1DEXP[116][7:0] in SDH framing mode, where the first byte of the message has t he MSB s et to 1.
The SPE mapper compares the incomin g J 1 s equence with the stored expected value, setting the st ate bit,
SPE_RTIM if theyre different. Any change in state i s reported in bit SPE_RTIMD, using interrupt mask bit
SPE_RTIMM.
SPE_J1MONMODE[1:0] = 11 0 and 111 are currently undefined.
Unless bit PAIS_TIMINH (Table 149) is set, bit SPE_RTIM D co n tributes to the AUTO AIS control signal from th e
SPE mapper to the VT mapper).
Unless mask bit SPE _RTIMM is set, bit SPE_RTIM D can generate an interrupt.
Table 536. J1 Monitor
18.14.3 B3 BIP-8 Check
A B3 BIP-8 even parity is computed over all the incoming bits of the T UG-3 frame, after descrambling, and com-
pared to the B3 byte received in the next frame. The total number of B3 BIP-8 bit errors (raw count) or block erro rs
is counted (selected through SPE_B3BITBLKCNT (Table 149)). Upon a performanc e monitor (PM) interval, the
inter nal ru nning count er is pl ac ed into SPE_B3ECNT[15:0] (Table 160) and then cleared . Depending on the value
of m icroprocessor bit S MPR_SAT_ROLLOVER (Table 67) , the internal counter will roll over or sta y at i ts maximu m
value until cleared.
18.14.4 S ignal Label C2 Byte Moni tor
Table 537. S TS Signal L abel D efect Conditions
Name Function
SPE_J1MONMODE[2:0] (Table 149)J1 Mo nitoring Type.
SPE_RJ1DEXP[164][7:0] (Table 164)J1 Expected Data Storage (64/1 Byte).
SPE_RJ1DMON[164][7:0] (Table 162)J1 Received Data Storage (64/1 Byte).
SPE_ C NTDJ1 [3 :0] (Table 150)C ontinuous Times Detec t Value .
SPE_RTIM (Table 148)J1 Mismatc h State Bit.
SPE_RTIMD (Table 146)J1 Mismatc h Delta Bit, Active-High.
SPE_RTIMM (Table 147)J1 Mismatch Mask Bit, Active-High.
Provisione d ST S PTE
Functionality, Expected C2 Received Payload Label
(C2 in hex) Defect TMUX_FORCEC2DEF = 1
(Table 97)
Any Equipped Functionality Unequipped (00) TMUX_RUNEQP No Change
Any E quip ped Functionality Equip pedNonspec ific (01) None No Change
EquippedNonspecific Any Value (02 to E0, FD t o FE) N one No Change
Any Payload Specific C ode The Same Payload Specific
Code (02 to E0, FD to FE) None No Change
Any Payload S pecific Code A Different Pay loa d Spec ific
Code (02 to E0, FD to FE) TMUX_RPLMP No Change
EquippedNonspecific (01) or
VT-Structured STS-1 (02) PDI, 1 to 27 VTx Defects
(E1 to FB) None TMUX_RPLMP
Any Payloa d Spec ific Code
Except VT-Stru ctured
ST S-1 (02)
PDI, 1 to 27 VTx Defects
(E1 to FB) TMUX_RPLMP No Change
Any Equipped Functionality P DI, 28 VT1.5 Defects or 1
Non-VT Payload Defect (F C) None TMUX_RPLMP
Any Equipped Functionality Reserved (FF) None TMUX_RPLMP
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
413Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
The C2 byte i s store d in SPE_C2DMON[7:0] (Table 152 on page140 ). This i s updated after a number of consecu-
tive frames (determined by the value programmed in SPE_CNTDC2[3:0] (Table 150 on page139 )) of ident ical C2
by te s, i.e., the 8-bit pattern must be identical for the number of frames in the programmed SPE_CNTDC2[3:0] p rior
to updating SPE_C2DMON[7:0].
Whenever the contents of the C2 byte monitor SPE_C2DMON[7:0] chan ges, a d elta bit SPE_C2 DMOND
(Table 146 on page 134) is set and bit SPE_C2DMONM (Ta ble 147 on page 136 ) is the interrupt m ask bit.
The SPE mapper maint ains a program mable ex pected value of the C2 byte in SPE_C2DEXP[ 7:0] (Table 151 on
page 140) . If the cu rrent value of the C2 byte (SPE_C2DM ON[7: 0]) does not equal the expected C2 value
( C2 DEXP[7:0 ]), then a p ay load label mismatch (PLM-P) defect is declared and reported in SPE_RPLM
(Table 148). The change in PLM-P state is reported in SPE_RPLMD (Table 146) with an interru p t mask b it
SP E_ R PL MM ( Table 147).
Also if the curre n t value of the C2 byte (SPE_C2DMO N[7:0]) is all 0s, then an unequipped (UNEQ-P) defect is
declared and re ported in SPE_RUNEQ (Table 148). The change in UNEQ-P state is reported i n SPE_RUNEQD
(Table 146) with an interr upt mask SPE_RUNEQ M (Table 147).
Table 538. C2MON Processing
18.14.5 Path User Byte F2 Monitor
The SPE mapper monitors the path user channel in the F2 byte. T he c urrent va lue of the F2 byt e is stored in
SPE_F2DMON0[7:0] (Table 152) after a number of consecutive frames (determined by the value programmed in
SPE_CNTDF2[3:0] (Table 150)) of identical F 2 byte has been received, i.e., the 8-b it patt ern must be i dentical for a
number of frames equal to the value of SPE_CNTDF2[3:0] prior to updating S P E_F2DMON0[7:0].
Whenever the content s of the F2 byte mon it or (SPE_F2 DM ON 0[ 7:0]) changes, a del t a bit S PE_F 2DMON D
(Table 146) is set. The interrupt mask is S PE_F2D MON M (Table 147).
The SPE mapper maintains a histor y of the pr evious valid F2 byte in SPE_F2 DMON1[7:0] (Table 152).
Name Function
SPE_C2DMON[7:0] (Table 152)C2 Current Data Monitor.
SPE_C2DEXP[7 :0] (Table 151)Expected Value of C2 Byte.
SPE_CNTDC2[3:0] (Table 150)Co ntinuous Tim es Detect Co un t Value for C2.
SPE_C2DMOND (Table 146)C2 Data Monitor Event Bit.
SPE _C2 DMONM (Table 147)C2 Data Monitor Mask Bit.
SPE_RPLM (Table 148)Payload Label Mismatch St ate.
SPE_RPLMD (Table 146)Payload Label Mismatch Delt a Bit.
SPE_RPL MM (Table 147)Pa yload Label Mismatch Mask Bit.
SPE_RUNEQ (Table 148)Unequipped Path State.
SPE_RUNEQD (Table 146)Unequi pped Path Delta Bit.
SPE_RUNEQD (Table 147)Unequipped Path Mask Bit.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
414 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
Table 5 39. F 2 Mon ito r
18.14.6 Path User Byte F3 Monitor
The SPE mapper monitors the second path user channel in the F3 byte. The current value of the F3 byte is stored
in SPE_F3DMON0[7:0] (Table 152 on page140 ) after a number of consecutive frames (determined by the value
programmed in SPE_CNTDF3[3:0] (Table 150)) of identical F3 bytes has b een rec eived, i.e., the 8-bit pattern m us t
be identical for a number of frames, determined by SPE_CNTDF3[3:0], prior to updating SPE_F3DMO N0[7 :0] .
Whenever the content s of the F3 byte mon it or (SPE_F3 DM ON 0[ 7:0]) changes, a del t a bit S PE_F 3DMON D
(Table 146) is set. The interrupt mask is in reg ister bit SPE_F3DMONM (Table 147).
The SPE mapper maintains a histor y of the pr evious valid F3 byte in SPE_F3 DMON1[7:0] (Table 152).
Table 540. F3 Moni tor
18.14.7 N1 Monitor
Th e SPE mapper st or es the curre nt val ue of the N1 by te in SPE_N1 DMON[7:0 ] (Table 152). This is updated after a
number of consecutive frames (determined by the value programmed i n bi ts SPE_CNTDN1[3:0] (Table 150)) of
identical N1 by tes, i.e., the 8-bit patt ern must be identical for a number frames de termined by the val ue in register
bits SPE_CNTDN1[3:0] prior to updating the N1 register.
Whenever the contents of the N1 byte monitor (SPE_N1DMO N[7:0]) changes, a delta bit SPE_N1DMOND
(Table 146) is set. The i nterrupt generated by SPE_N1DMON D can be maske d off by SP E _N 1DMONM
(Table 147).
Table 541. N1 Monitor
Name Function
SPE_F2DMO N0[7:0 ] (Table 152)Fault Location Current Consistent Value.
SPE_F2DMON1[7:0] (Table 152)Fault Location Previous Consisten t Val ue.
SPE_C NTDF2[3:0] (Table 150)Continuous N-Times Detect (315).
SPE_F2DMOND (Table 146)F2 Data Monitor Delta Bit.
SPE_F 2 DMONM (Table 147)F2 Data Monitor Mask Bit.
Name Function
SPE_F3DMON0[7:0] (Table 152)User Channel Curr ent Consistent Valu e.
SPE_F3 DMON1[7:0] (Table 152)User Channel Previ ous Consistent Value.
SPE_CNTDF3[3:0] (Table 150)Continuous N-Times Detect (315).
SPE_F3DMOND (Table 146)F3 Data Monitor Delta Bit.
SPE_F3DMONM (Table 147)F3 Data Monitor Mask Bit.
Name Function
SPE_N1DMON[7:0] (Table 152)Fault Location Current Consistent Value.
SPE_CNTDN1[3:0] (Table 150)Continuous N-Times Detect (315).
SPE_N1DMOND (Table 146)N1 Data Monitor Delta Bit.
SPE_N1DMONM (Table 147)N1 Data Mo nitor Mask Bit.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
415Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.14.8 K3 Byte Monitor
The SPE mapper stores the current value of the K3 by te in SPE_K3DMON[ 7:0] (Table 152 o n pag e140). This is
updated after a number of consec utive frames ( dete rmined by the value programmed in bits SPE_CNTDK 3[3:0]
(Table 150 on page139 )) of identical K3 bytes, i.e., the 8-bit pattern must be identical for a number of frames deter-
mined by the value of SPE_CNTDK3[3:0] prior to updating the K3 register.
Whenever the cont ent s of the K3 by te monitor ( SPE_K3DMON[7:0]) changes , a d e lt a bit SP E _K 3 D M ON D
(Table 146 on page 134) is set. The interrupt generated by SPE_K3D MON D can be masked off by the
SPE_K3DMONM (Table 1 47 on page 136).
Table 542. K3 Monitor
18.14.9 AIS-P and RDI-P Detect
Th e SPE mapper monitors for path AIS in the H1 and H2 b yt es (all H1 and H2 bits = 1) of the TUG-3 point e r . When
path AIS is detected, SPE_RAIS (Table 148 on page137 ) will be set to 1 after three co nsecutive occur rences. Any
changes to SPE_ R AIS wi ll be repor t ed in SPE_RA ISD (Table 146 on page134 ) and the interrupt can be masked,
using SPE_RAISM (Table 147 on page136 ).
A remote defect indication-path (RDI-P) signal indicates to STS PTE that i ts peer STS PTE has detected a defect
on the sign al that it originated. The SPE mapper supports both the single bit RDI-P and the 3-bit enhanced RDI-P;
the m ode is selec table using bit SPE_RPRDI _MODE (Table 149 on page138 ). When SPE_RPRDI_MODE = 0,
1-bit code is su pported and when SP E_RPRDI_MODE = 1, 3-bit enhanced RDI-P code is supported. Three bits of
the G1 byte (G1[3:1]) are reserved for the RDI- P signal.
The SPE map per monitors for a 1-bit RDI-P code in G1[3] bit or a 3-bit enhanced remote defe ct indication (RDI-P)
condition in the G1[ 3:1] bits and sto res the c urrent value in bits S PE_PRDIDMON[ 2: 0] ( Table 152 on page140 ).
The current value is updated after a n umb er o f consecu tive frames (dete r mined by the value of bits
SPE_CNTDPRDI[3:0] (Table 150)) of identical G1[3:1], i.e., the 3-bit pattern must be identical for a number of
frames, determined by the value of SPE_CNTDPRDI[3:0] prior t o updating SP E_ PRDIDMON[2:0].
Whene ver the contents of SPE_PRDIDMON[2:0] changes, a delta bit SPE_PRDIDMOND (Tab le 146 on page 134)
is set . The inter ru pt generated by SPE_PRDIDMOND can be masked off by SPE_PRDIDMONM (Table 147).
Table 543. AIS -P and RDI-P Detect
Name Function
SPE_K3DMON[7:0] (Table 152)Faul t Location Curren t C onsi s t ent Value.
SPE_CNTDK3[3:0 ] (Table 150)Co ntinuous N-Tim es Detect (315).
SPE_K3DMOND (Table 146)K3 Data Monitor Delta Bit.
SPE_K3DMONM (Table 147)K3 Data Mo nitor M ask Bit.
Name Function
SPE_CNTDPRDI[3:0] (Table 150)Contin uous Times Detect Count Value for G1[3:1] Bits (315).
SPE_PRDIDMOND (Table 146)Path RDI Delta Bit.
SPE_ PRDIDMONM (Table 147)Path RDI Mask Bit.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
416 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
18.14.10 RE I-P Detect
Bits 7 through 4 of the G1 byte are allocated for use as a path remote error indication functio n (REI-P).
F or STS-1 signals, bits 7 through 4 of the G1 byte are allocated for REI-P which conveys the error count detected
by the PT E (using the p ath BIP-8 code B3) back to its peer PTE as follows.
Table 544. STS-1 P-REI Interpretat ion
The SPE mapper pr ovides a counter to accumulate G1-REI errore d bit count in SPE_G1ECNT[15:0] ( Table 160 on
page 147) from G1[7:4]. This counter will hold at its maximum value or roll over (depending on the v alue of micro-
processor bi t SMPR_SAT_ROLLOVE R ( Table 67 on page 68)) and up date upon the perfor mance monitor ing inter-
val.
18.14.11 Signal Degrade BER Algorithm
A signal deg rade state bit is SPE_SDB3 (Tabl e 148 on page 137) with a c hange of state indication reported in delta
bi t SPE_SDB 3D (Table 146 on page134 ) and the interrupt mask bit is SPE_SDB3M (Table 147). This bit error rate
algorithm operates on B 3 errors.
Declaring the signal degrade state requires the definition o f two measurement windows. A monitoring block con-
sisting o f a number of frames, Ns (SPE_SDNSSET[18:0] (Table 158 on page 146)), and a measurement interva l
consisting of a number of monitoring blocks, B (SPE_SDBSET[11:0] (Table 158)). A block is det ermined bad when
the number of bit errors equals or exceed s a threshold, L (SPE_SDLS ET[3: 0] (Table 158)). Signal deg rade is
declared when a number of bad monitoring blocks equals or exceeds the threshold, M (SPE_SDMSET[7:0]
(Table 158)), for the measurement interval.
Clear ing the si gnal degrade s tate requ ir es the de finition of t wo measurem ent windows. A monitoring block consist-
ing of a number of frames, Ns (SPE_SDNSCLEAR[18:0] (Table 158)), and a measurem ent in terval consisting of a
number of monitoring blocks, B (SPE_SDBCLEAR[11:0] (Table 158)). A block is determined good when the num-
ber of bit e rrors is les s than a threshold, L (SPE_SDLCLEAR[3:0] (Table 158)). S ig nal degrad e i s cleared when a
number of good monitoring block s equals or exceeds the threshold, M (SPE_SDM C L EAR[7 :0] (Table 158)), for the
measurement interval.
The set parameters are used when the signal degrade state is clear, and the clear p arameters are used when the
signal degrade state is declared.
The signal degrade s ta te may be forced to the declared state wi th bit SPE_SDSET (Table 145 on page134 ) and
forced to the cleared state with bit SPE_SDCLEAR (Table 145). The controls are provided to force the BER algo-
rithm into the failed state or normal state, res pec tively.
The above algor ithm can detect bit error rates from 1 x 103 to 1 x 109.
G1[7:4] Code Code Interpretation
0000 0 (no errors)
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
10011111 0 (no errors)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
417Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Table 545. Signal Degrade Parameters
Note: The threshold written by the control system is one less than the desired number, except for the SPE_SDLSET[3:0]/SDLCLEAR[3:0]
parameter.
18.14.12 S i gnal Fail BER Algorithm
A signal fail state is repor ted by bit SPE_ SF B3 (Tabl e 148 on pag e137) and change of stat e in bit SPE_SFB3D
(Table 146) with the interrupt mask bit SPE_SFB3M (Table 147). This bit error rate algorithm operates on B3 errors.
Declaring the signal fail state requires the definition of two measure ment window s , a m onitoring block consisting of
a number of frames, Ns (SPE_ SFNSSET[18:0] (Table 159 on page146 )), and a measurem ent i nterval consisting
of a num ber o f monitoring b locks, B (SPE_SFBSET[15:0] (Table 159)). A block is determined to be bad when the
number of bit errors equals or exceeds a threshold, L (SPE_SFLSET [3 :0 ] (v)). Signal fail is decl a r e d when the
number of bad m onitoring blocks equals or exceeds the threshold, M (SPE_SFMSET[7:0] (Table 159)), for the
measurement interval.
Clearing the signal f ail state requires the definition of two measurement windows, a monitoring block consisting of a
num be r of fr ames, Ns (SPE_SFNSCLEAR[18:0] (Table 159)), a nd a measurem ent i nterval consisting of a number
of monitor ing blocks, B (SPE_SFBCLE AR[11:0] (v)). A block is determined to be good when the number of bit
errors is less t han a threshold, L (SPE_SFLCL EAR[ 3:0] (Table 159)). Signal fail is cleared when a number of good
monitoring blocks equals or exceeds the threshold, M (SPE_SFMCLEAR[7:0] (v)) , fo r the measurement interval.
The set parameters are used when the signal fail state is clear, and the clea r parameters are used when the signal
f ail state is declared.
The signal fail sta te may be forced to the declared state with bit SPE_SFSET ( Table 145 on page134 ) and forced
to the cleared state with bit SPE _S FCLEAR (Table 145).
The above algor ithm can detect bit error rates from 1 x 103 to 1 x 109.
Name Function
SPE_SDNSSET[18:0] (Table 158)Signal Degrade Ns Set. Number of frames in a monitoring block for SD.
SPE_SDLSET[3:0] (Table 158)Signal Degrade L Set. Error thres hold for deter m inin g if a moni toring
block is bad.
SPE_SDMSET[7:0] (Table 158)Signal Degrade M Set. Threshol d of the number of bad monitoring blocks
in an observation interval. If the number of bad blocks is below this thresh-
old, then SD is cleared .
SPE_SDBSET[15:0] (Table 158)Signal Degrade B Set. Number of monitoring blocks in a measurement
interval.
SPE_SDNSCLEAR[18:0] (Table 158)Signal Degrade Ns Clear. Number of frames in a monitoring block for SD.
SPE_SDLCLEAR[3:0] (Table 158)Signal Degrade L Clear. Error threshold for determining if a monitor ing
block is bad.
SPE_SDMCLEAR[7:0] (Table 158)Signal Degrade M Clear. Threshold of the number of ba d monitoring
blocks in an observation inte rval. If the number of bad blocks is below this
threshold, then SD is cleared.
SPE_SDBCLEAR[15:0] (Table 158)Signal Degrade B Clear. Numb er of monitoring blocks in a measurement
interval.
SPE_SDSET (Table 145)Signal Degrade S et. Allows the signal degrade algorithm to be f orced into
the failed state (active 0 to 1).
SPE_SDCLEAR (Table 145)Signal Degrade Clear. A llows the signal degrade algorithm to be forced
into the normal state (active 0 to 1).
SPE_SDB3 (Table 148)Signal Degrade BER Algorithm State Bit.
SPE_SDB3D (Table 146)Sign al Degrade BER Al gorithm Delta Bit.
SPE_ SDB3M (Table 147)Signal Degrade BER Algorithm Mask Bit.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
418 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
Table 546. Signal Fail Parameters
Note: The threshold written by the control system is one less than the desired number, except for the SPE_SFLSET[3:0]/SFLCLEAR[3:0]
parameter.
18.14.13 P OAC Dro p
The SPE mapper accommodates one path overhead access channel (POAC out put channe l).
The POAC ch annel consis t s of the follow ing s ignal s :
A 576 kHz inverted clock signal sourced by the TMUX (RPOACCLK, pin AE3).
A 576 kb its/s data signal sourced by the TMUX (RPOACDATA, pin AD4).
An 8 kHz synchronization signal, sourced by the TMUX (RPOACSYNC, pin AF4). The sync signal is normally
low; dur ing the last clock period of each frame coincident with the least significant bit of the last byte, the sync
signal is high.
The data s ig na l i s pa rtitioned in to f ra mes of 9 bytes. The frame rep etition rate is 8 kHz. Each byte consists of 8 bits
that are transmitted/received mos t significant bit first (MSB). The MSB of the second byte of each frame contains
an odd/even parity bit over the 72 bits of the previous frame. The remaining 7 bits of this byte are n ot specified.
Bytes shown in Table 547 summarize the a ccess capabilities of the receive POAC.
Name Function
SPE_SF NSSET[18:0] (Table 159)Signal Fail Ns Set. Num ber of frames in a monitoring block fo r SF.
SPE_SF L SET [3:0] ( Table 159)Signa l Fai l L Set. Error thres hold for determining if a monitoring block is
bad.
SPE_SFMSET[7:0] (Table 159)Signa l Fail M Set. Threshold of the num ber of ba d monitoring blocks in
an obse rvation interval. If the number of bad blocks is belo w this thresh-
old, then SF is cleared.
SPE_SF BSET [15:0] (Table 159)Signal Fail B Set. Number of monitoring blocks.
SPE_ SFNSCLEAR[1 8:0] (Table 159)S ignal Fail Ns Clear. Number of frames in a monitoring block for SF.
SPE_SF L CLEAR[3: 0] ( Table 159)Signal Fail L Clear. E rror threshold for det ermining if a monitoring block
is bad.
SPE_SFMCLEAR[7:0] (Table 159)Signal Fail M Clear. Threshold of the number of bad monitoring blocks in
an obse rvation interval. If the number of bad blocks is belo w this thresh-
old, then SF is cleared.
SPE_SFBCLEAR [15:0] (Table 159)Signal Fail B Clear. Number of monitoring blocks.
SPE_SFSET (Table 145)Sig nal Fail Set. Allows the signal degrade algorithm to be forced into the
failed state (active 0 to 1).
SPE_SFCLEAR (Table 145)S ignal Fail Clear. Allows the signal degrade a lgorithm to be forced into
the nor mal state (active 0 to 1).
SPE_SFB3 (Table 148)Si gnal Fail BER Al gor ith m State Bit.
SPE_SFB3D (Table 146)Si gnal Fail BER Al gor ith m Delta Bit.
SPE_SFB3M (Table 147)Signal Fail BER Algorithm Ma sk Bit.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
419Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Table 5 47. Path Overhead Byte Access
Even or odd parity can be inserted into the first bit of the second byte of the POAC outgoing frame. Parity is
selected with register b it, SPE_RPOAC_OEPINS (Table 149 on page 138 ).
18.14.14 Ins ertion of AIS-P
The SPE mapper automatically generates AIS path (AIS -P ) when:
The pointer interpret er declares the receive AIS state (SPE_RAIS in Table 148 on page137 ) or receive l oss of
pointer state (SPE_RLOP (Table 148)) and the appropriate i nhibit signals are in active .
AIS is requested by signals from the TMUX interface.
AIS is forced by setting bit SPE_PAISINS (Table 149).
Any one of the loss-o f-clock or loss-o f -sync bits are active and their co rrespondin g inhibit bits are inactive.
Any of bits SPE_RU NEQ, SPE_RPLM, and SPE_RTIM (all are in Table 148) are active, and the appropriate
inhibit signals are inactive.
Criteri a for PATH_AIS _GEN ERATE =
((SPE_RLOP AN D (SPE_PAIS_LOPINH)) OR
(S PE_ R AIS AND (SPE_PA IS_ AISINH)) OR
(SPE_R UNEQ AND (SPE_PAIS_UNEQINH)) OR
(S PE_ R PL M AND (SPE_PAIS_PLMINH)) OR
(S PE_ RTIM AND (SPE_PAIS_ TIMINH)) OR
(SPE_SFB3 AND (SPE_PAIS_SFB3INH)) OR
(SPE_SDB3 AND (SPE_PAIS_SDB3INH)) OR
(SPE_RSY52LOS AND (SPE_AIS_LOSSY52INH)) O R
(S PE_RV1LOS AN D (SPE_AIS_ LOSV1INH)) OR
(S PE_ R SPEL O S AN D (SP E_ AIS_LOSSP EINH )) OR
(S PE_RJ0J1V1 LOS AND (SPE_AIS_LOSJ0J1V1 INH)) OR
(SPE_RDS3LOC AND (SPE_AIS_LOCDS3INH)) O R
(SPE_RC52LOC AND (SPE_AIS_LOC 52INH)) O R
(SPE_RLSLOC AND (SPE_AIS_LOCINH)) O R
SPE_ PAISIN S OR
RAUTO_AIS (signal from TM UX))
The SPE mapper starts/stops generating AIS-P within 125 µs of the detection/abse nc e o f a fa il ur e condition.
AIS-P consists of writing all ones into the H1, H2, and H3 bytes and into the entire payload.
J1
POH Pa rit y
C2
G1
F2
H4
F3
K3
N1
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
420 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
18.15 Transmit Direction (to SONET/SDH Line)
The transmit block inserts t he path overhead (POH) bytes t o the pa yload data and o utputs an STS-1 SPE or a
TUG-3 payload as required.
The transmit section is broken down into the following functional parts:
Loss of clock and loss of sync det ectors
N1 insert
K3 insert
Path user b yte F3 inse rt
Path user b yte F2 inse rt
AIS-P insert
REI-P insert
RDI-P insert
C2 signal label insert
B3 calculation and insert
J1 path trace insert
All insert control functions that are inhibited will insert all zeros or all ones into the outgoing bytes depending on the
value of microprocessor register bit SMPR_OH_DEFLT ( Table 67).
18.15.1 PATH Insertio n Block
The path overhead insertion block of th e SPE mapper is shown below. The block computes and inserts the B3 BIP
error bytes and the rest of the path overhead bytes to form a TUG -3 frame.
5-9069(F)
Figure 37. Transm it Dir e ction P a th In sertion Block
H4
INSERT K3
N1 C2 F3 F2K3 G1 G1J1
INSERT
AIS-P
B3
POAC INSERT
B3
INSERT PATH OVERHEAD BYTES
MUX
TO TM UX INTERFACE
BLOCK
VC-3 DATA
TUG-3 DATA
J1 APS
INSERT
G1
RDI-P
INSERT
G1
REI-P
INSERT INSERT
N1 INSERT
C2 INSERT
F3 INSERT
F2 INSERT H4
FIXED VAL
GENERATEINSERT
F2, F3, C2, N1, AND J1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
421Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.15 . 2 Loss of Clock and Loss of Sync Detectors
The SPE mapper detects and reports the loss of t he input clocks for the transmit telecom bus clock, device pin
TL SCL K ( AA2 ) , in bi t SPE_ TL SL O C (Table 148 on page137 ); the 51.84 MHz transmit low-speed clock, device pin
TLSC52 ( AC3), in bit SPE_TC52LOC (Table 148), and the external DS3 clock , device pin DS3D ATAINCLK (J22), in
bit SPE_TDS3LOC (Table 148). Loss of clock is deter mi ned by stuck high or stuck low for time T. T he detection
time T will be greater than 10 µs but less than 125 µs. The func ti on uses the microproce ssor clock as its reference.
The device will report a change in the loss of c lock state for the monitored clocks using bits SPE_TLSLOCD
(Table 146 on page 134), SPE_TC52LOCD (Table 146), and SPE_TDS3LOCD (Table 146), respe ctively. The
microprocessor interrupt may be ma sked using bits SPE_TLSLOCM (Table 147 on pag e 136), SPE_TC52LOCM
(Table 147), and SPE_TDS3LOCM (Table 147), respect ively.
The SPE mapper det ects loss-of-sync conditi ons f or the telecom bus sync signals, de vice pins TLSSYNC52 (AD2),
TLSJ0J1V 1 (AB4), TLSSPE (AB2), and TLSV1 (AB3). The loss of sync states are reported in bits
SPE_TSY52LO S (Table 148), SPE_TJ0J 1V1LO S (Table 148), SPE_TSPEL OS (Table 148), and SPE_TV1LOS
(Table 148), res pectively. The device will report a change in the loss of sync state for the monitored sync signals in
bits SP E_ TSY 52LOS D (Table 146), SPE_TJ0J1V1LO SD (Table 146), SPE_TSPEL OSD (Table 146), and
SPE_TV1LOSD (Table 146) , res pectively. The mic ropro cessor interru p t may be masked using bits
SP E_ TSY52LOSM ( Table 147), SPE_TJ0J1V1LOSM (Table 147), SPE_ TSPELOSM (Table 147), an d
SP E_ TV1LOSM (Table 147), respectively.
18.15.3 J1 Byte Insert
A 64-byt e sequence stored in SPE_TJ1DINS[164][ 7:0] (Tab le 163 on page 148) will be inserted into the outgoing
J1 by t e when bi t SPE_TJ1INS = 1 (Table 154 on page143 ); o therwise, the associate d POAC value is i nserted
when bit SPE_TPOAC_J1 = 1 (Table 154) or t he default value, determined by the value of microprocessor bit
SMPR _OH_DEFLT (Table 67 on pag e68), is inserted when SP E_T POAC_J1 = 0.
The CRC for the J1 trace has to b e programmed into the J1 bytes by the user.
18.15.4 B3 BI P-8 Calculation and Insert
The B3 bytes are allocated for path overhead err or monitoring function. This f unction is a bit interleaved parity 8
code (BIP-8 ) using even parity. The BIP-8 is computed before scra mbling over all bits of the previous AU -3/TUG-3
frame, and is placed in byte B 3 of the current frame also bef ore scrambling. When enabled with control bit,
SPE_TB3ERRINS (Table 156), a single B3 byte can be inverted each time bit SPE_BERR_INS (Table 156) is
asserted.
18.15.5 C2 S ig nal Label Byte In sert
When bit SPE_TC2INS = 1 (Table 154), the value in SPE_TC2DINS[7: 0] (Table 157) is inserted into the o utgo ing
C2 byte; otherwise, insert the associated POAC value w he n SPE_TPOAC_C2 = 1 (Table 154) or insert the default
value determined by the microprocessor bit SMPR_OH_D EFLT when bi t SPE_TP OA C_C2 = 0.
18.15.6 RE I-P G1(7:4) Insert
Four bits of the G1 b yte G1(7:4) are allocated for use as a path remote error in dication (REI). For AU-3/TU G-3 sig-
nals, these bits convey the count (in the range of 0 to 8) of interleaved bit blocks that have been detected in error by
the BIP-8 (B3) de tector on the received si gnal.
Thi s function can be inhibited with bit SPE_TREIP_INH (Table 155) and the value in SP E_TG1DINS[7:4]
(Table 157) i s inserted in G1(7:4) bits. A cont inuous error in the G1 byte can be transmitted using cont rol bit
SPE_TREIERRI NS (Table 156). A value of 0x03 will be inserted when SPE_TREIERRINS = 1, subject to
SPE_BERR_INS a n d SMPR_BER_I NSRT bein g en abled.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
422 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
18.15.7 Path RDI (RDI-P) Insert
When transmit RDI software insert cont rol bit SPE_TPRDI INS = 1 (Table 155), data from SPE_TG1D INS[3:1]
(Table 157) is written into the G1[3:1] output bits. When SPE_TPRDIINS = 0, hardware insert is enabled for RDI-P
insertion. Each defect contrib ution to the RDI-P outgoing code can be inhibited. There are two modes supported f or
path RDI Insertion. One mod e conforms to the earlier 1-bit version of the standard. The other mode, enhanced
RDI-P mode, uses a 3-bit R D I -P code and conforms to the current version of the standard. W hen the mode selec-
tion bit SP E_TPRDI_M ODE = 0 (Table 155), th e SPE map per sends a 3-bit code that conforms to the earl ier 1-bit
versi on of th e standar ds. When S PE_T PRDI_M O D E = 1, the SPE ma pper sends a 3-bit code conforming to the
current enhance d path RDI encoding. Note that for nonenhanced RDI-P mode, the rele vant defects are AIS-P and
LOP-P. For enhanc ed RDI-P mode, the relevant defects are AI S -P, LOP-P, TIM-P, PL M-P, and UNEQ-P, and TIM-P.
When a failure condition exists that will cause RDI-P to be generated vi a hardware, the generation of RDI-P must
last for at l eas t 20 frames before cleari ng, even if the original failure cause has cleared in less than 20 frames.
The following table describes the encoding of the p a th-RDI defects.
Table 548. RDI-P Defects f or Enhanced RDI-P Mode
18.15.8 F2 B yte Insert
Whe n contr o l bit SPE_TF2INS = 1 (Table 154), inser t the value in SPE_T F2DIN S[7:0] (Table 157) in the outgoing
F2 byte; otherwise, insert the assoc iated POAC value when bit SPE_TPOAC_F2 = 1 (Table 154) or insert the
default value determined by the microprocessor bit SMPR_OH_DEFLT (Table 67) when SPE_TPOAC_F2 = 0.
18.15.9 H4 I nser t Control
Whe n control bit SPE_TH 4 INS = 1 (v), inse rt the value in S PE_TH4DINS[7:0] (Table 157) in the outgoing H4 byte;
otherwise, i nsert th e associated POAC valu e when bit SPE_TPOAC_H4 = 1 (Table 154) or insert the default value
determined by the microprocessor bit SMPR_OH_DE FLT when SP E_TPOAC_H4 = 0.
18.15.10 F3 Byte Ins ert
Whe n contr o l bit SPE_TF3INS = 1 (Table 154), insert the value in SPE_T F3DIN S[7:0] (Table 157) in the outgoing
F3 byte; otherwise, insert the assoc iated POAC value when bit SPE_TPOAC_F3 = 1 (Table 154) or insert the
default value determined by the microprocessor bit SMPR_OH_DEFLT (Table 67) when SPE_TPOAC_F3 = 0.
18.15.11 K3 Insert Control Parameters
Whe n contr o l bit SPE_TK3IN S = 1 (Table 154), insert the value in SPE_TK3DIN S[7:0] (Table 157) in the outgoing
K3 byte; othe rwise, insert t he associated POAC value when bit SPE_TPOAC_K3 = 1 ( Table 154) or insert the
default value determined by the microprocessor bit SMPR_OH_DEFLT when SPE_TPOAC_K3 = 0.
G1 Triggers
Bit 3 Bit 2 Bit 1
0 0 0 No defects (nonenhanced RDI-P mode)
0 0 1 No defects (enhanced RDI-P mode)
0 1 0 LCD-P, PLM-P (LCD-P not supported in Super Mapper)
0 1 1 No defects (nonenhanced RDI-P mode)
1 0 0 AIS-P, LOP-P (nonenhanced RDI-P mode)
1 0 1 AIS-P, LOP -P (enhanced RD I-P mode )
1 1 0 TIM-P, UNEQ-P (enhanced RDI-P mode)
1 1 1 AIS-P, LOP-P (nonenhanced RDI-P mode)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
423Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.15.12 N1 Insert Control Parameters
Whe n contr o l bit SPE_TN1 INS = 1 (Table 154), inser t the value in SPE_ TN1DINS[7:0] (Table 157) in th e outgoing
N1 byte; otherwise, ins ert the associ at ed POAC value when bit SPE_TPOAC_N1 = 1 (Table 154) or insert the
default value determined by the microprocessor bit SMPR_OH_DEFLT when SPE_TPOAC_N1 = 0.
18.16 POAC Inser t
One overhead access channel (POAC) is provided on-chip to provision the path over head portion of the outgoing
frame. A POAC channel consists of the fol l owi ng signals:
A 576 kHz inverted clock s ignal sourced by the SPE mapper (TPOACCL K , pin AE4).
A 576 kb its/s data signal received by the SPE mapper in the transmit direction (TPOACDATA, pin AD5).
An 8 kHz synchronization signal (TPOACSYNC, pin AC5), sourced by the SPE mapper. T he sync signal is nor-
mally low; during the first clock period of each frame coincident with the most significant bit of the first byt e, the
sy nc sig nal is high.
The data s ig na l i s partitioned in to f ra mes of 9 bytes. The frame repetition rate is 8 k Hz. Each by te consists of 8 bits
that are transmitted/received most significant bit first. The MSB of the second by te of each frame contains an odd/
even parity bit over the 72 bits of the previous frame. The remaining 7 bits of this byte are not specified. The POAC
input has full access t o all the path overhead byt es of the STS-1 frame. Bytes shown in the table below summarize
the access capabil ities of the transmit POAC channel.
Table 549. P ath Overhead Byte AccessTrans m it Direction
An event indication is provided to indicat e parity errors for the POAC channel. Monitoring of odd or even parity is
selected with bit S PE_TPOAC_OEPMON (Table 154 on page143 ). Parity errors are reported with bit
SPE_TPOAC_PE (Table 146). The interrupt can be masked with bit SP E_TPOAC_PM (Table 147 on page136 ).
Table 550 summarizes the insertion options for the specified overhead bytes for POAC. The SPE mapper allows a
predefined default value determined by the value of the microprocessor bit SMPR_OH _DEFLT (Table 67) to be
inserted on the corres ponding POAC value.
J1
POH Pa rit y
C2
G1
F2
H4
F3
K3
N1
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
424 Agere Sy stem s Inc.
18 SPE Mapper Functional Description (continued)
Table 550. T POAC Control Bits
18.17 A IS Path Generation
Path AI S is specified as all ones in the entire STS-1 SPE/TUG -3 frame. Path AIS can be forced by setting bit
SPE_TAISPINS = 1 (Table 154 on page143 ).
Overhead Bytes Control Bits
(Table 154)Values
0 (Default Value) 1
J1 SPE_TPOAC_J1 S M P R_OH_DE FLT TP OAC Data
H4 SPE_TPOAC_H4
F2 SPE_TPOAC_F2
F3 SPE_TPOAC_F3
C2 SPE_TPOAC_C2
K3 SPE_TPOAC_K3
N1 SPE_TPOAC_N1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
425Agere Systems Inc.
19 VT/TU Mapper Functional Description
Ta ble of Conte nts
Contents Page
19 VT/TU Mapper Functional Description . ..... .......................... . .............................. ..................... . ...................... 425
19.1 VT/TU Ma pper Introduc t ion ............................. ....... . .............................. .............. . .................................. 427
19.2 VT/TU Ma pper Features .. .................... ..... ....... . ......................... ..... ... ......................... . ........................... 427
19.3 VT/TU Ma pper Functional Block Diagram .............................................................................................. 428
19.4 VT/TU Mappings ..................................................................................................................................... 430
19.5 VT/TU Locations ..................................................................................................................................... 431
19.6 VT/TU Ma pper Rec eive Path Description .................... ....... . ....................... ... ....................... .................. 432
19.7 VT Demultiplexer (V TDEMUX) ............................................................................................................... 432
19.8 VT Po inter Interpreter (VTPI) .................................................................................................................. 432
19.9 VT Termination (VTTERM) ..................................................................................................................... 435
19.9.1 V5 Termination ............................................................................................................................. 435
19.9.2 Z6/N2 Termination ....................................................................................................................... 436
19.9.3 Z7/K4 Terminati on ....................................................................................................................... 436
19.9.4 Payload Termination .................................................................................................................... 437
19.10 Output Signal Selection (OUTSEL) ............... .......................... ............................................................. 437
19.11 J2 Byte Monitor and Termination (J 2MON) ...................... ....... ................. ... ......................... ................ 438
19.12 Receive Signaling (RX_VTSIG) ............................................................................................................ 439
19.13 Receive Lower-Order Path Overhead (RX_LOPOH) ....... ..... ................... ..................... ..... .................. 440
19.14 VT/TU M apper Trans mit Pat h Requirements ....... . .............................. ....... .............. .......... ... ............... 440
19.14.1 Input Selector (INSEL) .............................................................................................................. 441
19.14.2 Transmit Elastic Store (TES) ..................................................................................................... 442
19.14.3 Virtual T ributary Generator (VTGEN) ........................................................................................ 442
19.14.4 Pointer Generation .................................................................................................................... 442
19.14.5 VT Multiplexer (VTMUX) ........................................................................................................... 450
19.14.6 Transmit Signa ling (TX_VTSIG) ................................................................................................ 450
19.14.7 Transmit Lower Path Overhead (TX_LO POH) ........... ............................ . .................................. 450
19.15 VT Mapper System Interf ace Timing ................................ ....... ................... ....... ................... ................ 451
19.1 5 .1 V T Mapper DS1/E 1 Rece ive Inte rface (to System Inte r face) ..... ............................................... 451
19.15.2 VT Mapper DS1/E1 Transmit Interface (from System Interface) ............................................... 452
19.16 VT Mapper Lower-Order Path O verh ead Interface Tim ing ........... .......................... .............................. 452
19.16.1 VT Mapper Recei ve Pat h Overhead Interface Description . . ......................... . ........................... 452
19.16.2 VT M apper Transmit Path Overhead Interface Description ...................................................... 453
Figures Page
Fig ure 38. VT Mapper Interface Diagram............................................................................................................. 428
Figure 3 9. VT Mapper Functional B lock D iagram................................................................................................. 429
Fig ure 40. Pointer Interpretation State Dia gram................................................................................................... 433
Figure 41. DS1 Mode G apped Clock ing Scheme........................... .................................................... .................. 451
Figure 42. E 1 Mode Gapped Clock ing S c heme ................................................................ ....... ............ ................ 451
Fig ure 43. DS1 Interface ...................................................................................................................................... 451
Fig ure 44. E1 Interface......................................................................................................................................... 452
Fig ure 45 . VT Map per R ece ive Pat h Overhead Ser ial Access Channel .. .... ............... ...... ............. ................... .. . 4 52
Figure 46. VT Mapper Transmit Pat h Ov erhead Ser ial Access Channel .................. ....... ....... ..... ....... ....... ..... ..... 453
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
426 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
Table of Conten ts (continued)
Tables Page
Table 551. VT2/TU-12 Payload Mapping ............................................................................................................ 430
Table 552. V T1. 5/ TU-11 Payload Mapping ............ ....... ...................................... ....... ......................................... 430
Table 553. VT2/TU-12 Locations ......................................................................................................................... 431
Table 5 54. VT1.5/TU-11 Loca tions ........... ..... ..................... ..... .......................... .......................... ........................ 431
Table 555. Receive VT/TU Demapping Selection ................................. ....... . .............................. ... ..................... 437
Table 5 56. Rx Signaling B ehavior per Channel .... ..................... ..... .......................... ..................... . ..................... 439
Table 5 57. Data Type Header Definition s ............................... .......................... ... ............................................... 440
Table 558. Transmit VT/TU Map ping Selection per Channel, VT_TX_MAPTYPE[128][3:0] ........................... 441
Table 559. V 5 Overhead Byte Format ................................................................. ................................................ 443
Table 560. BIP-2 Error Insertion Modes . ....................... .......... ... ....................... ... ............................................... 443
Table 561. RDI-V, RFI-V, and REI-V Automatic Generation ............................. .............. .............. ...................... 444
Table 562. V T Signal Label Definition .......................................................... ....... ....... ............ ............................. 445
Table 563. J2 Ov erhead Byte Insertion Modes Per Cha nnel .............................. . .............................. ... .............. 445
Table 564. Z6/N2 Overhead Byte Insertion Modes Per Channel ............................... . ......................... .......... ..... 445
Table 565. Z 7/K4 Ov erhead Byte Insertion Modes Per Channel ............................... . ......................... ..... .......... 446
Table 566. O -Bit Insertion Modes Per Channel ............. ........................ ..................... ........................ ................. 446
Table 567. A s ynchronous VT1. 5 ............................................... ....... ............ ....... ....... ............ ............................. 447
Table 568. B it S ync hronou s VT1.5 ......................... ............................................. ................................................ 447
Table 569. B y te Sy nc hronous VT1.5 ......................................... ....... ............ ....... ....... ............ ....... ...................... 447
Table 570. A s ynchronous VT2 ............................... ....... ................... ............ ....................................................... 448
Table 571. B it S ync hronou s VT2 ........................................ . ......................... ....................................................... 448
Table 572. B y te Sy nc hronous VT2 ...... ............ ....... ....... ............ ....... ...................................... ............................. 448
Table 5 73. VC-11 to TU-12 Conversion .............................................................................................................. 449
Table 574. F ra mi ng Byte Generation Per Ch annel ................... ....... . ......................... ................. ... ..................... 450
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
427Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.1 VT/T U Ma pp e r Int rod u ct i on
This section d escribes t he requireme nts of the S ONET/S DH vir tual tributary payload mappi ng block. T his block
supports the following mapping s:
28 asynchronous, byte synchronous, or bit synchronous DS 1 sig nals into seven vi rtual tributar y groups (VTGs).
28 asynchronous, byte synchronous, or bit synchronous DS 1 signals into seven tributary unit groups (TUG-2s).
28 asynchronous, byte synchronous, or bit synchronous J1 signals into seven virtual tri butary groups (VTGs).
28 asynchronous, byte synchronous, or bit synchronous J1 signals into seven tributary unit groups (TUG-2s).
21 asynchronous, byte synchronous, or bit synchronous E1 signals into seven tributary unit groups (TUG-2s).
Any valid DS1/E1 combination resulting in mixed VTGs and TUG-2s .
Additionally, this block has two auxiliary channels: one for DS1/E1 signaling insertion and drop, and another for
low-order pa th overhead (LOP OH) insertion and drop. Control input s and out puts for each internal block ar e s peci-
fied, along with appropriate control r egister bit definitions.
19.2 VT /TU Mappe r Features
Maps T1/E 1/J1 into VT/TU st ruc t ures :
T1 into VT1.5/TU-11/TU-12.
J1 into VT1.5/TU-11/TU-12.
E1 into VT2/TU-12.
Supports asynchronous, byte synchronous, and bit synchronous mapping s.
Supports automat ic ge neration or micro p ro c e ssor overwrite o f one bit RDI and one bit RFI.
Supports automatic gener ation or mic roprocessor ov erwrite of enhanced RDI.
Suppo rts A DM ap plications via tributary loopba ck and tributary pointer processing.
Supports unidirectional pat h switch rin g ( U PSR) applicat ions via lo w-order path overhead access channel.
Suppor t s five J 2 t race identifier modes.
Programmable BIP-2 error insertion.
Monitors BIP-2 bit error rate.
Programmable clear -on-read/clear-on-write registers.
Suppo rts aut om at ic A I S generation for dow nstream devices.
VC-BIP-2, VC-REI one second error co unters.
Programmable satur ation or rollover of internal counters.
Complies with GR-253-CORE, G.707, T1.105, G.704, G.783, JT-G707, GR-499, ETS 300 417-1-1.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
428 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
19.3 VT/TU Mappe r Functio nal B lock Di agram
The following blo ck diagram shows a high-level view o f the VT/TU mapper bloc k and the interface to the T1/E1
fra mer, cross connect, SPE mapper (SPEMPR), digital jitter a tt enuator (DJA ), and control (microprocess or inte r-
face).
5-9011(F)r.2
Figure 38. VT Mapper Interface Diagram
DATA
RECEIVE
TRANSMIT
RECEIVE VT/TU MAPPER
TRANSMIT VT/TU MAPPER
FRAMER
[28:1]
LOPOHDATAOUT
LOPOHDATAIN
TRIBUTARY
LOPOHCLKIN
CROSS
CONNECT
DJA
CONTROL INTERFACE
DS1XCLK
E1XCLK
LOPOHVALIDOUT
LOPOHVALIDIN
RDI-V
REI-V
RX PATH SIGNALING
TX PATH SIGNALING
SPEMPR RDI, REI
TUG3 RDI, REI
TRANSMIT
RECEIVE
LOOPBACK
TMUX
TMUX
DATA CLOCK
FSYNC ALA R M
[28:1]
DATA CLOCK
FSYNC ALA R M
RDI, REI PATH, AND LINE ALARMS
RDI, REI PA TH, AND L INE ALARMS
DATA CLOCK
CLOCK CONTROL
ALARM CONTROL SPE
SPEMPR
SPE
SPEMPR
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
429Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
5-9012(F)
Figure 39. VT Mapper Functional Block Diagram
TES
SOFTWARE REGISTERS
LOPOHDATAIN
LOPOHDATAOUT
LOPOHCLKIN
VTRXDATA[7:0]
RX_EN
V1TIME
VTTXDATA[7:0]
DATA[28:1]
CLK[28:1]
FSYNC[28:1]
DATA[28:1]
CLK[28:1]
FSYNC[28:1]
CLK7M_RX
CLK7M_TX
J1TIME
DS1XCLK
E1XCLK
LOPOHVALIDIN
LOPOHVALIDOUT
INSEL
AUTO_AIS[28:1]
VTPI
RX_LOPOH
J2MON
VTTERM
OUTSEL VTDEMUX
RX_VTSIG
VT LOOPBACK (VTLBSEL = 1 )
VTGEN
TX_VTSIG TX_LOPOH
VTMUX
TUG3_REI[3:0]
TUG3_RDI[2:0]
RDI_L
RDI[2:0]
REI_L[4:0]
REI[3:0]
RDI[2:0]
REI[3:0]
RDI_L
RDI_P[2:0]
REI_L[4:0]
REI_P[3:0]
J0TIME
RAI[28:1]
RAI[28:1]
16- BI T MICROPROCESSOR
TX_EN
DEVICE I/O
TRANSMIT PATH
DS1/E1 TO
RECEIVE PATH
DEVICE I/O
DEVICE I/O
SPE M APP ER TMUX
SPE MAPPER
TMUX
DS1/E1 FROM
SIG NAL IN G TO
FRAMERS
x28
SPE M AP PER
CROSS CONNECT
CROSS CONNECT
X28
X28X28X28
INTERFACE SIGNALING FROM
FRAMERS
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
430 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
19.4 VT /TU Mapp in g s
Table 551. VT2/TU-12 Payload Mapping
Table 5 52. VT1.5/TU-11 Payload Mapping
Column X 1 2 2
02
12
2 2
8X2
9 4
14
24
3 5
6X5
7 6
36
4 8
38
4
J1 V
T
2
#
1
V
T
2
#
2
V
T
2
#
2
0
V
T
2
#
2
1
V
T
2
#
1
V
T
2
#
7
F
I
X
E
D
S
T
U
F
F
V
T
2
#
8
V
T
2
#
2
0
V
T
2
#
2
1
V
T
2
#
1
V
T
2
#
1
4
F
I
X
E
D
S
T
U
F
F
V
T
2
#
1
5
V
T
2
#
2
1
V
T
2
#
1
V
T
2
#
2
0
V
T
2
#
2
1
B3
C2
G1
F2
H4
Z3
Z4
Z5
Column X 1 2 2
72
8X2
93
0 5
55
6X5
75
8 8
38
4
J1 V
T
1
.
5
#
1
V
T
1
.
5
#
2
v
T
1
.
5
#
2
7
V
T
1
.
5
#
2
8
F
I
X
E
D
S
T
U
F
F
V
T
1
.
5
#
1
V
T
1
.
5
#
2
V
T
1
.
5
#
2
7
V
T
1
.
5
#
2
8
F
I
X
E
D
S
T
U
F
F
V
T
1
.
5
#
1
V
T
1
.
5
#
2
V
T
1
.
5
#
2
7
V
T
1
.
5
#
2
8
B3
C2
G1
F2
H4
Z3
Z4
Z5
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
431Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.5 VT/T U Locations
Table 553. VT2/TU-12 Locations
* Thi s c ol umn is for th e I/O of the VTMPR . The cross co nn ect can be
pr ovisi on ed to map any ext ern al E1 to any VT 2 .
See VT2/TU-12 Payload Mapping on page 430.
Table 554. VT1.5/T U - 1 1 Lo cat ion s
* This column is for the I/O of the VTMPR. The cross connect can be
provisioned to map any external DS1 to any VT1.5.
See VT1.5/TU-11 Payload Mapping on page 430.
VTG VT E1* Columns
1 1 1 1, 22, 43, 64
2 1 2 2, 23, 44, 65
3 1 3 3, 24, 45, 66
4 1 4 4, 25, 46, 67
5 1 5 5, 26, 47, 68
6 1 6 6, 27, 48, 69
7 1 7 7, 28, 49, 70
1 2 8 8, 29, 50, 71
2 2 9 9, 30, 51, 72
3 2 10 10, 31, 52, 73
4 2 11 11, 32, 53, 74
5 2 12 12, 33, 54, 75
6 2 13 13, 34, 55, 76
7 2 14 14, 35, 56, 77
1 3 15 15, 36, 57, 78
2 3 16 16, 37, 58, 79
3 3 17 17, 38, 59, 80
4 3 18 18, 39, 60, 81
5 3 19 19, 40, 61, 82
6 3 20 20, 41, 62, 83
7 3 21 21, 42, 63, 84
VTG VT DS1* Columns
1 1 1 1, 29, 57
2 1 2 2, 30, 58
3 1 3 3, 31, 59
4 1 4 4, 32, 60
5 1 5 5, 33, 61
6 1 6 6, 34, 62
7 1 7 7, 35, 63
1 2 8 8, 36, 64
2 2 9 9, 37, 65
3 2 10 10, 38, 66
4 2 11 11, 39, 67
5 2 12 12, 40, 68
6 2 13 13, 41, 69
7 2 14 14, 42, 70
1 3 15 15, 43, 71
2 3 16 16, 44, 72
3 3 17 17, 45, 73
4 3 18 18, 46, 74
5 3 19 19, 47, 75
6 3 20 20, 48, 76
7 3 21 21, 49, 77
1 4 22 22, 50, 78
2 4 23 23, 51, 79
3 4 24 24, 52, 80
4 4 25 25, 53, 81
5 4 26 26, 54, 82
6 4 27 27, 55, 83
7 4 28 28, 56, 84
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
432 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
19.6 VT/TU Mapper Receive Path Description
This section describes all necessary functions of the receive logic (see Figure 39, r ight to left):
Virtual trib utary demultiplexor (VTDEMUX)
Virtual tributary pointer interpreter (VTPI)
Virtual tributary terminator (VTTERM)
Output selector (OUTSEL)
J2 16-byte sequence monitor (J2M ON)
Receive VT/TU sign aling (RX_VT SIG)
Receive low-order path overhead (RX _LOPOH)
19.7 VT Dem ult i plexe r ( V TDE M UX )
The VTDEMUX logic block (in Figure 39 on page429 ) will perform all necessary functions to d eco de which virtual
tributary (VT) is active on the data bus.
This block monitors t he H4 byte and frames on t he H4 multiframe indicatio n. In frame (VT_H4LOMF = 0
(Table 176)) wi ll be declared following two consecutive, nonerro re d multiframe indica tions. A multiframe indication
consists of four consecutive frames containing a (00, 01, 10, 11) pattern in the two LS Bs of the H4 byte. Once
framed, H4 loss of multiframe (VT_H4LOMF = 1) will be declared following the number of consecutive mismatches
in the H4 multiframe indication programm ed int o bi ts VT_H4_NTIME[3: 0] (Table 182). Loss of H4 m ultiframe align-
ment will generate AIS downstream. A change in H4 multiframe alignment is indicated by bit VT_H4LOMF_D
(Table 168) and will generate an interrupt unless the mask is set (VT_H4LOMF_M = 1 (Table 180)).
Bits VT_RX_GRP_TYPE[6:0] (Table 180) are programmed to determine whether the incoming tribut ary is a
VT1.5/TU-11 or a VT2/TU-12.
See Table 551 through Table 554 on page 430 through page 431 for VT/TU mapping formats.
19.8 VT Pointer Interpreter (VTPI)
The VTPI logic b lock (in Figure 39 on page429 ) will perform all necessary functions to support VT/TU pointer inter-
pretation. The following features are implemented:
The pointer interpreter consists of the following states:
Loss of poi nter (LOP-V)
VT-AIS (AIS- V ) (all o nes in V1 and V2)
NDF enabl ed (NDF) ( 1001, 0001, 1101, 1011, 1000)
Normal (NORM) (disab l ed NDF, normal pointer)
Incr em ent (INC ) (inverted I bits)
Decrement (DE C) (inverted D bits)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
433Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
5-9007(F)
* Thi s st ate di ag r am is ba se d on th e ETS 4 17- 1- 1 poin t er int e rpreta ti on sta te diag r am (Fig ur e B. 1 ). Tra ns iti on s o f eig ht in val i d p ointers from the
INC, DEC, and NDF sta t es into t h e LO P st at e have b een ad ded .
Figure 4 0. Pointer Interpretation St ate D i agra m
The pointer inte rpreter will transition into the LOP-V state based on the following conditions:
Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive super-
frame s p rogram me d in b its VT_ N DF_ NTIME[3:0] (Table 183) , then LOP -V wi ll be de clared.
Invalid pointer value s. I f the number of consecutive superframes programmed in register bits
VT_INV_NTIME[3:0] (Table 183) are received with a pointer that is not a normal value, NDF, AIS-V, increment,
or decrement, then LOP-V will b e declar ed. The SS bits contribute to an invalid pointer indi cation.
The pointer interpreter will transition out of the LOP-V s tate based on the following conditions:
Following three c onsecutive superframes with all ones in the V1 and V2 bytes the pointer interpreter will tran-
sition from the LOP-V state into the AIS - V state.
Following three new consecutive, consistent, and valid pointers the pointer interpreter will transiti on fr om the
LOP-V state into t he NORM state.
The pointer interpreter
does n ot transition from the LOP-V sta te into the NDF state.
The pointer inte rpreter will transit ion into the AIS-V state based on the following conditions:
Fo llow ing thr ee consecutive superframes wi th all ones in the V1 and V2 bytes AIS -V will be decl ared.
The pointe r inte rpreter will transit ion out of the AIS-V state based on the foll owing conditions:
Following three new consecutive, consistent, and valid pointers the pointer interpreter will transiti on fr om the
AIS-V s tate into t he NORM state.
Following the number of consecutive invalid pointers programmed in b it s VT_INV_NTIME[3:0], the pointer in-
terpreter will transi tion f r om the AIS-V state into the LOP-V s tate.
If NDF is enabled on the incoming V1 and V2 bytes, the pointer i n t e r p reter will transition from the AIS-V state
into the NDF state.
*
NORM
DECINC
NDF
AISLOP
FROM ALL STATES
8 INVALID POINTERS
FROM ALL STATES
3 NEW POINTERS
INCREMENT DECREMENT
8 NDF ENABLE
NDF ENABLE
NDF ENABLE
NDF
NDF
NDF
3 ANY 3 ANY
3 NEW POINTERS
3 NEW POINTERS
3 ANY POINTERS
3 NEW POINTERS
8 INVALID
8 INVALID POINTERS*
INDICATION INDICATION
3 AIS INDICATIONS ENABLE
ENABLE
POINTERS POINTERS
POINTERS ENABLE
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
434 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
The pointe r inte rpreter will transit ion into the NDF state based on the following conditions:
If NDF is enabled on the incoming V1 and V2 bytes, the pointer interpreter will transition from the NORM, NDF,
AIS, INC, and DEC states into the NDF state.
The pointer inte rpreter will transit ion out of the NDF state based on the followin g conditions:
Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive super-
frame s p rogram me d in b its VT_ N DF_ NTIME[3:0] (Table 183), the pointer interprete r will transition from the
NDF state into the LOP-V state.
Following any three consecutive, consistent, and val id pointers, the pointer interpreter will transition from the
NDF state into the NORM state .
Following three consecutive superframes wi th all ones in the V1 and V2 bytes, the pointer interpreter will tran-
sition from the NDF state into the AIS- V state.
Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transiti on from the
NDF state into the NORM state .
Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0] (Table 183), the
p ointer interpreter w ill t ra n s iti on from the N D F state into the LOP-V state.
The pointer inte rpreter will transit ion into the NORM s tate based on the following conditions:
Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transition into the
NORM state.
Following any three consecutive, consistent, and val id pointers, the pointer interpreter will transition into the
NORM state. i.e ., transitioning from the INC, DE C, and NDF states.
The pointer inte rpreter will transit ion out of t he N ORM state based on the foll owing conditions:
Following the number of consecutive invalid pointers programmed in b it s VT_INV_NTIME[3:0], the pointer in-
terpreter will transition from the NORM state into the LOP-V state.
If NDF is enabled on t he incoming V1 and V2 bytes, the pointer interpreter will tra ns ition from the NORM state
into the NDF state.
Following three consecutive superframes wi th all ones in the V1 and V2 bytes, the pointer interpreter will tran-
sition from the NORM state into the AIS-V state.
When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1 (Table 181)), if 8 of the 10 I and D bits are correct
for a pointer decrement on the incoming V1 and V2 bytes, the pointer interpreter will transition from the NORM
state into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement
on the incoming V1 and V2 bytes, the pointer interprete r will transition from the NORM s tate into the DEC state.
When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer
increment on the incoming V1 and V2 bytes, the pointer interpreter will tr ansit ion from the NORM state into the
INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming
V1 and V2 bytes, the pointer interpreter will transition from the NORM state into the INC sta te.
The pointer inte rpreter will transit ion into the INC state based on the following condit ions:
When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer
increment on the incoming V1 and V2 bytes, the pointer interpreter will transition into the INC state. Otherwise,
if 3 of t he 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming V1 and V2 bytes, the
p o in ter inter p rete r will transition in to the IN C sta te.
The pointer inte rpreter will transition out of the INC sta te based on t h e following conditions:
If NDF is enabled on the incoming V1 and V2 bytes, the pointer interpreter will transition from the INC state into
the NDF state.
Following three consecutive superframes wi th all ones in the V1 and V2 bytes, the pointer interpreter will tran-
sition from the INC s tate into the AIS-V state.
Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transiti on from the
INC state into the NORM state.
Following any three consecutive, consistent, and val id pointers, the pointer interpreter will transition from the
INC state into the NORM state.
Following the number of consecutive invalid pointers programmed in b it s VT_INV_NTIME[3:0], the pointer in-
terpreter will transition from the INC state into the LOP-V state.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
435Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The pointer inte rpreter will transit ion into the DEC state based on the following conditions:
When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1 (Table 181)), if 8 of the 10 I and D bits are correct
for a p ointer decremen t on the incoming V1 and V2 bytes , the pointer interpreter will transition into the DEC
state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement on the incoming V1
and V2 bytes, the poin ter i nterpr eter will transition into the DE C state.
The pointer interpreter will transition out of the DEC state based on the following conditions:
If NDF is enable d on the incoming V1 an d V 2 bytes, the pointe r i nt e rpret er w ill tr ansiti on f rom the DE C state
into the NDF state.
Following three consecutive superframes with all ones in the V1 and V2 bytes, the pointer interpreter will tran-
sition from the DEC state into the A IS-V state.
Following three new consecutive, consistent, and valid pointers, the pointer interpreter will transiti on from the
DEC state into the NORM state.
Following any three consecutive, consistent, and val id pointers, the pointer interpreter will transition from the
DEC state into the NORM state.
Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0] (Table 183), the
p ointe r in terpreter will transiti o n fr o m the DEC sta te into the LOP-V state .
Pointer increments and decrements are monitored and counted internally. The perf ormance monitoring reset signal
transfers the count to the holding registers for pointer increment (VT_PTR_INC[12 8][3: 0] (Table 208)), and
pointer decrement (VT_PTR_DEC[128 ] [3:0 ] ( Table 208)) for microprocessor read and resets the running count
registers to 0. When SMPR_SAT_ROLLOVER = 1 (Table 67), the internal running counts will hold at their maxi-
mum value. Otherwise, the counts will roll over. The run ning count and holding register counts wi ll be forced to 0, if
the SPE mapper is requesting AUT O AIS or VT_LOP[128] = 1 (loss of pointer) (Table 177) or VT_AIS[128] = 1
(V T AIS) (Table 177) (o r VT_H4 LOM F = 1 (l oss of H4 multiframe alignment) (Table 176)).
LOP-V (VT_LOP) and AIS-V (VT_AIS) will be detected and reported t o the microprocessor. Both the LOP-V and
AIS-V conditions will contrib ute to the VT/TU mapper automatic AIS generation that is driven over a 28-bit internal
output bus to the cross connect ( XC). Any change in state of V T_LOP or VT_AIS will be reported to the micropro-
cesso r via VT_LOP_ D[128] and VT _A IS_D[1 28] (Table 169). Unles s the approp riate mask bit is set
(VT_LOP_M[128] or VT_AIS_M[128]) (Table 173), VT _LOP_D[ 128] = 1 or VT_AIS_D[128] = 1 wil l gener-
ate an interrupt.
A check for VT/TU s i ze m is mat ch e s is p er formed by comparing the expe cted VT/TU size bits (V T1.5 = 11,
VT2 = 10) with the actual received SS bits in the V1 byte. After three consecutive mismatches, size errors will be
reported with bit VT_SIZERR[128] (Table 177). A ny change in s tate of VT_SI ZE RR[128] will be reported with
bit VT_SIZERR_D[128] (Table 169). Unless the VT_SIZERR_M[128] (Table 173) mask bit is set,
VT_SIZERR_D[128] = 1 will generate a n interrupt.
The accepted pointer is stored and accessible by the microprocessor.
This block supports tribut ary loopback.
19.9 VT Ter m i nat i o n (V TTE R M )
The VTTERM logic bloc k (in Figure 39) will perform all necessary functions to support complete VT/TU termination.
The following features are impl emented.
19.9.1 V5 Termination
The V5 byte is checked for BIP-2 errors. If BIP-2 e rrors are detected, R EI -V is tr ansmitted in the V5 byt e of the cor-
responding trans mit VT, if e nabled by bit VT_REI_EN[128] = 1 (Table 198). BIP-2 errors and recep tion of REI-V
in the V5 byte is counted on a per-superfra me b a sis. B IP -2 error s can counted on either a bit or block basis
selected by bit, VT_BIT_BLOCK_CNT (1 = bit, 0 = block) (Table 181).
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
436 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
BIP-2 errors and REI-V recep tion are m onitored and counted internally. Th e performance monitoring reset signal
transfers the count to the ho lding registers for BIP-2 error count (VT_BIP2ERR_CNT[128][11:0]; Table 206), and
REI-V count (V T_REI_CNT[1 28][10:0] (Table 207)) for microprocessor read, and resets the ru nning count regis-
ters to 0. When SMPR_SAT_ROLLOVER = 1 (Table 67), the internal r unning counts will hold at their maximum
value. Otherw is e, the cou nts will roll over. The running count and holding register counts will be forced to 0, if the
SPE mapper is requesting AUTO AIS, VT_LOP[128] = 1 (loss of pointer), VT_AIS[128] = 1 (VT AIS)
(Table 177) o r VT_H4LOM F = 1 (los s of H4 multiframe alignment) (Table 176).
The V5 byte will be checked for received RFI-V via VT_RFI[128] bits (Table 177). New val u es will be latch ed int o
the register after the n umber of consecutive v alues programmed in bits VT_RDI_NTIME[3 :0] (Table 184) have been
received. A VT_RFI[128] change of state is reported by bit VT_RFI_D[128] ( Table 169). When operating in the
DS1 byte synchronous mode, RFI-V = 1 will f or ce DS1 RAI do wnstream to the framer . Unless the VT_RFI_M mask
bit (Table 173) is set, VT_RFI_D[128] = 1 will generate and cause an interrupt.
When ope rating in normal RDI-V mode (VT_RX_ERDI_EN[128] = 1 (Table 204, starting on page168 )), the V5
by te will be checked for received RDI-V and repo r ted v ia VT_RD I[128] bits (Table 177). New values will be
latched to this regi s ter after VT_RDI_NTIME[3:0] consecutive values have b een rece ived. A VT_RDI[128]
change of state i s reported via VT_RDI_D[128] (Table 169). Unless the VT_RDI_M[128] (Table 173) mask bi t
is set, VT_RDI_D[128] = 1 will generate and cause an interrupt.
When operating in enhanced RDI-V mode (VT_RX_ERDI_EN[128] = 0 (Table 204, starting on page168 )), the
V5 byte wil l be checked for received RDI-V and reported via VT_RDI[128] bit (Table 177). Ne w va lues will be
latched to this regis ter after VT_ERDI_NTIME[3: 0] (Table 184) consecutive ERDI-V values (V5 bit 8 and Z7 bits
57) h a v e been recei ved. A VT_ERDI[1 28][2:0] change of state is reported v ia VT_ERDI_D[128] (Table 169).
Unless the VT_ERDI_M[128] mask bit (Table 173) i s set, V T_ E RDI_D[ 128] = 1 will generate and cause an
interrupt.
The V5 byte VT/TU signal label will be monitored and reported to the microprocessor using bits
VT_LAB[128][2:0] (Table 177). New values will be lat c hed to the microprocessor after the number of consecutive
values programmed in bits VT_LAB_NTIME[3:0] (Table 184) have been received. An all zeros signal label will set
bit VT_UNEQ[128] (Table 177). Any change in state of VT_UNEQ[128] wi ll be reporte d t o the micro processor
via bit VT_UNEQ_D[128] (Table 169). Unless the V T_UNE Q_M[128] (Table 173) mask bit is set,
VT_UNEQ_D[128] = 1 will generate an interr upt. VT_UNEQ[128] will co ntribute to automatic AIS generation.
The latched signal label will be compared to the expected signal label. If the ex pected signal label is 001 or if
VT_UNEQ[128] is detected, the detection of PLM-V is disabled. Otherwise, any mismatch is r eported to the
micro processor via bit VT_PLM[128] (Table 177). Any change in s tate of VT_PLM[128 ] will be rep orted to the
micro processor via bit VT_PLM_D[128] (Table 169). Unless the VT_PLM_M [1 28] mask bit is set (Table 173),
VT_PLM_D[12 8] = 1 w ill generate a n interrupt.
19.9. 2 Z 6/ N2 Termi nation
For SONET applications, the Z 6 byte is monitored and presented to the microprocessor using bits
VT_Z6_BYTE[128][7:0] (Table 205) for growth and m o nitoring purposes only. The Z6 byte is updated to when
three consec ut ive consistent bytes are received. N2 is def ined for ta ndem connection appli cations per
ETS 300 417-1-1 and ITU-T G.707/G.783. Low-order tandem connection is not supported.
19.9. 3 Z 7/ K4 Termi nation
This te rmination will support enh anced RDI when bit VT_RX_ERDI_EN[128] = 1(Tab l e 204, starting on
page 168). The Z7/ K 4[3:1] byte will be monitored and reported to the microprocessor with bits
VT_ERDI[128] [2:0] (Table 177). New values will be latched to the microprocessor after the number of consecu-
tiv e v alues progr ammed in register bits VT_ERDI_NTIME[3:0] (Table 184) hav e been receiv ed. A change of state is
reported using bit VT_ERDI_D[128] (Table 169). Unless the VT_ERDI_M[128] (Table 173) mask bit is set,
VT_ERDI_D[128] = 1 will generate an interrupt.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
437Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The Z7/K4[7:4] byte will be monitored and reported to the microprocessor via bits VT_AP S[128][3:0] (Table 178).
New values will be latched to the microprocessor after the number of consecutive values programmed in bits
VT_ APS_NTIME[3 :0] (Table 184) have been received. A change of state is reported using bit VT_APS_D[128]
(Table 169). U n less the VT_A PS_ M[128] (Table 173) mask b it is set, VT_APS_D[128] = 1 will generate an
interrupt.
19.9.4 Payload Termination
Payload termination will support asynchronous, byte synchronous, and bit synchronous demappings for SONET
VT1.5s and VT 2s per
Bellcore
GR-253 and ANSI T 1.105.
Payload termination will support asynchronous, byte synchronous, and bit synchronous demappings for
SDH T U11s and TU12s per I TU-T G.707 a nd ET S 300 417 -4-1.
Demappin g modes are selected with bi ts VT _RX_MAPTYPE[128][3:0] (Table 204, starting on page168 ), as
defined in Table 555.
Table 555. R eceive VT/TU Demapping Sele c ti on
The payload termination provides an elastic store for r at e adoption. An elastic store o verflow is indicated in bit
VT_RX_ESOVFL_D[128] (Table 169). Unl e ss th e VT _ RX_ ESOVFL_M[128] mask bit is set (Table 173),
VT_RX_ESOVFL_D[128] = 1 will generate an interrupt.
When an o verflow condition exists, the read/write count will b e forced to the center of the FIFO . The FIFO is 64 bits
deep.
The payload termination circuitry will generate a gapped D S1/E1 clock (VT_TERM_CLK). Figure 41 and Fig ure 42
on page451 descri be the DS1 and E1 gapped clocking schemes, respectiv ely. A frame sync is generated and
transmitted from the de v ice coincident with the frame bit for DS1 and the MSB of time slot 0 for E 1 when demap-
ping a byte synchronous payload.
19.10 O utput S ign al S el ection (OU TSE L)
The OU TSE L l ogic block (in Figure 39 on page429 ) will perform all n ec essary functions t o overwrite the outgoing
DS1/E1 signals with the appropriate AIS clock, data, and frame synchronization.
VT_RX_MAPTYPE[128][3:0] (See Table 204.)Description
0 0 0 0 A sy nchronous VT1. 5/TU-11 (DS1 output)
0 0 0 1 A s y nc hronous VT2/TU-12 (E1 output)
0 0 1 0 Byte synchronous VT1.5/TU-11 (DS1 output)
0 0 1 1 B y te sync hronous VT2/TU-12 (E1 output)
0 1 0 0 B it synchronous VT1. 5/ TU-11 (DS1 outp ut)
0 1 0 1 B it synchronous V T2/TU-12 (E1 output)
01100111 Und efined, ge nerates AIS
1 0 0 0 Asynchronous VT2/TU-12 (DS1 outpu t)
1 0 0 1 B y te sync hronous VT2/TU-12 (DS1 o utput)
1 0 1 0 Bit synchronous VT2/TU-12 (DS1 output)
10111111 Und efined, ge nerates AIS
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
438 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
VT/TU mapper automat ic AIS, which is driven over a 2 8-bit internal output bu s to the c r oss connect (XC), is gener-
ated according to the following equation:
SPEMPR_AUTO_AIS
or
VT_LOP[128]
or
VT_AIS[128]
or
(VT_H4LOMF and (VT_LOMF_AIS_INH))
or
(VT_UNEQ[128] and (VT_UNEQ_A IS_INH))
or
(VT_PLM[128] and (VT _P LM_ AIS_INH))
or
(VT_J2TIM[128] and (VT_J 2TIM _AIS _IN H))
or
(VT_LOPS[128] and VT_LOPS_AIS_INH))
The output of the VT/TU mapper receive path will be as shown in Figure 43 on page451 and Figure 44 on
page 452.
19.11 J2 Byte Monitor a nd Termination (J2MON)
Th e J2M O N lo gic block ( i n Fig ure 39 on page429 ) will perform all necessary functions to monitor the incoming J2
trace identifier. The following features are implement ed:
J2 monitoring will support five different monitor ing modes defined by VT_J2MON_M ODE[128][2:0] Table 204
on pag e168:
VT_J2MON_MODE[128][2:0] = 000: this mode captures an incoming 16-byte sequence and stores it in
VT_J2BYTE_DET[128][116][7:0] (Table 209). TIM-V is disabled for this mode.
VT_J2MON_MODE[128][2:0] = 001: this mode captures an incoming 16-byte sequenc e with SDH framing
and s tores i t in VT_J2BYTE_DET[128][116][7:0]. TIM-V is disabled for this m ode.
VT_J2MON_MODE[128][2:0] = 010: this mode captures a constant 1-byte sequence and stores it in
VT_J2BYTE_DET[128][1][7:0] . TI M-V is di s abled for this mod e.
VT_J2MON_MODE[128][2:0] = 011: this mode monitors a 16-byte se quenc e with SDH framing and co m-
pares it to a pr ogrammable expected value. The expected value is programmed by the user using register bits
VT_J2BYTE_EXP[128][116][7:0] (Table 209). The hardware frames by looking for the b yte with the MSB
set to one, which indicates that the next byte is the s e cond byte of the message. CRC is verified based on the
value pro grammed in VT_J2BYTE_EXP[128][116 ][7:0]. T IM-V is enabled for this mode.
VT_J2MON_MODE[128][2:0] = 100: this mode monitors a constant 1-byte sequence and compares it to an
programmabl e expected value. The expected value is progr amme d b y the user using register bits
VT_J2BYTE_EXP[128][1][7:0]. T IM-V is enabled for this mode.
Trace ident ifier mismatch (T IM-V ) will be d etected following the number of consecutively errored sequences
(1-byt e or 16-byte sequences) programmed in bits, VT_J2_NTIME [3 :0 ] (Table 183), and reported to the micro-
processor via bit VT_J2TIM[128] (Table 177). If TIM-V is detected, the J2 byte monitor will transition into the
capture mode and star t searching for two consecutive consistent 1-byte or 16-byte sequences. Once two con-
secutive consistent sequences ar e detected, the J2 byte monitor will t ra nsition into the monito r mode and start
searchin g for the number of consecutive m ismatc hes programmed in register bits VT_J2_NTIME[3:0], on a per
1-byte or 16-byte sequence basis.
Once the hardware finds synchron i zation (VT_J2TIM[128] = 0), the new
sequence is latched into VT_J2BYTE_DET[128][116 ][7:0] (Table 209). The synchronization algorithm used
will not allow single bit errors to pa ss through to VT_J2BYTE_DET[128][116][7:0].
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
439Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Unless bit VT_J2 TIM_AIS_INH (Table 181) is set to a 1, VT_J2TIM[128] will co ntr ibute to automatic AI S gen-
eration.
Any change in state o f VT_J2TIM[128][116][7:0] wil l be reported in bit VT_J2TIM_D[128] (Table 169).
Unless the VT_J2TIM_M[128] (Table 173) mask bit is set, VT_J2TIM_D[128] = 1 will generate an interru pt.
19.12 Receive Signal ing (RX_VTSIG)
The RX_VTSIG logic b l ock (in Figure 39 on page429) will perform all necessary functions to extract and transmit
the received signaling bits when operating in DS1 byte-synchronous mode. The following features are imple-
mented:
The signal ing i s sent to the appropriate framer link selected by bits VT_RXSIG_CH_SEL[128][4:0] (Table 204).
VT_RXSIG_CH_SEL[128] [4:0] is a necessary duplication of the routing information programmed within the
cross conne ct (XC) block.
When VT _SYNC_PBIT[128] = 1 (Table 204 on page168 ), the R X_V TSIG bloc k wil l sync h ronize to the incom-
ing VT/TU ph ase indicat ion (P1, P0). Otherwise, VT_LO PS[128] (Table 177) and VT_LOPS_D[128]
(Table 169) will be for ced to 0.
P-bit phase synchronization (VT_LOP S[128] = 0) is declared following two consecutive nonerrored multi-
frames (48 frames). Loss of pha se synchronization (VT_LO P S[128] = 1) is declared following the number of
consec utive errored multiframes programmed i n bits VT_LOPS_ NTIME[3:0] (Table 182). Any change in
VT_LOPS[128] state will be detected and reported to the m icroprocessor with bi t V T_ LOPS_D[128].
If the loss of phase synchroniz atio n (VT_LO PS[128 ] = 1) conditio n exists and VT_LOPS_AI S _I N H = 0, DS 1
AIS is transmitted downstream and the signaling bits wi ll be forced to the value in SMPR_OH_DEFLT (Table 67)
in the MPU block. Otherwise (VT_LOPS[12 8 ] = 0), the VT_ RX_VT SIG logi c bloc k will behave as described in
Table 556 below.
Unless VT_LOPS_M[128] (Table 173) mas k bit is set, VT_LO PS_D[128 ] will generate an interrupt.
See Table 556 below for s ignaling behavior based on the receive status and control.
Table 5 56. Rx Signaling Behavior per Channel
* If the P1 and P0 bits are not used for phase indication and the F bit is not passed transpare ntly, the F bit is overwritten with the appropriate SF
or ESF framing pa tt e rn ba se d on a rand om sta rtin g pos itio n. Robb ed - b it si gn al ing w i ll not be ac c es sible un de r suc h a co ndit ion.
When operating in the ESF mode, the Ft bits will be overwritten with the ESF frame and the C and M bits passed transparently.
VT_SYNC_PBIT
[128]
(Table 204)
VT_WR_FBIT
[128]
(Table 204)
VT_SF_ESF
[128]
(Table 204)
VT_LOPS
[128]
(Table 177)
Action
0 0 X X Pa ss F-bi t transparently.
0 1 0* X Overwrite outgoing F bit with ESF pattern.
0 1 1 X Overwrite outgoing F bit with SF pattern.
11
00 Overwrit e outgoing F bit with ESF pattern.
1 1 1 0 Overwrite outgoing F bit with SF pattern.
1 X X 1 Transmit DS1 AIS downstream.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
440 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
19.13 Receive Lower-Order Path Overhead (R X_ LOPOH)
The RX_LOPO H l ogic block (in Figure 39 on page429 ) will perform all necessary functions to store and transmit
the ov erhead associated with each VT/TU , specifically, V5, J2, Z6/N2, Z7/K4, and the O bits. The f ollowing features
will be implemented:
V5, J2 , Z6/N2, Z7/K4, and the 0 bit s, on a per VT basis, a re stored for one compl et e superframe and tran smitted
during the next superframe . R E I and RDI values received from the SPEMPR and TMUX are stored on a per-
frame basis and transmitted during the next frame. REI and RDI values are latched during the A1 time of the of
the received SONET frame.
When operating in UPSR mode (bit VT_UPSR = 1 (Table 173)), REI, RDI, and ERDI values in the V5 and Z7
bytes will be modified based on the receive status. See Table 561 on page 444 for automatic generation require-
ments.
The REI and RDI received from the SPEMPR and TM UX blocks is the first data type transmitted in each frame
as a burst of 34 bits on the rising edge o f the SPE mapper R x clock (6.48 MHz). All other data ty pes a re transmit-
ted as a b urs t of 224 bits on the rising edge of the SPE mapper Rx clock.
Note: The number o f valid bits transmitted i s dependent upon the VT/TU group types. i.e., f ull VT2 equals 168 bits.
The firs t frame of the f our frame multiframe contains data types 001, 010, 011, and 100, respectivel y. The sec ond
frame of the multiframe contains data types 001, 101, an d 11 0, respectively. The remaining fr ames contai n only
data type 001 . Data type headers will be defined as shown in Table 557 below.
A l l data type s mu st be transmi tte d within 500 µs.
Table 557. Data Type Header Definitions
* A ll overhe ad byt es will be t rans mi t ted fr om MS B to L SB .
O bits are r eceived in the byte following J2 and the byte following Z6/N2 in asynchronous mode. The O bi t s will be tran smitt ed in th e or d er of
whi ch they are r e ce ive d with in a VT, st arting w ith th e MSB of the ni bble foll owing t he J 2 byte.
Figure 45 o n p a g e452, contains the RX_LOPOH bloc k serial channel format and timing.
19.14 VT/TU Ma pper Transmit Path Re quiremen ts
This section d e scribes all necessary functions of the transmit logic (see Figure 39 on page429, left to right ).
Input selector (INSEL)
Transmit elastic store (TES)
Virtual tributary generator (VTGEN)
Virtual tributar y multiplexer (VTMUX)
Transmit DS1/E1 signaling (TX_VTSI G)
Transmit low- order path overhead (TX_LOPOH)
Header Description
0 0 0 Reserved.
0 0 1 TMUX and SPE mapper RDI/REI.
0 1 0 V 5 byte, 28/21 bytes starting with VT 1*.
0 1 1 J 2 byte, 28/21 bytes starting wit h VT 1.
1 0 0 Z6/N2 byte, 28/21 bytes starting with VT 1.
1 0 1 Z7/K 4 byte, 28/21 bytes starting with VT 1.
110
O bits, 28/21 bytes s tarting with VT 1.
1 1 1 Reserved. Data will be ignored.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
441Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.14.1 I nput Selector (INSEL)
The INSEL logic block (in Figure 39 on page429 ) w ill perform los s of clock ( L OC) , AIS, and los s of fr am e sync
detection. The following fea tures will be implemented:
The incom ing DS 1/E1 signal will be retimed immediately using the selected DS1/E1 clock edge
(VT_TX_CLKEDGE[128] (Table 198)). If VT_TX_CL KEDG E[ 1 28] = 1, the rising edge of the i ncoming
DS1/E 1 CLOCK is used to retime the signal; otherwise, the falling edge is used.
The inc oming DS1/E1 signals will be checked for a digital loss of clock (LOC ) condition and repor t e d wi th bit
VT_TX_LOC[128] (Table 179). Any change in state of VT_TX_LOC[128 ] will be reported to the microproces-
sor via b it VT_TX_LOC_D[128] (Table 171). Unless the VT_TX_LOC_M[128] (Table 175) mask bit is set,
VT_ TX_LOC_D = 1 will generate an interrupt.
If LOC is detected (VT_TX_LOC[128] = 1), DS1/E1 A IS will be inserted in the app ropriate transmit path VT.
DS1/ E1 AIS consist s of a valid VT/TU pointer, valid VT/T U overhead, and an all ones payload.
In the byte-synchronous mode, t he incoming DS1/E1 frame sync is monitored for the loss of frame sync condi-
tion (LOFS) and reported in bit VT_L OFS[128] (Table 179). I n fr ame sync, (VT_LOFS[12 8] = 0) is declared
following three c onsecutive valid frame sync pulses (375 µs). Loss of frame sync (VT_LOFS[128] = 1) is
declared follo wing six consecutive frame sync mismatches (750 µs). Any change in state of VT_LOFS[128] will
be reported in b it VT_LOFS_D[128] (Table 171). Un less t he VT_LO FS_M [128] (Table 175) m ask bit is set,
VT_LOFS_D[128] = 1 will g enerate an interrupt.
If LOFS is detect ed (VT_LOFS[128] = 1), AIS-V is inserted in the appropriate VT location. AIS-V consists of
wr iting an all ones pattern into the entire V T, including V1~4.
The incom ing DS 1/E1 signal will be checked for the A IS co ndit ion and reported in bit VT_TX_AIS[128]
(Table 179). Any change in stat e of V T_TX_AIS[128] is reported in bit VT_TX_AIS_D[128] (Table 171).
Unless the VT _TX_AIS_M[128] (Table 175) mask bit is set, VT_TX_AIS_D[1 28] = 1 will generat e an inter-
rupt.
If the incoming data is DS1, AIS will be declared if there are less than n ine ze ro s ou t o f 8 192 cl o c k p e ri ods . I f the
in comin g data is E1, AIS will be declared if there are less than three zeros in each of two con secutive 512-bit
per iods and cleared when each of two consecutive 512-bit periods contain more than two zeros.
Transmit mapping modes are shown in Table 558 below.
Table 558. Transmit VT/TU Mapping Selection per Channel, VT _TX_MAPTYPE[128][3:0]
VT_TX_MAPTYPE[128][3:0] (See Table 198.) Description
0 0 0 0 As ync hronous VT 1.5/TU -11 (DS1 input).
0 0 0 1 A s y nchronous VT2/TU-12 (E 1 input).
0 0 1 0 Byte synchronous VT1.5/TU-11 (DS1 input).
0 0 1 1 Byte synchronous V T2/TU-12 (E1 input).
0 1 0 0 Bit synchrono us VT1.5/TU-11 (DS1 input).
0 1 0 1 B it synchronous VT2/TU-12 (E1 input).
01100111 Und efined, generates VT1.5/TU-11 UNEQ-V.
1 0 0 0 Asynchronous VT2/ TU-12 (DS 1 input).
1 0 0 1 Byte synchronous V T2/TU-12 (DS 1 input).
1 0 1 0 Bit synchrono us VT2/TU -12 (DS1 input).
10111111 Und efined, generates VT2/TU-12 UNEQ-V.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
442 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
19.14.2 Transmit Elastic Store (TES)
The TES logic b l ock (in Fi gure 39 on pag e429) will perform all fun ction s necessary to synchronize the incoming
DS1/E1 or VT1.5/VT2 signals to the local STS-1/STS-3 clock.
This logic block will support the following modes of operation:
Async hronous, bit synchronous, and byte synchronous mapping fro m DS1/E1 input.
Async hronous, bit synchronous, and byte synchronous mapping from loopback VT1.5/VT2 input.
The TES logic block has programmable stuffing thresholds. The value programmed in the VT_HIGH_THRES[6:0 ]
(Table 210) controls positive j ustification. The value programmed in the VT_LO W_THRES[6:0] (Table 210) controls
negative ju stification. The recommended v alues for nontributary loopback (VT_LB_SEL[128] = 0 (Table 198)) are
VT_HIGH_THRES[6:0] = 0x28 and VT_LOW_THRES[6:0] = 0x2 7. Otherwise ( VT_LB_SEL[128] = 1), the r ec-
ommen ded values are VT_HIGH_THRES[6:0] = 0x05 and V T_LOW_THRES[6:0] = 0x04 .
The TES logic blo ck monitors for elastic store overflow co nditions and report s w ith bit VT_TX_ES OVFL_E[128]
(Table 171). Unless the VT_TX_ESOV FL_M[128] (Table 175) mask bi t is set, VT_ TX_ESOVFL_E [128] = 1 will
generate and interrupt.
19.14.3 V irtual Tributary Gen erator (VTGEN )
The VTGEN logic block (in Figure 39 on page429 ) performs all fun ction s necessary to map all possible DS1/E1
inputs to the appropriate VT/TU structure. This i nc ludes VT/TU pointer generation, positive/negative stuffing,
VT/TU overhead gen eration/insert ion and DS1/E1 dat a insertion. The following features will be implemented:
This logic block will support the following modes of operation:
Asynchronous
Byte sync hronous
Bit synchronous
19.14.4 Pointer Generation
The pointer generat or will support the following features when operating in asynchronous or bi t sy nchronous
mode:
If transmit AIS-V is not requested, the follow ing requirements apply:
1. A fixed pointer value of decimal 78 is generated for VT1.5/ TU-11 mappings.
2. A fixed pointer value of dec im al 105 is generated fo r VT2/TU-12 mappings.
3. The VT size field will be set to binary 11 for VT1.5/TU-11 mappings.
4. The VT size field will be set to binary 10 for VT2/TU- 12 mappings.
5. The new data flag (NDF) set to bina r y 0110 for VT 1.5/VT2 mappings.
6. V 3 and V4 is s et to the selected overhead default (SMPR_OH_DEFLT (Table 67) i n t he micro processor inter-
face block) for all mappings:
If transmit AIS-V is requested, V1~V4 will be forced to 0xFF.
Bit stuffing, using the C and S bits, will be performed based on the fullness of the elastic store.
The pointer generatio n will support the following features when operating in byte synchronous mode:
If transmit AIS-V is not requested, the follow ing requirements apply:
1. The pointer value is generated bas ed on the locat ion of the incoming frame sync for VT1.5/VT2 m apping s.
2. The VT size field is set to 11 for VT1.5/TU-11 mappings.
3. The VT size field is set to 10 for VT2/TU-12 mappings.
4. The new data flag (NDF) i s set to 0110 for normal VT1.5/VT2 mappings. If a NDF is requeste d, the NDF will
be set to 1001 (bin ary).
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
443Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
5. If an in c rement is r equeste d, the pointer bytes, V1 and V2, are programmed with the I-bits inverted. The
pointer action byte, V3, will be programmed to the selected default (microprocessor bit
SMPR _FXD_S TFF_DEF LT ( Table 67)), as well as the byte directly following V3. Ho we ver , when incrementing
from 139 to 0 for VT2 mapping, the pointer generat or sends out NDF-V indication with the correct point er (0)
instead of the incre ment indication.
6. If a decrement is requested, the pointer b ytes, V1 and V2, will be programmed with the D bits in verted. The
pointer action byte, V3, wi ll be programmed to actual customer data. However, when decrem enting from 0 to
139 for VT2 mapping, the pointer generator sends out NDF-V indi ca tion with the correct pointer (139) instead
of the decrement indi cation.
7. The V4 byte will be programmed to the selected overhead default (microp ro cessor bit SM PR_OH_DEFLT) for
all mappings.
If transmit AIS-V is requested, V1~V4 will be for ced to 0xFF.
Overhead Byte Generation (V5, J2, Z6/N2, Z7/K4, and O bits). This p o rtion of the VTGEN logic block will gener -
ate and i nse rt the V5, J2, Z 6/N2, and Z7/K4 overhead bytes into the appropriate virtual tri butary. O bits are only
accessible in the asynchronous and bit synchronous mode s.
V5 Overhead Byte Format/G eneration. The V5 overhead byte will be mapped as defi ned in Table 559.
Table 5 59. V5 O verhead Byte Form at
The following features are supported:
Whe n operating in tributa ry loopback mode (bit VT_LB_SEL[128] = 1 (Table 198)), all bits are simply passed
through transparen tly.
When operating in UPSR mode VT_V5_INS[128] = 1 (Table 199), only a new B IP-2 and signal label is gener-
ated and inserted while all other bits are programmed fr om t he received LOPOH serial acce ss channel storage.
BIP-2 will be automatically calculated and inserted. The signal label is determined based on bits
VT_TX_MAPTYPE[128][3:0] (Table 198) and automati c ally inserted.
AIS-V is f orced by setting b it, VT_AIS_INS[128] (Table 198) to a 1. AIS- V consists of overwriting the entire VT,
inclu din g V1~4 , with al l ones.
Bits VT_ TX_MAPTYPE[128][3:0] may be programmed to insert an UNEQ-V signal label. See Tab le 562, VT
Signal Label Definition on page445 .
User-controlled bits VT_BIP2ERR_INS[128 ][1:0] ( Table 199) will force BI P-2 errors for t roubleshoot ing pur-
poses. See Table 560 below for error i ns ertion modes.
Table 560. BIP-2 Error Insertion M odes
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8
BIP-2 REI-V RFI-V SIGNAL LABEL RDI-V
VT_BIP2ERR_INS[128][1:0] (See Table 199.) Action
00 No B IP-2 errors inserted.
01 Insert continuous BIP-2 error s.
10 Insert BIP-2 error s based on microprocessor register bit
SMPR _BER_INSRT (Table 65).
11 No B IP-2 errors inserted.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
444 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
When operating in UPSR mode VT_V5_INS[128] = 1, REI-V is set to the value in the received LOPOH serial
access channel storage when enabled by bit, VT_ REI_EN[128] =1 (Table 198). When opera ting in normal
mode VT_V 5_INS[128] = 0, REI-V is set to 1 for any detected BIP-2 errors in the corresponding received VT
when enabled by bit, VT_REI_EN = 1. Otherwise, the REI-V bit is set to 0.
RF I-V is s upported. Manual control of the RFI-V bit is enabled with bit VT_RFI_EN[128] = 1 (Table 198). T he
RFI-V bit is programmed with the value of bit VT_RFI_INS[ 128] (Table 200). When VT_RFI_EN[128] = 0 and
operating in UPSR m ode VT _V 5_INS[128] = 1, RFI-V is set to the value in the received LOPOH serial access
channel storage. Otherwise, RFI-V is automatically gener ated and inserted as defined in Table 561 on page 444.
When operat ing in b yte synchr onous mode, RFI- V is also based on the incoming DS1 RAI from the framer.
One bit RDI-V is supported when bit VT_TX_ERDI_EN[128] = 0 ( Table 198). Manual control of the RDI-V bit is
enabled with bit VT_RD I_EN[128] =1 (Table 198). The RDI_V bit is programed with the value of bit
VT_RDI_INS[128] (Table 200). When VT_RDI_EN[128] = 0 and operating in UPSR mode
VT_V5_INS[128] = 1 (Table 199), RD I-V is set to the value in the received LOP OH serial access channel stor-
age. O therwise, RDI-V is automatically generated and inse rted as d efined in Table 561 below.
Enhanced RDI will be supported when bit VT_TX_ERDI_EN[128] = 1. Manual control of the ERDI bits 5, 6,
and 7 of the Z7 byte is enabled with bit VT_ERDI_EN[128] = 1 ( Table 198). T he ERDI bits, in bit positions 5, 6,
and 7 of the Z7 byte are programed with the value of bits VT_ERDI_INS[128][2:0] (Table 200), r e spective ly.
When VT_ERDI_EN[128] = 0 and operating in UPSR mod e VT_V5_INS[128] = 1 (Table 199), ERDI-V is set
to the value in the received LOPOH serial access channel storag e. Otherw ise, bits 5, 6, and 7 of the Z7 by te are
automatically generated and inserted a s defined in Table 561 below.
Table 561. RDI-V, RFI-V, and REI-V Au tomatic Generation
Remote Error Indication
REI-V Anomaly/defect.
0 No BIP-2 errors detected.
1 BIP-2 errors detected.One Bit Remo te Failure Indication
RFI-V Anomaly/defect.
0 No alarms.
1 AIS-V, LOP -V, U NEQ -V, PLM- V or automatic AIS detected from S PEM PR .
One Bit Remote Defect Indication
RDI-V Anomaly/defect.
0 No alarms.
1 AIS-V, LOP-V, UNEQ -V, o r TIM-V.
Enhanced Remote Defect Indication (
Bellcore
GR-253)
RDI-V
(V5 bit 8) RDI-V
(Z7 bit 5) RDI-V
(Z7 bit 6) RDI-V
(Z7 bit 7) Anomaly/defect
0 0 0 1 No def ects.
0 0 1 0 PLM-V (VT payload mismatch).
1 1 0 1 AIS-V or LOP - V.
1 1 1 0 UNEQUIP-V or TIM-V.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
445Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The signal label will be automatically generated based on bits VT _TX_MAPTYPE[128][3:0] (Table 198). The
values suppo rted are defined in Table 562.
J2 Overhead Byte Insertion . Three modes of programming the J2 by te as defined in Table 563 will be supported.
Table 563. J2 Overhead Byte Insertion Modes Per Channel
Z6/N2 Overhead Byte Insertion. The modes of programming t he Z6/N2 byte, de fined in Table 564 are supported.
Table 5 64. Z6/N2 Overhead Byte Insertion Modes Per Channel
Table 562. VT Signal Label Definition
V5(5) V5(6) V5(7) Description
0 0 0 Unequipped
0 0 1 Equipped Nonspecific
0 1 0 Asynchronous DS1
0 1 0 Asynchronous E1
0 1 1 Bit s ynchronous DS1
0 1 1 B it sy nchronous E1
1 0 0 Byte synchronous DS1
1 0 0 Byte synchronous E1
Others Undefined
VT_J2_INS[128][1:0]
(See Table 199.) Insertion Mode
00 Def ault based on SMPR_OH_DEFLT (Table 67).
01 Microprocessor insert (VT_J2BYTE_INS[128][116] [7:0 ] (Table 203)).
10 LOPOH serial access channel inse rt.
11 Def ault based on SMPR_OH_DEFLT.
VT_Z6_INS[128][1:0]
(See Table 199.) Insertion Mode
00 Default based on SMPR_OH_DEFLT.
01 Insert from bits VT_Z6BYTE_INS[128][7:0] (Table 201).
10 LOPOH serial access channel insert.
11 Reserved.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
446 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
Z7/K4 Overhead Byte Insertion. Three modes of programming the Z7/K4 APS bits are supported and controlle d
by register bits VT_Z7_INS[1 28][1:0] (Table 199) as defined in Table 565.
Tabl e 565. Z7/K4 Overhe ad By te Insertion Modes Per Channel
Note: When bits Z7_INS[128][1:0] = 01, the AP S bi t s in the Z7/K4 byte (bits 1:4) are based on
VT_APS_INS[128][3:0] (Table 200), while Z7/K4 bits 5:7 are either automa tically inserted (when
VT_ERDI_EN[128] = 0 (Table 198)and VT_TX_ERDI_EN[128] = 1 (Table 198)) or insert ed based on
VT_ERDI_INS[128][2:0] (Table 200) (when VT_ERDI_EN[128] = 1). In all other modes, al l bits are ov er-
written.
O-bit Insertion (Asynchronous /Bit Sy nc hronous Mode s Only) . Three modes of programming the O bits,
defined in Table 566 will be supported.
Table 566. O-Bit Insertion Modes Per Channel
VT Mappings. Detailed mapping format s are shown in Table 567 through Table 573, where:
I = information bit.
O = overhead bit.
R = fixed stuff bit.
P = phase bit.
S = signaling bit.
F = frame bit.
S1, S2 = stuff bits.
C1, C2 = stuff indication bits.
V 5 = VT overhea d byte.
J2 = VT p at h trace byte.
Z6/N2 = growth/tandem byte.
Z7 /K4 = ERDI/ APS b yte.
V1, V2 = poin te r bytes .
V3 = pointer action byte.
V4 = reserved.
VT_Z7_INS[128][1:0]
(See Table 199.) Insertion Mode
00 Def ault based on microprocessor bits SMPR_OH_D EFLT (Table 67).
01 Insert from bits VT_APS_INS[128][3:0] (Table 200) and
VT_ERDI_INS[128][2:0] (Table 200).
10 LOPOH serial access channel insert.
11 Def ault based on microprocessor bits SMPR_OH_DEFLT.
VT_O_INS[128][1:0]
(See Table 199.) Insertion Mode
00 Def ault based on microprocessor bits SMPR_OH_DEFLT.
01 Insert from bits VT_OBIT_INS[128][7:0] (Table 201).
10 LOPOH serial access channel insert.
11 Def ault based on microprocessor bits SMPR_OH_DEFLT.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
447Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Table 5 67. Asynchronous VT1.5
*Rval ue based on
SMPR_FXD_STFF_DEFLT (Table 67).
Tabl e 568 . Bit Sync hronous
VT1.5
*Rva lue based on
SMPR_FXD_STFF_DEFLT (Table 67).
Table 569. Byte Synchronous
VT1.5
*Rva lue based on
SMPR_FXD_STFF_DEFLT (Table 67).
V1
V5
RRRRRRIR*
Byte 1
.
.
Byte 24
V2
J2
C1C2OOOOIR
Byte 1
.
.
Byte 24
V3
Z6/N2
C1C2OOOOIR
Byte 1
:
Byte 24
V4
Z7/K4
C1C2RRRS1S2R
Byte 1
.
.
Byte 24
V1
V5
10RRRRIR*
Byte 1
.
.
.
Byte 24
V2
J2
10OOOOIR
Byte 1
.
.
.
Byte 24
V3
Z6/N2
10OOOOIR
Byte 1
.
.
.
Byte 24
V4
Z7/K4
10RRRRIR
Byte 1
.
.
.
Byte 24
V1
V5
P1P0S1S2S3S4FR*
Byte 1
.
.
.
Byte 24
V2
J2
P1P0S1S2S3S4FR
Byte 1
.
.
.
Byte 24
V3
Z6/N2
P1P0S1S2S3S4FR
Byte 1
.
.
.
Byte 24
V4
Z7/K4
P1P0S1S2S3S4FR
Byte 1
.
.
.
Byte 24
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
448 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
Table 570. Asynchronous VT2
*Rval ue based on
SMPR_FXD_STFF_DEFLT (Table 67).
Tabl e 571 . Bit Sync hronous VT2
*Rva lue based on
SMPR_FXD_STFF_DEFLT (Table 67).
Tabl e 572 . Byt e Synchronou s
VT2
*Rva lue based on
SMPR_FXD_STFF_DEFLT (Table 67).
V1
V5
RRRRRRRR*
Byte 1
.
.
.
Byte 32
RRRRRRRR
V2
J2
C1C2OOOORR
Byte 1
.
.
.
Byte 32
RRRRRRRR
V3
Z6/N2
C1C2OOOORR
Byte 1
.
.
.
Byte 32
RRRRRRRR
V4
Z7/K4
C1C2RRRRRS1
S2 Byte 1[6:0]
.
.
.
Byte 32
RRRRRRRR
V1
V5
10RRRRRR*
Byte 1
.
.
.
Byte 32
RRRRRRRR
V2
J2
10OOOORR
Byte 1
.
.
.
Byte 32
RRRRRRRR
V3
Z6/N2
10OOOORR
Byte 1
.
.
.
Byte 32
RRRRRRRR
V4
Z7/K4
10RRRRRR
Byte 1
.
.
.
Byte 32
RRRRRRRR
V1
V5
P1P0RRRRRR*
R
Channels 115
Superframer
Alignment/Signal
Channels 1630
RRRRRRRR
V2
J2
P1P0RRRRRR
Ra
Channels 115
Superframer
Alignment/Signal
Channels 1630
RRRRRRRR
V3
Z6/N2
P1P0RRRRRR
Ra
Channels 115
Superframer
Alignment/Signal
Channels 1630
RRRRRRRR
V4
Z7/K4
P1P0RRRRRR
Ra
Channels 115
Superframer
Alignment/Signal
Channels 1630
RRRRRRRR
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
449Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Table 573. VC-11 to TU-12 Conversion
*Rval ue based on SM PR_F XD_STFF_DEFLT (Table 67).
V1/V2/V3/V4
V5/J2/Z6/Z7
RRRRRRIR/
P1P0S1S2S3S4FR*
Fixed stuff/even parit y
Byte 1
Byte 2
Byte 3
Fixed stuff/even parit y
Byte 4
Byte 5
Byte 6
Fixed stuff/even parit y
Byte 7
Byte 8
Byte 9
Fixed stuff/even parit y
:
:
:
Fixed stuff/even parit y
Byte 16
Byte 17
Byte 18
Fixed stuff/even parit y
Byte 19
Byte 20
Byte 21
Fixed stuff/even parit y
Byte 22
Byte 23
Byte 24
Fixed stuff/even parit y
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
450 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
19.14.5 VT Multiplexer (VTMUX)
The VTMUX logic block (in Figure 39 on page429 ) performs all f unc tions necessar y to place the appropriate V T
data onto the outgoing mapper transmit path data bus.
Bits VT_T X_GRP_TYPE[6:0] (Table 180) are programmed to determine whether the outgo ing tributary is a
VT1.5/TU-11 or a VT2/TU-12.
See Table 551 through Table 554 on page 430 through page 431 for VT/TU mapping formats.
19.14.6 Transmit Signaling (TX_VT S IG )
The TX_VTSIG logic bl ock (in Figure 39 on page429 ) will perform all necessary functions to retrie ve the signaling
phase and data from the framer and insert it int o the outgoing VT/TU.
Note: This block is only enabled when operating in the byte synchronous mode.
The signaling is received from the appropriate framer link selected with the value programmed in bits
VT_TXSIG_CH_SEL[128][4:0] (Table 202). VT_TXSIG_CH_SEL[128][4:0] i s a necessary dupli cation of the
routing information programmed within the cross connect (XC) block.
The TX_V TSIG block deter mines whether the phase and signaling bits are to be used in the V T/TU mapping. If
the phase or signali ng bits are not being used (VT_USE_PBIT [1 28] = 0, VT_US E_SBI T[128] = 0
(Table 202)), they will be set to S MPR_F XD_ S TF F_DEFLT (Table 67) in the microprocessor interface block.
Stomping of the F bit is contro lled by VT_ USE_FBIT[128] = 0 (Table 202). Re fer to Table 574 below for pro-
gramming signa ling inserting.
Table 574. Framing Byte Gen eration Per Channel
*Xvalue based on SMPR_OH_DEFLT (Table 67), Rval ue based on SM PR_F XD_STFF_D EFL T (Table 67).
19.14.7 Transmit Lower Path Overh ead (TX_LOPOH)
The TX_LOPOH logic block (in Fi gure 39 on page 429) p erforms al l nec essary functions t o receive and store the
low-order pa th overhead as well as the REI and RDI values from the ex t ernal LOPO H s erial access channel. The
following functions are supported:
The TX_LOPOH logic block retimes all inco ming signals on the falling edge of the e xter nal input pin
LOP OHCLKI N (AC13).
The source of the exter na l i nputs LOPOHDATAIN (AC14), L OPOHVALIDIN, and LOPOHCLKIN i s required to
hold the LOPOHVALIDIN at 0 for a minimum of eight LOPOHCLKIN cycles. The TX_LOPOH logic block monit ors
the incom ing LO POHVALIDIN and detects failure cond itions. A failure exist s if there ar e less than eight
LOP OHCLKIN cycles between a falling edge of LOPOHVALIDI N a nd the next rising edge, or if the i nt ernal b it
counter reaches its maximum count, for the active data type, and LOPOHVALIDIN does not tran sition to 0.
VT_USE_FBIT[128]
(See Table 202.) VT_USE_PBIT[128]
(See Table 202.) VT_USE_SBIT[128]
(See Table 202.) Action
0 0 0 VT/TU frame byte* = XXXXXXXR
0 0 1 VT/TU frame byte* = XXS1S2S3S4XR
0 1 0 VT/TU frame byte* = P1P0XXXXXR
0 1 1 VT/TU frame byte* = P1P0S1S2S3S4XR
1 0 0 VT/TU frame byte* = XXXXXXF R
1 0 1 VT/TU frame byte* = XXS1S2S3S4FR
1 1 0 VT/TU frame byte* = P1P0XXXXFR
1 1 1 VT/TU frame byte* = P1P0S1S2S3S4FR
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
451Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The first three bits received, following a rising edge of external input pin LOPOHVALIDIN ( AB14), defines the
data type on the incoming stream. Data types are defined in Table 557, Data Type Header Definitions on
page 440.
LOP OH failure is reporte d in bit VT_LO POH_FAIL_E (Table 170). If an LOPOH failu re exists (indi cated by
VT_LOPOH_FAIL_E = 1), the incoming data will be ignored . Unles s the mask bit VT_LOPOH_FAIL_M
(Table 174) is set, VT_LOPOH_FAIL_E = 1 will generate an interrupt.
Figure 46 o n p a g e453 conta ins the T X_LO P OH b lock serial c hannel form at and timing.
19.15 V T Mappe r Syste m I nte rface Timing
19.15.1 V T M apper DS1/E1 Receive Interface (to System Interface)
Figure 41 and Figure 42 sho w the minimum, typical , and maximum gaps of the clock and data out of the VT map-
per for DS1 and E1. An asym metric V T/TU m appe r c lock (VTMPR_RCLK) is derived from an internal 6.48 MHz
clock. The rising edge of this VT mapper clock is delayed by one 6.48 MHz clock cycle with r espect to the data
(VTMPR_RDATA) and is one cycle in width.
5-8986(F)r.2
Figure 41 . D S1 Mo de Gapped Clocking Scheme
5-8987(F)r.2
Figure 42. E1 Mode Gapped Clocking Schem e
Figure 43 and Figure 44 show a typical frame of VT mapper output. The VT mapper 8 kHz fram e sync output
(VTMPR_R FSY NC) is coincident with the DS1 frame-bit position and with the MSB of E1 time slot 0.
Note: The VT mapper 8 kHz frame sync is onl y t ransmitted for byte synchronous mappings.
5-8988(F)r.1
* Max im um g ap be tw ee n r i si ng c lo ck ed ges = 184 8 ns.
Figure 4 3. DS1 Inte rface
VTMPR_RCLK
VTMPR_RDATA
1232 ns 1848 ns
616 ns
154 ns154 ns
VTMPR_RCLK
VTMPR_RDATA
462 ns 924 ns 1386 ns
154 ns 154 ns
VTMPR_RCLK
VTMPR_RDATA
VTMPR_RFSYNC
DS0 #1 DS0 #2
F
DS0 #1 DS0 #2
F
125 µs
154 ns 616 ns 1232 ns*
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
452 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
5-8989(F)r.1
* Max im um g ap be tw ee n r i si ng c lo ck ed ges = 138 6 ns.
Figure 44. E1 Interface
19.15.2 V T M apper DS1/E1 Transmit Interface (from System I nterface)
The VT mapper input clock and data will meet the timing requirements of G.703, 1.544 MHz ± 50 ppm and
2.048 MHz ± 50 p pm. The VT mapper will accommodate up to ± 200 ppm to allow ope ration under maintenance or
trouble conditions. The clock edge to retim e the data is programmable with VT_TX_CLKEDGE[128] bit
(Table 198). The receive data is clocked on the rising edge when VT_TX_CLKE DGE[128] = 1 and the falling
edge when VT_TX_CLKEDGE[128] = 0.
See VT Mapper Timing on page 45 for VT mapper interface and clock timing nu mbers.
19.16 VT Mapper Lower-Order Path Overhead Interface Timing
19.16.1 VT Mapper Receive Path Overhead Interface Description
Figure 45 cont ains the VT mapper receive path overhead serial channel format and timing.
5-8327(F)r.2
Figur e 45. VT Mapper Receive Path Ov erhead Serial Access Channel
VTMPR_RCLK
VTMPR_RDATA
VTMPR_RFSYNC
TS #0 TS #1 TS #1 TS # 1
125 µs
154 ns 462 ns 924 ns*
TMUX/SPEMPR RDI/REI VTMPR VT#128 V5(MSB>LSB) VTMPR VT#128 J2(MSB>LSB) VTMPR VT#128 Z6(MSB>LSB)
FRAME #1 OF MULTIFRAME
125 µs
MINIMUM OF 8 CYCLES 154 ns
LOPOHCLKOUT
LOPOHVALIDOUT
LOPOHDATAOUT 001 010 011 100
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
453Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The Super Ma pper provides acces s to all necessary func tions associated the receive path overhead for each
VT/TU, sp ecifically V 5, J2 , Z6/ N2, Z 7/K4, and the O bits. T he following features are supported:
V5, J2, Z6/N2, Z7/K4, and the O bits , on a per VT bas is, will be stored for one complete superframe and transmit-
ted out on external output pin LOPOHDATAOUT (AB17) during the next superframe. REI and RDI values
rece ived fro m the SPE mapper and TMUX w ill be stored on a per-frame basi s and transmi tted during the next
frame. RE I and RDI values will be latched during the A1 time o f the of the received S ONET frame.
When operating in unidirectional path switch ring (UPSR) mode (VT_UPSR = 1 (Table 181)), REI, RDI and ERDI
values in the V5 and Z7 bytes will be modified based o n the recei ve st atus. See Table 557, Data Type Header
Definitions on pag e440, for automatic generation requirements.
Each data type out of LOPOHDATAOUT will be transmitted s eria lly as a burst of 227 bits (VT1.5 mode) or
171 bi ts (VT2 mode) on the r ising edge of the clock, LOPOHCLKOUT, which is driven out on external pin AB15.
The REI and RDI received from the SPE mapper and TMUX will be transmi tted serially as a burst of 37 bits on
the ris ing e dged of the clo ck, LOPOHCLKOUT .
The LOPOHVALIDOUT signal (driving external output pin AB1 8) is set to 1 when vali d data is being transmitted.
Following transm is sion of any complete data type L OPOHV ALIDOUT is held at 0 for at least eight
LOPOHCLKOUT cycle s.
The first 3 bits transmitted, following a rising edge of LOPOHVALIDOUT, make up the data type header. Data
type 001 will be the f irs t data type transmitted in each frame. V5, J2, and Z6 are trans mitted respectively in the
first frame of the superframe. Z7 and the O bits are tra nsmitted respectivel y in the second frame of the super-
frame. Note that the LOPOHDATAOUT data types are only transmitted in the first and second frames of the four
frame multiframe.
All data types must be t ransmitted within 500 µs.
19.16.2 VT Mapper Transmit Path Overhead Interface Description
Figure 46 contains the VT mapper transmit path overhea d s erial channe l format and timi ng.
5-8329(F)r.2
Figure 46 . VT Map per Transmit Path Overhead Serial Acces s Channe l
TMUX/SPEMPR RDI/REI VTMPR VT#128 V5(MSB>LSB) VTMPR VT#128 J2(MSB>LSB) VTMPR VT#128 Z6(MSB>LSB)
FRAME #1 OF MULTIF RAME
125 µs
MINIMUM OF 8 CYCLES 154 ns
LOPOHCLKIN
LOPOHVALIDIN
LOPOHDATAIN
LOPOH BITCNT 0 1 2
37
012
226
012
226
012
226
001 010 011 100
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
454 Agere Sy stem s Inc.
19 VT/TU Mapper Functional Description (continued)
The VT mapper transmit path overhead will perf orm all necessary functions for the low-order path ov erhead as well
as the REI and RDI values from the internal SPE mapper and TMUX blocks. The following are supported:
The interface clocks all incoming signals on t he falling edge of external input L O POHCLKIN (pin AC13).
T h e first 3 bits received , following a risin g e dge of external input pin LOPOHVALIDIN (AB14), will define the data
type on the incom ing strea m. Data types are defined in Tab l e 557, Data Type Header Definitions on page 440.
The source of the external input LOPOHDATAIN ( AC14), LOPOHVALIDIN, and LOPOHCLKIN signals is required
to hold the L OPOHVALIDIN at 0 for a minimum of eight LOPOHCLKI N cycles. The VT mapper w ill monitor the
inc oming LOPOHVALIDIN and detect failure condition s. A failure exists if there are less than eight LOPOHCLKIN
cycles between a falling edge of LOPOHVALIDIN and the next rising edge, or if the LOPOH bit count
(LOPOH BITCN T) reaches it s maximum count for the active data type and LOPOHVALIDIN does not transition
to 0.
LOP OH failure is reporte d in bit VT_LO POH_FAIL_E (Table 170). If a fai lure exis ts (VT _LOP OH _FA IL_E = 1),
the incoming data will be ignored and unless the mask bit, VT_LOPOH_FAIL_M (Table 174), i s se t, the LOPOH
failure will ge nerate an interrupt.
The V T mapper logic block will latch new R EI and RDI values for the TMUX and SPE mapper during the A1 time
of the SONET/ SD H frame.
The timing figures in this section are functional ti ming diagrams. S ee VT Mapper Timing on page 45 for VT mapper
interface and clock timing numbers.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
455Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description
Ta ble of Conte nts
Contents Page
20 M13/M23 MU X/DeMUX Block Functional Description .................................................................................... 455
20.1 M 13 Introduction ..................................................................................................................................... 456
20.2 Features ................................................................................................................................................. 456
20.2.1 M13 Applications .......................................................................................................................... 456
20.3 Block Diagrams ...................................................................................................................................... 457
20.4 M13 Functional Description .................................................................................................................... 460
20.5 M13 Multiplexing Path ............................................................................................................................ 460
20.5.1 M12 Multiplexers .......................................................................................................................... 460
20.5.2 D S1/E1 Interface .......................................................................................................................... 460
20.5.3 Loopback Select ...................................................... ....... ....... ...................................................... 461
20.5.4 D S1/E1 FIFOs .............................................................................................................................. 461
20.6 DS2 Frame Generation ................ ....... ............ ....... ............ ....... ....... ............ ....... ....... ............................ 461
20.6.1 DS1 Mode .................................................................................................................................... 461
20.6.2 E1 Mode ....................................................................................................................................... 462
20.7 M23 Multiplexer ...................................................................................................................................... 463
20.7.1 D S2 Interface ............................................................................................................................... 463
20.7.2 D S2 Select Logic ......................................................................................................................... 463
20.7.3 Overhead Bit Generation (GR-499) .......................................................... ....... ..... ....... ....... . ........ 463
20.7.4 M23 Mode ................................................................................................................................... 464
20.7.5 C -Bit Parity Mode ......................................................................................................................... 464
20.7.6 FEAC ........................................................................................................................................... 465
20.7.7 FEBE ............................................................................................................................................ 466
20.7.8 Terminal-to-Termina l Path Mai nte nance Data Link ..................................................... . ............... 466
20.8 AIS/Idle Insertion .................................................................................................................................... 467
20.9 B3ZS Encoder (GR-499) ..... ................ ..... ..... .......................... .......................... ..................................... 467
20.10 DS3 R-to-T Loopback ........................................................................................................................... 468
20.1 0 .1 DS 3 Transmit P at h Interface ..................................................................................................... 468
20.11 M13/M23 Dem ultipl exer ........................................................................................................................ 468
20.11.1 DS3 LO C and LOS .................................................................................................................... 468
20.11.2 DS3 T-to-R Loopba ck ....... ....................... ..................... . .................. . .................. . ...................... 469
20.11.3 M23 Dem ultipl exer ..................................................................................................................... 469
20.11.4 M12 Dem ultipl exers ................................................................................................................... 472
20.11.5 DS1 Mode .................................................................................................................................. 472
20.11.6 E1 Mode ..................................................................................................................................... 473
20.11.7 Output Sele ct Logic .................................................................................................................... 474
Figures Page
Figure 47. M13 Block Diagram............................................................................................................................. 457
Figure 48. M12 Funct ional Block Diagram...........................................................................................................458
Figure 49. M23 Funct ional Block Diagram...........................................................................................................459
Fig ure 50. DS3 NSMI T ransmit Operation............................................................................................................ 462
Fig ure 51. DS3 NSMI Receive Operation............................................................................................................. 462
Tables Page
Tabl e 575. C-Bit Parity Descrip tion and Transmit Value ..................................................................................... 465
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
456 Agere Sy stem s Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.1 M13 Introduction
The M13 block is a highly configurable multiple xer/demultiplexer. It can ope rate as an M13 in either the C-bit parity
or M23 m ode, a mixed M13/M23, or an M23.
In the C-bit parity mode, the M13 provides a far- end alarm and control (FEAC) code generator and re ceiver, an
HDLC transmitt er and receiver, and automatic far-end block error (FEBE) generation and detection.
Each interna l M12 MUX/deMUX and the M23 MUX/deM UX may be c onfigured to operate as independent MUX/
deMUX.
The M13 supports nu mero us automatic monitoring functio ns. It can provide an interrupt to the control syst em, or it
can be o perated in a polled mode.
20.2 Features
Configurable mu ltiplexer/d e mu ltiplexer for up to 2 8 DS1 signals, 2 1 E 1 signals, o r 7 DS2 signals t o/from a DS3
signal.
M23 or C-bit parity mode operation.
Seven configurable independent M12 multiplexer/demultiplexers for up to 28 DS1 signals or 21 E1 signals
to/from 7 DS2 signals.
Provisionable time sl ot selection for DS1, E1, and DS2 insertion or drop.
DS3 multiplexer capable of generating alarm indication si gnal (AIS ), remote alarm indicator (RAI), idle, far-end
alarm and control (F E AC), an d far-end block error (FEBE) signals.
Automatic DS3 receive monitor that det ec ts loss of signal (LOS), bipolar violation (BPV), excessive zeros (EXZ),
out of frame (OOF), severely errored fram e (SE F), A IS, RA I, FE AC codes, P -bit pari ty errors, C-bit parity e rrors,
and FEBE indications.
HDLC transmitter with 128-byte data bu ffer and HDLC receiver with 128-byte data FIFO for the C-bit parit y path
maintenance data link.
DS3, DS 2, DS1, and E1 loopback and loopback reque st generation.
Complies wi th T1.102, T1. 107, T1.231, T1.403, T1.404, GR-499, G. 747, and G.7 75.
20.2.1 M13 Applications
M13 and M 2 3 multiplexers.
M13 multiplexers supporting G .74 7 format.
Indepe ndent M 12 multiplexers.
Digita l access cross connects (DACS).
DS1/E1/DS2 broadcast.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
457Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.3 Block Diagra ms
The following diagram il lu strates th e high-level interface between M13 block an d other function al b locks.
5-9013(F)r.1
Figure 47. M13 Block Diagram
M13 MULTI P LEXER
M13 DEMULTIPLEXER
CROSS
CONNECT
CONTROL INTERFA CE
DS1XCLK
DS2AISCLK
DS1/E1/DS2
LOOPBACK DS3
LOOPBACK
E1XCLK
M1 3 AU TOAI S
SMPR_TDS3CLK
SMPR_TDS3CLK_EN
M13_DS3CLK
M13_DS3NEG
SMPR_RDS3CLK
SMPR_RDS3CLK_EN
SMPR_DS3NEG_BPV
SPEMPR_AUTOAIS
RCBSYNC
RCBCLK
RCBDATA
RDLCLK
RDLDATA TCBSYNC
TCBCLK
TCBDATA
TDLCLK
TDLDATA
SMPR_DS3POS_DAT
M13_DS3POS_DATA
NSMI_RELATED
DNSMI_RELATED
DEVICE I/O
DEVICE I/O
SPE
CROSS
CONNECT
DS3
DS1/E1
DS2
MAPPER
DEVICE I/O
M1 2 DS 1 DATA /
M2 3 DS 2 DATA /
M12 DS2 DATA/CLOCK
CLOCK/STFREQ
CLOCK/STFREQ
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
458 Agere Sy stem s Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
5-9014(F)r.1
Figure 48. M12 Functional Block Diagram
XC_DS1DATA[14] M12 MU X
#1
DS1XCLK
M12 MUX
#7
DS1/E1
LOC & AIS
MONITOR
#[14]
M13_DS1DATA[14]
M13_DS1DATA[2528]
XC_DS1CLK[2528]
XC_DS1CLK[14]
M13_DS1CLK[14]
M13_DS1CLK[2528]
E1XCLK
XC_DS1STFREQ[2528]
M13_AUTOAIS[14]
M13_AUTOAIS[2528]
XC_DS1STFREQ[14]
M13_DS1M12CLK[14]
DS1/E1
LOC & AIS
MONITOR
#[2528]
DS1/E1
LB
SELECT
#[14]
M13_DS1M12CLK[2528]
XC_DS1DATA[2528]
4
OUTPUT
SELECT
#[14]
DS1/E1
OUTPUT
SELECT
#[2528]
DS1/E1
DS1/E1
LB
SELECT
#[2528]
M1 2 DE M U X
#1
XC_DS2DMXCLK[17]
XC_DS2M12CLK[17]
XC_DS2DMXDATA[17]
M13_DS2M12DATA[17]
M13_M12DS2DATA[17]
DEVICE I/O
DS1/E1 FROM
CROSS CONNECT
DS1/E1 TO
CROSS CONNECT
M12 DEMUX
#7
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
44
4
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
459Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
5-9015(F)
Figure 49. M23 Functional Block Diagram
M13_DS3NEG
SMPR_RDS3NEG_BPV
DS2
SELECT
#1
TCBDATA
TDLDATA
RDLDATA
RCBDATA
DS3
LOOP-
BACK
SELECT
DS3
LOOP-
BACK
SELECT
AIS/
IDLE
INSERT
TCBCLK
TCBSYNC
TDLCLK
RDLCLK
RCBSYNC
RCBCLK
SMPR_RDS3CLK
SMPR_RDS3CLK_EN
SMPR_TDS3CLK
M23
MUX B3ZS
ENCODE
SPEMPR_AUTOAIS
M23
DEMUX B3ZS
DECODE
LOC &
DETECT
LOS
MICROPROCESSOR
INTERFACE AND
REGISTER MAP
M13_M12DS2
DNSMI_RELATED
DS3
LOOP-
BACK
SELECT
M23
DEMUX B3ZS
DECODE
DS2 LOC
& AIS
MONITOR
#[17]
XC_DS2M23
XC_DS2M23
XC_DS2ST
DS2AISCLK
M13_DS2
M13_DS2
OUTPUT
SELECT
#[17]
DS2
M13_DS2M12
M13_DS2M23
SMPR_TDS3CLK_EN
M13_DS3POS_DATA
SMPR_RDS3POS_DATA
DEVICE I/O
DEVICE I/O
DS2
SELECT
#7
7
DEVICE I/O
NSMI_RELATED
7
DATA[17]
DATA[17]
CLK[17]
FREQ[17]
CLK[17]
DATA[17]
DATA[17]
CLK[17]
7
7
7
DS3 FROM/TO
CROSSCONNECT
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
460 Agere Sy stem s Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.4 M13 Fun ctiona l Description
In the descriptions below, some of the re g i ster bits exist for each of the DS1, E1, or DS2 signals. The names of
these register bits hav e a lower case x or a y suffix to show that there are actua lly 28 or 7 of them, respectively.
20.5 M1 3 M ult i plex in g Pa t h
The re are seven M12 multiplexers and one M23 multiplexer on the tran smit side of this M13 block and all of them
can operate independent ly. Twenty-eight DS1 inputs in groups of four, or twenty-one E1 input signa ls in groups of
three can feed into individua l M12 MUXs, while the M23 M U X can take DS2 signals fr om outputs of M12 MUXs, or
direct DS2 inputs, or loopback deMUX ed DS2s.
20.5.1 M12 Multiple xers
M12 m ultiplexers have four operation modes provisionable through M13_M12_MODEy[1:0] (Table 263):
M13_M12_MODEy[1 :0] = 00: the M 12 operat es as the first stage of M13 multiplexing. It tak es 4 DS1s
(M13_DS1_E 1Ny = 1(Table 263)) or 3 E1s (M13_DS1_E1Ny = 0) and MUXes int o a DS2 signal which will be fed
into the M23 MUX. In this mode, the DS1/E1 clocks are independent inputs to the block. There should be no valid
DS2 input (XC_DS2M23DATAy). This is the d efault mode.
M13_M12_MODEy[1:0] = 01: the M12 operates as an independent mu ltiplexer. It t ake s 4 DS1s
(M13_DS1_E1Ny = 1) or 3 E1s (M13_DS1_E1Ny = 0) and MUXes into a DS2 signal which will be sent directly to
the DS2 output (M13_D S2M12DATAy) of the block and not be passed to M 23 MUX input. In this mode, the
DS1/E1 clocks are independent in put s to t he block and a DS2 input clock (XC_DS2M12CLKy) is required.
M13_M12_MODEy[1:0] = 1 0: the M12 operates as an independen t multiplexer. It takes 4 DS1s (register bit
M13_DS1_E1Ny = 1) or 3 E1s (register bit M13_DS1_E1Ny = 0) and MUXes into a DS2 signal which will be sent
directly to the DS2 outpu t (M13_DS2M12 DAT Ay) of the bloc k and not be passed to M23 MUX input. I n this mode,
t he associated DS 1/E1 clocks are outpu ts from the block and derived from t he DS2 input cloc k
(XC_DS2M12CLKy).
M13_M12_MODEy[1:0] = 11: the M12 is idl e. The output from this M12 mul tiplexer will be held low.
20.5.2 DS1/E1 Interface
The incoming DS1/E1 clock signals (XC_DS1CLK[ 281] ) are first checke d for activity or loss of clock (LOC). This
is rep orted to the microprocessor v ia bits M13_DS1_LOC[28:1] (Table 247). Once LO C is detected, AIS will be
inserted into the associated DS1/ E1 channel using the clock from external pins, DS1XCLK/E1XCLK (AD16/AC17)
(Table 3).
The incoming DS1/E1 data signals are retimed immediately b y the associated clocks . The edge of the clocks that is
used to retime the data is user provisionable to either the rising edge (M13_RDS1_EDGEx = 1 (Table 264)) or fal l-
ing edge (M13_RDS1_EDGEx = 0).
After being ret imed, the incoming data stream is checked for AI S. When the input is DS1, the M13 will declare AI S
if the input data is logic 0 for fewer than 9 out of 8192 clock periods (T1.231). When the input is E1, AIS is decl ar ed
if there are less than 3 zeros in each of two consecutive 512-bit periods and cle ared when each of two consecutive
512-bit per iods contains more than 2 zeros (G. 77 5). If AIS is dete cted on an y of t he DS1/E1 inputs
(XC_DS1DATA[281]), the associ ated M 13_DS1_AIS_DE T[28:1] (Table 248) bit is set.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
461Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.5.3 Loopback Select
DS1/E1 loopback selectors allow DS1 or E1 received within the DS2 or DS3 i nputs from the deMUX path to be
loope d back. This loopback can be perfo r med automatically if M13_AUTO_ FLB (Table 259) or M13_AUTO _LB
(Table 259) bits are set. Regardless of the state of M13_A UT O_FLB and M13_AUTO_LB, the user can force a DS1
or E1 loop back by setting M13_SEL_DS1_LBx (Table 264) to 1.
When M13_AUTO_LB = 1, loopback of channel x is activated if M 13_DS1_LB _DE Tx = 1 ( Table 249) (see Sectio n
20.11.4 M12 Demultiple xers on page 472). In the C-bit pari ty mode, automatic loopback can also be activated as a
result of rec ei ving a loopback request through the far-end al arm and control (FEAC) channel. Such a reques t is
indicated by status bit M13_D S1_F EAC_LB_DETx (Table 251) (see Section 20.7. 6 FEAC on page 465 ). If status
bit M 13_DS1_ FE AC_LB_DETx = 1 and M13_A UTO_FLB = 1, loopback o f channel x is activated.
20.5.4 DS1/E1 FIFOs
When M13_M12_MODEy[1] = 0 (Table 263), t he 4 selected DS1 or 3 selected E1 signals for each M12 M U X are
fed into single bit 16-word-deep FIFOs that are used to sync h ronize the selected si gna ls to the DS2 frame genera-
tion clock. The DS2 /DS3 tra nsmi t clock (XC _DS2 M12CLKy) i s used to derive the clock s ource for DS2 f rame gen-
eration blocks. In the C-bit parity mode, all DS2 stuff opportunities are used, which produces a nominal 6.306 MHz
DS2 clock. In th e M23 mo de, the DS2 stuffing rat io is fixed such th at the DS2 cl oc k i s nominal ly 6.312 MHz.
The fill level of each FIFO dete rmines the need for bit stuffing its DS1/E1 input. This block allows the M13 to accept
DS1/E1 signals with nominal frequency offsets of ±130 ppm and up to 5 unit intervals peak jitter.
When operating in M13_M12_MODEy[1:0] = 10 m ode, the FIFOs are not used.
20.6 DS2 Fram e Gene ration
Each M12 MUX generates a DS2 frame either from 4 D S1 signals multiplexed as specified in T1.107 and G R -499-
CORE when M13_DS1_E1Ny = 1 (Table 263), or from 3 E1 signals multiplexed using the for mat specified in ITU-T
recommendation G.7 47 when M13 _DS1_E1Ny = 0.
When M13_M12_MODEy[1:0] = 01/10 (Table 263), each M12 MUX is operating independently. In this case, the
output DS2 signals are re timed by the associated clocks. The edge of the clocks that is used to retime the data is
user provisionable to either the rising edge (M 13_DS2M12_EDGEy (Table 275) = 1) or falling edge
(M13_DS2M12_EDGEy = 0). The AIS signal can be inserted into any DS2 output by setting
M13_DS2_FORCE_AISy (Table 271) to 1.
20.6.1 DS1 Mode
In the DS1 m ode, the 4 signals interleaved to generate the yth DS2 signal are the outpu ts from DS1/ E1 loopback
sele cto rs 4y 3, 4y 2, 4y 1, and 4y. Bits multiplexed into the second and fourth channels (fr om se le c to rs 4y 2
and 4y) are inverted before being interleaved (T1.107) when bit M13_MUXCH2_4_INVy = 1 (Table 263).
Loopback requests for a DS1 ch annel are indi cated by inverting the third C bit for that channel (T1.107). This is
done when bit M13_DS1_LB_REQx is set to 1 (Table 263). The 4 M13_DS1_LB_REQx bits that affect the y
th DS2
are 4y 3, 4y 2, 4y 1, and 4y.
The X bit is se t to the inverse of the remote alarm indication (RAI) bit (T1.107) M13_DS2_R AI _SEND y (Table 265).
For testing purp oses, th e M fram e a li g nm e n t s ignal (normally 011) is generated with the last bit inv erted (010) if
M13_DS2_M P INVy i s set (Table 267), and the M-subframe alignment s ig nal (01) is generated as (00) if
M13_DS2_FINVy i s set (Table 268).
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
462 Agere Sy stem s Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.6.2 E1 Mode
In the E1 mode, the 3 signal s interleaved t o generate th e yth DS2 signal are the outputs from DS1/E1 loopback
selectors 4y 3, 4y 2, and 4y 1.
Although it is not part of the G.747 standard, loopback requests for an E1 channel can be indicated as in the DS1
mode by inverting the third C bit for that channel. This is done if the M13_DS1_LB_REQx bit is set. The 3
M13_DS1_LB _RE Qx bits t hat af fect the yth DS2 are 4y 3, 4y 2, and 4y 1.
The remote alarm indication (RAI) bit and the rese rved bit are set to the valu e of M13_DS2_RAI_SENDy and
M13_DS2_RS V_S END y register bits, (Table 266) resp ectively (G.747).
For testing purposes, the frame al ignment signal (normally 111010000 as specified i n G .747) is generated w i th the
last bit inver ted (111010001) if M13_DS2_FINVy is se t, and the pa rity bit is inverted if M13_DS2 _MPINVy is set.
The first parity bit after a 0 to 1 transition of SMPR_BER_INSR T (Table 65) is also in verted if M13_DS2_P_BERy is
set to 1 (Table 269).
0781(F)
Figure 50 . D S3 NSMI Transmit Operation
0782(F)
Figure 51. DS3 NSMI Receive Operation
UNUSED
FRAME BIT
VARIABLE
LINE_TXCLK29
TXDATAEN
TXSYN C (OPTIONAL)
LINE_TXDATA29
DS3POSDATAOUT
UNUSED
FRAME BIT
VARIABLE
LINE_RXCLK29
RXDATAEN
RXSYNC (OPTIONAL)
LINE_RXDATA29
DS3POSDATAOUT
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
463Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.7 M23 M u lti p lexe r
The M23 multiple xer generates a transmit DS3 frame and fills the inf ormation bits in the frame with data either from
the 7 DS2 select bloc ks when M13_NSMI_MODE = 0 ( Table 277) or from the serial pa yload input XC_NSMI_D ATA
(when M13_NSMI_MODE = 1). It generates t he f rame usin g either the SMPR_TDS3CLK or the SMPR_RDS3CLK
input clocks. In the rec eive loop timing mode (M13_LO OP_TIME = 1 (Table 259)), the received clock,
SMPR_RDS3CL K, is selected. Otherwise, SMPR_TDS3CLK is used f or DS3 frame generation. SMPR_TDS3CLK
is monitored for loss of clock, which is reported through bit M13_TDS3_LOC (Table 225).
The s erial data interf ace, when enabled (M 13_NSMI_MODE = 1), generates a clock M13_NSMI_CLK and an
enable M13_NSMI _EN for accept ing D S3 payload d ata XC_NSMI_DATA. A sync pulse, in reference to and ahead
of t he first M bit within a DS3 fr ame, is al so generated. The offs et from the sync pulse to the first M bit is program-
mable through bits M13_NSMI_SP_ OFFSE T[7:0] (Table 261).
The M23 MUX can be provisioned to operate in either the M23 mode (M13_M23_CBP = 1 (Table 260)) or the C-bit
par ity mode (M13_M23_CBP = 0).
An unframed all ones data str eam is generated if M13_TDS3_FORCE_ALL1 is set to 1 (Table 276).
20.7.1 DS2 Interface
The clocks associated with input DS2 signals can be either inputs to the M23 MUX (M13_M23CLK_MODE = 0
(Table 276)) or output s from the M23 MUX (M13_M 23CLK_MODE = 1).The incoming DS2 clock signals are
checked for activity or loss of clock (LOC). T his is repor t ed to the microprocessor via bits M13_ XC_DS2_LOC[7:1]
(Table 238). In case LOC is detected, AIS will be inserted into the associated DS2 channel using DS2AISCLK
(pin E10).
The incoming D S2 data signals (XC_DS2M23DATA[71]) are reti med immediately by the as sociated clock s. The
edge of the clocks that is used to retime the data is user provisionable to either the risi ng edge
(M13_RDS2_E DGE y = 1 (Table 283)) or falling e d ge (M13_RDS2_ EDGEy = 0 ).
After being retimed, the incoming data stream is checked for AIS. The M13 will declare AIS if the input data is 0 for
fewer than 5 clock cycles in each of two conse cutive 840 clock periods. The AIS is no t cleared until t here are more
than 4 zeros in each of two consecutiv e 840-bit per iods (G.775). If AIS is detected on an y of DS2 inputs, the asso-
ciated M13_XC_D S2 _AIS_DET[7:1] bit is se t (Table 239).
20.7.2 DS2 Select Logic
The selection of DS2 signal s o urce for each DS2 ti me slot is controlled by M13_AUTO_LB (Table 259),
M13_DS2_LB _DE Ty (Table 244), M13_SE L_DS 2_LBy (Table 282), and M13_M12_MODEy (Table 263) bits.
When M13_AUTO_LB = 1 and M13_ DS2_LB_DETy = 1, th e DS2 signal fro m time slot y in the received D S 3 signal
is looped back into time slot y of the transmitted DS3 signal (see C-Bit Processing on page 470). The user can also
force a loopback by setting M13_SEL_DS2_LBy to 1. DS2 loopback should not be done in the C-bit parity mode.
If a loopback is not acti ve, the DS2 signal selector is controlled by bits M13_M 12_MODEy[1:0]. If register bits
M13_M 12_M ODE y[1 :0] = 00, the output of M12 multiplexer y is chosen for the yth D S2 time slot in the transmitte d
DS3 signal; otherwise, the input DS2 signal XC_DS2M23DATAy is selected fo r the yth DS2 time slot in t he transmit-
ted DS3 signal.
20.7.3 Overhead Bit Generation (GR-499)
For testing purp oses th e F b its, M bits, and P bits can be generated with errors. The fram e alignment signal (F-bit
pattern t hat is normally 1001) is genera ted with the last bit inverted (1000) if M13_DS3_FINV (Table 276) is set.
The mult ifram e alignment signal (M-bit pattern that i s normally 010) is generated as (011) if M13_DS3_MINV
(Table 276) is set.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
464 Agere Sy stem s Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
The parity bi ts (P bits ) are generated as odd rather than the normal even pa rity if M13_DS3_PINV (Table 276) is
set. Bot h P bits within the first DS3 frame af ter a 0 to 1 transition of SMPR_BER_INSR T (Table 65) are a lso
inverted if M13_DS3_P_B ERy (Table 277) is set to 1.
The X b its are set to th e inverse of the remote alarm indication (RAI) bit (GR-499 ) M13_DS3_RAI_SEND
(Table 277).
C-bit transmission is a func tion of whether the M13 MUX/deM UX is in the M23 mode or t he C-bit parity mode.
20.7.4 M23 Mode
Please refer to M13_M23_CBP = 1 in Table 260. The information bits in the DS3 frame are drawn from the 7 DS2
select blocks . If M 13_M23CLK_MODE = 0 (Table 276) and a select block is in the loopback or direct DS2 input
state, the selected DS2 mus t be synchronized to the DS3 frame generation clock. To do this, the M 13 conta ins
7 D S2 F IF Os each with a depth of 8. The fill level of each FIF O determines the need for bit stuffing it s DS2 input.
When M13_M23CLK_MODE = 0 and DS2 select b locks are not in the lo opback or direct DS2 input state, the
select ed DS2s ar e generated using the DS3 frame generation c lock. In this case, a fixed stuffing ratio is used for
the DS2s in order to produce a nominal 6.312 MHz DS2 cl ock rate.
When M13_M23CLK_M ODE = 1, the FIFOs are not used and DS2 stuff request inputs (XC_DS2STF REQ[71])
will determine when stuff bi ts are needed.
The three C bits in each M-subframe of the DS3 frame are stuff ind ication bits. If the stuff opportunity bit in an M
su b frame is filled by a DS 2 bit, the fi rst and second C bits in that M-subframe are transmitted as zeros. If the stuff
opportunity bit in an M - subframe is fille d with a stuff bit, th e first and second C bits in that M-subframe are transmit-
ted as ones.
The third C bit in each M- su bframe is normally transmitted with the same value as the first and second C bits. How-
eve r, if M 13_DS2_LB _RE Q y = 1 ( Table 281), the third C bit i s transmitted as the inver se of the first two C bits
(which indicates a loopback request for DS2 channel y).
20.7.5 C-Bit Parity Mode
Please refer to M13_M23_CBP = 0 in Table 260. The M23 MUX ca n operate in the C-bit parity mode under the fol-
lowing two circumstanc es:
When M13_M23CLK_MODE = 0 and 28 DS1 or 21 E1 signals are bei ng MU Xed into the DS 3.
When M13_M23CLK_MODE = 1 and 7 DS2 signals are being MUXed in to the D S3.
In the C-bit parity mod e, every DS2 stuffing opport unity is filled with a stuff bit. Because stuffing is not used for syn-
chronization, the selected DS2s cannot come directly fr om the M13 inputs, and the selected DS2s cannot be
loope d back from the M23 demultiplexer. The 21 C bits in each DS3 frame are no t requ ired as stuffing indicators.
Their use is desc r ibed in Table 575 on page 465.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
465Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
Table 575. C-Bit Parity Description and Transmit Valu e
20.7.6 FEA C
The thir d C bit of each DS 3 frame provides a far-end alarm and control (FEAC) signal. The use of this signal and
FEAC code words are de fined in T1.107 and GR-499-CORE.
When the FEAC signal is not active, it is transmitted continuously as a 1. The user can provision the M13 to trans-
mit cont inuous ones by setting M13_TFEAC_CTL[1:0] to 00 (Table 278).
Active FE AC signals consist of repeating 16-bit code words of the form 0 x5x4x3x2x1x0 0 11111111, where xi can
be a 1 or a 0. The code words are transmitted right to left one bit each DS3 frame for 16 c ons ecutive frames.
Alarm a nd Status Signals. EAC alarm and status si gnals should be transm itted c ontinuously for the du ration of
the condition being reported, or for a minimum of 10 repetit ions of the code word. FEAC signals are transmitte d
continuously by se tting M13 _TFEAC_CTL[1:0] to 01, and M13_TFEAC_C O DE[5:0] to x5x4x3x2x1x0 (Table 278),
where x5x4x3x2x1 x0 is the appropriate value for the alarm or status code word.
Control Signals. EAC control signals are defined for activating or deac tivating a loopback. Code words for loop-
back activation, deactivation, and specifying the type o f loopback can be transmitted using the s ame metho d as
described above for alarm and status signals. Alternatively, the user may provision the M13 to automatically send
the activate or deactivate commands.
In order t o activate a loopback, the user may set M13_TFEAC_CTL[1:0] to 11, and M13_ TFEAC_CODE[5:0] to
x5x4x3x2x1 x0 , where x5x4x3x2x1x0 is the appropriate value for the loopback code word. The M13 will then trans-
mit 10 repetitions of the activate code word, 0 000111 0 11111111 followed by 10 repetitions of
0x5x4x3x2x1x0 0 111 11111. After transmitting this 40 octet s equence, it will se t M13_T FEAC_DONE to 1
(Table 217).
In order to deactivate a loopback, the user ma y set M13_ TFEAC_CTL[1:0] t o 10, a nd M13_TFEAC_CODE[5:0] to
x5x4x3x2x1 x0 , where x5x4x3x2x1x0 is the appropriate value for the loopback code word. The M13 will then trans-
mit 10 repetitions of the deactivate code word, 0 011100 0 11111111, followed by 10 repetitions of
0x5x4x3x2x1x0 0 111 11111. After transmitting this 40 octet s equence, it will se t M13_T FEAC_DONE to 1.
C-Bit Number Description Transmit Value
C1 C-Bit Parity Identification 1.
C2 Networ k Req uirem ent s Bit If M13_CBIT2_ACT = 0 (Table 277), the C2 bit is set to 1.
If M13_CBIT2_ ACT = 1, th e transmit value o f C2 i s input
through pin TCBDATA (E12).
C3 Far-End Alarm and Control (FEAC) See FEAC below.
C4C6,
C16C21 Unused If M13_UNUSED_ACT = 0 (Table 277), a ll are tra ns mitted
as 1.
If M13_U NUS E D_ACT = 1, the transmi t valu es are input
through pin TCBDATA (E12).
C7C9 CP Bits (path DS3 parity) S et to the same value as the P bits.
C10C12 Far-End Block Error (FEBE) Bits See Section 20.7.7 FEBE on page 466.
C13C15 Terminal-to-Terminal Data Link See Section 20.7.8 Terminal-to-Terminal Path Maintenance
Data Link on page 466.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
466 Agere Sy stem s Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.7.7 FEBE
C bits 10, 11, and 12 provide a far- end block error (FEBE) in dication. Each fra me of the rec eived DS3 s ignal is
checked for errors in the F - bit or M-bit framing sequences and fo r errors in the CP-bit path parity. If no errors are
f o und, t he FEBE bits are set to 111 in the next transmitted DS3 frame. If one or more errors are detected, the FEBE
bits are transmitted as 000. The user can force t h e transmission of FEBE error indications by setting
M13_FEBE_ERR to 1 (Table 277). This causes all DS3 frames to be transmitted wit h the FEBE bits set to 000,
regardless of whether or not errors were detected in the received DS3 signal.
20.7.8 Terminal-to-Terminal Path Maintenance Data Link
C bits 13, 14, and 15 can be used as a 28.2 kbit/s data link. If the data link is not used, the user should set
M13_TDL_ACT to 0 (Table 279), which causes all ones to be t r ansmitted. When M13_TDL_ACT = 1 and
M13_TDL_NTRNL = 0 (Table 279), the data transmitted on this link comes directly from the M13 input pin, pin
TDLDATA (E8). Otherwise (M13_TDL_ACT = 1 and M 13_TDL_NTRNL = 1), the data link is controlled by th e inter-
nal HDLC transmitter.
HDLC Transmitter. The internal HDLC transmitter circuitry is composed of two 64-byte data buffers (registers
M13_TDL_0DATA_R[063] (Table 298) and M13_TDL_1DATA_R[063] (Table 299)), a CRC-16 frame check
sequence (FCS) generator , and control circuits. The HDLC transmitter continually outputs flag bytes (01111110)
with MSB fi rst until the user sets M13_TDL_NTRNL_A CT to 1 (Table 279). Following the completion of the ne xt flag
byte, the HDLC transmitter begins transmitting the first byte of the first data buffer (register
M13_TDL_0D ATA_R[0]), which should be filled by the user with the first byte of the address field. (For LAPD mes-
sages, this byte contains the service access point identifier , the command/response bit, and a zero extended
address bit.)
Bytes from the data buffer are transmitted least significant bit (LS B ) first (GR-499). The HDLC con troller inserts a 0
after any sequence of fiv e consecutive ones in the data buff er to prevent the occurrence of a flag pattern prior to the
closing flag.
Buffer Usage. The number of bytes transmitted from the data buffers before completing the frame is controlled as
follows. M 13_TDL_BUF0_END (Table 279) and M13_TDL_BUF1_E ND ( Table 279) are two bits which indicate
whether or not the final buff er byte to be transmitted is currently in buffer 0 or buffer 1. Whil e bytes f rom bu ffer 0 are
being transmitted, t he HDLC c ont ro ller checks the value of M13 _TDL _ B UF0_END bit. If it is 0, all bytes fro m bu ffer
0 and at least one byte from buffer 1 are transmitted. If it is 1, bytes from buffer 0 are tr ansmitted sequentially up to
and including byte K, where M13_TDL_B YTE_END[5:0] = K (Table 280).
Similarly, the number of bytes transmitted from buffer 1 i s controlled by the value of M 13_TDL_BUF1_END and
M13_TDL _BYTE_END[5:0] bits. Bytes are t ransmitted alternately from buffer 0 and buf fer 1 until bit
M13_TDL_BUF[0, 1]_END = 1 for the activ e transmission buff er and the val ue of bits M13_TDL_BYTE_END[5:0] is
equal to the by te number being transmitt ed.
When the HDLC controller completes transmission of register M13_TDL_0DATA_R[63] (the last byte of buffer 0),
the interrupt bit M13_TDL_BUF0_INT is set to 1 (Table 217). Similarly, the int errupt bit M13_TDL_BUF1_INT
(Table 217) is set after the last byte of buffer 1 is transmitted. T hese bits indicate that the corresponding buffer has
been emptied and is available for refilling.
The user may abort the transmission of an HDLC frame by cleari ng M13_TDL_NTRNL_ACT to 0 prior to complet-
ing transmission of the last byte from the data buffers. If so, the HDLC controller w ill stop transmission from the
buffers and send an abort byte ( 01111111) transmitted MSB first. The abor t b yt e w ill then be followed by flag bytes
until M13_TDL_NTRN L_ ACT is again set t o 1, st a rting tran sm ission of a new f rame.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
467Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
FCS Ge n e rati on. Once the last buffer byte is transmitted, the HDLC controller either transmits a closing flag byte
(when M13_TDL_FCS = 0 (Table 279)), or it first appends the 2-byte ITU-T FCS with the necessary zero stuffing
before sending the closing flag (when M13_TDL_FCS = 1). In either case, the HDLC controller sets
M13_TDL _DONE (Table 217) to 1 a fter the transmission of th e frame is com plete. F or testing purposes, th e user
can send corrupted FCS bytes b y clearing M13_TDL_FCS to 0 and filling the last 2 bytes in the buff er with an incor-
rect CRC value.
LAP D Exam pl e. T1.107 defines three standard LAPD messages that ma y be transmitted on the path maintenance
data link. After the opening flag, each of thes e messages contains 79 bytes of a ddress, control, and information.
These are followed by the 2-byte F CS and the closi n g flag.
To transmit one of these mess ages using the internal HDLC trans mitter, the microprocessor s houl d first set
M13_TDL_ACT (Table 279) to 1, M13_TDL_NTRNL (Table 279) to 1, and M13_TDL_NTRNL_ACT (Table 279) to
0. This causes the continuous generation of fl ag bytes.
The microprocessor may then fill buffer 0 with the f irs t 64 by tes of the message and fill by tes 0 through 14 of buffer
1 w ith the last 15 byt es prior to the FCS of the message. By setting M13 _TDL_BUF0_END (Table 279) to 0,
M13_TDL_BUF1_E ND (Table 279) to 1, and M1 3_TDL_BYTE_END[5:0] (Table 280) to 001110, the microproces-
sor can indic ate that 79 buffer bytes are to be tran smitted.
The microprocessor can then set M13_TDL_FCS to 1 and M13_TDL_NTRNL_ACT to 1. This will cause the inter-
nal HDLC transm itter to send the 79 bu ffer byt es, append the FCS a nd closing flag, set M1 3_TDL_DONE to 1, and
resume continuous flag transmission.
If the same LAP D mess age is to be transmitted later without fir st having transmitted a different message, the micro-
processor only needs to t oggle M 13_TDL_NTRNL_ACT to 0 and back to 1, as the values of the other control
parameters and the buffer bytes are no t mo dified by the internal HDLC tran smitter.
20.8 AIS/ Id l e Ins ertion
Th e AIS /idle insertion block can be pro visioned to operate in the no rmal mo de (M13_DS3_FORCE_AIS = 0
(Table 276) and M13_DS3_FORCE _IDL E = 0 (Table 276)), generate DS3 AIS (M13_DS3_FORCE_AIS = 1) or
generate DS3 idle ( M13_DS3_FORCE_AIS = 0 and M13_ DS3_F O RCE_ I DLE = 1).
In the normal mode, data from the M23 multiplexer is passed unchanged to the B3 ZS encoder block.
During AIS ins ertion (M 13_DS3_FORCE _AIS = 1), the generated DS3 frame is altered by overwriting the informa-
tion bits with an alternating 1010 . . . pattern, starting with a 1 after each overhead bit. In addition, the X bits are
overwritt en with ones, and the C bits are overwritten with all zeros (T1.107 and T1.404).
During idle signal generation (M13_DS3_FORCE_AIS = 0 and M13_DS3_FORC E_IDLE = 1), the information bits
are overw ritten with 11001100 . . ., starting with 11 after each overhead bit. T he X bits are overw ritt en w ith ones. In
the M23 mode (M13_M23_CBP = 1 (Table 260)), the C bit s are overwritten with all zeros. In the C-bit parity mode,
the C bits ar e passed unchanged (T1.107 and T1 .404).
20.9 B3ZS Enco der (G R-499)
The transmit DS3 device output can either be in the form of unipolar dat a (M13_DS3POS_DATA when
M13_B IPOLAR = 0 (Table 260)) or po sitive data, and negative data ( M13_DS3POS_DATA, and M13_DS 3NEG
when M13_B IPOLAR = 1). If M13_BIPOLAR = 1, the DS3 da ta is B3Z S encoded wit h M13_DS3POS_DA T A = 1
indicating a posit ive pulse and M13_DS3NEG = 1 indicating a negative pulse.
The B3ZS encoder block accepts dat a output from the M23 multiplexer and when M13_BIP OLAR = 1, performs
coding as follows: for each inp ut data bit that is a 1, the encoder outputs a 1 (or pulse) on either its positive or neg-
ative output. The positive or negative output is chosen such that the resulting pulse is opposite in polarity to the last
nonzero output.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
468 Agere Sy stem s Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
F or each input data bit that is a 0, the encoder outputs zeros on both its positive and negat ive outpu ts, unless doing
so would c ause three consecutive output perio ds of positive and negative ze ros. In the latter c ase, the three con-
secutive inp ut zeros are output as either [00V] or [B0V], where B i s a pulse on either the positive or negative output
that is opposite in polarity to the last non-zero output, and V is a pulse that is the sam e polarit y as the last nonzero
output. The choice of [00V] o r [B0V] is made so that the polarity of consecutive V-pulses alterna tes (wh ich is equiv-
alent to forcin g the number of B-pulses between successive V-pulses to b e odd).
When M 13_BIPOLAR = 1, the user can force err ors in the bipolar coding by setting M13_BIPOL_ERR (Table 258)
to 1. When th is is done, the M 13 transmits the next 1 a s a bipolar vio lation.
20.10 DS3 R-to-T Loopback
The received DS3 signal can be looped directly back to the transmi t DS3 output. If either M13_LOOP_R_ TO_T = 1
(Table 260), or both M13_AUTO_FLB = 1 (Table 259) and M13_DS 3_FLB_DET = 1 (Table 251) (see Sec tion
20.7.6 F EAC on p age 465), the loopback is activated. (During loopback, the SMPR_RDS3POS_DATA and
SMPR_RDS3NEG_BPV input signals are lo oped to the M13_DS3POS _DATA and M13_DS3NEG outputs, res pec -
tively.)
20.10.1 DS 3 Transmit Path Interface
When cross c onnected to th e DS3 devic e pins, th e DS3 data out DS3POSDATAOUT (p in R22) and
DS3NEGDATAOUT (pin P22) is clocked out on the fa lling edge of DS3DATAOUTCLK (pin N22).
If the M13 DS3 interface i s op tioned for loop timi ng (M13_LOOP_TIME = 1), the DS3 data is clocked out on the ris-
ing edge of DS3DAT AINCLK (pin J22).
20.11 M13/M23 Demultiplexer
20.11.1 DS 3 LOC and LO S
SMPR_RDS3CLK is monitored for loss of clock , which is reported through bit M13_RDS3_LO C (Table 225). The
user can configure which edge of SMPR_RD S3CL K retimes the data (M13_RDS3_EDGE = 1 (Table 287) selects
the risin g edge; M1 3_RDS3_EDGE = 0 selects the falling edge).
The receive DS3 signal is also checked for loss of signal ( LO S ), which is reported through bit M13_RDS3_LOS
(Table 225). An LOS defect, according t o T1.231, is the occurrence of 175 ±75 contiguo us pulse positions with no
pulses of either positive or negative polari t y at the DS3 input. An LOS def ect is terminated upon detecting an aver-
age pulse density of at least 33% over a period of 175 ±75 contiguous pulse positions starting with the receipt of a
pulse. An LOS defe ct will not be terminated if, at the end of the pulse-positi on inter val, any subintervals of 100
pulse po sitions containing no pulses of either polarity were obse rve d ( T1.231).
B3ZS D ec o der. The receive DS3 device input can either be in the form of unipolar clock and data
(SMPR_RDS3CLK and SMPR_RDS3P OS_DATA when M13_BIP OLA R = 0 (Table 260 on pa g e216)) or unipolar
clock, positiv e data, and negativ e data (SMPR_RDS3CLK, SMPR_RDS3POS_DATA, and SMPR_RDS3NEG_BPV
when M13_BIPOLAR = 1 and M13_BPV_IN = 0 (Table 259)) or unipolar cloc k, data, and bipolar violation indicati on
(e xternal input) (SMPR_RDS3 CLK, SMPR_RDS3POS_DATA, and SMPR_RD S3N EG_BPV when
M13_BIPO LAR = 0 and M13_BPV_IN = 1). When M13_BIPOLAR = 0, the received DS3 data and clock are
passed directly to the M23 demultiplexer. When M13_BIPOLAR = 0 and M13_BPV_IN = 1, the received DS3 data
and clock are passed to the M23 demultipl exer while the bipolar violation indication i s forwarded to the internal BPV
counter for perfor mance m onitoring (B3ZS decoder is not us ed) . When M13_BIPOLAR = 1 and M13_BPV_IN = 0,
the received SMPR_ RDS3POS_DATA and S MP R_RDS3NEG _BPV data i nputs are first B3Z S decoded.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
469Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
The B3ZS decoder bl ock perf orms decoding as follo ws. For each clock period that both SMPR_RDS3POS_DATA
and SMPR_R D S3NEG_BPV ar e 0 (no pulse) , the decoder out puts a 0. For each cloc k period that either
SMPR_RDS3POS_DATA or SMPR_RDS3NEG_BPV is 1 (pulse), the decoder determines whether or not the pulse
is part of a zero substit ution (ZS) sequence. A Z S sequence is [00V] or [B0V], w her e B is a pulse on either the pos-
itive or negative input that is opposite in polarity to the l ast nonzero input, and V is a pulse that is the same polarity
as the last non zero input.
If the received pulse is not part of a ZS sequence, the decoder ou tp uts a 1. Ot her wise, the decoder outputs three
consecutive zeros in place of the received ZS sequence.
The B3ZS dec oder also c hecks for bipolar coding viola tions. B ipol ar c oding vi olations are defined as received
V- pulses that are not opposite in pola rity to the last V-pulse or are not immediately preceded by a 0, or received
zeros that are immediately preceded by two other zeros.
The M13 contains a counter that increments on each occurrence of a received bipolar co ding violation (BPV). I t
also monitors the occurrence of excessive zeros (EXZ), which is defined as any zero string length equal to or
greater than 3 (T1.231) . These are part of the per formance monitoring coun ters that can be sampl e d and simulta-
neously reset (see DS3 P erformance Monitors on page 472). Their last s ampled values are availabl e in registers
M13_BPV_CNT_R[13] (Table 295) and M13_EXZ_CNT _R[13] (Table 296).
20.11.2 DS 3 T-to-R Loopback
The M13 can be conf igured to loopba ck the inte rnal transmit DS 3 from the output of the M23 M UX
(M13_LOOP_T_TO_R = 1 (Table 259)) o r accept the received DS3 signal after B3ZS decoding
(M13_LOOP_T_TO_R = 0) and send it into th e M23 deMUX block.
20.11.3 M23 Demultiplexer
The M23 demultiplexer will take the rece ived DS3 signal and either deM UX it into 7 D S2 data st reams or strip o ff
the overhead bi t s and send payload out through the NSMI serial interface when M13_NSMI_MODE (Table 277) =
1.
The s erial data interf ace, when enabled (M 13_NSMI_MODE = 1), generates a clock M13_DNSMI_CLK and an
enable M13_DNSMI_EN for outputting DS3 p ayload data M13_DNSMI_DATA. A sync pulse M13_D N SMI_SYNC,
in referenc e to and ahead of the first M bit within a DS3 frame, is also generated. The offset from the sync pulse to
the first M bit is programmable through bits M13_D_SP_OFFSET[7:0] (Table 262).
In the case of the received DS 3 signal being deMUXed into 7 DS2s, tho se DS2s can be sent out of the device, or
looped back to the transm it side, or pass ed to M12 demultiplexers for further breakdown into DS1s/E1s.
DS3 F ramer. After being B3ZS decoded, the incoming DS3 data stream is checked for the presence of unframed
all ones. If the input data is 0 f or f ew er than 9 out of 8192 clock periods, bit M13_RDS3_ALL1_DET (Table 225) will
be set.
The M23 demultiplexer determines if the input signal contains valid DS3 framing. This is done in two stages by first
finding a bit position that matches the frame alignment pattern (F bits), and then locating the multifr ame alignment
signal (M bits). After a matching F-bit sequence is found, in-frame is declared (M13_DS3_OOF = 0 (Table 224))
when correct M bits are received for three consecutive M frames (T1.231). The maximum average reframe tim e is
0.5 ms in the presence of a bit error rate of 103.
Once the deMUX is i n-frame, the received frame bits are monitored f or out-o f-frame. Out -of-frame is declared
( M13_DS3_OOF = 1) when too many errors are received in either the F b its (thr ee errors i n 1 6 bit s when
M13_DS 3_M ODE = 0 (Table 287), o r at leas t 1 F-bit error in each of four consecutive M-subframes when
M13_DS3_MODE = 1) or t he M bits (at least 1 error in each of three consecutive M frames) (T1.231). For testing
pur poses, the user may also force the framer out -of-frame by setting M13_DS3_F ORCE_OOF ( Table 258) t o 1.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
470 Agere Sy stem s Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
The traditio nal algorithm for dec laring o ut-o f - f rame (three errors in 16 F bits) re s ults in false o u t-of-frame approxi-
mately every 30 s ec onds when the recei ved bit error rate i s 1 03. By waiting fo r four consecutive M-subf rames with
F bit errors before declaring out-of-frame (M13_DS3_MODE = 1), the M13 normally stays in frame for over an hour
when the b it error rate is 103.
The M13_DS3_LOF (Table 224) bit is set if bit M13_DS3_OOF is high continuously for 28 frame periods (approxi-
mately 3 ms). Once set, M13_DS3_LOF is not cleared unti l M13_DS3_OOF is continuously low for 28 frame peri-
ods.
The user can p rovision the M13 to automatically output AIS if either bit M13_DS3_OOF = 1 (by setting
M13_ AUTO_AIS_OOF (Table 259) to 1), or M13_DS 3_LOF = 1 (by setting M13_AUTO_AIS_LOF to 1).
The received DS3 frames are also checked for severely errored frames ( SEF). An SEF defect is the occurrence of
three or more F-bit errors in 16 consecutive F bits and i s reported through bit M13_RDS3_SEF (Table 225). An
SEF defect is terminated when the signal is in-frame and there are less than three F-bit errors in 16 consecutive
F bits.
AIS, Idl e, and RAI Detection. Each M frame, the 47 04 inform ation bits are checked for the presence of the AIS
(1010) or idle (1100) pattern. In order t o detect these patterns in the presence of a hig h erro r rate, AIS
(M13_DS3_AISPAT_DET = 1 (Table 224)) or idle (M13_DS3_IDLEPAT_DET = 1 (Table 224)) pa ttern d etection is
declared if fewer t han five pattern errors are received in ea ch of two consecutive fra mes. Once AIS or idle is
declared, these bits are not cleared until at least 16 pattern errors are received in each of 2 consecutive frames
(T1.231).
In addition to the fixed info rmation bit patterns, A IS and idle signals are transmitt ed with all C bits set to 0 and both
X bits set to 1. These conditions are monitored by the M13 and reported in bits M13_DS3_CBZ_DET (Table 224)
and M13_DS3_RAI_DET ( Table 224).
If every C bit in three consecutive DS 3 frames is 0, the M13 sets M13_D S3_CBZ_DET to 1. If the three C b its in a
single M-subfra me are all 1, M13_DS3_CBZ_DET is cle ared. If both X bits in two consecutive frames are received
as 0, the device sets M13_DS3_RAI_DET to 1. Once M13_DS3_RAI_DET is s et, it is not cleared until both X bits
in two consecutive frames are received as 1.
The user may wish to declare AIS or idle based on a combination of some or all of the following bits:
M13_DS3_CBZ_DET, M13_DS3_RAI_DET, and M13_DS3 _AISPAT_DET or M13_DS3_IDLEPAT_DET.
C-Bit Processi ng. The M13 can be provisioned to operate in either the M23 mode (M13_M23_CBP = 1
(Table 260)) or the C-bit parity mode (M13_M23_CBP = 0). In t he M23 mode, the C bits in each M-subfr ame are
inter preted as st uff indicator bi ts, and they are checked for loopback request s. I f th e third C b it di ffer s fro m t h e first
and second C bits in the yth M-subfra me for 5 successive DS3 frames, M13_DS2_ LB_ DETy (Table 244) is set to 1.
The M13_DS2_LB_DETy bit is cleared when the third C bit does not diff er from the first two C bits in subfr ame y for
five successive DS3 frames.
The first C bit of each frame, C1, provi des C-bit parity identification. I f for eight con se cutive fra mes i t is rec ei ved as
a 1, the M13 sets M13_DS3_C1_DET (Table 224) to 1. Once M13_DS3_C1_DET bit i s set, three consecutive
frames with
C1 = 0 must be received before it is cleared.
The RCBDATA (pin E15) output provides access to the r eceived C2, C4, C5, C6, and C16 through C21 C bits. The
received data link bits, C13 through C15, are output as a serial stream on RDLDATA pin (H2 2).
FEAC. In the C-bit parity mode, the third C bit of each DS3 frame, C3, is mon itored for FEAC s ignals. Active FEAC
signals consist of repeating 16-bit code words of the form 0 x5x4x3x2x1x0 0 11111111, where xi can be a 1 or a 0,
and the b its are receiv ed right-t o-left. The same code word must be rece ived four consecutive times before it i s
accepted.
When a code word is accepted, the action taken by the M13 depends on the value of x5x4x3x2x1x0, which may be
an alar m indi c at io n , a loopbac k activ a tion, or a loopback deactiva tion.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
471Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
The values of M13_DS1_ FEAC_LB _D E Tx and M13_DS3 _FLB _D E T bits are n ot changed if an a ctivate or deacti-
vate control signal is accepted, but the next code word to be accepted is not a channel indication c ontrol signal
(010011, 011011, or 100001 through 111100).
Alarm, Status, or Unassigned Signals. If a FEAC signal is accepted that is not a loopback activate (000111),
deactivate (0111 00), or channel indication (010011, 011011, or 100001 through 111100) signal, the M13 will set
bits M 13_RFEAC_CODE[5:0] = x5x4x3x2x1x0 and M13_RFEAC_ALM _INT (Table 217) to 1.
Control Signals. EAC control signals are defined for activating or deactivating a l oopback. I f a loopback a ctivate
(000111), deactivate (011100), or channel indication (010011, 011011, or 100001 through 111100) is accepted,
the M13 will set bits M13_RFEAC_CODE[5:0] (Table 252) = x5x4x3x2x1x0 and M13_RFEAC_LB_INT ( Table 217)
to 1.
If a loopback activate (000111), followed by the all-DS1 channels indication ( 010011) is accepted, the de vice set s
all M13_DS1_FEAC_LB_DETx (Table 251) bits. All M13_DS1_FEAC_LB_DETx bits are cleared if a loopbac k
deactivate (0111 00), followed by the all-DS1 channels indication, is accepted.
If a loopback ac tivate (000111), followed by the DS3 i ndicat ion (011011) is accepted, the device sets the
M13_DS3_FLB_DET (Table 251) bit. The M13_DS3_FLB_DET bit is cleared if a loopback deactiv ate (011100), fol-
lowed by the DS 3 indication, is accepted.
Similarly, if the M13 accepts an activ at e or deactiv at e control signal followed b y a DS1 channel indication (100001
through 111100), it sets or clears the M13_DS1_FEAC_LB_DETx bit, where x is equal to the binary value of
x5x4x3x2x1x0.
Termi nal-to-Terminal Path Maintenance Data Link. C bits 13, 14, and 15 can be used as a 28.2 kbit/s data link.
These bits are available directly at device output pin RDLDATA (H22). The M13 also contains an internal HDLC
receiver for process ing the received data link bits.
HDLC Rec eiver . The internal HDLC receiver circuitry is composed of a 128-byte FIF O, a CRC-16 frame check
sequence (FCS) error detector, and control circuits.
The HDLC receiver searches for flag bytes (01111110) and processes the bits received between flag bytes as fol-
lows. T he receiver removes zeros tha t imme diately follow any sequence of five consecutive ones. Sequences of
8 bi ts a fte r zero destuffing are grouped into bytes and written i nto the FIFO.
As bytes are received, the CRC-16 value, based on the ITU-T polynomial, is c alculated. When the closing flag is
received, the receiver checks that the received FCS in the final 2 bytes matches the calculated CRC-16. If
M13_RDL_FCS = 1 (Table 287) and the FCS does not mat ch, M13_RDL_FCS _ERR ( Table 253) is set. If
M13_RDL_FCS = 0, M13_RDL_FCS_ERR is held reset at 0. M 13_RDL_FCS bit also determines whe ther or not
the f i nal 2 bytes o f the frame are written into t he FIFO. They are written into the FIF O only when
M13_RDL_FCS = 0.
The receiver allows frames to be sent back-to-back with th e closing flag of one fram e shared as the openi ng f lag of
the nex t frame. If fewer than three complete destuffe d bytes are received between flag bytes, the receiver i gnores
the data and writes nothing into the FIFO.
FIFO Usage. The FIFO i s l arge enough to hold one full and two partial standar d DS3 LAPD frames of 79 bytes. In
case shorter frames are being transmit ted, the M13 can keep track of u p to fo ur frames in the FIFO that have not
been read.
The receive data-link frame interrupt bit, M13_RDL_FRM_INT (Table 217), is set when a frame closing flag or an
abort byte is received. The M13_RDL_FIFO_UF (Table 225) bit is set if the buffer underflows, and t he
M13_RDL_FIFO_AF (Table 225) bit is set if the buffer reac h es a p r ovis ion able fill level . The fill leve l c a n b e s et to
16 byte s (M13_RDL_F ILL[1:0] = 00 (Table 287)), 32 bytes (M13_RDL_FILL[1:0] = 01), 64 bytes
(M13_RDL_F ILL[1:0] = 10), o r 96 bytes (M 13_RDL_FILL[1:0] = 1 1).
The user may read bytes from the FIFO through register M13_RDL_DATA_R (Table 254) . The portion of the earli-
est frame still in the FIFO can be deleted by setting M13_RDL_FRM_CLR ( Table 258) to 1. (This is n or mall y done
to purge a corrupted or abort ed frame.) The user must reset M1 3_ RDL_ FRM_CLR before an ot he r fr a me can be
deleted. If M13_RDL_FRM_CLR is set before the closing flag of the frame currently being read from the FIFO has
been received, all subsequent bytes of the frame will be discarded without being written into the FIFO.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
472 Agere Sy stem s Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
Frame Status an d Error Reporting. The M13 p rovides i nformation on the earliest frame still in the FIF O through
status register M 13_RHDLC_STATUS_R (Table 256).
The status r egis ter ha s 1 bi t to indicate whether or not the c los ing f lag (or an abort byte) f or the current frame has
been received, 1 bit to in dicate if the current frame is corrupted, 5 bi ts to indicate t he size of the cu rrent frame mod-
ulo-32, and 1 bit to indicate wh ethe r or not there are less than 32 bytes of the earliest frame left in the FIFO.
T here are four ways in which the M13 c an identify that the current frame has been corrupted. The frame may have
been aborted (M13_RDL_ABORT = 1 (Table 253)), it m ay have fai led the CRC check
(M13_RDL_F CS _ERR = 1 (Table 253)), the numb er of bits between opening and closi ng flags may not have been
a multiple of 8 (M13_RDL_NO T_BYTE = 1 (Table 253)), or it may hav e been overwritten before being read from the
FIFO (M13_RDL_OVFL = 1 (Table 253)). Also, there is a separate bit M13_RDL_FLAG (Table 253) t o indicate
whether or not the closing flag (or an abort b yte) for th e curren t frame has been received.
The size of the current fr ame modulo-128 (including FCS bytes only if M13_RDL_FCS = 0 ( Table 287)) i s indicated
by register M13_RDL_FRAME_SI ZE_R (Table 255).
DS3 Performance Monitors. For perfor mance monitoring p urposes, there are a number of error counters in the
M13. All of these internal counters are comprised of a running error counter and a hold register that presents stable
results to the mic ro proc es sor. The counts in all of the r unning counters are latched to the hold registers and the
running counters cleared with the configured int ernal performance monitor reset signal.
The latched results are then held to be read by the microprocessor. All of the internal cou nte r s h ave the a b ility to
store more than the maximum possible c ount in a one second interval for a bit error rate of 103. As long as the per-
f ormance monitor reset occurs at least once ev ery second, no count s will be lost. In case this doesnt happen, all of
the running counters will either hold their maximum value or roll over to zero, depending on the control signal input
SMPR_SAT_ROLLOVE R (Table 67).
Within the M23 demultiplexer, there are four performance monitoring counte r s. M 13_DS3_FER R_CNT[11 :0]
(Table 289) i ncrements each tim e an error is detected in either an F bit or M bit, and M13_DS3_ PERR_CNT[ 13:0]
(Table 292) increments if at least one of the P bits disagrees with the parity of the previous frame. In the C-bit par ity
mode only, M13_DS3_CPE RR_CNT[13:0] (Table 291) counts frames with at least two of the three C-bit parity bits
indicating an error , and M13_DS3_FEBE_CNT[13:0] (Table 290) a ccumulates FE BE error in dications (1 error indi-
cation for e a c h D S3 frame with at le ast one FEBE b it equal to zero).
20.11.4 M12 Demultiplexers
Each M12 demultiplexer outputs either 4 DS1 si gnals fro m the DS2 frame as specified in GR-499-CORE (when
M13_DS1_E1Ny = 1 (Table 263)), or three E1 signal s from the DS2 format specified in ITU-T Recom mendation
G.747 (when M13_DS1_E1Ny = 0 ). In th e D S1 mode, the demultiplexed second and fourth channels are inver ted
before being sent to the output selector s whe n M13_DEMUXCH2_4_INVy = 1 (Table 272).
Each M12 DeM U X can be programmed i ndependently t o r e ceive DS2 signal eith er from M2 3 deMUX (when
M13_M12DMX_MODEy[1:0] = 00 (Table 272)) or direct DS2 input XC_DS2DMXDATAy (wh en
M13_M12DMX_MODEy[1:0] = 01). In the latter case, an input DS2 clock XC_DS2DMXCLKy is also required.
When M 13_M12DM X_MODEy[1:0] = 10/11, the M12 demultiplexer is idle and the outputs are held lo w.
The DS2 signal is monitored for A IS, which is de clared (M13_DS2_AIS_DETy = 1 (Table 242)) if the demu ltiplexer
input is 0 for fewer than five clock cycles in each of two consecutive 840 clo ck periods, and cleared if there are
more than 4 zeros in each of two consecutive 840-bit periods (G .775).
20.11.5 DS 1 Mode
Framer. The M 12 demultiplexe rs determine if the input signal contai ns vali d DS2 fr aming. This is done in two
stages by fi rst finding a bit position that matches the M-subframe alignment pattern (F bits), and then locating the M
frame alignment signal (M bits). After a matching F-bit sequence is f ound, in-frame is declared (M13_DS2_OOFy =
0 (Table 240)) when correct M bits are received for three consecutive M frames. The maximum a verage reframe
time is 2.5 ms in the presence of a bit error rate of 103.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
473Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
Once the deMUX is in-frame, the received frame bits are monitored for out-of-frame. Out-of-frame is declared
(M13_DS2_OOFy = 1) if too many errors are received in either the F bi ts (two errors i n 4 bits when
M13_DS 2_M ODE = 0 (Table 274), o r at least one F-bi t error i n four consecutive M-subf rame pairs when
M13_DS2_MODE = 1) or the M-bits (at leas t one error in three consecut ive M frames). For testing purposes, the
user may also force the framer out-of-frame by setting M13_DS2_ FOR C E_OOFy (Table 257) to 1.
The traditional algorithm for declaring out-of-frame (two errors in 4 F bits) results in false out-of-frame approxi-
mately every 5 sec onds when the bit error rate is 103. By waiting for four consecutive errored M-subframe pairs
(containing 4-F bits) b efore declaring out-of-frame (M13_DS2_MODE = 1), the M13 normally stays in frame for
over 4four days whe n t he bit error rate is 103.
Overhead Processing. The C bi ts for each DS1 channe l are checked for loopback requests. I f the third C bit dif-
fers from the first and second C bits in the zth M-subframe for five successive DS2 frames, M13_DS1_LB_DE Tx
(Table 249) is set to 1, where x = (4y 4 + z). M13_DS1_LB_DETx is cleared w hen the third C bit does not differ
from th e first two C bi ts in the zth M-subf rame for f ive successi ve DS2 frame s.
If the X b it in four consecutive fr ames is rece ived as 0, the M13 sets M 13_DS2_RAI_DETy (Table 243) to 1. Once
M13_DS 2_RA I_DETy i s set , it is not c leared until the X bit is received as 1 in four consecutive frames.
20.11.6 E 1 Mode
Framer. The M 12 demultiplexe rs dete rmine if the input signal c ont a ins a valid frame fo rmat as s pecif ied in ITU-T
recommendation G.7 47. Frame alig nment is declared (M13_DS2_OOFy = 0 (Table 240)) when a correct frame
alignment signal is received for three consec utive frames. The maximum average reframe time is 0. 5 ms in the
presence of a bit error rate of 103. Out-of-frame is declared (M13_DS2_OOFy = 1) if the frame alignment signal
contains at least 1-bit error for four consecut ive frames. For testing purposes, the user m ay also force the fr amer
out-of-frame by setting M13_D S2_FORCE_OOFy (Table 257) to 1.
Overhead Processing. The C bits f or each E1 channel are check ed f or loopback requests . If th e third Cz bit differs
from the first and second Cz bits for five successive frames, M13_DS1_LB _DETx (Table 249) is set to 1, where
x = (4y 4 + z). M13_DS1_LB_DE Tx is cleared when th e third Cz b it does not differ from the first two Cz bits for
five successi ve fra mes.
If the RAI bit in four consecutive frames is received as 1, the M13 sets M13_DS2_RAI_DETy to 1 ( Table 243). Once
M13_DS2_RAI_DETy is set, it is not c leared u ntil the RAI bit is received as 0 in four consecutive fr ames. The
received reserved bit is reported through the M 13_DS2_RSV_RCV y (Table 245), which is updated only when a
new value is received in four consec utive fram es.
Loss of Frame and Au to matic AIS Insertion. The M 13_DS2_LOFy (Table 241) bit is se t when M13_DS2_OOFy
is high continuously for 28 DS3 frame period s (approximately 3 ms). Once set, M13_ DS2_LOFy is not cleare d until
M13 _ DS 2 _OOF y is con t i nuously l ow for 28 DS3 frame periods.
The user can p rovision the M13 to automatically output AIS if either bit M13_DS2_OOFy = 1 (by setti ng
M13_AUTO_A IS_OOF to 1), or M13_DS2_LOFy = 1 (by setting M13_AUTO_AIS_LOF to 1).
DS2 Performance Monitors. Wit h in each M12 demultiplexer, there are two performance monitoring counters.
These counters are cleared and read as described above (see DS3 Perfo rmance Monitors on page 472).
Registers M13_DS 2_ FERR_CNT[71]_R (Table 294) count errors in the frame alignment signal. In the DS1
mode, M13_DS2_FERR_CNTy (Table 294) increments each t im e an error is detected in either an F bit or M bit. In
the E1 mode, this counter increm en ts either for eac h frame alignment signal bit error (when
M13_DS2_FERR_MODE = 0 (Table 274)), or once for each frame alignm ent signal that contains at lea st one bit
error (when M13_DS2 _FERR_ MOD E = 1).
In the E1 mode only, re gisters M13 _DS2_PERR_CNT[71]_R[12] (Table 293) count errors in P bi ts .
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
474 Agere Sy stem s Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.11.7 Output Select Logic
DS2 O utput S el ecti on . The M23 demultiplexer outputs are fed into seven DS2 output selection log ic blocks. This
allows the M13 to output the demul tiplex ed DS2 signals or insert AIS.
Each selector is identified by a number y that range s from one to seven and corre s ponds direc tly t o M13 out puts
M13_DS2DATA[71]. The outgoing DS2 signals are retimed by an associated clock, M13_DS2CLK [7 1]. The
edge of the clocks that is used to retime the da ta is pr ov isionab le t o e ither t h e r i sing edge (M13_TDS2_EDGE = 1
(Table 294)) or falling edge (M13_TDS2_EDGE = 0).
The output from each selection block is controlled by the values of bits M13_DS2_OUT_IDLEy (Table 284) and
M13_DS 2_OUT_AISy (Table 285).
Output is held low when M13_DS 2_OUT_IDLEy = 1 ; otherwise, the deMU Xed D S2 si gnal is output when
M13_DS2_OUT_AISy = 0 and DS2 AIS is output when M13_DS2_OUT_AISy = 1.
The all ones DS2 AIS signal is also output under all failure conditions at DS3 level which requi re automatic AIS
inse rtion at DS2 level.
DS1/E1 Output Selection. The M12 demultiplexer outputs are fed into 28 DS1/E1 output selection logic blocks.
This allows the M13 to output the demultiplex ed DS1/E1 (M13_D S1_OUT_AISx = 0 (Table 273)), or insert AIS
(M13_DS1_OUT_AISx = 1 ). The all ones AIS signal is also output under all failure condi ti ons at DS 3 or D S2 le v e l
which require automatic AIS insertion at DS1/E1 level.
Each selector is identified by a number x that ranges from 1 to 28 and corresponds directly to a block output
M13_DS1DATA[281]. The outgoing DS1 and/or E1 signals are retimed by an associated cl ock,
M13_DS1CLK[281]. The edge of the clock that is used to retime the data is provisionable to either the rising
edge (M13_TDS1_EDGE x = 1 (Table 272)) or falling edge (M13_TDS1_EDGEx = 0).
Each o utput selector number, x can be expressed as either 4y 3, 4y 2, 4y 1, or 4y, where y ranges from 1 to
7. For a given y , the 4 sele ctors in the group output DS1 signals when M13_OUT_TYPEy = 1 ( Table 272), o r E1
signals when M 13_OUT_TY PEy = 0. In either of these modes, the four selec tors in the group are con trolled by the
2-bit values OU TSE Lx, where x = 4y 3, 4y 2, 4y 1, and 4y.
When M13_O U T_T Y PEy = 0 , the output of selector 4y is held low .
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
475Agere Systems Inc.
21 28-C hannel Framer Block Functional Description
Ta ble of Conte nts
Contents Page
21 28-Channel Framer Block Functional Description .................... ..................... . ............. . .................. . ............... 475
21.1 28-Channel Framer Introduction .......... ................... ................... ....... ................... ....... ............................ 479
21.1.1 D S0/E0 Switching Applications .................................................................................................... 479
21.2 Transpo rt Applications ............................................................................................................................ 482
21.3 Framer-to-Line Interface Unit Physical Interface .................................................................................... 485
21.3.1 Line Interface Re ferences/Stan dards .......................................................................................... 485
21.3.2 Frame Formats ............................................................................................................................ 485
21.3.3 Transmit Framer Functions .......................................................................................................... 486
21.3.4 Framing Referenc es /St andards . ............................................ ................... ....... ................... ......... 486
21.4 DS1 Transparent Fram ing Format .......................................................................................................... 486
21.5 CEPT 2.048 Basic Frame Structure Transparent Framing Format ........................................................ 487
21.6 Receive Framer Nonalignment Mode (DS1/E1) ........................ ....... . ......................... .......... ... ............... 488
21.6.1 Loss of F rame Alignme nt Criteria ................................................................................................ 488
21.7 Frame Alignment Criteria ........................................................................................................................ 489
21.8 Receive and Transmit Signal ing Processor ................................ ...... ............................... ....................... 489
21.8.1 Signaling Introduction and Feature Description ........................................................................... 489
21.8.2 Signaling References/Standards ................................................................................................. 490
21.9 Receive S ignaling Per-Link Feature Provisioning .............. ....... ....... ............ ....... ....... ............ ................ 490
21.9.1 S ignaling State Mode Sourc e Selection . ............................................ ....... ....... ............................ 491
21.9.2 S ignaling S tate Mode Select ion . ........................................................ .......................................... 491
21.9.3 Signaling Source Selection .......................................................................................................... 491
21.9.4 Signaling Destination Selection ................................................................................................... 492
21.10 Optional Receive Signaling Features Provisioned for Eac h Lin k .... ..................................................... 494
21.10.1 Su pport of DS1 Robbed-Bit Stomping ..... ... ......................... ................. ... .................................. 494
21.10.2 Su pport of CEPT Time-Slot 16 Stomping ... ............................................ ................... ................494
21.10.3 Support of Signaling Debounce ....... ......... ............ ....... ............ .............. ....... ............ ....... .......... 494
21.10.4 Su pport of Japanese Handling Groups . ................................................. ....... ............ ................ 494
21.11 Receive Signaling Global Feature Provisioning ..................................................................................... 494
21.11.1 Link Count Sele ction ................... . ....................... ... .................. .............. . .................................. 495
21.12 Other Receive Signaling Global Features ....... ....... ............ ....... ....... ...................................... ................ 495
21.12.1 Su pport of Automatic Signa ling Free ze on Framing Bit Errors ...................... .......... ... ............... 495
21.12.2 Su pport of Change of Signaling State FIFO .................................................. .......... ... ...............495
21.13 Receive Signaling Interrupts .................................................................................................................. 496
21.13.1 Mai ntenance of the Change of Signaling State FIFO Status Bits .............................................. 496
21.13.2 Mai nte nanc e of Handling Group Related Status Bits ......... ............................................. .......... 496
21.14 T ra nsmit Signaling Per-Link Feature Provisioning ....................................... .......................... ................ 497
21.14.1 Signaling State Mode Source Sel ec tion ................ ....... .......................... .......................... ......... 497
21.14.2 Signaling Stat e Mode Selection ............................ ....... ............................................................. 498
21.14.3 Signaling Sourc e Selection ....................... .................................................... ............ ................ 498
21.14.4 Signaling Destination Sel ection .................................... ............................................................. 500
21.15 Optional Transmit Signaling Features Provisioned for Each Link ......................................... ....... ..........501
21.15.1 Su pport of Automatic Maintenanc e of the Time-Sl ot 16 Remote Frame Alarm . .............. ......... 501
21.15.2 Su pport of DS1 Robbed-Bit Stomping ..... ... ......................... ................. ... .................................. 501
21.15.3 Su pport of CEPT Time-Slot 16 Stomping ... ............................................ ................... ................501
21.15.4 Support of Signaling Debounce ....... ......... ............ ....... ............ .............. ....... ............ ....... .......... 501
21.15.5 Su pport of Japanese Handling Groups . ................................................. ....... ............ ................ 501
21.15.6 Su pport of Z ero-Code Suppression ............................ ... ......................... ....... ................. ... ........ 501
21.16 T ra nsmit Signaling Global Feature Provisio ning .................................................................................... 502
21.16.1 Link-Count Selection ................................................................................................................. 502
21.17 Other Transmit Signaling Global Feat ures ...... ....... ...................................... ....... ....... ............ ................ 502
21.17.1 Su pport of Automatic Signa ling Free ze on Framing Bit Errors ...................... .......... ... ............... 502
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
476 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Table of Conten ts (continued)
Contents Page
21.17.2 Support of Byte Sync SONET Mapping ................ ............ ....... ....... ............ ....... ....... ............ .... 502
21.18 T ra nsmit Signaling Status Registers ... ............................................................................. ...................... 502
21.18.1 Mai nte nanc e of CEPT Related Status Bits ............. . ................................... ... ............................502
21.19 Perfo r mance Monitoring Functional Integration into Superfra mer ................................... ...................... 503
21.20 Performance Report Message ............................................................................................................... 506
21.21 Perfo r mance Monitoring References/Standards .......... ....... .......................... .......................... ............... 508
21.22 Facility Data Link ................ .............................. ................. ...................... ............................................... 508
21.22.1 Facility Data Link Ref erenc es/Standards ......................................... ................... ................... ... 508
21.22.2 Receive Data Li nk Functional Description ................................................................................. 509
21.22.3
SLC
-96 Supe rframe Receive Data Li nk .................................................................................... 509
21.22.4 DDS Receive Data Link Stack ................................................................................................... 509
21.22.5 CE PT; CEPT CRC-4 (100 ms); CEP T CRC-4 (400 ms) Multiframe Sa Bits Receive Stack ..... 510
21.22.6 Receive Data Li nk Stack Idle Modes ......................................................................................... 511
21.22.7 Receive Data Link Stack Pointer ............................................................................................... 511
21. 2 2.8 Tr a n sm it Facility D a ta Li nk Fun ctional Description ........................ ................. ................. ......... 513
21.22.9
SLC
-96 Superframe Transmit Data Link ................................................................................... 513
21.2 2 .1 0 DDS Transmit Data Link Stack ........................................ ........................................................ 514
21.22.11 Transmit ESF Data Link Bit-Oriented Mes sages ... ................................................... ............ ... 51 5
21.22.12 CEPT , CEPT Multiframe Transmit Data Link Sa bits Stack .................................................... 515
21.22.13 Transmit Data Link Stack Idl e Modes ...................................................................................... 516
21.22.14
SLC
-96, DDS, or CEP T ESF Frame Alignment .............. .......................... ...................... ........ 516
21.23 HDLC Functional Description ................................................................................................................. 517
21.24 HDLC Operation .................................................................................................................................... 517
21.24.1 Zero-Bit Insertion/Deletion (Bit Stuffing/Destuffing) .................... ................ ..................... . ......... 517
21.24.2 Flags .......................................................................................................................................... 517
21.24.3 Aborts ........................................................................................................................................ 518
21.24.4 Receive IDLES .......................................................................................................................... 518
21.24.5 CRC ........................................................................................................................................... 518
21.24.6 HDLC Mod e ............................................................................................................................... 519
21.24.7 Receive HDLC Transparent Mode ............................................................................................ 519
21.24.8 Receive HDLC ........................................................................................................................... 519
21.24.9 Receive HDLC Features ........................................................................................................... 519
21.24.10 Transmit HDLC FIFO Features ............................................................................................... 520
21.25 Framer Phase-Lock Loop (PLL) ............................................................................................................. 522
21.25.1 Framer Timing Selection ........................................................................................................... 523
21.26 System Interface .................................................................................................................................... 523
21.26.1 Syst em Interface Introduct ion ................................. ................... ....... ......................................... 523
21.26.2 Syst em Interface References/Standards ... .......................................................... ....... . .............. 524
21.2 6 .3 Tra n s mi t/Receiv e Syst e m Inte r face Features .................................... ....................................... 524
21.26.4 Double NOTFAS System Time-Slot (FRM_DNOTFAS ( Table 347)) Mode ..... ....... .. .......... .. .... 524
21.26.5 Transparent Mode ..................................................................................................................... 525
21.26.6 Loopbacks ................................................................................................................................. 525
21.26.7 System AIS ................................................................................................................................ 525
21.26.8 Slip Detection ............................................................................................................................ 526
21.26.9 The Concentration Highway (CHI) Mode .................... ..... ... .................. ..... ... .................. ..... ... .. 526
21.26.10 Nominal CHI Timing ................................................................................................................ 526
21.26.11 CHI T iming with CHI Double Time-Slot Timing (CHIDTS) Mode Enabled .............. ..... ..... .. .... 528
21.26.12 CHI Timing with Associated Signaling Mode Enabled . .............................. ....... . ..................... 529
21.26.13 ASM 2-Byte Time-Slot Format ................................................................................................ 529
21.26.14 CEPT: Time-Slot 16 Signaling ASM 2-Byte Time-Slot Format ....................... ....... .. .......... ...... 530
21.2 6 .1 5 CHI O ffset P r ogra mming ....... ....................................................................... ........................... 530
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
477Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table o f Conten ts (continued)
Contents Page
21.26.16 The Parallel Bus System Int erface M ode ................... ................... .............. ................... .........532
21.26.17 Distributed Stuffing: DS1 ......................................................................................................... 533
21.26.18 Distributed Stuffing: E1 ............................................................................................................ 535
21.26.19 Drive to 3-State and 3-State to Drive Timing ..................... . ......................... . ....................... . ... 536
21.27 Serial Multiplex Interface ........................................................................................................................ 536
21.27.1 Signals (6-Pin Mode ) ............................................. . ................................ . .................................. 537
21.27.2 Signals (8-Pin Mode ) ............................................. . ................................ . .................................. 537
21.27.3 Timing Diagrams ....................................................................................................................... 538
21.27.4 Time-Slot Sequencing ............................................................................................................... 539
21.27.5 Timing Between Transm it and Receive ......................................... ... ................................ ......... 539
21.28 Superf r amer Host Interface .......... ....... ...................................... ....... .......................... ............................ 540
21.28.1 Superframer Register Addressing ............................................................................................. 540
21.29 Superframer Register Addres sing ................. ... ....................... ............................ . .................................. 541
21.29.1 Per Link Register Sections in Table 609 . .......................... ............................ ............................ 542
Figures Page
Figure 52. Sw itching Ap plication of the Super Mapper.............. ..................... . ......................... ..... ....................... 479
Figure 5 3. Super Mapper Switc hing Configuration............... . .................. . .................. . .................. . ......................480
Figure 5 4. Super Mapper Switc hing M ode fo r Framer in DS0 Int erface (Parallel or Serial) Configuration
(The Optional Byte-Sync hronous VT Mapping Path Is Shown) ....................... ..... ... ....................... .... 481
Figure 55. Transport Application of the Super Mapper............................ ..... ... ......................... ..... ....... ................ 482
Figure 5 6. Super Mapper T rans port Configuration. . .................. . .................. ..................... . .................. . ............... 483
Figure 5 7. Super Mapper T rans port (with Intrusive Performanc e Monitoring) M ode
(The Optional Byte-Sync hronous VT Mapping Path Is Shown) ....................... ..... ... ....................... .... 484
Fig ure 58. DS1 Transparent Frame Structure......................................................................................................486
Fi gure 59. CEPT Transpar e n t Fra me Structure .... .............................................................. ................................. 487
Figure 60. HG Alignment Algorithm...................................................................................................................... 497
Figure 61. Rx Data Link Block Di agram .................................................................................... ........................... 511
Figure 62. Stack Available and Stack Ready Bit Formatting............................................ ....... ................... .......... 512
Fig ure 63. Tx Data Link Block Diagram ................................................................................................................ 516
Fig ure 64. Receive HDLC Block Diagram ............................................................................................................ 519
Fig ure 65. Transm it HDLC FIFO Block Diagram.................................................................................................. 520
Fig ure 66. Framer PLL ......................................................................................................................................... 522
Fig ure 67. Framer Block Transmit Path Timing Selection.................................................................................... 523
Figure 68. System Loopbacks.................................... ......... ............ ....... ............ ............ ......... .............................525
Figure 69. CHI Mode of the Transmit System Interface....... ................. .......................... ... .................................. 526
Figure 70. Nominal Concentration Highway Interface Timing.............................................................................. 527
Fi gure 71. CHIDTS Mode Concentr a tion Highway Interface Timing.................................................................... 528
Figure 72. Associated Signaling Mode Concent ration Highway Interface Timing.................... ..... ....... . ............... 529
Figure 73. TCHIDATA and RCHIDATA to CHICK Relationship with FRM_CMS = 0 (CEX = 3 and CER = 4,
Respectively)....................................................................................................................................... 531
Figure 74. CHI TCHIDATA and RCHIDATA to CHICK Relationship with F RM_CMS = 1
(CEX = 3 and CER = 6, Respectively) ................................................................................................ 532
Figure 75. Parallel Bus System Interface Mode of the Transmit System Interface .................. ................. ... ........ 532
Fig ure 76. Parallel Bus System Interface Turnaround T iming.............................................................................. 536
Figure 7 7. Signals (6-Pin Mode)............... ... .................. . .......................... .................. . ......................................... 537
Figure 7 8. Signals (8-Pin Mode)............... ... .................. . .......................... .................. . ......................................... 537
Fig ure 79. Network Serial Multiplexed Interface (Single Octet)............................................................................538
Fig ure 80. Network Serial Multiplexed Interface (Multiple Octets)........................................................................ 539
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
478 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Table of Conten ts (continued)
Tables Page
Table 5 76. Frame Alignmen t Criteria ................................................................................................................... 489
Table 577. Receive Signaling Link Reg isters 031 Bit Description ................................................................... 491
Table 578. Receive Signaling Link Reg isters 031 G-Bit and F-Bit Description .......... ................................. ..... 491
Table 579. Receive Signaling Link Reg isters 031 DS1/CEPT/CMI Data ............................ . ............................ 493
Table 580. Receive Signaling Link Reg isters 031 Expected Data . ......... ......... ............. ......................... .......... 4 94
Table 581. S ignaling Receive Global Register 3, B it Definition .................................. . ........................................ 495
Table 582. T ra nsmit Signali ng Link R egiste rs 031 Bit Description .................................................................. 498
Table 583. T ra nsmit Signali ng Link R egiste rs 031 G-Bit an d F- Bit Description . .............................................. 498
Table 584. T ra nsmit Signali ng Link R egiste rs 031 DS1/CEPT/CMI Data ........................................................ 499
Table 585. T ra nsmit Signali ng Link R egiste rs 031 Expected Data .................................................................. 500
Table 586. Perfo r mance Monitor Funct ional Descriptions ................ ..... ....... . ......................... . ............................ 503
Table 5 87. Performan ce Repo rt Message Format .............................................................................................. 507
Table 5 88. Performan ce Report Message Field Definition .................................................................................. 507
Table 5 89. Shared Rx Stack F ormat for SLC-96 Frames .................................................................................... 509
Table 5 90. Shared Rx F DL Stack Format for DDS Frames ................................................................................ 510
Table 5 91. Shared Rx Stack Format for CEPT F rames ...................................................................................... 510
Table 5 92. Shared Tx FDL Stack Format for SLC-96 Frames ............................................................................ 513
Table 5 93. Shared Tx FDL Stack Format for DDS Frames ................................................................................. 514
Table 5 94. Shared Tx S tack Form at for CEPT Frame .............. ..... .......................... .......................... ................. 515
Table 5 95. HDLC Frame Format ......................................................................................................................... 517
Table 5 96. Performan ce Repo rt Message Structure ........................................................................................... 521
Table 5 97. Clock Mo de Programming for PLL M ode Device Pins ............. ... ....................... .......................... ..... 522
Table 5 98. Ass ociated Signaling M ode CHI 2-Byte Tim e-Slot Format for DS1 Frames . . ......................... ..... ..... 529
Table 599. A ssociated Signaling Mode CHI 2-Byte Time-Slot Format for Stuffed Channels .............................. 530
Table 6 00. Associated S ignaling Mode CHI 2-Byte Time-Slot format for CEPT . ..... .......................... .................530
Table 6 01. Programming Values f or FRM_TOFF[2:0] and F R M_ROFF[2:0 ] when FRM_CMS = 0 .................... 530
Table 6 02. Program ming Values for FRM_TOFF[2:0] when FRM_CMS = 1 ...................................................... 530
Table 6 03. Program ming Values for FRM_ROFF[2:0] when FRM_C MS = 1 ...................................................... 530
Table 6 04. Parallel System Bus Interface Time-Slot Arrangeme nt for DS1 ........................................................534
Table 605. Parallel System Bus Interface Time-Slot Arrangement for E1 ........................................................... 535
Table 6 06. PSB System I/O Definition ................................................................................................................. 535
Table 607. Serial ID ............................................................................................................................................. 538
Table 608. Current Numb er of Globa l and p er Li nk/Cha nnel Registers for Each Block ... ............. . ................ ..... 540
Table 6 09. Framer Addres s ing Ma p for the Global and Per Link/Channel Registers of the Superframer ........... 541
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
479Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.1 28-Chann el Fram e r Introduc tion
The next two sections describe the switching and transport mode of the superframer. The framer can be configured
into two b asic modes: DS0/E0 switching mode and DS1/E1 transport/monitoring mode.
21.1.1 DS0/E0 Switching Applications
The s witching application of the Super Mapper/superfr amer is shown in Figure 52 and Figure 53. The syst e m in te r-
face is either a parallel interface (e.g., system telecom bus inter face) or a serial system interface (e.g., CHI) that
transmits or receives framed (c hannelized) or unframed (unchannelized ) DS0/E0 time slot s.
In the transmi t line direction (Tx, to the mapper), the framer receives data from the DS0/E0 switch through the sys-
tem interface and sends this data (framed or unframed) to the mapper s ection via the internal DS1 c r os s connect
block. The data co nsis t s of data, clock, and frame sync.
In the receive line direction (Rx), the mapper sends the li ne data and clock (through the internal DS1 cross con-
nect) to the framer block. The framer then takes this data and transmits it to a DS0/E0 switch through the system
interface. Links provisioned for extended s uperframe for mat (E SF) can autom at ically generat e and send perfor-
mance message reports (PRMs) from the Rx path per formance monitor through a Tx path HDLC channel assigned
to the facility data link in the transmit line p ath.
5-8924(F)r.1
Figure 52. Switching Application of the Super Mapper
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
SUPER MAPPER #1 SUPER M APPER #1
SUPER MAPPER #2 SUPER M APPER #2
SUPE R MAPPE R #3SUPER MAPPER #3
MAPPER
TELECOM
BUS
STS-3
SYSTEM
INTERFACE SYSTEM
INTERFACE
DS0/E0
SWITCH DS0/E0
SWITCH
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
480 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
5-9017(F)r.1
Figure 53. Super Mapper Switching Configuration
FRAMER
RECEIVE LINE TO TRANSMIT
SYS TEM PATH
(Rx PAT H )
FRAMER RECEIVE SYSTEM
TO TR ANSMIT LINE PATH
(Tx PAT H)
SUPER MAPPER: FRAMER
FDL PRMs
LOOPBACKS
RFS1,
RCLK1,
RDATA28
TFS1,
TCLK1,
TDATA28
SYSTEM IN TERFACE
DS0 I/O
DS2 I/O DS3 I/O SONET/SDH DS 3
MAPPED I/O
DS3 O R T 1/ E1 TO ST S-1
MAPPED OUTPUT
(HIGH-SPEED TELECOM BUS)
M12
MULTIPLEXER D S3 MA PPER
8-bit DATA + 1-bit PARITY
VT/VC
MAPPER VC-4
MULTIPLEXER STM-1
MULTPLEXER
MAPPER
TO
FRAMER
DS1 CROSS
CONNECT
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
481Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Figure 54 show s the fram er block in a switching application. The framer sys tem interface for the transmit path is
labelled re ceive and the receive path is labelled transmit . This may seem an e rr or but is ch osen based on estab-
lished, historical naming conv ention.
5-9018(F)
Figure 54. Super Mapper Switching Mode for Framer in DS0 Interface (Parallel or Serial) Configuration (The
Optional Byte-Synchronous VT Mapping Path Is Shown)
VT MAPPER:
BYTE-SYNCHRONOUS ROBBED-BIT
SIGNALING RECEIVE DATA
RECE IVE SIG NAL ING DATA
(T O SIGNALING REGISTERS)
VT MAPPER:
BYTE-SYNCHRONOUS ROBBED-BIT
SIGNALING TRANSMIT DATA
RECEIVE
HDLC RECEIVE
FACILITY
DATA LINK
SUPER MAPPER
VT MAPPER
INTERFACE
Rx LINE
DECODER
RECEIVE
FRAME
ALIGNER
SIGNALING
PROCESSOR
(EXTRACTION)
TRANSMIT
SYSTEM
INTERFACE
TFS1, TCLK 1, TDATA28
SIGNALING
PROCESSOR
(INSERTION)
RECEIVE
SYSTEM
INTERFACE
TRANSMIT
FACILITY DA TA
LINK
TRANSMIT
FRAME
FORMATTER
Tx LINE
ENCODER
SUPER MAPPER
M12
MULTIPLEXER
INTERFACE
Rx PATH
Tx PATH
ESF PRM PAT H
TFS1, TCLK1, TDATA8,
TDATA_PARITYA1
TSIGNALING8,
TSIGNALING_PARITYA1
RFS1, RCLK1, RDATA28
RFS1, RCLK1, RDATA8,
RDATA_PARITYA1
RSIGNALING8,
RSIGNALING_PARITYA1
SYSTEM INTERFACE
PARA LLEL DS0 BUS
SYSTEM INTERFACE
SERIAL DS0 BUS
SUPER MAPPER: FRAMER
TRANSMIT SIGNALING DATA (EXTRACTED
FROM SYSTEM INTERFACES OR
SIGNALING REGISTERS)
PERFORMANCE
MONITOR
TRANSMIT
HDLC
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
482 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
21.2 Tr ans p o r t A pplic at i on s
The transport application of the Super Mapper is depicted in Figure 5 5, Figure 56, and Figure 57. The Super Map-
per in terfaces with LIUs at the DS1/E1 rate in this mode. The data is either framed or unframed DS1s. In the trans-
mit path direction (Tx, to the mapper), the framer receives framed or unframed D S1/E1 data from its line interface
and sends this lin e d ata and clock (via the D S1 cross connect) to the mapper block. The framer can be provi-
sioned to fra me align the data prior to sending it to the mapper section. The framer can be provisioned for perfor-
mance monitoring on the data and in ESF mode transmit PRMs back to its line interface.
In the receiv e path direction (Rx), the mapper sends the line data and clock (through the DS1 cross connect) to the
framer bl ock. This data may be framed or unframed DS1/E1 data. The framer can be provisioned to f ra m e al ign
the data and transmit a frame sync signal in addition to the data and clock. The framer can b e provisioned for per-
for mance monitoring on the data. In ESF m ode, it can automatically generate and send PRMs back to the mapper
interface.
5-8925(F)r.1
Figure 55. Transport App lic ati on of th e Super Mapper
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
SUPER MAPPER #1 SUPER M APPER #1
SUPER MAPPER #2 SUPER M APPER #2
SUPE R MAPPE R #3SUPER MAPPER #3
MAPPER
TELECOM
BUS
STS-3
LINE
INTERFACE LINE
INTERFACE
PM PM
PM PM
PMPM
T1/E1
LINE INTERFACE
UNIT
(T7690 OR T7698)
T1/E1
LINE INTERFACE
UNIT
(T7690 OR T7698)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
483Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-9020(F)r.1
Figure 56. Super Mapper Transport Configuratio n
FRAMER
DS1 RECEIVE LINE PATH
PERFORMANCE MONITORING
(Rx PA TH)
DS1 TRANS MI T LINE PATH
PERFORMANCE MONITORING
(Tx PA TH)
SUPER MAPPER : FRAMER
FDL PRMs
LOOPBACKS
MAPPER-
TO-
FRAMER I/O
CROSS
CONNECT
VT/VC
MAPPER VC-4
MULTIPLEXER STM-1
MULTIPLEXER
8-bit DATA + 1-bit PARITY
DS3
MAPPER
M12
MULTIPLEXER
DS2 I/O DS3 I/O SONET/SDH DS3
MAPPED I /O
RLCK28,
RPD28,TLCK28,
LINE INTERFACE
D S1 I/O
TPD28,
TND28
RND28 DS3 OR T1/E1 TO STS-1
MAPPED OUTPUT
(HIGH-SPEED TELECOM BUS)
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
484 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
5-9021(F)r.2
Figure 57. Super Mapper Trans po r t (with Intru sive P erform an c e Monitori ng ) Mod e (The O ption al Byte-
Synchronous VT Mapping Path Is Shown)
RECEIVE
SIGNALING
PROCESSOR
RX SIGNALING DATA
( T O SIGNAL I N G RE G I STERS)
RECEIVE
HDLC RECEIVE
FACILITY
DATA
LINK
RECEIVE
FRAME
ALIGNER
VT MA PP ER:
BYTE-SYNCHRONOUS ROBBED-BIT
SIGNALING RECE IVE DATA
VT MA PP ER:
BYTE-SYNCHRONOUS ROBBED-BIT
SIG NAL I NG TRA NSMIT D ATA
SUPER MAPPER
VT MAPP ER
INTERFACE
SUPER MAPPER
M12
MULTIPLEXER
INTERFACE
ESF PRM PATH
PERFORMANCE
MONITOR
TRANSMIT
FRAME
FORMATTER
TRANSMIT
HDLC
TRANSMIT
FRAME
FORMATTER
RECEIVE
FRAME
ALIGNER
TRANSMIT
HDLC
PERFORMANCE
MONITOR
ESF PRM PATH
TX PATH
SIGNALING
PROCESSOR
TRANSMIT
FACILITY
DATA
LINK
TRANSM I T SIG N ALIN G DATA
SUPER MAPPER: FRAMER
RX PATH
TX PATH
TX LINE
ENCODER
RX LINE
DECODER
RLCK28, RPD28, RND28
TLCK28, TPD28, TND28
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
485Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.3 Framer-to-Line Interface Unit Physical Interface
The framer-LIU interface of the Super Mapper framer consists of 28 groups of six connections. The internal DS1
cross connect must be configured to connect the framer-LIU interface through the multifunction system interface to
ex ternal T1/E1 line interface de vices. The six connections for each fr amer are TND, TPD , and TLCK driven from the
transmit framer (receive path) and RPD, RND, and R CLK (transmit path) sourced fro m the ex ternal line interface
devic e. The connections can optionally be from/to the protected switch. See Table 3 on page 15 f or the e xternal pin
names that correspond to the desired six connect ions.
The line i nterface may operate in single-rail or dual-rail mode. The default mode of the line enco der is single-rail
(FRM_LD_MODE[2:0] = 000 (Table 430), FRM_L E_ MO DE [2:0] = 000 (Table 431)). In this mode, the input signals
are passed transparently through the line encoder.
In single rail mode, the links framer internal bipolar line encoder/decoder is disabled and monitoring of received
line f ormat violati on is accomplished with the use of the RND input. When RND = 1 o n the risin g edge of RLCK, the
line fo r mat violation FRM_BPV[15:0] (Table 388) counter increme nts by one. The links transmit framer transmits
data via the TPD outp ut pin while TND is forced to a 0 state.
In dual rail mode, the internal line encoder/decoder and monitoring are enabled. T he line code may be selected by
provis ioning FRM_LD_MODE[2:0] and FR M_LE_MO D E[2:0]:
1. Alter nate Mark Inversion (AMI ).
2. High-Density Bipolar of Order 3 G.703, A.1 (HDB3).
3. Binary 8 Zero Code SuppressionG.703, A.2 (B8ZS).
Line format violations due to excessive zeros will be optionally monitored as follows :
1. B8ZS8 consecutive zeros cause a violation.
2. HDB34 consecutive zeros cause a violation.
21.3.1 Lin e Interface References /Standards
1. ITU-T Recom m endat ion G.703, Phy sical/E lectrical Characteristics of Hierarchical Digital Interfaces;1991 .
2. ANSI T 1.403-1995, Network-to-Customer Installation - DS1 Metallic Interface; March 21, 1995.
21.3.2 Frame Formats
The 28 superframers support th e following frame formats:
1. DS1 superframe D4 .
2. DS1 superframe J-D4 with Japanese remote alar m.
3. DS1 superframe DDS.
4. DS1 su perframe
SLC
-96.
5. DS1 extended superf ra me (ESF).
6. Japanese extended superframe J-ESF (J1 standa rd with differen t CRC-6 algorithm).
7. Nonalign DS1 (transparent 193 bits) .
8. CEPT basic frame {ITU G.706}.
9. CEPT CRC-4 multiframe with 100 ms timer {ITU G.706}.
10. CEPT CRC-4 multiframe with 400 ms timer (automatic CRC-4/nonCRC-4 equipment interworking) {ITU G.706
Annex B}.
11. Nonalign E1 (transparent 256 bit s).
12. 2.048 coded mark inversion (CMI) coded interfac e (TT C S tandards JJ-20.11).
13. 6.312 Mbits/s interface (ITU G.704/NTT J2) .
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
486 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
21.3.3 Transmit Framer Functions
1. Transmits alarm indication signal (AIS) to th e line automatically and on demand.
2. Transmits AIS- CI to the line automatically and on demand.
3. Transmits remote alarm indication (RAI) to the line automatic al ly and on demand. Conditions for tran smitting
RAI include; loss of receiv ed frame alignment, CEPT loss of received time slot 0 multiframe alignment, CEPT
CRC-4 timer e xpir ation, CEPT loss of receiv ed time slot 16 signalin g mul tifra me alignment, CEPT received Sa6
equals 8, an d recei ved Sa6 equa ls C .
4. Transmits RAI-CI to the line automatically and on demand.
5. Transmits auxiliar y te s t pattern (AUXP) to the line automaticall y and on demand.
6. Transmits CEPT E bits based received CRC-4 errors.
7. Support the CEPT double not-F AS sys tem mode.
8. Transmits a P R BS test pattern to the line on demand.
9. Transmits line loopback on and off codes to the line on demand (T1.403 s ec tion 9.3. 1).
10. In transport mode, when not in f rame alignment, to optional ly send AIS or transpar ently pass data.
21.3.4 Framing References/Standards
1.
ANSI
T1.403, 1997.
2. ITU-T Recom m endat ion G.703, Phy sical/E lectrical Characteristics of Hierarchical Digital Int erfaces; 1991.
3. ITU-T Recommendation G.704, Synchronous F rame Structures used at 1554, 6312, 2048, 8488 and
44736 kbits/s Hierarchical Levels; July 1995.
4. ITU-T Recommendation G.706, F rame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to
Basic Frame Structures defined in Recomme ndation G.704; 1991.
5. TTC Standard JT-G704, Synchronous F rame Structures used at 1554, 6312, 2048, 8488 and 44736 kbits/s Hier-
archical Le vels; July 1995.
21.4 DS1 Transparent Framing F ormat
The transm it framer can be p rogrammed to transparently transmit 193 bits of CHI system data to the line.
When configured for transparent framing, the transmit framer extracts from the receive CHI system data bit 8 of
time slot 1 and inserts t his bit into the framing bit position of the transmit line data. The other 7 bits of the receive
system time slot 1 are ignored by the transmit framer. The receiv e framer will extract the framing b it (or 193rd bit) of
the receive line data and insert it into bit 8 of time slot 1 of the CHI system data. The other bits of time slot 1 are set
to 0.
Fr ame integrity is maintained in both the trans mi t and receive framer section s.
5-5989(F).ar.1
Fig ure 5 8. DS1 Transparent Frame Structure
TIME-SLOT 1
(STUFF TIME-SLOT)
32 TIM E-SLOT C HI FR A METIME-SLOT 2 TIME-SLOT 3 TIME-SLOT 31 TIME-SLOT 3 2
0000000F BIT
TRAMSMIT FRAMERS
193-bit FRAME
DS1 = 125 µs
TIME- SLOT 1 TIME-SLOT 2 TIME-SLOT 24F BIT
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
487Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
In tran sparent framing mode 1, the receive framer is for c ed not to reframe o n the receive l ine data. Other than bipo-
lar violations and unframed A IS monitoring there is no processing of the receive line d at a. The receive fr amer will
insert the 193rd bit of the receive line data into b it 8 of time slot 1 of the tra nsmit system data.
Bit 8 of time slot 1 o f the receive system interface is inser ted as the 193rd data b it into the transmit line data.
Transparent framing mode 1 is selected b y setting FRM_LNK_TRANSP (Table 421) to 1 and FRM_MODE[3:0]
(Table 422) to 1000 (nonalign 193rd bit).
In transparent framing mode 2, the receive framer f unctions normally on receive li ne data. Al l nor mal monitoring of
receive line data is perform ed and data is passed to the transmit CHI as programmed. The receive fr amer will
insert the extracted fram ing bit of the receive line data into bit 8 of time slot 1 of the transmit system data. The
remaining bits in time slot 1 are set to 0.
Bit 8 of time slot 1 of the receive system interface is inserted in the tra nsmit l ine f r aming bit position.
Transparent framing mode 2 is selected b y setting FRM_LNK_TRANSP (Table 421) to 1 and selecting t he appro-
priate fr aming mode with FRM_MODE[3:0] (Table 422).
21.5 CEP T 2.04 8 Ba si c F rame S t ruc t ur e Transpar ent Fr amin g F or mat
The transm it framer can be programmed to transparently tran smit 256 bits of CHI system data to the line. The
transmit framer must be programmed to transparent framing mode 1.
In trans parent mode, the transmit framer transmits all 256 bit s of the system p ayl oad unmodif ied to the l ine. Time
slot 1 of the CHI system interface, determined by the system frame sync signal, is inserted into the FAS/NOTFAS
time slot of the tra nsmit line interface.
Fr ame integrity is maintained in both the trans mi t and receive framer section s.
5-5988(F)
Figure 59. C EPT Transparent Frame S tructure
In transparent framing mode 1, the receive framer i s forced not to reframe on the receive line data. Other than bi po-
lar violations and unframed A I S mo nitoring, there is no processing of the receive line data. The entire receive line
payload is transmitted unmodified to the CHI.
Transparent framing mode 1 is selected b y setting FRM_LNK_TRANSP (Table 421) to 1 and FRM_MODE[3:0]
(Table 422) to 0000 (non-align 256th bit).
In tr ansparent framing mode 2, the receive framer functions normally on the receive line data. All normal monitoring
of receive line data is performed and dat a is transmitt ed to the CHI as programmed.
Transparent framing mode 2 is selected b y setting FRM_LNK_TRANSP (Table 421) to 1 and selecting the appro-
priate fr aming mode with FRM_MODE[3:0] (Table 422).
TIME- SLOT 1 32 TI ME - SL OT CHI FR AM ETIME -SLOT 2 TIME-SLOT 3 TIME-SLOT 31 TIME-SLOT 32
TIME- SLOT 1 32 TI ME - SL OT LI NE FRAMETIME-SLOT 2 TIME-SLOT 3 TIME-SLOT 31 TIME-SLOT 32
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
488 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
21.6 Rece iv e F r am e r Nonali g nment Mod e (DS 1/ E 1)
In the non-align framing modes the receiv e frame aligner does not frame to the receive line data. Other than bipolar
violations, AIS, and AU XP monitoring, there is no processing of the receiv e line data. The entire rece ive line frame
is g iven unmodified to the sy s tem int erface.
21.6.1 Loss of Frame Alignment Criteria
There are two criteria for declaring loss of frame: frame bit error s and CRC errors.
Fra me Bit Errors.
1. T1: two frame bit errors out of 4 fr ame bi t s (FT and FS bits checked).
2. T1: two frame bit errors out of 5 fr ame bi t s (FT and FS bits checked).
3. T1: two frame bit errors out of 6 fr ame bi t s (FT and FS bits checked).
4. T1: three frame bit errors o ut of 12 frame bitsDDS o n l y ( FT, FS, and t ime slot 24 F bits).
5. T1: two frame bit errors out of 4 fr ame bi ts (only FT bits checked).
6. T1: two frame bit errors out of 5 fr ame bi ts (only FT bits checked).
7. T1: two frame bit errors out of 6 fr ame bi ts (only FT bits checked).
8. T1: f ou r frame bit e rrors o ut o f 12 f rame bitsDDS only (FT, FS and time slot 24 FAS pattern).
9. E1: three consec utive incorrec t frame alignmen t signals.
10. E1: three consecutive incorrect frame alignment signals or three consecutive incorrect non-FAS frames as indi-
cated by bit 2 in time slot 0 in frames not containing the frame alignment signal.
11. E1: 3 consecutive incorrect FAS or non-FAS fr ames.
12. 2.048 Mbits/s CMI: 2 consecutive missing code rule violations (CRVs).
CRC Errors.
The use of CRC errors to declare loss of frame is optional. CRC errors are monitored in the per formance monitor
block.
In DS1 mode, ESF, and J-ESF formats only, N or more CRC-6 errors in a 1 second inter val results in loss o f frame
alignment. N is provisionable. N defaults to 320 in DS1 mode.
In CEPT mode N, or m ore, CRC-4 errors in a 1 second int erval results in loss of frame alignment. N is provision-
able. N defaults to 915 in CEPT modes.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
489Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.7 Fra m e Ali gn m ent Crite r ia
Table 576 desc r ibes t he frame alignment criter ia for the formats supported by the supe rframer.
Table 576. Frame Alignment Criteria
21.8 Receive and Transmit Signaling Processor
21.8.1 Signaling Introduction and Feature Description
The signaling processor, which is dupl icated in the receive an d transmi t paths, moves signaling data to and from
the foll owi ng interfaces:
T1/E1/J 1/CMI l ine interface
System interface
VT mapper interface
Host interface
The following frame types are supported when proce ssing signaling to a nd f rom the line interface (no special provi-
sioning is needed for the signaling processor to distinguish between these fr am e types):
DS1: E SF; J -ES F; D4 ; J-D4 (2-, 4-, o r 16-state mode)
CEPT Basic Frame; CE PT CRC-4 (100 ms); CEPT CRC-4 (400 ms)
CMI
Frame Format Alignment Procedure
SF Frame alignmen t i s established when six consecut ive erro r-free superfram es are
received. Only the FT framing b its are checked (36 bits checked).
D4 and J-D4 Frame a lignment is establis hed when six consecutive error-free superframes are
received (72 bits checked in D4, 66 bits checked in J-D4).
DDS Frame alignment i s established when six consecut ive er ror-free frames are
received (42 bits checked: FT, FS, an d time slot 24).
SLC
-96 The FT frame position is estab lished when f our consecutive error-free superframes
are received (24 FT bits check ed). After establ ishing the FT fr ame position,
SLC
-96
superframe alignment is es tablished on the fir st valid FS sequence of
000111000111. All the while the FT f ra me po sition must remain error free.
ESF and J-ESF Frame alignment is established when three consecutive error-free superfr ames are
received (18 bits checked).
CEPT Basic Fram e Uses the strategy out lined in G.706 paragraph 4.1.2.
CEPT CRC-4 100 ms Timer Uses the strategy outlined in G.706 paragraphs 4.1.2 and 4.2.
CEPT CRC-4 400 ms Timer Uses the strategy outlined in G.706 paragraph 4.1.2 and ANNE X B.
2.048 Mbits/s CMI Coded
Interface Frame alignment is established on the f i rst detection of the CRV violation. Multi-
frame alignment is achieved the first time the 01111111 multiframe ali gnment pat-
tern is detected.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
490 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
The following s ystem bus modes are s upported (no special prov isioning is needed for the signaling proce ssor to
distinguish bet ween these system bus modes):
Parallel system bus
CHI bus i n ASM mode
The VT mapper interfac e in the sign aling processor supports VT1.5, VT 2 byte sync mapping, as wel l as V C-11
byte sync mapp ing using handling groups.
The host can read the signaling data extracted from the line, system, or VT mapper interface at an y time. T he
transmit signaling processor can be configured so that the host provides t he signaling data to be forwarded to the
line, system, or VT map per interface.
Other si gnali ng features include:
Debounce on a ll signaling data extracted from the line interface o r the VT m apper interface.
Host interrupt upon ch ange of sign aling state in the receive path.
Sign aling extrac tion inhibit based on frame alignment and fram ing bit errors.
Stomping of DS1 robbed-bit signaling p o sitions.
Suppor t of zero-code suppres s ion on the line interface in the transmit path.
Superf rame s ignaling integrit y. No signaling data tra nsmi tted will be a mix of old and new due to a mid super -
frame update of signaling informat ion.
21.8.2 Signaling References/Standar d s
ITU Rec. G.704 10/98 CEPT Multiframe Signaling Structure
ITU Rec. G.775 10/98 CEPT TS16 AIS Detection, Remote Alar m Detection
ITU Rec. G.732 1998 CEP T T ime-Slot 16 mfa, Time-Slot 16 rfa
ITU Rec . O.162 10/92 CEPT Time-Slot 16 rfa De tection
T1.4 03 1995 Robbed-Bit Signaling
TTC JJ-20.11 CMI Coded Interface
ANSI
T1.105 SONET Payload Mapping
Telcordia
GF-253-CORE SONET Transport Systems
ITU Rec G.707 10/ 98 Net work Node Interface for SDH
TTC JT G.704 Japanese Syn chronous Frame Str uct ures
21.9 Receive Sign al ing Pe r-Link Fe at ure Provisioning
The receive signal ing processor requir es t he provis ioning of f our items for eac h link in order to enable signaling
extraction and delivery:
1. Signaling state mode source (host or Rx CHI interface).
2. Signaling state mode (2-, 4-, and 16-state mode or no-s ignaling).
3. Signaling source (receive line, VT mappe r, o r host i nterface).
4. Signaling destination (trans mit syste m or transmit line interface).
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
491Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.9.1 Signaling State Mode Sou rce Selection
The signaling state mode so urce is selec ted by progra mming FRM_R_FGSRC in Table 374, FRM_RSLR33,
Receive Si gnali ng Lin k Regist er 33 (R/W) on pa ge 269, bit 2. The typical application will select the host for pro-
gramming the sta te mode. If so , the host will have to program the state mode for all of the t im e slots o n each of the
links. The default state mode selected is 16-state signaling.
It is possible for the state mode to be set by the values received on the CHI bus by the receive system interface. In
this mode, the signaling processor will constantly monitor those values and update the state mode for each of the
time slots on each link.
21.9.2 Signaling State Mode Selection
The signa ling state mode for each time slot is se lected by programming bits 5 and 6 of FRM_RSLR0
FRM_RSLR31, Receive Signali ng Link Registers 031 (R/W) in Table 372 on page 268 for eac h link. The bit defi-
nition for each of those 32 registers i s shown below.
Table 577. Receive Signaling Link Registers 031 Bit Description
The signaling state mode definitions are shown in the table below.
Table 578. Receive Signaling Link Registers 031 G-Bit and F-Bit Description
The signa ling state m ode for DS1 type links sh ould be set to match the fu n ction of each time slot. The signaling
state mode does not apply to CEPT type links and the value must be ke pt in the reset state which is 00. The signal -
ing state mode for CMI type links must be set to 11.
The 16-state mode, which is the sta te mode se lected out of reset, can be used on SF type DS1 links in order to
detect a toggle code. In th is case, signaling will be collected over two superframes and stored as a 4-bit code.
When programming the state mode for each time slot, the host can also program the D, C, B, and A bits in the
same register. Doing this will determine the de fault code forwarded to the t ransmi t system or the transmit line inter-
face before the first valid signaling code has been extracted f rom the recei ve line or VT mapper inter face.
Each o f the links and time slots is completely independent from one another with respect to the signaling s tate
mode s e lection. Any combination i s acceptable.
21.9.3 Signaling Source Selection
The signaling source is selected by programming FRM_R_SIGSRC in Table 374, FRM _RSLR33, Receive Signal -
ing Link Register 33 (R/W) on page 269, bits [1:0]. If the source selected is the receive line interface, the recei ve
signaling processor will start extracting data from the receive line and store v alid signaling cod es into the D, C, B,
and A lo ca tions of FRM _RS LR0FRM_RS LR31, Rec eive Signaling Lin k Registers 031 (R/W), Tabl e 372 on
page 268 for each of the links.
The receive signaling processor will automatic ally deter mine the link t y pe and extract the correct signaling bit posi-
tions from each link. The receive signaling processor can simultaneously service any com bination of CEP T, DS1,
and CMI type links. The rece ive signal ing processo r will extrac t rob bed-bit signaling from DS1 links, common chan-
nel signaling from CEPT links, and time slot 0 signaling from CMI links compli ant with the following standards.
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
GFDCBA
G and F Signaling State Mode Selected
00 16 state (reset state)
01 4 stat e
10 no signaling
11 2 state
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
492 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
ITU Rec G.704 10/98 CEPT multiframe signaling structure
T1.4 03 1995 robbed-bit signaling
TTC JJ-20.11 CMI coded interfac e
If the VT mapper is transporting byte sync mapped DS1 links into SONET frames, then the signaling source should
be set to VT mapper interface. In that case, the receive signaling processor will star t collecting valid signaling
codes f r om the VT mapper an d s tore them into the D, C, B, and A locat ions of FRM_RSLR0FRM_R SLR31,
Receive Si gnali ng Lin k Regist ers 031 (R/W), Table 372 on page 268 for each of the links.
If the VT m apper is the s ource of s ignal ing, data will be extracted based on the standards listed below.
ANSI
T1.105SONET payload mapping
Bellcore
GF-253-CORE SONET transport systems
ITU Rec G.707 10/98 network node i nterface for SDH
If the VT mapper is transporting byte sync mapped CEPT links into SONET frames, t hen the signaling source
should be set to the receive line interface. In that case, the receive signaling processor will extract the entire time
slot 16 multiframe and st ore that information into F R M_RSLR0FRM _RSLR31, receive signaling link regis ters
031 (R/W) for each of the links.
If the signaling source is set to be the host, the host may write to FRM_RSLR0FR M_RSLR31, receive signaling
link registers 031 (R/W) and those values will be forwarded to the sel ected de stination. The host m ode can also
be used to manually fr eeze signaling. When the source is switched from receive line to host, for example, the exist-
ing signaling c odes will be held until modified by the host or until the signalin g sou rce is switched back to the
receive line interface. If the host mo de is used to manual ly freeze signali ng, th en the signaling debounce feature
must be en abled. To enable signaling debounce set FRM_R_SIGDEB in Table 374, FRM_RSLR33, Receive Sig-
naling Link Re giste r 33 (R/W) on page 269, bits 5 to 1.
Each o f the links is completely i ndependent from one another with respect to the signaling source selection. Any
combination of receive li ne, VT mapper, and host is acceptable.
21.9 .4 Signalin g De st ination Selec tion
There are three destinations for the signaling extracted from the receive line or VT mapper interface:
1. Transm it system interface.
2. Transm it line interface.
3. FRM_RSLR0FRM_RSL R31, receive signaling link registers 031 (R/W ), Table 372 on page268 .
The signaling extrac ted from t he re ce ive line or VT mapper interface wil l automatically be delivered to the transmit
system interf ace when the framer section of the Super Mapper is programmed fo r switch mode. This is done by set-
ting FRM_SW_TRN in FRM_SFGR1, Superframer Global Register 1 (R/W), Table 301 o n pag e243, bits 15 to 1.
The syste m interface will need to be configured for A SM mode in order for the sig naling to be transmitted on the
PSB or CHI buses. A SM mode is controlled by FRM _SYSGR1, System Interface Glob al Register 1 (R/W),
Table 347 on page257 bit 11.
The signaling ex tracted from the VT mapper interface can be inserted into the tra ns mit line interface when the
framer section of the Super Mapper is programmed for transpo rt mode. This is done by sett ing FRM_SW_TRN in
FRM_SFGR1, S uperf ramer Glo bal Register 1 (R/W), Table 301 on page243 , bits 15 to 0, and by setting
FRM _R _S I GI in Table 374, FRM _RSLR33, Receive Signaling L ink Register 33 (R/W) on page 269, bit 8 to 1. The
signaling will be inserted based o n the pr og ramm in g of sta te m odes of each time slot.
The receiv e signaling processor cannot provide data to the transmit system and the tr ansmit line interface on differ-
ent li nks simultaneously.
Signali ng extracted from the VT mapper or receive line interface will always be available in FRM_RSLR0
FRM_RSLR31, Receive Signali ng Link Registers 031 (R/W), Table 372 on page268 for each link. The host can
read these registers regardless of whether or not the signaling is forwarded to the transmit system or tr ansmit line
interf ace. Receive Signaling Link Registers 031 DS1/CEPT/CMI Data, Table 577 on page 491 shows the position
of t he data in those 32 registers for each of the receive line formats.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
493Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 579. Receive Signaling Link Registers 031 DS1/CEPT/CMI Data
For CE PT links, the entire tim e s lot 16 m ultiframe is stored in FRM_R SLR0FRM_R SLR31, receiv e signaling link
registers 031 (R/W), Table 372 on page268 . The spare b its X[2:0] and the time slot 16 remote frame alarm Y bit
are stored in RSLR0. When time slot 16 multiframe alignment is lost, X[2:0] w ill automatically be set to 111 and the
Y bit will be set to 0.
T he format of the data stored in FRM_RSLR0FRM_RSLR31, Receive Signali ng Link Registers 031 (R/W),
Table 372 on page 268 also depends on the signaling state mode selected for each tim e slot as shown inTable 580.
RSLR Address RS L R B it[6:0] ( DS1) RSLR Bit[6:0] (CE PT) RSLR Bit[6:0] (CMI)
0000 X0 Y X1 X2
1 GF0 DCBA (Channel 1) 000 DCBA (Channel 1) 110 DCBA (Channel 1)
2 GF0 DCBA (Channel 2) 000 DCBA (Channel 2) 110 DCBA (Channel 2)
3 GF0 DCBA (Channel 3) 000 DCBA (Channel 3) 110 DCBA (Channel 3)
4 GF0 DCBA (Channel 4) 000 DCBA (Channel 4) 110 DCBA (Channel 4)
5 GF0 DCBA (Channel 5) 000 DCBA (Channel 5) 110 DCBA (Channel 5)
6 GF0 DCBA (Channel 6) 000 DCBA (Channel 6) 110 DCBA (Channel 6)
7 GF0 DCBA (Channel 7) 000 DCBA (Channel 7) 110 DCBA (Channel 7)
8 GF0 DCBA (Channel 8) 000 DCBA (Channel 8) 110 DCBA (Channel 8)
9 GF0 DCBA (Channel 9) 000 DCBA (Channel 9) 110 DCBA (Channel 9)
10 GF0 DCBA (Channel 10) 000 DCBA (Channel 10) 110 DCBA (Channel 10)
11 GF0 DCBA (Channel 11) 000 DCBA (Channel 11) 110 DCBA (Channel 11)
12 GF0 DCBA (Channel 12) 000 DCBA (Channel 12) 110 DCBA (Channel 12)
13 GF0 DCBA (Channel 13) 000 DCBA (Channel 13) 110 DCBA (Channel 13)
14 GF0 DCBA (Channel 14) 000 DCBA (Channel 14) 110 DCBA (Channel 14)
15 GF0 DCBA (Channel 15) 000 DCBA (Channel 15) 110 DCBA (Channel 15)
16 GF0 DCBA (Channel 16) ——
17 GF0 DCBA (Channel 17) 000 DCBA (Channel 17) 110 DCBA (Channel 17)
18 GF0 DCBA (Channel 18) 000 DCBA (Channel 18) 110 DCBA (Channel 18)
19 GF0 DCBA (Channel 19) 000 DCBA (Channel 19) 110 DCBA (Channel 19)
20 GF0 DCBA (Channel 20) 000 DCBA (Channel 20) 110 DCBA (Channel 20)
21 GF0 DCBA (Channel 21) 000 DCBA (Channel 21) 110 DCBA (Channel 21)
22 GF0 DCBA (Channel 22) 000 DCBA (Channel 22) 110 DCBA (Channel 22)
23 GF0 DCBA (Channel 23) 000 DCBA (Channel 23) 110 DCBA (Channel 23)
24 GF0 DCBA (Channel 24) 000 DCBA (Channel 24) 110 DCBA (Channel 24)
25 000 DCBA (Channel 25) 110 DCB A (Channel 25)
26 000 DCBA (Channel 26) 110 DCB A (Channel 26)
27 000 DCBA (Channel 27) 110 DCB A (Channel 27)
28 000 DCBA (Channel 28) 110 DCB A (Channel 28)
29 000 DCBA (Channel 29) 110 DCB A (Channel 29)
30 000 DCBA (Channel 30) 110 DCB A (Channel 30)
31 000 DCBA (Channel 31) 110 DCB A (Channel 31)
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
494 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 580. Receive Signaling Link Registers 031 Expected Data
If the state mode is 4 state or 2 state, then the unused bits will be set to 0.
21.10 O p t ion a l Rece ive S ignal in g F eat u r es Pro visio ne d f o r E ach Lin k
21.10.1 Support of DS1 Robbed-Bit Stomping
The DS1 robbed-bit po sitions of voice time sl ot s will be set to 1 in the payload when FRM_R_RXS TOMP in
FRM_RSLR33, Rec eive Signaling Lin k Register 33 (R /W) , Table 374 on page 269, bit 7 is set to 1. T he r obbed-bit
positions in the pay load will be stomped; however, the signaling will be transmitted untouched by the system inter-
face.
21.10.2 Suppo rt of CE P T Time Slot 16 Stomping
Stompin g of time slot 16 for CEPT links is enabled in the system interface block.The Super Mapper c an also be
configured to transmit AIS on the system bus in time slot 16 when the si gnali ng block loses time slot 16 alignment.
The configuration b its related to these two features are located in the FRM_SYSLR2, System Interface Link Regis-
ter 2 (R/W), Ta ble 419 on page 294. Whe n using these features, the signaling codes forwarded to the transmit sys-
tem bus will continue to reflect the contents of FRM_RSLR0FRM_RSLR31, Receive Signaling Lin k Registers
031 (R/W), Table 372 on pag e268.
21.10.3 Support of Signaling Debounce
If programmed to do so, the s ignaling ex tracted from the selec ted source will be debounced. This implies that a
val id signaling code would ha ve t o be detected twice bef ore it is updated in FRM_RSLR0FRM_RSLR31, Receive
Signaling Link Registers 031 (R/W), Table 372 on page268 . This feat ur e is enab led by setting FRM_R_SIGDEB
in FRM_RSLR33, Rec eive Signaling Link Register 33 (R/W), Table 374 on page269 , bit 5.
21.10.4 Suppo rt of Japanese Hand ling G roups
If the signaling is transporte d by the VT mapper within four handlin g gro ups co mp lian t to the Japane se standard,
TTC JT G. 704, then FRM_R_HGEN in FRM_RSLR33, Receiv e Signaling Link Register 33 ( R/W), Table 374 on
page 269, bit 4 must be set to 1. The signal ing state mode must be set to either 2 state or no- signaling when using
handling groups.
If the signaling transported by the VT mapper uses handling groups, then th e status of t he handling gr oup align-
ment can be transmitted across the system interface. The transmission of this status is enabled by setting
FRM_R_T SAISHG in FRM_SGR1, Receive Signaling Global Register 1 (R/W), Table 359 on page 262, bi ts 15 to
1. This mode forces the signaling data for the c hannels contained in each handling group to 1 if HG alignment has
not been achi eve d by the receive signaling processo r. For example, if HG2 is unaligned then the A bit for time slots
2, 6, 10, 14, 18, and 22 for warded to the system would be forced to 1.
21.11 Receive Signalin g Global Feature Provisionin g
The receive signaling processor requires the pro visioning of one global item in order to enable signa ling extraction
and delivery.
Link count (number of active receive links).
Signaling State Mode Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
16 state 0 0 0 D C B A
4 state 01000BA
2 state 110000A
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
495Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.11.1 Link Count Sel ecti on
The link count is specified by prog ramming FRM_R_LINKCNT[4:0] in FRM_SGR1, receiv e signaling global regis ter
1 (R/W), Table 359 on page262, bits [14:10]. The reset value is 28, which is appropri ate for a 28 link DS1 applica-
tion. A value of 21 i s appropriate for a 21 link CEPT application. If the application mixes DS1 and CEPT links or the
TDM clock supplied to the framer sectio n is less than 51.84 MHz, this value should match th e t erm inal count set i n
FRM_FGR2, framer global register 2 (R/W), Table 306 on page246 , bits [7:0].
21.12 Other Rece ive Signalin g Global Features
21.12.1 Support of Automatic Signaling Freeze on Framing Bit Errors
By def ault, signaling extracti on from a particular link will halt when the appropriate alignment has been lost. In order
to guarantee that signaling freeze takes place as soon as possibl e, F R M_R_AFZFBE in FRM_SGR1, Receive Sig-
naling Global Register 1 (R/W), Ta ble 359 on pa ge262, bit 1 must set to 1. W hen e nabled, FRM_R_AFZ FBE hal ts
signaling extraction for 32 frames upon detection o f a frame bit error. This configuration bit is applicable to DS1,
CEPT, and CMI type frames and for si gnali ng ex t racted from the receive line or the VT mapper interface. When
FRM_R_AFZFBE is enabled, the receive signaling debounce feature must also be enabled. The FRM_R_SIGDEB
feature is enabled in FRM_RSLR 33, Rec eive Signa ling Link Reg ister 33 (R/W) , Table 374 on pag e269, bit 5.
21.12.2 Support of Change of Signaling Sta te FIFO
Signaling can be ter minated in the framer section of the Super Mapper by polling FRM_RSLR 0 FRM_RSLR31,
Receive Si gnali ng Lin k Regist ers 031 (R/W), Table 372 on page 268 for each link. An alternative m e thod is to
enable the operation of a signaling change of state FIFO. In doing so, the host will be interrupted when there have
been signaling state changes which need to be processed. In order to enable the ope ration of the signaling change
of sta te FIFO, s et FRM_R_S C OSEN in FRM_S GR2, Receive Signaling Global Regis ter 2 (R/W), Table 360 on
page 262, bit 15 to 1.
The FIFO is loca ted a t signaling receive global register 3. The wor d read by the host has the following format.
Table 581. Signaling Receive Global Register 3, Bit Definition
The data read by the ho st indicates the link number (L [4:0]), time slot number (TS[4:0]) and the signaling informa-
tion for a ti me slot whose value has changed. The wo r d r ead by the host will also indi cate whether or not the entry
is valid (V = 1) and whether or not there are more entries yet to be re ad (M = 1). A word with V set to 0 indicates
that the FIFO is e mpty. The signalin g code presented wil l refle ct the associated GF value progra mmed by the host.
The unused signaling bits will be set to 0. For example, if the t ime slot is programmed for 4-stat e s ignaling, the D
and C bits will be set to 0. The A and B bit will identify the valid signaling code.
This feature can be used in c ombination with any other feature (i.e., debounce).
When the ch ange of state FIFO is enable d , the host will be interrupted when one of two conditions is satisfied. If
the number of entries in t he FIFO exceed the threshold programmed by the host or if there are valid entries to be
processed and the signaling int er r upt timer has ex pi red, then the host will be interrupted.
The host s ets the FIFO depth threshold by programming FRM_R_SCOSDTH[9:0] i n FRM_SGR2, Receive Signal-
ing Global Register 2 (R/W), bi ts [9:0]. The depth of the FIFO is 672, which is suff icient to store an entry for every
time slot process ed by the 28-link fr amer. The timer interval is selected by programming FR M _R_SC OSTTH[15:0]
in FRM_SGR3, Receive Signaling Global Re giste r 3 (R/W), Table 361 on page 263, bi ts [15:0]. Th e tim er i ncre-
ments are 125 µs and the maximum interval possible is 8 s. The default setting for t he depth and timer threshold is
0, which results i n the host being interrupted whenever an entry i s made into the FIFO.
If the FIF O overf lows, the processor wi ll immediat ely be inte rru pt ed. The cur rent c ontents of the FIFO will b e lost
ho wever, subsequent entries will be stored normally.
The host can poll the change of state FIFO without the use of interrupts.
Bit 15 Bit 14 B it 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
M V L4 L3 L2 L1 L0 TS4 TS3 TS2 TS1 TS0 D C B A
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
496 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
21.13 Receive Signaling Interrupts
There are three interrupts which are maintained in the rece ive signalin g processor, which are located in
FRM_SG R7 , receive signa ling g lobal regi ster 7 (R/W ), Table 365 on page264 . The three interrupt s reflect the sta-
tus of the change of signaling state FIFO. These interrupt bits can be reset based on a cle ar-on-read protocol,
which is p rovisioned in the Super Mapper global registers.
Thr es hold overflow interrupt. This bit is set to 1 when the programmed threshold for the FIFO capacity h as been
exceeded.
Inte r r upt ti me r interru pt. This bit is s e t to 1 when the programmed inte rrupt timer has expired and there are valid
entries in the FIFO to be pro cessed.
FIFO o verflow interrupt. This bit is set to 1 when the FIFO over flows.
There are mask bits associated with each of t he three interrupt statu s bits which are located in FRM_SGR7,
receive signaling global register 7 (R/W).
21.13.1 Maintenance of the Change of Signaling State FIFO Status Bits
There is one bit which reflects the status of the change of signaling stat e FIFO. The location of this status bit is in
FRM_SG R5 , receive signa ling g lobal regi ster 5 (RO), Table 363 on page263 .
FIFO depth threshold overflow status. Thi s bit is set to 1 when the programmed thresh old for the FIFO capacity
has been exc eeded.
21.13 . 2 Maintenance of Ha ndling Group R elat ed Sta t us Bits
There are three bits which reflect the status of the handling groups extracted fr om the VT mapper interface. There
are four handling groups on each link therefore there will be thre e copies of the following bits for each l ink. The
location of these status bits are in FRM_RSLR33, Receive Signaling Link R egister 33 (R/W), Table 374 on
page 269.
Loss of HG alignment. Alignment uses the 0101010 . . . framing patter n and follows the alignment algorithm
shown in Figure 60 on page497 .
AIS detecti on with in each handling group (AIS detection 48 consecutive ones, AIS loss any two zeros).
RDI detection within each handling group (RDI detection is the presence of three consecutive zeros in the Sp bit
position).
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
497Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-9024(F)r.1
Figure 60. HG Alignment Algorithm
21.14 Transmit Signaling Per-Link Feature Provision ing
The transmit signaling processor requires the provisioning of four items for each link to enable signaling extraction
and delivery.
Signaling State Mode So urce (host or Rx CHI interface)
Sign aling State Mode (2-, 4-, and 16-state mode or no-signaling)
Signaling Source (receive line, receive system, or host interface)
Signaling Destination (V T mapper or transmit line interface)
21.14.1 Signaling State Mode Sou rce Selection
The signaling state mode so urce is selected by progra mming FRM_T_FGSRC in F RM_TSLR32, Transmit Signal-
ing Link Register 32 (R/ W), Table 378 on pag e272, bit 2. The typical application will select the host for program-
ming the state mode. If so, the host will ha ve to program the s tate mod e for all of the time slots on each link.
RESET
n = 1
S
X
(n) = 0 AND
S
X
(n + 8) = 1 AN D
S
X
(n + 16) = 0 AN D
S
X
(n + 24) = 1 NO
YES
LOF FOR HG
X
n = n + 1
n = n + 32
S
X
(n) = 0 AND
S
X
(n + 8) = 1 AN D
S
X
(n + 16) = 0 AN D
S
X
(n + 24) = 1
NO
NO
n = n + 25
YES n = n + 16
YES n = n + 32
MF A FOR HG
X
S
X
- INDICATES S bits FROM VT MAPPER (S1, 2, 3, 4)
n - INDICATES THE SEQUE NCE OF EACH S
X
bit RE CE IV E D
HG
X
- INDICATES THE HG (HG1 , 2, 3, 4) ASSOCIATED
WITH THE CORRESPONDING S bit (S1, 2, 3, 4)
LOF FOR HG
X
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
498 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
It is pos s ible for t he s tate mode to be implied by the values received on the C HI or PSB bus b y the receive system
interface. In this mode, the signaling processor will constantly monitor those values and updat e the state mode for
each of the time slots on each link.
21.14.2 Signaling State Mode Selection
The signaling sta te m ode is sel ect ed by programming bits 5 and 6 in FRM_TSLR0F RM_TSLR31, Transm it Sig-
naling Link Re gisters 031 (R/W), Table 372 on pag e268 for each link. The bit de finition for each of those 32 reg-
isters is illustrated below.
Table 582. Transmit S ignal i ng Link Regi sters 031 Bit Description
The signaling state mode definitions are illustrated in the table below.
Table 583. Transmit S ignal i ng Link Regi sters 031 G-Bit and F-Bit Description
The signa ling state m ode for DS1 type links sh ould be set to match the fu n ction of each time slot. The signaling
state mode does not apply to CEPT type links and the value must be ke pt in the reset state which is 00. The signal -
ing state mode for CMI type links must be set to 11.
The sixteen state mode, which is the st ate mode selected out o f reset, can be use d on SF-type DS1 links in order
to detect a toggle code. In this case, signaling will be collected over t wo superframes and stored as a 4-bit code.
When programm ing the state mode for each time slot, the hos t can al so program the DCBA bits in the same regis-
ter. Doing this wil l determine the default code forwarded to the transmit line or the transmit VT mapper inte rface
before the firs t valid signaling code ha s been extracte d from the receive line or receive system interface.
Each o f the links and time slots is completely independent from one another with respect to the signaling state
mode s e lection. Any combination i s acceptable.
21.14.3 Signaling Source Selection
There are three sourc es for signaling in the transmit path.
Transmit Sign aling Link Regi s ters 031 (host programmed)
Receive System Interface
Receive Line Interf ace
The signa ling source is selected b y programming FRM_T_SIGS RC[1:0] in FR M_TSLR32, transmit signaling li nk
register 32 (R/W), Table 373 on page269 , bits [1:0]. If th e source of signali ng i s t he h os t , then the transmit signal-
ing link registers 031 must be programmed with valid signaling. Tab l e 584 on pag e499, shows the organization
of s ignaling data in those regi sters for the different types of l inks.
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
GFDCBA
G and F Signaling State Mode Selected
00 16 state (reset state)
01 4 stat e
10 No signali ng
11 2 state
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
499Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 584. Transm it Signa ling L in k Registers 031 DS1/C EPT/CMI Data
For CEPT links, the entire time slot 16 multiframe is sourced from the transmit signaling link registers
(TSLR) 031.
The time slot 16 mult iframe alignment pattern is transmitted from T SLR 16. That location must be wr itten to 0 if the
correct time slot 16 multiframe alignment pattern is to be transmi tted. The reset value of all TSLR locati ons is 0 .
The spare bits (X2, X1, and X0) and the time slot 16 remote fr ame alarm (Y bit) to be transmitted must be written by
the host into TSLR0 . If the s ourc e of signaling is the receive system interface and the X or Y bits mus t be changed,
then switch the signaling sour ce back to host tempora rily, write the new val ues, and then switch the si gnaling
source back to the receive system interface.
If the source of signaling is the host, only the relevant bits need be written in each t ransmit signaling link register.
The format of the data written in each t ra nsm it s ignalin g link register depends on the signaling state mode selected
for each time slot as shown in Table 585.
TSLR Ad dress TSL R Bi t[6:0] ( DS1) TSLR Bit[6:0] (CEPT) TSLR Bit[6:0] (CMI)
0000 X2 X1 Y X0
1 GF0 DCBA (Channel 1) 000 DCBA (Channel 1) 110 DCBA (Channel 1)
2 GF0 DCBA (Channel 2) 000 DCBA (Channel 2) 110 DCBA (Channel 2)
3 GF0 DCBA (Channel 3) 000 DCBA (Channel 3) 110 DCBA (Channel 3)
4 GF0 DCBA (Channel 4) 000 DCBA (Channel 4) 110 DCBA (Channel 4)
5 GF0 DCBA (Channel 5) 000 DCBA (Channel 5) 110 DCBA (Channel 5)
6 GF0 DCBA (Channel 6) 000 DCBA (Channel 6) 110 DCBA (Channel 6)
7 GF0 DCBA (Channel 7) 000 DCBA (Channel 7) 110 DCBA (Channel 7)
8 GF0 DCBA (Channel 8) 000 DCBA (Channel 8) 110 DCBA (Channel 8)
9 GF0 DCBA (Channel 9) 000 DCBA (Channel 9) 110 DCBA (Channel 9)
10 G F0 DCBA (Channel 10) 000 DCBA (Channel 10) 110 DCBA (Channel 10)
11 G F0 DCBA (Channel 11) 000 DCBA (Channel 11) 110 DCBA (Channel 11)
12 G F0 DCBA (Channel 12) 000 DCBA (Channel 12) 110 DCBA (Channel 12)
13 G F0 DCBA (Channel 13) 000 DCBA (Channel 13) 110 DCBA (Channel 13)
14 G F0 DCBA (Channel 14) 000 DCBA (Channel 14) 110 DCBA (Channel 14)
15 G F0 DCBA (Channel 15) 000 DCBA (Channel 15) 110 DCBA (Channel 15)
16 G F0 DCBA (Channel 16) 000 0000
17 G F0 DCBA (Channel 17) 000 DCBA (Channel 17) 110 DCBA (Channel 17)
18 G F0 DCBA (Channel 18) 000 DCBA (Channel 18) 110 DCBA (Channel 18)
19 G F0 DCBA (Channel 19) 000 DCBA (Channel 19) 110 DCBA (Channel 19)
20 G F0 DCBA (Channel 20) 000 DCBA (Channel 20) 110 DCBA (Channel 20)
21 G F0 DCBA (Channel 21) 000 DCBA (Channel 21) 110 DCBA (Channel 21)
22 G F0 DCBA (Channel 22) 000 DCBA (Channel 22) 110 DCBA (Channel 22)
23 G F0 DCBA (Channel 23) 000 DCBA (Channel 23) 110 DCBA (Channel 23)
24 G F0 DCBA (Channel 24) 000 DCBA (Channel 24) 110 DCBA (Channel 24)
25 000 DCBA (Cha nnel 25) 110 DCBA (Channel 25)
26 000 DCBA (Cha nnel 26) 110 DCBA (Channel 26)
27 000 DCBA (Cha nnel 27) 110 DCBA (Channel 27)
28 000 DCBA (Cha nnel 28) 110 DCBA (Channel 28)
29 000 DCBA (Cha nnel 29) 110 DCBA (Channel 29)
30 000 DCBA (Cha nnel 30) 110 DCBA (Channel 30)
31 000 DCBA (Cha nnel 31) 110 DCBA (Channel 31)
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
500 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 585. Transm it Signali ng Link Regi sters 031 Expected Data
The host mode can also be used to manually freeze signaling. For e xample, if t he source is switched from receive
system to host, the existing signalin g codes w ill be held until modified by the hos t or the signa ling source is
switched back to the receive system. If the h ost m o de is used to manually freeze signaling when the actual source
is the receive line interface, then signaling debounce mus t be enabled. Signaling debounc e i s enabled by setting
T_SIGDEB in the transmit signaling link register, bit 5 to 1.
If the signaling sour ce is set to the receive system interface, the transmit signaling processor will copy exac tly what
is extracted from the bus into the D, C, B, and A locations of t he transmit signaling link registers 031 for each of
the links.
The system interface will need to be confi gur ed for A SM mode in order for the signaling to be received on the PSB
or CHI buses. ASM mode is co ntrolled by FRM_ASM in FRM _S YSGR1, System Interface Global Regis t er 1
(R/W), Table 347 on page 257, bi t 11.
If the signaling source is set to the receive line interface, the transmit s ignaling processo r will start extracti ng data
from the receive line and stor e val id signaling codes into th e D, C, B, and A loca tions of the t rans mit signaling link
registers 031 for each of the links.
The transmit signaling processor will automa ti cally determine the link t ype and extract the correct signaling bit posi-
tions from each link. The transmit signaling processor can simultaneously service any combination of CEPT, DS1,
and CMI type li nks. The tran smit signali ng pr ocessor will extract robbed-bit signaling from DS1 links, common
channel signaling from CEPT links, and time slot 0 signaling from CMI links compliant with the following standards.
ITU Rec G.704 10/98 C EPT Multiframe Signali ng Stru cture
T1.4 03 1995 Robbed-Bit Signaling
TTC JJ-20.11 CMI Coded Int erface
The tr ansmit signaling processor can accommodate any c ombination of CEPT, DS 1, and CM I type links when the
signaling source is set to the receive system interface.
The transmit signal ing processor cannot extract signaling from the receive system and the receive line interface on
different links simultaneously.
21.14.4 Signaling Destination Selection
There are two destinations for tra n sm it path signali ng.
Transmit Line Interface
VT Mapper Interface
The signali ng extracted f rom the receive system or program med by the host will be inserted into the transmit line if
FRM_T _SIGI in FRM_TS LR32, Transm it Signaling Link Register 32 (R/ W), Table 378 on page272 , bit 8, is set to
1. The transmit signaling processor will automatically detect the format of each link and insert the signaling accord-
ingly. In the case of DS1, no signaling will be inserted for those time slots whose s ignaling state m ode is set to no-
signaling (G bit and F bit = 10). In the case of CEPT, the entire time slot 16 multiframe is supplied from the transmit
signaling link registers 031.
The signaling programmed by the host or extracted from the receive system or li ne interface can be transported by
the VT mapper by setting FRM_T_VTSIG E in FRM_TSLR3 2 , Transmit Signali ng Li nk Register 32 (R/W), bit 9,
to 1.
Signaling State Mode Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
16 state 0 0 DCBA
4 st ate 0 1 ——— BA
2 st ate 1 1 ———A
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
501Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Th e signaling w il l be byte sync mapped based on the standards liste d below.
ANSI
T1.105 SONET Payload Mapping
Telcordia
GF-253-CORE SONET Transport Sys tems
ITU Rec G.707 10/98 Ne twork Node In terface for SDH
21.15 Optional Transmit Si gnalin g Features Pro visioned for Ea c h Li nk
21.15.1 Support o f Auto m at ic Maintenance of the Time -Slot 16 Re mote Frame Alarm
For CEPT links, the time slot 16 remote frame alarm (Y bit) can be automatically maintained in the transmit path by
setting FRM_T_ATS16RFA in FRM_T SL R 32, Transmit Signaling Link Reg ister 32 (R/W), Table 378 on pag e272,
bit 14, to 1. In that case, the Y bit transmitted will reflect the TS16 multiframe alignment status in the receive path.
Bit 1 in the transmit signaling link register 0 will be ignored. If the receiv e path time slot 16 alignment for a particular
link is lost, then the corresponding Y bit in the transmit path will be set to 1.
21.15.2 Support of DS1 Robbed-Bit Stomping
The DS1 robbed-bit po sitions of voice time sl ot s will be set to 0 in the payload when FRM_T_TXSTOMP in
FRM_ TSLR 32, Transmit Signaling Link Register 32 (R/W) , bit 7 is set to 1. This featu re is a programmable option
required for byte sync mapping.
21.15.3 Support of CEPT Time-Slot 16 Stomping
Stompin g of time slot 16 for CEPT links can by accom plished by setting the source of signaling to be t he host and
then programming the transm it signaling link registers 03 1 t o all ones.
21.15.4 Support of Signaling Debounce
If p ro grammed to do so, the signaling extracted from the receiv e line interf ace w ill be debounced. This im plie s that
a valid signaling code woul d have t o be de tecte d twice before it is updated in the transmit signaling link registers
031. This feature is enabled by setting FRM_T_SIGDEB in FRM_TSLR32, Transm it Signaling Link Register 32
(R/W), bit 5 to a 1 .
21.15.5 Suppo rt of Japanese Hand ling G roups
If the signaling is transporte d by the VT mapper within four handl i ng g r o u p s co mp liant to t he Japanese standard,
TTC JT G.704, then FRM_T_HGEN in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), bit 4, must be set
to 1. The signaling state mode will be assumed to be 2-state signaling, and the value pro gramed into the GF bits of
the transmit si gnali ng link registers 031 will be ignored.
By d e fa u lt, th e tra nsmi t si gnaling pr oces s or will dr ive t he S p bi t o f ea ch handling group on ea ch link to 1.This bit
can be manually fo rced to 0 for all the handl i ng g r o up s with in a li nk by se t ting FRM _T_MSP in FRM _T S LR32,
Transmit Signaling Link Register 32 (R/W), bit 11, to 1. The Sp bit can be au tomatically maintained by setting
FRM_T _ASP LB in FRM_TSLR32, Transmit Signaling Link Register 32 (R/W), bit 12, to 1. In that case, the Sp bi ts
in the transmit path will reflect the corresponding handling group alignment in the receive path. For example, if HG2
on link 3 is the only HG out of alignment o n that link, then the Sp bit transmitted to the VT mapper for HG2 will be
set to 0. The Sp bit for HG 1, 3, and 4 will be set to 1.
21.15.6 Support of Zero-Code Sup pression
If the frame for matter is configured to perform zero-code suppression, then FRM_T_ZCSM in FRM_TSLR32,
Transmit S ignali ng Link Regi ster 32 (R/W), b it 10, m ust be set to 1. Zero-code suppression in the frame formatter is
enabled b y programming FRM_ZCSMD[2:0] in FRM_FFLR1, F r ame Formatter Link Register 1 (R/W), Tab le 424 on
page 300, bits [10:8 ].
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
502 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
21.16 Tra nsmi t Signal ing Glob al Featu re Provisioning
The transmit signaling processor requires the provisioning of one global item in order to en able signali ng extraction
and delivery.
Link Count (numbe r of active transm it lin ks).
21.16.1 Link-Count Selection
The link count is specified by programming FRM_T_LINK CNT[4:0] in FRM_SGR8, transmit signaling g lobal regis-
ter 8 (R/W ), Table 366 o n page265 , bits [14:10]. T he r eset value is 28, whic h is appropria te for a 28 lin k DS1 appli-
ca tion . A va lue of 21 is appr opriate for a 21 l ink CEPT applic a t ion . I f the applicatio n m i xes DS1 and CEPT li n ks or
the TDM clock supplied to the framer is le ss than 51.84 MH z , this value should match the terminal count
(FRM _TC [7:0] ) set in F R M_FGR2, framer global register 2 ( R/W), Table 306 on page246 , bi ts [7:0] .
21.17 Oth er Transmit Sign aling Global Featu res
21.17 . 1 Su pport of A utomatic Signal i ng Fre eze on Fra m ing B it Error s
This feature is valid when extracting signaling from the receive line interface (transport mode). By default, signaling
extraction from a particular receive line will halt when the appropriate alignment has been los t. In order to guaran-
tee that signaling freeze takes pl ace as soon as p ossible, FRM_T_AFZFBE in FR M_SGR8, T ransmit Signaling
Global Register 8 (R/W), bit 1, must be set to 1. When enabled, FRM_T_AFZFBE halts signaling extraction for 32
frames upon detection of a frame bit error. When F R M_T_AFZFBE is enabled, t he t ransmit si gnaling debounce
featur e must also be enabled. The FRM_T_SIGDEB feature is enabled in FRM_TSLR32, Tran smit Signaling Link
Register 3 2 (R/ W), bit 5.
21.17.2 Support of Byte Sync SONET Mappi ng
A provisionable feature related to SONET byte sync mapp ing requires tha t those ti me slots which are configured
for no-s ignaling should have a signaling value of 0 transporte d by the VT mapper. This feature can be en abled by
setting FRM_T_SUBZER O in FRM_SGR8, Transmit Signaling Global Register 8 (R/W), bit 5, to 1. I n that case,
those tim e slots with a signaling state mode of no-signali ng (GF = 1 0 ) will automatically forward a value of 0 to the
VT mapper.
21.18 Transmit Signaling Status Registers
There are two status values which are maintain ed for e ac h o f the links.
21.18.1 Maintenance of CEPT Related Status Bits
There are 2 bits which reflec t the sta tus of the CEPT time slot 16 signaling multif rame. The se status bits are vali d
when the s our ce of signaling is set to be the receive line interface (transport mode) . The location of these st atus
bits is in FRM_T SLR 33, Transmit Signaling Link Reg ister 33 (COR), Table 379 on page273 .
The rece ive signaling register searches fo r AIS in ti me slot 16 when time slot 16 alignment is lost. The status of
this sea r ch is ma intaine d.
The status of TS16 multiframe alignment is maintained.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
503Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.19 Performance Monitoring Functional Int egration into Superfra mer
The framer monitors the rec overed line data for alarm conditions and errored events, and then presents this infor-
mation to the system through the microprocessor registers. To a lesser degree of importance, the framer also mon-
itors the receive system data when in the switching mode and presents the information to the system throug h the
micro processor registers.
In the transport mode, both directions are monitored for alarm conditions and error events.
Table 586 shows the functions provided by the performance monitor function, iden tifies the associated status regis-
ter bits and event counter register, and establi shes the func tion s validity in par ticular framing modes.
Table 5 86. Performance Monitor Functional Descriptions
Functio n Description Register or Bit Name Valid Framing
Modes fo r
Functions
1 Pe rformance rep ort m es sages (PRMs ) a s per G.704
section 2.1.3.1.3.3, G.963, T1. 231 s ection 6.3, and
T1.403 section 9.4.2.
ESF and J-ESF
only
2 Provides stat us for errored seconds, bursty errored
seconds, severely errored secon ds, and at ET, E T-
RE, NT, and NT-RE.
All modes
3 Maintains a count of errored seconds, bursty errored
seconds, severely errored secon ds, and at the ET. All modes
4 Provides a status indication for a loss of s ignaling
frame a lignme nt condition. FRM_L SFA (Table 385) All modes
5 Provides a status indication for an out-of-frame con-
dition. FRM_OOF (Table 385) All modes
6 Provides a status ind ication for a loss of time slot 0
CRC-4 multiframe alignment. FRM_LTS0MFA
(Table 385)CEPT CRC-4 only
7 Provides a status indication for a time slot 0 CRC-4
multiframe alignment signal bit error. FRM_TS0MFABE
(Table 385)CEPT CRC-4 only
8 Prov id e s a status indic a tion for auxiliary pa tte rn
detection. FRM_AUXP (Table 386) CEPT CRC-4 only
9 Provides a status ind ication for detection of the DS1
idle s ignal. FRM_IDLEID (Table 386) All modes except
CEPT CRC-4
10 Provides a s tatus indication for detection of an alar m
indication signal. FRM_AIS (Table 385) All modes
11 Provides a s tatus indication for detection of an alar m
indication signal at the customer installa tion (AIS-CI). FRM_OAIS (Table 385) All modes except
CEPT-CRC4
12 Provides a s t atus indication for detection of remote
alarm indication. FRM_RAI (Table 385) All modes
13 Provides a s t atus indication for detection of remote
alarm indication at the customer installation (RAI-CI). FRM_OR A I (Table 385) ESF and J-ESF
only
14 Provides a s tatus indication for detection of time slot
16 AIS (FRM_R_TS16AIS (Table 373)). FRM_OAIS (Table 385) CEPT CRC-4 only
15 Provides a s t atus indication for detection of remote
multiframe ala rm in time slot 16 (RTS16MFA). FRM_ORA I (Table 385) CEPT CRC-4 only
16 Provides a s t atus indication for the loss of CEPT
biframe alignment (LBFA). FRM_LTFA (Table 386) CEPT CRC-4 only
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
504 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 586. P erformance Monitor Functional Descriptions (continued)
Function Desc ription Register or Bit
Name Valid Framin g
Modes fo r
Functions
17 Provides a status indication fo r detec ti on of remote Japanese
yellow alarm (R JYA). FRM_ORAI
(Table 385)J-D4 only
18 Prov id es a status indication fo r continuous E-bit recepti on. FRM_CREBIT
(Table 386)CEPT CRC-4 only
19 Provides a status indicat ion for detection of Sa6 states. FRM_SA 6
(Table 394)CEPT CRC-4 only
20 Provides a status indication for detection of line forma t viola-
tions. FRM_LFV
(Table 386)All modes
21 Prov ides a status indication for detection of frame bit errors. FRM _FBE
(Table 386)All modes
22 Provides a status indication for detection of CRC errors. F RM_CRCE
(Table 386)ESF, J-ESF, and
CEPT CRC-4 only
23 Provides a sta tus i ndicat ion for detection of excessive CRC
errors. FRM_ECRCE
(Table 386)ESF, J-ESF, and
CEPT CRC-4 only
24 Provides a status indication for detection of an E bit equal to 0. FRM_REBIT
(Table 386)CEPT CRC-4 only
25 Pro vides a status indicati on for e xpiration of CRC-4 multiframe
alignment ti mer. FRM_CRCTX
(Table 385)CEPT CRC-4 only
26 Prov ides a status indication for new frame alignment. FRM _NFA
(Table 386)All modes
27 Provid es a status indication for detection of Sa7 link identifica-
tion code. FRM_SA7LID
(Table 386)CEPT CRC-4 only
28 Provides a status indicat ion for detection of an SF line loo p -
back on code. FRM_LLBON
(Table 386)SF onl y
29 Provides a status indicat ion for detection of an SF line loo p -
back off code. FRM_LLBOFF
(Table 386)SF onl y
30 Prov ides a s tatus indicat ion for detection of an overflow in the
receive elastic store. FRM_SLIPO
(Table 385)All modes
31 Pro vides a status indication for detection of an underflow i n the
receive elastic store. FRM_SLIPU
(Table 385)All modes
32 Provides a status indication for detection of loss of signal. FRM_LOS
(Table 386)All modes
33 Maintains a count of received CRC errors. F RM _CE C
(Table 390)ESF/J-E SF an d
CEPT CRC-4 only
34 Maintains a count of received bipolar violations, li ne c ode vio-
lations, and excessive zeros. FRM_BPV
(Table 388)All modes
35 Prov ides a status indication for detection of a bit-oriented mes-
sage in the ESF data link bits. FRM_BOMR
(Table 386)ESF only
36 Prov ides a status indication of a test pattern detector loc k. FRM_DETEC T
(Table 311)All modes
37 Provides a status indicat ion for detection of a test -pattern bit
error. FRM_PTRNBER
(Table 311)All modes
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
505Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 586. P erformance Monitor Functional Descriptions (continued)
Funct ion Description Register or Bit
Name Valid Framing
Modes for
Functions
38 Provides a s t atus indication for detection of an ESF-FDL
RAI/yellow alar m code. FRM_FDL_RAI
(Table 387)ESF only
39 Provides a s tatus indication for detection of the E S F-FDL
payload loopback en able code. FRM_FDL_PLBON
(Table 387)ESF only
40 Provides a s tatus indication for detection of the E S F-FDL
payload loopback disable code. F R M_FDL_PLBOFF
(Table 387)ESF only
41 Provides a s tatus indication for detection of the E S F-FDL
line loopback enable code. FRM_FDL_LLBON
(Table 387)ESF only
42 Provides a s tatus indication for detection of the E S F-FDL
line loopback disable code. FRM _FDL_LLB OFF
(Table 387)ESF only
43 Maintains a 16-bit count of receiv ed fram ing bit error s. FRM_FBEC
(Table 389)All modes
44 Maintains a 16- bit count of received E bi t = 0 ev ents . FRM_REC
(Table 391)CEPT CRC-4 only
45 Maintains a 16- bit count of received Sa6 = 00x1 events . FRM_CETE
(Table 392)CEPT CRC-4 only
46 Maintains a 16-bit count of receiv ed Sa6 = 001x e vents. FRM_CENT
(Table 393)CEPT CRC-4 only
47 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (x, x, AIS). FRM_FE_OP
(Table 394)CEPT CRC-4 only
48 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (0, 1, 1111). FRM_FE_N
(Table 394)CEPT CRC-4 only
49 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (1, 1, 1111). FRM_FE_M
(Table 394)CEPT CRC-4 only
50 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (x, x, A UXP ). F RM_FE_L
(Table 394)CEPT CRC-4 only
51 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (1, 1, 1000). FRM_FE_K
(Table 394)CEPT CRC-4 only
52 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (0, 1, 1000). FRM_ FE_I
(Table 394)CEPT CRC-4 only
53 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (0, 1, 1110). FRM_FE_H
(Table 394)CEPT CRC-4 only
54 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (0, 1, 1100). FRM_FE_G
(Table 394)CEPT CRC-4 only
55 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (1, 0, 0000). FRM_FE_F
(Table 394)CEPT CRC-4 only
56 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (1, 1, 1110). FRM_FE_E
(Table 394)CEPT CRC-4 only
57 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (1, 1, 00xx ). FRM_FE_D
(Table 394)CEPT CRC-4 only
58 Provides a status indication for detection of an (A, Sa5,
Sa6[ 1:4 ]) = (x, 0, xxxx). FRM_FE_C
(Table 394)CEPT CRC-4 only
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
506 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 586. P erformance Monitor Functional Descriptions (continued)
21.20 Per for ma n c e Re po rt Me ss age
The performance monitor block monitors for errored second events and generates the one-second data for the
extended sup erframe (ES F) performance report message (PRM) (G.704 section 2.1.3.1.3.3, G.963, T1.231 sec-
tion 6.3, and T1.403 section 9.4.2.). The for m of the PRM message is shown in Table 587 below. The definition of
the fields is given in Table 588.
Function Description Register or Bit
Name Valid Framing
Modes for
Functions
59 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (x, 0, 0000). FRM_FE_B
(Table 394)CEPT CRC-4 only
60 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4]) = (x, 1, 00xx). FRM_FE_A
(Table 394)CEPT CRC-4 only
61 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4], E) = (x, 1, 0011, x). FRM_FE_Y
(Table 395)CEPT CRC-4 only
62 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4], E) = (x, 1, 0010, x). FRM_FE_X
(Table 395)CEPT CRC-4 only
63 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4], E) = (x, 1, 0001, x). FRM_FE_W
(Table 395)CEPT CRC-4 only
64 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4], E) = (x, 0, 0000, 0). FRM_FE_V
(Table 395)CEPT CRC-4 only
65 Provides a status indication for detection of an (A, Sa5,
Sa6[ 1:4 ], E) = (x, 1, xxxx, 0 ). FRM_FE_U
(Table 395)CEPT CRC-4 only
66 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4], E) = (x, 0, 0000, x). FRM_FE_T
(Table 395)CEPT CRC-4 only
67 Provides a status indication for detection of an (A, Sa5,
Sa6[ 1:4 ], E) = (1, 0, xxxx, x). FRM_FE_S
(Table 395)CEPT CRC-4 only
68 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4], E ) = (1, 0, 1010, x ). FRM_FE_R
(Table 395)CEPT CRC-4 only
69 Provides a status indication for detection of an (A, Sa5,
Sa6[1:4], E ) = (1, 0, 1111, x ). FRM_FE_Q
(Table 395)CEPT CRC-4 only
70 Provides storage for bit-orie nted messages. FRM_ R BO M[7:0]
(Table 399)ESF only
71 Provides an indication to frame aligner (does not have to be
stored) to reframe (in CEPT and ESF modes) based on CRC
errors and to re-establish multiframe a lignment (in CEPT)
based on bit 0 o f the NO TFAS frames (except 15 and 17).
CEPT, ESF/J-
ESF, J2 only
72 Provides indication to frame fo rmatter to s et RAI. All modes
73 Provides indication to frame fo rmatter to s et AIS. All modes
74 Provides indication to frame formatte r to s et E bits. CEPT CRC-4 only
75 Provides status i ndicat ion of parallel bus system interface
mode data and signaling parity errors. FRM_DPARERR,
FRM_SPARERR
(Table 394)
Parallel bus sys-
tem interface
mode only, moni-
tor all t he time
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
507Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
The superframer performance m onitor block outpu ts fields G 1G6, F E, SE, LV, SL , and LB. The remaining fields
are generated in the HDLC block.
A s everely error ed frame (SE F) defect is deter mined by examining co ntiguous time windows for frame bit erro rs. In
ESF, the window size is 3 ms, and only the frame pattern sequence bits are check ed. An SEF defe ct occurs when
two or more frame bit errors in a win dow are detected. An SEF defect is terminated when th e signal is in frame and
there are less than two frame bit errors in a window.
Table 5 87. Perform ance Report Message Format
Table 5 88. Performance Repor t Message Field Definition
Octet Number PRM B7 PRM B6 PRM B5 PRM B4 PRM B3 PRM B2 PRM B1 PRM B0
1Flag
2 SAPI C/R EA
3TEIEA
4 Control
5 G3LVG4U1U2G5SLG6
6 FESELBG1 R G2NmNI
7 G3LVG4U1U2G5SLG6
8 FESELBG1 R G2NmNI
9 G3LVG4U1U2G5SLG6
10 FE SE LB G1 R G2 Nm NI
11 G3 LV G4 U1 U2 G5 SL G6
12 FE SE LB G1 R G2 Nm NI
1314 FCS
15 FLAG
Field Definition
G1 = 1 CRC Error Event = 1
G2 = 1 1 < CRC Error Event 5
G3 = 1 5 < CRC Error Event 10
G4 = 1 10 < CRC Error Event 100
G5 = 1 100 < CRC Error Event 319
G6 = 1 CRC E rror E vent 320
SE = 1 Severely Errored Fram ing Event 1 (FE will = 0)
FE = 1 Frame Synchronization Bit Error Event 1 (SE will = 0)
LV = 1 Line Code Violation Event 1 (BPV 1 or EXZ 1)
SL = 1 Slip Event 1
LB = 1 Pa yload Loopback Activ ated
U1, U2 = 0 Reserv ed
R = 0 Reserved (default value = 0)
Nm, NI = 00, 01, 10, 11 One Second Report Modulo 4 Counter
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
508 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
21.21 Performanc e Monitoring R eferenc es/Standa rds
ANSI
T1.231-1997, Digital HierarchyLayer 1 In-Service Di gital Trans mi ssio n Performanc e Monitoring.
ANSI
T1-403-1995, Networ k-to-Cust omer InstallationDS1 Metallic Interface.
ETS 300 233 Integrated Services Digital Network (ISDN); Access digital section for ISDN p rimary rate;
May 1994.
ETS 300 417-1-1 Transmission and Multiplexing (TM); Generic functional requir em ent for Synchronou s D igital
Hierarchy (S DH) equipment; Part 1-1: Gener ic processes and perfo rmance; Janua ry 1996.
ITU-T Recommendation G.703, Physical/Electrical Characteristics of Hierarc hical Digital I nterfaces ; 1991.
ITU-T Recommendation G.704 , Synchronous Frame S tr uctures used at 1554, 6312, 2048, 8488 and
44736 kbits/s Hie rarchical Levels; July 199 5.
ITU-T Recommendation G.706, Frame Alignm ent a nd Cyclic Redundancy Check (CRC) Procedures Relating to
Basic Frame Structures defined in Recommendation G.704; 1991.
ITU-T Recommendation G.732, Characteristics of Primary PCM Multiple x Equipment Operating at 2048 kbits/s;
1993.
ITU-T Recommendation G.733, Characteristics of Primary PCM Multiple x Equipment Operating at 1544 kbits/s;
1993.
ITU-T Recommendation G.775, Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defec t Detection and
Clearance Crit eria; No vember 1994.
ITU-T Recommendation G.826, Error perfor mance parameters and objectives for international, constant bit rate
digital path s at or above the primary r ate; August 1996.
ITU-T Recommendation G.963, Access Digital Section for ISDN Primary Rate at 1544 kbits/s; March 1993.
ITU-T Recommendation G.964, V-Interfaces at the Digital Local Exchange (LE) - V5.1 Interface (based on
2048 kbits/s) for the Suppo r t of Access Network (AN); June 1994.
ITU-T Recommendation G.965, V-Interfaces at the Digital Local Exchange (LE) - V5.2 Interface (based on
2048 kbi ts/s) for the Suppo r t of Access Network (AN); Ma rch 1995.
ITU-T Recom mendation O.1 51, Error Perform anc e Measuring Equipm ent Operating at the Primary Rate and
Abov e; October, 1992.
ITU-T Recom mendation O.152, Error Perform ance Measuring Equipment for Bit Rates of 64 kbits/s and
N X 64 kbits/s; Octobe r, 1992.
ITU-T Recommendation O .153, Basic P arameters f or the Measurement of Error Pe rf ormance at Bit Rates Bel ow
the Primary Rate; October, 1992.
ITU-T Recommendation O.1 61, In-Service Code Violation Monitors for Digital Systems ; 1993.
ITU-T Recommendation O . 162, Equipment to Perform In-Service Monitoring on 2048, 8448, 34 368 and
139 264 kbits/s Signals; October, 1992.
ITU-T Recommendation O . 163, Equipment to Perf orm In-Service Monit oring on 1544 kbits/ s Signals; October,
1992.
TTC St andard JT-G704, S y nchronous Fra me Structures used a t 1554, 6312, 2048 , 8488 and 44736 kbits/s Hier-
archical Levels; July 1995.
21.22 Facility Data Link
21.22.1 Facility Data Link References/Standards
ANSI
T1.403-1995Bit-Oriented Messages (BOM).
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
509Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.22.2 R eceive Data Link Functional Description
This bl ock extrac ts facil ity data links bi ts and stores them in a microprocessor access register bank:
D bits from the
SLC
-96 multisuperf rame.
Sa bits from time slot 0 in CEPT basic and CRC-4 mult iframes.
Data link bits from DDS frame s.
The respective bits will always be extracted from the framed aligned receive line pa yload and stored in the facility
data l ink stack regardless of ot he r configuration bits. The processor will ha v e control of bei ng alerted to stack
updates throug h the interrupt mask registers.
All frame types:
Support clear-on-read status and interrupt bits based on the setting of the inp ut select signal.
21.22.3
SLC
-96 Su perframe Receive Data Link
Delineates t he
SLC
-96 data link in the Fs signal ing frame, e xtracts the 24 D bits, and stores in the internal mem-
or y stack.
Provides in terr upt for stack ready.
Provides hos t access to stack us ing processor clock .
Suppo rts loss of fram e status.
Both basic frame alignment and multiframe alignment must be esta blished before the data can be assumed valid.
The
SLC
-96 Fs bits are stored in the Rx stack as follows.
Table 5 89. Shared Rx Stack Format for
SLC
-96 Frames
* Th e valu e he ld in th e bits le ft blank sh ou ld be ignored by the host.
When the entire stack has been filled, the ho st is n otified u sing the Rx stack r eady interrupt. Af ter the Rx stack
ready interrupt b it is set, the host has approximat ely 9 ms t o read th e stack.
21.22.4 DDS Receive Data Link Stack
Extracts data link bit (bit 6) from time slot 24 and stores into stack.
Provides in terr upt for stack ready.
Provides host a ccess to stack using processor clock to provide fast access.
Suppo rts loss of fram e status.
DDS frames are numbered 1 through 12 wi th the data link bits located in bit 6 of time slo t 24 in every frame. O nly
basic fram e alignment must be established for the data link bits to be extracted.
The DDS stack is stored in the shared Rx stack as follows.
Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 110001110000
1* C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 SB1 0 0 0 0
2* SB2 SB3 M1 M2 M3 A1 A2 S1 S2 S3 S4 SB4 0 0 0 0
3* 0 0 0 0 000000000000
4* 0 0 0 0 000000000000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
510 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 5 90. Shared Rx FDL S t ack Format for DDS Frames
Starting at every superframe boundary, the data link bits are stored in an internal copy of the shared Rx stack. As
the da ta link bits are accumulated, th e data link bit s from the first s uperfr am e are stored in word 0. The frame
alig ner block will give an indication of loss of frame alignment, which is used by the data link bl ock to determine if
the data link bits col lected are inva lid. In this case, th ey w ill not be made available to the system.
When the entire stack has been filled (three superframes), the host is not ified using the Rx stack ready interrupt.
After the Rx stack ready interr upt bit is se t, the host has approximately 4.5 ms to read the stack.
21.22.5 CEPT; CEPT CRC-4 (100 ms); CEPT CRC-4 (400 ms) Multiframe Sa Bits Receive Stack
Extracts two multiframes of Sa bits from CEPT links and stores t hem in inte rnal mem ory.
Suppo rts loss of fram e status.
Provides hos t access to the stack using the processor clock.
Provides in terr upt for stack ready.
CEPT frames are numbered 0 through 15 with the Sa bits located in t ime slot 0 of the odd numbered frames. The
Sa bits c an only b e extracted from CEPT links when th e proper alignment has bee n established.
For basic CEPT frames, the Sa bits wi ll be extracted given the arb itr ary alignment selected b y the frame aligner
block when basic frame alignment is established. For C EPT CRC-4 links, the Sa bits w ill be extracted based on the
alig nment deter mined by the frame aligne r block when multiframe frame alignment is e stablish ed.
Optionally, the Sa bits will be extracted from CEPT CRC-4 links only after basic frame alignment is es tablished
(RxCRCSM).
The Sa bits are stored in the stack as follows:
Table 5 91. Shared Rx Stack Format for CEPT Frames
It takes two multiframes to fill the Rx stack; bit 15 is received first. The frame aligner block will give an indication of
loss of frame ali gnment which is used by the data link block to determine if the Sa bits collected are invalid. In this
case, they will not b e ma d e available to the system.
When the entire stack has been filled, the ho st is n otified u sing the Rx stack ready interrupt. After the Rx stack
ready interrupt b it is set, the host has approximat ely 4 ms t o read th e stack.
Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 D1D2D3D4D5D6D7D8D9D10D11D12————
1 D1D2D3D4D5D6D7D8D9D10D11D12————
2 D1D2D3D4D5D6D7D8D9D10D11D12————
3————————— ———
4————————— ———
Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 SA41 SA43 SA45 SA47 SA49 SA411 SA413 SA415 SA41 SA43 SA45 SA47 SA49 SA411 SA413 SA415
1 SA51 SA53 SA55 SA57 SA59 SA511 SA513 SA515 SA51 SA53 SA55 SA57 SA59 SA511 SA513 SA515
2 SA61 SA63 SA65 SA67 SA69 SA611 SA613 SA615 SA61 SA63 SA65 SA67 SA69 SA611 SA613 SA615
3 SA71 SA73 SA75 SA77 SA79 SA711 SA713 SA715 SA71 SA73 SA75 SA77 SA79 SA711 SA713 SA715
4 SA81 SA83 SA85 SA87 SA89 SA811 SA813 SA815 SA81 SA83 SA85 SA87 SA89 SA811 SA813 SA815
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
511Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.22.6 Receiv e Data Link St ack Idle M odes
No data link stack fea tu res for the following frame formats:
D4
J-D4
ESF
J-ESF
J2
CMI
21.22.7 Receive Data Link Stack Pointer
The stack pointer maintains two pointers: an internal pointer and a host pointer. The pointer identifies which stack
is a ctive for the host and w hich s tack is active for t he int ernal log i c. These pointers will always point to opposite
stack s. When the TDM interface bl ock is w riting Sa bits or D bits to the stack, then the internal pointer may be
select ing the upper stack. In this case, the host pointer is selecting the lower stack for the host reads. At the begin-
ning of each double multiframe or each superframe, a pointer s witch take s place. This s witch takes place during the
time in which the host is prevented from accessing t he s tack for a particular l ink.
A stack pointer is mai nta ined for eac h of th e lin ks individu ally.
5-9025(F)r.1
Figure 6 1. Rx Data Link Block Diagram
RECEIVE SYSTEM
INTERFACE
TDM ID
TDM DA TA
TDM INTE RFA CE
SHARED
R
X
LOWER
INTE RNAL
INTE RNAL BUS
STACK FULL
CEPT A ND
SLC-
96
DATA
R
X
TRANSMIT
STACK
POINTER
DATA LINK INTERRUPT
SHARED
R
X
UPPER
HOST
REGISTERS
PROCESSOR
LINE SYSTE M
FRAMER
STACK
STACK
CLOCK FDL
CLOCK
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
512 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Receive Stack Host Interface . Host access to the shared system stack will be mana ged using a stack availability
status bit. This bit r ef lect s t he stack availab ilit y s tat us for each individual port. The hos t will use this status bit for
each po rt to determine when the stack is available for reading. Each stack is made unavailable only to enable a
window for the data link block to update the syste m stac k . The window will be large enough so that any small
amount of overlap will not allow t he possibility of a collision.
D, Sa, or DDS data link bits are collected ov er the multiple frame time periods appropriate f or each frame type. The
stack is available for reading during that entire ti me period except for the last fr ame. Dur ing that one frame time, the
internal stack will be switched to the system stack. The stack will be made accessible once the transfe r is done,
after which the Rx stack ready s tatus bit will be set.
If the host is managing the stack via interrupts from the data link block and the interrupt can be serviced within
8.8 ms for
SLC
-96, 3.8 ms fo r CEPT, or 4.3 ms for DDS, then the host simply reads the stack. I f the host is polling
the Rx stack ready status and reading the stack arbitrarily, then the host is required to read the Rx stack available
status bit FR M_RXSA (Table 406) which corresponds to the resp ec tive port. If that bit is set to 1, then th e host can
access the corresponding stack locations. If that bit is set to 0, the host should poll on that bit until it changes.
Stack Available and Stack Ready Bit Fo rm ats. As described above , when the stack has been filled, the stack
av ailabl e bit goes high . One or two frames before the stack is about to be fil led, the stack available bit goes l o w and
stays low for one or two frames. This prevents the host from r eading when a pointer sw i tch is about to happen, pre-
venting the host from getting the data mixed. The stack ready bit is set to 1, also, w hen t he stack h as been filled.
The host clears this bit. Figure 62 shows the dynami cs of these bits.
5-9026(F)r.1
Figure 62. Stack Available and Stack Ready Bit Formatting
Receive Stack Pointer. T he s tack pointer maintains two pointers: an internal pointer and a ho st pointer. The
pointer identifies which stack is active f or the host and which stack is activ e for the internal logic. These pointers will
always point to opposite stacks. When the TDM interface block is writing Sa bits or D bits to the stack, then the
internal pointer may be selecting the upper stack. In this case, the host po inter is selec ting the lower stack for the
host reads. At the beginni ng of each double multiframe or each superframe, a pointer switch t akes place. This
swi tch takes place dur ing the time in whic h the host is prevented from accessing the stack for a particular link.
A stack pointer is maintained for each of the lin ks individ ually.
Sa bit
Sr bit
DDS: 35 FRAMES (4.4 ms) 1 FRAME
SLC
-96: 70 FRAMES (8.75 ms) 2 FRAMES
CEPT: 30 FRAMES (3.75 ms) 2 FRAMES
ONE STACK OF DATA NEXT STACK
STACK NOT AVAILABLE
SET HIGH HERE
(HOST CLEARS THIS BIT WHENEVER)
(0.125 ms)
(0.25 ms)
(0.25 ms)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
513Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.22.8 Transmit Facility Data Link Functional Description
This bl ock performs the transmission of D bits into
SLC
-96 superframes, SA bits into CEPT multiframes, and data
link b it s into D D S fra me s .
For
SLC
-96 frames, the D bit s are alway s sourced from th is block when the block is enabled for in sertion
(FRM_DS1I (Table 412)). The D-bit del ineator bits (
SLC
-96 Fs frame) are also sourced from this block and stored
in the stack with the D bits.
For CEPT frames, the Sa bits are source d from either the Sa stack or outside of the data link block. The data link
block only responds with valid data when selected by the Sa source control bits (FRM_SA4SCFRM_SA8SC
(Table 412)).
For DDS frames, the data link bits are al wa ys sourced from this block when this block is enabled for insertion
(FRM_DS1I).
This bl ock al so prov id es the capability to transmit BOMs in the data link channel of ESF links.
All frame types:
Support clear-on-read status and interrupt bits based on the setting of the inp ut select signal.
21.22.9
SLC
-96 Su perframe Transmit Data Link
Provides storage for D bits and delineator bits for transmission on
SLC
-96 links.
Provides in terr upt for stack em pt y.
Provides hos t access to stack us ing processor clock .
Performs retra ns mission of stack when update is yet to be performed.
When enabl ed for insertion, this bloc k will alwa y s source the D bits to any
SLC
-96 Tx link. The delineator bits (
SLC
-
96 Fs fr ame), wh ich bound the 2 4 D bits, are also sourced from this block.
The 12-frame
SLC
-96 superframe is composed of a terminal frame (FT) alternating with a subframe that consists of
a combined signaling (FS) fr ame and data link. T he subframe sha res establi sh ing the signaling frame (F S) and
SLC
-96 data link. The FDL stack bits are inserted into the signaling and data link subfra me posi tion in the super-
frame. Se v enty-two superframes are required to deliver the 24 D bits and 12-bit delineator . The front-end delineator
is 00111 , which is followed by 24 D bits and trailed by 0001110. The alignment of the F
S bits within the superfram e
is determined and indicated by the frame align er block.
The
SLC
-96 FS bits are stored in the shared Tx stack as shown in Table 592.
Table 592. Shared Tx FDL Stack Format for
SLC
-96 Fram es
* Th e valu e he ld in th e bits le ft blank sh ou ld be ignored by the host.
The tr ansm ission of t he
SLC
-96 stack will take 9 ms to complete, during which time the host should refill the system
stack if the D bits need to change.
Near the beginning of each
SLC
-96 superframe, the Tx data link block will determine wh eth er a new set of D bits is
available to be transmitted.
Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0001110001110000
1* C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 SB1 0 0 0 0
2* SB2SB3M1M2M3A1A2S1S2S3S4SB40 0 0 0
3* 0000000000000000
4* 0000000000000000
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
514 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
The host will indicate this state by resetting the Tx stack empty bit, FRM_TXSE_IS (Table 414). If t hi s is the case,
the new D bits will be transmitted; oth erwise, the previous D bits will be retrans mitted. If the Tx stack empty bit was
0 at the beginning of the
SLC
-96 superframe, then the bit will be set to 1, indicating a request for new D bits.
When enabled using the FRM_ASRC ( Table 412) bit, the D bits should only be inser ted when the proper alignm ent
has been reached. For
SLC
-96, both terminal (F T) and signaling (FS) fr ames need to be valid. This condition eff ects
the insertion o f D bit s and the re porting of stack empty to the host.
Before enabling a l i nk for the
SLC
-96 format or enabling this block for insertion, the host should initialize the stack
and set the Tx stack empty bit to 0. If not, the data link block wi ll transmi t the rese t state of the stack, which is arbi-
trary.
21.22.10 DDS Transmit Data Link Stack
Provides t hree superframes of data link bi t storage for trans m ission on D DS links.
Provides in terr upt for stack em pt y.
Performs retran s mission o f stack when update has yet to be performed.
Provides host a ccess to stack using processor clock to provide fast access.
If enabled for insertion, this block will always source the DDS data link bits to any DDS Tx link. DDS superframes
are 12 frames with the da ta link bits located in bit number 6 of tim e slot 24 of ever y frame. Thirty-six frames of data
link bits are store d in the stack.
The DDS stack is stored in the shared Tx stack as follows.
Table 593. Shared Tx FDL Stack Format for DDS Frames
* Th e valu e he ld in th e bits le ft blank sh ou ld be ignored by the h os t.
Transmission of the DDS stack wi ll take 4.5 ms to complete, during which ti me the host should refill the system
stack if t he data lin k b it s need to change.
Near the beginning of ev ery third DDS superframe, the Tx data link block will determine whether a new set of data
link bits is available to be transmitted. The host will indicate this state by resetting the Tx stack empty bit. If this is
the case, the new data link bits wi ll be transmitted; otherwise, the previous data li nk bits will be retransmitted. I f th e
Tx stack empty bit was 0 at the beginning of the set of superfr a me s, then the bit will be set to 1, indicating a request
for new data link bits.
When enabled, using the FRM_AS R C bit, the Sa bits should only be insert e d when the proper alig n men t ha s been
reached. For DDS li nks, only terminal fr ame (FT) is required for i nsertion. This condition affect s the insertion of data
link bits and the reporting of stack empty to the host.
Before enabling a link for the DDS format or enabling this block f or insert ion, the host should initia lize the stack and
set the Tx stack empty bit to 0. If not , the data link block will transmit t he reset sta te of the stack, which is arbitrary.
Word1514131211109876543210
0* D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 ————
1* D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 ————
2 D1D2D3D4D5D6D7D8D9D10D11D12————
3————————————————
4————————————————
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
515Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.22.11 Transmit ESF Data Link Bit-Oriented Messages
Provides capability to transmit bit-or iented messages.
When enabled through a configuration bit (FRM_BO ME (Table 413)), bit-oriented messages will be tr ansmitted on
the da ta link channel of the frame bit for ESF links. T he ESF superframe is numbered 1 through 24 with the data
link channel transmitted in the odd numbered frames ( 4 kbits/s).
The BOM is a 16-bit message d efining an alarm or command and response ac t i on, and se nt repeatedly for a
per iod of time determined by the event. The message consists of eight ones, a 0, a 6-bit code to identify the alarm
or action, and a 0 (1111_1111_0 i n front and 0 behind the 6-bit code).
The mes s age can occur at any point in the extended s uperframe without respect to boundaries. The exact mes-
sage to be sent will reflect what has been programmed into a register (FRM_TBOM{5:0] (Table 413) bits). The
BOM format is as follows :
0 X X X _ X X X 0 _ 1111_1111: (right-most bit being transmitted first).
When the BOM pattern is enabled, it will be transmitted until disabled. When disabled, the pattern will cease to be
transmitted immediately.
A BOM status bit will indicate when the pattern has been sent 10 times. That status bit will be reset on read.
When enabled using the FRM_ASRC (Table 412) bit, the BOMs should only be inserted when the proper alignment
has bee n reached. For E SF links, both BFA and MFA are required fo r insertion. This condition affects the insertion
of BOM s bits and the reporting of stack empty to the host.
21.22.12 CEPT, CEPT Multiframe Tra nsmit Data Link S a bi ts S t ack
Provides t wo multiframes of Sa-bit storage for transm ission on CEPT links.
Provides in terr upt for stack em pt y.
Performs retransmission of stack when update has yet to be p erformed.
Provides capability to source Sa bits from blocks other than the data link block.
Provides host a ccess to stack using processor clock to provide fast access.
This block will always present the Sa bits stored in the Tx stac k t o t he TD M data s tream. The data valid signal will
reflect the programming of the Sa source control bits (FRM _SA4SCFRM_SA8SC, Table 412). In CEPT, the S a
bits are located in time slot 0 of the NOTF AS frames (odd-numbered frames). CEPT multiframe format fram es are
numbered 0 through 15 with the Sa bits located in time slot 0 of the odd numbered frames (N OTFAS fram es).
The Sa bits are stored in the Tx stack as follows.
Table 594. Shared Tx Stack Format for CEPT Frame
Tr ansmission of the Sa stack will take 4 ms, duri ng which time the host should ref il l the system stack if the Sa bits
need to change.
Near the beginning of each C E PT doubl e mult if rame, the Tx data link block will determine whether a new set of Sa
bits is available to be transmitted. The host will indicate this state by resetting the Tx sta ck empty bit. If this is the
case, the new S a bits will be tr ansm itted; otherwis e, the pre vious Sa bits will be ret ransmitted.
Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 SA41 SA43 SA45 SA47 SA49 SA411 SA413 SA415 SA41 SA43 SA45 SA47 SA49 SA411 SA413 SA415
1 SA51 SA53 SA55 SA57 SA59 SA511 SA513 SA515 SA51 SA53 SA55 SA57 SA59 SA511 SA513 SA515
2 SA61 SA63 SA65 SA67 SA69 SA611 SA613 SA615 SA61 SA63 SA65 SA67 SA69 SA611 SA613 SA615
3 SA71 SA73 SA75 SA77 SA79 SA711 SA713 SA715 SA71 SA73 SA75 SA77 SA79 SA711 SA713 SA715
4 SA81 SA83 SA85 SA87 SA89 SA811 SA813 SA815 SA81 SA83 SA85 SA87 SA89 SA811 SA813 SA815
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
516 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
If the Tx stack empty bit was 0 at the beginni ng of th e CEPT double mult iframe, then the bit will be set to 1, indicat-
ing a r equest for new Sa bits.
When enabled using the FRM_ASRC (Table 412) bit, the SA bits should only be inserted when the proper al ign-
ment has been reached. For CEPT links, onl y BFA is required for insertion. For CEPT CRC-4 links, both BFA and
MFA need to be valid. This affects the insertion of Sa bi ts and the reporting of stack empty to the host. There is
another configuration bit FRM_TXCRCSM (Table 412) which allows t he CE PT CRC-4 lin ks to insert when only BFA
is active (FRM_TXCRCSM).
Bef ore enabl ing a link f o r CEPT format, the host should ini tialize the stack and set t he Tx stack empty bit to 0. If not,
the data link block will transmit the reset state of the stack which is arbitrary.
21.22.13 Transmit Data Link Stack Idle Modes
D4
J-D4
J2
CMI
No data link features
21.22.14
SLC
-96, DDS, or CEPT ESF Frame Alignment
F o r CEPT, DDS , or
SLC
-96 frames, loss of frame alignme n t is not an iss ue si nce t he framer is the source of time
slot 0 or the F bits. Once a link is enabled, the frame sequence always starts at the beginning.
In the case of the system being the source o f multiframe alignment, the data link b lock will simply deliver what is
requested.
5-9027(F)r.1
Figure 63. Tx Data Link Block Diagram
TRANSMIT SYSTEM
INTERFACE
TDM ID
TDM DATA
TDM INTER F ACE
DATA/
VALID
INTERNAL BUS
T
X
R
X
STACK
DATA LINK INTERRUPT
SHARED
R
X
STACK
READ REQUEST LOGIC
READ ARBITRATION LOGIC
HOST
REGISTERS
WRITE
REQUEST
FDL
PROCESSOR
SYSTEM
T
X
STACK READ
REQUEST
TRANSFER
REQUEST STACK WRITE
STACK READ
SYSTEM
LINE FRAMER
CLOCK
CLOCK
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
517Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.23 HDL C Func tional Description
The Super Ma pper framer is capable of insertin g and e xtracting HDLC dat a to and fr om multiple logical channels.
The system may sp ecify any bit a s an HDLC channel. For ESF, D D S, and CEPT fra mi ng formats, the facility dat a
link (FDL) bit may be programmed as a logica l HDLC channel. Multiple bits within a time slot may be concatenated
to form a logical HDLC c hannel. The maxim u m num ber of bits in a logical channel is 8 b i ts (all within a single tim e
slot) and corresponds to a maximum data rate of 64 kbits/s. Multiple logical HDLC channels may be assigned to a
single payload time slot.
Received data from a HDLC channel is placed into a 128-byte FIFO. Transm i t HDL C channels are read from a sep-
arate 128-byte FIFO.
Once the HDL C channels are d efined and the HDLC is enabled, the framer extracts and inserts the HDLC frames
in these channels. The function of the receive and tra nsmit HDLC sections will be described separately.
21.24 HDLC Operation
This sect ion describes th e standard HDLC functions performe d by the framers HDLC block. The HDLC transmitter
accepts parallel data from the transmit FIFO, converts it to a serial bit stream, provides bit stuffing as necessary,
adds the CRC and the opening and closing flags, and sends the framed serial bit stream to the transmit framer.
The HDLC receiver unit receives time slot data from the r eceive framer, identifies frames for proper format, recon-
struct s data bytes, provides bit destuffing as necessary, and loads parallel data in the receive FIFO . HDLC frames
on the ser ial link have the following format.
Table 595. HDLC F rame Format
All bits between the open in g flag and the CRC are considered user pa yload. User payload data such as the
address, control, and inf ormation fields are fetched from the transmit FIFO for tr ans mission. Receiv ed user pa yload
data i s sto re d in the receive FIFO buffers. The 16 bits preceding the closing fl ag are th e frame check sequence or
cyclic redun dancy check (CRC) bits.
21.24.1 Zero-Bit In sertion/Deletion (Bit Stuffing/Destuffing)
The HDLC protocol recognizes three special bit patterns: flags, aborts, and idles. These patterns have the common
characteristic of containing at least six consecutive ones. A user data byte can contai n one of these special pat-
tern s. Transmitter zero-bit stuffing i s done on user data and CRC fields of the frame to avoid transmitting one of
these special patterns. W henever f ive ones occur between fl a gs, a 0 bit is automat ica lly inse rted after th e f i fth 1,
prior to transmiss ion of t he next bit. On the receive si de, if five succ essive ones are detected followed by a 0, the 0
is assumed to have be en inserted and is deleted (bit destuffing).
21.24.2 Flags
All fla gs* have the bit pattern 01111110 and are used for frame synchronization. The framers HDLC block auto-
matically sends one flag at the beginning of each frame. If the FRM_HTIDLE (Table 435) bit is cleared to 0, the
FLAG byte (01111110) is continuously sent between frames if no data is present in the FIFO. If the FRM_HTIDLE
bi t i s se t t o 1, t he HD LC blo c k se nd s c on t inuou s F RM_ IDLE (Table 349) bytes (11111111) when the tr ansmit FIFO
is empty. Once th e re i s data in the transmit FIFO, an opening flag i s sent, followed by the frame. During transm is-
sion, two successive flags will not share the inter mediate 0.
* Regardless of the time-fill byte used, there always is an opening and closing flag with each frame. Back-to-back frames are separated by two
flags.
Opening Flag User Data Field Frame Check Sequence (CRC) Closing F lag
01111110 8 bi t s (mult iple of 8 b its) 16 bits 01111110
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
518 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
An opening flag i s alway s generated at the beginni ng of a frame (indicated by the presence of data in t he transmit
FIFO and the transmitter enabl ed). FRM_CFLAGS[1:0] (Table 435) de t e rm i n e s which FRM_FCNT[03][4:0]
parameter to use. The FRM_FCNT[03][4:0] parameters define the number of i dle flag s that are sent between
HDLC packets. Dat a is transmitted per the HDLC protocol until a by t e is read from the FIFO with Tx HDLC register
bits FRM_HTFUNC[1:0] (Table 438) = 01 set. The HDLC block f ollows this byt e with the CRC sequence and a clos-
ing flag.
The HDLC receiver recognizes the 01111110 pattern as a flag. Two successive flags may or may not share the
intermediate 0 bit and are identified as two fl a g s (i.e., both 011111101111110 and 0 111111001111110 are recog-
nized by the HDLC block). When another flag is identified, it is treated as the closing flag. As mentioned above , a
flag sequence in the user data or F CS fields is prevented by zero-bit insertion and deletion.
21.24.3 Aborts
The bit pattern of the abort sequence is 01111111, with 0 transmitted first. A frame can be aborted by writin g set-
ting Tx HDLC register bits FRM_HTFUNC[1:0] = 01. This causes the last byte written to the transmit FIFO to be fol-
lowed by the abort sequence upon tr ans m issi on. Once a byte is tagged by a write to Tx HDL C r egister bits
FRM_HTFUNC[1:0] = 01, it c annot be cleared by subsequent writes.
When rec eiving a frame, the rece iver re cognizes the abort sequence whenever it receives a 0 followed by seven
consecutive ones. This status results in the abort bit, and possibly the bad byt e count bit and/or bad CRC bits,
being set in the status o f frame status byte which is appended to the receive data queue. The last bytes of user
data are assumed to be CRC bits and are placed in the queue in the regular H DL C mode. All subsequent
FRM_IDLE or flag by tes are ignored until a valid opening fla g i s received.
21.24.4 Receive IDLES
In accordance with the HDLC protocol, the HDLC blo ck recogni zes 15 o r more cont iguous received ones as idle.
When the HDLC b l ock receives 15 contiguous ones, the recei ver FRM_IDLE[7:0] bit, idle is set.
21.24.5 CRC
For a given fr am e o f b its, 16 additional bits that constitute an error-detec ting code are added by th e transmitter. As
called fo r in the HDLC p ro tocol , the frame check sequence bi ts are tr ansmitte d most signific ant bit first and are bit
stuffed . The c yclic redundancy ch eck (or frame check se quenc e) is ca lc ulate d as a fu nction of the transmitted bits
by using the ITU-T standard polynomia l:
x 16 + x 12 + x 5 + 1
At the other end, the receiver performs the same calculation on the received bits after destuffing and compares the
results to an expected result. An error occurs if, and only if, there is a mismatch.
The transmit ter can be in structed to transmit a corrupted CRC by s et ting the transm it bad CRC bit DXBCRC
(DCI-DCR-1-B6). As long as the DXBC RC bit is set , the CRC i s corru pted for each fr ame t ransmitte d by logically
flipping the least sign ificant bit of the transmitted CRC.
The receiver calculates and ver ifies the CRC for a n incoming frame. The result of the CRC check is reporte d in bit
7 of the status of frame byte, which is placed in the re ceive FIFO after the la st data byte of the frame. The CRC is
stored in the FIFO at all tim es.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
519Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.24.6 H D LC Mode
The receive queue manager forms a status of frame (SF) word for each HDLC frame and s tores the SF word i n the
receive HDLC FI FO af ter the last data byte of the associated frame. HDLC fram es that include the pay load and the
frame check sequence (FCS) bytes and consists of n by tes will have n + 1 bytes stored in the receive FIFO. The
FCS byte s of the received HDLC frame are stored into the receive FIF O.
21.24.7 Receive HDLC T r an sparent Mode
The rece ive FIFO receives data from the rece ive frame r and directly stores this data information bit-for-bit, least
significant b it first.
If the FRM_MODE[3:0] (Table 422) and FRM_MATCH[7:0] ( Table 442) bits are set, the receive HDLC FIFO will
load data only after the matched pattern has been detected. The search for the match character is in a sliding win-
dow fa shion and data is aligned accord ingl y. The octet is aligned relativ e to the first HDLC clock after frame align-
ment is established. The match character and all subsequen t by tes are placed into t he receive FIFO. A receive
reset command caus es the receive to realign to the match character if enabled.
21.24.8 Receive HDLC
Data is presented to the TDM to channel convers ion block from the TDM bus (s ee Figure 64 below). This block
determines which, if an y, channel the data belongs to . When data is found that belongs to a channel, it is sent to the
HDLC s e r ial to parallel block. This bl ock buffers up bits into bytes and does HDLC pro cessin g on channels so pro-
grammed. When a val i d byte of data (or status) has been grouped together for a specific channel, th at data is then
sent to the FIFO s interrup t block. Here, t he data is fur ther buffered in separate FIFOs for each channel where data
can be read by the microprocessor .
5-9028(F)r.1
Figure 64. Receive HDLC Block Diagram
21.24.9 Receive HDLC Features
In transparent mode, bits are sim ply gathered into bytes with the option of waiting for an in itial provisionable 8-bit
pattern to be detected before s tarting.
In H DLC mode, incoming data is correctly formatted and packetized according to the HDLC standard.
In HDLC mode, aborted packets, idle stat us, and CRC errors are checked for and reported.
TDM TO
CHANNEL
CONVERSION
HDLC
SERIAL-TO-PARALLEL
CHAN
ENABLE
TDM BUS
µP DATA
µP ADDR
µP CNTL
FIFOs/
INTERRUPTS
CHAN
DATA
TYPE
VALID
8
INTS.
LOOPBACK
FROM T X
DATA
1
INTERNAL
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
520 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
128 bytes of FIFO buff ering for each channel with the ability to interrupt on end of packet (E OP), exceed pro-
grammable FIFO threshold or FIFO overrun.
Each channel has independent re set and enable. Reset will reset all state machines, disable the channel, rese t
FIFO pointers, and clear pending interrupts. Disabli ng a c hannel will reset the state machine but not affect the
FIFO pointers or interrupts.
Any channel can be programmed to run from any combination of bits from an y one time slot of either odd or even
(or both) frame numbers of any link.
A loopback mode (from transmit HDLC , through HDLC to FIFO) is supported.
Channels will not operate if the corresponding li nk/framer goes out of frame (functi on is equivalent to channel
disabled).
Data is ignored if the link /framer is not in basic frame alignment.
Upon selection from the top level, the 128 bytes of FIFO per-channel can be conv er ted into 512 bytes of FIFO,
with a quarter of the channels.
Data recei ved from the receive framer is stored in the appropriate channel receive FIF O. In the HDLC mode, the
receiver also places a status of frame byte in the receive FIFO for every complete frame received. The receive
HDLC channel FIFO re gister bits FRM _HRCOUNT [9:0] (Table 446) r epor t the numbe r of bytes available for this
particular channel since the last byte received by the HDLC receive block regardless of how many bytes were read
by the host. The host loads the data from the RFIFO of the va riou s channels through the microprocessor interface.
5-9029(F)r.1
Figure 6 5. Tran sm it HDLC FIFO Block Diagram
21.24.10 Transm it HDLC FIFO Features
In transparent mode, simply transform the data to a serial output.
In H DLC mode, correctly format and p acketize the outgoing data bits.
In HDLC mode, s ends norm al packets (c lose with f lag) or abort packets (via command or absence of data).
Provide 128 bytes of FIFO buffering for each channel with ability to interrupt on packet done, below programma-
ble FIFO threshold or u nderrun (F IFO empty in middle of packet).
Each channel has independent re set and enable. Reset will reset all state machines, disable the channel, rese t
FIFO pointers, and clear pending interrupts. Disabli ng a c hannel will reset the state machine but not affect the
FIFO pointers or interrupts.
TDM TO
CHANNEL
CONVERSION
FIFOs/
INTERRUPTS
CHAN
DATA
ENABLE
TDM BU S
µP DATA
µ
P ADDR
µP CNTL
HDLC/
PARALLEL-TO-
SERIAL
CHAN
DATA
TYPE
VALID
8
ACK/UNDERFLOW
LOOPEN
TDMEN
CHAN
INTS.
PRM
INFO
1
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
521Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Any channel can be programmed to run for any combination of bits for any one time slot of either odd or even (or
both) frame numbers of any link.
A local loopback is supported. (From transmit FIFO through the HDLC back to the receive FIFO.)
The PRM data is received from the framer performance monitoring block approximately once per se cond per
link. If the link is enab led to send PRM data, then the PRM packet will be sent as the ne xt packet on that link. The
PR M p ac k e t co nt ai n s dat a for th e cu rr e nt an d t hr e e pr e v i ou s secon d s . The fo rmat of the PRM packet is shown in
Tabl e 587, Perf ormance Report Message Format on page 507.
Table 5 96. Performance Report Message Structure
In Table 596, the flags (o ctet 1 and 15) are normal HD LC flags (note that the CFLAGS bit must be programmed to
1 to force nonshared flags), SAPI = 001110, C/R is p rogrammable, EA = 0 in octet 2 and 1 in octet 3, TEI =
0000000, Control = 00000011. Octets 5 and 6 contain the most recent data received from the performance moni tor
(except U1, U2, R = 0 always). Octets 7 and 8 contain the same data from the previous second. Octets 9 and 10
contain data from the second before that (antepenultimate second) and octets 11 and 12 contain data for the sec-
ond before that. The FCS is automatically generated by the HDLC.
The data normally received from the per f ormanc e monit or will be initialized to all zeros.
Trans mi t HDLC data is loaded into the channel transmit FIFO (TFIFO) via the Tx H D LC ch annel data bits
FRM_HTDATA[7:0] (Table 438). Multifram e s can be pla ced in the Tx HDLC FIFO. In HDLC mode, the final byte of
each frame is marked by writing the Tx HDLC FRM_HTFUNC[1:0] (Table 438) b its to the appropriate value . The
transmit HDLC channel count register indicates how many additional bytes can be added to the Tx HDLC FIFO.
The transmitter empty (Tx H DLC FRM_HTT HRSH ( Table 436)) interrupt bit is set in the HDLC interrupt status reg-
ister when the TFIFO is below the number of bytes s pecified in the thres hold registers.
A Tx HDLC FRM _HT DONE interrupt occurs for each HDLC frame completed.
In HDLC m ode, an Tx HDLC FRM_HTUND (Table 436) interrupt is generated if the transmitter under runs. There is
no interrupt indicated for a transmitter overrun that is writing more data t han empty spaces exis t. Overrunning
transmitter data is ignore d which resul ts in missing data in the frame.
Octet Numb er P RM B7 P RM B6 PRM B5 PRM B4 PRM B3 PRM B2 PRM B1 PRM B0
1FLAG
2SAPIC/REA
3TEIEA
4 Control
5 G3LVG4U1U2G5SLG6
6 FESELBG1 R G2NmNI
7 G3LVG4U1U2G5SLG6
8 FESELBG1 R G2NmNI
9 G3LVG4U1U2G5SLG6
10 FE SE LB G1 R G2 Nm NI
11 G3 LV G4 U1 U2 G5 SL G6
12 FE SE LB G1 R G2 Nm NI
1314 FCS
15 FLAG
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
522 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
21.25 Framer Phase-Lock Loop (PLL)
The Super Mapper incorporates an internal PLL to generat e transmi t path line clocks for the framers at DS1, and
E1 from an external sy s t em clock (device pin CLKIN_PLL (AD24)).
The extern al system clock is multiplied by an analog phase-locked loop (PLL) and fractionally divided down to
obtain the required line clock frequencies.
5-9075(F)
Figure 66. Framer PLL
The PLL may be programmed for eight different exte rnal system clocks with the device pi ns: MODE2_PLL (AB21)
(MSB), MODE1_PLL (AE24 ), and MO DE0_PLL (AF24) (LSB), as shown in Table 597 below.
Table 597. Clock Mode Programming for PLL Mode De vice Pins
The PLL is used when framer bit PLL_BYPAS = 0 ( Table 301). When PLL_BYPAS = 1, the PLL is bypassed and an
exte rna l cl oc k a t the s yst e m interface is used as the line clock. An example would be when the framers are pro-
gramme d for a CHI interface at 2.048 MHz and the frames are pr ogrammed for E1, the PLL may be bypa ssed and
the CHI system clock may be u sed as the line clock.
The PLL may be powered down when not in use with microprocessor register bit SM PR_MPU_CG_PWRDN
(Table 70) set to 1.
Clock Select MODE2_PLL, MODE1_PLL, MODE0_PLL System Clock Frequency (MHz) CLKIN_PLL
000 Reserved (do not use )
001 51.84
010 26.624
011 19.44
100 16.384
101 8.192
110 4.096
111 2.048
CLKIN_PLL
MODE2_PLL
MODE1_PLL
MODE0_PLL
ANALOG PLL
AND
FR ACTION A L DIVIDE R
M P U REG IST ER B IT
MPU_CG_PWRDN
CLOCKS TO
FRAM ER BLO CK
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
523Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.25.1 Fram er Timing Selection
The foll owi ng diagram sh ows the f ramer timing selection .
5-9076(F)r.1
Figure 67. Framer Block Transmit Path Timing Selection
Legend for Figure 67:
Device pins:
CLKIN_P LL (AD2 4)system clock into PLL.
MODE2_PLL (AB21)PLL input clock f requency select pi ns.
MODE1_PLL (AE24).
MODE0_PLL (AF24).
Fram er register bits:
FRM_MODE[3:0] (Table 422)framing mode se lect (per link ).
FRM_P L L_BYPAS (Table 301)transmit path clock sele ct fr om PLL or external system interface (global).
FRM_ SW_TRN (Table 301)switchin g or transport mode select (global).
Fr am er internal signals:
tp_rclktransmit path receive cloc k.
tp_tclktransmit path transmit clock.
rs_gtclkreceive system global transmit clock (LINERXDATA[29] device pin D13).
rp_rclkreceive path receiv e clock
21.26 System Interface
21.26.1 System Interface Introduction
The system interface of Super Mapper can be programed for several modes of operation:
Concentration Highway (CHI) Mode. This is the system interf ace on Ageres current framers. I t c an be pro-
grammed to operate at 2.048 MHz, 4.096 MHz, 8. 192 MHz, or 16.384 MHz clock rates (data rates up to
8.192 Mbits/s only). In this mode, a pair of global system clock and system frame sync (one for the tr ansmit and
one for the receive direction) are required. This interface can be used, for example, to interface with the TSI device.
DS1
E1
PLL
CLKIN_PLL
MODE2_PLL
MODE1_PLL
MODE0_PLL
BUFFER x28
28
rs_gtclk
28
tp_rclk[128]
tp_tclk[1128]
FRM_MODE[128][3:0]
FRM_PLL_BYPAS
FRAME
FORMATTER
BUFFER x28
128
TRANS MIT PATH
FRM_SW_TRN[128]
1
3rp_rclk_[1:28] 28
FRM_LOOP
TIMING
1
0
1
0
0
1
0
1
0
1
FRM_TXLBMD[1:0]
FRM_AUTOPLB
FRM_AUTOLLB
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
524 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Par allel Bus System Interfac e Mode. This interfac e c onsists of a 17-bit wide parallel bus operati ng at
19.44 Mbits/ s, 9 bits of which form a byte of data and a data parity bit while the othe r 8 bits contain the signaling
and control information. A clock and frame sync are expected in both the receive and transmit directions. For a
28 -link dev i ce, on l y 1 /3 of the b yt es are popula ted. In t he transmit direction the unpopulated b ytes are 3-stated,
while in the receive direction they are ignored. Three 28-link devices (Super Mappe rs) can be connected in parallel
to the telecom bus for im plem enting an S T S-3 (STM-1) rate interface.
Note: The Tx system i s defined as the in terface that sends data out of t he chip and toward the system (non-
SONET) interface. The Rx system receives data from the system. These designations are opposite of the
path definitions for the Super Map per.
21.26.2 System Interface References/Standards
ITU G.783 character istics of sy nc hronous digi tal hierarchy (S DH) equipment fun c tional blocks.
ITU Q.511 exchange interfaces towards other exchanges.
21.26.3 Transmit/Receive System Interface Features
The features supported in th e system i nterface are sum m arized below:
Data rates of 2.0 48 Mbi ts/ s, 4.096 Mbits/s, 8.192 Mbits/s, and 19.44 Mbyte/s.
Clock ra tes of 2. 048 MHz, 4.096 M Hz, 8. 192 MHz, 16.384 MHz, an d 1 9.4 4 MHz.
A global input c lock and frame sync (CHI and parallel bus syste m interface modes).
Byte offset2.048 Mbits/s, 031 bytes.
Byte offset4.096 Mbits/s, 063 bytes.
Byte offset8.192 Mbits/s, 0127 bytes.
Bit offset (CHI mode).
1/2-bit o ffset (CHI m ode).
1/4-bit o ffset (CHI CM S mode).
Clock m ode select (CMS ) (CHI mode).
Assoc iated signaling mode (ASM) (CHI mode).
Double ti me slot mode, CHIDTS (CHI m ode).
Double NOTFAS syste m time slot , FRM_DNOTFAS (Table 347) (CHI and parallel bus system interface modes).
Sampled clock edge for transmit system frame sync (CHI mode).
Global programmable stuffed time slot position in DS1 mode (CHI mode).
Global programmable st uffed byte in DS1 mode (CHI and parallel bus system interface modes) .
Global single time slot loo pback a ddress for system or line.
Programmable automatic system AIS (loss of frame alignment).
Programmable automatic system AIS (CEPT CRC-4 multiframe alignment t imer expiration).
On-demand transmission of system AIS.
Programmable even/odd parity generation (par allel bus system interface mode).
21.26.4 Double NOTFAS System Time-Slot (FRM_DNOTFAS (Table 347)) M ode
This mode is applicable to the CHI and parallel bus system interface mod es. In the defaul t case
(FRM_DNOTFAS = 0 (Table 347)), both the FAS and NOTFAS time slo ts are transmitted by the transmit system
inte rface and expec ted by the recei ve system interface.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
525Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Setting FRM_DNOTFAS to 1 enables the NOTFAS time slot to be transmitted twice on the transmit system inter-
face in the NOTFAS and FAS time slot (TS0) positions. Similarly, the receive system interface assumes time slot 0
to carry NOTFAS data that is repeated twice.
21.26.5 Transparent Mode
This mode is only used in the CHI m ode. In the transparent DS1 mode, the trans mit system interface inserts the
193rd bit of the DS1 frame in bit 7 (LSB) of the first stuffed tim e s lot. The rec eive system interface takes bit 7 of the
first stuffed time slot a nd inserts it into the framing bit position (193rd bit on the TDM data bus).
In the transparent E 1 mode, the transmit system maps 32 received time slots into the CHI tim e slots. Similarly, the
receive sys tem maps the CHI time slo ts into the TDM bus time slots. The transmit frame formatter inserts TS0 of
the CHI (FAS/NOTFAS) into the TS0 of the frame based on the biframe alignment.
21.26.6 Loopbacks
Two forms of loopbacks are supported: single time slot system loopback (STSSLB ) and single time slot line loop-
back (STSLLB), as shown in Figure 68 below. When FRM_STSSLB = 1 ( Table 350), a single time slot from the
receive system interface selected using t he configuration parameter FRM_TSLBA[4:0] (Table 350), is loope d b ack
to the system. The idle code, programmable using the configuration registers (FRM_IDLE[7:0] (Table 349)) , is
transmitted to the line in place of the looped back tim e slot.
When FRM_STSLLB = 1 (Table 350), a single time slot from the transmit system interface selected using the con-
figuration parameter FRM_TSLBA[4:0], is looped back to the line. The progr ammable idle code is transmitted to the
system in place of the looped back time slot.
5-9030(F)r.1
Fi gure 6 8. System Loopbacks
21.26.7 System AIS
The transmit system interface transmits AIS automatically to the system on the following conditions:
Loss of frame alig nment in the frame aligner or the m app er block (provisionable using a configuration register
bit).
CEPT CRC-4 multiframe alignment timer expiration (provisionable using a configura tion regist er bit).
On-demand AIS can also be sent to the system by setting the configuration register bit for t he pa rticular link
(FRM_MANAIS (Table 419)).
SYSTEM
LINE ES
SINGLE TIME-SLOT SYSTEM LOOPBACK
SYSTEM
LINE ES
SINGLE TIME-SLOT LINE LOOPBACK ES = ELASTIC STORE
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
526 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
21.26.8 Sl ip Detection
Controlled slips are perfor med on frame boundaries. Elastic store slip overflow and underflow is monitored with sta-
tus bits FRM_ SL IPO and FRM_S LIP U (Table 393 on page 285 ). In the case of an underflow, an e ntire frame is
repeated. In the case of an overflow, an entire frame in skipped.
21.26.9 The Concentration Hig hway (CHI) Mode
This is the system interface on Ageres framers. It can be programmed to operate at 2.048 MHz, 4.096 MHz,
8.192 MHz , or 16. 384 MHz clock rates ( data rates up to 8.192 Mbits /s only). In this mode, a pair of global system
clock and s ystem frame sy nc (one f or the transmit and one f or the receive direction) is required. Th e offset between
the frame sync and bit 0 of time slot 0 is programmable in this mode. Figure 70 below shows the transmit system
interface operating in the CH I mode. The data path (shown in bold arrows) passes through the slip buffer. Slips in
the form of buffer overflows or underflows are detected and reported in this mode. This interface can be used, for
exa mpl e, to interface wi th the time slot interc hange (TSI) dev ice.
5-9032(F)
Figure 69. CHI Mode of the Transmit System Interface
21.26.10 No mi nal CHI Tim ing
Figure 70 illust rates nominal CHI frame timing. Double time slot mode (CHIDTS) and associated signaling mode
(ASM) is disabled. The frames are 125 µs long and cons ist of 32 contiguous time slots when the 2. 048 MHz data
rate mode is selected.
In DS1 frame modes, the CH I frame consists o f 24 payload time slots and eight stuffed (unused) time slots.
In CEPT frame modes, the CHI frame consists of 32 payload time slots:
TCHIDATAoutput da ta to system.
RCHIDATAinput data to system.
TCHIFStransmit CHI f ram e sync.
RCHIFSreceive CHI fram e sync .
TS_D[28:1]
FRAME SLIP TS_GFS
TS_GCLK
RS_GCLK
RS_GTCLK
TCLK
RS_D[28:1]
RS_G
TDM
PLL
FANOUT 1
28
28
FRAME RATE
TFS
28
TDM
TRANSMIT PATH
RECEIVE PATH TRANSMIT SYSTEM
RECEIVE SYSTEM
FORMATTER ADAPTATION
BUFFER
ALIGNER BUFFER
TO
CROSSCONNCT
BLOCK (XC)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
527Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-8978(F)
* The position of the stuffed time is controlled by register bit FRM_STUFFL (Table 347). FRM_STUFF = 1 is shown.
Figure 70. Nominal Concentration Highway Interface Timing
TCHIFS/
125 µs
TCHIDATA FRAME 1
F RAME 1
FRAME 2
RCHIDATA FRAME 2
8.192 Mbits/s CHI:
F RAME 1
FRAME 2
RCHIDATA
4.096 Mbits/s CHI:
2.048 Mbits/s CHI:
TCHIDATA
F RAME 1
FRAME 2
HIGH IMPEDANCE
HIGH IMPEDANCE
24 VALID TIME-SLOTS FRAME 2TCHIDATA
FRAME 2RCHIDATA
DS1 FORMAT
FRAME 1 FRAME 2
2.048 Mbits/s CHI:
RCHIDATA
TCHIDATA
or
CEPT FORMAT
32 VALID TIME-SLOTS
24 VALID TIME-SLOTS
7 STU F FE D
SLOTS*
FRAME 1
RCHIFS
1 STUFFED SLOT
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
528 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
21.26.11 CHI Timing with CHI Double Time-Slot Timing (CHIDTS) Mode Enabled
Figure 71 illustrates the CHI frame tim ing when CHIDTS is enabled (bit FRM_CHIDTS (Table 347)) and ASM is
disabled (bit FRM_ASM (Table 347)). In the CHIDTS mode , valid CHI payload t ime slots are alternated with high-
impedance intervals of one time slot duration. This mode is valid only for 4.096 Mbits /s and 8.192 Mbits/s CHI
rates.
5-8979(F)
Figur e 71. CHIDTS Mo d e Con centr ation Highw ay Int erface Timing
TCHIFS/
125 µs
TCHIDATA TS0
RCHIDATA
8.192 Mbits/s CHI
RCHIDATA
4 .09 6 Mb its/s C HI
TCHIDATA HIGH IMPEDANCE
TS1 TS2 TS3
TS0 TS1 TS2 TS3
TS31 TS0
TS31 TS0
FRAME 1
TIME
SLOT
8 bits
TIME
SLOT
FRAME 2
TS0 TS1 TS31
TS31
TS0
TS0TS1TS0
TS4 TS30
TS4 T30
TS2 TS30
TS2 TS30
RCHIFS
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
529Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.26.12 CHI Timing with Associated Signaling Mode Enabled
Figure 72 illustrates the CHI frame timing when the associated signaling mod e i s enabled (bit FRM_ASM
(Table 347)) and the CHIDTS mode is disabled (bit FRM_CHIDT S (Table 347)). The frames are 125 µs long and
consist of 32 contiguous 16-bit time slots when the 4.096 MHz CHI data rate mode is selected.
In DS1 frame formats, each frame consists of 24 time slo ts and 8 st uffed time slot s. Each time s lot consists of two
octets.
In CEPT modes, each fr ame consists of 32 time slots. Each time slot consists of two octets.
5-8980(F)
Figure 72. Associated Signaling Mode Concentration Highwa y Int erface Timing
21.26.13 AS M 2-Byte T ime -Slot Format
Table 598 illustrates the ASM tim e slot for mat for valid channels.
Table 598. Associated Signaling Mode CHI 2-Byte Time-Slot Format for DS1 Frames
* X indicates bits that are undefined by the framer
The identical sense of the received system P bit in the transmitted signaling data is echoed back to the system in the received signaling infor-
mation.
The DS1 framing for mats require rate adoption from the line-interface 1.544 Mbits/s bitstream to the system-inter-
face 4.096 Mbits/s bitstre am. The rate adoption res ult s in the need for stuffed time slots on the sy stem i nterface.
Table 599 illustrates the ASM format for T1 stuffed c hannels. T he stuffed data and signaling bytes contain the p ro-
grammabl e idle code in register FRM_STUFF[] (default = 7F (hex)).
DS1: ASM CHI Time-S lot
Pa yload Data Signaling Information*
12345678ABCDXFG
P
TCHIFS/
125 µs
FRAME 1 FRAME 2
8.192 Mbits/s CHI:
RCHIDATA
4.096 Mbits/s CHI:
TCHIDATA FRAME 1
FRAME 1
F RAME 2
F RAME 2
HIGH IMPEDANCE
RCHIDATA
TCHIDATA
or
FRAME = 64 bytes: 32 DATA + 32 SIGNALING
DATA AND SIGNALING BYTES ARE INTERLEAVED
SIGNALING 0DATA 0 SIGNALIN G 31 DATA 0DATA 31
FRAME
RCHIFS
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
530 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 599. Associated Signaling Mode CHI 2-Byte Time-Slot Format for Stuffed Channels
* The default stuff byte is shown.
21.26.14 CEPT: Time-Slot 16 Signaling ASM 2-Byte T ime-Slot Format
Table 600 illustrates the ASM time slot format for valid CEPT E1 time slots.
Table 600. Associated Signaling Mode CHI 2-Byte Time-Slot format for CEPT
* In the CEPT formats, these bits are undefined.
The P bit is the parity-sense bit calculated over the 8 data bit s, the ABCD bits, and the P bi t. The identical parity-sense of the received system
Pbit in the transmitted signaling data is echoed back to the system in the received signaling information
21.26.15 CHI Offset Programmi ng
To facilitate bi t offset programming, two parameters are introduced: CEX is defined as the clock edge with which
the first bit of time s lot 0 is transmitted; CER is defined as the clock edge on which bit 0 of time slot 0 is latched.
CEX and CER are counted relat ive to the edge on which t h e CHIFS signal is sampled. Value s of CEX and CER
depend upon the values of the p ara meters d escribed bel ow.
The fo llowing three tables gi ve decimal values of CEX and CER for various values of FRM_CMS (Table 347),
FR M_ TFSCKE (Table 347), FRM_RF SC KE ( Table 355), FR M_TOFF[2:0 ] (Table 418), and FRM_ROFF[2:0]
(Table 418). The byte (time slot ) of fsets are assumed to be zero in the following examples.
Table 601. Programming Values for FRM_TOFF[2:0] and FRM_ROFF[2:0] when FRM_CMS = 0
Table 602. Programming Values for FRM_TOFF[2:0] when FRM_CMS = 1
Table 603. Pr ogramming Values for FRM_ROFF[2:0] when FRM_CMS = 1
ASM CHI Time-Slot
Pa yload Data* Signaling Information*
0111111101111111
CEPT ASM CHI Time-Slot
Pa yload Data Signaling Information
12345678ABCDX*X*X*
P
FRM_TFSCKE/
FRM_RFSCKE FRM_ROFF[ 2 : 0 ] or FRM_TOFF[ 2 : 0 ]
000 001 010 011 100 101 110 111 CE R or
CEX
(decimal)
0 0 2 4 6 8 10 12 14
1 0 2 4 6 8 10 12 14
FRM_TFSCKE FRM_TOFF[2:0]
000 001 010 011 100 101 110 111 CEX
(decimal)
0 0 4 8 12 16 20 24 28
1 0 4 8 12 16 20 24 28
FRM_RFSCKE FRM_ROFF[2:0]
000 001 010 011 100 101 110 111 CER
(decimal)
0 0 4 8 12 16 20 24 28
1 0 4 8 12 16 20 24 28
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
531Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
The offset is furt her determi ned by the use of four bit s FRM_THALFOFF, FR M_RHALFOFF, FRM_TQUAROFF,
and FRM_RQUAROFF (Table 418). When the CHI clock and data rate are the s ame (FRM_CMS = 0), setting
FRM _THAL FOFF and FRM_RHALF OFF bits w ill increas e the clock e dge offset, CEX and CER, by one. When the
CHI clock is tw ice the data rate (FRM_CMS = 1), setting t he FRM_THA LFOFF and FRM_RHALFOF F bits wil l
increase the clock edge offset by two, and setting the FRM_TQUAROFF and FRM_RQUAR OFF b its will incr ease
the clock of fset by one.
The byte offsets FRM_TBYOFF[6:0] and FRM_RBYOFF [6:0] (Table 418) increment the offset one byte at a time.
When FRM_CMS = 0, the offset will increment by 16 clock edges; when FRM_CMS = 1, the offset will increment by
32 clock edges.
Figure 73 show s an example of the relative t imi ng of CHI 2.048 Mbits/s data with the following parameters:
FRM_CMS = 0, FR M_ TFSCKE, FRM_RFSCKE = 0, FRM_TQ UAR O FF = 0, FRM _ R QUAROFF = 0.
FRM_THALFOFF = 1, FRM_TOFF[2:0] = 001, FRM_TBYOFF[6:0] = 0000000.
FRM_RHALFOFF = 0, FRM_ROFF[2:0] = 010, FRM_RBYOFF[6:0] = 0000000.
5-8983(F)
Figure 73. TCHIDATA a nd RCHIDATA to CHICK Relationship w ith FRM_CMS = 0 ( CEX = 3 and CER = 4,
Respectively)
Figure 74 show s an example of the relative t imi ng of CHI 2.048 Mbits/s data with the following parameters:
FRM_CMS = 1, FRM_ TFSCKE = 0, FRM_RFSCKE = 0.
FRM_THALFOFF = 1, FRM_TQUA ROFF = 1, FRM_T OFF[2:0] = 000, FRM_TBYOFF[6:0] = 0000000.
FRM_RHALFOFF = 1, FRM_RQUAROFF = 0, FRM_ROFF[2:0] = 001, FRM_RBYOFF[6:0] = 0000000.
CHI FR AME SYN C IS SAMPLED ON TH E FALLING ED GE
12345678
BIT 0, TS 0 BIT 1, TS 0 BIT 2, TS 0
CEX = 3
CER = 4
BIT 0, TS 0 BIT 1, TS 0 BIT 2, TS 0
HIGH IMPEDANCE
RCHIDATA
TCHIDATA
TCHIFS/
TCHICK/
RCHICK
RCHIFS
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
532 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
5-8984(F)
Figure 74. CHI TCHIDATA and RCHIDATA to CHICK Relati onship with FRM_ C MS = 1 (CEX = 3 and CER = 6,
Respectively)
The timing figures sh own are functional timing diag rams. See S ec tion 5.5 Concentration Highway (CHI) Timing on
page 46 in the Timing Characteristics section of this data sheet for CHI interface and c lock timing parameter spec-
ifications.
21.26.16 The Parallel Bus System I nterface Mode
This inte r face consists of a 16-bit wide parallel bus operating at 19.44 Mbyte/ s, nin e bits of which f orm a byte of
data and a data parity bit while the other eight bits contain the signaling and control informat ion (A, B, C, and D sig-
naling bits, F and G signaling state bits, P parity bit, and a dont care bit). A clock and frame sync are expected in
both the recei ve and tran sm it di re ctions. Figure 75, below, shows the transmit system interface in the parallel bus
system interface mode. The timing specificat ions for this interface are in the Section 5 .6 Parallel System Bus Ti m-
ing on page 47 in the Timing Characteristics section of this data sheet. The offset between the fr ame sync and data
is fixed in this mode.
5-9037(F)
Figure 75. Parallel Bu s System Interface Mode of the Transmit Syste m Interface
CHI FRAM E SYNC IS SA MPLE D ON THE F ALL ING EDGE
12345678
BIT 0, TS 0 BIT 1, TS 0
CEX = 3
CER = 6
BIT 0, TS 0
HIGH IMPEDANCE
RCHIDATA
TCHIDATA
TCHIFS/
TCHICK/
BIT 1, TS 0
RCHICK
RCHIFS
TS_D[16:1]
FRAME SLIP
TS_GFS
TS_GCLK
28
RS_GCLK
RS_GTCLK
TCLK
RS_D
[16:1]
RS_GFS
TDM
PLL
FANOUT 12828
FRAME RATE
TFS
28
TDM
TRANSMIT SYSTEM
RE CE I V E SYSTEM
FORMATTER ADAPTATION
BUFFER
ALIGNER BUFFER
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
533Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
At 19.44 MHz, the pa rallel bus system in terface has 2430 clocks per 8 ms f rame. To transfer 84 DS1 s or 63 E1s
requires only 2016 clocks. The d ifference is made up by inserting st uffs onto the bus every so of ten. Since multiple
devices (three) will drive the bus, the stuff positions are also used to greatly simplify the timing when switching from
one device to another . Both DS1 and E1 use the same general method to drive the bus which is:
Send some stuffs, then device 0 sends TS 0 for link 1 n, then
Send some stuffs, then device 1 sends TS 0 for link 1 n, then
Send some stuffs, then device 2 sends TS 0 for link 1 n, then
Send some stuffs, then device 0 sends TS 1 for link 1 n, then
Etc.
21.26.17 Distri buted Stuffin g: DS1
For DS1, the parallel bus syst em interf ac e ti me sl ot arrangemen t is as follo ws :
S i x s t uff TS s | device 0, l ink 027 | six stuff TSs | device 1, link 027 | five* stuff TSs | device 2, link 02 |, etc.
Where * means in TSs 1, 5, 9, 13, 17, 21 six s tuff time slots are inserted instead of fiv e.
Hence: total time slots = (6 + 28 + 6 + 28 + 5 + 28) * 24 TSs + 6 extra stuff TSs = 2430 TSs.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
534 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 604 s hows the di stribut ion of the time slots and stuffing in the STM-1 frame for the DS1 mode.
Table 604. Parallel System Bus Inter face Ti m e-Slot Arrangement for DS1
Link Number (R = stuffed time slot)
TS1 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
TS2 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
TS3 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
TS4 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
TS5 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
TS6 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
TS7 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
TS8 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
. . .
Repeat TS5-TS8 Format For T S 9TS12, TS13TS16, TS17TS20
. . .
TS21 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
TS22 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
TS23 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
TS24 DEV0 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV1 RRRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
DEV2 RRRRR1 2 3 4 5 6 7 8 910111213141516171819202122232425262728
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
535Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.26.18 D istributed Stuffing: E1
For E1 , th e pa r allel bu s system inter face time slot arrangement is as follo ws:
Five* stu ff TS s | devi ce 0, l i n k 0 20 | four stuff T Ss | device 1, link 020 | fo ur st uff TS s | device 2,
link 0 20 |, etc.
Where * means in T S 0 three st uff time slots are inserted instead of five.
Hence: total time s lots = (5 + 21 + 4 + 21 + 4 +21) * 32 TSs 2 TSs skipped in TS 0 = 2430 TSs.
Table 605 shows the distribution of the time slots and stuffing in the STM-1 frame for the E1 mode.
Table 6 05. Parallel System Bus Inter face Ti me-Slot Arrangem ent for E1
Table 606. PSB System I/O Definition
Link number (R = stuffed time slot)
TS0 DEV0 ——R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
TS1 DEV0 R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
TS2 DEV0 R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
TS3 DEV0 R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
TS4 DEV0 R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
. . .
Repeat TS4 Fo rm at For TS5TS30
. . .
TS31 DEV0 R R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 R R R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Name Definition
TS _ D [ ] , R S _ D[ ] [ 1 6:9] T ime Sl o t Da ta [ msb:lsb]
TS _ D[ ], R S _D [] [8] Data Parity
TS_D[ ], RS_D[] [ 7 ] Signaling A-bit
TS_D[ ], RS_D[] [ 6 ] Signaling B-bit
TS_D[ ], RS_D[] [ 5] Signaling C-bit
TS_D[ ], RS_D[] [ 4] Signaling D-bit
TS_D[ ], RS_D[] [ 3 ] Signaling F-bit
TS_D[ ], RS_D[] [ 2 ] Signaling G-bit
TS_D[ ], RS_D[] [ 1] Signaling Parity
TS_ GCLK, RS_GCLK System Global Clock [19.44 MHz]
TS_GFS, RS_GFS System Frame Sync
RS_GT CLK Ext ernal Global Transmit Line Clock (CEPT-2.048 MHz, T1-1.544 MHz). O nly required if
internal framer PLL is not used.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
536 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
21.26.19 Drive to 3-State and 3-State to Driv e Timing
The minimum number of stuf f time slots is 3 (in the E1 mode). This al lows enoug h time to sw itch the bus between
devices. The device on the bus can drive the bus hi gh for one extra clock cycle to ensur e a fast ri se time. The
devic e t hen 3-states while the bus is pulled high, using a pull- up resi stor. Opt i onally, the next device starts driving
early for one clock cycle to ensure th at there is minimal delay bet ween the clock and data ou tpu ts (the turn-on
delay of the buf fer is eliminated by turning on the buffer one clock cycle early). The timing for the case of three s tuff
time slots is shown in the Figure 76. (In the rec eive direction from t he switch, we assume the stuff t im e s lots are
driven to 1.)
5-8992(F)
Figure 76. Parallel Bus System Interface Turnar ound Timing
See Section 5. 6 Parallel System Bus Tim ing on page 47 in the Timing Characteristics section of this data s heet for
PSB receive and transmit interface and clock timing parameter specifications.
21.27 S e ri al Mult i p lex In te r fac e
The network serial multiplexed interface (NSMI) provides a no-slip cap ability for t rans fer of multiple framed DS1s
and/or E1s f rom one device to another using a very narrow interface. A no-slip interface is widely used in datacom
and IMA applications. There are two NSMI interface mod es of operation requiring either s ix or eight s ignals to be
used.
Mode 1 uses six primary signals . The six primary signals are composed of t hree transmit and three receive signals.
Th e tr a n s mit signals are LINETXCLK29 (R24), LINETXDATA29 (T23), and LINETXSYNC29 (R26). The receive
signals are LINERXCLK29 (B13), LINERXDATA29 (D13), and LINERXSYNC29 (A13). Each group of t hree signals
provide clock, data, and control information.
The dat a and link num ber specified by the LINETXDATA29 and LINETXSYNC29 will be received in the same order
by t he receive side of the Super Mapper after traversing the swi tch side of the syst em.
DEV 1 MAY DRIVE
DEV 0, LINK 0-N
PULLED HIGH
USING A PULL-UP
DEV 0 DRIVES
HIG H FOR ONE
EXTRA CLOCK
DEV 1, LINK 0-N
HIGH ONE CLOCK
CYCLE EARLY
RR
R
MINIMUM OF 3 STUFF TIME-SLOTS
CYCLE
SYS DATA[I]
SYS CLK
DEV 0 EN A DRIVE HIGH-IMPEDANCE
DEV 1 EN A HIGH-IMPEDANCE DRIVE
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
537Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.27.1 Si gnals (6-Pin Mode)
5-9100(F)r.2
Figure 77. Signals (6-Pin Mode)
LINERX CLK 29 (B13)Output of the switch, which is the LINETXCLK29, delayed.
LINERX DATA29 (D13)Serial data sent out of the switch. The MSB is sent out first and at the same time, the
first bit (sta rt bit) of the LINER XSYNC29 is se nt out.
LINERXSYNC29 (A13)The control data, oth erwise known as the serial ID (SID), is generated by the switch.
LINETXCLK 29 (R24) Clock signal generated b y the Super Mapper.
LI NE T XDATA 29 (T 23 ) Serial data sent out of the Super Mapper. The MSB is sent out f irst and at the same time
the first bit (start bit) of the LINETXSYNC29 is sent out.
LINETXS Y NC29 (R2 6)The control data, otherwise known as the serial ID (SID), is generated by the Super
Mapper.
Mo de 2 uses the same six prim ary signals a s mode 1, al ong wit h two additional transmit signals. Signal RXDA-
TA E N (A B 19) is a clock signal generated by the S uper M apper. S ignal TXDATAEN (W22) contains control data in
the same format as the LINETXSYNC29 (R26) and LINERXSYNC29 (A13 ) signals. These two extra tr an sm it sig -
nals from the Super Mapper spe cify dat a links and data requested on the S uper Mapper NSM I receive p orts. This
allows the Super Map per t o rece ive links and data independent from those transmitted by the Super Mapper.
21.27.2 Signals (8-Pin Mode)
5-9101(F)r.2
Figure 78. Signals (8-Pin Mode)
SUPER
MAPPER
RECEIVE
SMI
TRANSMIT
INTERFACE
SWITCH
TRANSMIT
RECEIVE
LINERXCLK29
LINERXDATA29
LINERXSYNC29
LINETXCLK29
LINETXDATA29
LINETXSYNC29
SUPER
MAPPER
RECEIVE
SMI
TRANSMIT
INTERFACE
SWITCH
TRANSMIT
RECEIVE
LINERXCLK29
LINERXDATA29
LINERXSYNC29
LINETXCLK29
LINETXDATA29
LINETXSYNC29
EXTRA
RECEIVE
EXTRA
TRANSMIT
RXDATAEN
TXDATAEN
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
538 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
LI NERXCLK29 (B13)Output of the switch, which is t he LINETXCLK29, delay ed.
LINERX DATA29 (D13)Seri a l dat a sent out of the s w i tch . The MSB is sent out first and at the same tim e , th e
fi r st bit ( st a rt bi t) o f the LINE_R X S Y N C29 is sen t out.
LINERXSYNC29 (A13)The control data, oth erwise known as the serial ID (SID), is generated by the switch.
LINETXCLK 29 (R24) Clock signal generated b y the Super Mapper .
LI NE T XDATA 29 (T 23 ) Serial data sent out of the Super Mapper. The MSB is sent out f irst and at the same time
the first bit (start bit) of the LINETXSYNC29 is sent out.
LINETXS Y NC29 (R2 6)The control data, otherwise known as the serial ID (SID), is generated by the Super
Mapper.
RXDATAEN (AB19)Clock signal generated by the Super Mapper.
TXDATAEN (W22)The control data, otherwise known a s the serial ID (SID), is generated by the Super Mapper.
21.27.3 Timing Diagrams
Sing le Octet
Data is sent out on the LINETXDATA29 (T23) line serially with the MSB of the data first. The MSB is driven at
the same time t he START bit of the LI NETXSYNC29 (R2 6 ) s ignal is driven.
Following the START bit, the FSYNC bit of the SID is driven. After the FSYNC bit, the LSB of the LINKNUMBER
is sent. Once the MSB of the LINKNUMBER is driven, the final bit of the SID is sent. This final bit is a reserved
bit and must be 0.
5-8990(F)r.2
Figu re 79. Network Serial Multiplexed Interface ( Single Octet)
Table 607. Serial ID
Multiple Octets
Single octets of data can be sent out consecutively. Any number of clocks can separate octets. During the time
when octets are separated, the LINET X SYNC29 line m ust be driven with a 1.
Name Bit Description
START 0 Start Bit.
0 = Sta rt an octet. Bits 1 to 7 follow .
1 = Do not start an octet. Next bit is another bit 0.
FSYNC 1 F rame Sy nc Bit. Indica tes whether the current byte corresponds to the first
byte in the f rame or not.
0 = Not the first byte.
1 = First byte.
LINKNUMBER[5:0] 6:2 Link Number. Thes e bits indicate the link number of received/trans mitted
data.
7Reserved. Mus t write to 0.
START fSYNC
LINKNUMBER[5:0]
SERIAL DATA
MSB LSB
LSB MSB
LINETXCLK29
LINETXDATA29
LINETXSYNC29
RESERVED
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
539Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-9102(F)r.1
Figure 80. Network Serial Multiplexed Interface (Multiple Octets)
21.27.4 Time-Slot Sequencing
Link numbers28 link numbers, num ber ed 1 to 28 in T1 mode, and 1 to 21 for E1 mode.
Note:Link numbers can start at 0 by set ting FRM_LNKSTART (Table 347) bit 8 at address 0x80050 to 0. This will
cause the link numbers for T1 to be numbered 027 and for E1, 020.
In T1 mode, each of the 28 links has 24 time slots and should be numbered 1 to 24.
In E1 mode, each of the 21 links has 32 ti me slots and should be numbered 0 to 31.
The FSYNC (Table 607) bit i ndic a tes t hat the data for th e link is in the first ti me slot for that frame (ti me s lot 1 in
T1 and tim e slot 0 in E 1 mode).
Link data is sent out i n any order . I t is totally un predictable. Time slot s are sent in order and it is the job of the
switch to keep track of which time slot it receives.
Note: The order of the links sent out is in rela tion to the order in which the S uper Mapper framer receives the links.
Thus it is possible, for example, to receive all the time slo ts for link 5 and then start the next frame of data for
link 5 before link 10 completes its frame.
The minimum and maximum time between succ e ssive time slo t s on a li nk i s calculated below for both DS1
and E1, using an NSMI bus clock of 51.84 MHz (19.3 ns clock per iod).
DS1:
Max time = (1 link time slot interva l) + (27 links * 8 bits * NSMI clk per iod) + (1 link bit time) .
Max time = 5.2 µs + (27 * 8 * 19.3 ns) + (648 ns) = 10 µs.
Min tim e = (1 link time slot interval) (27 links * 8 bits * NSMI clk pe riod).
Min tim e = 5.2 µs (27 * 8 * 19.3 ns) = 1.0 µs.
E1:
Max time = (1 link time slot interval) + (20 links * 8 bits * NS MI clk period).
Max tim e = 3.9 µs + (20 * 8 * 19.3 ns) = 7.0 µs.
Min tim e = (1 link time slot interval) (20 links * 8 bits * N SMI clk pe riod).
Min tim e = 3.9 µs (20 * 8 * 19.3 ns) = 0.8 µs.
21.27.5 Timing Between Transmit and Receive
6- P in Mo de. The Super Mapper sends out the data and link information through the transmit signals . W hi le it
sends data, it also expects data to be sent back for the same link number and time slot. T he only requirement the
Super Mapper ha s is that it receives data at a constant time interval eve r y time. For example, at clock 1 data and
link informat ion was sent to the switch. Then at clock 16, data was sent b ack to the Super Mapper. Thus, the time
taken to send data back was 1 5 clocks. D ur ing this time, the next link and data we re s ent to the switch at clock 9,
the Super Mapper must receive the s ec ond data requested at clock 24. The ti me int erval must be constant. It
doesnt matter how long, but it must be constant.
START
SERIAL DAT AMSB LS B S ERIAL DATA S ERIAL DA TA
START START
LINETXCLK29
LINETXDATA29
LINETXSYNC29
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
540 Agere Sy stem s Inc.
21 28-Channel Framer Block Functional Description (continued)
8- Pi n Mode. As in the 6-pin mode, the Super Mapper sends data and link information through the transmit signals.
However, in the 8-pin mode, it requests data through the ex tra transmit signals. The data is then expected to be
sent back for the same link number and time slot on the Super Mappers receive signals. As in the 6-pin mode, the
only requirement is t hat it receives data at a constant time interval.
21.28 Superframer Host Interface
21.28.1 Superframer Register Addressing
Table 608 summarizes the current number of global and per link/channel registers for each block.
Table 608. Current Number of Global and per Lin k/C han nel Registers for Each Block
All of the block global r eg i s te r s will be combined with the top global register. Each block will receive a global select
and a per link/per channel select.
The block addressing is su mmarized below. An extra bit is used for future growth of global and link/channel regis-
ters.
Table 609 describes the addressing scheme. Bit 14 is used to indicate whether a link or HDLC channel is selected
(0 selects link and global r egiste rs ; 1 selec ts HDLC registers). When an HDLC channel is to be addressed, bits
B13B8 ind icate the HDLC channel numbers 063 (000000111111), bit B7 indicates the transmit or receive
paths, and bits B3B0 indicate the register numbe r. When a link is selected, bits B 13B9 indicate the link num-
bers 128 (0000 111100), and bit B8 indicates the transmit and receive paths for the link. Bits B7B0 i ndicate
the block and register number, as shown in Framer Addressing M ap for the G lobal and Per L ink/Ch annel Registers
of the Superframer, Table 609 on p age 541. Global registers are selected by setting B14B9 = 000000, selecting
a bloc k using bit s B7B4, and sele cting a register using bits B3B0.
Block Gl obal Per Link/Per Channel
TOP 1 0/0
AR 0 2/0
RXP FF 0 2/0
TXP FF 0 2/0
RXP PM 15 19/0
TXP PM 1 5 19/0
RXP SYS 5 3/0
TXP SYS 1 2 /0
RXP HDLC 6 0/8
TXP HD LC 6 0/8
RXP DL 0 9/0
TXP DL 0 9/0
RXP SIG 1 41/ 0
TXP SI G 1 3 6/0
RXP LC 0 1/0
TXP L C 0 1/0
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
541Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.29 Superframer Register Addressin g
Table 609 below summarizes the address map for the global and per link/channel registers of the superframer:
Table 609. Framer Addr essing Map fo r the Global and Per Link/Channel Registers of the Superframer
21.29.1 Per Link Register Sections in Table 609
SIG = Signaling (see Section 12.9.1 Signaling Per Link Registers on page 267).
PM = Perfor m ance Monitor (see Section 12.3 Performance M onitor G lobal Registers on page 247).
RDL = Receive (Facility) Data Link (see Section 12.11 Receive Facility Data Link Configuration and Status Registers on
page 288).
TDL = Transmit (Facility) Data Link (see Section 12.12 Transmit Fac ility Data Link Configuration and Status Registers on
page 290).
SYS = System Interface (see Section 12.13 System Interface, Arbiter, and Frame Formatter Mapping on page 292).
AR = Arbiter (Framer) (see Section 12.2 Arbiter (Framer) Global Registers on page 245).
FF = Frame Formatter (Transmit Framer) (see Section 12.16 Frame Formatter Pe r Link Registers on page 300 ).
LC = Line Encoder/Decoders (see Section 12.18 Line Encoder/D ec oder Per Link Registers on page 303); RXP = 0 for
the line encoder and TXP = 1 for the line decoder.
HDLC = High-Level Data Link Control (see Sec tion 12.19 HDLC Per Channel Configuration and Status Registers on
page 304); RXP = 0 for the receive HDLC and TXP = 1 for the transmit HDLC.
RXP = High-Level Data Link Control (see Table 432 on page304 ) RXP = 0 for the receive HD LC and TXP = 1 for the
transmit HLDLC.
Address Pins (ADDR1 5ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0Framer Global Registers
00000 0RXP=0/
TXP=1 0 0 0 0 Super framer Global
0 0 0 1 AR (Framer )
0 0 1 0 Performance Monitor
0 0 1 1 Performance Monitor
0 1 0 0 HDLC
0 1 0 1 System Interface
0 1 1 0 Signaling
0 1 1 1 Frame Formatter
(Transmit Framer)
1000 Reserved
1 0 0 1 Receive Data Link
1 0 1 0 Transmit Data Link
1 Others Reserved
0Links 128 (0000111100) Framer Functional Register Addresses
LNK4 LNK3 LNK2 LNK1 LNK0 0 SIG6 SIG5 SIG4 SIG3 SIG2 SIG1 SIG0
1 0 PM5 PM4 PM3 PM2 PM1 PM0
1 1 0 0 RDL3 RDL2 RDL1 RDL0
1 1 0 1 TDL3 TDL2 TDL1 TDL0
1 1 1 0 0 SYS2 SYS1 SYS0
1 1 1 100AR1AR0
1 1 1 1 0 1 FF1 FF0
1 1 1 1 1 0 Res. Res.
1 1 1 111LC1LC0
1HDLC Channels 164 (000000111111) RXP=0/
TXP=1 000 Per Channel Register
HDL9 HDL8 HDL7 HDL6 HDL5 HDL4 HDL3 HDL2 HDL1 HDL0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
542 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description
Ta ble of Conte nts
Contents Page
22 Cross Connect (X C) Block Functional Description . ..................... ................... ........................ ........................ 542
22.1 Cross Connect Introduction ............................................... .................................... ................................. 544
22.2 Cross Connect Features ......................................................................................................................... 544
22.3 Cross Connect Block Diagram ............................................................................................................... 545
22.3.1 Framer to Cross Connect Overview ............................................................................................ 546
22.3.2 External I/O to Cross Connect Ove rview ..................................................................................... 547
22.4 Cross Con nect Connectivity Ove rview ............. ............................. .......................... ............................... 548
22.5 DS1/E1 Cross Connect .......................................................................................................................... 549
22.5.1 DS 1/E1 Connectivity Matrix ............................. ............................ ..... ... ........................................ 550
22.5.2 DS1/E1 Register Definitio n .......................................................................................................... 550
22.6 Notes on the DS1 Cross Connect .......................................................................................................... 552
22.6.1 DS1/E1 TPG ................................................................................................................................ 552
22.6.2 M13 DS1/E1 Interface ................................................................................................................. 552
22.6.3 V T Mappe r DS1/E1 Interface ................................... .......... ... .............................. ... ..................... 553
22.6.4 Digital Jitter Attenuat or (DJA) Interface .................... . .................. . .................. . ............................ 553
22.6.5 Framer System Interface ............................................................................................................. 554
22.6.6 Framer S y s tem InterfacePSB .................................................................................................. 555
22.6.7 Framer S y s tem InterfaceCHI ................................................................................................... 555
22.6.8 Framer S y s tem InterfaceNSMI ................................................................................................ 557
22.7 DS2 Connectivity .......................................................... .......................................................................... 557
22.7.1 M13 DS2 Interface (DS2 Cross Connect) ..................... ..... ................ ..... ..... .......................... .....558
22.7.2 M12 MUX (Transmit Path) ........................................................................................................... 558
22.7.3 M12 DeMUX (Receive Path)........................................................................................................ 560
22.7.4 M23 DeMUX (Receive Path) ....................................................................................................... 561
22.7.5 M23 MUX (Transmit Path) ........................................................................................................... 562
22.8 DS3 Connectivity .......................................................... .......................................................................... 564
22.8.1 DS3 TPG/TPM Cross Connect .................................................................................................... 565
22.8.2 DS3 Basic Cross Connect ........................................................................................................... 566
22.8.3 NS MI Cross Connect . ................... .......................... .......................... .......................... ................. 567
22.9 Transmit and Receive Path Overhead Access Channel I/O Configuration ............................................ 568
Figures Page
Fi gure 81. Cro ss Connect Block Diagram..... ....................................................................................................... 545
Figure 8 2. Framer and Cross Connect.................. .......................... ..................... ..... ........................................... 546
Fig ure 83. DS1 Cross Connect Interface.............................................................................................................. 549
Figure 84. DS1E1 External I/O to M13................................................................................................................. 552
Fig ure 85. Framer Line Interface Cross Connect................................................................................................. 554
Figure 8 6. Framer System Interf ac eParallel Syste m Bus (PSB) ..... ................................................................. 555
Figure 8 7. Framer System Interf ac eConcentration Highway Interface (CHI) ................................................... 556
Fig ure 88. DS2 Cross Connect Interface.............................................................................................................. 557
Fi gure 89. M12 MUX DS2 Output Cr o ss Connect................................................................................................ 559
Figure 90. M12 DeMUX Input DS2 Cross Connect.............................................................................................. 561
Figure 91. M23 DeMUx DS2 Output Cross Connect ............................................................................................ 562
Figure 92. M23 MUX DS2 Input Cross Connect................................................................................................... 563
Fig ure 93. DS3 Cross Connect............................................................................................................................. 564
Figure 9 4. DS3 Test-Pattern Cross Connect......... ........................................................... . ............. ...................... 565
Figure 95. DS3 Ba sic C ross Connect ................................... ..................................... ........................................... 566
Fi gure 96. NSMI In te r face Cross Connect........................................................................................ .................... 568
Figure 9 7. TPOAC and RPOAC Cross Connect ...................... ................... ................ . ................... ..................... 569
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
543Agere Systems Inc.
Tables Page
Table 6 10. Multifunction System Interface Programmable I/O ............................................................................547
Table 611. DS3 Interface Programmable I/O ......................................................................................................548
Table 612. Transmit and Receive POAC Program mable I/O .................................... ....... ....... . ........................... 548
Table 613. Connectivity Within the Cross Connect Block ...................................................................................548
Table 614. DS1/E1 Signal Connectivity Matrix .................. ... ................................... ... .........................................550
Tabl e 615. Specia l XC_PDAT A Source IDs for Source Blo ck = 0 ....................................................................... 551
Table 6 16. Special XC_SYNC Sou rce IDs for Source Block = 0 ......................................................................... 551
Table 6 17. Special XC_ALCO Source IDs for Source Block = 0 ......................................................................... 551
Table 618. Configuration of the Control Group .............................................. .......................... ............................556
Table 6 19. XC_PDATA Source IDs for LINETXDATA Routing with Source Block = 111 ................................... 559
Table 6 20. XC_PDATA Source IDs for LINETXCLK Routing with Source Block = 111 ...................................... 559
Table 621. DS3 Connec tivity ............ ... ....................... ... ....................... .......................... ... .................................. 564
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
544 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.1 Cross Connect Introduction
The cross connect block i s a highly configurabl e crosspoint s witch for internal DS1/E1/DS2/DS3 signal connections
in the Super Mapper. The cros s co nnec t allows flexible confi guration of the Super Mappers int ernal blocks to sup-
port a var iety of appli cations. Th e inter nal 28-channel framer, V T mapper, S P E mapper, M13, digital jitter attenua-
tor, and tes t-patter n generator/monitor blocks or exte rnal device I/ O pins can be interc onnected with the
independent, nonblocking signal routing of the cross connect block.
22.2 Cros s Conn e ct F ea tu r es
Configurable crosspoint interc onnec t for up to 28 DS 1 s ignal s or 21 E1 signals to/from the framer (or extern al
pins), and the same number of signal channels to/from the M13 and VT mapper. Also s uppor ts up to seven D S2
signals to/from the external pins or M12 MUXes, connecting to the M13 MUX M23 block. Also connects one DS3
signal to/from the ext ernal NSMI interf ace to the SPE, M13, or TPG b locks. Any mix of DS1, E1, DS2, or DS3 sig-
nals may be int erconnec ted.
Any transmitter (signal sou rce ) may be connected to any receiver (signal destination) in the DS1/E1 cross con-
nect. Multicast or broadcast operation (one port to many) is supported.
Jitt er attenuation may also be inserted in-li n e on any DS1/E1 channe l. (Note: Cascading o f jit ter attenuators is
not allowed.)
Standard n etwork loopbac k or strai g ht awa y faci lity tes ting is supported for DS1/E1 and DS3. Any source or
transmitter may be replaced by a test-pattern generator ca pable of injecting idle, st andards based pseu doran-
dom bit s equence test patterns , or AIS (blue) alarm. Any sink or receiver may be replaced by a test-pattern mon-
itor, which can detect/count bit errors in a pseudoran dom t e st s eq uence , or l o s s of frame, or loss of sync.
Loopbacks m ay be configured to sectionalize a circuit for identif yi n g f a ul ts or mis co n fi g ura ti o n during out of ser-
vice maintenance.
F ast alarm channels are supported for VT mapper or M13 to fr amer interconnects for alarm indication signal (AIS
or blue alar m) and VT mapper only for remote alarm i ndicator ( RAI or yellow al arm). This feature reduces the
propagation delay of the alarms by eliminatin g multiple integration of alarm conditions.
Suppo rts M12, M23 or C-bit parity, M13, or VT group modes of operation.
Supports framer-only, transport (framer LIU , M13, and VT mapper), and switching (CHI and PSB) modes of oper-
ation.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
545Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.3 Cros s Conn e ct B lo ck D iag r a m
The following diagram il lu strates th e high-level interface between the XC block and other functional blocks.
5-9180(F)r.5
Figure 81. Cros s Conn ect Block Diagram
CROSS
CONNECT
CON T RO L IN TE R F A CE
M12_DS2_DATA/CLK
DS3_DATA/CLK
DS1_DATA/CLK/STFREQ
M23_DS2_DATA/CLK/STFREQ
DS1_DATA/CLK/FSYNC
AUTOAIS
RAI
M13
VT
MAPPER
DS1_DATA/CLK/FSYNC
RAI 28
DS1_DATA/CLK/FSYNC
TEST
GEN/MON
TPM
TPG
EXT.
I/O
DS1_STFREQ
AUTOAIS
DS1_DATA/CLK
ATTENUATOR
DIGITAL
PTRADJ
PTRADJ
AUTOAIS
T/R_POAC
DS3_DATA/CLK
DS1_E1 DS2_AISCLK
DS1_AISCLK
E1_AISCLK
JITTER
PIN
(XC)
DS2_DATA/CLK
AUTOAIS
SPE
MAPPER DS3_DATA/CLK
CHANNEL
FRAMER
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
546 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The cross connect can functionally be divided into thre e major sections: XC1 for DS1(E1), XC2 for DS2, a nd XC3
for DS3. Each section can be configured to establish interconnects be tween major functional blocks or connect
blocks to external I/O to establish a n appl ication. The DS1 and DS2 cross connects can establ i sh the order of the
circuits to be multiplexed and demultiplexed in the transmission hierarchy. In addition, a programmable MUX is pro-
vided for selecting the path overhea d access channel connection.
Literally hundreds of signals are interconnec t ed. The cross co nnect is designed to simplify the configu ration by
defining a set of sources and destinations. S ign als such as data, clock, alarm, and c ontrol associated with an iden-
tified source and de stination are bundled to simplify the cross connec t configuration. Establishing a connection in
the configuration register s will intercon nect the source group of signals to the destinat ion group of signals.
It is important to not e that the configuration information is not shared bet ween major blocks. For example, a virtual
tributary is interconnec ted between the VT mapper and th e f ramer. The cross co nnec t can establish t he inter con-
nect for data and clock and intelligently establish the proper interconnects for alarms and control. The framer block
and VT mapper are requ ired to be properly configured for ope ration as a DS1 or E1 and selection of clock edge to
proper ly sampl e the data.
A br ief overview of the framer block and the device ex terna l I/O pins is useful prior to a detailed description of the
cro ss connect block.
22.3.1 Framer to Cross Connect Overvie w
The framer block interfac e to the cr os s co nnec t is subdivided into six defined interfaces for each of the 28 framers
as shown in Figure 82. A brief explanation follows for e stablishing path and interconnect definition.
5-9181(F)
Figure 82. Framer and Cross Connect
FRM_TP_T, FRM_TP_RTransmit and receive interfaces for the framer transmit path (TP).
FRM_RP_T, FRM_RP_RTransmit and receive interfaces for the framer receive path (RP).
FRM_RSFramer receive s ystem interface (RS ).
FRM_TSFramer transmit sy stem interfac e (TS).
Note: The receive s ystem interface is associated with t he transmit path and the transmit system interface is asso-
ciated with the receive path. The s ystem interface def initi ons have been assigned based on historical con-
vention.
RP FRAME
ALIGNER RP FRAME
FORMATTER
TP FRAME
ALIGNER
TP FRAME
FORMATTER
RECEIVE
SYSTEM
TRANSMIT
SYSTEM
FRM_RS
FRM_TP_R
FRM_TP_T
FRM_RP_R FRM_RP_T
FRM_TS
TRANSMIT PATH
RECEIVE PATH
CROSS
CONNECT
CROSS
CONNECT
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
547Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The path design ations assigned to the framer are consistent with established network definitions . Signals mul ti-
ple xed up into the digital hierarchy from the transmit path. Signals demultiple xed fr om the digital hierarchy comprise
th e rece ive path.
In switching appl ic ati ons, concen tr ation highway interface ( CHI) or parallel sy s tem bus ( PSB) signals will enter
through the external I/ O and are cross connected to the receive sys tem interface (top right side of Figure 82). The
signals will traverse the framer through the t ransmit path frame formatter and are cross connected to the internal
multiplexers / mappers (top left side of Figure 82). Signals demultiplexed from DS3 or demapped from SONET are
cross connected to the receive path frame aligner ( bottom left side of Figure 82) traverse the framer, and are cross
connected from the transmit system interface to the external I/O pins (bottom rig ht side of Figure 82).
In transport mode, line i nterface (LIU) signals will enter through the external I/O and are cross conn ected to the
transmit path fram e aligner interface (top right side of Figure 82). The signals will traverse the framer through the
transmit pat h fram e formatter an d are cross connected to the in ternal mu lti plexers/mappers (t op left side of
Figure 82). Signals demult iplexed from DS3 or demapped from SONET are cross connected to the receive path
frame a ligner (bo ttom left side of Figure 82) traverse the framer, and are cross connect ed from the re ceive path
frame formatter to the external I/O pins (bottom right side of Figure 82) on to the LIUs .
Most application s will cross connect the framer interfaces FRM_TP_T and FR M_RP_R to t he M13 MUX or VT
mapper . The framer interfaces FRM_RP_T and FRM_TP_R or the s ystem interfac es FRM_TS and FRM_RS will
be cross connected to the external I/O of the multifunc tion system interface.
22.3.2 External I/O to Cross Connect Overview
T he cros s c onnect defin e s t h e connectivity of devi ce pi ns associated with the DS3 (6 pins), STS-1 POAC (6 pins),
and the multifunction system interface (174 pins). Therefore, the cros s connect plays a very large role in configur-
ing the functionality of the Super Mapper from the applications viewpoint.
The multifunction system interface device pins connectivity may be configured to support DS1/E1 (LIU and serial
data/clock/sync), DS2 interfaces, channelized (DS0), and multiple xed system interf aces (CHI, PSB , or NSMI).
Table 6 10. Multifunction System In terface Prog rammable I/O
Pin Symbol Input/Output (I/O) Pin
LINERXDATA[128] I C13, A12, B11, B10, B9, D8, C8, A7, B6, D5, A4, A3, H5, F5, C2,
D2, E2, F4, G2, H1, J3, J4, K4, L4, M2, N1, P4, P3
LINERXDATA[29] I/O D13
LINERXCLK[129] I/O D12, C12, C11, C10, A9, B8, D7, C7, C6, C5, C4, C3, J5, B2, D3,
E3, F3, G 3, G4, H2, J1, K3, L3, M3, M4, N2, P2, R4
LINERXSYNC[128] I B12, D 11, D1 0, D9 , C9, A8, B7, D6, B5, B4, B3, E6, K5 , C1, D1, E4,
F2, G1, H3, H4, J2, K2, L2, M1, N3, N4, P1, R2
LINERXSYNC29 I/O A13
LINETXDATA[129] O R25, P26, N23, N24, M26, L 25, K25, J25, H23, H24, G26, F25,
E23, D26, C26, E21, B24, B23, B 22, D21, B 20, A19, C18, D18,
D17, D16, B 15, A 14, T23
LINETXCLK[128] I/O R23, P 25, N25, M 23, M 24, L24, K24, J26, H25, G 23, G 24, F24,
E24, D24, C24, B 25, C23, C22, C21, C20, D20, B19, A18, C17,
C16, C15, D15, B14
LINETXCLK[29] I/O R24
LINETXSYNC[129] I/O P24, P23, N26, M25, L23, K23, J23, J24, H26, G25, F23, E25, D25,
C25, F22, A24, A23, D22, B21, A20, C19, D19, B18, B17, B16, A15,
C14, D 14, R26
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
548 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The DS3 external device pins may be configured to provide DS3 access to the M13, test-pattern gener a tor , o r SP E
mapper.
Table 6 11. DS3 Interface Programmable I/O
The SONET path overhead access channel (POAC) is configurable for access to the SPE mapper or TMUX.
Table 612. Transmit and Receive POAC Programmable I/O
22.4 Cros s Conn e ct C on n ec t iv ity Overvi ew
Table 613 below describ es the connectivity within the cr os s c onnec t block.
Table 613. Connectivity Within the Cross Conne ct Block
Notes:
1. Fr amer, M13, and VT mapper have limited self-loopback capability (no reord ering).
2. RAI paths and frame sync paths supported.
3. Fram er also ha s limi t e d t es t- pat t ern cap abil ity.
4. Au t o- AIS pat hs (fast AI S ) su pp orted .P TR A D J paths supp orted.
5. PTR ADJ pa t hs supported
6. Jitter attenuator reordering or cascading (chaining) not expected.
7. Reference clock sources f rom DJA used by TPG.
8. Prohibited for DS3.
Pin Symbol Input/Output Pin
DS3POSDATAIN I M22
DS3NEGDATAIN I K22
DS3DATAINCLK I J22
DS3POSDATAOUT O R22
DS3NEGDATAOUT O P22
DS3DATAOUTCLK I N22
Pin Symbol Input/Output Pin
RPOACCLK O AE3
RPOACDATA O AD4
RPOACSYNC O AF4
TPOACCLK O AE4
TPOACDATA I AD5
TPOACSYNC O AC5
Destination
Source External
I/O Framer
RP_R Framer
TP_R Framer
RS M13
Mapper VT
Mapper Jitter
Attenuation TPM SPE
External I/O & %%%%% % TNSMI
Framer TP_ T % T& X X % %2%T3X
Framer RP_T % X T & X X % % T X
Framer TS % X X T& X X X X X
M13 MUX % %4XX
X1 &%%4TDS3
VT Mapper % %2, 4 %X%
X1 &%
4, 5 TX
Jitter At tenuation J J J X J J X6J T7X
TPG T T T X T T T SELF8X
SPE NSMI/DS3 X X X DS3 X X T X
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
549Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
T he sy mbol s in Table 613 and Table 614 are as follows:
Symbols:
% = Pr ima ry (expected) modes of operation.
X = Unsupported mode.
T = Tes t mode.
SELF = TPG->TPM self-test mode.
J = Jitter-attenuated signal mode.
& = Represents loopback path.
NSMI = NSMI mode only.
22.5 DS1 /E1 Cros s Co nne ct
5-9182(F)r.5
Figure 83. D S1 Cr os s Conn e c t In t er f ace
CROSS
CONNECT
CONTROL INTERFACE
VT
MAPPER VTMPR (SOURCE_ID = 100)
(XC1)
TPG (SOURCE_ID = 000)
TPG
DJA_DS1/E1/DS2_AISCLK
REF CLKS
DJA
FRM_RP (SOURCE_ID = 110)
FRM_RP_T
FRM_TP (SOURCE_ID = 010 )
FRM_TP_T
M13 (SOURCE_ID = 011)
EXT (SOURCE_ID = 001)
EXT I/O
VT
MAPPER
TPM
DJA
FRM_TP_R
FRM_RP_R
M13
XC_VDATA[128][7:0]
TPM[DS1 DATA,
XC_T_DS1/E1CLK
2
XC_JDATA[128][7:0]
XC_TP_RDATA[128][7:0]
XC_RP_RDATA[128][7:0]
XC_MDS1DATA[128][7:0]
XC_SYNC[129][7:0]
FRM_TS (SOURCE_ID = 111 )
FRM_TS FRM_RS
XC_RS_D[128][7:0]
M13
PIN
EXT I/O
PIN
SOURCE DESTINATION
XC_PDATA[129][7:0]
LINERXCLK[129]
LINETXDATA[129]
LINETXSYNC[129]
XC_ALCO[129][7:0]
LINETXCLK[129]
DS1 IDLE, E1 DATA]
DJA (SOURCE_ID = 101)
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
550 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.5.1 DS1/E1 Connectivity Matrix
DS1/E1 signal connectivity matrix Table 614 below is a subset of Table 613, Connectivity Within the Cross Connect
Block on page 548 excluding the last row and column.
Table 614. DS1/E1 Signal Connectivity Matrix
Note:See Table 613, Connectivity Within the Cro ss Connect Block on page548 for symbol and footnote descrip-
tions.
Each box represents a set of 28 or more output bundles from the cross connect (XC ) block. A bundle consists of
three s tandard data path signals [normally DATA, CLK, and FS or STFREQ], plus, in many cases, AUTOAIS, and,
in some cases, RAI o r PTRADJ signals.
22.5.2 DS1/E1 Regist er Def inition
For ever y valid output signal (bundle) from the cross connect, one input s ignal (bundle) to the cross connect is
steered to the destin ation, first via a block select (one of 8) and then via a channel select (one of 28, except exter-
nal I/ O, which is one of 29) . Therefore, each box in Table 614 als o repre sents 32 8-bit s ourc e identifiers in the reg-
iste r m a p.
Note: By specifying on a per-o utput basis, collisions are avoided and broadcast/multicast options are preserved
(that i s, multipl e output s ma y share the same source identifier). For E1 signals, only 3 out of 4 channels are
used (channel numbers that are even multiples of four are typically disallowed).
The crosspoints connectivity is determined by a set of source identifiers ( SOURCE_IDs), one for each channel
leaving the crosspoint switch. A DS1/E1 (XC1) SOURCE_ID is th erefore defined as follows:
The SOURCE_BLOCK[2:0] is defined as:
The CHANNEL_I D typically ranges from 1 to 28 (29 for EXT). Values 0, 30, and 31 (and usually 29 as well) are
unused.
Destination
Source External
I/O Framer
RP_R Framer
TP_R Framer
RS M13
Mapper VT
Mapper Jitter
Attenuation TPM
External I/O &%%%%% % T
Framer TP_T %T & X X % %2%T3
Framer RP_T %XT &X X% % T
Framer TS %X XT &X X X X
M13 MUX %%4XX
X1 & %%4T
VT Mapper %%2, 4 %X%
X1 &%
4, 5 T
Jitter Attenuation JJ JXJ J X6J T7
TPG TTTXTT TSELF
Bit 76543210
SOURCE_ID SOURCE_BLOCK[2:0] CHANNEL_ID[4:0]
Index Block Identifier Index Block Identifier
000 TPG (Test-Pattern Generat or)/Spec ial 100 VTMPR (VT Mapper)
001 EXT (External I/O) 101 DJA (Jitter Attenuator)
010 FRM TP (Superframer) 110 FRM RP (Framer Line Interface)
011 M13 (M1 3 MUX) 111 FRM TS (Framer Sy s tem Interface)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
551Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The 000 index (TPG/special) has a separate, independent mapping to allow for DS2, DS3, or special connections
to the external pins as defined in the following tables. The above definitions cover registers:
XC_PIND_SRC[115] (Table 451), XC_F RP_S RC[114] (Table 452), XC_M13_SRC[114] (Table 453),
XC_VT_SRC[114] (Table 454), XC_DJA_SRC[114] (Table 455), X C_F TP_S RC[114] (Table 456),
XC_FRS_SRC[114] (Table 457), XC_PINS_SRC[115] (Table 465), XC_ALCO_SRC[115 ] (Table 466), and
XC_TPM_SRC[14] (Table 458).
Table 6 15. Special XC_PDATA S ource IDs for Source Blo ck = 0
* Fo r th e 29 th pi n onl y.
Table 616. Special X C _S YNC Source IDs for Source Block = 0
* Fo r th e 29 th pi n onl y.
Table 617. S pecial XC_ALCO Source IDs for Source Block = 0
Since register information i s generall y not shared b etween other blocks and th e XC block, the us er is responsible
for correct programming of the crosspoint . That is, the user must ensure the c onsist ency of the designa t ion of DS1
(or J1) vs. E1 channels. Also, in the configuration of t he M13 M UX, the user mu st ensure the correct allocation of
DS1/E1 vs. DS2 channels, as well as coordina ting the designation or ordering of DS2 channels within the DS3 (in
the independent M12 MUX mode).
Blk Ch. Description Blk Ch. Description Blk Ch. Description Blk Ch. Description
0 0 TEST: DS1 0 8 Reserved 0 16 DS2 AIS 0 24 M13 NSMI*
1 TEST: DS1 Idle 9 Res erved 17 M 23_DM X_DS 2_1 25 SPE NSMI*
2 TEST: E1 10 Reserved 18 M23_DMX_DS2_2 26 FRM NSMI*
3 Reserved 11 Reserved 19 M23_DMX_DS2_3 27 Reserved
4 TEST: DS2 12 Reserved 20 M23_DMX_DS2_4 28 Reserved
5 Reserved 13 Reserved 21 M23_DMX_DS2_5 29 Reserved
6 Reserved 14 Reserved 22 M23_DMX_DS2_6 30 Reserved
7 Reserved 15 Reserved 23 M23_DMX_DS2_7 31 Reserved
Blk Ch. Description Blk Ch. Description Blk Ch. Description Blk Ch. Description
0 0 TEST: DS1 0 8 Reserve d 0 16 DS2 AIS 0 24 M13 NSMI*
1 TEST: DS1 Idle 9 M12_DS2_OUT_1 17 M23_DMX_DS2_1 25 SPE NSMI*
2 TEST: E1 1 0 M 12_DS 2_ OUT_ 2 1 8 M 23_DM X _DS2_2 26 FRM NSMI*
3 Reserved 11 M12_DS2_OUT_3 19 M23_DMX_DS2_3 27 Reserved
4 T EST: DS2 12 M 12_DS2_OUT_4 2 0 M 23_DM X _DS2_4 28 Reserve d
5 Reserved 13 M12_DS2_OUT_5 21 M23_DMX_DS2_5 29 Reserved
6 Reserved 14 M12_DS2_OUT_6 22 M23_DMX_DS2_6 30 Reserved
7 Reserved 15 M12_DS2_OUT_7 23 M23_DMX_DS2_7 31 Reserved
Blk Ch. Description Blk Ch. Description Blk Ch. Description Blk Ch. Description
0 0 Reserved 0 8 Reserved 0 16 Reserved 0 24 Reserved
1 Reserved 9 Reserved 17 M23_DS2CLKO_1 25 Reserved
2 Reserved 10 Reserved 18 M23_DS2CLKO_2 26 Reserved
3 Reserved 11 Reserved 19 M23_DS2CLKO_3 27 Reserved
4 Reserved 12 Reserved 20 M23_DS2CLKO_4 28 Reserved
5 Reserved 13 Reserved 21 M23_DS2CLKO_5 29 Reserved
6 Reserved 14 Reserved 22 M23_DS2CLKO_6 30 Reserved
7 Reserved 15 Reserved 23 M23_DS2CLKO_7 31 Reserved
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
552 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.6 Notes on the DS1 Cross Connect
22.6.1 DS1/E1 TPG
DS1 test signals are available at a ny XC1 output channel by specifying value 000 in the SOURCE_I D f iel d. The
CHANNEL_ID field is set to zero for standard DS1 test- data patterns and one for DS1 (framed ) i dle data.
E1 test si gnals are availabl e at any XC1 output channel by specifying value 0 in the SOURCE_ID field. The
CHANNEL_ID field is set to t wo for standard E1 test-data patterns.
22.6.2 M13 DS 1/E1 Interface
The user configures the M13 DS1(E1) connections from the crosspoint by loading the appropriate SOURCE_IDs
into the M13 crosspoint configuration registers.
The user may connect any valid DS1 or E1 (XC1 input) signal bundle from the framer, VT mapper, external I/O,
TPG, or D JA to any M13 input configu red as a DS1 or E1 input. Each of the 2 8 pos sib le M13 (DS1) or 21 possible
E1 (J1 ) in pu ts may b e a ssigned a XC 1 source ID for the corr esponding XC_MDS1DATA[128][7:0] (Table 453)
b yte in the XC_M13_SRC[114] configuration registers . Since register inf ormation is not shared between the M13
block and the X C 1 block, the user is responsible for correct programming of the crosspoint by ensuring the consis-
tency of th e designati on of M13 vs. M12/M23 channels , a s wel l as c oor d inating the designation of DS1 vs. E1(J1)
channels.
T he cros s c onnect block automatically supports in dependen t signal paths for alarm indic ator signal (AIS) on chan-
nels between t he M13 and the framer.
The XC1 supports a mode where t he M13 block provides the DS 1/E1 clock out for data to be mu ltiplexed in from
th e external I/O device pi ns as depicted in Fi gure 84 on page 552. DS1/ E1 low clo ck out mode is enabled wi th reg-
is ter bi t XC_DS1ALCOE N = 1(Table 462). In this mode, the appr opriate DS1 or E1 level cloc k is routed to the LIN-
ERXCLK[129] device pin by progra mming the corresponding
XC_ALCO[129][7:0] byte in r egisters XC_ALCO_SRC[115] wit h the M13 SOURCE_ID = 011 and the channel
ID of the selected M13 channel. The LINE RXCLK[129] clock output is used to c lock in data fr om th e associated
LINERXDATA[129] device pi n a n d a stuff request input from the LINERXSYNC[129] device pin. In this mode,
the M12 stuff time is determined externally.
5-9183(F)r.2
Figure 84. DS1E1 External I/O to M13
M13XC
EXTERNAL I/O M13_DS1_DATA
M13_DS1_CLOCK
M13_DS1_CLOCK
M13_DS1_STUFF
LINERXDATA
LINERXCLK
LINERXSYNC
XC_MDS1DATA[128][7:0]
XC_ALCO[129][7:0]
REQUEST
BUNDLED SIGNALS
EXT I/O SOURCE_ID = 001
XC1
SOURCE_ID = 01 1
REGISTER BIT XC_DS1ALCOEN
0 = DS1 EXTERNAL CLOCK IN
1 = DS1 M13 DEMUX CLOCK OUT
CHANNEL _ID = 1 T O 29
(DEMUX FROM M13)
PIN SELECT
CHANNEL_ID FROM 1 TO 29
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
553Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.6.3 VT Mapper DS1/E1 Interface
The user configures t he VT mapper DS1/ E1 con nec tions from the crosspoint by loadi ng the appro priate
SOURCE_IDs into the VT mapper crosspoint configuration registers.
The user may connect any valid DS 1 or E1 sig nal bundle from th e M13 MUX, framer, external I/O, TPG, or DJA
blocks to any VT mapper input. Each of the 28 possible DS1 or 21 possible E1 inputs may be assigned a XC1
source ID for the corresponding XC _V DATA[128] [7:0 ] (Table 454) byt e in the XC_VT_SRC[114] conf iguration
registers. The user must ensure the consistenc y of the des ignation of DS1(J1) vs. E1 channels and block interface
parameters.
The cross connect block autom atically suppo r ts independen t signal paths for remot e a larm in d ica tion (RA I) , alarm
indicator signal (AIS), frame sync (byte synchronous mode only), and signaling (out of band signaling) on channels
between the VT mapper and the framer.
22.6.4 Digital Jitter Attenuator (DJA) Interface
The DJA block cons ists of up to 28 DS1 jitter attenuator channels or up to 21 E1 jitter attenuation channels. The
DS1 or E1 channels are c r o ss connected f rom the V T mapper, M13 M UX, framer, external I/O interface, or test
inte rface and the DJA outputs are returned to the crosspoint switch for cross connect to the destination. Test sig-
nals from the TPG will not require jitter attenuation, although this capability e xits. The crosspoint cannot chain jitter
attenuators together se ria lly (that i s, DJA to DJA paths are n ot supported).
The user configures t he DJA DS1(E1) outputs from the crosspoint by loa ding the appropriate SOURCE_ IDs into
the DJA c rosspoint configuration register s.
The user may connect any vali d DS 1 or E1 signal bundl e from the e x ternal I/ O pin, M13, VT m apper, f ramer, or
TPG blocks to any DJA input . Each of the 2 8 possible DS1 (J1) or 21 possible E1 input s may be assigned a XC1
source ID for the corresponding XC_JDATA[128][7:0] (Table 455) byte in t he XC_DJA_SRC[114] configuration
registers. The user must ensure the consistency of the designation of DS1(J1) vs. E1 channels.
The cross connect is provided with DS1 and E1 reference clocks from the DJ A block . These 1X cl o c ks are derived
from ext ernal AIS clock inputs, and are made available to the test -pattern generator block for use as the test-
pattern source clocks. The DJA block is responsible for the correct assignment of reference clocks to jitter attenua-
tion channels.
When a channel from the VT mapper is cross connected to a DJA channel, the bundled signals include receive
pointer adjustment inf ormation. For all other sources, the poin ter adjustment signal is not required and is dis abled.
Framer Interface
The framer block can pass through a total bandwidth of one DS3. This ma y be for med from 28 DS1s or 21 E1s or
any mix wh ere a gr oup of four adjacent DS1 channels may be substituted by three E1s. The DS1 or E1 channels
can be cross connected to the M13 MUX, VT mapper, ex ternal I/O interface, or test interface. The framer block pro-
vides extensive per link loopback capability based on DS1/E1 standard s.
As previously stated, special channels for AIS, RA I, frame sync, and signaling are enabled when the framer is
cr os s connected to the VT mapper.
The fram er presents six interfaces to the cross connect as shown in Figure 82 on page546 . A l though som ewhat
flexible, most applications wil l cross connec t the framer interfaces
FRM _T P_T (XC 1source ID = 010) and FRM_RP _R (XC1destination = XC_RP_RDATA[128][7:0]
(Table 452)) to the M13 MUX or VT mapper. If desired, the digital jitter attenuat ors may be inserted in this connec-
tion.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
554 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
An example of an exception to this rule is the framer only appli cation where the Super Mapper is used as a block of
28 framers with a CHI system interface. The 28 framers would interface line interface units with FRM_T P_T and
FRM_RP_R and the syst em with FRM_TS and FRM_RS entirely through the multifunction system interf ace device
pins.
Either end of the framer block may be configured to interface to line interface units as shown in Figure 85 on
page 554. In a framer only application, th e FRM_TP_T and FRM_RP_R framer block interfaces with the LIUs. The
FRM_ R P_T and FRM_TP_R framer block interfac es the LI U s in a transport application. If a dual-rail or bipolar LIU
interface is desired, the sync line is used as the negative-rail data.
The user configures t he fram er block connectivity b y simply loading the appropriate source IDs into the
XC_TP_RDATA[128] [7:0 ] (Table 456), XC_RP_RDATA[128][ 7:0], and XC_RS_D[128][7:0] (Table 457) bytes
of the framer crosspoint conf igu ration registers: XC_FT P_ SRC [128][7:0], XC_FRP_SRC[128][7:0], and
XC_FRS_SRC[128][7:0], respectively.
5-9184(F)r.1
Figure 85. Fr amer Line Interface Cross Connect
22.6.5 Framer System Int erface
The framer system interfa ce FRM_TS/FRM_RS consists of bundle s of data, clock, and/or sync/miscell any, that
may only be connected to the device external I/O pins. The system interface operates as the parallel system bus
(PSB), co nc entration highway (CHI), or ne two r k serial multiplexed interface (NSMI). N ot e t hat not all pins are u sed
in these configuratio ns. The user should exercise caution in mixing the usage of the external pins between system
interface TS/ R S usage and any other use.
Two register bits, XC_SI_CHI and XC_SYNC_FO R_DATA (Table 449), and a group of seven 2-bit parameters
XC_CHI_MODE[17][1:0] (Table 450) are used to assist with the configuration of the system i nterface.
FRM
XC
E XTERNAL I/O
LINERXDATA
LINERXCLK
LINERXSYNC
LINETXDATA
LINETXCLK
LINETXSYNC
FRM_TP_TCLK
FRM_TP_TDATA
FRM_TP_TFS
XC_TP_RDATA
XC_TP_RCLK
XC_TP_RFS
XC_TP_RDATA[128][7:0]
3x29
3x28
3x29
3x28
3x28
3x28
XC_RP_RDATA[128][7:0]
XC_PDATA[129][7:0]
XC_SYNC[129][7:0]
FRM_TP_R
FRM_RP_R
FRM_TP_T
FRM_RP_T
XC1
XC_RP_RDATA
XC_RP_RCLK
XC_RP_RFS
FRM_RP_TCLK
FRM_RP_TDATA
FRM_RP_TFS
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
555Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.6.6 Framer System Int erfacePSB
The framer system interface is configured for the paral lel system bus as depicted in Figure 86 on page555 . Pro-
gram bit XC_ SI_CHI = 1 to s el e ct the PSB mode, and bit XC_SYNC_FOR_D ATA = 1 to allow the connecting of
tr ansmit system data o utputs t o the LINET XSYNC[129] pins. The programming of the XC_CHI_MODE[17][1:0]
bits is not required.
The PSB configuration is completed by programming appropriate source IDs into the XC_RS_D[128][7:0]
(Table 457) and XC_SY NC[ 129] (Table 465) bytes of the XC_FRS_SRC[114] (Table 457) and
XC_PINS_SRC[114] (Table 465) XC1 cross point con figuration registers.
5-9185(F)r.2
Figure 8 6. Framer Syste m InterfaceParallel System B us (PSB)
22.6.7 Framer System Int erfaceCHI
The framer system interface is configured for CHI operation as shown in Figure 87 on page556 . Program bit
XC_SI_CHI = 0 (Table 449) to select the CHI m ode, and bit XC_SYNC_FOR_DATA = 1 ( Table 449) to allow the
connecting of transmit system data outputs to the LINETXSYNC[129] pins.
The concent ratio n highway interface can operate at data rates of 2.048 Mbits/s, 4.096 Mbits/s, and 8.192 Mbits/s.
The CHI i nterface allows a single system interface to support combining 2 or 4 DS1/E1s a t 4.096 Mbits/s and
8.192 Mbits/s, respectively. Therefore, the 28-c hannel framer block may result in as many a s 28 CHIs or as f ew as
7 combined CHIs or a m ix as determ ined by the specif ic needs of the application.
EXTERNAL I/O XC FRM_TS/FRM_RS
LINETXSYNC[41]
LINETXSYNC29
LINERXSYNC[161]
LINERXSYNC29
LINERXDATA29
LINERXCLK29
LINETXCLK29
TS_D[161]
RS_D[161]
TS_GCLK
TS_GFS
RS_GCLK
RS_GFS
RS_GTCLK
LINETXSYNC[1613]
XC_RS_D[128][7:0]
XC_SI_CHI = 1
XC_CHI_MODE[17][1:0] = 00
XC_SYNC_FOR_DATA = 1
XC_SYNC[129][7:0]
XC1
FRAMER SYSTEM INTER FACE
AS PSB
Σ
Σ
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
556 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
In addition to configuring the fram ers for the CHI mode, 7 CHI mode parameters in the cross connect block require
configuration. The parameters are designated XC_CHI_MODE[17][1:0] (Table 450). The parameters divide the
28-framer CHI sy stem interfac es, LINETXSYNC[129], into seven groups of four, LINETXSYNC[14], . . . ,
LINETXSYNC[2528]. Each XC_CHI_MODE[17][1:0] parameter consists of 2 bits for configuratio n of the con-
trol group see Table 618 o n page 556.
Table 618. Configuration of the Control Group
F or example, XC_CHI_MODE[4][1:0] = 01 configures LINETXSYNC[13] and LINETXSYNC[14] as individual
2.048 Mbits/s CHIs and combines LINETXSYNC[16] and LINETXSYNC[15] into a 4.096 Mbits/s output on
LINETX SYNC[ 16] . The LINETXS YNC[15] output can be used for T1/E1 line sync output.
5-9186(F)r.3
*See Table 450.
Figure 87. Framer System Interface Concentration Highway Interface (CHI)
XC_CHI_MODE[17][1:0] Description
00 All four link s within the group are norma l out puts at 2 Mbit s/s or 4 Mbits/s.
01 Links 4i 3 and 4i 2 are normal outpu ts; links 4i 1 and 4i are combined into a
single output on 4i; output 4i 1 is us ed as T1/E1 line output, where i = 1 to 7.
10 Links 4i 1 and 4i are combined into a single output on 4i; links 4i 3 and 4i 2 are
combined into a single output on 4i 2; outputs 4i 1 and 4i 3 are used as T1/E1
line outputs.
11 All four lin ks are com bined i nto a single output on 4i; the other thre e out puts are
used as T1/E1 line outputs.
EXTERNAL I/O XC FRM_TS/FRM_RS
LINETXSYNC[41]
LINETXSYNC29
LINERXSYNC[281]
LINERXSYNC29
LINERXDATA29
LINERXCLK29
LINETXCLK29
TS_D[281]
RS_D[281]
TS_GCLK
TS_GFS
RS_GCLK
RS_GFS
RS_GTCLK
LINETXSYNC[2825]
XC_RS_D[128][7:0]
XC_SI_CHI = 0
XC_CHI_MODE[17][1:0] = *
XC_SYNC_FOR_DATA = 1
XC_SYNC[129][7:0]
XC1
AS CHI
Σ
Σ
FRAMER SYSTEM INTERFACE
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
557Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.6.8 Framer System Int erfaceNSMI
The network se rial multiplexed interface (NSM I ) connectivity i s d e sc r ibed in the DS3 cross connect connectivity
section and is shown in Figure 96 on page568 .
22.7 DS2 Connectivity
5-9187(F)r.2
Figure 88. D S2 Cr os s Conn e c t In t er f ace
The DS2 cross connect is used when the application requir es the M13 and needs external I/ O or maintenance for
DS2 signals. The DS2 cross conn e ct provides full-split access at the DS2 level. Otherwise, the registers may be
programmed to the d efault values.
CROSS
CONNECT
CONTROL INTERF ACE
TPG_DS2
MAPPER
M13
XC2_M21_[17][7:0]
M13:M12MUX
XC2
TPG
DS2
M12_DS2_IN
M23
TPM
TPM_DS2
M13:M23DEMUX XC2_MDS2M23DATA[17][7:0]
XC2_DS2M12CLK[17][7:0]
EXT I/O
PIN
MAPPER
M13
M12_DS2_OUT
M23
M12_DS2_OUT
EXT I/ O
LINETXSYNC[129]
LINERXDATA[129]
LINERXCLK[129]
LINERXSYNC[129]
XC1
CROSS
CONNECT
DS1 XC1
CROSS
CONNECT
DS1
EXT I/O
PIN
LINETXSYNC[129]
LINETXDATA[129]
LINETXCLK[[129]
LINERXCLK[129]
XC_PDATA[129][7:0]
XC_ALCO[129][7:0]
(SOURCE_ID = 000)
(SOURCE_ID = 000)
ALL ACCESS TO EXTERNAL I/O PINS IS
THROUGH THE DS1/E1 CROSS CONNECT
USING A SOURCE_ID = 000
SOURCE DESTINATION
(SOURCE_ID = 00)
(SOURCE_ID = 01)
(SOURCE_ID = 10)
(SOURCE_ID = 11)
XC_SYNC[129][7:0]
(SOURCE_ID = 000)
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
558 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
T he cros s c onnect block supports DS2 mapping to/fro m the M13 MUX, TPG/T PM, and external pin I/O. Here, the
available sources are the M12 MUX or the M23 deMUX, a set of external I/O pins, or the test-pattern generator.
The DS2 crosspoints connectivity is determined by a smaller set of source 2 identifiers ( SOURCE2_IDs), as
defined in the following table (covering registers XC2_M23_S RC[ 17] (Table 460) and XC2_TPM_SRC
(Table 461)):
The SOURCE2_BLOCK is defined as f ol lows:
The CHANNEL2_ID typically ranges from 1 to 7. For test data from the TPG, the SO URCE2_BL OCK is set to 0
and the CHANNEL2_ID value four represents the DS2 test patte rn. For DS2 signals routed from extern al pins to
t h e i npu t of M23 MUX or TPM, the CHANNE L2_I D can range f rom 1 to 29. The above DS2 source ID definition
covers regi sters beginn ing with XC2.
Note: For cer t ain DS2 signals routed to external pins, the XC1 cross connect is used and a special SOURCE_ID
(block 0) is programmed:
The SOURCE2_ID is defined as in Table 615 to Table 617. The user must ensure consistency between the use of
M13 vs. M12/M23 channel s and external I/O channels.
22.7.1 M13 DS2 Interface (DS2 Cross Connect)
The DS2 full s pl it acc ess resul ts i n four sets of DS2 signals that can b e routed through cross connect, essentially
providin g access to the path between the seven M12 MUX/deM UXs and the M23 MUX/deMUX.
22.7.2 M12 MUX (Transmit Path)
The M12 MUX assembles three E1s or four DS1s into a DS2. The DS2 output data i s clocked out by an exter nal
DS2 rate clock as shown in Figure 89.
The DS2 rate cloc k is routed from an external pin, LINETXSYNC[148], through the cross connect to the M1 2, by
programming the XC2_DS2M12CLK[17][7:0] (Table 459) bytes i n the D S2 cross connect re gisters
XC2_M12_SRC[17] (Table 459) with a source2 ID = 11 (external I/O) and a channel select of 1 to 7. The channel
select val ue of 1 to 7 selects the clock from pins LINETXSYNC[ 8] to LINETXSYNC[14], respectiv ely.
The DS2 data is routed through the D S1 cross connect to the external pins, LINETXSYN C[71], by programming
t h e XC_SYN C[129] (Table 465) bytes in the XC_PI NS_ SRC[114] DS 1 cros s connect registers with a source
ID = 000 and a channel sele ct as defined in Table 616. A channe l select value of 9 to 15 selects the external pin
LINETXSYNC[1] to LINE TXSYN C[7], resp ectively.
Bit 7 6 5 43210
SOURCE2_ID 0 SOURCE2_BLOCK[1:0] CHANNEL2_ID[4:0]
Index Block2 Identifier
00 TPG (DS2 Test-Patt ern Generator)
01 M13:M12 MUX
10 M13:M23 De MUX
11 External I/O
Bit 76543210
SOURCE2_ID 0 0 0 CHANNEL2_ID[4:0]
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
559Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9188(F)r.3
Figure 89. M12 MUX DS2 Output Cross Connect
There is an other way to route DS2 signals for M12 MUXs through LINETXDATA and LINETXCLK pins, if available,
by setting the block ID of XC_PDATA_Source_ID to 111 (refer to the Table on page 550). This configuration is capa-
ble of supporting DS2 demand clocking operation. In DS2 de m and clocking mode, the LINETXCLK pins act as out-
puts; otherwise, they are input pins carrying incoming DS2 clocks. Depending on the clocking scheme, the channel
ID can be set up based on the following tables.
Table 619. XC_PDATA Source IDs for LINET XDATA Routing with Source B lock = 111
Table 620. XC_PDATA Sou rce IDs for LINETXCLK Routing with Source Bloc k = 111
I/O Ch. Description I/O Ch. Description I/O Ch. Description I/O Ch. Description
O 0 Reserved O 8 Reserved O 16 Reserved O 24 Reserved
O 1 M12_DS2DAT_1 O 9 M12_DS2DAT_1 O 17 M12_DS2DAT_1 O 25 Reserved
O 2 M12_DS2DAT_2 O 10 M12_DS2DAT_2 O 18 M12_DS2DAT_2 O 26 Reserved
O 3 M12_DS2DAT_3 O 11 M12_DS2DAT_3 O 19 M12_DS2DAT_3 O 27 Reserved
O 4 M12_DS2DAT_4 O 12 M12_DS2DAT_4 O 20 M12_DS2DAT_4 O 28 Reserved
O 5 M12_DS2DAT_5 O 13 M12_DS2DAT_5 O 21 M12_DS2DAT_5 O 29 Reserved
O 6 M12_DS2DAT_6 O 14 M12_DS2DAT_6 O 22 M12_DS2DAT_6 O 30 Reserved
O 7 M12_DS2DAT_7 O 15 M12_DS2DAT_7 O 23 M12_DS2DAT_7 O 31 Reserved
I/O Ch. Description I/O Ch. Description I/O Ch. Description I/O Ch. Description
O 0 Reserved O 8 Reserved O 16 Reserved O 24 Reserved
O 1 DS2_A I SCL K O 9 D M12_D S2C LK_1 I 17 M12_DS2CLK[ 7: 1]
input through
LINETXCLK pins,
the actual rout ings
are determined by
XC2_DS2M12CLK
SOURCE ID
O 25 Reserved
O 2 DS2_AISCLK O 10 DM12_DS2CLK_2 I 18 O 26 Reserved
O 3 DS2_AISCLK O 11 DM12_DS2CLK_3 I 19 O 27 Reserved
O 4 DS2_AISCLK O 12 DM12_DS2CLK_4 I 20 O 28 Reserved
O 5 DS2_AISCLK O 13 DM12_DS2CLK_5 I 21 O 29 Reserved
O 6 DS2_AISCLK O 14 DM12_DS2CLK_6 I 22 O 30 Reserved
O 7 DS2_AISCLK O 15 DM12_DS2CLK_7 I 23 O 31 Reserved
M13
XC
EXTERNAL I/O
M12_DS2_DATA_OUT
XC2_DS2M12CLK
LINETXSYNC[71]
LINETXSYNC[148]
XC2_DS2M12CLK[17][7:0]
XC_SYNC[129][7:0]
SOURCE_I D = 000
XC1
XC2
CHANNEL_ID 9 TO 15
LINETXDATA[291]
LINERXCLK[291]
DS2_AISCLK
XC_DATA[129][7:0]
SOURCE_ID = 111
CHANNEL_ID 1TO 7
LINETXCLK[291]
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
560 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The regis ter XC2_DS2M12CLK SOURCE ID is defined as:
The register can be programmed to route DS 2 c locks from va rious sources based on the following t able:
22.7.3 M12 DeMUX (Recei ve Path)
The M12 deMU X disassembles a DS2 into three E1s or four DS 1s. The routing o f DS2 data and clock s to M12
DeMUX is controlled by the register XC2_M21_SRC[1:7] which are defined as:
The routings are based on the following table.
When bits 75 of XC2_M21_SR C set to 100, the user also needs to set bi ts 75 of th e related register
XC_ALCO_SOURCE_ID(I) to 0 01 as well as the appropriat e channel value t o ensure th e demand clocking opera-
tion.
The DS2 input has six connection options as shown in Figure 90 on page561 .
The extern al I/O inputs for DS2 clock and dat a are cross connected by p rogramming bytes, XC2_M21[17][7:0]
(Table 459) in configuration registers XC2_M12_S RC[17], with a source2 ID = 11 and a channel select o f 1 t o 7.
The channel select value of 1 to 7 selects DS2 data from device pins LINETXSYNC[15] to LINETXSYN C[21] and
selects DS2 clock from LINETXSYNC[22] to LINETXSYNC[28], respectively.
A DS2 signal loopback may be perfo rmed for the M12 MUX/deM UX b y programming the XC2_M21[17][7:0]
(Table 459) byte in the XC2_M12_SRC[17] registers with a source2 ID = 01 and a channel select of 1 to 7. Cross
connect ing among the seven channels is supported. For example, the outpu t of M1 2 M UX 1 may be connected to
the input of M 12 d e MU X 5.
The TP G may be cross connected to the M12 deMUX D S2 inputs by programming the XC2_M21[17][7:0] by te in
the XC2_M12_SRC[17] registers with a source2 ID = 00 and a channel ID = 4 . The connection is not usefu l
because the DS2 pattern gener at or is limited to sending unf ramed pseudorandom data patterns that cannot be
demultiplexed into DS1s or E1s.
Bit 7 6 5 43210
SOURCE2_ID 0 SRC2_BLK[2:0] CHANNEL2_ID[4:0]
SRC2_BLK CHANNEL2_ID Function
00 1 to 7 DS2 Clocks Sourced from LINETXSYNC [8:14]
01 1 to 29 DS2 Clocks Sourced from LINETXCLK[ 1:29]
10 1 to 29 DS2 Clocks Sourced from LINERXC LK[1:29]
11 Dont care DS2 Clocks Sourced from PIN_DS2_AISCLK
Bit 7 6 5 43210
SOURCE2_ID SRC2_BLK[2:0] CHANNEL2_ID[4:0]
SRC2_BLK CHANNEL2_ID Function
000 4 DS2DATA/CLK from TPG
001 1 to 7 DS 2DATA/C LK from M12 MUX
010 1 to 7 DS2DATA/CLK from M23 DEMUX
011 1 to 7 DS2DATA/CLK from Pin LINETXSYNC[21:15]/LINETXSYNC[28:22]
100 1 to 29 DS2DATA/CLK from Pi n LINERXDATA[29:1]/PIN_DS2_AISCLK
101 1 to 29 DS2DATA/CLK from Pin LINERXDATA/CLK[29:1]
Others Dont care Not Valid
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
561Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9189(F)r.3
Figure 90. M12 DeMUX Input DS2 Cross Conn ec t
22.7.4 M23 DeMUX (Recei ve Path)
The M23 deMUX disasse mbles a DS3 int o 7 DS2 signals. The M23 deMUX can cross c onnect DS2 data and clock
out to e xternal pins and/o r the test-pattern monitor as shown in Figure 91.
The M23 DS 2 data and clock are conn ect ed to external I/O by programming the XC_PDATA[129] (Table 451 on
page 323) bytes in the DS1 cross connect regis ters XC_PIND_SRC[115] with a source ID = 000 and a channel
select value from Table 615. The cha nnel sel ec t value of 17 to 23 (decim al) routes DS2 data out fr om DS2 d eMUX
1 to 7 to the e xternal I/O pins LINETXD ATA[129] and LINETXCLK[129] as selected by programming one o f the
29 XC_PDATA[129] bytes.
For example, to connect the DS2 data and cl ock outputs fro m M23 deMUX 4 to the LINETXDATA [19] and
LINETXCLK[19] de vice pins, program the XC_PD ATA19 b yte in register XC_PIND_SRC10 (Table 451) f or a source
ID = 000 (binary) and a channel ID = 20 ( de c im al) XC_PDATA19 = 00010100 (bina ry).
The demultiplexed DS2 may be conne cted to the test-pat tern monitor ( TP M) by programming the
XC2_TSO URCE _ID (Table 461) byte in register XC2_TPM_SRC with a sour ce ID of 10 and a channel select value
of 1 to 7 corresponding to the deMUXed output to monit or. T he TPM is limited to receivi ng unframed pseudoran-
dom d ata pattern s.
M13XC
EXTER NAL I/O
DM12_DS2_DATA
DM12_DS2_CLOCK
LINETXSYNC[2115]
LINETXSYNC[2822]
TPG
TPG_DATA[4]
TPG_CLK[4]
XC_DS2M12CLK[17][7:0]
M12_DS2_DATA
XC2_M21_[17][7:0]
BUNDLED SIGNALS
TPGSOURCE_ID = 000
CHANNEL_ ID = 4DS2 DATA
M1 3: M1 2 MU X (DS 2 FROM M 12 ) S OURCE _I D = 001
CHANNEL _ID = 1 TO 7
CHANNEL_ID = 1 TO 29
LINERXDATA/DS2_AISCLKSOURCE_ID = 100
DM23_DS2_DATA
DM23_DS2_CLK
LINERXDATA[291]
LINERXCLK[291]
DS2_AISCLK
M13:M23 DEMUX SOURCE_ID = 010
CHANNEL_ID = 1 TO 7
CHANNEL_ID = 1 TO 7
LINETXSYNC SOURCE_ID = 011
CHANNEL_ID = 1 TO 29
LINERXDATA/CLKSOURCE_ID = 101
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
562 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9190(F)r.3
* = Channel ID from Table 615.
Figure 91. M23 DeMUX DS2 Out put Cross Connect
22.7.5 M23 MUX (Transmit Path)
The M23 MUX assembles seven DS2s into a DS3 signal. The routing of the DS2 data and clock inputs to the M23
MUX is shown in Figure 92. Two modes of operation are available and selected with b i t X C_DS2ALCOEN
(Table 462). The first mode rou tes DS2 data and clock f r om device inputs t o the M23 (XC_DS2A LCOEN = 0). The
second mode cross connects a DS2 clock out to an external I/O pi n that is used by the external application to pro-
vide DS2 data and a stuff request to the Super Mapper input pins for the M23 (XC_DS2 ALCOEN = 1). The first
mode determines the appropriate standards based stuff times internally, ignoring the ex ternal stuff request, and the
second mode dete rmines the stuff times from the exte rnal application.
The DS2 data, clock, an d stuff request inputs to the M23 are cros s connected by pro gramming
XC2_MDS2M23DATA[17] (Table 460) bytes in XC2_M23_SRC[1 7] registers with the source ID = 11 and a
channel select value of 1 to 29. The channel select value of 1 to 29 selects the data, clock, and stuff request signals
from the extern al I/O device p ins L INERXDATA[129], LINERXCLK[129], and LINERXSYNC[129], respec-
tively.
For exampl e, to cross c onnect DS2 da t a from LINERXDATA[6], DS2 clock fr om LINERXCLK[6], and stuff request
from LINERXSYNC[6] to the input s of M 23 number 3, program the XC2_MD S2M23DATA3 byte in register
XC2_M 23_SRC3, with a source ID = 11 and a channel select = 6. XC2 _MDS2M23DATA3 = 01100110 (bina r y).
If XC_D S2ALCO E N = 1, the cr oss connect for the DS2 cl ock output must be programmed into XC_ALCO[129]
byte in the XC_ALCO_SRC[115] registers. The source ID = 000 and the channel ID select has a value between
17 and 23 (decimal) to select DS2 D eMUX 1 to 7, respectively .
M13
XC
EXTERNAL I/O M23_DS2_DATA
M23_DS2_CLOCK
M23_DS2_CLOCK_OUT
M23_DS2_STUFF
LINERXDATA
LINERXCLK
LINERXSYNC
XC2 MDS2M23DATA[17][7:0]
XC_ALCO[129][7:0]
TPG
TPG_DATA[4]
TPG_CLK[4]
REQUEST
BUNDLED SIGNALS
TPGSOURCE_ID = 00
CHANNEL_ID = 4DS2 DATA
CHANNEL_ID = 5DS2 IDLE
EXT I/OSOURCE_ID = 11
XC2
XC1
SOURCE_ID = 000
REGISTER B IT XC_DS2ALCOEN
0 = D S 2 E XTE R N AL C LO CK IN
1 = DS2 M23 DEMUX CLOCK OUT
CHANNEL_ID = 1 TO 29
(DEMUX FROM DS3)
CHANNEL_ID =*
PIN SELECT
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
563Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
For the above e xample, the XC_ALCO6 byte in register XC_ALC O_SRC3 (Table 466) , woul d be pro grammed w i th
a source ID = 000 an d a channel select = 19. This will output a DS 2 clock from M23 D eMUX 3 to LINERXCLK[6].
XC_A LCO6 = 00010011 (binary).
5-9191(F)r.2
* Channel ID from Table 617.
Figure 92. M 23 MUX DS2 Input Cros s Connect
M13
XC
EXTERNAL I/O M23_DS2_DATA
M23_DS2_CLOCK
M23_DS2_CLOCK_OUT
M23_DS2_STUFF
LINERXDATA
LINERXCLK
LINERXSYNC
XC2 M DS2 M 23 DATA[ ]
XC_ALCO[ ]
TPG
TPG_DATA[4]
TPG_CLK[4]
REQUEST
BUNDLED SIGNALS
TPGSOURCE_ID = 00
CHANNEL_ID = 4DS2 DATA
CHANNEL_ID = 5DS2 IDLE
EXT I/OSOURCE_ID = 11
XC2
XC1
SOURCE_ID = 000
REGISTER B IT XC_DS2ALCOEN
0 = D S 2 E XTE R N AL C LO CK IN
1 = DS2 M23 DEMUX CLOCK OUT
CHANNEL_ID = 1 TO 29
(DE RIVED FROM DS3)
CHANNEL_ID =*
PIN SELECT
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
564 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.8 DS3 Connectivity
5-9192(F)r.1
Figure 93. DS3 Cross Connect
T he cr oss c onnect b lock als o supports DS3 mapping to/from the SPE mapper and the M13 MUX, to dedicated
external pins (P IN). There is also an external NSMI I/O channel, whic h transfers DS3 data as well . In both cases
(standard and NSMI), the available sources are the M13 DeMUX or the SPE mapper, a set of external I/O pins, or
t h e te st - pa t t ern gene rator. The DS3 crosspoints connectivity is determ ined by an even smaller set of source3 iden-
tifiers.
Table 621. DS3 Connectivity
Note: DS3 e xternal I/O is supported by dedicated pins. NSMI uses the multifunction system interface.
T he sy mbol s in Table 621 are defined below:
% = Pr ima ry (expected) modes of operation.
X = Unsupported mode.
& = represents loopback path.
NSMI = NSMI mode only.
T = Test mode.
Des t in ation Source Ex t e rn a l I/O M1 3 MUX TPM SPE
External I/O & % T NSMI/DS3
M13 M UX % X T DS3
TPG T T X X
SPE NSMI/DS3 DS3 T X
CROSS
CONNECT
TEST
GEN
EXT.
I/O
XC3
TPG
DS3
PIN
TEST
MON
TPM
SPE
MAPPER
SPE
MAPPER
M13
MAPPER
M13
MAPPER
PIN_DS3POSDATAIN
PIN_DS3NEGDATAIN
PIN_DS3DATAINCLK
TXRX
PIN_DS3POSDATAOUT
PIN_DS3NEGDATAOUT
PIN_DS3DATAOUTCLK
PD+ PD
(CLEAR
CHANNEL)
MUX DEMUX
PIN_RLSC52 PIN_TLSC52
SPE_DS3_AIS
PIN_DS3POSDATAIN
PIN_DS3NEGDATAIN
PIN_DS3DATAINCLK
SPE HAS DIREC T
(FRO M HS TE L E CO M BU S ) (FROM HS TELECOM BUS)
(TO M13)
INPUTS FROM PINS
EXT.
I/O
PIN
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
565Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The DS3/NSMI c onnectivity is est ablished through a combination of D S3 specific M UX s controlled b y re gisters
XC3_TPM _S RC (Table 463) and XC3_MDS 3_S RC (Table 464) a nd spe cial cases of the DS1 cross c onnects con-
trolled by XC_PDATA[129] (Table 451) and XC_SYNC[129] (Table 465) bytes in the XC_PIND_SRC[115]
(Table 451) and XC_PINS_SRC[114] (Table 465) re gisters to ac commodat e the N SMI connectivity from the mul-
ti function system interface to the SPE mapper or M13.
Description of the DS3 connectivity will be presented in three sections: the test-pattern generator/monitor
(TPG/TPM), the DS3 basic connect, and the NSMI.
22.8.1 DS3 TPG/TPM Cross Connect
The DS3 test signals are routed through the XC3 crosspoint by programming register XC3_TPM_SRC as shown in
Figure 94. F or DS3 test signals, the TPG does not supply the source clock. Instead, a source clock and a clock
enable are provided from another b lock via the XC3 crosspoint. The TPG/TPM pr ovide unframed test data that may
be connected to the SPE block f or clear channel testing. For framed DS3 test data, the TPG/TPM are connected to
the NSMI interface in the M 13 block and the M13 block DS3 interface provides the framed DS3 sign al for test pur-
poses.
The DS3 TPG/TPM crosspoints connectivity is det e rmined by a set of source3 identifiers (source3_IDs) for bits 5
and 6 o f XC3 _TS OURCE_ID in reg i ster XC3_ TPM_SRC as defined in the following tables:
where XC3_TSO URCE_ID is defined as follows:
* DS3 unframe d single rail (uni polar) non -retur n -to- zero (NRZ ) data.
5-9193(F)
Figure 94. DS3 Test-Pattern Cross Connect
Bit 76 5 43210
XC3_TSOURCE_ID 0 XC3_TSOURCE_ID 00000
Index (Bits [6:5]) Block3 Identifier
00 TPM receives DS3 from external pin*.
01 TP G and TPM are con nec ted to M13 through NSMI interface.
10 TPM re ce ives DS3 fro m SPE.
11 Reserved.
TPG/TPM XC M13
SPE
EXTERNAL I/O
XC_TDATA
XC3_TPMCLK
XC3_TPMCLKEN
XC3_TPGCLK
XC3_TPGCLKEN
TPG_DATA
M13_NSMI_CLK
M13_NSMI_EN
XC3_NSMI_DATA
M13_DNSMI_CLK
M13_DNSMI_EN
M13_DNSMI_DATA
DS3POS_DATA_RX
DS3DATAOUTCLK
DS3POSDATAIN
DS3DATAINCLK
LINERXDATA[29]
1
1
XC3_TSOURCE_ID
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
566 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.8.2 DS3 Basic Cross Connect
The DS3 basic cross c onnect interconnects DS3 signals between the DS3 dedicated external I/ O pins, the SPE
mapper, and the M13 by programming bits XC3_SOURCE_ID i n register XC3_MDS3_SRC (Table 464) as shown
in Figure 95 on page 566. The DS3 dedicated external I/O pins DS3DATAINCLK (J22), DS3POSDATAIN (M22),
and DS3NEGDATAIN (K22) are directly connected to the SPE mapper; cross connect is not requi red (se e SPE
mapper bi ts SPE_TDS3SRCTYP[1:0] and SPE_RDS3OUTTYP[1:0] (Table 152)). The DS3 basic crosspoints con-
nectivity is d eterm ined by a set of source3 identifiers (source3_IDs) for bits 1 and 0 of XC3_SOURCE_ID in regis-
ter XC3_MDS3_SRC as defined in the f ol lo wing tables:
The XC3_SOURCE_ID is defined as follows:
5-9194(F)r.1
Figure 95. DS3 Basi c Cr oss Connect
Bit 76543210
XC3_SOURCE_ID 0 0 0 0 0 0 XC3_SOURCE_ID
Index (Bits [1:0]) Block3 Identifier
00 M13 inputs/outputs DS3 through external I/O pins.
01 M13 and SPE are interconnected.
10 SPE inputs/ out puts DS3 through external pins and M13 is used as a monitor for the t rans-
mit path DS3.
11 SPE inputs/outputs DS3 th rough external pins and M13 is used as a monitor for the
receive path DS3.
M13_DS3NEG
M13DS3POS_DATA
SMPR_TDS3CLK
SMPR_TDS3CLKEN
SMPR_RDS3CLK
SMPR_RDS3CLKEN
SMPR_RDS3POS_DATA
SMPR_RDS3NEG_BPV
DS3POSDATAOUT
DS3NEGDATAOUT
DS3DATAOUTCLK
DS3POSDATAIN
DS3NEGDATAIN
DS3DATAINCLK
SPEMPR_CE_M13_RX
SPEMPR_M13DATA
SPEMPR_CE_M13_TX
DS3NEG_DATA_RX
DS3POS_DATA_RX
TLSC52
RLSC52
1
1
SPE
M13
EXTERNAL I/O
XC
XC3_SOURCE_ID
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
567Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.8.3 NSMI Cross Connect
The Super Mapper cross connect supports interconnect ion of the network serial multiplexed interf ace (NSMI) to the
SPE mapper, M13 MUX/deM UX, or t he NSMI system interface of the framer block as sh own in Figure 96. The
cross connects are controlled by programming the XC_PDATA[29] (Table 451) and XC_SYNC[29] (Table 465)
bytes in registers XC_PIND_SRC15 and XC_PINS_SRC15. As previously discussed, the TPG/ TPM can
send/rece ive data usin g the NSMI interface of t he M13. Only the framer block can disassemble the N SMI payload
into D S0 channels and signaling. Connectivity to the M13 and SPE mapper is for transport in a proprietary format
only.
T he NSMI cros spoints co nnectivity to the multifunct ion interface external I/O is determ ined by a set of XC1 sourc e
identifiers (SOURCE_IDs). T he NSMI connectivity is defined as a special with the source I D = 000 for
XC_PDATA[29] and XC_SYNC[29] b yt es in registers XC_PIND_SRC15 and XC_PINS_SRC15, wit h a
CHANNEL_ID restricted to 5, 24, 25, or 26 (see Table 615 and 616):
The channel ID is defined as:
Bit 76543210
SOURCE_ID 0 0 0 CHANNEL_ID[4:0]
CHANNEL_ID Bi nary (Decimal) Connectivity
00101 (5) DS3 Test Pattern
11000 (24) M13NSMI
11001 (25) SPENSMI
11010 (26) Framers NSMI
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
568 Agere Sy stem s Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9195(F)r.1
Figure 9 6. NSMI Interface Cross Connect
22.9 Transmit and Receive Path Overhead Access Channel I/O Configuration
T he cros s c onnect allows selection of transmit and receive POAC channels fro m either the TMUX block or SPE
mapper to the exter nal I/O pins as shown in Figure 97.
An output enable and a select register bit is provided for transmit and receive POAC. The tra nsmit POAC clock and
sync output signals are enabled with bit XC_TPOAC_EN (Table 462) and the so urce, SPE Mapper or TM UX bloc k ,
is selected with register bit XC_TSTS1_TUG3 (Table 462). The receive POAC clock, data, and sync output signals
are enabled with bit XC_RPOAC_EN (Table 462) and the source, SPE ma pper or TM UX block, is selected wi th bit
XC_RSTS 1_TUG3 (Table 462).
M13
SPE
FRM
XC
EXT ER NAL I/O
M13_NSMI_CLK
M13_NSMI_EN
M13_NSMI_SYNC
XC3_NSMI_DATA
M13_DNSMI_CLK
M13_DNSMI_EN
M13_DNSMI_SYNC
M13_DNSMI_DATA
TPG
TPG_DATA
LINETXSYNC[29]
LINETXDATA[29]
LINETXCLK[29]
TXDATAEN
LINERXDATA[29]
LINERXCLK[29]
LINERXSYNC[29]
RXDATAEN SPE_DNSMI_DATA
SPE_DNSMI_CLKEN
SPE_DNSMI_SYNC
XCP_NSMI_DATA
SPE_NSMI_CLKEN
SPE_NSMI_SYNC
TSMI_D
TSMI_CTL
TSMI_CLK
RSMI_D
RSMI_CTLI
RSMI_CLKI
RSMI_CLKO
RSMI_CTLO
RLSC52
TLSC52
XC3_TSOURCE_ID[1:0] XC_SYNC[129][7:0]XC_PDATA[129][7:0]
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
569Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9196(F)
Figure 97. TP OAC a nd RPOAC Cross Conn e ct
SPE MAPP ER
TMUX
RPOACCLK
RPOACSYNC
RPOACDATA TPOACCLK
TPOACSYNC
TPOACDATA
RSTS1_TUG3 TSTS1_TUG3
TPOAC_ENRPOAC_EN
EXT I/OEXT I/O
1
0
1
0
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
570 Agere Sy stem s Inc.
23 Digital Jitt er Attenuatio n Co ntroller Functional Des cr iption
Ta ble of Conte nts
Contents Page
23 Digital Jit ter Attenuation Controlle r F unc tional Description .. ..... ... ....................... ... ....................... ................. 570
23.1 In troduction ............................................................................................................................................. 571
23.2 Features ................................................................................................................................................. 571
23.3 Fun ction al Block Diagram of the DJA Block ........................................................................................... 572
23.4 Digital Jitter Attenuation Controller Operation .................... .......... ....... .. ....... .......... ....... ....... .. ................ 572
23.4.1 PLL Bandwidth and Damping Factor Control .......... ..... ....... ....... ..... ....... ....... ....... ..... ....... ....... .... 573
23.4.2 PLL Order Control ....................................................................................................................... 573
23.4.3 DS 1/E1 Clock Edge Control ........... ..... ... .................. ..... ............ ... .................. ..... ... ..................... 573
Figures Page
Figure 98. DJA Block w ith I/O Connections to Other Blocks in the Device ....................................................... ... 571
Figure 99. Basic Functional Flow of the DJA B lock... .... ..... ....... ..... .. .......... .. ..... ....... .. ..... ....... ..... .. ....... ................ 572
Tables Page
Table 622. PLL Bandwidth Control Parameters ...................... ... ....................... .................................................. 571
Table 623. First- Order Mode Duration Control ........................ ... ....................... ... ....................... ... ..................... 571
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
571Agere Systems Inc.
23 Digi tal Jitt er Attenuatio n Co ntroller Functional Des cr iption (continued)
23.1 Introductio n
This section describes the functions of t he digital jitter attenuator (DJA) control ler used in the Super Mapper devi ce.
The DJA controller contains 28 DJA blocks. Each DJA block can operate in two differ ent modes, as a DS1 or an E1
jitter attenuator. In both modes, the DJA blocks can be p rovisi oned to operate as a second-order PLL always, or it
can switch to act as a fir st-order PLL during V T pointer adjustments to help meet MTIE requirements. The block will
also inser t the proper A IS s ignal if the primary block AIS control input is active. The PLL bandwidth can be set over
a w ide range t o accommodate a number of d ifferent system constraints.
23.2 Features
The DJA block accepts/delivers DS1/E1 clock, data, and AIS i ndicat ions from /to the cross connect block.
AIS in wil l cause the correct AIS clock to be inserted, and the AIS indication will be passed back to the cross con-
nect.
The DJA blocks operat e in the second-order PLL mode under normal conditions. The DJA blocks can be provi-
sioned to enter the f irst-order PLL mode following VT level pointer adjustments. The period o f time in the first-
order m ode is provisionable via re gisters .
The PLL bandwidth is provisionable between 0.1 Hz and 0.5 Hz. The damping factor for these bandwidths varies
between 2 and 0.5.
Figure 98 shows the DJA bl ock with I/O connections to other blocks within the Super Mapper device.
5-8955(F)r.3
Figure 98. DJ A Block with I/O Connections to Other B lock s in the De vice
CROSS
MICRO INTERFACE
DIGITAL
XC_JDATA[28:1]
XC_JCLK[28:1]
XC_JPTRADJ[28:1]
DJA_DATA[28:1]
DS1_AISCLK
XC_JAIS[28:1]
DJA_CLK[28:1]E1_XCLK
DS1_XCLK
E1_AISCLK
JITTER
ATTENUATOR CONNECT
CONTROL
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
572 Agere Sy stem s Inc.
23 Digi tal Jitt er Attenuatio n Co ntroller Functional Des cr iption (continued)
23.3 Function al Bl ock Diagram of th e DJA B lock
The functional view of the DJA block, along with interconnections to the other blocks within the Super Mapper
devic e, are shown in t he Figure 99.
The DJA block interfaces o nly to the cross connect and microprocessor interface b locks w ithin th e Super Mapper
devic e. The input interfac e between the DJA block and the cross connect block consists of clock, serial data , VT
pointer adjustment indicati on, and AIS insert indicati on. The output inter f ace consists of clock, serial data, a n d A IS
inse rt indication a s w ell as the DS1 and E1 AIS clocks for use by other b locks within the device.
5-8956(F)r.1
Figure 99. Basic Functional Flow of the DJA Block
23.4 Dig ital Jitter Attenu atio n Controller O peration
The digital jitter attenuation (DJA ) controller is comprised of 28 DJA blocks. T h e DJ A_SEL line rate control register
(Table 478) is us ed to determine i f the bloc k is operating in t he DS1 or E1 mode (1 = DS1, 0 = E1).
The DJA controller requires a reference clock running at 16 or 32 times the line rate of the signal requiring jitter
attenuation. This reference clock should be driven o n one of the external input signals DS1XCLK or E1XCLK (see
Table 3, High-speed I/O Pin Descr ipt ions on page15 under the M13 MUX/DE MUX block rec eive path section).
Each jitter attenuator block receives a clock, data, pointer adjust control, and an AI S control sig nal input. If the AIS
control signal is a ctive (high) on a ny time slot, then the AIS clock ge neration block (see Figure 99) of the DJA sim-
ply divides the correct line clock (XC_JCLKx) by 16 or 32 (via the DJA_BLUECLKD register shown in Table 479,
independent of being in DS1 or E1 mode), sends this divided clock (DS1_AISCLK or E1_AISCLK) to the cross con-
nect, and transmits the data signal (DJA_DATA) as a continuous logic 1.
Even wit h t h e di g it a l PLL po rtion of the DJA turned off (via the P_DJA_CLK_ EN re g iste r, se e Table 71 on page71 ,
the AIS clock generation block will still generate the corr ect DS1_AISCLK or E1_AISCLK signals.
Each DJA block has a 64 -bit elastic store. These elasti c stores are monitored for both underflow and overflow con-
ditions. Both of these conditions contr ibute to the DJA_ESOVFL parameter, which c an be unmasked to contribute
to an interr upt DJA_ESOVFL[28:1] (Table 469). In the event of an elastic store overflow, the elastic store will re-
cen te r it s elf.
The block monitors DS1XCLK (DJA_DS1LOC and DJA_G_DS1LOC) and E1XCLK (DJA_E1LOC and
DJA_G_E1LOC) for loss of clock (LOC indication, Table 471) and change of loss of clock state (LOC delta,
Table 469). The D JA_DS1LOC and DJA_E1LOC parameters are controlled by LOC events detected at the AIS
clock generation block, while the DJA_G_DS1LOC and DJA_G_E1LOC parameters are controlled by LOC events
detected at the DPLL. All los s o f clock indications can contribute to a DJA interrupt. These in ter r up ts can be
unmasked by writing zeros to the regist ers in Table 470, DJA_MASK1DJA_MA SK2, Loss of Clock and Overflow/
Underflow Masks (R/W) on page 332.
XC_JAISx
JITTER
XC_JCLKx
XC_JDATAx
XC_JPTRADJx
E1_XCLK
DJA_CLKx
DJA_DATAx
BLOCK REPEATED 28 TIMES
DS1_XCLK
AIS CLOC K DS1_AISCLK
E1_AISCLK
ATTENUATION
BLOCK
GENERATION
DJA_AUTOAISx
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
573Agere Systems Inc.
23 Digi tal Jitt er Attenuatio n Co ntroller Functional Des cr iption (continued)
23.4.1 PLL Bandwidth and Damping Factor Control
Two programmable terms are used to set the second-order loop damping f actor and natural frequency. These
terms are the gain threshold , set by registers DJA_E1GAIN[26:0] (Table 472) and DJA_DS1GAIN[26:0]
(Table 473), and scale v al ue, set by registers DJA_E1SCALE[15:0] (Table 474) and DJA_DS1SCALE[15:0]
(Table 475). Some values of damping factor (d) and natural frequency (ωn) are listed below. The GAIN and SCALE
values in de ci mal and hexadec imal te rms to achieve these param eter va lues are listed in Table 622.
Table 622. PLL Bandwidth Control Parameters
23.4.2 PLL Or der Control
Under nor mal conditions the DJA blocks operate in the second-order PLL mode. This operation attempts to keep
the elas tic store at the center of its range. However, following a VT pointer adjustment, it may be desirable to have
the DJA blocks operate in the first-order m ode. This is because the maximum timing inte rval error (MTIE)
specification (GR-253, requirement R5-132) doesnt allow for any peaking. The s ec ond-order loop h as a certain
amount of peaking in its transient response th at the first-o rder lo op eliminates. The amount of ti me that the block
operates in the first-order m ode is programmable between 0 ms and 1 second.
This operation is a ccompli s hed by l oading a count value into registers DJA_E1PTRADJCNT[20:0] or
DJA_DS1PTRADJCNT[20:0] (Table 476, Table 477). The value in this register is loaded into a counter whenever a
VT pointer adjustment takes place. The counter de c rements eve ry X C LK/16 or XCLK/32 clock period un til it
reaches 0 . While the count is nonzero, the bl ock operate s in the fir st-order mode. B y default, the
DJA_E1PTRADJCNT or DJA_DS1PTRAD JCNT value is 0, so the block never switches in to the first-order mode
until program med to do so. Some example ti me period durations and the correspondin g decimal and hexadecimal
DJA_E1PTRADJCNT and DJA _DS 1PTRADJCNT values are listed in Table 623.
Tabl e 623. First-Order Mode Duration Control
23.4.3 DS1/E1 Clock Edge Control
The active edges on both the input and the output DS1/E1 signals are selectable v i a registers in Table 479,
DJA_CLK_CTL1DJA_CLK_CTL4, Reference Clock Rate an d Edge Transitions (R/W) on page 334.
DJ A_ TXEDGE[28 :1] (Table 479) controls th e edge that the data trans itions on when leaving the DJA (1 = rising
edge). DJA_RXEDGE [ 28: 1] c ontrols t he edge that the data t ransiti ons o n when retimed into the DJA (1 = ri sing
edge).
dω
ωω
ωnE1_SCALE E1_GAIN DS1_SCALE DS1_GAIN
dec hex dec hex dec hex dec hex
0.5 0.45 2,829 0xB0D 8,005,638 0x7A2806 2,133 0x855 4,549,825 0x456CC1
0.75 0.325 5,876 0x16F4 15,348,087 0xEA3177 4,430 0x114E 8,722,740 0x851934
1.0 0.25 10,186 0x27CA 25,938,267 0x18BC95B 7,679 0x1DFF 14,741,431 0xE0EFB7
1.5 0.175 21,827 0x5543 52,935,238 0x327BA46 16,455 0x4047 30,084,553 0x1CB0DC9
2.0 0.125 40,743 0x9F27 104,000,000 0x632EA00 30,716 0x77FC 58,965,723 0x383BEDB
Duration E1 Mode DS1 Mode
dec hex dec hex
250 ms 512,000 0xC800 386,000 0x96C8
500 ms 1,024,000 0xFA000 77,200 0x12D90
750 ms 1,536,000 0x177000 1,158,000 0x11AB70
1 s 2,048,00 0 0x1F 4000 1,544, 000 0x178F40
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
574 Agere Sy stem s Inc.
24 Test-Pattern Generation/Detection Functional Description
Ta ble of Conte nts
Contents Page
24 Test-Pattern Generation/Detection Functional Description ................................. ... ......................... . .............. 574
24.1 Test-P attern Generat or Introduction ....................................................... ....... ......................................... 575
24.2 Features ................................................................................................................................................. 575
24.3 Applications ............................................................................................................................................ 575
24.4 Block Diagram ........................................................................................................................................ 576
24.5 Functional Descriptions .......................................................................................................................... 576
24.5.1 Test-Pattern G eneration ................. ....... ...................................... ....... .......................... ............... 576
24.5.2 TPG Clock Source ....................................................................................................................... 577
24.5.3 TPG Transmit Edge Select .......................................................................................................... 577
24.5.4 TPG Test-Pattern Framing .......................................................................................................... 577
24.5.5 DS1 TPG Framing ....................................................................................................................... 577
24.5.6 E1 TPG Framing ......................................................................................................................... 577
24.5.7 DS2 TPG Framing ....................................................................................................................... 578
24.5.8 DS3 TPG Framing ....................................................................................................................... 578
24.5.9 Line En coding/Decodin g ............................................................................................................. 578
24.5.10 TPG Test-Pattern Sequences ............................................................................. ...................... 578
24.5.11 TPG Idle Generator ............... . .............. .............................. . ...................................................... 579
24.5.12 TPG Error Insertion ................................................................................................................... 579
24.5.13 TPG Interrupts ........................................................................................................................... 579
24.5.14 Test-Pattern Monitor (TPM) ....................................................................................................... 579
24.5.15 TPM Channel Selection ............................................................................................................. 579
24.5.16 TPM Clock E dge and Data Polarity Selection .................... .............. ................... ....... ............... 579
24 .6 TPM Framing Acquisition and Synchronization ...................................................................................... 579
24.6.1 DS1/E1 ........................................................................................................................................ 579
24.6.2 TPM Error Detection and Counting ............................................................................................. 580
24.6.3 TPM In terrupts ............................................................................................................................. 581
24.7 Microprocessor Interface ........................................................................................................................ 581
24.7.1 Microprocessor Interface Register Map ...................................................................................... 581
Figures Page
Figure 100 . TPG Bl ock Int e r fac e Bl ock Diagram... ................... .... . ... . ....... .... . ....... ....... ........ ... . ....... ...................... 576
Tables Page
Table 6 24. TPG Frami ng Controls (TPG_FRAM Ex = 1) ..................................................................................... 577
Table 625. TPG Test-Pattern Sequences ....... ....... ................. ... ......................... ....... ................. ... ..................... 578
Table 626. TPM Interrupts ................................................................................................................................... 581
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
575Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
24.1 Te st-Pattern Generator In trod uc tion
The TPG block is a configurable set of te st-pattern generators and monitors for the Super Mapper. For mainte-
nance and troubleshooting operations, TPG feeds one or mor e T1/E1/DS2 test signals (via da ta , c lo ck, an d F S sig-
nal paths) to the crosspoint switch (XC block) . The XC block can redistrib ute or broadcast these signals to any v alid
channel in the fram er, external I/O, M13 mapper , DJA, or VT mapper b locks . Similarly, any channel arriving at the
XC may be routed to the test monitor. The TPG can also generate DS3 test signals for use via the M13 and SPE
blocks. Single bit-errors c an b e dete c ted and counted at each monitor.
The test-pattern generator and associ ated monito rs receive configurat io n and setup inf ormation from th e micropro-
cessor control interface. Once the rate and data format are chosen, the t est generator outputs are fed to the cross-
point (XC). The crosspoint can map the test signals to any valid DS1/ E1/DS2 channel in the device, or to a special
set of test monitor channels in the TPG block (for loopback testing of the test generator/mo nitor pair). The monitor
waits for the expected test pattern and (after a brief synchroni zation operation) c ontinually c hecks the data stream
for bit errors. Opt ional ly, a single data-bit or framing-bit error may be generated via a global SMPR_BER_INSRT
(Table 65, SMPR _GTR, Global Trigger Register (RW) on page66 ) control signal, i n order to confirm the co rrect
detectability of such an error as it trave rses t he crosspoin t and other system el ements.
Simultaneous testing of DS1, E1, DS2, and DS3 signals is supported (one test channel at each rate plus one idle
channel at DS1). The DL (DS1-ESF data link) and E1 Sa (spare) bit fields are read/writable under software control,
allowing for addit ional system testing control.
Test monitors can a utomatically detect/count data-bit errors and detect framing-bit or CRC errors in a pseudoran-
dom test sequence, or loss of frame or loss of sync. The TPG can provide an interrupt t o t he control system, or it
can be o perated in a polled mode.
24.2 Features
Configurable test-pattern generato r: D S1, E1, D S2, and DS 3 formats.
Pseudorandom bit s equence (PRBS, also known as pseudonoise or PN sequences) based on maximal-length
feedback sh ift register sequence s; PN codes select able from t he following optio n s : Q RSS , P R BS 15, PRBS20,
PRBS23, ALT_01, ALL_ONES, USER pattern (16 bits, repeating).
The DS1 and E1 test patterns can be tr ansmitted either unframed or as the payload of a framed signal as defined
in ITU-T Recom mendation O.1 50 (s ee TP G_FRAM Ex signals (Table 507 and Table 508)).
Sing le bit-errors or framing-errors may be injected into any test pattern, under register control.
Any sink or receiving channel ma y be replaced by a test-pattern monitor , which can detect and count bit errors or
misconf igurations, an d/or detect idle conditions o r AIS.
Data link (DS1-ESF DL) and SSM (E1 multiframe Sa) fields read/writable.
Suppo rts all Supe r Mapper modes of operation.
Complies wi th T1.107, T1.231, T1.403, G .703, G.704, O.150.
24.3 App lic at i on s
Super Mapper se lf-test, crosspoint veri fication .
Built-in link and system testing support.
Flexible multicast/broadcast capabilities.
Programmable error insertion.
Idle or test-pattern (DS1 only) generation for each channel.
Idle or tes t-pattern (DS1 only) bit error or a ct ivi ty m o nit o r ing f or each channel.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
576 Agere Sy stem s Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
24.4 Block Diagra m
The following diagram il l ustrates the high-level i nt erface between the TPG block and other functional bl ocks.
5-9178(F)r.3
Figure 100. TPG Block Interface Block Diagram
24.5 Functional De s crip tions
24.5.1 Test-Pattern Generation
The test-pattern generator has five groups of output signals. These outputs consist of two sign al groups for DS1
and one signal group each for E1, DS2, and DS3 clock rates. Each of these groups can be pr ovisioned, indepen-
dently, in various ways. Each DS1/E1 signal group consists of a clock, the data stream, and a frame-sync signal (if
needed in a byte-synchronous environment). The DS2 signal group consists of c lock and data. The DS3 signal
group consists of data, clock, and clock enable. Each rate suppor ts full-payload test patterns data signals and DS1
also supports continuous idle dat a signals.
TPG
TEST
GEN/MON
XC
CROSS
CONNECT
DS1/E1/DS2/DS3 SOURCE CL OCKS
(DS1) DATA/CLK/SYNC
(DS1) IDLE/CLK/SYNC
(E1) DATA/CLK/SYNC
(DS2) DATA/CLK
[DS3} DATA/CLK/CLKEN
(TPG_DS1) DATA/CLK/SYNC
(TPG_DS1) IDLE/CLK/SYNC
(TPG_E1) DATA/CLK/SYNC
(TPG_DS2) DATA/CLK
(TPG_DS3) DATA/CLK/CLKEN
CONTROL INTERFACE
4
3
3
3
2
3
3
3
3
3
3
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
577Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
24.5.2 TPG Clock Source
The Super Ma pper TPG us es four source clocks provided by the cross conne ct as input at the appropriate rate to
generate the test patterns. These are shown in Figure 100, TPG Block Interface Block Diagram on page 576 as
being supplied b y the XC bloc k, except the DS3 cloc k (which is provided via the XC3 crosspoint by the M13 or SPE
block).
24.5.3 TPG Transmit Edge Select
The edge of the clock TPG_CLKx that is used to source the data is provisionable to either the rising edge
TPG_EDG E x = 1 (Tables 507, 508, 509, and 510) or the falling edge TPG_EDGEx = 0 for eac h of the five t est-pat-
tern sources.
24.5.4 TPG Test-Pattern Framing
The test pattern can be tra n smitted either unfr amed o r as the payload of a fra m ed signal as def ined in ITU-T Rec-
ommen dati on O. 150. The DS1 continuous-idle signal is always framed. The test-p attern framing i s determined by
the TPG_FRAMEx regist er values (Table 507 and Table 508): 0 represents an u nframed signal, while 1 represents
a test-pattern embedded in a fram ed s igna l. Additionally, a TPG_ESF bit (Table 507) determines if e xtended super-
frame o peration is enabled (DS1 only).
Table 624. TPG Framing Controls (TP G_FRAMEx = 1)
The DS 1 idle data signal is always su perframe (SF) framed. The associated SYNC si gnal is generate d but may
safely be ignored if not used.
24.5.5 DS1 TPG Framing
For DS1 signals, the frame bit in the 12th frame of each superfr ame is i nverted if TPG_FINV0 = 1 (Table 507 and
Table 508).
For ESF modes, the transmitted data-link pattern is a continuous repeat of the contents of the TP G_ES FDL[15:0]
(Table 504). Each ESF superframe is also checked for CRC-6 errors per
ANSI
T1.403. These CRC errors may be
injected via TPG_CRC6EINSx register bits (Table 503). A single CRC-6 error event is generated each time that the
TPG_CRC6EINSx bit transitions fro m 0 to 1.
24.5.6 E1 TPG Framing
For E1 signals, the frame alignm e n t s ignal (normally 0011011) is tran smitted with the last bit inv erted (0011010) if
TPG_FINV = 1 (Table 507 and Table 508).
Each tran smitt ed E1 multiframe contains a CRC-4 cyclic redundancy check mechanism per Recom mendat ion
G.704 Section 2.3. CRC-4 errors may be inject ed via TPG_CRC4EINSx register bits (Table 503). A single CRC-4
error event is gen erated each time t hat th e TPG_CRC4EINSx bit transitions from 0 to 1.
Index Data Rate Frami ng
(x) SF (TPG_ESF = 0) ESF (TPG_ESF = 1)
0 DS1 Trans parent mode (test sequence bits
in signaling bit p ositions) User-settable data-link pattern CRC-6
generate/check
1 Cont inuous idle NA
2 E1 E1 with common channel signaling, CRC-4
4 DS2 Unframed PRBS se quence
5DS3 DS3gated PRBS sequence (framin g v ia M13)
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
578 Agere Sy stem s Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
The transmitted Sa bits (designated as spares in G.704) are a continuous repe at of the contents of the
TP G _E1 SA x[4:8] r e gi s te rs (Table 505 and Table 506). These b its are synchro nized to the CRC-4 frame. Referring
to Table 5B in G.704, the E1SA1[4:8] bits are t he S A bits in SMF 1 and 9, the E1SA2[4: 8] bits are the Sa bits in
SMF 3 and 11, etc .
24.5.7 DS2 TPG Framing
The DS2 generator provides a n unframed DS2 rate test sequence.
24.5.8 DS3 TPG Framing
For DS3 test signals, the TPG provides a raw PN se quence on TPG_DATA[5] using the enabled clock.
24.5.9 Li ne Enc odi ng/Decoding
For DS1 and E1 test signals, the TPG may be provisioned to trans mit and receive AMI coded signals
TPG_TP M_COD Ex (Table 507 and Table 508). The signals can be unc oded, B8 ZS c od ed , HD B3 co ded, or AMI
coded. If c oding i s selected, it is active for both tr ansmit and receive paths. For coded signals, the DATA inputs/out-
puts become the positive rails and the sy nc inputs/outputs become the negative rails.
24.5.10 TPG T est-P attern Sequences
The tes t-pat tern bit sequen ce generated on the nonidle TPG_DATAx lines is determined by the TPG_SEQm[2:0]
(Table 507, 508, 509, a nd 510) register values, where m is the rate index (0 = DS1, 2 = E1, 4 = DS2,
and 5 = DS3). One of seven sequences presently may be selected for transmission within the framed or un framed
test pattern on the corresponding even TPG_DATAx lines (the odd line s are connec ted to idle generators). Each
datastream also has an associated clock TPG_CLKx and frame-sync signal TPG_FSx (x even, except DS2).
TPG_SEQm[2:0] values are described in the f ol lo wing tab le:
The polarity of the output data stream may also be provisioned to normal TPG_TPINVx = 0 (Table 507, 508, 509,
and 510) or i nverted TPG_TPINVx = 1.
Table 625. TPG Test-Pattern Sequences
TPG_SEQm Test Pattern
000 PRBS15. 215 1 PN sequence spe cified in O.150. This sequence is generated by a 15 -stage
shift register whose 14th and 15th stages are added and fed back to the f irst stage. The output of
the last s tage is inverted (which yields a sequence with up to 15 consecutive zeros) to produce
the transmitted sequence.
001 PRBS20. 220 1 PN sequence. This sequence is generated by a 20-stage shift register whose
17th and 20th stages are added and fed back to the first stage. The transmitted test sequence is
normally the noninverted output of the last (20th) stage.
010 QRSS. 220 1 PN sequence with zero-suppression as specified in O.150. This sequence is gen-
er a te d b y a 20- s t age sh i ft r e g is te r whose 17th and 20th st ages are added and fed back to the first
stage. T he transmitted test sequence is normally the non-inverted output of the last (20th) stage,
but th e test sequenc e is for ced high if the ou tputs of stages 6 thr ough 19 are low.
011 P RBS 23. 223 1 PN sequence.
100 ALT_01. Alternat ing sequence of ones and zeros.
101 ALL_ONES. All-ones sequence.
Note: If unframed, an AIS signal is generated.
110 Reserved.
111 User-Defined. Continuously repeating 16-bit pattern from T PG_USER[15:0] (Table 511).
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
579Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
24.5.11 TPG Idle Generator
The TPG has one output dedicated to providing a valid, SF framed DS1 idle data pattern. This datastream also has
an associate d c lock TPG_CLKx and frame-sync signal TPG_SYNCx (x odd). This pattern is specified in deta il in
T1.403 for DS1.
24.5.12 TPG Error Inser tion
A single bit error is in jecte d into the test s equence each t im e that the global cont rol signal SMPR_BER _INSRT
(Table 65, SMPR _GTR, Global Trigger Register (RW) on page66 ) transitions from 0 to 1 while the associated
enable bit TPG_BERINSx (Table 501) is set to 1 .
Similar ly, for framed signals, a single framing bit error may be injected into the test s equence each time that the
TPG_FER INSx (Table 502) bit transitions from 0 to 1.
For certain types of framed signals (that is, DS1 ESF and E1 multiframe), cyclic-redundancy check (CRC) errors
may be injected into the test sequence. A single e rror insertion event is tri ggered each time that the
TPG_CRCEINSx (Table 500) (for DS1-ESF ) or TPG_ CRC4E INSx (Table 503) (for E1) register bit toggles
from 0 t o 1.
24.5.13 TPG Inte rrupts
There are no interru pts f rom the TP G at the current time.
24.5.14 Test-Pattern Monitor (TPM)
T he test-patte rn monitor TPM sub-bl ock cont ains fou r s elf- synchronizing detec tors that are provisioned to search
for a p articular test pattern (one each for signal a t D S1 , E1, DS2, and DS3). Each of the fo ur monitor blocks
searches for the fram ed or unframed sequence at that rate, as determined by the values of TPM_FRAMEx
(Table 507 and Table 508) and T PM_SEQm[2:0] (Table 507, 508, 509, and 510) register bit s (define d simil a rly to
the corresponding TPG register bits).
24.5.15 TPM Channel Selection
In normal operation, the user connects one of the available DS1, E1, DS2, or DS3 signals to the corresponding
TPM input by configuring the cross connect (XC ).
24.5.16 TPM Clock Edge and Data Polarity Selection
The edge of t he clocks XC_TCLKx that is used to acquire the test data is provisionable to either t he rising e dge
TPM _ E D GE x = 1 (Table 507, 508, 509, and 510) or the falling edge TPM_EDGEx = 0 for each of the four test-pat-
tern monitors. The polarity of the input dat a stream may also be provis ioned to normal TPM_TPINVx = 0
(Table 507, 508, 509, a nd 510) or inverted T P M_TPINVx = 1.
24.6 T PM Fr aming Acquisition and Synchronization
24.6.1 DS1/E1
For framed data streams TPM_FRAMEx = 1 ( Table 507 and Table 508), the monitor searches fo r the appropriate
frame sequence in the selected signal. If no frame is found, TPM_OOFx (Table 496) is set. The TPM_OOFx condi-
tion (statu s) signals default to 1, indicating an out-of-frame c ondition.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
580 Agere Sy stem s Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
A TPM_OOFxD (Table 482) signal detects and latches delta events (c hanges or transitions) in the TPM_OOFx sig-
nal. The TPM_OOFxD signal is reset to 0 based on the SMPR_COR_COW (Table 67, SMPR_GCR, Global Control
Register (RW) on pag e68) glob al control signal: if SMPR_COR_C OW is se t, event or delta signal s are cleared on
any microprocesso r read of the event or delta register. If SMPR_COR_COW is 0, each event or delta signal must
be written with a 1 to cl ear it. The TPM_OOFxD signal, if asserted, will generate an interrup t unless the corre-
sponding mask bit T PM_OOFxDM (Table 489) is set.
Also, synchronization is checked for the designated tes t patterns. If th e TPM monitor det ects 32 consecutive
matches in its input sequence, the corresponding TPM_OOSx (Table 497) is cleared. Similarly, if the TPM detects
four or more consecutive mism atches in the i nput sequence, the corresponding TPM_ OOSx is set. The
TPM _ OOSx condition ( status) signal s default to 1, indic ating an out-of-sync co ndition.
A TPM_OOSxD (Table 483) signal detects and latches delta event s (cha nges or transitions) in the T PM_OOSx sig-
nal. The TPM_OOSxD signal is reset to 0 based on the SMPR_COR_CO W global control signal: if
SMPR_COR_COW is set, delta sign als are cleared on an y microprocessor rea d o f the delta register. If
SMPR_COR_COW is 0, each delta signal must be written with a 1 to clear it. The TPM_OOSxD signal, if asserted,
will generate an interrupt unless the corresponding mask bit TPM_OOSx DM (Table 490) i s se t.
DS2 (x = 4). The DS2 monitor c hecks for synchronization of the unfr amed P RBS signals, and for bit errors as
above.
DS3 (x = 5). The DS3 monitor c hecks for s ynchronization of the unframed PR BS signals, and for bit errors as
above.
24.6. 2 TPM E rro r Det ection and Cou ntin g
TPM Bit Errors. While in sync, each data moni tor detects and counts the number of times that the input sequence
differs from the expected seque nce in a 16-bit counter (one per rate). Detection of a bit error causes the TPM to
latch a 1 into the TP M_BER Ex ( Table 490) eve nt reg is t er bit . Cl ear ing of this latched e v ent i s determined by the
SMPR_COR_COW global control signal (if s et, the event is automatically cleared on read, otherwise a 1 must be
written to the TP M_BEREx register bit to c lear it). If the inte rr upt is enabled (not masked) v i a TPM_ B E R M x
(Table 491) mask bits, then thi s event will trigger an interrupt.
The error counters accumula te TPM_BEREx events in a set of active counters. Th e active c ounter values are
transferred to registers upon asse rtion of global control signal SMPR_PMRESET (Table 65, SM PR _GT R, Global
Trigger Register (RW) on page66 ). The counter values may be read via the microprocessor control interface via
registers called TPM_CN Tx[1 5:0] (Tabl es 513, 514, 515, and 516). The active c ounters will ro ll over or satura te at
the term inal count depending on global control signal SMPR_SAT_ROLLOVER (Table 67, SMPR_GCR, Global
Control Register (RW) on page68 ). Th e c ounters will clear on read if the global cont rol signal SMPR_COR_COW
is set; otherwise, the counter values are not affected by reads and instead must be clea red by explic i t writes. The
global control signals SMP R _PMRESET, SMPR_S AT_ROLLOVE R, and SMPR_COR_COW op erate on a ll si x t est
channels; there are no separate controls per rate or mode.
TP M Frami ng Error s. Framing-bit errors TPM_FEREx ( Table 485) events are detected when TPM_ FRAMEx is 1
but not counted. The e vent is latched and may be used t o trigger a (maskable) interrupt, or may be polled (the e rror
assert ion w ill la st between one and 24 frame inte rva ls) . The interr upt mask bit i s called TPM_FERExM (Table 492).
The global control signal SMPR_COR_COW determines if the TPM_FEREx event is cleared on read or write.
TPM CRC Errors. Cycl ic redu ndanc y check (CRC) errors TPM_CRCEx (Table 488) are detected when
TPM _ FR A M E x (Table 507 and Table 508) is 1 but not counted. CRC-6 errors are valid only for DS1 extended
super-frame (ESF) test patterns. CRC-4 errors are val id on ly for E1 multiframe test patterns. Each CRC error event
is latched a nd may be used to trigger a (ma skable) interrupt, or may be p olled (the er ror assertion will last between
1 a nd 24 frame intervals ).
CRC-6 error s (D S1 - ESF only) are detected via TPM_CRCE0. Interrup ts are manage d via TPM_CRCE0M
(Table 495) bit. The global control signal SMPR_COR_COW ( Table 67, SMPR_GCR, Global Control Register (RW)
on page68 ) determines if the TPM_CRCE0 event is cleared on read or write.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
581Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
CRC-4 error s (E 1 m ultiframe only) are detected via TPM_CRCE2. Interrupts are managed via TPM_CRCE2M
(Table 495) bits. T he global control signal SMPR_COR_COW determines if the TPM_CRCE2 event is cleared on
read or write.
TPM Data AIS Detection. If an active data monitor detects AIS (i.e., detects all ones in the data signal), the corre-
sponding reg ister bit TPM_AI S x (Table 498) is asserted (default = 0, no AIS). A T PM_AISxD (Table 487) s ig nal
detects and lat ches del ta events (changes or tra nsitions) in the TPM_A ISx signal. The TPM_AISxD signal is reset
to 0 based on the SMPR_ COR_ COW g lobal control signal: if SMPR_COR_COW is set, event or delta sign als are
cleared on any microprocessor r ead of the event or delta regis ter. If S MPR_COR_COW is 0, each event or delta
signal must be written with a 1 to clear it. The TPM_AISxD signal, if asserted, will trigger an interru pt unless the
corresponding interrupt mask bit T PM_AISxDM ( Table 494) is set.
TPM DS1-ESF Data Link. For DS1 extended super frame (ESF) test patterns, the received data link field co ntents
are presented to software via regis te rs entitled TPM_ES F DL[15:0] (Table 504).
TPM E1 S a -Bits Field. For E1 framed test pattern s, the received Sa bits are presented to software via registers
entitled TPM_E1SAx[4:8] (Table 518 and Table 519).
24.6.3 TPM Interrupts
The TPM block is capable of generating the fo llowing (m askable) interrupts:
Table 626. TPM Interrupts
The micropr ocessor interface may also read the current condition (s tatus) of TPM framing, synchronization, or AIS
detection via the TPM _ OOFx (Table 496), TPM_OOSx ( Table 497), and TPM_AISx (Table 498) indicators direct ly.
24.7 Micro p roc e ss o r In t er f ac e
24.7.1 Microprocessor Interface Register Map
The regis ter map of the mic roprocessor interface is shown in Table 76, Microprocessor Interface Regi ster Map on
page 73. All addres s e s refe rred to in this section are given in hexadecimal notations in the first column of t he table.
Event Int_Name Int_Mask_Name Description
OOFx C hange TPM_OOFxD (Table 482)TPM_OOFxDM (Table 489)TPM Out-of-Frame Delta
OOSx Change TPM_OOS x D (Table 483) TPM_OOSxDM (Table 490) TPM Out-of-Sync Delta
BER TPM_BEREx (Table 484) TPM_BERExM (Table 491) T PM Single Bit Error
F ER T PM_ FEREx (Table 485) TPM_F ERExM (Table 492) TPM F raming Error
CRC Error TPM_CRCEx (Table 488) TPM_CRCExM (Table 495) TPM CRC Error (DS1, ESF, or E1 on ly)
AIS x Change T PM_AI SxD (Table 487)TPM_AISxDM (Table 494) TPM AIS D elta
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
582 Agere Sy stem s Inc.
25 Philosophies
Ta ble of Conte nts
Contents Page
25 Philosophies ................................................................................................................................................... 582
25.1 Clocking and Power Management Philosophy ............ ....... .......... ......... ....... .......... ....... ......... ................ 583
25.2 M aint enance Philosop hy ........................................................................................................................ 583
Figures Page
Figure 1 01. Clock and Power Shutdown Diagram. ...................... ....................... ................... ................ . .............. 583
Tables Page
Table 627. Maintenance T as ks Supported b y t he SMPR . ... ................................................... ....... ....... ............... 584
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
583Agere Systems Inc.
25 Philosophies (continued)
25.1 Clocking and Power Management Philosophy
5-8977(F)
Figure 101. Clock and Power Shutdown Diagram
25.2 Maintenance Phil osophy
The Super Mapper maintenance philosophy follows the SONET NE maintenance criteria specified by GR-253-
CORE.
The various f unc tions that are used to perf orm the following maintenance tasks are addressed:
Trouble detection
Trouble or repair verification
Trouble sectionalization
Tr ouble isol at i on
Restoration
TMUX
SPE/
M13
TEST
DJA
FRAMER
T1/E1
CROSS
MPU INTERF ACE
155 MHz Tx
15 5 MH z Rx
51.84 TXCK
RXCK
51.84
TXCK
RXCK
44.736 MHz
44.736 MHz
6.48
6.48
TXCK
RXCK
DS1XCLKE1XCLK
MPU_CLK
MPCLK
DS1_AISCLK
E1_AISCLK
DPLL
AIS CLOCK
LINERXCLK
LINETXCLK
VT/VC
MPMODE
19.44 MHz
19.44 MHz
19.44
51.84
51.84
19.44
(TO ALL BLOCKS) PATTERN
GEN/MON
AND CONTROL
MUX
DS2
DS3
CONNECT
MAPPER
(x28)
GENERATION
16 MHz66 M Hz
[29:1]
[29:1]
BANK
MHx
MHz
MHz
MHz
AU-3
MAPPER
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
584 Agere Sy stem s Inc.
25 Philosophies (continued)
The fo llowing tables show how the Super Mapper handles i ts maintenanc e tasks.
Table 627. Maintenance Tasks Supported by the SMPR
Maintenance Tasks Support by
SMPR Generation
(Blocks Responsible) Detection
(Blocks Responsible)
Alarm Surveillance
Dire c tly Detec t e d Defects and Failure
Los s of Sign al (LOS) Suppo rted TM UX TMUX, M13
Los s of Frame (LOF) Suppo rted TM UX TMUX, M13
Los s of Pointer (LOP) Supported TM UX TMUX, SPE M PR ,
VTMPR
Equipment Failures NA ——
Los s of Sy nchronizat ion Supported TMUX, VTMPR
APS Trou bles:
Protec tion Switchin g Byte Failure
Channel Mismatch Failure
APS Mode Mism atch Failure
Far-End Protection-Line Failure
Supported TMUX TMUX
DCC Failure TMUX TMUX (partial support)
Signal Label Mismatch:
STS Payload Label Mismatch
STS Path Unequipped
VT Payload Label Mismatch
VT Path Unequipped
Supported
Supported
Supported
Supported
TMUX, SPEMPR
TMUX, SPEMPR
VTMPR
TMUX, SPEMPR
TMUX, SPEMPR
VTMPR
VTMPR
Alarm Indication Signal (AIS)
Line AIS (AIS-L) Supported TMUX TMUX
STS Path AIS (AIS-P) Supported TMUX, SPEMPR TMUX, SPEMPR
VT Path AIS (AIS-V) Supported VTMPR VTMPR
DSn AIS S uppor t ed TP G, M 13, F RA MER ,
VTMPR TPG, M 1 3, FR A M ER,
VTMPR
Remote Defect Indication (RDI) and Remote Failur e I ndication (RFI)
Line Remote Defect Indication (RDI-L) and
Remote Failure Indication (RF I-L) Supported TMUX TMUX
STS P ath Remote Def ect I ndication (RDI-P)
and Remo te Failure Indication (RDI-P) Suppo r t ed TMUX , S P EMPR TMU X, SPEMPR
VT Path Remote Defect Indication (RD I-V)
and Remo te Failure Indication (RF I-V) Supported VTMPR VTMPR
DSn RDI an d RAI Sig nals Supported M13, FRAM ER M 13, FRAMER
Payload Defect Indication (PDI)
STS Payload Defect Indication (PDI-P) Supported TMUX, SPEMPR TMUX, SPEMPR
VT Pa yload Defect Indication (PDI-V) NA ——
Mai nten ance S ignals for O th er M appings NA ——
Trunking NA ——
Alarm-Related Events Supported All blocks to meet the signal-
ing and timing requirements
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
585Agere Systems Inc.
25 Philosophies (continued)
Table 627. Maintenance Tasks Supported by the SMPR (continued)
Mai nte na nce Task s Support by
SMPR Generation
(Blocks Responsible) Detection
(Blocks Responsible)
Control o f Alarm Processing
Alarm Level Designations NA ——
Signal Failure/Single Message NA ——
Indep endent Failures NA ——
Retrieval of NE Condition NA ——
Provisioning of Alarm Levels NA ——
Clear M ess ages NA ——
Noninstrusive Detection of Defects and
Declaration of Failures NA ——
Performance Monitoring
Gen eral A ccumu la tion and Thr e sholdin g Criter ia
Physical Layer PM
Physical Layer Parameters Supported TMUX, SPE MPR, M13
Physical Layer PM Criteria Supported SPEMPR, M13
Se ctio n Layer PM
Sect ion Layer Parameter s Supported TMUX TMUX
Section Layer PM Criteria Supp orted TMUX TMUX
Line Layer PM
Near-end Line Layer Parameters Supported TMUX TMUX
Far-end Line Layer Parameters Supported TM U X TMUX
Line Layer PM Criteria Supported TMUX TMUX
STS Path L a yer PM
Near-end ST S Pat h Layer Parameters Supported TMUX, SPEMPR TMUX, SPEMPR
Far-end S TS Path Layer Parameters Supported T MUX , SPEMPR TMUX, SPEMPR
STS Path Layer PM Criteria Supported TMUX, SPEMPR TMUX, SPEMPR
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
586 Agere Sy stem s Inc.
25 Philosophies (continued)
Table 627. Maintenance Tasks Supported by the SMPR (continued)
Mai nte na nce Task s Support by
SMPR Generation
(Blocks Responsible) Detection
(Blocks Responsible)
VT Path Layer PM
Near-end VT Path Layer Parameters Supported VTMPR VTM PR
Far-end VT Path Layer Parameters Supported VTMPR VTMPR
VT Path Layer PM Criteria Supported VTMPR VTMPR
Monit o ring at DSn Int erfaces Supported TPG, M13 , FRAMER TPG, M1 3 , FRAMER
PM During Troubles NA ——
Intermediate-Path PM NA ——
Testing Process
Test Access
Fiber Access NA ——
SONET Signal Test Access NA ——
Digital Test Access Supported TPG TPG
Diagnostics
Physical Layer ——
Sect ion Layer Supp orted TMU X TMUX
Signal Identification:
STS Path Trac e
ST S and VT Path S ignal Label
Supported TMUX
TMUX, SP EMPR, VTMPR TMUX
TMUX, SPEMPR,
VTMPR
Error Monitoring Suppor t ed A LL BLOCKS ALL BLOCK S
Loopbacks
SONET Terminal Loopbac ks Supported TMUX
SONET Facility Loopbac ks Supported VTMPR, TMUX, SPEMPR
DSn Loopbac k s Supported M13, FRAMER
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 587
Applications
26 Applications
Ta ble of Conte nts
Contents Page
26 Applications..................................................................................................................................................... 587
26.1 Application Diagrams .............................................................................................................................. 588
26.2 High-Speed Line Interfaces and Clock and Data Recovery ................................................................... 589
26.2.1 R eceive Direction ......................................................................................................................... 589
26.2.2 Tran smit Direction......................................................................................................................... 589
26.3 Multiplex Section Protectio n (MSP 1 + 1) ............................................................................................... 589
26.3.1 Pointer Interpreter ........................................................................................................................ 589
26.4 Path Terminati on Function ..................................................................................................................... 590
26.5 STS-3/STM-1 MUX-DeMUX ................................................................................................................... 591
26.6 Telec om Bus I nterfaceInterfacing to Mate Devices ............................................................................ 591
26.7 SPE/ AU-3 Mapper (DS3 Mapper) .................................................... ................... ....... ............ ................ 591
26.8 VT/VC Mapper ........................................................................................................................................ 592
26.8.1 R eceive Direction ......................................................................................................................... 592
26.8.2 Transmit Direction ........................................................................................................................ 593
26.9 M13/M23 Multiplexer .............................................................................................................................. 593
26.9.1 R eceive Direction ......................................................................................................................... 593
26.9.2 Transmit Direction ........................................................................................................................ 594
26.10 Cross Connec t Block ............................................................................................................................ 594
26.11 Digital Jitter Attenuator ......................................................................................................................... 595
26.12 Te st Pattern Generator ......................................................................................................................... 595
26.13 28-Channel Framer .................... ...................................... ................................. ................................... 596
26.14 Line Decoder/Encoder .......................................... ................... ....... ................... ....... ............................ 601
26.15 Receive Frame Aligner/Transmit Frame Formatter .............................................................................. 601
26.16 Receive Performance Monitor .............................................................................................................. 601
26.17 Signaling Processor .............................................................................................................................. 602
26.18 Facility Dat a Lin k (FDL) Processor ................ ............ ..... ... .................. ..... .......................... .................. 602
26.19 HDLC Unit ............................................................................................................................................ 603
26.20 System Interface........................................................................................................................... ..........603
27 Change History ........... ..... ..................... . .................. ..... ..................... ..... ..................... . .................................. 604
Figures Page
Figure 102. S w itching Application of the Super M apper................... ................................. ....... ............ ................ 588
Figure 103. Transport Application of the Super Mapper....................................................................................... 588
Figure 1 04. Super Mapper Switching Mode for F ramer in Concentration Highwa y
Interface (CHI) Confi g ur at ion..... ........................................................................................................ 596
Figure 1 05. Super Mapper Sw itching Mode for Framer in Parallel System Bu s Configu ra tion................. ........... 597
Figure 1 06. Super Mapper S witching Mode CHI Configuration with Byte-Synchronou s VT Mapping Enabled ... 598
Figure 1 07. Super Mapper By te-Synchronous Transport Mode: Pas s ive Performanc e Monitoring. .................... 599
Figure 1 08. Super Mapper B y t e-Synchronous Transport Mode: Int rusive Performance Monitoring.... ..... ... ........ 600
Tables Page
Table 628. C hange Hist ory....................................................................................................................................604
588 Agere Systems Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
26 Applications (continued)
26.1 App lication Diagram s
5-8924(F)r.1
Figure 102. Switching Applic at io n o f th e Super Mapper
5-8925(F)r.1
Figure 103. Transport Ap plication of the Su per Mapper
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
SUPER MA PPER #1 SUPER M APPER #1
SUPER MA PPER #2 SUPER M APPER #2
SUPER M APPER #3SUPER MA PPER #3
MAPPER
TELECOM
BUS
STS-3
SYSTEM
INTERFACE SYSTEM
INTERFACE
DS0/E0
SWITCH DS0/E0
SWITCH
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
SUPER MAPPER #1 SUPER MAPPER # 1
SUPER MAPPER #2 SUPER MAPPER # 2
SUP ER MAPPER # 3SUPER MAPPE R # 3
MAPPER
TELECOM
BUS
STS-3
LINE
INTERFACE LINE
INTERFACE
PM PM
PM PM
PMPM
T1/E1
LINE INTE R FAC E
UNIT
(T7690 OR T7698)
T1/E1
LINE INTERFAC E
UNIT
(T7690 OR T769 8)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 589
26 Applications (continued)
26.2 High-Speed Line Interfaces and Cl ock and Data Recovery
In the receive direction, the Super Mapper accepts either a differential serial data signal at 155.52 Mbits/s
(STS-3/STM-1 m ode) or a s erial STS-1 clock and data at 51. 84 M Hz (STS-1 mode). For the STS -1 case, the input
is retimed with the input clock. A clock and data recovery circuit is used for the 155 Mbits/s case with the high-
speed transmit input clock as the clock refe rence. In the event that external cloc k and d ata recovery is provided,
this feature can be bypasse d . The c lock and date circuit can be used for recovering clock at 51 MHz, but a
155 MHz clock reference must still be suppli ed.
On the trans mit side, in STS-3/STM-1 mode, the Super Mapper r eceives a differential 155.52 MHz transmi t clo ck
and transmit fram e sync signal and outputs a differential serial data signal. In STS-1 mo de, i t r e ce ives a
51.84 MHz transmit clock and frame sync signal and outputs serial data.
Loss of input c lock or recovered clock is detect ed, as well as a lo s s -of-signal condition, by monitoring an ext e rnal
signal pin or internally an all-zeros/ones patt ern.
Built-in loopbacks at both high- speed int erfaces provide maximum flexibility for maintenance testing.
26.2.1 Receive Direction
Terminating the tr ansport overhead (T OH), the Super Mapper performs frame alignment (STS-3/STM-1 or STS-1),
B1 BI P-8 check, J 0 monitoring, descrambling, F 1 monitoring, B2 BIP-8 check, A PS and K 2 monitoring, AIS-L and
RDI-L detection, M1 REI-L d etection, S1 sync status monito ring, and transport ove rhead access channel (RTOAC)
drop.
The states of the framer as we ll as al l state changes are reported, and, if not masked, cause an interrupt.
The B1 and B2 parity check supports bit and block mode. The counters count up to one second worth of BIP
errors. They stay at their maximum value in case of overflow or rollover and should be read (and cleared) at least
once per secon d.
The J0 monitor supports nonframed, SONET-framed, and SDH-framed 16-byte
sequences as well as single
J0 byte monitoring modes.
APS mo nitoring is perfo rmed on K1[7:0] and K2[7:3]. The value is stored and changes are reported. Bits [2:0] of
the K2 byte are monitored indep endent ly.
Line AIS (AIS-L/MS-AIS ) and remo te defect indication (RDI-L/MS-RDI) are monitored separately and changes are
reported. This informa tion is also sent to the pr ot ect ion device for ADM applications.
The M1 monitor operates either in bit or block mode and allows accessing of the remote error indication
(REI-L/MS-REI) errored bit cou nt.
The S1 byte can be monitored in two modes: as an entire 8-bit word or as one 4 -bit nibble (bits 7 to 4).
Continuous N tim es detection counters are implemented for these monitoring functions. All automatic receive mon-
itoring functions can be configured to provide an i nterrupt to the c ontrol system, or the device can be operated in a
polled mode.
The receive transport overhead access channel (RTOAC) provides ac cess to al l of t he line sectio n overhead bytes.
Even or odd pari ty is calculated over all bytes. It h as a data rate of 5.184 M bit s/s and consists of a clock, data, and
an 8 kHz sync pulse. Alternatively, only the data communication channels D1D3 or D4D12 may transmit a
serial 1 92 k bits/s or a 576 kbits/s data s tream.
26.2.2 Transmit Direction
In the transmit direction, the Super Mapper performs transmit transport over head a ccess channel (TTOAC) inser-
tion, sync status byte (S1) insertion, M0/M1REI-L insertion, K1 a nd K2 insertion, AI S-L inserti on, B2 calculation
and insertion, F1 byt e insertio n, B1 generation and error insertion, sc rambler , J0 in sert c ontrol, and A2 erro r i nser -
tion.
590 Agere Systems Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
26 Applications (continued)
All insert control functions that are inhibited will optionally insert either all zeros or all ones. The TTOAC allows the
users to insert the f ol l owi ng overhead bytes: E1, F1, D1D3, D4D 12, S1, and E2 . E ven or odd p arity is checked
over all bytes. By tes w hich ar e not enabled for insertion are set to an all-ones or a ll-zeros stuff v alue. Th e Super
Mapper sources a clock an d an 8 kHz sync pulse and receives the data at a data rate of 5.184 Mbits/s. Alterna-
tively, only the data communication channels D1D3 or D4 D12 may receive a serial 192 kbits/s or a 576 kbits/s
data stream.
The insertion (overwrite of TTOAC) of p rogrammed S1, F1, J0, Z0-2, and Z0-3 bytes can b e enabled.
Automatic in se rtion of M0/M1 may be inhibited. A protection swit ch selects the R E I-L value for insertion to be taken
from the protection board rather than from the receive side.
The entire APS value or K2[2:0] can be i nserted via microprocessor c ontrol. Automatic RDI insertion is supported
with individual inhibit for each contributor. A protection switch selects the RDI-L value for insertion to be taken from
the protection board rather than from the receive side.
B1 and B2 BIP-8 values ar e calculated an d inserted; both values ca n be in verted.
26.3 Multiplex Section Protection (MSP 1 + 1)
The T MUX block supports a payload 1 + 1 protection switch. In the receive direction, t his occurs p rior to pointer
inter pretation. I f th e protection switch is activated, then the data is selected fr om the receive p rote ction interface
rather than from the high-speed input path.
In the transmi t direction, the signal is broadcast to the high-speed output path and the protection interface.
The interface consists of a 155.52 MHz or 51.84 MHz clock, data, and sync pulse in each direct ion.
26.3.1 Pointer Interpreter
This state machine implements the pointer interpretation algorithm described in ETS 300 417-1-1: January 1996
Annex B.
The pointer interpreter evaluates the current pointer state for the normal state, pat h AIS state, or LOP (loss of
pointer) conditions, as well as pointer increments and dec rements. The current pointer state and any changes in
pointer condition are reported to the control system . T he n um ber o f consecutive frames for invalid pointer and
invalid concatenation indication is fixed at nine.
26.4 Path Termination Functio n
The path termination f unc tion is performed on either all three S TS- 1s or on the VC-4 POH o nly.
It includes on the receive side: J 1 monitoring, B3 BIP-8 checking, C2 signal label monitoring, RE I-P and RDI-P
detection, H4 multiframe monitoring; F2, F3, and K3 automatic protection s witch monitoring, N1 tandem connection
monitorin g, signal degrade BER and signal fail BER det ec t ion; path overhead access channel (RPOAC) d rop,
AIS-P/HO-AIS insertion, and auto matic AIS generation (with individual inhibit).
The J1 monitor provides five modes of operatio n on a programmable l engt h (1 byte64 bytes) of the trace identi-
fier : cyclic checking against the la st received sequenc e, compare against a programmed sequenc e , SO NE T fram-
ing mode, SDH framing mode, and cons ec uti ve consistent oc c urrenc es of a new pattern.
B3 is monitored either in bit or block mode. Provisionable N -t imes dete ction counters are implemented for C2, F2,
F3, N1, and K3 bytes. The K3 A PS byte and N1 TCM byte can be monitored as an entir e 8-bit word o r tw o 4- bit nib -
bles.
The receive path overhead access channel (RPOAC) provides acces s to all the path overhead by tes. Even or odd
par ity is calculated ove r all by tes. It has a dat a rate of 8 bytes per 8 kHz frame and consi sts of cl ock, data, and an
8 kH z sync pulse.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 591
26 Applications (continued)
In the transmit direction, J1 path trace insertion, B3 calculation and insertion, C2 signal label ins er ti on, RE I - P and
RDI-P insertion; F2 insertion, H4 multiframe insertion, F3 path user byte insertion, K3 inse rtion, N1 byte insertion,
and AIS-P inse rt ion via POAC or software control is supported.
The transmit path overhead access channel (TPOAC ) allows t he insertion of all overhead bytes besides B3 which
is automatically calculated. Even or odd parity is checked over all bytes. Bytes which are not enabled for inse rtion
are set to an all-ones or all-zeros stuff value. The Super Mapper sources a clock and an 8 kHz sync pulse and
receives t he data at a rate of 8 bytes p er 8 kHz frame.
26.5 ST S- 3/ STM - 1 MU X - De M UX
The STS-3/STM-1 (AU-4) multiple xer provides three modes of operation: STS-3, AU-4, and STS-1.
In STS-3 mode, the block multiplexes and demultiplexes up to t hree STS-1 signals to/from a SONET STS-3 s ignal.
In AU -4 mode, it prov ides the functionali ty to MUX/deMUX up to three AU-3 signals to/from a STM-1 (AU-4) signal.
In STS-1 mode, it provides the functions to generate and terminate a single STS-1 signal.
The STS - 3/STM-1 MU X function takes the bytes in the order they are present on the telecom bus and multiplexes
them into the high-speed signal. Grooming of the VTs/VCs is performed in the SPE mapper of each of the three
devices.
26.6 Te lec o m B us Inter f ac eIn terfacing to Mate Devices
The Super Mapper ca n c ommunicate with up to thr ee mate devices via a t elecom bu s interface. The bus oper ates
at 19. 44 MHz for STS-3/ ST M-1 m odes and at 6.48 MHz for STS-1 mode.
In the receive direction, the Super Mapper outputs one parallel clock at 19.44 MHz, three sync signals (SPE,
J0J1V1, and V1), an 8-bit data bus, and an odd/even parity bit. The data bus carries either three STS-1/TUG-3 sig-
nals, each in their own time slot, or it carries one STS-1 signal. It also outputs a 51.84 MHz low-speed clock and
sync.
The transmit side of Super Mapper drives a clock and thre e sync signals (SPE, J0J1V1, and V1) onto the telecom
bus. These s ignal s control when the i nternal SPE mapper or one of the ma te devices drives the data bus. The
Super Mapper receives an 8-bit d ata bus and an odd/even parity bit from the teleco m bus. The da ta consists of the
S PE for up to three STS-1s. Also, a 51 .84 M Hz l ow -speed clock and sync ar e output.
26.7 SP E/ AU-3 M a pper (DS3 M appe r)
The SPE mapper block is a highly configurable mapper. It operates either as an AU-3/S TS-1 mapper or as a
TUG-3 mapper . In both modes, it maps/demaps data from/to either the VT mapper , the M13 MUX/deMUX, the DS3
clear channel, or t he DS3 loopback ch annel. T he SPE mapper suppor t s numerous automatic monitoring func tions
and provides interrupts to the contro l system, o r it can be operated in a polled mode.
In TU mapping mode, the SPE mapper provides flexibility down to TUG-2 level for choosing which TUG-2s
(out of 7) are mapped/dropped into/from which TUG-3s (between 1 and 3) for genera ting STM-1 signals. This
allows grooming of the VTs/TUs on the STM-1 level ( over all thr ee device s). I n a full STM-1 appli cati o n , with tw o
other devices sitting on the telecom bus, care has to be taken for the provisioning of the time slots when each bl oc k
drives the telecom bus.
In DS3 mapping mode, the SPE mapper block acc epts/delivers structured DS3 data from/to the M13 bloc k or a
clear DS3 signal at 44.736 Mbits/s rate and maps/demaps it asy nchronously into/from the STS-1 SPE or a TU-3 .
The DS3 mapper generates a fixed pointer value of 522.
592 Agere Systems Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
26 Applications (continued)
On the recei ve side, pointer interpretat ion is performed detecting LOP , AIS, NDF, NORM, INC, and DE C . A DS3
loopback mode allows demapping and remapping of a DS3 signal. It is particularly useful in cases where a DS3
signal mapped as an AU-3/STS-1 signal is needed to be remapped as a TU-3 signal or vic e versa. B3ZS enco ding/
decoding is included.
The same path overhead monitoring functions as descr ibed above are implemented in this block.
This block also connects to the path overhea d access channel (POAC) to insert/dro p the path overhead bytes J1,
C2, F2, H4, F3, K3 , and N1 in to t h e STS- 1 SP E or VC-3.
The SPE mapper supports unidirectional path switch ring (UPSR) applications a s well as N1 tandem connection
function.
The SPE mapper complies with GR-253-CORE, T1.105, ITU- T G.70 7, IT U-T G.83 1, G.783, and ETS 300 417-1-1.
26.8 VT/V C Mapp er
The VT/V C mapper m aps any valid combination of DS1 and E 1 signal s into a stream at a rate of 51.84 Mbi ts/s
(STS-1 or AU-3). The mapping methods (VT1.5, VT2, and VT group in ANSI nomenclature; TU-11, TU -12, and
TUG-2 in ITU nomenclature) are analogous. The VT/VC mapper supports the followi ng mappings:
28 asynchronous, byte- or bit-synchronous DS1 signals are mapped into seven VT groups or TUG-2s.
28 asynchronous, byte- or bit-synchronous J1 signals are mapped into seven VT groups or TUG-2s.
21 asynchronous, byte- or bit-synchronous E1 signals are mapped into seven VT groups or TUG-2s.
Maps T1 into V T1.5/TU-11/TU -12, J1 into VT1.5 /TU -11/TU -12, and E1 into VT2/TU-12.
ADM and unidirectional path switch ring (UPSR) applications are supported via tri butary loopback, tributary pointe r
process ing, and low - order path overhead access channel.
The VT/VC mapper supports automatic generation or microprocessor overwrite 1-bi t RDI, enhanced RDI, 1-bit RFI,
automatic downstream AIS gener ation, and fiv e J2 trace identifier modes.
The VT/VC mapper complies with G R-253-CORE, G.707, T 1.10 5, G.704, G.783, JT-G707, G R -499, and ETS 300
417-1-1.
26.8.1 Receive Direction
In the receive direction, th e V T mapper terminates the data stream it r e ceives from the SPE mapper. It de multi-
plexes the AU-3/TUG-3 into the VTs/T U s and checks the H4 multiframe alignment. P ointer interpre t er s f o r up to
28 VTs/TUs detec t LO P, AIS, NDF, NORM, INC, and DEC on each channel.
Th e lo w- o r d e r path termi na tion in cl u des V5 b yte terminatio n , J2 path trace, Z6 /N2 t andem connecti on, Z7/K4
enhanced RDI and low-order APS mon itor, and t he pa yloa d terminat ion f o r asynch ronous , b yt e- or bi t-s ynch ronous
signals. The V5 byte te rmination performs BIP-2 check (bit- or block-mode), REI count, RFI and RDI det ec tion, sig-
nal label monitor, and automa tic AI S insertion (which can be inhibited). The J2 mon itor supports four different
modes as follows:
Cyclic check
SONET framing mode
SDH framing mode
Sing le byte chec k.
In byte-s yn ch ro nous modes, the receive demapper generates a frame sy nc t o indicate the DS1 frame bit or the
MSB of the E1 time slot 0. Additionally, it prov ides the framer access to the received signaling bit s. Output of the VT
mapper is a DS 1/J1/E1 signal wit h a gapped clock. It can be overwritten with AI S automatically or upon mi cropro-
cessor request.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 593
26 Applications (continued)
26.8.2 Transmit Direction
In the transmit direction, the VT mapper gets a clock, data, and frame sync from the cross connect. The input is
retimed and checked for a digital loss of clock (LOC), an AIS condition, and low zeros-density. I n b yt e- synchronous
mode, the input signal is additionall y checked fo r loss o f frame sync (LOFS).
A transmit elastic s tore synchronizes the incoming DS 1/J1/E1 signals to the local STS-1 clock. In asynchronous
and bit-synchronous mode, it works as a bit-oriented (64-bit ) FIFO , and in b yte-synchronous mode, as a bytewide
(8-by te) buffer using a V5 byte marker b i t (8bit ) . Over flow o r underfl ow condition s are m onitored and reported.
In asynchronous and bit-synch ronous mode, a fixed VT pointer of 78 (VT1. 5/ TU- 11) and 105 (VT2/TU-12) is gener-
ated and the payload is mapped into the container using positive/null/negative bit stuffing mechanism ( C - and
S bits). In bit-synchronous mode , the bit stuffing mechanism is disabled. In byte-synchronous mode, a dynamic VT
pointer va lue is g enerated using the V5 marker impleme nting NORM, NDF, INC, and DEC pointers.
The VT POH generation c omprises V5 byte with BIP2-generation, AIS-, signal label-, UNEQ-insertion, automatic
REI-, RFI-, RDI-, and enhanced RDI-generation (
Bellcore
, ITU-T), J2 path trace insertion via microprocessor,
Z6/N2 byte insertion, and Z7/ K4 byte insertion via microprocessor or low-order path overhead (LO P OH) ac cess
channel.
The data stream is synchronized to the received 2 kHz sync pulse and multiplexe d to form the STS-1/AU-3 signal,
which is then output to the SPE mapper.
When operating in byte-synchron ous mode, t he phase and si gnaling bits from the framer are stored and inserted
into the m apped frame.
26.9 M13 /M 23 M ult ipl exer
The M13 is a highly c onfigurable mu ltiplexer/demultiplexer. It can operate as an M13 in either the C-bit parity or
M23 mode, a mixed M13/M2 3, or an M23. In the C-bi t parity m ode, the M13 provides a far-end alarm and control
(FEAC) code generator and receiver, an HDLC transmitter and receiver , and automatic far-end block error (FEBE)
generation.
Each inter nal M12 MUX /deMUX and the M23 MUX/deMUX may be configured to operate as independent
MUXs/deM UXs. 28 DS1 input s in groups of four or 21 E1 input signals in groups of three can feed into indivi dual
M12 M U Xs, while the M23 MUX c an take DS2 signals from out puts of M12 MUXs, or dire ct DS2 inputs, or loop-
back deMU Xed DS2s.
The M13 suppor t s numerous automatic monitoring functio ns. It can provide an interrupt to the control syst em, or it
can be o perated in a polled mode.
The M13 co mpl ies with T1.102, T1 .107 , T1.231, T1.403, T 1.404, G R -499, G .747 , and G. 775.
26.9.1 Receive Direction
The receive DS3 is monitored for loss of clock and check ed for loss of signal (LOS) according to T1.231. The B3ZS
decoder accepts either unip olar cl ock and data or unipola r clock, positive and negative data. It also c h e c k s for bipo-
lar coding violations. The transmit DS3 can be looped back into the receive side after B3ZS decoding.
The M23 demultiplexe r checks for valid D S3 framing by findi ng the frame alignment pattern ( F bits), and then locat-
ing the m ulti frame alignment signal ( M bits). Each M frame, the data stre am is checked for the presence of the AIS
(1010) or idle (1100) pattern.
C bits 13, 14, and 15 can be used as a 28. 2 kbits/s data link and are available di rectly at device output v ia an inter-
nal HDLC receiv er. It is composed of a 128-byte FIFO, a CRC-16 frame chec k sequence (FCS) error dete ctor, and
control circuits.
594 Agere Systems Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
26 Applications (continued)
Within the M23 demultiplexer, there are four performance monitoring counters f or F- or M-bit, P-b it, E-bit parity, and
FEBE errors. Each M12 demultiplexer contains two performance monitoring counters.
26.9.2 Transmit Direction
The incoming DS1/E 1 clocks are first c hecked for activity or loss of clock (LOC). The data signals are r eti med and
checked for AIS and activity. DS1/E1 loopback selectors allow DS1 or E1 received within t he DS2 or DS3 inputs
from the deMUX path to be looped back. This loopback can be performed automatically or the user can force a
DS1 or E1 loopback.
The four D S1 or th ree E1 signals for each M12 MUX are fed into single bit 16-word-deep FIFOs to synchronize the
signals to the DS2 frame generation clock. The fill level of each FIFO determines th e need for bit stuffing its
DS1/E1 input. The M13 c an handle DS1/E1 signals with nominal fr equency offsets of ±130 ppm and up to five uni t
inter vals peak jitter. The DS2/DS3 transm it clock is us ed t o derive the clock source for DS2 frame generation.
The M23 multiplexer generate s a transmit DS3 frame, and fills th e information bits in the frame with data from the
seven DS2 select blocks. The M23 MUX can be prov i sioned to operate in either the M2 3 m ode o r the C -bit pa rity
mo de. It contains seven DS2 FIFOs each with a depth of 8. The fill level of e a ch FIFO d eter mines the need for bit
stuffing its DS2 input.
The transmit DS3 output can either be in the form of unipolar clock and data or unipolar cloc k, positiv e and negative
data. The DS3 data is B3 ZS encoded and can be looped back from the receive DS3 inpu t.
26.1 0 Cr os s Co nne c t Block
T he cros s c onnect (X C) i s a high ly configurable nonblockin g cro s spoint switc h fo r DS1/E1/DS2 signals, co n f i g ura -
tion of DS3 sig nal paths, and configuration of the path overhead access I/O. The cross connect plays a major role
in configuring the interconnection of major function blocks to satisfy an applic ation s implementation.
The cross connect provides the flexibly to tie DS1/E1/DS2 channels from the framer or ex ternal pin s to the M13
mapper or to the VT mapper. It is als o c apable of multicast or broadcast operation (one port to ma ny), handling
injected test patterns, idles, or alarm conditions to any channel, and ca n pro vide system loopback testing support.
Jitter attenuation may also be inserted in-line on any DS1/E1 channel.
The cross connec t can interconnect up to 28 individual DS1/E1 channels between the framer, M13 multiplexer, VT
ma pper, jitter att enuator, or extern al I/O. The externa l I/O pins sup port an applica tion dependent mix of up to
29 T1/E1 i nterfaces (one dedicated prote ction channel), s eve n DS2 interfaces, or one of four a vailable framer sys-
tem interfaces.
The cross connect supports an independent signal path for remote alarm indication (RAI), alarm indication signal
(AIS), and byte-synchronous frame sync signals on channels between the VT mapper or M13 and the framer.
Receive pointer adjustment information is routed to the jitter at tenuator block for each channel originating in the VT
mapper.
T he cross c onnect h a s i ndependent DS2 interfaces for the M12 and M23 bloc ks of the M13 MUX. Full split access
to the ext ernal I/O device pins pro vides the capability to add, drop, or rearrange the DS2 signals within the M13.
For DS3 sign als, the cross connect supports configuration of interconnects between the M13 and t he SPE, or
exte rna l I /O interconnection to the M13 o r SPE, or insertion/monitoring of DS3 test patterns from the test - pattern
generator block.
The test-patter n generator block (TPG) provid es t es t signals and it m oni tors inputs (T PM) for si gnals to an d from
th e cross connec t. The TPG can generate a set of test sig nals or idles at DS1, E1, DS2, or DS3 rates. There is only
one test pattern generator a nd monitor per signal rate.
Devic e pins for the path overhead access channel may be configured t o connect to the SPE mapper or TMUX
blocks.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 595
26 Applications (continued)
26.1 1 Di g ital Ji tte r Atte n u ato r
The dig ital jitter attenuator ( DJA) co ntains 28 copies of the digital jitt e r attenu ator block. Thes e digital jitter attenua-
tor blocks can operate in two different modes, as a DS1 or as an E1 jitter attenuator.
In both modes , the digit al jitter attenuator can b e pro visioned to alw ays operat e as a second-order PLL, or it can
switch to a act as a first-order PLL during VT pointer adjustment s to help m eet MTIE requirements. The period of
time in the first-order mode is provisionable. The P LL bandwidth is provisionable bet ween 0.1 Hz and 0.5 Hz and
the damping factor for these bandwidths varies betwe en 2 and 0.5 to accommodate a number of different system
constraints.
The block will also inse rt the pro per A I S signal if the primary b l o ck AI S control input is active.
26.12 Test Pattern Generator
The test pattern generator and monitor (TPG and TPM) is a set of configurable test pattern generators and moni-
tors for local self-test, maintenance, and troubleshooting operations.
T he T P G fee ds one o r more T1 /E1 /DS 2 test signals (via data, clock, and FS or AIS signal paths) to the crosspoint
switch which can redistribute or broadcast these s ignals to any v alid channel in the framer, externa l I/O , M13 map-
per, or VT mapper bl ocks. The TPG can a lso generate D S3 test signals.
Any channel arriving at the cross connect may be routed to the test monitor. The test monitors can au tom atically
detect/count bit errors in a pseudorandom test sequence, loss of frame, or loss of sync. The TPM can provide an
interrupt to the control syst em, or i t can be operated in a polled mode.
Simultaneous testing of DS1, E1, DS2, and DS3 signals is supported (one channel each).
Supported test patterns are: pseudorandom bit sequence (PRBS15, PRBS20), alternating zeroes/ones, and an all-
ones patter n.
The test pattern can be tra n smitted either unfr amed or as the payload of a framed signal, a s defined in ITU-T rec-
ommendation O.150.
Single bit-errors may b e injected into any t est pattern, under r eg iste r c ontrol.
596 Agere Systems Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
26 Applications (continued)
26.13 28-C hannel Framer
The block diagrams of the 28 T1/21E1-channel framer in the switching application in the CHI, parallel system bus,
and CHI with byte-synchronous VT mapping, are shown in Figure 104, Figure 105, and Figure 106 (only the major
functional blocks are s hown). The block diagrams of the 28 T1/ 21E1-channel fr amers i n the tran sport applicat ion
are shown in Figure 107 and Figure 108 (only t he major functional blocks are shown).
5-8926(F)
Figure 104. Super Mapper Switching Mode for Framer in Concentration Highway Interface (CHI)
Configuration
SIGNALING
PROCESSOR
(EXTRACTION)
RECEIVE
FACILITY DATA
LINK
RECEIVE
HDLC
TRANSMIT
SYSTEM
INTERFACE
RECEIVE
FRAME
ALIGNER
TRANSMIT
FRAME
FORMATTER
TRANSMIT
FACILITY DATA
LINK
SIGNAL
PROCESSOR
(INSERTION)
RECEIVE
SYSTEM
INTERFACE
MAPPER
TO
FRAMER
DS1
CROSS
CONNECT
ESF PRM PATH
SUPER MAPPER: FRAMER
SUPER MAPPER
M12 MULTIPLEXER
INTERFACE
SUPER MAPPER
VT MAPP ER
INTERFACE
TFS1, TCLK1, TDATA28DS0 INTERFACERFS1, RCLK1, RDATA28
PERFORMANCE
MONITOR
TRANSMIT
HDLC
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 597
26 Applications (continued)
5-8927(F)
Figure 105. Super Map per Switching Mode for Framer in Parallel System Bus Configurat ion
SIGNALING
PROCESSOR
(EXTRACTION)
RECEIVE
FACILITY DATA
LINK
RECEIVE
HDLC
TRANSMIT
SYSTEM
INTERFACE
RECEIVE
FRAME
ALIGNER
TRANSMIT
FRAME
FORMATTER
TRANSMIT
FACILITY DATA
LINK
SIGNAL
PROCESSOR
(INSERTION)
RECEIVE
SYSTEM
INTERFACE
MAPPER
TO
FRAMER
DS1
CROSS
CONNECT
ESF PRM PATH
SUPER MAPPER: FRAMER
SUPER MAPPER
M12 MULTIPLEXER
INTERFACE
SUPER MAPPER
VT MAPPE R
INTERFACE
DS0
PERFORMANCE
MONITOR
TRANSMIT
HDLC
INTERFACE
TFS1, TCLK1, TDATA8,
TDATA_PARITYA1, TSIGNALING8,
TSIGNALING_PARITYA1
RFS1, RCLK1, RDATA8,
RDATA_PARITYA1, RSIGNALING8,
RSIGNALING_PARITYA1
598 Agere Systems Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
26 Applications (continued)
In the byte-sync m ode, the frame sync and signali ng (VT SPE) information are also passed to the mapper. In the
receive dire ct ion, the mapper block provides the line da ta, line clock, frame sync (byte-sync mode), and signaling
information (byte-sync mode) to the superf ramer. Performance reports, in the form of HDLC pa ckets (PRMs ), are
sent from the receive performance monitor b l ock to the transmit HDLC bl ock.
5-8928(F)
Figure 106. Super Mapper Switching Mode CHI Configuration with Byte-Synchronous VT Mapping Enabled
SIGNALING
PROCESSOR
(EXTRACTION)
RECEIVE
FACILITY DATA
LINK
RECEIVE
HDLC
TRANSMIT
SYSTEM
INTERFACE
RECEIVE
FRAME
ALIGNER
TRANSMIT
FRAME
FORMATTER
TRANSMIT
FACILITY DATA
LINK
SIGNAL
PROCESSOR
(INSERTION)
RECEIVE
SYSTEM
INTERFACE
MAPPER
TO
FRAMER
DS1
CROSS
CONNECT
ESF PRM PATH
SUPER MAPPER: FRAMER
SUPER MAPPER
M12 MU LTIPL EX ER
INTERFACE
SUPER MAPPER
VT MAPPER
INTERFACE
DS0
PERFORMANCE
MONITOR
TRANSMIT
HDLC
INTERFACE TFS1, TCLK1, TDATA28 RFS1, RCLK1, RDATA28
VT MAPPER :
BYTE-SYNCHRONOUS
ROBBED-BIT SIGNALING
RECEIVE DATA
RECEIVE SIGNALING DATA
(TO SIG N ALIN G REGISTER S)
SIGNALING STOMP
DATA
VT MAPPER :
BYTE-SYNCHRONOUS
ROBBED-BIT SIGNALING
TRAN SMI T DATA
TRANSM I T SIG N ALIN G DATA
(EXTRACTED FROM SYST EM
OF SIGN A LI N G REGISTE R S )
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 599
26 Applications (continued)
5-8929(F)
Figu re 107. Super Mapper Byte-Synchronous Transport Mode: Pass ive Performance Monitoring
SIGNALING
PROCESSOR
(TRANSMIT)
RECEIVE
FACILITY DATA
LINK
RECEIVE
HDLC
TRANSMIT
FRAME
FORMATTER RECEIVE
FRAME
ALIGNER
TRANSMIT
FRAME
FORMATTER
TRANSMIT
FACILITY DATA
LINK
SIGNALING
PROCESSOR
(RECEIVE)
MAPPER
TO
FRAMER
DS1
CROSS
CONNECT
SUPER MAPPER: PERFORMANCE MONITORING FRAMER
SUPER MAPPER
M12 MULTIPLEXER
INTERFACE
SUPER MAPPER
VT MAPPE R
INTERFACE
DS1
PERFORMANCE
MONITOR
INTERFACE RCLK28, RPD28, RND28 TCLK28, TPD28, TND28
VT MAPP ER:
BYTE-SYNCHRONOUS
ROBBED-BIT SIGNALING
RECEIVE DATA
SIGNALING STOMP
DATA
VT MAPPER :
BYTE-SYNCHRONOUS
ROBBED-BIT SIGNALING
TRANS MIT DATA
PERFORMANCE
MONITOR
LINE
ENCODER
LINE
DECODER
(LINE
INTERFACE)
RECEIVE
FRAME
ALIGNER
(LINE
INTERFACE)
600 Agere Systems Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
26 Applications (continued)
5-8930(F)r.3
Figure 108. Super Mapper Byte-Synchronous T ransp o r t Mo d e: Intr usiv e Performan ce Mo nit oring
SIGNALING
PROCESSOR
(TRANSMIT)
RECEIVE
FACILITY DATA
LINK
RECEIVE
HDLC
RECEIVE
FRAME
ALIGNER
TRANSMIT
FRAME
FORMATTER
TRANSMIT
FACILITY DATA
LINK
SIGNALING
PROCESSOR
(RECEIVE)
MAPPER
TO
FRAMER
DS1
CROSS
CONNECT
SUPER MAPPER: PERFORMANCE MONITORING FRAMER
SUPER MAPPER
M12 MULTIPLEXER
INTERFACE
SUPER MAPPER
VT MAPP ER
INTERFACE
VT MAPP ER:
BYTE-SYNCHRONOUS
ROBBED-BIT SIGNALING
RECEIVE DATA
SI GNALIN G STOMP
DATA
VT MAPPE R:
BYTE-SYNCHRONOUS
ROBBED-BIT SIGNALING
TRANS MIT DATA
TRANSMIT
HDLC
TRANSMIT
HDLC
PERFORMANCE
MONITOR
PERFORMANCE
MONITOR
INTRUSIVE
PERFORMANCE
MONITOR
DS1
INTERFACE RCLK28, RPD28, RND28 TCLK28, TPD28, TND28
TRANSMIT
FRAME
FORMATTER
LINELINE
(LINE
INTERFACE)
RECEIVE
FRAME
ALIGNER
(LINE
INTERFACE)
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 601
26 Applications (continued)
26.14 Line Decoder/Encoder
The line decoder/enc oder supports either single-rail or dual-rail transmission . In dual- r ail mode, the line codes sup-
ported are as follows:
Alternate mark inversion (A MI).
DS1 binary 8 zero code suppression (B8 ZS).
ITU-CEPT high-density bipolar of order 3 (HDB3).
In the si ngle-rail mode, a line interface unit (LIU) decodes/encodes the data.
In the dual-rail m o de, loss of signal in monitored.
In the case of coded mark inversion (CMI) coding (Japanese TTC standard JJ-20.11) , the LIU decodes the data,
indicating both th e CMI coding rule violat i o n s ( CRVs) and line coding violations as bipolar violat ions. ( In th e CMI
mode, the framer is in the single-rail mode.)
26.15 Receive Frame Aligner/Trans mi t Frame Formatter
The receive frame aligner and transmit frame formatter support the following frame for mats:
D4 superframe.
SF D4 superframe: FT framing only.
J-D4 superframe with Japanese rem ote alarm.
DDS.
SLC
-96.
ESF.
J-ESF (J1 standard wit h different CRC-6 algorithm ).
Non-align DS1 (193 bitsclear channel).
CEPT basic frame (ITU G.706).
CEPT CRC-4 mult iframe with 100 ms tim er (ITU G.706).
CEPT CRC-4 mult iframe with 400 ms timer (automatic CRC-4/nonCRC-4 equipment interworking) (ITU G.706
Annex B).
Non-align E1 (256 bitsclear channel).
2.048 coded m ark inversion (CM I) coded interface (TTC standards JJ-20.11).
26.16 Receive Performance Monitor
The receive fram er monitors the fo llowing alarms: lo ss of receive clock, loss of signal, loss of frame, alarm indica-
tion signal (AIS), remote frame alarms, and remote multiframe alarms. These alarms are detect ed as defined by
the appropriate
ANSI
, AT &T, ITU, and ETSI standards.
Performance moni toring as specified by AT&T,
ANSI
, and ITU is prov ided through counters m oni tor ing bip olar v io-
lat ion, fra me bit errors, CRC errors, errored even ts, errored seconds, bursty errored seconds, and severely errored
seconds.
In-band loopback activ ation and deactivation codes can be transmitted to the line via the p ayload or th e facil ity data
link. In-band loopback act iv ation and deactivation codes in the payload or the facility data link are detected.
602 Agere Systems Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
26 Applications (continued)
26.17 Sig n al ing Process or
The signaling processor supports the follow ing modes:
Superframe (D4,
SLC
-96): 2-state, 4-st ate, and 16-state.
VT 1.5 SPE: 2 - state, 4-st a te, and 16-state.
Extended superframe: 2-state, 4-st ate, and 16-state .
CEPT: common channel signaling (CCS) (TS-16).
Transparent (pass through) signaling.
J-ESF handling groups.
Signaling feat ures supported per channel are as follows:
Signaling debounce.
Sign aling freeze.
Signaling interrupt upon change of state.
Assoc iated signaling mode (AS M).
Sign aling inhibit.
Sign aling stomp.
In the DS1 robbed-bit signaling modes, voice and data channels are programmable. The entire pay load can be
forced into a data-only (no s ignaling channels) mode, i.e., transparent mode by programming one control bit.
Signaling access can be through the on-c h ip signaling registers or the syst em interface. Data and its associated
signaling information can b e accessed through the system in either DS1 or CEPT-E1 modes.
26.18 Facility D ata Link (FDL) Processor
The bit-oriented ESF data-l ink messages defined in
ANSI
T1.403 are monitored by the receive f acility data link unit.
The transmit facility da ta link un it overrid e s the FDL- FIFO for the tran smission of the bit-oriented ESF data-link
messag es def ined in
ANSI
T1.403-1995.
The FDL processor extr acts and stores data l ink bits from three different frame types as follows:
D bits and delineator bits from the
SLC
-96 mult i-su perframe .
Data link bits from DDS frames (bit 6 of t ime slot 24).
Two multiframes of Sa[ 4:8 ] bits from time slot 0 in CEPT basic and CRC-4 multiframes.
The respective bits will always be extracted from frame-aligned frames and stored in a stack. The processor will
have control of being al erted to stack updates through the interrupt ma sk registers.
The transmit FDL block perf orms the trans mission of D bits into
SLC
-96 superframes, Sa-bits in CEPT frames, and
D bits in DDS frames.
In
SLC
-96 frames, the D and delineator bits are always sourced from this block when the block is enabled for
insertion.
In DDS frames, the data link bit s are always sourced from this block when this block is enabled for inser tion. This
block also provides the capability to trans mi t BOMs in th e data link channel of ESF li nks .
In CEPT frames, the Sa bits are sourced from either the Sa stack within this block or from the system interface.
The data link block only respond s with valid data when selected by the Sa source contro l bits.
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 603
26 Applications (continued)
26.1 9 HDLC Un it
The HDLC processor formats the HDLC packets for insertion into the programmable channels. A channel c an be
any numb er of bits (1 to 8) from a time slot .
The maximum number of channels is 64. The maximum channel bit rate is 64 kbits/s . The minimum channel bit r ate
is 4 kbits/s. Each channels is allocated 128 bytes of storage.
HDLC pr oc essing of data on the facility data link (PRMs, Sa b its, or otherw is e) is implemented by assignin g the
FDL bit position to a logic HDLC channel.
26.20 System Interface
The syste m interface block provid es a programmable interface. It can be configured to work in four differe nt modes.
Conce ntration highway interface (serial time division m ultiplex interface).
Global frame sync.
Global clock: 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz.
28 transmit and receive data ports; data rates: 2.048 Mbits/s, 4.096 Mbits/s, or 8.192 Mbits/s.
Parallel system bus (parallel time-division multiplex interface/transmit and receive).
Global frame sync.
Global clock: 19 MHz.
Data rate: 19 MHz.
8 bits of data + associated parity bit.
4 bits of signaling + 2 bi ts of signaling control + 1 bit of parity.
Time-division multiplex data rate serial interface.
28 receive frame sync (per port).
28 receive clock: 1.544 Mbits/s or 2.048 Mbits /s (per port).
28 receive ports.
One transmit frame sync.
One transmit clock: 1.544 Mbits/s or 2.048 Mbits/s.
28 transmit ports.
Netw or k serial multiplexed bus.
6- or 8-pin seria l inte rface.
Transmit and receive clock and data at 51.84 MHz.
Accommodates 1 DS3 of throughput.
Provides a minimal pin count interface for data and inverse multiplexing for ATM (IMA) applications without slip
buffers.
Thr ee modes of operation: f ramerNSMI payload assembled/disassembled into DS1/E1s; M13proprieta ry
transport form at with DS3 framing; SPE proprietary transport format mapped into an STS-1/AU-3.
604 Agere Systems Inc.
TMXF 28155/51 Super Mapper Prelim inary Data Sheet
155/51 Mbit s/s SONE T/SD H x28/x21 DS1/E 1 Ma y 2001
Change History
The organ ization of this data sheet ( DS01-167PDH) has radica lly changed. While the contents have undergone
minimal changes (listed below), the various sections have been rear ranged and section numbers have been
installed to make navigating throughout the document easier.
An overall table of contents has been added towards the front of the document, and in front of each section a table
of cont ent has been added.
The entire Preface Section has been rewritten; no change bars have been installed.
The Pin Descriptions, starting on page 15, has been rev ised and more tab les ha ve been added to that section. The
pin numbers and pin names, however, have not be en changed; no change bars hav e been installed.
Red change bars have been installed for all content-specific changes. Any additions, or deletions, have been high-
lighted in red.
Any references to tables, figures, sect ions, o r pages have been highlight ed in blue.
Changes to format (such as grammar, punctuation, new paragraphs etc.) have not been highlighted.
Navigating Through an Acrobat Document
If the reader displays this document in Acrobat Reader, cl icking on any blue reference will bring the reader t o that
ref erence point. Clic king on the back arrow (Go to previous View) in the toolbar of the Acrobat Reader, will bring the
reader back to the starting point.
For example: clicking on the 3 below, wil l bring the re ader to page 3, which is the first change of this docum ent.
Clicking on the back arrow (in Acrobat Reader) will bring the reader back to this page (pa ge604).
All changes from the previous v ersion (DS01-078PDH) are listed in the following table:
Table 628. Change History
Page Page Page
3305
7 307 424
34 310 439
51 333 464
54 345 468
55 346 469
61 347 472
68 348 482
82 384 503
114 405 514
217 406 530
219 411 549
226 412 564
248 415 592
255 421 593
272 422
Preliminary Data Sheet TMXF28155/51 Super Mapper
May 2001 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 605
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a resu lt of their use or application.
SLC
is a
registered trademark of Ager e Systems Inc.
Copyright © 2001 Agere Systems Inc .
All Rights Reserved
Printed in U.S.A.
J une 2001
DS01-167PDH (re places DS01- 078PDH)
For additional information, contact your Agere Systems Account Manager or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@micro.lucent.com
N. AMERI CA : Agere Systems Inc ., 555 Unio n Boulevard, Room 30L- 15P - B A , Allentown, PA 18109-3286
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
Tel. (65) 778 8833, FAX (65) 777 7495
CHINA: Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC
Tel. (86) 21 5 0471212, FAX (86) 21 50472266
JAPAN: Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE: Dat a Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148
Technical Inquir ies: GERMA NY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
FRANCE: (33) 1 40 83 68 0 0 (Paris), SWEDEN: (46) 8 594 607 00 (Stoc kholm), FINLAND: (358) 9 3507670 (Helsinki),
ITALY : (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)